
eScholarship
Combinatorial Theory

Title
Maximal cocliques in the generating graphs of the alternating and symmetric groups

Permalink
https://escholarship.org/uc/item/6152c771

Journal
Combinatorial Theory, 2(1)

ISSN
2766-1334

Authors
Kelsey, Veronica
Roney-Dougal, Colva M.

Publication Date
2022

DOI
10.5070/C62156879

Supplemental Material
https://escholarship.org/uc/item/6152c771#supplemental

Copyright Information
Copyright 2022 by the author(s).This work is made available under the terms of a 
Creative Commons Attribution License, available at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6152c771
https://escholarship.org/uc/item/6152c771#supplemental
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


combinatorial theory 2 (1) (2022), #7 combinatorial-theory.org

Maximal cocliques in the generating graphs
of the alternating and symmetric groups

Veronica Kelsey∗1 and Colva M. Roney-Dougal∗2

1Department of Mathematics, University of Manchester, U.K.
veronica.kelsey@manchester.ac.uk

2School of Mathematics and Statistics, University of St Andrews, U.K.
Colva.Roney-Dougal@st-andrews.ac.uk

Submitted: Nov 2, 2020; Accepted: Dec 18, 2021; Published: Mar 31, 2022
© The authors. Released under the CC BY license (International 4.0).

Abstract. The generating graph Γ(G) of a finite group G has vertex set the non-identity
elements of G, with two elements adjacent exactly when they generate G. A coclique in a
graph is an empty induced subgraph, so a coclique in Γ(G) is a subset of G such that no
pair of elements generate G. A coclique is maximal if it is contained in no larger coclique.
It is easy to see that the non-identity elements of a maximal subgroup of G form a coclique
in Γ(G), but this coclique need not be maximal.

In this paper we determine when the intransitive maximal subgroups of Sn and An are
maximal cocliques in the generating graph. In addition, we prove a conjecture of Cameron,
Lucchini, and Roney-Dougal in the case of G = An and Sn, when n is prime and n 6= qd−1

q−1
for all prime powers q and d > 2. Namely, we show that two elements of G have iden-
tical sets of neighbours in Γ(G) if and only if they belong to exactly the same maximal
subgroups.
Keywords. Generating graph, alternating groups, symmetric groups
Mathematics Subject Classifications. 20D06, 05C25, 20B35

1. Introduction

The generating graph Γ(G) of a finite group G has vertex set the non-identity elements of G,
with two elements connected exactly when they generate G. A subset of vertices in a graph
forms a coclique if no two vertices in the subset are adjacent. A coclique is maximal if it is
contained in no larger coclique.
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tality during the programme Groups, representations and applications: new perspectives, when work on this paper
was undertaken. This work was supported by: EPSRC grant number EP/R014604/1. In addition, the second author
was partially supported by a grant from the Simons Foundation.
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The definition of a generating graph was first introduced by Liebeck and Shalev in [?]. Let
m(G) denote the minimum index of a proper subgroup of G. Liebeck and Shalev showed that
for all c < 1, ifG is a sufficiently large simple group, then Γ(G) contains a clique of size at least
cm(G). That is, G contains a subset S of size at least cm(G) such that all two-element subsets
of S generate G. See [?], [?] and [?] for more results about cliques in generating graphs.

Less is known about cocliques in generating graphs. In a slight abuse of language, we shall
refer to maximal subgroups as cocliques in Γ(G), even though strictly speaking it is their non-
identity elements that form a coclique. Recently in [?], Saunders proved that for each odd prime
p, a maximal coclique in Γ(PSL2(p)) is either a maximal subgroup, the conjugacy class of all
involutions, or has size at most 129

2
(p− 1) + 2.

This paper determines when an intransitive maximal subgroup M of G = Sn or G = An

is a maximal coclique in Γ(G). In each case we either show that M is a maximal coclique or
determine the maximal coclique containing M .

In a forthcoming paper, the authors determine when an imprimitive maximal subgroupM is
a maximal coclique in the generating graph of G = Sn or An. The methods used are similar to
those in this paper, but the arguments are necessarily longer. The case ofM a primitive maximal
subgroup for G = Sn or An will require new techniques. As demonstrated in Theorem 1.1 and
in [?], a maximal subgroup is not necessarily a maximal coclique.

Our first main result is the following.

Theorem 1.1. Let n > 4, let G = Sn or An, let n > k > n
2

and let M = (Sk × Sn−k) ∩ G be
an intransitive maximal subgroup of G.

(i) If G = Sn, then M is a maximal coclique in Γ(G) if and only if gcd(n, k) = 1 and
(n, k) 6= (4, 3).

(ii) If G = An, then M is a maximal coclique in Γ(G) if and only if (n, k) /∈ {(5, 3), (6, 4)}.

Our second main theorem concerns the exceptional cases of Theorem 1.1.

Theorem 1.2. (i) Let n > 4, let G = Sn, let n > k > n
2

and let M = Sk × Sn−k be an
intransitive maximal subgroup of G, setwise stabilising {1, . . . , k}.

(a) If gcd(n, k) > 1, then the unique maximal coclique of Γ(G) containing M is(
M ∪ (1, k + 1)M

)
\{1}.

(b) If (n, k) = (4, 3), then the unique maximal coclique of Γ(G) containing M is(
M ∪ (1, 4)(2, 3)M

)
\{1}.

(ii) Let (n, k) ∈ {(5, 3), (6, 4)}, let G = An and let M = (Sk × Sn−k) ∩G be an intransitive
maximal subgroup of G.

(a) If (n, k) = (5, 3), then the unique maximal coclique of Γ(G) containing M is(
M ∪ (1, 4)(2, 3)M

)
\{1}.
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(b) If (n, k) = (6, 4), then the unique maximal coclique of Γ(G) containing M is(
M ∪ (1, 5)(2, 6)M

)
\{1}.

In [?], Cameron, Lucchini and Roney-Dougal define an equivalence relation≡m and a chain
of equivalence relations≡(r)

m on the elements of a finite groupG. Two elements x, y ∈ G satisfy
x ≡m y exactly when x and y can be substituted for one another in all generating sets for G.
Equivalently, x ≡m y when x and y lie in exactly the same maximal subgroups ofG. Conversely,
x ≡(r)

m y when x and y can be substituted for one another in all generating sets for G of size r.
The relations ≡(r)

m become finer as r increases, with limit ≡m, and ψ(G) is defined to be the
smallest value of r for which ≡m and ≡(r)

m coincide.

Conjecture 1.3 ([?, Conjecture 4.7]). Let G be a finite group such that no vertex of Γ(G) is
isolated. Then ψ(G) 6 2.

Settling a long-standing conjecture, Burness, Guralnick and Harper show in [?] that if G is
a finite group of order greater than two such that all proper quotients of G are cyclic, then no
vertex of Γ(G) is isolated. The result for G = An and Sn goes back much further, see [?].

Cameron, Lucchini and Roney-Dougal observe in [?] that to prove this conjecture, it suffices
to show that each maximal subgroup is a maximal coclique in Γ(G). This motivates the following
theorem.

Theorem 1.4. Let p > 5 be a prime such that p 6= qd−1
q−1

for all prime powers q and all d > 2.
Let G = Sp or Ap.

(i) If G = Sp, then each maximal subgroup of G is a maximal coclique in Γ(G).

