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Maier-Hein

Abstract— Detecting Out-of-Distribution (OoD) data is
one of the greatest challenges in safe and robust deploy-
ment of machine learning algorithms in medicine. When
the algorithms encounter cases that deviate from the dis-
tribution of the training data, they often produce incor-
rect and over-confident predictions. OoD detection algo-
rithms aim to catch erroneous predictions in advance by
analysing the data distribution and detecting potential in-
stances of failure. Moreover, flagging OoD cases may sup-
port human readers in identifying incidental findings. Due
to the increased interest in OoD algorithms, benchmarks
for different domains have recently been established. In
the medical imaging domain, for which reliable predictions
are often essential, an open benchmark has been miss-
ing. We introduce the Medical-Out-Of-Distribution-Analysis-
Challenge (MOOD) as an open, fair, and unbiased bench-
mark for OoD methods in the medical imaging domain. The
analysis of the submitted algorithms shows that perfor-
mance has a strong positive correlation with the perceived
difficulty, and that all algorithms show a high variance
for different anomalies, making it yet hard to recommend
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them for clinical practice. We also see a strong correlation
between challenge ranking and performance on a simple
toy test set, indicating that this might be a valuable addition
as a proxy dataset during anomaly detection algorithm
development.

Index Terms— Anomaly Detection, Anomaly Localization,
Biomedical Challenge, Out-of-Distribution Analysis.

I. INTRODUCTION

The amount of medical images acquired in clinical routine
doubled between 1997 and 2006 and continues to rise [1],
[2]. At the same time, the review and annotation process for
the acquired images is often prohibitively expensive due to its
reliance on the valuable time of domain experts. Consequently,
computer-assisted diagnosis systems are becoming more pop-
ular in the clinical workflow [3], [4]. However, many of the
algorithms used in image analysis are vulnerable to Out-of-
Distribution samples, resulting in wrong and overconfident
decisions [5]–[8]. In addition, physicians overlook unexpected
conditions in medical images, often termed ‘inattentional
blindness’. Indeed, [9] found that 50% of trained radiologists
did not notice a gorilla image rendered into a lung CT scan
when assessing lung nodules.

Out-of-Distribution (OoD) or anomaly detection, two terms
which are used interchangeably in this context, can, trained on
normal or representative data, recognize anomalies that have
not been previously encountered. Therefore, OoD methods
prove useful in situations where classic machine learning
models may fail. By highlighting abnormal regions, anomaly
detection can also guide the physician’s attention to otherwise
overlooked abnormalities in a scan and potentially reduce the
time required to inspect medical images. Circumventing the
need for labeled data, it can also sidestep the time-consuming
labeling process and can therefore quickly be adapted to new
modalities.

However, while there is much recent research on improving
anomaly detection [10]–[18], some of which is focused on the
medical imaging field [19]–[23], a publicly available dataset
and benchmark to compare different approaches is missing.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2022.3170077, IEEE
Transactions on Medical Imaging

2 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

Thus, currently, it is hard to draw a fair comparison of the
various proposed approaches. While medical imaging still
needs a common benchmark, benchmarks for tabular medical
data [24], [25] as well as natural images, such as default
detection [26] or abnormal traffic scene detection [27], have
recently been proposed.

When designing an OoD detection benchmark in the med-
ical imaging field, various additional aspects must be consid-
ered. First, as is the case in a real-life setting, the types of
anomalies or distribution shifts appearing during application
should not be known beforehand. This often proves an issue
when choosing a dataset and testing it on only one single
pathological condition, because this scenario is vulnerable to
exploitation: if the type of anomalies occurring in the test
set is known, one could perform fully supervised training on
a separate dataset with the respective annotations (although
this is prohibited by the challenge rules), and thus outperform
other correctly trained anomaly detection approaches. This
would lead to less robust algorithms scoring higher on the
test set, a potentially dangerous outcome when deploying
such algorithms in practice. Furthermore, making the exact
types of anomalies known can cause a bias in the evaluation.
Studies have shown that anomaly detection algorithms tend
to overfit on a given task, if properties of the test set and
types of anomalies are known beforehand [8], [23], [28], [29].
This further hinders the comparability of different algorithms.
Secondly, combining test sets from different sources may also
make it difficult to obtain a clean and meaningful evaluation,
since different sources typically convey distribution shifts with
respect to the training dataset due to large variations across
medical image acquisition protocols.

In this work, we put forth the Medical-Out-of-Distribution-
Analysis-Challenge (MOOD) as a standardized dataset and
benchmark for anomaly detection. We propose two different
tasks. In one task, we analyze sample-wise (i.e. patient-
wise) anomalies, thus detecting OoD samples. Examples of
anomalies in this task are previously unseen pathological
conditions or any other condition not apparent in the training
set. These phenomena can pose a problem for supervised algo-
rithms. Robust identification of such cases could, for example,
allow physicians to distrust results obtained from supervised
algorithms or prioritize manual inspection of certain patients.
As a second task, we propose a pixel-level analysis, i.e.,
predicting an anomaly score for each individual pixel, thereby
highlighting regions with abnormal conditions in the image
and providing further guidance to the physician.

