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Abstract
Computation time is an important performance metric that scientists and software engineers use

to determine whether an algorithm is capable of running within a reasonable time frame. We provide
an accessible critical review of the factors that influence computation time, highlighting problems
in its reporting in current research and the negative practical impact that this has on developers,
recommending best practice for its measurement and reporting. Discussing how computers and coders
measure time, a discrepancy is exposed between best practice in the primarily theoretical field of
computational complexity, and the difficulty for non-specialists in applying such theoretical findings.
We therefore recommend establishing a better reporting practice, highlighting future work needed
to expose the effects of poor reporting. Freely shareable templates are provided to help developers
and researchers report this information more accurately, helping others to build upon their work, and
thereby reducing the needless global duplication of computational and human effort.

Keywords: time; computation time; performance metrics; time template; reporting time; execution
time; response time; computation time template; measuring time

1 Introduction: why computation time matters
This paper seeks to provide a non-specialist introduction to computation time - the time that a computa-
tional process or program takes to run - and to review the ongoing problems in the way that computation
time is reported in current research, demonstrating the negative impact that this can have on developers
as they seek to optimise their code. After a review of current problems in the field and their practical
implications, recommendations of best practice when measuring and reporting computation time - in-
cluding freely shareable templates - are also provided in order to avoid perpetuating these critical issues,
and make these recommendations easier to implement.

The time that it takes for a computer algorithm to finish its task (computation time) is a key perfor-
mance metric that scientists and software engineers use to determine whether an algorithm is capable of
completing its task in a reasonable time frame. However, hardware capability is rapidly increasing, and
new techniques are being developed that combine software and hardware to quickly solve problems of
increasing complexity. This means that in practice, the supposedly fixed amount of time that it takes one
researcher’s computer to complete a task will often be vastly different for another. Software developers
are also frequently unable to build on the work of others. Poor reporting practices mean that there is
currently a substantial duplication of effort required to evaluate if an algorithm will be suitable for an
intended task. It is to this end that this paper offers a practical suggestion to help combat this needless
duplication of effort, and its human, financial and environmental costs.

When writing or using any computer program, it is important to first understand how long a process
or program would take to run; this time frame is known as the computation time of the task. This
temporal aspect to computing is an inherent factor that is often taken for granted by the end user; even
the fastest programs take time to calculate across several steps, running on the central processing unit
(CPU) or graphical processing unit (GPU), along with the other hardware components, each of which
has its own individual frequency at which it is able to update variables and calculate the steps needed to
complete the process. For example, when a Sat-Nav, or satellite navigation mapping system, calculates
the fastest route from one location to another, the software has to calculate multiple different routes,
taking a number of computational steps. The time that the program takes to provide a final mapped
route back to the user may be imperceptible (i.e., a few milliseconds), or a noticeable amount of time
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(i.e., several seconds), depending on the complexity of the route (see Delling et al. 2009 for an example
of this in practice in route calculation). Critically, for a system to be useful to a user, not only must
it perform the required task successfully, but the computation time from initiating the task to receiving
the end result (also known as the response time) needs to be within a reasonable time frame for a busy
software user.

This reasonable time frame can vary depending on the task, and the environment that task is being
conducted in. For simplicity, we can arbitrarily split these types of tasks into three groups: “real-time”,
“quick decision”, and “worth-the-wait”. For a real-time task the computation time needs to be faster
than we can notice; for example, for a video feed this would be less than the frame rate of a camera or
screen (approximately less than 1/30th second, as noted in Wu, Houben, and Marquardt 2017), and this
is particularly important in gaming and real-time video analysis. A “quick decision” (approximately less
than a few seconds) is where the user may be prepared to wait a short time to get an answer to a question,
for example, in an initial GPS route calculation, when a short delay is not a problem for the user (see
Delling et al. 2009 and Delling et al. 2015 for discussions on calculating route complexity). Finally, there
is the “worth the wait” timescale, which can be a few minutes (as demonstrated in Kong et al. 2017;
Huynh, Li, and Giger 2016), hours (as demonstrated by Wahab, Khan, and Lee 2017; Wang et al. 2014),
days (as demonstrated by Melinščak, Prentašić, and Lončarić 2015; Cheng et al. 2017; Mok and Chung
2018) or even months (as demonstrated by Vo, Jacobs, and Hays 2017; Luong and Manning 2016).1 This
is where the system may be solving a very complex problem, such as when training a machine learning
algorithm on a very large dataset (for example, see Vo, Jacobs, and Hays 2017 and Luong and Manning
2016). Accurate knowledge of the computation time - both predicted and measured - and the ability for
the system to adhere to this “reasonable time frame” are both important; if a system is unable to perform
within what the user considers to be a reasonable amount of time, it will not be fit for purpose. For
example, if a real-time video processing system takes several seconds to process each frame, the system
will not be fit for purpose and a more optimal algorithm (or hardware) must be found to enable the
system to work.