(ii) If G = Ap, then each maximal subgroup M of G is a maximal coclique in Γ(G) except
when p = 5 and M is conjugate to (S3 × S2) ∩G.

Theorem 2.26 of [?] states that ψ(A5) = 2. Hence the following is immediate.

Corollary 1.5. Let G and p be as in Theorem 1.4. Then ψ(G) = 2. That is, two elements of
G belong to exactly the same maximal subgroups of G if and only if they can be substituted for
each other in all generating pairs for G.

This paper is structured as follows. In Section 2 we begin with some background results on
number theory, cycle structures of elements of Sn and block systems of imprimitive permutation
groups. In Section 3 we show that Theorems 1.1 and 1.2 hold for n 6 11 and prove some
preliminary lemmas. In Section 4 we complete the proof of Theorems 1.1 and 1.2. Finally, in
Section 5 we prove Theorem 1.4.

2. Background Results

2.1. Number Theoretical Background

In this subsection we collect results about the existence of primes in certain subsets of the in-
tegers. We start with Bertrand’s Postulate. Throughout this subsection, all logs are natural
logarithms.
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Theorem 2.1 (Bertrand’s Postulate. See for example [?, §1]). Let m ∈ N. If m > 4, then there
exists at least one prime p such that m < p < 2m− 2. Hence for k ∈ N with k > 7, there exists
a prime pk > 5 with k

2
< pk < k − 1.

Notation 2.2. For k ∈ N with k > 7, let pk denote a prime as in Theorem 2.1.
We note that pk does not divide k, and that pk is not uniquely determined by k, but at least

one such prime must exist.
The proof of the following lemma is straightforward.

Lemma 2.3. Let n > k > n
2

with k > 7 and let pk be as in Notation 2.2. If pk | (n − k) then
pk = n− k, and if pk | (n− k − 1) then pk = n− k − 1.

We will need two variations of Bertrand’s Postulate.

Lemma 2.4. Let n > k > n
2
, with k > 10. Then there exists an odd prime p(1) 6 k − 5 such

that p(1) - (n− k).

Proof. Let Q = {q prime : 2 6 q 6 k − 5}. The product of the set of prime divisors of n− k
is at most n− k, so if

2(n− k) <
∏
q∈Q

q, (2.1)

then there exists an odd prime pk ∈ Q, as required.
Since k > 10, the set Q contains {2, 3, 5} and so

∏
q∈Q q > 30. If k 6 15, then n − k 6

k − 1 6 14. Hence (2.1) holds for 10 6 k 6 15.
Assume from now on that k > 15, and set m = k − 5 > 10. Applying Theorem 2.1 with m

in place of k provides a prime pm with 5 < m
2
< pm < m − 1. Hence 2, 3, 5 and pm are in Q.

Observe also that 15m > 2(m+ 4) and m+ 4 = k − 1 > n− k. Hence

2(n− k) 6 2(m+ 4) < 15m < 3 · 5 · (2pm) 6
∏
q∈Q

q,

as required.

Lemma 2.5. Let n > k > n
2
. If n− k > 10, then at least one of the following holds.

(i) There exists a prime p(2) with 2 < p(2) < n− k − 3, such that p(2) - k.

(ii) The inequality n− k + 1 < 2(
√
n− 1) holds.

Proof. First suppose that 10 < n−k < 26 and letP = {q prime : 2 < q < n−k−3}. If (i) does
not hold, then all primes in q ∈ P divide k, and hence

∏
q∈P q 6 k < n. For 10 < n− k < 26

a straightforward calculation shows that

(n− k + 3)2

4
<
∏
q∈P

q,

and so (n− k + 3)2/4 < n. Rearranging gives the desired inequality in (ii).
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Now suppose that n − k > 26. Let m = n − k − 3, so that m > 23, and let π(m) be the
number of primes less than or equal to m. We shall first prove that

2
(
π(m− 1)− 4

)
> log

(
2
(m

2
+ 3
)2
)
. (2.2)

To do so let y := y(m) be the following function of m

y = (m− 1)− log
(m

2
+ 3
)

log(m− 1)− 1

2

(
log(2) + 8

)
log(m− 1).

Then
dy

dm
= 1−

log
(

m
2

+ 3
)

m− 1
− log(m− 1)

m+ 6
− log(2) + 8

2(m− 1)
.

The functions log(m
2

+3)

m−1
and log(2)+8

2(m−1)
are monotonically decreasing for m > 2, the function

log(m−1)
m+6

is monotonically decreasing for m > 9, and dy
dm

is positive at m = 9. Hence dy
dm

is
positive form > 9. Since y(23) > 0, it follows that y is positive form > 23. Hence form > 23

(m− 1)− 4 log(m− 1) > log(
m

2
+ 3) log(m− 1) +

1

2
log(2) log(m− 1),

and so

2
( m− 1

log(m− 1)
− 4
)
> 2 log

(m
2

+ 3
)

+ log(2) = log

(
2
(m

2
+ 3
)2
)
. (2.3)

Corollary 1 of [?] states that π(x) > x
log(x)

for x > 17. Hence (2.3) implies (2.2).
Let Q = {q prime : 2 6 q < m} and Q0 = {q ∈ Q : q > 7}. Observe that if q ∈ Q0, then

log(q) > 2. Therefore

log

(∏
q∈Q

q

)
=
∑
q∈Q

log(q) >
∑
q∈Q0

2 = 2
(
π(m− 1)− 4

)
> log

(
2
(m

2
+ 3
)2
)
.

Thus ∏
q∈Q

q > 2
(m

2
+ 3
)2

.

If (i) does not hold, then q | k for all odd primes q ∈ Q. Then k is greater than or equal to the
product of all such primes, so

2n > 2k >
∏
q∈Q

q > 2
(m

2
+ 3
)2

.

Hence
√
n > m

2
+ 3 and so

2(
√
n− 1) > m+ 4 = (n− k − 3) + 4 = n− k + 1,

as in (ii). Hence the lemma holds.



6 Veronica Kelsey, Colva M. Roney-Dougal

2.2. Elementary Results on Cycle Structures and Primitivity

This subsection collects several technical results concerning cycle structures, primitive groups
and block systems.

Definition 2.6. For n > 12 we refer to the following elements of Sn as Jordan elements:

(i) products of two transpositions;

(ii) cycles fixing at least three points;

(iii) permutations with support size less than or equal to 2(
√
n− 1).

The following result will be used extensively in the rest of the paper.

Theorem 2.7. Let G 6 Sn be primitive. If G contains a Jordan element, then An 6 G.

Proof. Types (i), (ii) and (iii) from Definition 2.6 are dealt with by page 43 of [?], Corollary 1.3
of [?] and Corollary 3 of [?] respectively.

Notation 2.8. Let y ∈ Sn, and let c1c2 . . . ct be the disjoint cycle decomposition of y (including
trivial cycles). For 1 6 i 6 t let Θi = Supp(ci). We denote the cycle type of y by C(y) =
|c1| · |c2| · · · |ct|. Often the “·” notation is omitted when it is clear without, and we sometimes
gather together common cycle orders and use the usual exponent notation.

For example, if y = (1, 2, 3)(4, 5)(6, 7) then we may let c1 = (1, 2, 3), c2 = (4, 5) and
c3 = (6, 7). Then Θ1 = {1, 2, 3}, Θ2 = {4, 5} and Θ3 = {6, 7}, and we write C(y) = 3 · 2 · 2
or C(y) = 3 · 22.

