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Abstract 

Scientific discovery is a driving force for progress, involving creative problem-solving processes to 

further our understanding of the world. Historically, the process of scientific discovery has been 

intensive and time-consuming; however, advances in computational power and algorithms have 

provided an efficient route to make new discoveries. Complex tools using artificial intelligence (AI) 

can efficiently analyse data as well as generate new hypotheses and theories. Along with AI 

becoming increasingly prevalent in our daily lives and the services we access, its application to 

different scientific domains is becoming more widespread. For example, AI has been used for early 

detection of medical conditions, identifying treatments and vaccines (e.g., against COVID-19), and 

predicting protein structure. The application of AI in psychological science has started to become 

popular. AI can assist in new discoveries both as a tool that allows more freedom to scientists to 

generate new theories, and by making creative discoveries autonomously. Conversely, psychological 

concepts such as heuristics have refined and improved artificial systems. With such powerful 

systems, however, there are key ethical and practical issues to consider. This review addresses the 

current and future directions of computational scientific discovery generally and its applications in 

psychological science more specifically. 
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Computational Scientific Discovery in Psychology 

Scientific discovery involves solving complex problems creatively in order to advance our 

understanding of the world. The resulting knowledge can then be exploited to treat illness, develop 

new technologies, and solve critical practical problems. Scientific discovery typically takes a long 

time – a major discovery often requires intensive and iterative investigations. It is therefore crucial 

to understand the psychological mechanisms underpinning this behaviour and how it could be 

augmented by technologies such as artificial intelligence (AI). This paper first outlines psychological 

theories of scientific discovery, then argues that AI systems can demonstrate scientific creativity akin 

to humans, highlighting the ways in which AI has been utilised across different domains to both 

assist scientists and make new discoveries autonomously. The current and potential implications of 

computational scientific discovery for research in psychology are then explored, and the positive and 

negative impacts of employing AI in scientific research are considered. 

Scientific Creativity 

In line with common usage, we define scientific discovery as the generation of new and 

important theories and the uncovering of phenomena through scientific inquiry (Gobet et al., 2019). 

This process is critically important, as advancing our knowledge of the world allows us to create new 

tools, treat illness, and benefit society. A recent example of the importance of scientific discovery for 

humankind is the design of vaccines against the SARS-CoV-2 virus responsible for the COVID-19 

pandemic. In order to generate new discoveries more efficiently, the mechanisms underpinning 

creativity and scientific discovery must be understood.  

Creativity has intrigued humans since time immemorial and has been a focus of research in 

psychology for more than a century. As creativity is subjective and culturally bound, it is hard to 

define; while researchers agree that novelty is an essential element of creativity (Weisberg, 2015), 

inclusion of other facets such as surprise, success, usefulness, aesthetics, and authenticity vary 

across the literature (Boden, 1998, 2003; Kharkhurin, 2014; Runco & Jaeger, 2012). A number of 

psychological theories of scientific creativity have been developed, with the psychology of science 
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established as a field of research in its own right (Feist, 2008). Scientific creativity has been 

conceptualised as a combinatorial process (e.g., Simonton, 1997, 2009), and an extensive field of 

research has sought to understand the ways that concepts are combined (e.g., Gabora et al., 2008; 

Gabora & Steel, 2017; Hampton, 1997). Through analysing 100 important scientific discoveries and 

100 inventions, Thagard (2012) provided support for this combinatorial process, suggesting that all 

of the included discoveries could be accounted for by this framework. 

A particularly influential theory posits that creativity can be described as selective search 

through a problem space (Klahr & Simon, 2001; Newell et al., 1958). Given a starting state, operators 

are used to move to new states, hopefully reaching a goal state (solution) eventually (Newell & 

Simon, 1972). Search is made more efficient by the use of heuristics (i.e., rules of thumb), that are 

likely to be successful. According to this theory, discovering a new scientific law is in essence no 

different from solving a puzzle such as the tower of Hanoi, and could be achieved computationally.  