It is worth noting here that energy consumption has also been proposed as a method of monitoring
computational resource usage (for a proposal combining time and energy see Martin 2001, and for ex-
amples of energy consumption as a performance metric see Wirtz and Ge 2011; Yang, Chen, and Sze
2017; and Jiao et al. 2010). Whilst this is out of the scope of this paper, such methods are likely to
be particularly useful in scrutinising the huge energy cost (both financial and environmental) of some
high performance computing demands. For example, Strubell, Ganesh, and McCallum 2019 highlight
the power demands and hence the carbon dioxide output of modern natural language processing systems,
while Schwartz et al. 2019 critiques this further. Other examples can be seen in the computational pro-
cess of mining cryptocurrencies such as Bitcoin, where the energy demands can be colossal: O’Dwyer and
Malone 2014 estimate that in 2014 the power consumption for mining Bitcoin was comparable to that of
the power consumption of the entire country of Ireland, and Li et al. 2019 estimates that in 2018 Monero,
an alternative cryptocurrency, had similar power consumption demands, releasing approximately 21,000
tons of carbon dioxide into the earth’s atmosphere through the mining of the currency in China alone.
Therefore in order to determine the efficiency and environmental impact of a program, power consump-
tion is an additional metric that scientists and developers should increasingly measure alongside their
measurement of computation time.

2 How do computers measure time?
Before proceeding further, it is particularly useful to understand how computers actually measure time.
Computers can use several different ways to measure the passing of time, each of which has different
levels of precision. The most conventional way that computers measure time is using the in-built “real

1. To give a few examples from the field of cancer research that demonstrate the vast differences in computation time:
see Kong et al. 2017 which uses convolutional neural networks (CNNs) and two dimensional Long-Short-Term-Memory (2D-
LSTM) to detect breast cancer metastasis, a process which takes 1 minute and 45 seconds to detect metastasis in a whole
slide image (a type of microscopy image with many pixels e.g. 100,000 x 200,000 pixels); see Wahab, Khan, and Lee 2017
which discusses training a deep learning system to detect breast cancer in histopathology images, a computational process
which took approximately 15 hours; and see Mok and Chung 2018 which discusses the segmentation of brain tumours in
medical images using generative adversarial networks, recording a time frame of approximately 4 days to train the Coarse-
to-fine Boundary-aware Generative Adversarial Networks (CB-GANs). In other areas, computational tasks have be shown
to take even longer. As an example, Luong and Manning 2016 explain that in machine translation (e.g. from English to
Czech) it took 3 months to run a program to train a deep learning character-based model using a dataset of 15.8 million
sentences and 1.269 billion character tokens.
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time clock” (RTC) which essentially uses the same type of clock that most wristwatches use. With this
method, the computer uses a quartz crystal electronic oscillator, which essentially ‘vibrates’ at 32.768
kHz, and is therefore able to provide a precision of 30.5 microseconds - the maximum temporal accuracy of
this method, as noted by Horan 2013. This quartz crystal time chip sits on the computer’s motherboard
(the main circuit board) and provides the time for the operating system to use. This can also provide
programmers with the ability to measure the computation time of their process, up to the accuracy of
30.5 thousandths of a second.

To provide higher precision, a programmable interval timer (PIT) can be used, which is another type
of microchip that sits on the motherboard and has a clock cycle of 1.193182 MHz, enabling an 0.838
microsecond precision in which the computer can interrupt the CPU and start or stop processes, as noted
by Crandall et al. 2006. To get greater precision than this, a time stamp counter (TSC) using the CPU’s
cycle frequency can be used (an example use of TSC is in Skopko and Orosz 2011, and an explanation of
TSC by Intel can be found in Intel Corporation 2016). Previously, these CPU clocks ran on a constant
clock speed. However, to reach higher speeds, these CPU frequencies are now variable within their use
- i.e., the computer can effectively increase or decrease the speed of its own clock (within a defined
range) for better performance - which effectively reduces the consistency of the temporal precision, and
therefore the reliability of temporal measurement. Finally, there are also high precision event timers
(HPET) which, again, are microchips that sit on the motherboard and are able to probe the time of a
process when prompted. These operate at a minimum of 10MHz and typically at 18MHz, and therefore
have a time precision of less than 0.1 microseconds, or ten thousandths of a second, as noted by VMware
2008.

The measurement of computation time is made even more complicated by the precision of the pro-
grammatic function calls - when a programmer requests the amount of time that has elapsed - that easily
enables programmers to measure the time that a process has taken. The precision of these can depend on
the timing function (or the method of requesting the time used within a program) and which operating
system (OS) is being used. Taking an example from the popular programming language Python (Python
Software Foundation 2018), this language also allows its users to inspect the commonly-used time.time
function (Python Software Foundation 2019).2 This provides a temporal ‘resolution’ of approximately
15 milliseconds for a Windows operating system, as tested on Windows 8.1 (see Hudek, Sherer, and
Schonning 2017; and Stinner 2017 for more information), but only 1 microsecond for a Linux based op-
erating system (tested on Fedora 26 (kernel 4.12) in Stinner 2017) - an in-practice temporal difference in
which one system is effectively 15,000 times more accurate for such short computational processes. When
using the nanosecond timer function in Python (time.time_ns()) this precision changes again, with a
resolution of approximately 84 nanoseconds on Linux, and 318 microseconds on Windows - a temporal
difference with a factor of 3,750. When documenting computation time using such short processes that
will be run many times, it is therefore useful to document the programmatic timing function call that
has been used (where possible), along with the operating system that it was used on, and the hardware
that was used to record it.3 However, this is not commonly documented in current practice, leading to a
range of issues (see section 5 below).