To solve the previously described issues, we have provided
two separate datasets containing over 500 scans each: one
brain MRI-dataset and one abdominal CT-dataset. This enables
a sound comparison of the generalization capabilities of sub-
missions to be drawn across different anatomies and modali-
ties. The training set was selected as a subset of scans in which
no anomalies were identified. The remaining scans (some
containing anomalies) were assigned to the test set. Thus,
some scans in the test set did not contain anomalies, while
others contained naturally occurring anomalies. In addition
to the natural anomalies, we also added synthetic anomalies
with different structures (e.g. a tumor or an image of a gorilla

rendered into the brain scan [9]). We thus covered a wide
variety of different anomalies which enabled the weaknesses
and strengths of the methods to be analyzed using different
factors (i.e. type, size, contrast, and others). Finally, we
organized an international open challenge for a controlled and
fair comparison of different algorithms (as recently similarly
proposed by [27]). As a whole, this work effects a standardized
comparison of anomaly detection approaches in a variety of
both real-life and simulated cases. The following sections
describe the data used in the challenge and the challenge setup.
In Section IV the submitted approaches are described by the
participants and the results are presented in Section V, which
are discussed in Section VI.

II. DATA

The challenge encompasses two datasets one brain MRI-
dataset and one abdominal CT-dataset. The training set com-
prises hand selected scans of patients with no apparent
anomalies or patients with common anatomical or pathological
variations.

To prevent overfitting on the (types of) anomalies present in
our test set, the test set was kept confidential at all times. As
in reality, the types of anomalies should not be and were not
known beforehand, to prevent a bias towards certain anomalies
in the evaluation. Some scans in the test set did not contain
any anomalies, while others contain naturally occurring or
synthetic anomalies.

A. Datasets
Challenge participants were required to use the same al-

gorithm/approach for both challenge datasets, but, individual
hyperparameters and training on each dataset was allowed.
Furthermore, we calculated the scores and ranking separately
for each dataset, and combined the ranking using a consensus
ranking.

Brain: Training and test cases both show MRI images of a
human brain. The brain dataset is based on the HCP dataset
[30], contains 3T MR imaging data from healthy young adult
participants (ages 22-35). All participants were scanned on the
same equipment and using the same protocol. The data was
processed following the pipeline given in [30].

Abdominal: Training and test cases both show CT images
of human abdominal tracts. For the study, male and female
patients aged 50 years or older scheduled for a screening
colonoscopy and which had not had a colonoscopy in the
past 5 years were scanned at 15 study centers [31]. CT
colonographic images were acquired using standard bowel
preparation, stool and fluid tagging, mechanical insufflation,
and multi-detector row CT scanners (with 16 or more rows).
Consequently, these images may contain polyps, however,
these were not considered abnormal (due to the training
distribution) and only cases with severe or rare naturally
occurring anomalies were considered to be abnormal.

B. Challenge Preprocessing
We applied the same additional challenge-specific prepro-

cessing for both datasets. The transformations were cropping,
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intensity shift and resampling. Since all patients within the
same dataset were preprocessed using the same parametriza-
tion of our pipeline, there was no distribution shift here
between the training and test cases. To prevent cheating (in
this and future editions1), we will not disclose the exact
details of our preprocessing and intentionally designed our
preprocessing to produce a challenge dataset which is clearly
distinct from both the original dataset and other existing
datasets.

C. Anomalies

Fig. 1: Anomaly categories. The seven different categories of
anomalies are presented here, divided in 4 global (affecting the
whole scans) and 3 local (affecting only parts of the image)
categories, visualized with brain and abdominal scan exam-
ples (some anomalies have been exaggerated for illustration
purposes).

The training cases had no annotations and no conditions
that we considered to be abnormal. The test cases either
originated from the same training data distribution (normal
data samples with no abnormal conditions) or from a different
distribution (OoD data samples, i.e., exhibiting natural and
synthetic abnormal conditions). The corresponding ground-
truth labels for test cases were binary (0 = normal, 1 =
abnormal/OoD).

The majority of the OoD data samples were generated by
artificially modifying normal data samples, thus providing
full information on the properties of the abnormality for
those cases. In addition, a few selected naturally occurring
conditions were excluded from the training set and added
to the test set of OoD samples for the sample-level task.
These conditions were checked multiple times by at least two
human raters using a consensus annotation protocol. Since we
plan to run new editions of the challenge and a continuous
online benchmark we refrain from giving exact details on the
anomalies.

We differentiated between local (specific location in the
image, used in the test set for the sample-level and pixel-level
task) and global (no specific location in the image, i.e. only
used in the test set for the sample-level task) anomalies and
sorted the anomalies into different (subjective) categories, see
Fig. 1.

1MOOD currently is/was held in conjunction with MICCAI in 2020, 2021,
and 2022

For the pixel-level case, annotations were generated by
artificially introducing anomalies to the images locally. This
enabled perfect ground truth to be obtained in the pixel-level
scoring of the anomalies. For the local anomalies, we created
the following categories:

• Images: Similar to [9], we rendered natural images into
the scans.

