
Operations Research Letters 50 (2022) 322–328

Contents lists available at ScienceDirect

Operations Research Letters

www.elsevier.com/locate/orl

Online load balancing with general reassignment cost

Sebastian Berndt a, Franziska Eberle b,∗, Nicole Megow c

a Institute for IT Security, University of Lübeck, Germany
b Department of Mathematics, The London School of Economics and Political Science, UK
c Faculty of Mathematics and Computer Science, University of Bremen, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 June 2021
Received in revised form 25 March 2022
Accepted 29 March 2022
Available online 1 April 2022

Keywords:
Online load balancing
Migration
Recourse
Competitive analysis

We investigate a semi-online variant of load balancing with restricted assignment. In this problem, we
are given n jobs, which need to be processed by m machines with the goal to minimize the maximum
machine load. Since strong lower bounds rule out any competitive ratio of o(log n), we may reassign jobs
at a certain job-individual cost. We generalize a result by Gupta, Kumar, and Stein (SODA 2014) by giving
a O(log log mn)-competitive algorithm with constant amortized reassignment cost.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Online algorithms are a classical, well-studied way to model
problems with an inherent uncertainty. In the offline scenario, the
complete input to an algorithm is given right from the start. For
many dynamic real-world systems, such a knowledge is often not
feasible, as the input only arrives over time. Hence, one aims to
produce a solution for these partial inputs that is not too far from
an optimal solution produced by an algorithm knowing the com-
plete input. While online algorithms with such a bounded compet-
itive ratio exist for a surprisingly large class of problems, the in-
ability of online algorithms to reconsider previous decisions allows
to show several impossibility results. Clearly, allowing an arbitrary
amount of reconsideration would trivially remove the uncertainty
aspect of the problem, and this situation can easily be solved by
iterative use of the best offline algorithm for the problem. Fur-
thermore, a small amount of reconsideration is often possible in
practice.

To overcome these impossibility results, several semi-online
models were introduced and studied that allow a bounded amount
of reconsideration. In order to bound this amount of reconsidera-
tion, we need to define a metric that measures this reconsidera-
tion. A natural approach to do so is to associate with each new
object added to the instance a reassignment cost that needs to be
paid if the object is reassigned during such a reconsideration. Now,

* Corresponding author.
E-mail addresses: s.berndt@uni-luebeck.de (S. Berndt), f.eberle@lse.ac.uk

(F. Eberle), nicole.megow@uni-bremen.de (N. Megow).
https://doi.org/10.1016/j.orl.2022.03.007
0167-6377/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
if one wants to bound the number of reassigned objects, this can
be modeled as having unit reassignment costs. This model is usu-
ally known as the recourse model. On the other hand, one might
be interested in bounding the volume of the reassigned objects by
associating the reassignment costs with the size or volume of the
objects. This model is usually known as the migration model. In our
work, we consider the natural generalization of these models by
allowing arbitrary reassignment costs.

Scheduling problems have played an important role in the design
of online algorithms. In general, a certain set of jobs J needs to be
scheduled on a certain set of machines M. Clearly, such problems
arise in the design of process schedulers of operating systems, but
also in many problems from operations research such as logis-
tics (see e.g. [24,27]). A very general scheduling problem is called
load balancing on unrelated machines. Here, processing job j ∈ J
on machine i ∈ M takes time pi, j , i.e. the processing time de-
pends heavily on the used machine. These processing times model
the modern scenario of highly heterogeneous computing platforms
(such as CPUs, GPUs, FPGAs,. . .). The goal is to distribute J onto
M such that the maximum load Cmax, often called the makespan,
is minimized. Here, the load of a machine i is the sum of process-
ing times pi, j of jobs j assigned to i.

In the online-list model, jobs arrive one by one and an online
algorithm has to irrevocably assign a job to one of the m ma-
chines before the next job is revealed. That is, jobs are revealed in
the order 1, . . . , n, and upon arrival of job j, the scheduler learns
the processing time pi, j and has to assign j to a machine be-
fore job j + 1 is revealed. The performance of online algorithms
is typically assessed by competitive analysis. An online algorithm
le under the CC BY-NC-ND license

https://doi.org/10.1016/j.orl.2022.03.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2022.03.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:s.berndt@uni-luebeck.de
mailto:f.eberle@lse.ac.uk
mailto:nicole.megow@uni-bremen.de
https://doi.org/10.1016/j.orl.2022.03.007
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Berndt, F. Eberle and N. Megow Operations Research Letters 50 (2022) 322–328
is α-competitive if, for each instance, its makespan is bounded
by α C�

max, where C�
max is the minimal makespan for this job set.

In this paper, we consider an important special case of un-
related machine scheduling, called load balancing with restricted
assignment, where pi, j ∈ {p j, ∞}. A job j can either be performed
on machine i (and will take time p j) or it cannot be performed
on this machine at all (taking time ∞). This special case already
captures a lot of the complexity of the unrelated machine model.
In fact, all known lower bounds on the competitive ratio of online
algorithms for load balancing on unrelated machines already hold
for the restricted assignment. In particular, Azar, Naor, and Rom [7]
give a lower bound of �(log n) for any deterministic online algo-
rithm, even in the restricted assignment scenario and with unit
processing times pi, j ∈ {1, ∞}. Even for randomized algorithms,
they show a lower bound of ln m, where ln m denotes the natu-
ral logarithm of m > 0, the number of machines. Aspnes et al. [5]
provide online algorithms with matching upper bounds (up to con-
stants).

To overcome these strong lower bounds, we relax the irrevoca-
bility requirement for an online algorithm. As described above, we
associate with each job j ∈ J a non-negative assignment cost c j
that any scheduler has to pay when it (re)assigns j to a partic-
ular machine. We refer to the total assignment cost for the jobs
[k] := {1, 2, . . . , k} by Ck := ∑k

j=1 c j . An offline optimum solution
for n jobs does not reassign any job and has, thus, total assignment
cost C� := Cn . We say that an online algorithm has a reassignment
factor of β if its amortized reassignment cost for online assigning
and possibly reassigning the first k jobs is bounded by β · Ck for
each k ∈ [n]. The goal is to design an α-competitive online algo-
rithm with bounded reassignment factor. We show that an O(1)-
competitive algorithm with constant reassignment factor exists for
online load balancing unit-size jobs with restricted assignment. For
arbitrary job sizes, this problem admits an algorithm with compet-
itive ratio O(log log mn) and reassignment factor O(1).