When measuring and documenting computation time it is also important to know what type of
computation time is being referred to. Computation time normally either refers to response time or
execution time (see Figure 1). The response time is the total time elapsed from starting to completing a
process, including the time that any other processes, such as operating system processes, might have taken
whilst the program was running. By contrast, the execution time is is the total time spent computing
the process of interest, not including any other processes (see Audsley et al. 1993; and Baruah and Burns
2006). Therefore when documenting how computation time is measured, it is important to note which
of these is being referred to, so that the reader can understand if other processes are also being included
and, if so, the types of other processes being run in the background should also be documented to provide
a complete picture of the situation. A useful early example of a discussion of calculating the execution
time of a real-time program by Puschner and Koza highlights some of the issues around calculating the
maximum execution time that persist to this day; this paper also provides an interesting example of a
real-time program conducting image analysis on a video camera feed in order to control a robotic arm
(Puschner and Koza 1989).

2. Python is used by an estimated 8.1 million coders worldwide, according to a 2019 report by SlashData (SlashData
2019). A survey of 90,000 coders by StackOverflow also shows that 41.7% of code developers use Python (Stack Overflow
2019).

3. Note that the temporal resolution of the programmatic function calls are not normally variable on different hardware
across most modern devices, but the hardware needs to be recorded as the time to process is greatly affected by the hardware
used, as is discussed in more detail in section 4.
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When writing algorithms it is possible, in controlled environments, to theoretically determine how
many computational steps are required in order to complete the process. This does not immediately
correspond to the time that it will take to run, but it does provide the best indication of when, given an
input of X, then Y number of steps will need to be computed. The careful art (or sub-field of computer
science) for determining this temporal scaling is also known as computational complexity.

Figure 1: A block diagram illustrating the difference between response time (total time elapsed from
starting and finishing a process) and execution time (total time spent actually computing that process,
represented by the sum of the green blocks in the diagram). Other processes might be operating system
processes or other (possibly high priority) processes which interrupt the process of interest.

3 Computational complexity: too complex in practice?
Computational complexity, a well-studied area within computer science, investigates how an algorithm
scales with various inputs - or how mathematically optimised an algorithm is for its intended purpose.
A useful text on computational complexity by Arora and Barak provides a thorough overview of the
field (Arora and Barak 2009). The mathematical representation of how many steps a program takes to
compute, and the time implication due to this complexity, is sometimes referred to as time complexity
(for example, see Tomita, Tanaka, and Takahashi 2006; and Avoine, Dysli, and Oechslin 2005). However,
while an understanding of the following mathematical concepts is required in order to grasp computational
complexity, in practice, many developers do not have the mathematical training to enable them to optimise
their code accordingly. Put simply, the gap between thesis and praxis is effectively too great at present
for the careful research of computational complexity’s talented theoreticians to be widely applied in a
broad range of practice.

3.1 Computational complexity: a brief overview
To give a short general overview of the relevant mathematical concepts involved in computational com-
plexity (lay readers may simply skip this section): normally, the exact time to compute is not of particular
interest in this mainly theoretical field. What is of interest here is determining how a function (or al-
gorithm) scales up with increasing the numbers of a variable n, mostly in order to calculate the worst
case scenario (i.e., the most number of steps required to complete a process), and identifying if a method
scales well with increasing this variable or not (for example, increasing the number of data samples to
be processed). Scaling well in this context means asking whether increasing this variable also increases
the complexity (the number of computations that need to be performed), for example, exponentially, in
a linear way, or not at all.

The notation for determining this is sometimes called “Big O” (or “Big Oh”) notation, as the “Order”
of the complexity function is abbreviated to “O” followed by, in brackets, how the method scales with
an increase in the number of the variable “n” (for a full discussion of this, see Arora and Barak 2009).
For example, we may want to calculate whether the upper bound (maximum) of the number of steps
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scales linearly with the number of the variable “n”, referred to as O(n) (also known as “Order n”), or
does the maximum number of computational steps scale with the square of the number of the variable
“n”, referred to as O(n2) (also known as order n2). To give a more detailed explanation, a function
that takes a constant time to calculate would be an order of 1 (O(1)) as it does not change with the
value of a variable (n) (for example, the number of data samples). A function which scales linearly
with the number of samples (n) would be (O(n)), and a function which scales quadratically with the
number of samples (n) would be (O(n2)), while a function which scales exponentially with the number
of samples (n) with constant c would be (O(cn)). To give a real-world example of this in practice, to
improve the efficiency of a specific machine learning neural network algorithm, the order of the method
may be calculated. A lower order that more effectively scales with increasing numbers of neurons would
greatly reduce the time taken to train and predict a result using this model; one example of where this is
calculated is in Schmidhuber 1992, which explains an improved method which scales with O(n3)) instead
of the compared inferior method, which scales with O(n4)), where n is the number of neurons used in
the network. Decreasing this worst-case run time can dramatically improve the efficiency of the program,
and can enable the system to be run in a “reasonable time frame”.4

Calculating the time complexity, or “Big O”, of an algorithm is reasonably simple for a small function,
or a short amount of code, where the coder is able to understand all of the processes involved in the code
(i.e., what the code does, and therefore how many mathematical steps that it will take). However, for
larger code projects, these often include multiple functions and libraries, which are other code functions
that the coder can draw on and use as a form of shorthand, but may not have been written by the coder,
or may not even be inspectable by the coder (perhaps to obfuscate the code and maintain the original
coder’s intellectual property).