Problem space theory can be examined in relation to both classic scientific discovery and 

computational discovery. First, it should be possible to describe established scientific discoveries in 

terms of search, problem space, and heuristics. Second, it should be possible to replicate famous 

scientific discoveries in experiments where the participants are provided with the data used for the 

discovery. Third, computer programs should be able to replicate or even make new scientific 

discoveries, as they are highly efficient at searching large problem spaces, in particular when they 

are equipped with domain-specific heuristics. This includes the development of new computational 

theories in psychology. The following sections briefly review the extent to which these predictions 

are supported. 

Scientific Discovery 

Observational and Laboratory Studies of Scientific Discoveries 

The way that scientists carry out research and make discoveries, often after detailed and 

systematic testing over an extended period of time, has been documented by historians and 

philosophers of science (e.g., Gillispie, 1960). More recently, scientists who have made important 
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discoveries have been interviewed, and computational models of the processes developed (e.g., 

Karp, 1990). Taking an in vivo approach, Dunbar (1994) observed four research laboratories for one 

year to better understand the cognitive and social processes of scientific discovery. In line with 

problem space theory, this analysis revealed similar heuristics across laboratories, as well as 

similarities in fundamental aspects of the cognitive operators used by the scientists, differing mostly 

in the combinations of these operators. Importantly, team dynamics played a role in the way 

researchers developed and tested hypotheses, which changed problem representations, indicating 

the importance of social context in scientific discovery.  

Laboratory studies have also been conducted to better understand the cognitive 

mechanisms underpinning discovery. For example, Schunn and Anderson (1999) contrasted domain-

specific experts (psychology faculty doing research in the domain of memory), domain-general 

experts (psychology faculty doing research not related to memory), and novices (non-psychology 

undergraduates) in the design and interpretation of experiments in psychology. They found that 

domain-specific experts had the best solutions and demonstrated domain-specific skills, as well as 

many domain-general skills and heuristics. These domain-general skills were also demonstrated by 

domain-general experts, compared to novices, who were missing many of these skills. These results 

indicate that domain-general skills (such as keeping experiments simple and considering relevant 

theories when making conclusions) are particularly important for scientific discovery.  

Replicating Scientific Discoveries 

Experimental studies have confirmed that many scientific discoveries of the past can be 

replicated and reduced to a heuristic search through a problem space, often with common strategies 

(e.g., Dunbar, 1993; Langley et al., 1987; Qin & Simon, 1990; Zimmerman & Klahr, 2018). For 

example, Qin and Simon (1990) found that a third of student participants were able to re-discover 

Kepler’s third law of planetary motion when given the original data. (Note that the variables were 

not labelled semantically and the data source was unknown.) Similarly, undergraduate students 

were able to replicate discoveries in molecular biology of genetic control (Dunbar, 1993), where 
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successful and unsuccessful answers were distinguished by the goals set by participants. Although 

creativity is often viewed in society as a mysterious concept, studies such as these support Newell et 

al.'s (1958) view that it can be explained by mechanisms known to underpin the solving behaviour of 

simple problems such as puzzles.  

Computational Scientific Discovery 

If creativity is characterised by searching through a problem space, then computational 

programs using search should be able to show creativity – and in particular should be able to 

replicate old and make new scientific discoveries. Indeed, computer systems may do so more 

efficiently than humans as they can process large amounts of data very quickly.  

Computational scientific discovery has a long history (e.g., Langley et al., 1987). For example, 

Newell et al. (1958) developed the Logic Theorist, which generated proofs for theorems in 

propositional logic using heuristics. Some of its proofs were more elegant than those proposed by 

leading mathematicians. This program arguably employed a process that resulted in creativity. 

Indeed, a subfield of computer science (automated theorem proving) has since developed with the 

aim to verify mathematical statements mechanically, and proof algorithms are nowadays routinely 

used for teaching fields of mathematics such as logic (Avigad, 2019). With technological 

developments, scientists are increasingly employing computational processes to solve problems 

throughout the sciences. Advances in technology can often drive new scientific discoveries, and 

these discoveries can in turn lead to the development of new technologies (Thagard, 2012). 