Lemma 2.9. Let y ∈ Sn, and let t be the number of cycles in the the disjoint cycle decomposition
of y (including trivial cycles). Then y is even if and only if t and n have the same parity.

Proof. Let y have t1 cycles of odd length and t2 cycles of even length, so that t1 + t2 = t. Then
n ≡ t1 mod 2 so

t− n ≡ t− t1 = t2 mod 2.

Hence t and n have the same parity if and only if t2 is even, that is if and only if y is even.

The next lemma guarantees under certain circumstances the existence of suitable sets of
distinct points.

Lemma 2.10. Let n
2
< k < n, and let x ∈ Sn be such that 1x = k + 1.

(i) If |Supp(x)| > 8 and x does not have cycle type 1(n−8) · 2 · 32, 1(n−8) · 3 · 5 or 1(n−9) · 33,
then there exist distinct points r, rx, s, sx, t, tx ∈ Supp(x)\{1, k + 1}.

(ii) If |Supp(x)| > 8 and x does not have cycle type 1(n−8) · 24, then there exist distinct points
s, sx, t, tx, u, v ∈ Supp(x)\{1, k + 1} such that (u, v) is not a cycle of x.

Proof. Let S = Supp(x) and T = S\1〈x〉. We split into cases based on |1〈x〉|.
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(i) If |1〈x〉| > 8, then we may let r = 1x2
, s = 1x4 and t = 1x6 . If 6 6 |1〈x〉| 6 7, then

|T | > 2. Let r = 1x2 , s = 1x4 and let t ∈ T . If 4 6 |1〈x〉| 6 5, then |T | > 4 because x
does not have cycle type 1(n−8) · 3 · 5. Hence either 〈x〉 has at least two orbits on T of size
at least 2 or one of size at least 4. Hence we may let r = 1x2 and s, t ∈ T . If |1〈x〉| 6 3,
then |T | > 6 because x does not have cycle type 1(n−8) ·3 ·5 or 1(n−8) ·2 ·32. Hence either
〈x〉 has one orbit on T of size at least 6, or exactly two orbits, with sizes at least 3 and 4
respectively (because x does not have cycle type 1(n−9) · 33), or at least 3 orbits. Hence
we may let r, s, t ∈ T .

(ii) If |1〈x〉| > 8, then let u = 1x2 , v = 1x3 , s = 1x4 and t = 1x6 . If 6 6 |1〈x〉| 6 7, then
let u = 1x2 , v = 1x3 , s = 1x4 and let t ∈ T . The arguments for |1〈x〉| ∈ {3, 4, 5} are
straightforward. If |1〈x〉| = 2, then |T | > 6 and 〈x〉 does not have 3 orbits of size 2 on T,
since the cycle type of x is not 1(n−8) · 24. Hence we may let u, v, s, t ∈ T .

For the rest of this section, let Ω be a finite set and letH be a transitive subgroup of Sym(Ω)
with a block system B. We include the possibility of B being trivial, that is blocks of size 1
or |Ω|.
Notation 2.11. For hi a cycle of h ∈ H , let hBi be the permutation that h induces on the set of
blocks in B which contain elements of Supp(hi).

In the following lemmas we make a slight abuse of notation to take the support of a 1-cycle
to be the unique point in it (even though it does not move that point).

Lemma 2.12. Let h ∈ H with cycle hi. Then hBi is a cycle whose length divides the length of hi.

Proof. Since hi is transitive on the points of Supp(hi), it follows that hBi is a cycle. Let ∆ be a
block containing m > 0 points of Supp(hi). It follows that each block of B contains exactly m
or 0 points of Supp(hi). Hence |hi| = m|hBi |.

Lemma 2.13. Let h ∈ H with disjoint (possibly trivial) cycles h1 and h2.

(i) Suppose that ∆ is a block of B containing α ∈ Supp(h1) and β ∈ Supp(h2). Then
hB1 = hB2 .

(ii) If h1 has prime length p, then the points of Supp(h1) either lie in one block or each lie in
different blocks.

(iii) Suppose h1 and h2 have coprime lengths. If there exists a block ∆ ofB that contains points
from both Supp(h1) and Supp(h2), then Supp(h1) ∪ Supp(h2) ⊆ ∆.

Proof. (i) Since α, β ∈ ∆, it follows that for all i, the points αhi and βhi lie in the same block.
From αhi

= αhi
1 and βhi

= βhi
2 , it follows that hB1 = hB2 .

(ii) By Lemma 2.12, hB1 is either a p-cycle or a 1-cycle.

(iii) By Part (i), hB1 = hB2 . Since h1 and h2 have coprime lengths, it follows from Lemma 2.12
that hB1 is trivial.
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Definition 2.14. Let H be transitive, with block system B, and let ∆ ∈ B. If |∆| > 2 then we
say that B is a non-singleton block system.

Lemma 2.15. Let B be a non-singleton block system for H . Suppose that there exists h ∈ H
with a cycle hi of prime length, which is coprime to the lengths of all other cycles of h. Then
there exists a block ∆ of B such that Supp(hi) ⊆ ∆. In particular, ∆h = ∆.

Proof. Let ∆ be a block containing at least one point α ∈ Supp(hi), and let β ∈ ∆\{α}. If
β ∈ Supp(hi), then the result follows by Lemma 2.13(ii). If β /∈ Supp(hi), then Supp(hi) ⊆ ∆
by Lemma 2.13(iii).

3. Preliminary Results

We begin by showing that Theorems 1.1 and 1.2(i) hold when n 6 11 and prove Theorem 1.2(ii).
We then set up the notation for the rest of the paper, prove some preliminary lemmas and divide
the task of proving Theorems 1.1 and 1.2(i) into subcases, see Hypothesis 3.4.
Notation 3.1. Throughout this and the next section let G be either Sn or An, acting on the set
Ω = {1, 2, . . . , n}with n > 4. Let Ω1 = {1, 2, . . . , k} and Ω2 = {k+1, . . . , n}with k > n−k.
Let M = StabG(Ω1) = StabG(Ω2). Then M is isomorphic to

(
Sk × Sn−k

)
∩ G. We let

x ∈ G\M .
We first prove Theorem 1.1 for some small values of n and n − k. From this Theorem 1.2

Parts (i)(b), (ii)(a) and (ii)(b) will also follow.

Lemma 3.2. Let n 6 11. Then Theorems 1.1 and 1.2 hold.

Proof. Using Magma (see [?]), we create a list of all possibilities for x ∈ G\M , up to M -
conjugacy. For each such x, we create a corresponding list L of elements ofM up to conjugation
by CM(x). We then discard all x for which there exists a y ∈ L such that 〈x, y〉 = G.

The only remaining G, M and x are

(i) G = Sn, x = (1, k + 1) and (n, k) = (6, 4), (8, 6), (9, 6), (10, 6) or (10, 8);

(ii) (G, k, x) = (S4, 3, (1, 4)(2, 3)), (A5, 3, (1, 4)(2, 3)), or (A6, 4, (1, 5)(2, 6)).

In each case, x is an involution and two involutions generate a dihedral group. Hence in these
cases the maximal coclique in Γ(G) containing M is (M ∪ xM)\{1}.