For larger real-world projects, it then becomes incredibly hard to calculate the theoretical time com-
plexity of a program or process as there are simply too many unknowns, or even if all of the code is
known, it could be far too big a task to inspect what may be many thousands of lines of code that
make up the full program. Although there are some efforts to educate non-computer scientists in field of
computational complexity, such as Mertens’ paper on Computational Complexity for Physicists (Mertens
2002), another practical barrier is that the mathematical terminology described in the highly theoretical
research papers common to the sub-discipline of computational complexity theory can be difficult for
the vast majority of non-specialised programmers to understand (examples of such papers are: Martínez
et al. 2007; He and Yao 2001; Ko and Friedman 1982; Chen et al. 2010; Cooper 1990; Ladner 1977;
Shanbehzadeh and Ogunbona 1997; Cancela and Petingi 2004; and Peled and Ruiz 1980), making the
existing body of knowledge unusable in practice for many coders.5

This all means that, in practice, calculating the theoretical time complexity is useful for understanding
some important short functions that your code might make use of, in order to determine where your code
might take a lot of time to run, or where your code might be improved to make it run faster. However,
the nuances of computational complexity are, at present, too complex to give professional non-specialised
coders the understanding needed to optimise many real-world programs in practice.

3.2 Timing-based attacks
It is worth briefly noting that sometimes it’s advantageous for a computational task to take a long time.
For example, this can be the case when protecting passwords and in encryption processes. Password and
encryption protection works because performing a “brute-force” attack - trying all possible variations
of a password or encryption key until the correct one is revealed - should take an extremely long time,
deterring potential attackers. A timing-based attack on protected information essentially checks to see
how long a request process takes to execute, and breaks the encryption in this way; for example the
slower the result is returned the closer to the solution the user is, and so those trying to gain access
to encrypted information can iterate through different options checking how long they take to return
an answer, and then use this to infer what the correct result is. Timing-based attacks, a type of side-
channel attack which takes advantage of security flaws in the implementation or hardware (rather than
in the algorithms themselves), have enabled hackers to view private web-content (Felten and Schneider
2000) and to access protected memory on computers (Lipp et al. 2018). As such, computation time can

4. Discussion of what constitutes a “reasonable time frame” is given in section 1 above.
5. There is a marked lack of studies to evidence the effect or scale of this comprehensibility barrier; however, from

many years of practical experience in research and teaching in the field, it is apparent that this is a significant barrier for
professional programmers needing to optimise their code. A study which is able to quantitatively or qualitatively assess the
extent of this issue would be very welcome to reveal the true scale of this problem.
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be manipulated for a variety of legal and illegal purposes, demonstrating the real-world importance of
computational complexity.

4 The evolution of hardware
The time that a computational process takes to run is also dependent on the hardware that it runs on; for
computational processes, given the huge variety of rapidly-developing hardware available, computation
time is very much in variance. This may sound obvious - but as this section will discuss, this is poses a
far greater problem in practice than might initially be assumed. As hardware capabilities change rapidly
over time, it is important to take into account that the time taken to run a program on one machine on
a specific date is going to be very different for a similarly-priced machine just a few years later. Recent
technological developments mean that the types of processors that are commonly produced today are
quite different to those used before 2004, when most CPUs contained a processor with only one core (see
Figure 2 for a plot of the evolution of CPU clock frequency and number of cores from 1971 to 2014).
Previously, when all processes were sequential (i.e., could only run one at a time on a single core), if the
programmer knew that an algorithm process took t seconds to execute and was running on a Y MHz
processor, then, moving the same algorithm to a different CPU with a Z MHz processor, the programmer
could reasonably expect the process to execute in approximately ( Y

Z )t seconds.6 This is no longer the
case, as is described in more detail below, and it has now become quite difficult to predict how long an
algorithm will take to run across different machines, particularly due to the non-sequential way in which
many processes can now be executed. To understand these different hardware options, and how this
affects the execution time, the evolution of hardware over time must be properly understood.

In just a few decades, hardware has evolved from single-core Central Processing Units (CPUs), to
multi-core CPUs, to Graphical Processing Units (GPUs) (see Figure 3 below), and more recently, Tensor
Processing Units (TPUs) (see Jouppi et al. 2017 and Jouppi et al. 2018 for more on TPUs). Over the last
50 years the number of transistors in a CPU has grown exponentially, adhering to Moore’s law, which
states that the number of transistors in a processor doubles every two years (see Moore 1965 and Moore
1975), and the clock speed of CPUs has also been increasing (see Figure 2). However, as the visible
levelling off of the circles in the figure shows, in the last 15 years the increase in clock speed over time
has slowed dramatically, and the preferred way to improve performance in practice has been to simply
add more cores (as represented with “+” signs in the figure), effectively compensating for this lack of
increase in clock speed.

4.1 Single core CPUs
A single core CPU can process one calculation at a time, for example, calculating 2×3 = 6. When there are
many parts to a calculation then these are calculated sequentially (in series). CPUs are widely recognised
to be appropriate for general purpose computing and are currently the quickest method available for
sequential tasks.