• (local) Pathologies: We added different local pathologies
such as tumors or lesions, to the healthy images.

• Corruptions: Local corruptions to the image, such as
local contrast change or local pixel shuffling.

For the global anomalies, we created the following cate-
gories (sorted from strong to mild by level of corruption on
the images):

• Destructions: Operations performed on the scan makes
the complete scan corrupt or invalid, e.g. by omitting
slices.

• Alterations: Global level alteration to the scan, which
still results in a valid scan but should be directly notice-
able, e.g., heavy blurring.

• (global) Medical conditions: Rare occurring medical
conditions/variations were considered as global varia-
tions, as these abnormalities were often not to be re-
strained to a certain area.

• Corruptions: Small corruptions in the image which pro-
duce a valid image and are only recognizable using a vast
amount of training data, such as deformations.

Despite our controlled setting, different sources of errors
are related to our annotations. True anomalies may appear in
the training set. This could potentially include cases such as
polyps that were not detected by a radiologist, or a patient with
an abnormal kidney that was overlooked since it was not the
indication for the examination. The system would thus learn
these cases and consider them to be normal since they are part
of the training distribution. It could also be that an artificially
introduced anomaly is, coincidentally, very similar to some
of the true abnormalities which are missed during inspection
of the training set. This is very unlikely, but if it does occur,
we believe it will not influence the overall results too much
given the size of the test set (and the fact that it is identical
for all participants). We generated the anomalies artificially
using software that undergoes stringent in-house testing with
full control over their shape and appearance. Thus, we strongly
believe that there are no errors in the annotation.

III. CHALLENGE SETUP

The MOOD Challenge was run as a MICCAI 2020 Chal-
lenge, and as such the challenge design was reviewed be-
forehand according to the MICCAI Challenge guidelines (two
independent reviews and a meta review). The challenge design
document [32] is available online. The MOOD Challenge
consisted of two tasks, referred to as sample-level (or global)
and pixel-level (or local) task respectively:

Sample-level Analyzing different scans/samples and report-
ing a score for each sample. The algorithm should process a
single sample and give a “probability” indicating how likely it
is that this sample is abnormal/OoD. The reported scores must
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be within the range of [0-1], where 0 indicates no abnormality
and 1 indicates the most abnormal input. In summary: one
score per sample. Scores outside [0-1] were clamped to [0-1].

Pixel-level Analyzing different scans and reporting a score
for each pixel of the sample (we use the term pixel here in
analogy to anomaly detection on natural images even if voxel
would be more appropriate). The algorithm should process a
single sample and give a “probability” indicating, for each
pixel, how likely it is that the pixel is abnormal/OoD. The
reported scores must be within the range of [0-1], where 0
indicates no abnormality and 1 indicates the most abnormal
input. In summary: X × Y × Z scores per sample (where
X × Y × Z is the dimensionality of the data sample).

A. Dataset ratios
Since part of our test set was artificially created, we were

able to generate a high number of different test cases. To
prevent any fine-tuning of the scores on the normal/abnormal
ratio, we chose not to disclose the exact number of cases.
We roughly aimed for a 50%-50% split between training and
test data. Considering the number of available samples and
the time needed for evaluation, we opted for 800 training,
688 sample-level and 542 pixel-level test cases for the brain
dataset, and for 550 training, 599 sample-level and 358 pixel-
level test cases for the abdominal dataset (with each test
set containing normal and abnormal samples and having an
individual and fixed normal/abnormal ratio).

B. Evaluation process
The challenge submission was run via the synapse platform

[33]. Test set submissions were made by submitting the
inference code as a self-contained docker container which was
then applied to the test set. Detailed submission explanations
can be found on the challenge website [34] Thus participants
could not get access to the test data at any time during the
challenge. In case of a missing reported score or failure during
the processing of a sample, the lowest possible anomaly score
(= 0) was assigned to that sample. A runtime of 600 sec/case
was allotted for the evaluation during the evaluation. Teams
were allowed 10 submissions in total, however, only the most
recent submission was considered, as previously announced.

A report of the submission was sent to the participants as
soon as the submission was processed. This report contained
the performance/scores on four toy-cases for each dataset and
the computation time needed to process them. The toy-cases
were not used in the challenge test set and consist of three
scans with toy anomalies, i.e. a sphere with random intensity
placed into a scan, and one normal scan. The toy-cases were
made publicly available. In addition to a challenge submission,
the participants could also make a submission on the toy
dataset for development purposes (both algorithmic as well
as containerized). Submitting to the toy-cases did not count
towards the challenge and only returned the report of the
toy-cases. This was done to eliminate “invalid” submissions,
since the participants had access to the toy-cases scores and
thus could validate the consistency of their submission on the
evaluation platform.

C. Metrics & scoring

For each sample/pixel, the users should have reported an
anomaly score, indicating the likelihood of detecting the
anomaly for the given sample/pixels. We expected the scores to
be in the interval [0-1], where 0 is the lowest score indicating
no abnormality and 1 is the highest score indicating the most
abnormal input (scores above and below the interval were
clamped to [0-1]). We used the predicted scores together with
the ground truth labels to calculate the Average Precision (AP)
for the whole dataset.