Genetic programming and neural networks are popular AI techniques being used for 

scientific discovery. Genetic programming (Koza, 1992) takes a population of programs and evolves 

them across generations, applying various operations (such as mutating parts of the programs) and 

finding the best program against a defined fitness function. Such evolutionary algorithms are 

consistent with the combinatorial nature of scientific discovery. Neural networks, on the other hand, 

are built of connected artificial units (akin to neurons in biological networks) with particular 

connection weights in a series of layers – the input layer is activated by an input and the output layer 
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generates a response (Aggarwal, 2018). A system is termed ‘deep’ when it includes a series of 

hidden layers between the input and output layers. 

There are two linked goals in computational scientific discovery research. The first is to 

uncover the mechanisms and conditions that led to discoveries through replicating famous 

examples, and the second is to use this knowledge to engineer AI programs to automate and 

generate new discoveries. 

Replications 

Computational replications of scientific discoveries have been conducted for many years and 

with increasingly refined computational procedures (e.g., Hakuk & Reich, 2020; Kulkarni & Simon, 

1988). KEKADA (Kulkarni & Simon, 1988) is a program that makes theoretical inferences, assesses 

the acceptability of its knowledge and theories, and models experimental tests. It was able to 

replicate Krebs’ discovery of the Urea cycle in 1932, a Nobel-prize winning discovery. Graßhoff and 

May (1995) extended this research by analysing available historical documents (notebooks, 

publications, etc.) for a number of case studies and implementing the common methodological rules 

that explained all of the studied cases into a computational cognitive model of discovery. The 

commonalities included heuristics relating to the formation of models and the rules governing the 

generation and evaluation of causal hypotheses. More recently, Hakuk and Reich (2020) replicated 

modern discoveries in mechanics (the sub-field of physics studying motion) and described a new 

approach to automated discovery by using the methods and concepts of one discipline to find 

equivalent knowledge in a different discipline. Consistent with the combinatorial characterisation of 

discovery, this method combined ideas from different domains.  

New Discoveries 

Advancements in computational power and AI algorithms have led to a number of AI 

scientific discoveries. AI can be used in research both as a tool to assist humans, allowing 

researchers more freedom to generate discoveries, and as autonomous discoverers, displaying the 

creative problem solving that characterises scientific discovery and generating new and exciting 



COMPUTATIONAL SCIENTIFIC DISCOVERY   8 

results that further our knowledge of the world. A full discussion of this literature would cover 

several volumes, and our review will thus limit itself to some of the key advances. 

One of the earliest systems developed was DENDRAL (Lindsay et al., 1980), which discovered 

molecular structures by analysing mass spectrometry data. More recently, the “robot scientist” (King 

et al., 2004) has automated almost the entire scientific process in the domain of functional 

genomics, an area that had already embraced automation. This system generates hypotheses using 

observations, designs experiments and runs them, interprets the results in terms of the hypotheses, 

and then repeats the process. This allows scientists to expedite the process and make creative 

advances in the field. This instance of automation also serves as an example of where scientific 

research may be heading, with more automation across all fields. 

Computational scientific discovery has led to ground-breaking discoveries in recent years. 

DeepMind’s AlphaFold is an AI tool that predicts the three-dimensional structure of proteins, solving 

a fifty-year “grand problem” in biology known as the “protein folding problem” (Jumper et al., 2021). 