4.2 Time sharing
Throughout the history of computing, there have been multiple attempts to improve the performance
that can be squeezed out of a computer processor.7 One of the earliest such attempts took place in
1959, when John McCarthy - the researcher who coined the name for the field of ‘Artificial Intelligence’
four years earlier - wrote a proposal for ‘time sharing’ on a computer to improve the performance of a
computer system when used by many people at once (McCarthy 1959). A useful video, filmed in MIT in
1963, describes this time sharing project, and has been archived by the Computer History Museum; it is
also viewable on YouTube (see Fitch 1963).8 Time sharing was devised to enable many people to share

6. This is a necessary slight oversimplification of the situation as there are also other factors involved here, such as any
latency time (i.e. any time delays: for example, it takes time for data to move across the computer circuit boards and
initiate a process). However, the basic premise remains that there is in essence a linear scaling between the time to process
and the the clock speed on a single core system.

7. For the purpose of this paper, performance is defined as the tasks or processes that are completed per second or per
minute.

8. This video clearly describes the rationale behind this design and what such a design is capable of. As an aside, it
is quite remarkable how many fundamental computer science concepts were known and discussed at such an early stage,
even when computers did not yet have a computer screen interface (at the time the design was implemented, the computer
output display was merely an automated typewriter, typing the output of the machine on to sheets or rolls of paper).
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Figure 2: The evolution of CPUs. This plot shows, on a log scale, the number of transistors (crosses), the
clock speed (circles), and the number of physical cores (plus signs) in different processors over time. The
figure has been made using data from the Stanford CPU Database, using the details of 1,388 processors in
which information of the release dates was published. The database was originally discussed in Danowitz
et al. 2012 and the database has since been updated and can be downloaded from http://cpudb.
stanford.edu/download (accessed 28 October 2019)). Note that sometimes not all three parts (clock
speed, number of transistors, and number of cores) for some processors are in the database, and therefore
only the known parts are plotted here. The data used and code written to produce this plot have been
made freely available as open source at: https://github.com/dcchb/ComputationTime

the same operating system, enabling a more optimised use of a computer - a very expensive resource
at the time. Using this method, the user’s processes are effectively executed in a rolling way, which
means that the response time for each user is faster than having to wait for each person to finish their
program (waiting for a program to finish in its entirety is referred to as batch processing). On modern
computers, a similar idea is used in multi- or hyper-threading; here, instead of having multiple users,
there are multiple processes (normally from the same user) which can share a processor.

4.3 Cores and threads
If a user has to wait a long time for the computer to give the expected response, this may be due to
the CPU not being fully utilised. When the CPU core is waiting for some other information in order
to progress in its task, it can be put into an idle state. This idle state is effectively wasted time on the
processor, and so multi- or hyper-threading is commonly used to reduce this potentially wasted time by
queuing multiple calculations, enabling one calculation to be computed while another is waiting for further
information required in order to complete its task (see Marr et al. 2002 for more on hyper-threading).

A CPU may also have a number of physical cores, which means that there are multiple processors
built into the same microchip. This means that multiple processes can run at the same time (in parallel)
and so the time taken to run many processes reduces. Programmers can therefore use a thread (or task)
per core, which means that each core has a different job to do, enabling a program (or multiple programs)
to run in a shorter time frame.

In addition to this, it’s also possible to have more than one thread per core for a multi-core system,
which makes it possible to have multiple jobs queued for each core. This means that while a process is
waiting for completion, another thread can take its place. Having more physical cores enables genuine
parallel processing (where multiple calculations are being computed at the same time). However, having
more threads than the number of cores does not allow for any extra parallelisation - it only provides less
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Figure 3: An illustration of the number of processing units on different processors.

down-time. This is particularly important, as the number of threads distributed across the physical cores
is sometimes referred to as the number of logical or virtual cores, which in practice can lead to some
confusion in the number of processes that can be calculated at the same time.

4.4 Multi-core scalability issues
The move to multi-core processors means that the time to process a calculation can be reduced when the
code is made to work in parallel (i.e., using multiple cores at once). However, it is not always possible to
do this, and so improvements in processing in series eventually limit this scalability. This is first described
by Amdahl (see Amdahl 1967); although not in Amdahl’s original paper, the equation which describes
this scaling process is called Amdahl’s law (Hill and Marty 2008). What this law states is that as long as
there is some part of the code which does not run in parallel, the increase in computing speed that can
be achieved by running code over many cores (or processors) is limited by the part of the code that runs
in series (i.e., the part of the code that can’t be split into parallel processes).

A plot of this mathematical law is shown in Figure 4, which illustrates the maximum processing
‘speedup’ factor that can be achieved when different percentages of the code are parallelised over different
numbers of cores. This figure shows that the increase in speed achieved does not scale linearly with the
number of cores, as one might expect; put another way, the speedup benefit does not keep increasing at
the same rate when you continue to add more cores.