AP, which “summarizes a precision-recall curve as the
weighted mean of the precisions achieved at each threshold,
with the increase in recall from the previous threshold used as
the weight” [35] and is calculated as follows:

AP =
∑
n

(Rn −Rn−1)Pn, (1)

where Rn is the recall and Pn is the precision at the n-
th threshold. This is basically a finite approximation of the
area under the precision-recall curve. For more information
see [35].

A key advantage of the AP compared to other metrics
is the fact that it does not require users to set a threshold
for an output to be in or out of distribution. Instead, the
metric integrates over all possible thresholds. Since it is more
robust than AUROC in terms of class imbalance and has been
suggested and used in many recent papers [11], [19], [23],
[27], [36], we opted to implement AP as the primary metric.

For the sample-level task, the score was simply computed
over all samples at once. Due to computational and time
constraints in the pixel-level task, we computed the AP in
batches of 20 samples each (randomly chosen but fixed and
consistent across all submissions) instead of the whole dataset
and then averaged the AP over the batched AP values. To
validate the results and test the additional variance due to the
division in batches (which is equivalent to sub-sampling points
from the precision-recall curve and then calculating the mean
AP, instead of calculating the AP over the whole dataset i.e. all
points on the precision-recall curve), we validated the results
with an additional randomized iteration over the dataset.

As a last step, we combined the rankings corresponding
to the two datasets (brain and abdominal) by choosing a
consolidation ranking schema, i.e. “determining the ranking
that minimizes the sum of the distances of the separate
rankings” [37].

Our validation code to reproduce the results on the toy cases
can be found on our Github page [38].

IV. PARTICIPATING TEAMS

Overall, 65 participants registered with 11 actively partici-
pating, which resulted in 8 valid submissions for each task. All
teams with valid submissions were invited to contribute to this
section. In the following, a description of the submissions, as
provided by the respective teams, is given. Teams which chose
not to participate were anonymized for the later analysis (A1,
A2).
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A. Team: Canon Medical Research Europe

We propose an ensemble of two models. The first model
is a denoising Autoencoder neural network, in which we treat
the pixel-level reconstruction errors as the anomaly scores.
The second model is a segmentation neural network trained to
segment our diverse set of synthesised anomalies, for which
we treat the segmentation class probabilities as the anomaly
scores. The models are ensembled by averaging the respective
scaled anomaly scores to obtain the final pixel-level results.
We produce the sample-level results by averaging the pixel-
level anomaly scores in each sample.

B. Team: FPI

In medical imaging, outliers can contain hypo/hyper-
intensities, minor deformations, or completely altered
anatomy. To detect these irregularities it is helpful to learn
the features present in both normal and abnormal images.
However, this is difficult because of the wide range of
possible abnormalities and also the number of ways that
normal anatomy can vary naturally. As such, we leverage
the natural variations in normal anatomy to create a range of
synthetic abnormalities. Specifically, the same patch region is
extracted from two independent samples and replaced with an
interpolation between both patches. The interpolation factor,
patch size, and patch location are randomly sampled from
uniform distributions. A wide residual encoder decoder is
trained to give a pixel-wise prediction of the patch and its
interpolation factor. This encourages the network to learn
which features to expect normally and to identify where
foreign patterns have been introduced. The estimate of the
interpolation factor lends itself nicely to the derivation of
an outlier score. Meanwhile, the pixel-wise output allows for
pixel- and subject-level predictions to be made using the same
model [39].

C. Team: Nina Tuluptceva

We based our solution on a Deep Perceptual Autoencoder
[40] that had recently shown superior performance in the
anomaly detection task on medical images. The Autoencoder
was trained with the content-aware Perceptual Loss [41], with
the reconstruction error being treated as the abnormality score.
In this challenge, we applied the Deep Perceptual Autoencoder
to 2D slices of the 3D volumes and therefore trained three
separate models along each of the three axes. The prediction
outcomes along each axis were then averaged to yield a
single final abnormality score. The Perceptual Loss calculates
the difference between two images as the distance between
the deep features extracted by a pre-trained network. We
used the VGG19 network [42] as a feature extractor trained
using the unsupervised learning framework SimCLR [43] on
the concatenated set of all slices. To calculate pixel-level
abnormality scores, we averaged feature differences along the
depth axis and then rescaled the map to the original image
size.

D. Team: NUDT

To tackle these problems provided in this challenge, we
opted for a reconstruction strategy to solve the anomaly
detection task. By observing the discriminative reconstruc-
tion errors, we noted that the biomedical images with high
reconstruction losses were most likely to be the abnormalities.
Therefore, we adopt an U-Net architecture, which has an
encoder-decoder structure with skip connections, to recon-
struct the image. Moreover, we combine the image with the
texture features extracted by a Canny operator and apply a
masking-and-in-painting task. The score consists of the re-
construction errors, removing objects smaller than 100 voxels.