Proposition 3.3. Let n > 12 and let G and M be as in Notation 3.1. Then M is a maximal
coclique of Γ(G) if and only if for all x ∈ G\M such that 1x = k + 1 there exists y ∈ M such
that 〈x, y〉 = G.

Proof. The forward implication is clear, so assume that M is not a maximal coclique of Γ(G).
Then there exists x1 ∈ G\M such that 〈x1, y〉 6= G for all y ∈ M . Since Am is transitive for
m > 3, there exists h ∈ M such that xh1 maps 1 to k + 1. Hence for all y ∈ M we deduce that
〈xh1 , yh〉 6= Gh = G.
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We now define two distinct hypotheses which between them cover all possibilities in the case
where x ∈ G\M is not a transposition and n > 12.
Hypothesis 3.4. Recall the set up of Notation 3.1. Let n > 12 so that k > 7.

(A) Let G = An if n is odd and G = Sn if n is even.

(B) Let G = An if n is even and G = Sn if n is odd.

In both cases, assume that 1x = k + 1 and that x 6= (1, k + 1).
Notation 3.5. For y ∈M define

CM(y) := C1(y) | C2(y),

where Ci(y) := C(y|Ωi
) for i = 1, 2 is as in Notation 2.8.

We now prove two useful elementary lemmas that will help to simplify the proof of Theorem
1.1. Recall Definition 2.6, of a Jordan element.

Lemma 3.6. Let n,G,M , and x be as either case of Hypothesis 3.4. If |Supp(x)∩Ω1| = 1, the
group 〈x〉 contains no Jordan element, and n− k 6 10, then Theorem 1.1 holds.

Proof. Since |Supp(x) ∩ Ω1| = 1, it follows that |Supp(x)| 6 n− k + 1 6 11. Hence, since x
is not a Jordan element,

2(
√
n− 1) < |Supp(x)| 6 11,

and so 12 6 n 6 42. Notice that |Supp(x) ∩ Ω2| > 2. Hence by 2-set transitivity of Am for
m > 3, we may assume that {k + 1, k + 2} ∈ Supp(x).

If Hypothesis 3.4(A) holds, then let Y be the set of y = c1c2c3 ∈M with Θ3 = {k+ 2} and
CM(y) = k | (n− k − 1)1. If Hypothesis 3.4(B) holds, then let Y be the set of elements of M
with cycle type k | (n− k). By Lemma 2.9, Y ⊆ An if and only if G = An.

Since 〈x〉 contains no Jordan element, no power of x is a cycle or the product of two trans-
positions. From this and the fact that |Supp(x)| 6 11 there are few possible cycle structures
for x. Using Magma, for each x, n and k we find a random element of y ∈ Y and construct
H(y) = 〈x, y〉, by repeating this sufficiently many times we find y ∈ Y such thatH(y) = G.

Lemma 3.7. Let n,G,M and x be as either case of Hypothesis 3.4. Assume that |Supp(x)| < 8
or that C(x) ∈ T := {1(n−8) · 2 · 32, 1(n−8) · 3 · 5, 1(n−8) · 24, 1(n−9) · 33}. Then at least one
of the following holds.

(i) The group X = 〈x〉 contains a Jordan element.

(ii) There exists an element y ∈M such that 〈x, y〉 = G.

Proof. If C(x) /∈ S := {1(n−6) · 23, 1(n−6) · 32, 1(n−8) · 24, 1(n−9) · 33}, then X contains a
Jordan element, so assume that C(x) ∈ S. If n > 30 then 2(

√
n− 1) > 9, and so x is a Jordan

element, so assume that n 6 30. Since |Supp(x)| > 2, and Am is 2-set transitive for m > 3, we
may assume that either {k + 1, k + 2} ∈ Supp(x) or {1, 2} ∈ Supp(x).
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Suppose that Hypothesis 3.4(A) holds. If k+ 2 ∈ Supp(x), then let Y be the set of elements
y = c1c2c3 ∈ M such that CM(y) = k | (n − k − 1)1 with Θ3 = {k + 2}. If 2 ∈ Supp(x),
then let Y be the set of elements y = c1c2c3 ∈ M such that CM(y) = (k − 1)1 | (n − k)
with Θ2 = {2}. If Hypothesis 3.4(B) holds let Y be the set of elements y = c1c2 ∈ M with
CM(y) = k | (n− k). By Lemma 2.9, Y ⊆ An if and only if G = An.

Using Magma, for each x, n and k we find a random element of y ∈ Y and construct
H(y) = 〈x, y〉, by repeating this sufficiently many times we find y ∈ Y such thatH(y) = G.

4. Proof of Theorems 1.1 and 1.2

In this section we complete the proofs of Theorems 1.1 and 1.2.

4.1. Hypothesis 3.4(A)

In this section we show that under Hypothesis 3.4(A) for all x ∈ G\M there exists y ∈M such
that 〈x, y〉 = G. We begin by putting restrictions on x.

Lemma 4.1. Let n,G,M and x be as in Hypothesis 3.4(A). If |Supp(x) ∩ Ω1| = 1 and x is a
Jordan element, then there exists y ∈M such that 〈x, y〉 = G.

Proof. By Hypothesis 3.4, there exists a point t ∈ Supp(x)\{1, k + 1}. Our assumption that
|Supp(x) ∩ Ω1| = 1 implies that t ∈ Ω2.

By Lemma 2.9, elements of Sn composed of three cycles lie in An if and only if G = An, so
there exists y = c1c2c3 ∈M satisfying

CM(y) = k | (n− k − 1)1,

with Θ3 = {t}. Let H = 〈x, y〉 and let Y = 〈y〉. Since 1 ∈ Θ1 and k + 1 ∈ Θ2, it follows that
Θ1 ∪Θ2 = Ω\{t} ⊆ 1H . Since t ∈ Supp(x), the group H is transitive.

We show that H is primitive. Let ∆ be a non-singleton block for H containing t, and let a
be an element of ∆\{t}. Since t is fixed by y, it follows that ∆y = ∆. Hence aY ∪ {t} ⊆ ∆.
If a ∈ Θ1, then |∆| > k + 1 > n

2
and so ∆ = Ω. If a ∈ Θ2, then Θ2 ∪ {t} ⊆ ∆. Since

Supp(x) ∩ Θ1 = {1} and (k + 1)x
−1

= 1 6= tx
−1 , it follows that tx−1 ∈ Θ2 ⊆ ∆. Hence

∆x−1
= ∆, and so ∆H = ∆. By the transitivity of H , it follows that ∆ = Ω.

Hence H = 〈x, y〉 is primitive, and contains the Jordan element x. Thus An 6 H , by
Theorem 2.7, and so H = G.

We now show that if |Ω1 ∩ Supp(x)| = 1, then there exists y ∈M such that 〈x, y〉 = G.

Lemma 4.2. Let n,G,M and x be as in Hypothesis 3.4(A). If |Supp(x) ∩ Ω1| = 1, then there
exists y ∈M such that 〈x, y〉 = G.

Proof. By Lemma 4.1, the result holds if x is a Jordan element, and by Lemma 3.6 the result
holds if n− k 6 10. Hence we may assume that n− k > 10 and that |Supp(x)| > 2(

√
n− 1).