To take this to an extreme example, even when 95% of the execution time is spent using code that
can run in parallel, the speedup factor from just running the code on 100 cores (or processors) compared
with running it on just one core is only 16.8 times faster, and not anywhere near 100 times as fast, as
might be expected. What is important here is that when describing an algorithm, it is not often made
clear which parts of the code are possible to run in parallel and which parts of the code have to be run in
series (sequentially), and therefore the potential speedup from parallelism is not at all clear in practice.
To solve this issue, documenting the relative parts of code and the time that the computer spends on
running them, and whether these should be run in parallel or series, would therefore form an incredibly
useful collective knowledge base for the developer community who might use, or want to build on, that
algorithm or code.

4.5 Ultra parallel processing with GPUs
Processing in parallel has become increasingly sophisticated through using Graphical Processing Units
(GPUs). These were originally built to enable the processing of computer graphics, in order to allow
graphics to be displayed on a computer screen. However, these are now widely used in game physics and
other general purpose computing tasks (see Owens et al. 2008 for more on GPUs). These have grown in
computation power in recent years, primarily due to rapid growth of the computer games industry. In
GPUs, the base clock speed is still less than in modern CPUs, but GPUs have many more cores. While
most CPUs in recent years have a handful of cores (in the range of 4 to 12 physical cores), GPUs take
parallel processing to a whole new level. For example, the laptop on which this paper was written (a
Surface Book 2) has an NVidia GTX 1050 graphics card which has 640 GPU cores, with a base clock
frequency of 1.354GHz,9 while the most high-end GPU “Deep Learning System” at the time of writing,
the NVidia DGX-2, has 81,920 GPU cores.10 GPUs are capable of super-fast processing of images and

9. For reference or comparison, the specification of the CPU on this Surface Book 2 is an Intel core i7-8650U CPU with
a clock frequency of 1.9GHz, with 4 physical cores and 8 logical processors.
10. Deep learning is a much-used term which benefits from some demystifying here: it actually refers to machine learning,

a type of data analysis, where many layers of statistics are performed and mathematical models may be learnt automatically
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Figure 4: A plot of Amdahl’s law, showing the increase in speed as a function of the number of cores in
three different scenarios, where the execution time for the part of the code that can be run in parallel is
50%, 75%, and 95% of the total time to run. The code written for this paper to produce this plot has
been made freely available as open source at: https://github.com/dcchb/ComputationTime

videos; as images and videos are essentially matrices (tables) of information, any dataset which can be
composed in matrix form is suitable for GPU acceleration. In the last few years, processing using GPUs
in machine learning research - a sub-field of Artificial Intelligence research - has become commonplace
as the datasets to process are very large, and require a lot of processing which can be run in parallel.
With this large number of processors it is possible to achieve an acceleration in performance when parts
of the code are made to run in parallel. Nickolls and Dally found that, when taking Amdahl’s law into
account, a GPU-only system was fastest when most of the code was possible to run in parallel; however,
when some of the code has to run in series, a CPU and GPU combination was found to be the best
option (Nickolls and Dally 2010). It is therefore important to provide the details of the GPU hardware
specification. When processing on GPUs, as these are so hyper-parallel when compared to CPUs, it
becomes even more important to know which parts of the code can be run in parallel and which parts
can’t in order to find what can be “accelerated” with this parallel architecture.

5 The problem with current practice
In areas of computer science where computation time is a particular focus of the research, such as the
sub-field of scheduling for example, computation time is generally very well reported, with a great level of
detail frequently provided in such papers (examples of such papers where computation time is reported
in enough detail to help others are: Jiang et al. 2010; Zhang and Chatha 2007; Camelo, Donoso, and
Castro 2011; Radulescu and Van Gemund 1999; and Wang, Gong, and Kastner 2005). However, in other
application domains in which computation time is important but perhaps not the central focus of the
research, such as medical imaging and machine learning, important details about the computation time
are often neglected in research papers. For example, if we consider the topic of using deep learning for
the detection of cancer, where computation time is clearly an important factor in ensuring the result is
clinically usable in practice (such calculations often use huge datasets that can take a very long time to
process), there is no mention of the computation time taken in many papers. Such papers in which this

from the data provided in order to make either class predictions (e.g. cat or dog) or numerical value predictions (e.g. $10
or $1,000)
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information would be highly useful but is unfortunately missing include, but are certainly not limited
to: Esteva et al. 2017; Rakhlin et al. 2018; Sun, Zheng, and Qian 2016; Abdel-Zaher and Eldeib 2016;
Xu et al. 2016; Cruz-Roa et al. 2013; Fakoor et al. 2013; Tsehay et al. 2017; Dhungel, Carneiro, and
Bradley 2017; Liu et al. 2017; and Bychkov et al. 2018). In practice, what such an omission may mean
is that considerable resources - financial and human - may be dedicated to implementing such promising
medical research without considering whether a cancer-detecting algorithm runs in a short enough time
to be clinically usable - or if it takes so long to complete that it simply cannot be implemented in an
already overburdened healthcare system. Furthermore, when time is a central focus of the research, the
algorithms or the techniques used to evaluate them are often too niche to be usable by researchers in other
domains. This leads to a problem of inconsistent reporting and inadequate information being provided
to researchers, which hampers efforts to determine whether a particular algorithm or method is sufficient
for the requirements of the system.