E. Team: Sergio Naval Marimont et al.

We propose an Out-of-Distribution detection method that
combines density and restoration-based approaches using
Vector-Quantized Variational Autoencoders (VQ-VAEs) [44].
The VQ-VAE model learns to encode images in a categorical
latent space. The prior distribution of latent codes is then
modelled using an Auto-Regressive (AR) model [45]. We
found that the prior probability estimated by the AR model
can be useful for unsupervised anomaly detection and enables
the estimation of both sample and pixel-wise anomaly scores.
The sample-wise score is defined as the negative log-likelihood
of the latent variables above a threshold. Additionally, OoD
images are restored as in-distribution images by replacing
unlikely latent codes with samples from the prior model and
decoding to pixel space. The average L1 distance between the
generated restorations and the original image is used as the
pixel-wise anomaly score [46].

F. Team: Victor Saase

We use a simple projection method which is equivalent to
PCA and Linear Gaussian Process Regression. We first affinely
register images to the MNI space and perform sample-wise z-
normalization across all brain mask voxels. Then we executed
a voxel-wise z-transformation with the mean and standard
deviation estimated on the training samples. The resulting
images are used to build a “healthy” vector space over the
brain mask voxels and a testing sample is linearly projected on
that space. The voxel-wise or sample-wise norm of the residual
vector (test vector minus projection vector), after transforming
it back from MNI space, is used as the score for pathology
[47].

V. RESULTS

This section provides an overview of the 8 valid submissions
for the sample-level and the pixel-level tasks. We first present
the final challenge results, and then question whether the toy
examples alone already provide for a representative proxy
ranking. Next, we investigate the performance of the algo-
rithms across different anomaly sizes and color contrasts and
across different anomaly types and judge the current state of
the submitted OoD algorithms in a clinical application setting.
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Fig. 2: Pixel-level result heatmap visualizations for the differ-
ent valid submissions for exemplary and representative brain
samples (some of these were solely created for this illustra-
tion). Each row corresponds to one example. The first column
shows a raw image slice, the second column the ground-
truth annotation and the next columns delineate predictions
by different submissions (sorted by their pixel-level challenge
ranking).

TABLE I: The ranking of sample-level task with the perfor-
mance on each dataset given as AP.

Rank Team Brain Abdom.
1. FPI 0.962 0.874
2. Sergio Naval Marimont, et al. 0.873 0.874
3. Canon Medical Research Europe 0.845 0.871
4. NUDT 0.792 0.876
5. Nina Tuluptceva 0.840 0.861
6. A1 0.831 0.780
7. Victor Saase 0.800 0.770
7. A2 0.634 0.816

A. Challenge ranking

1) Sample-level results: The sample-level results for each
dataset and the corresponding consensus ranking obtained
for the two target structures can be seen in Table I. While
relatively large differences in performance can be observed
for the brain, the best ranked teams perform comparably well
for the abdomen.

2) Pixel-level results: The pixel-level results for each dataset
and the following consensus ranking can be seen in Table II.

B. Toy samples as predictive validation set

We further investigated the predictability of toy examples
in performance of the final task. We aimed to explore whether
very simple toy examples alone already enable a fair and
representative comparison of the approaches, without the need
for a big, extensive test set with high anomaly variability.
Therefore, we generated 100 abnormal examples using the

Fig. 3: Pixel-level result heatmap visualizations for the dif-
ferent valid submissions for exemplary and representative
abdominal samples (some of these were solely created for
this illustration). Each row corresponds to one example. The
first column shows a raw image slice, the second column
the ground-truth annotation and the next columns delineate
predictions by different submissions (sorted by their pixel-level
challenge ranking).

TABLE II: The ranking of pixel-level task with the perfor-
mance on each dataset given as AP.

Rank Team Brain Abdom. Abbrev.
1. FPI 0.449 0.394 (S1)
2. Canon Medical Research Europe 0.416 0.288 (S2)
3. Nina Tuluptceva 0.211 0.221 (S3-1)
3. Sergio Naval Marimont, et al. 0.273 0.217 (S3-2)
5. NUDT 0.201 0.239 (S5)
6. Victor Saase 0.204 0.014 (S6)
7. A1 0.160 0.072 (S7)
8. A2 0.002 0.014 (S8)

same mechanism as the toy examples provided to the par-
ticipants, i.e., adding either spheres or cubes with random
intensity to the scans (e.g. see Fig. 2, 3rd row). We call
these samples the toy-ish samples. These toy-ish samples vary
greatly from most of our challenge test set anomalies.