Thus 2(
√
n − 1) 6 n − k + 1, so there exists a prime p(2) as in Lemma 2.5. In addition,
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by Lemma 3.7 the result holds if |Supp(x)| < 8 or if C(x) = 1(n−8) · 24, so we may assume
otherwise. Hence we may let s, t, u, v ∈ Supp(x)\{1, k + 1} be as in Lemma 2.10(ii).

The proof splits into two cases. First suppose that p(2) | (n − k). By Lemma 2.9, elements
composed of five cycles lie in An if and only if G = An, so there exists y = c1c2c3c4c5 ∈ M
such that

CM(y) = k | p(2)(n− k − p(2) − 2)12,

with s, t, tx ∈ Θ2, k + 1, sx ∈ Θ3, Θ4 = {u} and Θ5 = {v}. Let H = 〈x, y〉. Since 1 ∈ Θ1

and k + 1 ∈ Θ3, it follows that Θ1,Θ3 ⊆ 1H . Then because s ∈ Θ2 and sx ∈ Θ3, it follows that
Θ2 ⊆ 1H . Since (u, v) is not a cycle of x and Ω\{u, v} ⊆ 1H , the group H is transitive.

Let B be a non-singleton block system for H . Since p(2) > 2 and p(2) | (n − k), it follows
that p(2) - (n − k − p(2) − 2). Hence by Lemma 2.15, there exists a block ∆ ∈ B such that
Θ2 ⊆ ∆. Therefore ∆y = ∆. Furthermore, from t, tx ∈ Θ2 we deduce that ∆H = ∆, and hence
∆ = Ω. Thus H is primitive and contains the Jordan element yk(n−k−pk−2), and so H = G.

Next suppose that p(2) - (n − k). By Lemma 2.9, elements composed of three cycles lie in
An if and only if G = An, so there exists y = c1c2c3 ∈M such that

CM(y) = k | p(2)(n− k − p(2)),

with s, t, tx ∈ Θ2 and k + 1, sx ∈ Θ3. Let H = 〈x, y〉. The argument that H is transitive,
primitive and contains a p(2)-cycle follows as in the previous case, and so H = G.

We now complete the proof that under Hypothesis 3.4(A) there exists y ∈ M such that
〈x, y〉 = G.

Lemma 4.3. Let n,G,M and x be as in Hypothesis 3.4(A). Then there exists y ∈ M such that
〈x, y〉 = G.

Proof. If |Ω1 ∩ Supp(x)| = 1, then the result holds by Lemma 4.2. Therefore we may assume
that |Supp(x)∩Ω1| > 2, and so there exists t ∈

(
Supp(x)∩Ω1

)
\{1}. Since k > 7, there exists

a prime pk with 5 6 pk 6 k − 2, by Theorem 2.1.
First assume that k = pk + 2 and n − k = pk. Hence n = 2pk + 2. Thus n is even and

so G = Sn by the assumption that Hypothesis 3.4(A) holds. By Lemma 2.9, elements of Sn

composed of three cycles are in Sn\An. Let y = c1c2c3 ∈M satisfy

CM(y) = 3(pk − 1) | pk,

with 1 ∈ Θ1, t ∈ Θ2 and tx /∈ Θ2. Let H = 〈x, y〉. Since 1x = k + 1, it follows that
Θ1,Θ3 ⊆ 1H . Then t ∈ Θ2 and tx ∈ Θ1 ∪Θ3, so H is transitive.

Let B be a non-singleton block system for H . By Lemma 2.15, there exists a block ∆ ∈ B
with Θ3 ⊆ ∆. Hence ∆y = ∆ and so ∆ is a union of the orbits of y and contains Θ3. Since
|∆| | n, it follows that ∆ = Ω. Hence H is primitive and contains the Jordan element y3(pk−1),
so H = G.

If k 6= pk + 2, then k > pk + 2, so for the remainder of the proof we may assume that

k − pk > 2 or n− k 6= pk. (4.1)
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Let Y be the set of elements y = c1c2c3 ∈M satisfying

CM(y) = (k − pk)pk | (n− k)

with 1 ∈ Θ1, t ∈ Θ2 and tx /∈ Θ2. By Lemma 2.9, Y 6= ∅, and consists of elements of An if
and only if G = An. For all y ∈ Y , let H = H(y) = 〈x, y〉 and let Y = 〈y〉. The proof of
transitivity is identical to the previous case. We assume, by way of contradiction, that H(y) is
imprimitive for all y ∈ Y , and let B be a non-trivial block system for H .

First suppose, by way of contradiction, that there exists ∆1 ∈ B with Θ2 ⊆ ∆1. We begin
by showing that if Θ2 ⊆ ∆1, then ∆1 = Θ2. Suppose otherwise, and let a ∈ ∆1\Θ2. From
Θ2 ⊆ ∆1 we see that ∆y

1 = ∆1. If a ∈ Θ1, then Θ1 ∪ Θ2 ⊆ ∆1 and so |∆1| > k > n
2
, a

contradiction. Hence a ∈ Θ3, so Θ2 ∪Θ3 ⊆ ∆1, yielding the contradiction

|∆1| > pk + n− k > n− k

2
>
n

2
.

Hence ∆1 = Θ2 and pk | n. Since n
2
< k < 2pk, it follows that n < 4pk, and consequently

either n = 2pk or n = 3pk.
If n = 2pk, then B consists of two blocks ∆1 = Θ2 and ∆2 = Ω\∆1 = Θ1 ∪ Θ3. Since 1

and k + 1 = 1x ∈ ∆2 both x and y leave ∆2 invariant, contradicting the transitivity of H .
Ifn = 3pk, then there exist blocks ∆2 and ∆3 such thatB = {∆1,∆2,∆3}. Hence ∆2∪∆3 =

Θ1 ∪ Θ3. Since pk > k
2
, it follows that |∆2| = pk does not divide |Θ1|. Hence ∆2 intersects

both Θ1 and Θ3 non-trivially, and so yB = (∆2,∆3). If there exists α ∈ ∆1 such that αx ∈ ∆1,
then ∆x

1 = ∆1 = ∆y
1, a contradiction. Therefore ∆x

1 ⊆ Θ1 ∪Θ3 and |∆1| > 5. Thus there exist
distinct points a1, a2 ∈ ∆1 with ax1 , ax2 both in Θ1 or both in Θ3. Let

Y1 = {y ∈ Y | (ax1)y = a2},
and notice that Y1 6= ∅. Hence for all y ∈ Y1, the block ∆2 contains exactly one of {ax1 , ax2}.
Thus ∅ 6= (∆x

1 ∩∆2) 6= ∆2, a contradiction.
Therefore if n is even and y ∈ Y , or if n is odd and y ∈ Y1, there is no block ∆1 with

Θ2 ⊆ ∆1. Hence it follows from Lemma 2.13(ii) that cB2 is a pk-cycle. Let ∆ ∈ Supp(cB2 ). Since
pk > k − pk and ∆ is non-trivial, it follows that cB3 is also a pk-cycle. Since n− k < k < 2pk,
it follows that pk = n− k and so |∆| = 2. Therefore n is even and cB1 is a

(
k−pk

2

)
-cycle.