Our model of load balancing with reassignment cost general-
izes two previously and only independently studied models, the
recourse model (where c j = 1) and the migration model (with c j =
p j). We refer to these special reassignment factors by recourse and
migration factor, respectively, and we give details on previous re-
sults below. Also other online problems have been investigated in
semi-online models with recourse and migration, but hardly in a
unified model with reassignment cost. We hope to foster further
research on this general semi-online model.

1.1. Related work

Westbrook [31] introduced online scheduling with reassign-
ments in a very general model in which jobs may arrive and de-
part. Here, the optimal makespan may decrease over time. There-
fore, he designs algorithms that are α-competitive against the
current optimal load, in contrast to the so far observed maxi-
mum optimal load. He gives constant competitive algorithms with
constant migration factor and constant recourse factor, respec-
tively, for identical as well as related machines. For arbitrary reas-
signment costs ci , the algorithm is O

(
logδ

max j{c j/p j}
min j{c j/p j}

)
-competitive

with reassignment factor O(δ) for some parameter δ with 1 ≤ δ ≤
max j{c j/p j}
min j{c j/p j} . Andrews, Goemans, and Zhang [3] improve upon these
results giving algorithms that are constant competitive against the
current optimal load with constant reassignment factor for identi-
cal and related machines. We are not aware of any previous work
on scheduling with reassignment cost for unrelated machines.

Subsequent work considered either the recourse or the migra-
tion model. Both models have been analyzed from an amortized as
well as from a worst-case point of view. In the latter, the reassign-
ment cost in round k is required to be bounded by βck . Clearly,
323
any worst-case bound translates to a bound in the amortized set-
ting while the reverse is not necessarily true.

Sanders, Sivadasan, and Skutella [29] consider online load bal-
ancing on identical parallel machines with migration. Without re-
assignments, there is a lower bound of

√
3 ≈ 1.88 on the com-

petitive ratio by Rudin and Chandrasekaran [28] while the best
known algorithm achieves a competitive ratio of 1.92 [2]. Sanders
et al. [29] improve upon this lower bound when using migra-
tion. More precisely, they obtain a 3

2 -competitive algorithm with
worst-case migration factor 4

3 . Moreover, they design a family
of (1 + ε)-competitive algorithms with worst-case migration fac-
tor β(ε) allowing for a fully scalable tradeoff between the quality
of a solution and its migration cost. In the online setting, they call
such a family of algorithms robust PTAS. Also for identical paral-
lel machines, Skutella and Verschae [30] develop a robust PTAS
for two problems, minimizing the maximum load and maximiz-
ing the minimum load on any machine, with an amortized bound
on the migration factor. When jobs can be preempted, Epstein and
Levin [16] give a 1-competitive, i.e., optimal, algorithm with worst-
case migration factor 1 − 1

m .
Awerbuch et al. [6] investigate (among other problems) load

balancing on unrelated machines and give an O(log m)-competitive
algorithm reassigning each job at most O(log m) times. For the
special case where pi, j ∈ {1, ∞} for each job j and each machine i,
their algorithm is 16-competitive using O(log m) recourse if the
optimal makespan is at least �(log m).

Most relevant for our work is the work by Gupta, Kumar, and
Stein [21], who give an online algorithm for the general restricted
assignment problem that is O(log log mn)-competitive with con-
stant recourse. We give the details in the next section.

For restricted assignment with unit-size jobs, Bernstein et
al. [11] give an 8-competitive online algorithm with constant re-
course that simultaneously achieves the competitive ratio for ev-
ery �q-norm for q ∈ [1, ∞]. That is, if l = (l1, . . . , lm) is the load
vector of a given job-to-machine assignment, then the �q-norm

of l is defined by q
√∑m

i=1 lqi for q < ∞ and �∞ is maxi{li}. They
achieve this by following an optimal assignment with machine
loads (l�1, . . . , l

�
m) such that li ≤ 8l�i after each job arrival.

Other problems that have been studied in semi-online models
with reassignments include matching problems [4,9–11,20,21,25],
minimum Steiner tree problems [18,22,26], the traveling salesper-
son problem [26] as well as packing [8,14,15,17,23] and covering
problems [19]. As already mentioned, these problems are typically
studied in either in the recourse or the migration model. The only
previous work on online optimization with general reassignment
cost that we are aware of is on load balancing on identical and
related machines [3,31] and bin-packing [17].

1.2. The approach by Gupta, Kumar, and Stein [21]

Besides results on online flows and online matching problems,
the authors design an online algorithm for unit-size jobs with con-
stant competitive ratio and constant recourse cost. Further, they
describe a high-level idea on how to generalize this algorithm to
unit-size jobs with arbitrary reassignment costs.

Using these two algorithms, the authors give an O(log logmn)-
competitive algorithm for load balancing that incurs constant re-
course. To this end, they partition the set of jobs into big and
small jobs. The big jobs are further partitioned into O(log log mn)

many classes of roughly equal size, and, after rounding, each class
can be solved using the algorithm for unit-size jobs. Every small
job j is split into p j unit-size jobs with the same set of feasi-
ble machines as j, for which the algorithm for unit-size jobs is
used to determine an assignment. The assignment of the unit-size
jobs corresponding to job j is then treated as a probability dis-

S. Berndt, F. Eberle and N. Megow Operations Research Letters 50 (2022) 322–328
tribution over possible assignments for j and rounded carefully,
to obtain an assignment for j itself. The algorithm for small jobs
achieves a competitive ratio of O(1) using an expected number
of O(n) reassignments. Combining these two algorithms gives an
online algorithm with competitive ratio O(log log mn) and constant
recourse.

1.3. Our framework and our contribution

To generalize this result to arbitrary reassignment costs, we fol-
low the same approach as in [21], but adapt the algorithm as well
as its analysis at certain key points. First, for scheduling the classes
of big jobs, we replace the O(1)-recourse algorithm with its gener-
alization to arbitrary reassignment costs. This immediately guaran-
tees an online algorithm with competitive ratio of O(log log mn)

and constant reassignment cost. For the small jobs, we employ
again the randomized algorithm in [21], but in this case, we have
to adapt the analysis in order to show that this randomized al-
gorithm is still O(1)-competitive and has constant expected reas-
signment costs.

For the sake of completeness, we additionally give a detailed
analysis of the involved algorithms whenever details are missing
in [21].