To date, this technology has predicted the structure of 350,000 proteins, including 98.5% of human 

proteins (the structure of only 17% of human proteins had been established experimentally). This in 

turn advances our understanding of the basic components of cells, leading to the discovery of more 

efficient drugs to treat illness as well as improved insight regarding gene variations that cause 

disease in different people. Clearly AlphaFold is a powerful and creative tool, reflecting a substantial 

contribution of AI to scientific discovery. AI has also been used in multiple ways during the COVID-19 

pandemic (Abd-Alrazaq et al., 2020), including for the highly efficient development of COVID-19 

vaccines (Waltz, 2020), with less than three months between detection of the virus and human 

trials. Combining messy real-world and experimental data, AI allowed insights and predictions 

regarding the virus and potential vaccine targets. AI can further assist in processing the large amount 

of anticipated adverse drug reactions to the vaccine, proving a valuable tool at all stages of this 

process. 
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Computational Discovery and Psychology 

Developments in computational and AI systems have far reaching applications in many 

domains and psychology is no exception. AI helps with the formulation and description of 

psychological theories. Quite often, theories in the social sciences are verbal, informal, and lack 

precision; rather than explaining the data, they may be better characterised as a redescription of the 

data (Addis et al., 2019). Formal computational formulations require the fine details of a theory to 

be specified – all elements of a theory must be put into a coding language, which involves a detailed 

description of exactly what is going on. This avoids the use of vague language to describe certain 

constructs. For example, rather than saying that something is due to procedural memory, this 

concept is formally defined in a computer program such as ACT-R, along with relevant mechanisms 

(Anderson et al., 2004). 

While adoption of AI in psychology is still at an early stage, its use extends into all domains 

of psychology. In addition to machine learning, which can be used to mine large data files (Dwyer et 

al., 2018) and evaluate psychological research questions (Elhai & Montag, 2020), AI has led to the 

development of models and theories, alongside applied uses in clinical psychology. Although 

psychologists typically focus on explaining human behaviour, Yarkoni and Westfall (2017) emphasise 

the importance of predicting behaviour, particularly for applied domains such as clinical psychology. 

They and others outline how prediction of behaviour could be achieved through applying ideas and 

techniques from machine learning such as analysis of big data and cross-validation (Agrawal et al., 

2020), which may address some of the critical problems facing psychology (e.g., the replication crisis 

and p-hacking).  

Here, we will focus on three examples of AI benefitting psychology: semi-automatic 

development of theories in psychology, modelling decision making, and methods for refining clinical 

diagnostic criteria.  
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Semi-automatic Development of Theories 

AI can improve model and theory development in psychological science. Cichy and Kaiser 

(2019) have advocated particularly for the use of deep neural networks (DNNs) in exploratory 

cognitive science. They suggest that new ideas can come from exploring models; DNNs can serve as 

proof-of-principle demonstrations, and models can amend and refine fundamental scientific 

concepts. Through refining psychological models by comparing them to complex machine learning 

models trained on a large dataset of moral decisions, Agrawal et al. (2020) recently produced a 

theory-based, predictive and interpretable model of moral decision-making. Genetic programming 

has been used to effectively describe the interactions of variables in psychometric and lexical access 

experiments (Westbury et al., 2003). With regard to scientific discovery, Lara-Dammer et al. (2019) 

demonstrated that a simulated system (NINSUN), which emulates human perception based on 

theories of scientific discovery and perception, is able to make scientific hypotheses in a simple 

artificial world. 

Genetically Evolving Models in Science (GEMS) is a system currently in development, 

designed to automatically generate possible theories of human cognitive behaviour (Addis et al., 

2019; Frias-Martinez & Gobet, 2007). The system, which extends genetic programming, combines 

several “operators” (e.g., putting an item into short-term memory or moving covert attention) into a 

program (i.e., a model) whose predictions are then compared against experimental data from 

human participants. A population of models, with different combinations of operators, is evolved 

over a number of generations, with preference given to those most closely matching the human 

data (see Frias-Martinez & Gobet, 2007 for a detailed description of the GEMS system, using the 

delayed-match-to-sample task as an example). A key benefit of GEMS over other methods is that it 

does not rely on large datasets. While this system allows some bias, as it requires human input in 

developing operators, coding the experimental conditions, and setting parameters, this bias is 

reduced compared to standard theory development. In particular, this system avoids confirmation 

bias and allows operators from different fields of cognitive psychology that are typically studied 
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separately to be combined. Through creating operators relating to these different fields (e.g., 

memory, attention, and decision making), novel predictions can be generated that exploit the 

interplay between these domains. Whereas experts in a given area may fail to appreciate other 

factors that could influence their topic of interest, GEMS aims to avoid this, while generating exciting 

and unexpected theories of human behaviour.  