Interestingly, in all cases (for each dataset & task), the
challenge test set ranking and the toy-ish test set rankings
had 2 of the top 3 approaches in common. Furthermore,
the winning algorithm was also the same algorithm for both
the total test set and the toy-ish test set. To quantify the
results, we also calculated Kendall tau rank distance, as seen
in Table III. Kendall’s tau is a correlation coefficient that
compares correlations between rankings. We used the tau-b
version of Kendall’s tau which can handle ties and results in
a value of 1.0 for a completely positive correlation, 0.0 for
no correlation, and -1.0 for a completely negative correlation.
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Here, Kendall’s tau indicates that there is some correlation
between the challenge ranking and the toy-ish dataset ranking,
given the limited data. There is a stronger correlation for
the abdominal dataset in particular. We assume that this
is because the toy cases proved more difficult to analyze
overall in the abdominal dataset (see Fig. 8 for example). For
both datasets, the toy-ish samples elicited a higher level of
predictive accuracy for the pixel-level task. This raises the
question whether a quite simple validation dataset can be
used to develop generic anomaly detection algorithms. This is
also strengthened by the performance of Team Sergio Naval
Marimont et al. (2nd and 3rd place), which, in contrast to the
other top ranking teams that developed their own sophisticated
evaluation datasets, only used the three provided toy cases to
evaluate their own submission performance.

TABLE III: Kendall tau rank distance between the rankings on
the toy-ish test set and the challenge test set.

Sample-level Pixel-level
Brain 0.357 0.500

Abdominal 0.642 1.000
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Fig. 4: AP for anomalies of different sizes and levels of
contrast. Each line corresponds to a submitted algorithm (S1-
S7). The top line of graphs shows the performance for a single
toy-ish example which is always in the same position but
varies in size from a radius of 0-80 pixels and 0-160 pixels for
the brain and abdominal datasets respectively. In the bottom
row, the performance for a toy-ish example which is always
at the same position with a varying color value, and as such
contrast from 0.0 to 1.0 in 0.05 steps, is shown.

1) Contrast & Size: Our hypothesis was that the size and
contrast of anomalies would affect the anomaly detection
performance. To test this hypothesis, we varied the color-
contrast as well as the size for a toy-ish example and outline
the results in Fig. 4. While performing this analysis on a more
natural or sophisticated anomaly might have given slightly
different results, this would require a very comprehensive
time- and computing intensive analysis in order to prevent
bias. Instead, we chose a simple but nonetheless informative
analysis based on toy examples. As expected, the bigger the
anomaly size, the better most submissions were able to detect
the anomaly. Similarly, the more the contrast differs from the

mean (0.5), the better the submissions performed. The top
ranking submissions were particularly successful and show the
expected bathtub curve. Interestingly, most algorithms tended
to perform better on very bright (pixel value ≈ 1) anomalies
compared to very dark (pixel value ≈ 0) anomalies, which
is likely due to the background which was also assigned the
value 0, but was also noted in [48].

2) Anomaly classes: Some anomaly categories proved more
challenging than other anomaly classes. Exemplary (pixel-
level) anomalies and submission outputs are shown in Fig. 2
and Fig. 3. To procure a quantitative comparison, we chose a
dedicated test set with an exact 50%-50% normal-abnormal
data sample split with a fixed and consistent number of
samples for each subcategory in order to make the metrics
as comparable as possible.

Global

AP per Category

AP per Subcategory

Global

AP per Subcategory

AP per Category

(a) Brain (b) Abdominal

Fig. 5: Median sample-level AP for the different anomaly
categories across all submissions. The top row shows the mean
of the grouped categories, and the second row gives more de-
tailed results for the subcategories, i.e. the top row categories
split up in fine-grained subcategories. The median submission
performance was used as a base for the subcategories.

a) Sample-level: The median sample-level performances
for the reported categories in Sec. 2.3 are shown in Fig. 5.
A clear difference in the performances for the local and
global anomalies can be seen. The median performance on
the global categories is better than that for the local categories
in all cases. Furthermore, the median performances across all
algorithms are better than the constant (always predicting the
label ‘0’, i.e. no anomaly) and a random (randomly predicting
the label ‘0’ or ‘1’) algorithm. As an additional analysis, we
also investigated whether the submitted algorithms perform
in correlation with the difficulty of the anomalies, according
to how they are judged subjectively. Therefore, we sorted
the subclasses of some anomaly classes by human-perceived
difficulty and show the median performance in Fig. 6. Ad-
ditionally, in Fig. 5, we show the median performance on
all subcategories, sorted by median performance. Again, the
performance on global anomalies is almost always better than
on local anomalies. The performance in almost all classes
is better than a constant guess and is generally similar for
the brain and the abdominal dataset. These results raise the
question: can these approaches be translated and bring value
to a clinical setting now?
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Fig. 6: Median submission performance on sub-classes of two
different anomaly categories. The sub classes (classes 1-6, 1-8)
are sorted by human perceived difficulty in descending order,
i.e. class 1 is the class which was perceived as the hardest and
classes 6 (and 8) are the classes perceived as being easiest.