2. Online load balancing

In this section we give our main result, a randomized online
algorithm that achieves a competitive ratio of O(log log mn) while
having constant expected reassignment cost. First, we describe an
online flow problem with rerouting that generalizes online load
balancing with unit-size jobs and reassignment cost and recall the
algorithm for that problem by [21]. Next, we precisely describe
the algorithm for unit-size jobs. Then, we adapt the randomized
algorithm for small jobs with constant recourse [21] and give the
details of the new analysis before we describe the main result of
this section.

2.1. Online flows with rerouting

We consider the following online flow problem. We are given
a directed graph G = (V , A) with vertices V and arcs A. Each
arc a ∈ A has a capacity ua ∈ Z+ and an assignment cost ca ≥ 0.
Moreover, there is a unique source vertex s ∈ V . In round t , ver-
tex vt ∈ V is specified as sink and the task is to (unsplittably) send
one unit of flow from s to vt , in addition to the unit flows al-
ready being routed from the source to the vertices v1, . . . , vt−1,
without violating the arc capacities ua . Throughout the paper we
assume that the underlying offline problem admits a feasible so-
lution fulfilling all capacity constraints, while an online algorithm
may violate some capacity constraints, which is necessary for de-
terministic online algorithms with bounded competitive ratio.

For determining the quality of an algorithm, we are interested
in two properties: (i) the factor by which any arc capacity is vio-
lated and (ii) the total assignment cost of the flow. In round t , that
is after satisfying the demand of vertices v1, . . . , vt , let (fa(t))a∈A ∈
N A denote the flow found by the online algorithm. We say that
the algorithm is α-competitive if fa(t) ≤ αua holds for each arc a
and each round t , which seems orthogonal to the classical defi-
nition. However, this different notion is helpful for our use case,
online load balancing with restricted assignment.

Let us next describe the relationship between the problem of
load balancing unit-size jobs with restricted assignment and the
flow problem. In the offline load balancing problem, we create for
each machine and for each job one vertex and add one vertex s
as source. Given the optimal makespan C�

max, the source connects
to each machine-vertex i by an arc with capacity us,i = C�

max and
324
assignment cost cs,i = 0. Further, between each machine-vertex i
and each job-vertex j, we draw an arc (i, j) with capacity 1 and
assignment cost c j if and only if j can be scheduled by machine i,
i.e., if pi, j = 1. By specifying each job-vertex as sink with unit de-
mand, we obtain an instance of the offline version of the above
introduced flow problem. The online flow problem assumes that
the graph is known upfront while online load balancing is char-
acterized by having the jobs, i.e., in the reduction the job-vertices,
revealed one by one. We emphasize that the graph we created has
a very special structure. Before a job-vertex is specified as a sink,
sending flow along its incident arcs violates the flow conservation
at this vertex since all incident arcs are entering this node. Thus,
any algorithm that always maintains a feasible solution to the flow
problem will not use any of these arcs. The shortest-augmenting-
path algorithm designed by Gupta, Kumar and Stein [21] satisfies
this condition.

The just developed reduction implies that the lower bound
of �(log m) on the competitive ratio for any online algorithm with-
out reassignment for load balancing with restricted assignment
also holds for the online flow problem using the above defini-
tion of competitiveness for this problem. To beat this strict lower
bound, we allow the online algorithm to reroute flow at a certain
assignment cost. More precisely, every time the flow sent along an
arc a is decreased or increased by one unit, the assignment cost ca

has to be paid. Let C�
t be the assignment cost of an optimal solu-

tion after the first t rounds. We aim at developing algorithms that
violate the arc capacities by at most a constant factor and simulta-
neously reroute flow at a reassignment cost bounded by O(C�

t).
To this end, we have a closer look at the shortest path algo-

rithm in [21]. Let f be the flow in graph G after round t . We
define the residual network Gt on the vertex set V as follows:
For every arc a ∈ A let ā be its backward arc, i.e., if a = (v, w),
then ā = (w, v). Set ut

a = αua − fa and ut
ā = fa , where α is the

competitive ratio we are aiming for. Moreover, let ct
a = ct

ā = ca .
That is, in contrast to the classical shortest-augmenting-path al-
gorithm, the backward arc of every arc with positive flow has
assignment cost identical to its forward arc. If vertex vt is speci-
fied as sink in round t , we use a shortest path algorithm to find P ,
a shortest path from s to vt in the residual network Gt . We aug-
ment the flow f along P by one unit, i.e., if a ∈ P , then the flow
along a is increased by one unit, while ā ∈ P implies that fa is
decreased by one unit.

Gupta, Kumar, and Stein [21] show that this algorithm main-
tains a (2 + ε)-competitive flow while the assignment cost of
rerouting the flow is at most

(
1 + 2

ε

)
times the assignment cost

of an offline optimum.

Theorem 1 (Theorem 6.1 in [21]). If there is a feasible solution f � to the
flow instance G with source s and sinks v1, . . . , vt of assignment cost C�

t ,
the total assignment cost of augmentations performed by the adapted
shortest-augmenting-path algorithm on instance G is at most

(
1 + 2

ε

)
C�

t .
The capacities on the arcs are violated by at most a factor (2 + ε).

As pointed out already by Bernstein et al. [11], the original
proof of the above theorem was erroneous (Lemma 5.4 in [21])
but has been fixed by the authors.

2.2. Unit-size jobs

In this section, we give the details for the usage of the al-
gorithm described in the previous section to solve online load
balancing with unit-size jobs with constant competitive ratio and
constant recourse. As discussed above, this problem can directly
be translated to the online flow problem assuming that C�

max, the
optimal makespan, is known in advance. This assumption is not a

S. Berndt, F. Eberle and N. Megow Operations Research Letters 50 (2022) 322–328
restriction as we can employ a standard guess-and-double frame-
work at the cost of losing an additional factor of 4 in the competi-
tive ratio. Specifically, we start by guessing C�

max = 1, i.e., we assign
the arcs (s, i) for i ∈ [m] a capacity of (2 + ε), where ε > 0 is the
parameter that describes the trade off between competitive ratio
and reassignment cost in Theorem 1. That is, our algorithm will
be 4(2 + ε)-competitive with reassignment cost at most

(
1 + 2

ε

)
.