In psychology, GEMS has successfully generated scientific theories semi-automatically for a 

number of experiments (Addis et al., 2016; Frias-Martinez & Gobet, 2007; Lane et al., 2016; Sozou et 

al., 2017). Although these are initial results that still need to be refined by future research, they 

establish the validity of the GEMS approach (e.g., Pirrone & Gobet, 2020, 2021). 

Modelling Decision Making 

Machine learning techniques have been used to develop and refine theories in the decision-

making literature (Bourgin et al., 2019; Erev et al., 2017; Fudenberg et al., 2021; Noti et al., 2016; 

Peterson et al., 2021; Peysakhovich & Naecker, 2017; Plonsky et al., 2017). For example, Peterson et 

al. (2021) collected a large dataset on risky-choice decisions in which participants had to choose 

between different gambles; subsequently, several machine learning models of increased complexity 

were trained on the data. Each model was based on the literature and included previous (human-

generated) theories such as widely popular subjective utility models and prospect theory. The 

authors showed that those models cannot explain large amounts of variance in the data, even when 

each model was fine-tuned using the large-scale dataset and neural networks that optimised the 

functional form and the parameters of the model.  Interestingly, using machine learning, the authors 

discovered a new theory of risky choices where participants adopt sophisticated strategies that are a 

mixture of previously proposed theories, whose functional form and parameters depend on the 

specific details of each gamble (such as maximum outcome, minimum outcome, and outcome 

variability). This new theory and its predictions are likely to drive future studies in the field of risky-

choices (Plonsky & Erev, 2021) and pave the way for future similar applications in fields across 

psychology and cognitive sciences (e.g., Battleday et al., 2020). 
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AI in Clinical Psychology 

Alongside model and theory development, AI has the potential to extend clinical 

understanding of mental health conditions, allowing the discovery of previously unknown patterns 

of behaviour and a better insight into how different classifications overlap. For example, data mining 

techniques have been employed to determine which variables can distinguish between groups of 

high and low suicide risk (Morales et al., 2017). AI can also be used to determine variables that can 

predict outcome and treatment adherence (Aafjes-van Doorn et al., 2021; D’Alfonso, 2020). AI also 

has the potential to refine diagnostic criteria (Tai et al., 2019), which could lead to new discoveries 

and improved knowledge of the factors contributing to different conditions. Short versions of time-

intensive self-report measures of personality have been developed using genetic algorithms 

(Eisenbarth et al., 2015; Yarkoni, 2010), consistent with the original measures across samples, 

languages and data-collection methods. This allows researchers to administer such measures more 

efficiently.  

AI-led advances in drug development could drive breakthroughs in clinical research. New 

scientific discoveries may also be assisted by systems trained to be consultant experts in medical 

knowledge (e.g., IBM’s Watson, https://www.ibm.com/uk-en/watson-health). It is likely that 

automated scientific discovery will have a considerable impact in clinical psychology, especially 

considering the long history of using formal methods in the domain, for example for simulating 

clinicians (Rizzo et al., 2016; Weizenbaum, 1966) and patients (e.g., de Mello & de Souza, 2019; 

Fitzpatrick et al., 2017; Talbot & Rizzo, 2019; for a review, see Fiske et al., 2019; for a detailed 

discussion, see Luxton, 2014) and for providing successful clinical diagnoses (Grove et al., 2000). 

Applying Psychology to AI Development 

While AI has many useful applications in psychology, principles from psychology have long 

been aiding the development of AI systems (Khetarpal et al., 2020; Lieto & Pozzato, 2020b; Rogers & 

Mcclelland, 2014; Taylor & Taylor, 2021; for an overview see Lieto, 2021), which in turn benefit 

psychological science. For example, the concept of a heuristic, which was central to the success of 
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the Logic Theorist (Newell et al., 1958), was imported from psychology. More recently, incorporation 

of human uncertainty (through collecting an extensive amount of human categorisation data) has 

improved machine classification (Peterson et al., 2019). Similarly, advances and theories in 

neuroscience have been applied to AI to improve both the efficiency and accuracy of such systems 

(for a review, see Hassabis et al., 2017).  