From pk = n− k and (4.1), it follows that k− pk > 2. Therefore, since cB1 is a
(
k−pk

2

)
-cycle

we deduce that there exists a ∈ Θ1\{1, tx
−1}, and the set

Ya =

{
y = c1c2c3 ∈ Y : 1y

k−pk
2 = a

}
is non-empty. For all y ∈ Ya, it follows that ∆a = {1, a} is a block for H = H(y). Consider
∆x

a = {k + 1, ax}. If ax ∈ Ω2, then ∆x
a ⊆ Ω2 = Θ3, contradicting the fact that c3 acts regularly

on the blocks in Supp(cB3 ). Hence ax ∈ Ω1. Since a 6= tx
−1 , it follows that ax 6= t and so there

exists y ∈ Ya such that ax ∈ Θ1. Thus k + 1 ∈ ∆x
a ∩ Θ3 and ax ∈ ∆x

a ∩ Θ1, contradicting the
fact that c1 and c3 act on disjoint sets of blocks.

Hence there exists y ∈ Y1 or y ∈ Ya such that H = 〈x, y〉 is primitive. If n− k 6= pk, then
H contains the pk-cycle y(k−pk)(n−k). If n − k = pk, then H contains the (k − pk)-cycle ypk .
Thus in both cases H = G by Theorem 2.7.
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4.2. Hypothesis 3.4(B)

In this section we show that for n,G,M and x as in Hypothesis 3.4(B) there exists y ∈M such
that 〈x, y〉 = G. We begin with the case |Ω1 ∩ Supp(x)| = 2 = |Ω2 ∩ Supp(x)|.

Lemma 4.4. LetG,M, n and x be as in Hypothesis 3.4(B). If |Supp(x)∩Ωi| = 2 for i = 1 and
i = 2, then there exists y ∈M such that 〈x, y〉 = G.

Proof. Let Supp(x) ∩ Ω1 = {1, t} and Supp(x) ∩ Ω2 = {k + 1, r}. Then there are three
possibilities for x, namely (1, k + 1, t, r), (1, k + 1, r, t) or (1, k + 1)(t, r).

By Lemma 2.9, elements of Sn composed of two cycles lie in An if and only if G = An, so
there exists y = c1c2 ∈M such that

CM(y) = k | (n− k),

with 1y2 = t and (k + 1)y = r. Since 1x = k + 1, it follows that H = 〈x, y〉 is transitive.
We prove that H is primitive. Let ∆ be a non-singleton block for H containing 1. We shall

show that there exists b ∈ ∆ ∩ Θ1. Let a ∈ ∆\{1}. If a ∈ Θ1, then let b := a. If a ∈ Θ2,
then let b := 1y(n−k) . Since k > n − k, it follows that b 6= 1. From ay

(n−k)
= a we deduce that

∆y(n−k)
= ∆, hence b ∈ ∆ ∩Θ1.

We claim that ∆x = ∆ and so k + 1 ∈ ∆. If b ∈ Fix(x), then this is immediate. If
b /∈ Fix(x), then looking at Supp(x) we deduce that b = t = 1y2 . Hence ∆y2 = ∆ and so
1y4 ∈ ∆. Since k > 7, it follows that 1y4 6= 1, t. Hence 1y4 ∈ Fix(x) and so ∆x = ∆.

The block ∆y contains r ∈ Supp(x) and f := 1y ∈ Fix(x). Therefore (∆y)x = ∆y and
rx ∈ ∆y. Either rx = t = f y or rx = 1 = f y−1 . Hence either {f, f y} or {f, f y−1} ⊆ ∆y hence
(∆y)y = ∆y, and so ∆ = Ω.

Therefore H = 〈x, y〉 is primitive. Furthermore, H contains x, which is a Jordan element
since n > 12. Therefore An 6 H by Theorem 2.7 and so H = G.

We now generalise to the case where both |Ω1 ∩ Supp(x)| and |Ω2 ∩ Supp(x)| are at least 2.

Lemma 4.5. Let n,G,M and x be as in Hypothesis 3.4(B). If |Supp(x) ∩ Ω1| > 2 and
|Supp(x) ∩ Ω2| > 2, then there exists y ∈M such that 〈x, y〉 = G.

Proof. By Lemma 4.4, the result holds when |Supp(x)| = 4, and so we may assume that
|Supp(x)| > 4. Hence there exist points t ∈ Ω1\{1} and r ∈ Ω2\{k + 1} such that tx 6= r.

Let Y be the set of elements ofM composed of four cycles, c1 and c2 with support in Ω1, and
c3 and c4 with support in Ω2, such that 1 ∈ Θ1, t ∈ Θ2, tx /∈ Θ2, k + 1 ∈ Θ3 and Θ4 = {r}. By
Lemma 2.9, elements of Sn composed of four cycles lie in An if and only ifG = An, so Y 6= ∅.
For all y ∈ Y , let H = H(y) = 〈x, y〉 and let Y = 〈y〉.

From 1x = k + 1 we deduce that Θ1,Θ3 ⊆ 1H . Then t ∈ Θ2 and tx ∈ Θ1 ∪ Θ3 together
imply that Ω\{r} ⊆ 1H . Since r ∈ Supp(x), it follows that H is transitive. Assume, by way of
contradiction, that H is imprimitive, and let B be a non-trivial block system for H .

Let pk be as in Theorem 2.1. We split into two cases. First assume that pk = n− k − 1 and
pk = k − pk + 1. Then n = 3pk and so it follows from Hypothesis 3.4(B) that G = Sn. Let

Y1 =
{
y = c1c2c3c4 ∈ Y : CM(y) = (pk + 1)(pk − 2) | pk · 1

}
.
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ThenY1 6= ∅, and by Lemma 2.15, there exists a block ∆ ∈ B with Θ3 ⊆ ∆, so |∆| > pk. Since
n = 3pk, it follows that |∆| = pk and ∆ = Θ3. Let Γ be the block containing r, so Γy = Γ.
Then Γ is a union of some of the Θi, a contradiction. Therefore for all y ∈ Y1, the group
H = H(y) = 〈x, y〉 is primitive. Furthermore, H contains the Jordan element y(pk+1)(pk−2) and
so H = G.

We may now assume that either

pk 6= k − pk + 1 or pk 6= n− k − 1. (4.2)

Let
Y2 =

{
y = c1c2c3c4 ∈ Y : CM(y) = (k − pk)pk | (n− k − 1)1

}
.

Then Y2 6= ∅.
We first show that there exists ∆ ∈ B with Θ2 ⊆ ∆. If pk 6= n−k−1, then pk - (n−k−1) by

Lemma 2.3, and so this follows from Lemma 2.15. Suppose instead that pk = n−k−1. If there
exist blocks ∆1, . . . ,∆pk ∈ B such that cB2 = (∆1, . . . ,∆pk), then ∆i∩Θ1 = ∅ and ∆i∩Θ4 = ∅
for 1 6 i 6 pk by Lemma 2.13(iii). Since B is non-trivial, it follows that cB3 = (∆1, . . . ,∆pk)
also, and so block size is two. Thus |∆1| = 2. Consider the block Γ containing r. The point r
is fixed by y, so Γy = Γ, but Γ ∩ Θ1 6= ∅ so |Γ| > k − pk + 1 > 2, a contradiction. Hence
Θ2 ⊆ ∆ by Lemma 2.13(ii).