In general, let round t refer to the point in time when job jt is re-
vealed. If C�

max is the guess of the optimal makespan in round t ,
then the arcs (s, i) for i ∈ [m] have capacity (2 + ε)C�

max. If the
shortest augmenting path algorithm does not find a feasible flow
in this network, then Theorem 1 implies that the true optimum is
strictly greater than C�

max. Hence, we double C�
max and rerun the

shortest augmenting path algorithm on the residual network Gt
with the updated capacities us,i = (2 + ε)C�

max. As the failure of
the shortest augmenting path algorithm before doubling gives a
lower bound on the optimal makespan, we obtain the following
corollary; see also Section 7 in [21].

Corollary 1. Let 0 < ε ≤ 1. If there is a feasible solution with makespan
C�

max and assignment cost C� to the (offline) load balancing problem
with restricted assignment and unit-size jobs, then the shortest aug-
menting path algorithm combined with a guess-and-double framework
maintains a schedule with makespan at most 4(2 + ε)C�

max and reas-
signment cost at most

(
1 + 2

ε

)
C� .

We note that this result may overestimate the actual reassign-
ment cost due to the following observation: In the online flow
problem, increasing or decreasing the flow along an arc a by one
unit costs ca . When balancing load online with reassignment, the
reassignment of job j costs c j . However, the reduction we use
implies that reassigning one unit-size job j from machine i to ma-
chine i′ is equivalent to decreasing the flow along the arc (i, j)
by one unit while simultaneously increasing the flow along the
arc (i′, j) by one unit. This implies that the cost for rerouting the
unit-flow associated with job j is 2c j .

2.3. Small jobs

Our algorithm classifies jobs as big and small depending on the
current guess of the optimal makespan and the total number of
jobs. Let us assume that we know n, the number of jobs, and C�

max,
the optimal makespan. We justify this assumption later when de-
signing the complete algorithm in Section 2.4. Let γ = log(mn). We
say a job j is big if p j ≥ C�

max
γ , and otherwise, the job is small. Our

algorithm treats these jobs differently, and we start by only consid-
ering the small jobs, JS , of the instance. We prove the following.

Theorem 2. There is a randomized online algorithm maintaining an
assignment of the small jobs JS with expected makespan at most
O(1)C�

max while incurring an expected reassignment cost of at most
O(1)

∑
j∈JS

c j .

For simplicity, we assume that the set JS of small jobs is in-
dexed in the order of the arrival of jobs, i.e., JS = {1, . . . , nS},
where nS = |JS |. For scheduling these jobs, we first generate a
fractional assignment of the jobs to machines which we then in-
terpret as probability distribution of the jobs over the machines.
By using the rounding scheme of [21], we obtain an integral as-
signment.

Formally, for job j with processing time p j and assignment
cost c j , we generate p j unit-size jobs with reassignment cost

c j
p j

and consider them as an input to online load balancing with unit-
size jobs as solved in Section 2.2. The set of machines that are able
to process a unit-size job associated with j is identical to the set
325
of eligible machines for job j. Then, the assignment of the asso-
ciated unit-size jobs gives a fractional assignment of the original
job.

Consider round t , i.e., the assignment after job t has arrived and
was fractionally assigned by the algorithm in pt steps, one part per
step. We are only interested in the final assignment (of all unit-
size jobs) and discard the intermediate assignments while job t
was only partially assigned. Let xi, j(t) be the number of unit-size
jobs of job j that are assigned to machine i at time t . Then, the
total (fractional) load on machine i at time t is given by �

f
i (t) =∑t

j=1 xi, j(t). Consider a machine i with xi, j(t) = xi, j(t − 1). Then,
no unit-size job is moved from or to machine i. Hence, the reas-
signment cost for such a machine is equal to zero. For machine i
with xi, j(t − 1) > xi, j(t), exactly xi, j(t − 1) − xi, j(t) unit-size jobs
are moved from machine i to machines i′ with xi′, j(t −1) < xi′, j(t).
By definition, reassigning one unit-size job associated with j has
actual cost

c j
p j

. However, as observed in Section 2.2, the transfor-

mation to the online flow problem implies that reassigning one
unit-size job from i to i′ costs us 2

c j
p j

as it involves decreasing the
flow on the edge between j and i and increasing the flow on the
edge between j and i′ . Hence, the assignment cost c(t) incurred
due to the arrival of job t is given by

c(t) :=
m∑

i=1

t∑
j=1

c j

p j

∣∣xi, j(t − 1) − xi, j(t)
∣∣. (1)

If there is a schedule with makespan C�
max, the algorithm main-

tains a fractional schedule with makespan at most 12C�
max and

reassignment cost at most
∑t

s=1 c(s) ≤ 3
∑t

j=1 c j by Corollary 1.
Since we are interested in an assignment of the original jobs j,

we need to transform the fractional assignment (xi, j(t))i, j at time t
to an integral assignment without significantly increasing the reas-
signment cost. To this end, let X j(t) ∈ [m] be the random vari-

able dictating the assignment of j with distribution
(xi, j(t)

p j

)m
i=1,

i.e., P [X j(t) = i] = xi, j(t)
p j

. Since the unit-size jobs associated with j

have the same set of feasible machines, xi, j(t) = 0 if pi, j = ∞.
Hence, the assignment given by X j(t) for 1 ≤ j ≤ t is feasible.

However, simply drawing the random variables X j(t) according
to the distribution given by

(xi, j(t)
p j

)m
i=1 does not allow us to bound

the reassignment cost of the actual jobs in terms of the bound c(t)
given in (1). Therefore, we use the rounding approach developed
by [21] that takes the realization of X j(t − 1), i.e., the assignment
of job j in round t − 1, into account when drawing the new as-
signment X j(t).

In round t , the newly arrived job t is always assigned according
to the probabilities

(xi,t (t)
pt

)m
i=1 since there is no previous assign-

ment that needs to be taken into account.
We fix a small job j ∈ JS with j < t and construct the follow-

ing complete bipartite directed graph G(t) with vertex set V (t −
1) ∪ V (t) and arc set V (t − 1) × V (t), denoted by A(t). The two
vertex sets V (t − 1) and V (t) contain one vertex for each ma-
chine, i.e., V (s) = {i(s) : i ∈ [m]} for s ∈ {t − 1, t}. An arc a =
(i(t −1), i′(t)) has cost ca = 0 if i = i′ . Otherwise, the unit flow cost
for arc a ∈ A equals ca := c j

p j
. Each vertex i(t − 1) is a source with

demand di(t−1) = −xi, j(t − 1), while each vertex i(t) is a sink with
demand di(t) = xi, j(t). Since

∑
i xi, j(t − 1) = p j = ∑

i xi, j(t), we can
solve the min-cost transportation problem for the p j units of flow
from V (t − 1) to V (t); for details please refer to, e.g., [1]. Consider
now the integral assignment X j(t − 1) = i of j at time t . Then,
pick one of the xi, j(t − 1) units placed at i uniformly at random
independently of other jobs j′ �= j. If this unit is sent to node i′(t)
by the solution of the transportation problem, set X j(t) = i′ . The

S. Berndt, F. Eberle and N. Megow Operations Research Letters 50 (2022) 322–328
following lemma gives some useful properties of the random vari-
ables that enable us to bound the reassignment cost of the integral
assignment. As these properties are only mentioned but not proven
in [21], we provide a full proof here.