The creative combining of concepts that is argued to be a key component of scientific 

discovery has been modelled by Lieto and Pozzato (2020a) in their typicality-based compositional 

logic (TCL) framework. Informed by human cognitive heuristics, this framework makes it possible to 

automatically generate novel concepts in a human-like way (Chiodino et al., 2020; Lieto et al., 2019, 

2021). This framework applies knowledge and theories from cognitive science to overcome 

problems in artificial systems; correspondingly, the functioning of AI systems allows psychologists to 

refine their models of cognition. Similarly, with respect to human creativity, understanding the 

cognitive processes involved can assist in the development of new AI techniques, which in turn can 

allow psychologists to test theoretical hypotheses regarding creativity and its underlying processes. 

For example, Gabora and colleagues have drawn from the cognitive psychology literature to develop 

more refined algorithms that can generate novel and aesthetically appealing artworks (DiPaola et al., 

2018; DiPaola & Gabora, 2007). Developments in psychology can inform AI techniques, and these 

techniques can help generate new discoveries in psychology, highlighting the importance of 

interdisciplinarity for scientific discovery.  

Computational Scientific Discovery: A Critical Evaluation 

The trend towards automation of the scientific process is important for a number of reasons, 

not least because of the many new discoveries outlined above. The rate at which data are generated 

is increasing exponentially; effective analysis of these data requires the development of tools that 

excel at efficiently and accurately processing data – tasks that humans are not well equipped for. As 

computer systems are optimal for such tasks, they offer significant advantages for scientific 

discovery. In addition, automating these processes allows human scientists the freedom to engage in 
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higher-level activities, such as theory-building, rather than data crunching and manual work. Some 

see the advancements in AI as a threat to humans. However, as humans and computers excel at 

different tasks, AI can instead be considered a complementary form of intelligence, rather than a 

replacement (de Mello & de Souza, 2019). 

AI is not limited to data processing – it can also produce creative and novel solutions to 

problems that humans may not have thought of, as illustrated in this article. This is beneficial as 

there are limits to human creativity and reasoning (Gobet & Sala, 2019), consistent with Simon’s 

(1956) theory of bounded rationality, which posits that the ability of a decision maker to make a 

rational choice is constrained by computational capacity and knowledge limitations. However, this 

forced selectivity can sometimes be advantageous; Gigerenzer and Brighton (2009) argue that 

heuristics allow better management of uncertainty than unbiased, resource-intensive processing. 

Indeed, machine classification can be improved when human uncertainty is included (Peterson et al., 

2019). Knowledge can be detrimental, and can lead to a preference for standard responses, even 

when creative and novel solutions are better (Bilalić et al., 2008). Similarly, living in a society and in a 

certain context can impose constraints on human creativity; computational creativity is not limited 

by these constraints, allowing for interesting developments and ideas. 

Ethical Considerations 

A number of ethical issues arise from using computation for scientific discovery. For 

example, if controversial theories or patterns in data are found by AI (e.g., using GEMS), the ethical 

implications must be carefully considered by researchers, with care taken about the potential 

negative impacts such discoveries could have. Another example could be taken from clinical 

psychology: understanding variables that are predictive of clinical treatment outcomes could be 

used to minimise barriers for treatment adherence; however, the opposite could also occur, where 

patients showing these characteristics are denied treatment. Such unintended uses must be 

considered and guarded against. 
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Relatedly, AI-generated discoveries could be a product of bias. While AI systems are 

suggested to remove bias, they will likely still reflect the biases of the humans who created them 

and the data sets they are given. Much psychological research has been criticised as consisting of a 

limited sample, namely undergraduate psychology students, which is not representative of the 

general population (Henrich et al., 2010). While AI can produce novel models of human behaviour, 

these models will be constrained by the non-representative data that they are provided with. Clearly 

this is not an issue limited to AI; however, the power of such technologies and the common view 

that they are less biased could lead to more reliance on their outputs without considering their 

inputs.  