A major problem here is the lack of information provided in the literature - including in research
papers and code documentation - about the many important factors that influence computation time,
as mentioned above. To briefly recap, these include the type of computation time being measured or
reported (e.g. the execution time or response time), details of the timing function or method used, details
about which parts of the code were run in parallel and how many processors were used, details of the
hardware, and so on. Without this information, this leads to the significant issue of developers having to
undertake many iterations of trial and error experimentation in their coding practice, which greatly slows
development time. When a researcher or developer doesn’t know if an algorithm will perform as required
(e.g. if a real-time video analysis algorithm will calculate the required task before the next frame in the
video), they will often have to manually code and/or test it to see if it will work, rather than being able
to build on the work of others who have already gone through this process.

To give a basic example of this in practice, let’s say a developer has been asked to build a program that
can solve a potentially lengthy computational task, such as using deep learning to detect cancer in medical
images, within two weeks. Without knowing how long the algorithm might take to execute on a similar
dataset on a given machine specification, it’s very difficult to estimate if the algorithm will complete
within that time without using trial and error. Without this information the developer could spend the
entire two weeks simply working out that they do not have the resources to deliver the task using the
initial algorithm and resources available. The task may have been allocated with the expectation that
it would be solvable based on the work of others. However, current computational research is broadly
driven by reporting results, rather than documenting processes, and so the fact that the task has been
possible for another is of limited practical use if the hardware, software and computation time have not
been adequately recorded. In this example, the developer would have effectively wasted two weeks to
find that the task is not possible with their time frame or resources. However, had they had access to the
right information, they would have been able to see how long the algorithms of others had taken to run,
and their hardware and software resources. A quick look at these specifications could mean discovering
early on that a similar process took two weeks to run on a much faster, newer machine - and so a different
algorithm, or a longer time frame, would be needed.

A better global development process is required in order to reduce this sizable - and often needless -
duplication of effort and waste of developer time. According to a 2019 global developer population and
demographic study by software market research company Evans Data Corporation, there are 23.9 million
developers worldwide (Evans Data Corporation 2019). This means that even if only a small percentage
of developers are affected by this poor computation time reporting, leading to needless duplication of
effort by others, then this is a significant worldwide issue which has potentially large-scale economic
implications. There is therefore need for further research to determine the true economic costs of this
issue, revealing the extent of the human, computational, and environmental resources wasted in the
needless duplication of effort due to poor reporting.

5.1 The solution: computation time templates and automated reporting
Part of the reason why current practice remains largely inadequate here is that it simply takes time and
effort to report computation time. Many developers and researchers may not know how to find and report
this information, or will be reluctant to do so due to the presumed effort involved.

To reduce the human effort needed in reporting the required computation time details, below are
two templates - a simple and an advanced version - for reporting computation time, which can be used
in either code documentation or in research publications. To make this even easier to implement, we
have also included an open source program to gather most of this information automatically, populating
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the template with the CPU processor type, clock speed, number of physical cores, number of logical
cores, RAM and operating system. To do this, developers simply run the “Computation_time_reporter”
program that is included as part of the code repository that goes with this paper at https://github.com/
dcchb/ComputationTime which provides both a Windows executable program, and the corresponding
Python script which can be run on any operating system. It is therefore hoped that developers across
the world may benefit from these easy-to-use and freely accessible tools and templates to automatically
report computation time for the benefit of all.

6 Recommendations
There are several recommendations that we would like to provide for any researchers or software developers
for whom the time taken for their programs to run is important (i.e., those working with large datasets,
complex algorithms or real-time processing - or indeed any developers who are trying to ensure their code
runs as quickly and efficiently as possible), to encourage what we consider to be best practice. As this
‘best practice’ does require effort, and can sometimes appear to get in the way of progressing with the task
in hand, we have broken this down into two options: the ‘Computation Time: Lite’ and ‘Computation
Time: Pro’.

Documenting the ‘Lite’ version would mean providing the lowest level of basic documentation on the
computation time as a form of shorthand, which would still be useful as a reference point for future
developers. By contrast, the ‘Pro’ version builds on the information documented as part of the ‘Lite’
version, and adds some useful further documentation and recommended best practice. Of course, this
added detail may not always be possible, depending on the situation. However, where available, adding
these two forms of recorded documentation would enable the developed algorithm or software to be much
more easily translatable into other future software or algorithms, and save the colossal duplication of
effort which plagues the field today.

With all of the above information in mind we recommend that future researchers explain the following
details when reporting on the computation time:

6.1 Computation Time: Lite (minimum details)
As a minimum, documentation of computation time should list as many of the following as possible:

1. Report the computation time and the type reported (e.g. execution time or response time).

2. Report the hardware used, including the number of cores and type of CPU/GPU.

3. Specify the operating system used.

6.2 Computation Time: Pro (additional details)
Further details that would be helpful are listed below, and can be documented in addition to the above
to create a full ‘Pro’ version of the documentation:

4. Provide code for others to use (preferably open source).

5. Detail the programmatic timing function that has been used to record the computation time (e.g.
Python’s time.time).

6. Break down the processes and list the time each takes.

7. Show or explain which processes can run in parallel and which have to be run in series.

6.3 Computation Time: Templates
Documenting this information does not need to take up a significant portion of a research paper or code
documentation; this could be easily inserted in just a few sentences. To make this even easier, templates
are provided below and a program to auto-populate many of the fields is provided in the code that goes
with the paper, which can be found here: https://github.com/dcchb/ComputationTime - we would
encourage anyone to feel free to reuse and share these templates as needed, citing this paper.
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Computation Time: Lite template

This program was tested on [insert most important hardware specifications, such as CPU
name and clock frequency, number of physical cores, and GPU used], with the Operating
System [insert OS, such as Windows 10 Pro or Ubuntu 18.04.3 LTS]. With this hardware and
software combination the [execution time (time CPU has taken to execute program only) or
response time (time taken from start to end of process, including all background processes)]
for this program took [insert time with units] to complete.