We show next that cB1 = cB3 . From |∆| > pk >
k
2
> n

4
, it follows that |B| = 2 or 3. First

suppose that |B| = 2, and let Γ = Ω\∆. Since ∆y = ∆, it follows that Γy = Γ. If Θ1 ⊆ ∆ or
Θ3 ⊆ ∆, then |∆| > n

2
, and so Θ1 ∪ Θ3 ⊆ Γ. Thus 1, k + 1 ∈ Γ and ΓH = Γ, a contradiction.

We conclude that |B| = 3. If ∆ contains a point of Θ1, then Θ1 ∪ Θ2 ⊆ ∆, a contradiction, so
there exists a block Γ ∈ B\{∆} containing a point of Θ1. Since |Θ1| < |Θ2| 6 |∆|, it follows
that there exists a point b ∈ Γ\Θ1. If b ∈ Θ3, then cB1 = cB3 by Lemma 2.13(i). Hence assume
for a contradiction that b /∈ Θ3. It follows from Γ 6= ∆ that b /∈ Θ2. Hence b = r, so Γy = Γ.
Therefore Γ = Θ1 ∪ {r}, and the third block of B is Σ = Θ3. Since |Σ| = |∆|, it follows that
pk = n− k − 1. However, |Γ| = k − pk + 1, contradicting (4.2).

If there exists a ∈ ∆ such that ax ∈ ∆, then ∆H = ∆, a contradiction. Therefore Θx
2 ⊆

Θ1 ∪Θ3 ∪ {r}. By Theorem 2.1, |Θ2| = pk > 5. Hence there exist s1, s2 ∈ Θ2 such that either
sx1 , s

x
2 are both in Θ1 or both in Θ3. There exists y ∈ Y2 such that sxy1 = sx2 . Hence (∆x)y = ∆x.

Since cB1 = cB3 , it follows that Θ1 ∪ Θ3 ⊆ ∆x. In particular, ∆x contains 1 and k + 1, and so
∆x2

= ∆x = ∆. Hence ∆H = ∆, a contradiction.
Hence for this y the group H = 〈x, y〉 is primitive. If pk 6= n− k− 1, then y(k−pk)(n−k−1) is

a pk-cycle and if pk = n− k− 1, then ypk is a (k− pk)-cycle. Hence in both cases H = G.

We have reduced to the case of either |Ω1 ∩ Supp(x)| = 1 or |Ω2 ∩ Supp(x)| = 1. We first
consider the case where |Ω1 ∩ Supp(x)| = 1.

Lemma 4.6. Let n,G,M and x be as in Hypothesis 3.4(B). If |Supp(x) ∩ Ω1| = 1, then there
exists y ∈M such that 〈x, y〉 = G.

Proof. First assume that x is a Jordan element. It is immediate from Hypothesis 3.4 that there
exists t ∈ Supp(x)\{1, k + 1}, hence t ∈ Ω2. Let s := tx

−1 . (Observe that we only define
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k+ 1, (k+ 1)y, (k+ 1)y
2 to be distinct when |Supp(x)∩Ω2| > 3.) By Lemma 2.9, elements of

Sn composed of two cycles lie in An if and only if G = An, so there exists y = c1c2 ∈ M such
that

CM(y) = k | (n− k),

with (k + 1)y = t, and if s 6= k + 1, then ty = (k + 1)y
2

= s. Let H = 〈x, y〉. Since 1 ∈ Θ1

and k + 1 ∈ Θ2, it follows that H is transitive.
Let B be a non-singleton block system for H , and let ∆ ∈ B with 1 ∈ ∆. It follows, just

as in the proof of Lemma 4.4, that there exists b ∈ (∆ ∩ Θ1)\{1}. Since Θ1 ∩ Supp(x) = {1}
and |∆ ∩ Θ1| > 2, it follows that ∆ contains a point fixed by x, and so ∆x = ∆. Therefore
k + 1 = 1x ∈ ∆ and {1y, (k + 1)y} = {1y, t} ⊆ ∆y. Since 1y is fixed by x, it follows that
(∆y)x

−1
= ∆y, hence s = tx

−1 ∈ ∆y. From ty = s or sy = (k + 1)y = t we deduce that
∆y2 = ∆y = ∆, and so ∆ = ∆H = Ω. Therefore H is primitive. Furthermore, H contains the
Jordan element x, so H = G.

Hence we may assume that x is not a Jordan element, and so |Supp(x)| > 2(
√
n − 1). By

Lemma 3.6, the result holds when n− k 6 10, and so we may assume that n− k > 10. Putting
these two observations together, there exists a prime p(2) as in Lemma 2.5. Furthermore, since
the result holds when x is a Jordan element, by Lemma 3.7 we may assume that |Supp(x)| > 8
and C(x) 6= 1(n−8) · 2 · 32, 1(n−8) · 3 · 5 or 1(n−9) · 33. Hence let r, s, t be as in Lemma 2.10(i).

If p(2) - (n− k − 1), then let i = 1, otherwise let i = 2. Since p(2) 6 n− k − 4, it follows
that n− k − p(2) − i > 2. In addition, since n− k > 11, it follows that n− k − i > 9. Hence
either p(2) > 5 or n− k− p(2)− i > 5. By Lemma 2.9, elements of Sn composed of four cycles
lie in An if and only if G = An, so there exists y = c1c2c3c4 ∈M such that

CM(y) = k | p(2)(n− k − p(2) − i)i,

with r, t, tx ∈ Θ2, k + 1, rx ∈ Θ3, sx ∈ Θ4, s ∈ Θ2 if p(2) > 5, and s ∈ Θ3 otherwise. Let
H = 〈x, y〉. It is easy to see that H is transitive.

Let B be a non-singleton block system for H . By Lemma 2.15, there exists ∆ ∈ B such that
Θ2 ⊆ ∆. Hence ∆y = ∆. In addition, ∆ contains {t, tx}, so ∆H = ∆ = Ω. Hence H is a
primitive group containing the Jordan element yk(n−k−p(2)−i)i, and so H = G.

It remains to consider |Supp(x) ∩ Ω2| = 1. We first suppose that x is a Jordan element.

Lemma 4.7. Let G,M, n and x be as in Hypothesis 3.4(B). If |Supp(x) ∩ Ω2| = 1 and x is a
Jordan element, then there exists y ∈M such that 〈x, y〉 = G.

Proof. It is immediate from Hypothesis 3.4 that there exists t ∈ Supp(x)\{1, k + 1}. Our
assumptions that |Supp(x) ∩ Ω2| = 1 and 1x = k + 1 imply that t, tx ∈ Ω1.

By Lemma 2.9, elements of Sn composed of two cycles lie in An if and only if G = An, so
there exists y = c1c2 ∈M such that

CM(y) = k | (n− k),

with 1y = t, and ty = tx if tx 6= 1. It is clear that H = 〈x, y〉 is transitive.
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We assume, by way of contradiction, that H is imprimitive, and let B be a non-singleton
block system for H . Let ∆ ∈ B be the block containing k + 1. If n− k = 1, then ∆y = ∆, and
so for a ∈ ∆\{k + 1} we find that aY ∪ {k + 1} = Ω = ∆, and so H is primitive. Hence we
assume now that n− k > 2.