Median performance Best submission Max performance

Fig. 7: False positive rate at 95% true positive rate for the
different anomaly sub classes of the abdominal dataset (top)
and the brain dataset (bottom). The median submission perfor-
mance, the performance of the best sample-level submission
and the maximal performance of algorithms (i.e. picking the
best algorithm for each subclass) are shown.

b) FPR@0.95TPR: To investigate a further important as-
pect of the clinical applicability of the proposed approaches,
we analyzed the ‘FPR@0.95TPR’ metric, which shows a
false-positive rate at 95% true-positive rate. In our setting,
a score of 0 would mean that an algorithm could detect
95% of the anomalies without diagnosing a single normal
sample as abnormal, thus allowing physicians to accelerate
their diagnostic processes greatly. A score of 0.5 would mean
that prefiltering with an approach would still result in every
second image being normal, thus giving a rough acceleration
of just 1

4 . A score of 1.0 would mean that in order to detect
95% of the abnormal samples, the physician would have to
inspect every sample, providing no acceleration. Whether a
TPR of 95% is actually clinically relevant or a higher TPR
would be required remains a topic for discussion, however
this metric was often used in other OoD work [14], [27]
and discussions with physicians have indicated this to be a
metric of interest. We present the sample-level results with the
FPR@0.95TPR metric in Fig. 7, using the same order as that
in Fig. 5. The median performance is shown, along with the
individual top subcategory performance, which is determined
by choosing the best submission for each subcategory, and
the overall best performing algorithm as realistic performance
estimates of anomaly detection algorithms respectively. The

results here mirror the results in the section above, i.e. for some
classes with global destruction or corruptions, the performance
is very good, in the best case, the model is able to find 95%
of the anomalies without inspecting a single normal image.
However for most cases, and especially the the local and
medical cases, the amount of cases that would have to undergo
inspection in order to find 95% of anomalies could not even
be reduced by half.

We do not extend this FPR@0.95TPR analysis to a pixel-
or object-level as this requires binarization and connect-
component analysis, which might introduce some bias and has
not yet been used or evaluated in this context in prior work.
Thus, for the pixel-level task, we opt for conventional metrics
only.

AP per Category

AP per Subcategory

AP per Category

AP per Subcategory

(a) Brain (b) Abdominal

Fig. 8: Pixel-level AP for the different anomaly categories.
The top row shows the mean of the grouped categories, and the
second row gives more detailed results of subcategories, i.e.
the top row categories split up in fine-grained subcategories.
Median submission performance was used as the basis for the
subcategories.

c) Pixel-level: The median submission performance for
pixel-level anomaly categories can be seen in Fig. 8 (qual-
itative examples are shown in Fig. 2 and Fig. 3). In the
pixel-level case especially, the submissions perform better
than a constant algorithm in almost all cases. However, the
performance differences between the abdominal and brain
dataset are vast. While the top (median) performance on the
toy-ish dataset is around 0.8 AP on the brain dataset, it is
around 0.4 AP on the abdominal dataset. A performance
analysis of the categories with subcategories is detailed in the
second row of Fig. 8. Interestingly, while some benefits can
be observed on most subcategories for the brain dataset, only
a few selected types (mostly corruptions) seem to show great
improvement compared to a constant guess on the abdominal
dataset.

VI. DISCUSSION

The objective of the challenge was to compare different
approaches for OoD detection, to find how matured anomaly
detection algorithms are and to measure their capabilities in
a controlled yet realistic setting. We were also interested in
assessing potential applicability and reliability in a clinical
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setting. We found some OoD cases/categories which could
readily be detected with very high reliability by the best
submitted solutions. However, the clinical relevance of these
easy-to-detect cases is debatable: these cases mostly contain
very prominent global anomalies which mimic failures during
the imaging process and corruption of the image files. These
kinds of anomalies could be detected by a trained physician
without much time and effort. Harder to detect were the local
synthetic anomalies for which we can control properties of the
anomaly such as intensity, contrast, and texture and can get a
more detailed analysis when most approaches might fail. This
performance analysis might not directly translate to a clinical
setting but believe that this has clear benefits to a setting with
only a certain kind of anomaly (e.g. brain tumors). Especially
since in practice the type and properties of an anomaly (by
definition) should not be known beforehand (which they were
not before the challenge), this might give more indication of
general performance than a dataset with few common types of
pathologies/anomalies. There are submitted algorithms whose
performance on harder semantic anomaly cases [11] and on
cases with local anomalies (especially for the brain dataset)
show very promising performance on some subcategories.
Still, there is often great inter-subcategory variability in the
anomaly categories and in the qualitative samples shown in
Fig. 2 & Fig. 3. Evidently, inter-case and inter-participant
variability is still quite high. We believe this high variance
makes it hard to recommend a specific algorithm for general
OoD detection in practice, and still leaves room for further
improvements in OoD techniques in the future.

An interesting point in the results is the difference in
performance between the abdominal and brain dataset. First,
we included a quite homogeneous brain dataset as most
papers published on medical anomaly detection focus on brain
datasets. However, to test the robustness and generalizability
we opted to include a more heterogeneous, not symmetri-
cal, and closer to clinical practice dataset, the abdominal
dataset. While the basic algorithms for creating the synthetic
anomaly were kept consistent (with the size ranges adapted to
the relevant data-samples’ size accordingly), there are some
differences between the datasets which might explain the
performance gaps. The first point is that most participants
developed their algorithm on the brain dataset and then ex-
tended it to the abdominal dataset. Similarly, brain datasets
have established themselves as the main medical dataset for
anomaly detection algorithms [19], [20], [22], [23], probably
due to the number of available scans, high data quality, low
inter-patient variance and homogeneity of the data samples.
Here, the brain dataset contains young healthy patients whose
scans were all recorded using the same scanner, whereas
the abdominal dataset consists of scans from 18 different
sites with elderly people who had a large number of varying
anatomical (and pathological) conditions, both natural and
unnatural. Furthermore, the brain samples were registered and
contain less anatomical variance than abdominal scans by
default. Additionally, a data sample of the abdominal dataset
is 4 times bigger than a sample from the brain dataset and
contains multiple organs and structures. This increased data
sample size and complexity might necessitates a larger training

sample size to achieve similar absolute performance, which
we are unable to provide. We believe that these differences in
the dataset characteristics and the fact that primary focus is
placed on the brain dataset are the major factors behind the
performance differences.