Computation Time: Pro template (add-on)

Including additional detail need not take up too much space either. A template example of the Pro
version that could be added on to the above minimum details is:

This program can be downloaded with a [insert licence type: preferably an easy to share
open source licence11] license from [insert link to where code can be downloaded from, e.g.
GitHub12]. The computation time was measured using function [insert name of timing func-
tion] with the programming language [insert programming language]. The majority of the
computation time is spent in [insert name of the part of the code which is computation-
ally expensive13], which on testing took [insert percentage of the computation time spent
in that part of the code]% of the time to run. Methods [insert names of parallisable meth-
ods] can [completely/mostly/partially] be run using parallel processing, while methods [insert
series methods] need to be run in series. The current implementation uses [CPU hyper-
threading/GPU acceleration/other type of acceleration] for [insert methods]. It is anticipated
that further optimisation could be achieved in [insert names of methods], possibly using [in-
sert names of techniques/algorithms to further optimise]; however, this has not yet been
investigated.

6.4 Recommendations for future research
In addition to the above recommendations for software developers, it is also worth highlighting some
areas in which further scholarly research is needed, which would greatly benefit both the research and
software development communities. The following future studies would greatly help in addressing these
identified issues:

• A quantitative review of the current practice of computation time documentation within scholarly
research, documenting the number of papers which do and don’t fulfil each of the above minimum
and additional details, and highlighting areas in which documentation is particularly poor.

• A quantitative study on the current practice of computation time documentation within software
documentation, documenting the number of software packages which do and don’t fulfil each of the
above minimum and additional details.

• A thorough and detailed economic costing of the effects of global duplication of effort that occurs due
to insufficient or non-existent documentation of computation time, with practical recommendations
of how to improve this in practice.

• Detailed discussion of the global cost of computation time in light of computation power - including
computation power templates, as used here for computation time - that raises awareness of ecological
costs, and is specifically aimed at reducing computational power consumption where the direct
relationship between computation time and power used is unclear (i.e., which types of processes
consume more - rather than less - power when execution time is shortened by using more power-
hungry hardware, for example). As large-scale computing becomes more prevalent in the twenty-first
century (e.g., cloud computing, super-computing, and large-scale distributed computation such as
cryptocurrency mining), such computational challenges must now attract greater scrutiny in light
of the increasingly urgent problems of climate change.

11. A list of open source licenses can be found at: https://opensource.org/licenses, accessed 3rd December 2019. A detailed
discussion of open source licences can be found in St. Laurent 2004.
12. GitHub - https://github.com/ - is one of the most widely used code repositories and hosts many open source programs,

with over 44 million repositories contributed to between 1st October 2018 and 30th September 2019 (GitHub 2019).
13. Note that ‘computationally expensive’ just means that it requires a lot of computation power, which takes time to

process.
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7 Conclusion
As this paper has demonstrated, computation time is a vitally important measurement which can help us
to determine whether a program is fit for purpose and completes within a reasonable time frame, acting
as a useful signpost for where further optimisation may be needed.

However, without changes to current practice, the practical use value of this knowledge remains
limited. To allow coders to more readily speed up the development and optimisation of computer programs
in practice, then, it would be particularly useful to measure computation time using programmatic timing
function calls, as detailed above, and document this information accordingly. Because the precision of
these timing functions can vary by operating system, this also needs to be documented, along with the
time to process and a detailed breakdown of the software and which parts of it can be run in parallel.

By being able to access these documented measures of computation time when undertaking other
similar tasks, such data enables both the recording developer to track and review the limitations of
their own implementation, and also provides other developers and researchers with the key information
needed to determine the viability of such an approach for their own purposes. Documenting and sharing
such information on what has already been achieved, alongside sharing the code itself, will help others
to optimise their own code, allowing more rapid and cost-effective software development, and enabling
coders, researchers and development communities to build on the efforts of those who have gone before.
The above computation time templates and the corresponding scripts to automate the population of
the required fields are an attempt to reduce the difficulty for researchers and developers in reporting
computation time, providing the practical means to do this in a way which is easy to document, and easy
to understand.

By helping to reveal the extent to which computation time is a crucial factor in optimising global
software development, the suggested future research studies are likely to add a real incentive for academies,
organisations and individuals to take action and put these recommendations into practice for the future
benefit of us all. What is required now is a global effort to think beyond the immediate use of a single
program, in an ethical move to help future coders who would greatly benefit from sharing these details.
As Linus Torvold, the original creator of the Linux Operating System, notes of open source projects: ‘to
really do something well, you have to get a lot of people involved’ (quoted in Diamond 2003). It is to
this end that we hope that this paper helps to raise awareness about the importance of computation time
documentation, and we hope that you will help to spread the message of how to do it well.
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