The impact of biased data has been demonstrated with facial recognition technology, where 

racial and gender bias in data sets resulted in heightened misclassification of women and people of 

colour (Buolamwini & Gebru, 2018). Similarly, AI systems used in the criminal justice system, from 

law enforcement to decision making support (Završnik, 2020), may inherit historical bias – factors 

that may be used as predictive, such as previous arrests, may be racially biased due to systemic 

discriminatory practices in policing. As outlined by Sgaier et al. (2020), predictive AI can often equate 

correlation with causation, which can have disastrous consequences – they suggest that causal AI, 

where the underlying causes of behaviour are modelled, is the essential next step in AI utilisation. 

Bias in AI can also be inherited from using data derived from biased tests; for example, intelligence 

tests have sometimes been criticised as being culturally biased (Greenfield, 1997; Lozano-Ruiz et al., 

2021). Using AI to derive insights regarding intelligence will similarly be subject to the issues 

surrounding such tests. While bias exists without it, AI is a more powerful tool and so could 

exacerbate this problem. Similar problems may occur across all areas of AI-generated scientific 

discovery, and those working with this technology should be aware of these issues. 

While biases can be detrimental for discovery as they can lead scientists to develop and 

accept incorrect theories, steps can be taken to minimise their influence on AI systems, such as 

increasing diversity within both the team developing the technology and those testing it. If issues are 
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found with the inputted data, more and better input can be fed into the systems to rectify this flaw – 

a much easier process for AI than for humans. While individual biases are hard to overcome, new 

approaches and tools can help reduce at least some biases present in AI systems.  

The field of AI ethics is very active (see Hagendorff, 2020, for an evaluation), as such a 

powerful tool can have huge and widespread implications to humans. Although AI systems are 

generally designed to contribute positively to science and humanity, their unintended negative 

consequences for some in society and ability to be exploited for damaging purposes must be 

considered responsibly. In order to overcome some of these ethical issues, scientists and researchers 

developing and using such technology should receive training into technological ethics, to develop 

the knowledge and tools for understanding the risks and solving potential ethical issues effectively. 

Finally, it is important to consider who should be making decisions on whether something is ethical 

or not. For example, in psychology, experimental research is subject to ethics committee approval; 

however, there currently is no parallel in AI.  

Interpretability 

In order to use AI systems for scientific discovery, outputs must be understandable to 

humans and allow interpretation in the context of current theories and knowledge (Javed & Gobet, 

2021). A key issue is that, while the inputs and outputs of an AI system are known, the intermediate 

steps are sometimes difficult to understand (it is a “black box”), which can affect the interpretability 

of the outputted data. Different techniques have been employed in order to address this. For 

example, an artist named Tom White is using AI to generate abstract versions of the images it is 

trained on, to show how AI “sees” the world and demonstrate the underlying algorithms 

(https://aiartists.org/tom-white). The system represented various items with abstract blobs, and 

these blobs were shown to activate the object label more than the real images it was trained on.  

Another technique being employed is taken directly from psychological science: Psychlab 

(Leibo et al., 2018) is a resource created to better understand AI systems through classic 

psychological experiments. Akin to cognitive psychology, it seeks to understand the “cognitions” 
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underlying the outputs given by AI systems and what they are actually doing. Similarly, Taylor and 

Taylor (2021) have recently described the contributions that cognitive psychologists can make in the 

creation of explainable AI, arguing that the experience of studying the human mind via 

experimentation is applicable to AI. While the outputs of AI systems are already leading to great 

advances in science, it is critically important to understand what is happening in these systems to be 

able to use the technology for applied purposes. 