Lemma 1. The random variables X j(t) for 1 ≤ j ≤ t ≤ nS satisfy the
following properties:

1. X j(t) and X j′ (t) are independent for j �= j′ ,
2. P [X j(t) = i] = xi, j(t)

p j
, and

3. P [X j(t −1) �= X j(t)] =∑
i∈[m]:

P [X j(t−1)=i]>0

1
p j

(xi, j(t −1) −xi, j(t))+ ,

where x+ = max{x, 0}.

Proof. We fix a time t .

Ad 1 Solving the transportation problem independently for each
job implies Property 1.

Ad 2 We prove this by induction on round t . Let j = 1 be the
first small job that arrived. Clearly, P [X1(1) = i] = xi,1(1)

p1
by defini-

tion. Suppose now that Property 2 holds for all jobs 1 ≤ j ≤ t − 1
in round t − 1. Consider the fractional assignment (xi, j(t))i, j af-
ter job t arrived. Let f i,i′ denote the flow from machine ver-
tex i(t − 1) to vertex i′(t) as given by the optimal solution to the
min-cost transportation problem. If X j(t − 1) = i, then the proba-

bility that X j(t) = i′ is
f i,i′

xi, j(t−1)
. By the Law of Total Probability and

by the induction hypothesis,

P
[

X j(t) = i′
]
=

∑
i∈[m]:

P [X j(t−1)=i]>0

P
[

X j(t) = i′ | X j(t − 1) = i
]

· P [
X j(t − 1) = i

]
=

∑
i∈[m]:

P [X j(t−1)=i]>0

f i,i′

xi, j(t − 1)

xi, j(t − 1)

p j
= xi′, j(t)

p j
,

where the last equality follows from f i,i′ being a feasible solution
to the transportation problem.

Ad 3 Recall that c(i(t−1),i(t)) = 0. For a machine i with xi, j(t −
1) > xi, j(t), the optimal solution to the transportation problem
sends xi, j(t − 1) − xi, j(t) unit jobs to other machines. Thus,
P

[
X j(t) �= X j(t − 1) | X j(t − 1) = i

] = xi, j(t−1)−xi, j(t)
xi, j(t−1)

. For i with
xi, j(t − 1) ≤ xi, j(t) the optimal solution to the transportation prob-
lem sends xi, j(t −1) unit jobs from i(t −1) to i(t). Thus, P

[
X j(t) �=

X j(t − 1) | X j(t − 1) = i
] = 0. Therefore,

P
[

X j(t) �= X j(t − 1)
]

=
∑

i∈[m]:
P [X j(t−1)=i]>0

P
[

X j(t) �= X j(t − 1) | X j(t − 1) = i
]

· P [
X j(t − 1) = i

]

=
∑

i∈[m]:
P [X j(t−1)=i]>0

(
xi, j(t − 1) − xi, j(t)

)+

xi, j(t − 1)

xi, j(t − 1)

p j

=
∑

i∈[m]:
P [X j(t−1)=i]>0

(
xi, j(t − 1) − xi, j(t)

)+

p j
,

326
where the first equality holds because of the Law of Total Prob-
ability and the second equality follows from Property 2 and the
observation discussed above. �
Proof of Theorem 2. We first show that the above described algo-
rithm incurs a total cost of at most 3

∑nS
j=1 c j while maintaining a

solution that has a small load on each machine in expectation. To
this end, let Li(t) := ∑

j:X j(t)=i p j denote the random load on ma-
chine i at time t . We start with showing that E[Li(t)] ≤ 12C�

max(t)
for all 1 ≤ i ≤ m. Here, C�

max(t) denotes the optimal makespan in
round t . As a bound on the expected load per machine is not suffi-
cient to bound the expected maximum, i.e., E[maxi Li(t)], we then
show how to guarantee a makespan less than 72C�

max with proba-
bility one at the loss of a constant factor in the reassignment cost.

With Lemma 1, it follows

E[Li(t)] =
t∑

j=1

P [X j(t) = i]p j =
t∑

j=1

xi, j(t)

p j
p j = �

f
i (t),

where �
f
i (t) is the fractional load on machine i after having as-

signed job t . By Corollary 1, we know that max1≤i≤m{� f
i (t)} ≤

12C�
max if there exists a feasible solution with makespan C�

max.
Now consider the reassignment cost C(t) our algorithm incurs over
the course of the arrival of t small jobs. For 1 ≤ j ≤ t , the algo-
rithm pays c j whenever X j(t − 1) �= X j(t). Thus, with Property 3
of Lemma 1, we have

E[C(t)] =
t∑

j=1

P [X j(t − 1) �= X j(t)]c j

=
t∑

j=1

∑
i∈[m]:

P [X j(t−1)=i]>0

c j

p j
(xi, j(t) − xi, j(t − 1))+

≤
t∑

j=1

m∑
i=1

c j

p j
|xi, j(t) − xi, j(t − 1)| = c(t).

Again, with Corollary 1, the expected total cost of the randomized
algorithm is bounded by

∑n
t=1 c(t) ≤ 3

∑n
j=1 c j .

Unfortunately, bounding E[Li(t)] does not imply a bound
on E[max1≤i≤m Li(t)] as noted by [21].

We use the fact that we are only considering small jobs
in order to get a better bound. Consider a time t and a ma-
chine i. Let Yi, j(t) indicate whether or not j is assigned to i
at time t . So, Yi, j = 1{X j(t)=i} and Li(t) = ∑

j∈JS
p j Yi, j . We

have E
[∑

j∈JS
p j Yi, j(t)

]
= �

f
i (t) ≤ 12C�

max(t) as discussed above.
Now, we bound the probability that the makespan of our schedule
exceeds 72C�

max(t) in round t .