The deviating performance for global and local anomalies
was also apparent in the sample-level results. For this case,
[11] described a similar notion of semantic vs non-semantic
OoD. Semantic OoD describes scenarios in which the OoD
samples are contextually similar and roughly originate from
the same domain, but contain semantic differences, while non-
semantic samples stem from a different domain. The concept
in [49], where they differ between near, i.e. from the same
domain, and far, i.e from a different domain, OoD samples
is similar to this. In our case, no abnormal sample stems
from an entirely different domain. However, we would classify
most global anomalies as near but nonetheless non-semantic
outliers, while most local anomaly samples, e.g. which only
have a small gorilla rendered into the image, still contain
most of the contextual and statistical properties of the original
scans and only exhibit semantic differences, and as such would
be classified as near and semantic outliers. They would thus
constitute the most interesting cases described in [11], [49].
This division is also broadly reflected in the performance of
the algorithms. The subjectively harder the problem is and the
more localized the anomalies are, the worse the performance
of the algorithms will be. While the submitted algorithms can
already almost entirely sort out abnormal inputs for certain
categories of global anomalies, the benefit is more unclear
for the more interesting and potentially medically relevant
cases. In some settings these models can potentially enable
the specialist supervision required to be reduced, however in
other cases no relevant medical benefit would be expected as
of today. Another interesting point raised by our analysis and
in [48] is the correlation between intensity and localization
performance. In [48], [50] the authors claim that often anomaly
detection methods default to simple threshold-based intensity
detectors. We do not believe this is in general the case here for
all methods, especially with methods such as the winning FPI
method, and also is often an inherent property of the datasets
used during method development, but this further necessitates
a “controlled” setting as in this challenge and [50].

One joint property of all submissions was that instead of
processing a whole 3D sample at once, they processed 2D
slices instead and then aggregated the anomaly scores to a
sample-level score. While 3D processing has in many cases
shown some benefits for segmentation [51], the additional
compute and time constraints may have been the limiting
factors in this case. This, however, can result in slice pro-
cessing artifacts (see Fig. 3), and the additional information
on the complete context and global position might show
some potential for further medical OoD detection algorithm
research.

Across all submissions, one trend, that is reflected in core
machine learning and computer vision research, is the rise
of self-supervised methods [43], [52]. Similarly, three of the
top submissions here employed self-supervised techniques,
either as pretraining to initialize the models or as a proxy
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task during training of the algorithm. The extent to which
these self-supervised tasks are beneficial is not entirely clear:
perhaps, performance gains might also stem from the dedicated
(synthetic) validation sets used by all teams or the (coinci-
dental) similarity of the self-supervised tasks to our synthetic
anomalies (but, these approaches still show top performance
on naturally occurring anomalies). However, the follow-up
papers on these approaches showed that the performance
translates to other medical datasets as well [40], [53], [54].
Here, in contrast to the two purely self-supervised proxy
task methods, the two other top performing methods use
Autoencoder-based methods, which are another main direction
in anomaly detection [19], [21], [23] and follow-up and
consecutive work has also extended the methods to other
datasets with great success [46], [55].

One finding which might be of interest for the further de-
velopment of anomaly detection algorithms is that the simple
toy dataset was a capable proxy for more generalized anomaly
detection. We do not believe that an algorithm which is tuned
on the toy test set and does well on this set will automatically
generalize and perform well in other, more general anomaly
settings. However, all submitted approaches still struggled
to detect the toy examples perfectly (especially as the size
decreased and the color contrast in relation to the context got
worse) and as such they can be seen as an upper performance
limit on the general anomaly detection performance. In addi-
tion, we were able to find some correlations between the final
performance on the test set and the toy task. We believe that
creating and using such a simple validation set might offer an
easy way to benchmark anomaly detection algorithms during
development, as most of the top teams did this during their
development phase.

VII. CONCLUSION

We have presented the Medical-Out-of-Distribution-
Analysis-Challenge 2020. The goal of the challenge was to
create a standardized and comprehensive benchmark for OoD
detection and anomaly detection algorithms in a controlled
and fair medical setting. With eight valid and novel submitted
algorithms, the challenge also provided the scope for an
analysis of the strengths and weaknesses of current OoD
approaches. While the results were quite promising for the
global and ‘easy’ tasks, especially on a pixel level and on
low-variance data, we still see room for improvement in
clinical real-world scenarios.
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