The importance of interpretability for psychological science has certainly been appreciated, 

and novel techniques to address this are being developed, often drawing from the machine learning 

domain. Agrawal et al. (2020) recently outlined and demonstrated the feasibility of using machine 

learning techniques to develop predictive models of psychological phenomena whilst maintaining 

interpretability for large datasets through an iterative process they termed Scientific Regret 

Minimisation, based on regret minimisation in machine learning. Specifically, the fit of a simple 

psychological model is critiqued against an unconstrained machine learning model trained on the 

same dataset until the predictions converge. The residuals that may signify novel effects can then be 

validated in separate experiments. Understanding of the hidden layers of AI systems has also been 

improved by genetic programming. Evans et al. (2019) and Ferreira et al. (2020) use genetic 

programming to explain the behaviour of a black-box model. Genetic programming does not see the 

original data but sees the predictions of the black-box model, and tries to recreate them.  This 

approach is model agnostic and can generate explanations for different machine learning black-box 

models. 

Clinical Considerations 

In clinical psychology, the information about a person that some systems gather can be 

more than a person wants to share. The ability of AI systems, including those aimed at making 

scientific discoveries, to collect and store such personal data allows for potential breaches of privacy. 

These systems must be secure to fully protect any sensitive information (Lustgarten et al., 2020), for 

example the information collected during simulated therapy. Fiske et al. (2019) outlined a number of 
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potential practical and ethical issues with using AI in clinical psychology settings. These include: (a) 

ethical responsibilities related to risk assessment, (b) adherence to codes of practice and duty of 

care, (c) issues with consent and patients understanding when they are not interacting with a 

human, and (d) impacts of strong attachments made with AI applications, which are not reciprocal 

and may reduce real social interaction. While the use of AI technology in clinical settings presents 

substantial benefits to well-being, these ethical and practical concerns need to be addressed. 

Advances in clinical psychology from computational scientific discovery must similarly ensure the 

safety of those using the systems and the protection of sensitive data. 

Conclusions 

AI is a powerful tool that can have a significant role in scientific discovery across all fields of 

research. Not only does it allow scientists the freedom to engage in high-level theoretical thinking, 

but it can also demonstrate the creativity of autonomously generating novel ideas (e.g., King et al., 

2004). The impact that these systems are already having is impressive and the current trends 

suggest that they will continue to be more ingrained in the scientific process (Jumper et al., 2021; 

Peterson et al., 2021). While creativity has historically been thought of as an unexplainable human 

concept, evidence from historical records, replications of discoveries, and new discoveries using AI 

are consistent with creativity and scientific discovery as resulting from problem-solving. Particularly 

adept at efficiently solving problems, AI can demonstrate creativity and can have a dominant role in 

generating scientific discoveries in the future. In line with Newell et al. (1958), heuristics obtained 

through psychological science have been used to improve the efficiency and accuracy of AI, and 

many AI systems, including AlphaFold, can be described as selectively searching through a problem 

space. Alongside this, AI systems employing evolutionary techniques such as genetic programming 

depend on random combinations, consistent with the combinatory nature of scientific creativity.  

AI can provide innovative ideas that may have taken considerable time for humans, in part 

because it is less constrained by limits on available knowledge and biases. Historically, scientific 

breakthroughs are the result of extensive experimentation and theorising and can often be 
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characterised as “thinking outside the box”; this can be achieved much more efficiently by a 

computational system. The creative advances that artificial systems can provide are critical to 

accelerating successful scientific inquiry and further pushing our knowledge and understanding of 

the world. 

AI is already proving to be useful for scientific discovery in psychology (e.g., Aafjes-van 

Doorn et al., 2021; Frias-Martinez & Gobet, 2007; Peterson et al., 2021). It can generate new 

psychological models of human cognition. The application of concepts from psychology to artificial 

systems can also constrain models of human behaviour. AI can be used as a tool to assist 

psychologists, for example to interpret brain scan analyses and improve clinical diagnoses. The 

adoption of such systems in psychology is beginning to grow; however, issues in terms of bias, data 

protection, interpretability of outputs and potential unethical uses must be considered. 
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