P
[

max
i

Li(t) > 72C�
max(t)

]

= P

[
∃i :

∑
j∈JS :X j(t)=i

p j > 72C�
max(t)

]

≤
m∑

i=1

P

[∑
j∈JS :X j(t)=i

p j > 72C�
max(t)

]

=
m∑

i=1

P

[∑
j∈JS

γ p j Yi, j(t)

C�
max(t)

> 72γ

]
.

Fix a machine i and a round t . As the random variables Yi, j

only depend on the event {X j(t) = 1} and the variables X j(t) are

S. Berndt, F. Eberle and N. Megow Operations Research Letters 50 (2022) 322–328
independent by construction, for fixed i, the Yi, j are independent
as well. Hence, γ p j Yi, j(t)

C�
max(t) are independently distributed in [0, 1]

with E
[∑

j∈JS

γ p j Yi, j(t)
C�

max(t)

]
= γ �

f
i (t)

C�
max(t) ≤ 12γ . Applying a Chernoff-

Hoeffding type bound [13, Theorem 1.1] yields

P

[∑
j∈JS

γ p j Yi, j(t)

C�
max(t)

> 72γ

]
≤ 2−72γ ≤ 1

(mt)72
.

Inserting this in the bound calculated above gives

P
[

max
i

Li(t) > 72C�
max(t)

] ≤ 1

m71t72
.

Hence, for one instance with nS jobs, the probability that the
makespan of our algorithm exceeds 72C�

max(t) in some round t is
bounded by

P
[∃t : max

i
Li(t) > 72C�

max(t)
] ≤ 1

m71

nS∑
t=1

1

t72
≤ 1.01

m71 .

Now, whenever the randomized rounding algorithm incurs a
makespan more than 72C�

max, we just restart the algorithm from
scratch and fast-forward to time t . Then, we reassign all small
jobs accordingly, incurring a reassignment cost of at most C� =∑

j∈JS
c j . If we observe such a failure mode, we run the algorithm

independently of all previous runs. Hence, the probability that we
observe such a failure mode k times for one instance is bounded
by 1.01

m71 ≤ 1
2k for m ≥ 2. Thus, the total expected cost of possible

failure modes is bounded by
∑∞

k=1 C� k
(1

2

)k = 2C� if m ≥ 2. �
2.4. The final algorithm

We prove the following theorem.

Theorem 3. There is a randomized online algorithm maintaining an as-
signment with expected makespan at most O(log log(mn))C�

max while
incurring an expected reassignment cost of at most O(1) · C� .

As discussed in Section 2.3, we assume that we know n,
the number of jobs we will encounter, and C�

max, the optimal
makespan. Based on these two values, we classify each arriving
job as big or as small, where a job j is big if p j ≥ C�

max
log(mn)

, and oth-
erwise, the job is small. Small jobs are assigned by the randomized
algorithm described in Section 2.3. For big jobs, we first partition
them into classes Ck , where a job j belongs to Ck if p j ∈ [2k−1, 2k)

for k ∈N . Rounding the processing time of jobs in Ck to 2k−1 loses
at most a factor 2 in the competitive ratio.

We then separately consider each class, which (after the round-
ing) constitutes an instance of online load balancing with unit-size
jobs. Given that there are O(log log(mn)) classes of big jobs, we
get:

Corollary 2. There is an online algorithm maintaining an assignment of
the big jobs JB with makespan at most O(log log(mn))C�

max and reas-
signment cost at most O(1)

∑
j∈JB

c j .

Maintaining C�
max or n. We still need to argue that we can as-

sume that either the current value of C�
max or n are known to us.

Recall that the threshold deciding whether a job is big or small is
defined as C�

max
log(mn)

. This implies that a job changes its classification
at most once.

We start with the case where n is known, but not C�
max. As

the optimal makespan C�
max only increases, the threshold C�

max is
log(mn)

327
monotonously increasing, implying that a class of big jobs might
become small at some point. If this happens, the whole class
makes the transition from big to small at the same time and we
simply ignore their previous assignment; instead we consider these
jobs as newly arriving small jobs (without changing n) and invoke
the algorithm for small jobs. Per job, this transition happens at
most once, which guarantees that the reassignment cost remains
bounded by O(1)C� . Theorem 2 guarantees that after such a tran-
sition the load on machine i because of small jobs is still bounded
by O(1)C�

max.
The case where C�

max is known but not n is slightly more tech-
nical as now our threshold decreases, which implies that a subset
of small jobs becomes big and leaves the assignment of small jobs.
Again, we treat this transition as arrival of new jobs and give the
newly big jobs as input to the algorithm for big jobs. Since this
transition happens at most once per job, the overall increase in
the reassignment jobs is bounded by O(1)C� . However, because
other jobs remain small and our algorithm does not handle the
case where jobs disappear, we freeze their assignment at an addi-
tional increase of O(1)C�

max in the load on machine i. This means,
any small jobs that have arrived so far and remain small, will
not be reassigned in the future. Only small jobs arriving later and
the big jobs are subject to reassignments. In the end, there are at
most O(log log(mn)) many frozen blocks of small jobs, each adding
a load of at most O(1)C�

max to machine i. Hence, the total increase
of the load on machine i is bounded by O(log log(mn))C�

max.

Proof of Theorem 3. Theorem 2 guarantees that the algorithm
maintains a schedule for the small jobs of makespan at most
O(1)C�

max while incurring a reassignment cost of at most
O(1)

∑
j∈JS

c j . Corollary 2 implies that the schedule for the
big jobs has makespan at most O(log log(mn))C�

max with total
cost bounded by O(1)

∑
j∈JB

c j . Hence, the algorithm achieves a
makespan of at most O(log log(mn))C�

max with total reassignment
cost at most O(1)C� . �
3. Concluding remarks

It is somewhat surprising that we achieve the same competi-
tive ratios (up to constants) in all three reassignment models. It
remains as an interesting open question whether the problem ad-
mits a constant-competitive algorithm in any reassignment model
with constant reassignment factor or if there even exists an online
algorithm allowing for fully scaleable tradeoff between the com-
petitive ratio and the reassignment factor.

We would like to point out that the analysis of the algorithm
is almost tight: Choosing γ ∈ �

(log(mn)
α

)
is key to guaranteeing

that the expected makespan of the small jobs remains within a
factor of O(α) of C�

max. While choosing α non-constant, e.g., α ∈

(log log(mn)) is possible, the impact on the competitive ratio is
bounded; this still creates �

(
log

(log(mn)
α

))
classes of big jobs. The

algorithm treats the O
(

log
(log(mn)

α

))
classes of big jobs indepen-

dently, which implies that, even given the optimal schedule for
each class, the combined schedule might lose this factor. Consider
the following example, where the processing volume is identical
for every class and each class can be scheduled on only two ma-
chines. Of the two machines, one machine is private and the other
one is shared among all classes. The class-optimal schedule uses
both machines to the same extent while the combined sched-
ule that only uses the private machines is better by a factor of

(
log

(log(mn)
α

))
. In order to improve upon the competitive ratio of

O(log log(mn)), an algorithm needs to consider multiple classes at
once.

Another challenge is to design an algorithm with a non-
trivial bound on the reassignment factor for the general unre-

S. Berndt, F. Eberle and N. Megow Operations Research Letters 50 (2022) 322–328
lated machine scheduling problem, in which jobs may have arbi-
trary machine-dependent processing times. While a best possible

(log n)-competitive algorithm [5] is known for the online setting,
the problem is wide open when allowing reassignments, even for
unit reassignment costs. Our (and previous) approaches crucially
rely on the fact that the processing times are {p j, ∞}.

Further interesting research directions include maximizing the
minimum load and the fully dynamic setting where jobs might
leave as well. The difficulty in both settings is that there might be
time points where the optimum is equal to 0 which makes these
types of problems notoriously difficult for approximation. One way
to overcome these difficulties is to aim for competitive ratios with
an additive constant; such an approach is developed, e.g., in [12],
for online load balancing on identical machines.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows, Prentice Hall, 1993.
[2] S. Albers, Better bounds for online scheduling, SIAM J. Comput. 29 (2) (1999)

459–473, https://doi .org /10 .1137 /S0097539797324874.
[3] M. Andrews, M.X. Goemans, L. Zhang, Improved bounds for on-line load

balancing, Algorithmica 23 (4) (1999) 278–301, https://doi .org /10 .1007 /
PL00009263.

[4] S. Angelopoulos, C. Dürr, S. Jin, Online maximum matching with recourse,
J. Comb. Optim. 40 (4) (2020) 974–1007, https://doi .org /10 .1007 /s10878 -020 -
00641 -w.

[5] J. Aspnes, Y. Azar, A. Fiat, S.A. Plotkin, O. Waarts, On-line routing of virtual
circuits with applications to load balancing and machine scheduling, J. ACM
44 (3) (1997) 486–504, https://doi .org /10 .1145 /258128 .258201.

[6] B. Awerbuch, Y. Azar, S.A. Plotkin, O. Waarts, Competitive routing of virtual
circuits with unknown duration, J. Comput. Syst. Sci. 62 (3) (2001) 385–397,
https://doi .org /10 .1006 /jcss .1999 .1662.

[7] Y. Azar, J. Naor, R. Rom, The competitiveness of on-line assignments,
in: SODA, ACM/SIAM, 1992, pp. 203–210, http://dl .acm .org /citation .cfm ?id =
139404 .139450.

[8] S. Berndt, K. Jansen, K. Klein, Fully dynamic bin packing revisited, Math. Pro-
gram. 179 (1) (2020) 109–155, https://doi .org /10 .1007 /s10107 -018 -1325 -x.

[9] A. Bernstein, A. Dudeja, Online matching with recourse: random edge arrivals,
in: FSTTCS, in: LIPIcs, vol. 182, Schloss Dagstuhl - Leibniz-Zentrum Für Infor-
matik, 2020, pp. 11:1–11:16.

[10] A. Bernstein, J. Holm, E. Rotenberg, Online bipartite matching with amortized
O(log 2 n) replacements, J. ACM 66 (5) (2019) 37:1–37:23, https://doi .org /10 .
4230 /LIPIcs .ITCS .2017.51.

[11] A. Bernstein, T. Kopelowitz, S. Pettie, E. Porat, C. Stein, Simultaneously load
balancing for every p-norm, with reassignments, in: ITCS, in: LIPIcs, vol. 67,
Schloss Dagstuhl - Leibniz-Zentrum Für Informatik, 2017, pp. 51:1–51:14.

[12] M. Buchem, L. Rohwedder, T. Vredeveld, A. Wiese, Additive approximation
schemes for load balancing problems, in: ICALP, in: LIPIcs, vol. 198, Schloss
Dagstuhl - Leibniz-Zentrum Für Informatik, 2021, pp. 42:1–42:17.

[13] D.P. Dubhashi, A. Panconesi, Concentration of Measure for the Analysis of Ran-
domized Algorithms, Cambridge University Press, 2009.

[14] L. Epstein, A. Levin, A robust APTAS for the classical bin packing problem, Math.
Program. 119 (1) (2009) 33–49, https://doi .org /10 .1007 /s10107 -007 -0200 -y.

[15] L. Epstein, A. Levin, Robust approximation schemes for cube packing, SIAM J.
Optim. 23 (2) (2013) 1310–1343, https://doi .org /10 .1137 /11082782X.

[16] L. Epstein, A. Levin, Robust algorithms for preemptive scheduling, Algorithmica
69 (1) (2014) 26–57, https://doi .org /10 .1007 /s00453 -012 -9718 -3.

[17] B. Feldkord, M. Feldotto, A. Gupta, G. Guruganesh, A. Kumar, S. Riech-
ers, D. Wajc, Fully-dynamic bin packing with little repacking, in: ICALP, in:
LIPIcs, vol. 107, Schloss Dagstuhl - Leibniz-Zentrum Für Informatik, 2018,
pp. 51:1–51:24.

[18] A. Gu, A. Gupta, A. Kumar, The power of deferral: maintaining a constant-
competitive Steiner tree online, SIAM J. Comput. 45 (1) (2016) 1–28, https://
doi .org /10 .1137 /140955276.

[19] A. Gupta, R. Krishnaswamy, A. Kumar, D. Panigrahi, Online and dynamic algo-
rithms for set cover, in: STOC, ACM, 2017, pp. 537–550.

[20] V. Gupta, R. Krishnaswamy, S. Sandeep, Permutation strikes back: the power of
recourse in online metric matching, in: APPROX/RANDOM, in: LIPIcs, vol. 176,
Schloss Dagstuhl - Leibniz-Zentrum Für Informatik, 2020, pp. 40:1–40:20.

[21] A. Gupta, A. Kumar, C. Stein, Maintaining assignments online: matching,
scheduling, and flows, in: SODA, SIAM, 2014, pp. 468–479.

[22] M. Imase, B.M. Waxman, Dynamic Steiner tree problem, SIAM J. Discrete Math.
4 (3) (1991) 369–384, https://doi .org /10 .1137 /0404033.

[23] K. Jansen, K. Klein, A robust AFPTAS for online bin packing with polynomial
migration, SIAM J. Discrete Math. 33 (4) (2019) 2062–2091, https://doi .org /10 .
1137 /17M1122529.

[24] J.K. Lenstra, D.B. Shmoys, Elements of scheduling, CoRR, arXiv:2001.06005 [abs],
2020.

[25] N. Megow, L. Nölke, Online minimum cost matching with recourse on the line,
in: APPROX/RANDOM, in: LIPIcs, vol. 176, Schloss Dagstuhl - Leibniz-Zentrum
Für Informatik, 2020, pp. 37:1–37:16.

[26] N. Megow, M. Skutella, J. Verschae, A. Wiese, The power of recourse for online
MST and TSP, SIAM J. Comput. 45 (3) (2016) 859–880, https://doi .org /10 .1137 /
130917703.

[27] L.P. Michael, Scheduling: Theory, Algorithms, and Systems, Springer, 2018.
[28] J.F. Rudin III, R. Chandrasekaran, Improved bounds for the online schedul-

ing problem, SIAM J. Comput. 32 (3) (2003) 717–735, https://doi .org /10 .1137 /
S0097539702403438.

[29] P. Sanders, N. Sivadasan, M. Skutella, Online scheduling with bounded migra-
tion, Math. Oper. Res. 34 (2) (2009) 481–498, https://doi .org /10 .1287 /moor.
1090 .0381.

[30] M. Skutella, J. Verschae, Robust polynomial-time approximation schemes for
parallel machine scheduling with job arrivals and departures, Math. Oper. Res.
41 (3) (2016) 991–1021, https://doi .org /10 .1287 /moor.2015 .0765.

[31] J.R. Westbrook, Load balancing for response time, J. Algorithms 35 (1) (2000)
1–16, https://doi .org /10 .1006 /jagm .2000 .1074.
328

http://refhub.elsevier.com/S0167-6377(22)00048-7/bib02330EC5D5E7860E0D03723B1159526Es1
https://doi.org/10.1137/S0097539797324874
https://doi.org/10.1007/PL00009263
https://doi.org/10.1007/PL00009263
https://doi.org/10.1007/s10878-020-00641-w
https://doi.org/10.1007/s10878-020-00641-w
https://doi.org/10.1145/258128.258201
https://doi.org/10.1006/jcss.1999.1662
http://dl.acm.org/citation.cfm?id=139404.139450
http://dl.acm.org/citation.cfm?id=139404.139450
https://doi.org/10.1007/s10107-018-1325-x
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib3C204D01AF42F32D3E0027EAE2EEBB0Fs1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib3C204D01AF42F32D3E0027EAE2EEBB0Fs1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib3C204D01AF42F32D3E0027EAE2EEBB0Fs1
https://doi.org/10.4230/LIPIcs.ITCS.2017.51
https://doi.org/10.4230/LIPIcs.ITCS.2017.51
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib7F43261AD6BD1A0EC237D576C89886CFs1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib7F43261AD6BD1A0EC237D576C89886CFs1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib7F43261AD6BD1A0EC237D576C89886CFs1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bibAA3D7D19299B12237C671D6E9B5B75A9s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bibAA3D7D19299B12237C671D6E9B5B75A9s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bibAA3D7D19299B12237C671D6E9B5B75A9s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib9940B4E6945633587F84DDB6C578E36As1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib9940B4E6945633587F84DDB6C578E36As1
https://doi.org/10.1007/s10107-007-0200-y
https://doi.org/10.1137/11082782X
https://doi.org/10.1007/s00453-012-9718-3
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib021C4BF183622ADE067A763E50037CA4s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib021C4BF183622ADE067A763E50037CA4s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib021C4BF183622ADE067A763E50037CA4s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib021C4BF183622ADE067A763E50037CA4s1
https://doi.org/10.1137/140955276
https://doi.org/10.1137/140955276
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib4BE693E5F9DA8574DC89B64C7ED13C10s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib4BE693E5F9DA8574DC89B64C7ED13C10s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib21799891EF7324C85AEE7E1813B77986s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib21799891EF7324C85AEE7E1813B77986s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib21799891EF7324C85AEE7E1813B77986s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bibF2654166202DDC6BE878A78BDCF62E1As1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bibF2654166202DDC6BE878A78BDCF62E1As1
https://doi.org/10.1137/0404033
https://doi.org/10.1137/17M1122529
https://doi.org/10.1137/17M1122529
http://refhub.elsevier.com/S0167-6377(22)00048-7/bibE05BA1BDAEC5316D29D6DBB06405C367s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bibE05BA1BDAEC5316D29D6DBB06405C367s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bibA22BAD63DE530E7B8EC356D365F81AD4s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bibA22BAD63DE530E7B8EC356D365F81AD4s1
http://refhub.elsevier.com/S0167-6377(22)00048-7/bibA22BAD63DE530E7B8EC356D365F81AD4s1
https://doi.org/10.1137/130917703
https://doi.org/10.1137/130917703
http://refhub.elsevier.com/S0167-6377(22)00048-7/bib1012E2ABDF60AB7940016F126AF8DD62s1
https://doi.org/10.1137/S0097539702403438
https://doi.org/10.1137/S0097539702403438
https://doi.org/10.1287/moor.1090.0381
https://doi.org/10.1287/moor.1090.0381
https://doi.org/10.1287/moor.2015.0765
https://doi.org/10.1006/jagm.2000.1074

	Online load balancing with general reassignment cost
	1 Introduction
	1.1 Related work
	1.2 The approach by Gupta, Kumar, and Stein [21]
	1.3 Our framework and our contribution

	2 Online load balancing
	2.1 Online flows with rerouting
	2.2 Unit-size jobs
	2.3 Small jobs
	2.4 The final algorithm

	3 Concluding remarks
	References