We claim that 1 ∈ ∆. To see this, let Γ ∈ B be the block containing 1. If Γ ∩ Fix(x) 6= ∅,
then k + 1 = 1x ∈ Γ, hence Γ = ∆. Similarly, if ∆∩ Fix(x) 6= ∅, then ∆ = Γ. Hence we may
assume that ∆,Γ ⊆ Supp(x). Since |Ω2 ∩ Supp(x)| = 1, it follows that ∆ and Γ both contain
points of Θ1. Since ∆ contains a point of Θ2, we deduce from Lemma 2.13(i) that cB1 = cB2 .
However |Ω2 ∩ Supp(x)| = 1, so ∆ = Γ and 1 ∈ ∆.

Notice that the block ∆y contains 1y = t and (k + 1)y ∈ Fix(x). Hence (∆y)x = ∆y and in
particular ∆y contains both t and tx. If tx = 1, then ∆y = ∆. If tx 6= 1, then {t, tx} = {t, ty} ⊆
∆y = ∆y2 = ∆. Therefore in both cases ∆ = ∆H = Ω. Hence H is primitive and contains the
Jordan element x, and so H = G.

Finally, we generalise to the case |Supp(x) ∩ Ω2| = 1.

Lemma 4.8. Let n,G,M and x be as in Hypothesis 3.4(B). If |Supp(x) ∩ Ω2| = 1, then there
exists y ∈M such that 〈x, y〉 = G.

Proof. First assume that k > 10, so there exists a prime p(1) as in Lemma 2.4. If x is a Jor-
dan element, then the result holds by Lemma 4.7. Hence by Lemma 3.7 the result holds if
|Supp(x)| < 8 or C(x) = 1(n−8) · 2 · 32, 1(n−8) · 3 · 5 or 1(n−9) · 33, so assume otherwise. Thus
there exist r, s, t ∈ Supp(x) as in Lemma 2.10(i).

Let i = 1 if p(1) - (k − 1) and i = 2 otherwise. Then k − i − p(1) > 3. By Lemma
2.9, elements of Sn composed of four cycles lie in An if and only if G = An, so there exists
y = c1c2c3c4 ∈M such that

CM(y) = (k − i− p(1))p(1)i | (n− k),

with 1, r, s ∈ Θ1, r
x, t, tx ∈ Θ2 and sx ∈ Θ3. Let H = 〈x, y〉. Then it is easy to check that H

is transitive.
Let B be a non-singleton block system for H . By Lemma 2.15, there exists ∆ ∈ B such that

Θ2 ⊆ ∆, hence ∆y = ∆. In addition, t, tx ∈ ∆, and so ∆x = ∆ = Ω, and henceH is primitive.
Furthermore, H contains the p(1)-cycle y(k−i−p(1))i(n−k) and so H = G.

Now suppose that k 6 9. It is immediate from Hypothesis 3.4 that 7 6 k 6 9 and so
12 6 n 6 17. From |Supp(x) ∩ Ω2| = 1, it follows that |Supp(x)| 6 k + 1 6 10. In Magma,
for each x we find a random element of y ∈ M and construct H(y) = 〈x, y〉. By repeating this
sufficiently many times we find y ∈M such that H(y) = G.

Lemma 4.9. Let n,G,M and x be as in Hypothesis 3.4(B). Then there exists y ∈ M such that
〈x, y〉 = G.

Proof. If |Supp(x) ∩ Ω1| = 1 or |Supp(x) ∩ Ω2| = 1, then the result holds by Lemma 4.6 and
4.8, respectively. Otherwise, |Supp(x) ∩ Ωi| > 2 for i ∈ {1, 2}, so the result holds by Lemma
4.5.



combinatorial theory 2 (1) (2022), #7 17

4.3. Completing the proof of Theorems 1.1 and 1.2

In Lemmas 4.3 and 4.9 we prove that if n > 12 and x ∈ G\M is not a transposition, then there
exists y ∈ M such that 〈x, y〉 = G. Here we show that if x ∈ G\M is a transposition, then
there exists y ∈ M such that 〈x, y〉 = G if and only if gcd(n, k) = 1, completing the proof of
Theorem 1.1. We also complete the proof of Theorem 1.2.

Theorem 4.10. Let n, k,G = Sn and M be as in Notation 3.1, and let x ∈ G\M be a transpo-
sition. Then there exists y ∈M such that 〈x, y〉 = G if and only if gcd(n, k) = 1.

Proof. By Proposition 3.3, it suffices to consider x = (1, k + 1).
First assume that gcd(n, k) = 1. Let y ∈M with CM(y) = k | (n− k), and let H = 〈x, y〉.

It is clear that H is transitive. Let B be a non-singleton block system for H , let ∆ ∈ B with
1 ∈ ∆, and let a ∈ ∆\{1}. If a ∈ Ω1, then ax = a and so ∆x = ∆. Hence k + 1 = 1x ∈ ∆.
Therefore, without loss of generality, a ∈ Ω2. Thus ay(n−k)

= a, and so ∆y(n−k)
= ∆. Therefore

1〈y
(n−k)〉 ⊆ ∆. It follows from gcd(n, k) = 1 that 1〈y

(n−k)〉 = Ω1. Hence |∆| > k + 1 > n
2
, so

∆ = Ω. Hence H is primitive, and contains the Jordan element x. Since x ∈ Sn\An, it follows
that H = Sn.

Next assume that gcd(n, k) = t > 1. Let y ∈ M be such that 〈x, y〉 is transitive. Then
CM(y) = k | (n−k). We claim that the set of translates of ∆ = 1〈y

t〉∪ (k+ 1)〈y
t〉 form a proper

non-trivial block system for 〈x, y〉, so that 〈x, y〉 6= Sn. To see this, notice that |∆| = n/t > 1.
Also, note that

⋃̇t−1

i=0∆yi = Ω and x fixes setwise ∆yi for 0 6 i 6 t− 1.

Proof of Theorem 1.1. The subgroup M is a maximal coclique in Γ(G) if and only if for all
x ∈ G\M there exists y ∈ M such that 〈x, y〉 = G, so let x ∈ G\M . Then by Proposition 3.3
we may assume without loss of generality that 1x = k + 1.

If n 6 11, then the result holds by Lemma 3.2, so assume that n > 12. If Hypothesis 3.4(A)
holds, then the result follows from Lemma 4.3, and if Hypothesis 3.4(B) holds, then the result
follows from Lemma 4.9. If neither part of Hypothesis 3.4 holds, then x = (1, k + 1), so the
result follows from Theorem 4.10.

Proof of Theorem 1.2. Parts (i)(b), (ii)(a) and (ii)(b) follow immediately from Lemma 3.2. It
remains to prove (i)(a). Hence let G = Sn and M = Sk × Sn−k with gcd(n, k) > 1. We show
that the unique maximal coclique of Γ(G) containing M is

(
M ∪ (1, k + 1)M

)
\ {1}.

Let C be a maximal coclique in Γ(G) containing M . Theorem 1.1 proves that C 6= M\{1}.
Lemmas 4.3 and 4.9 show that if x ∈ G\M is not a transposition, then x /∈ C. Hence

M\{1} ( C ⊆
(
M ∪ (1, k + 1)M

)
\{1}.

By Theorem 4.10, for all y,m ∈ M , the group 〈y, (1, k + 1)m〉 is not equal to G. For n > 3
no two transpositions generate G so

(
M ∪ (1, k + 1)M

)
\{1} ⊆ C. Therefore the coclique C is

equal to
(
M ∪ (1, k + 1)M

)
\{1}, as required.
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5. Proof of Theorem 1.4

The methods here are different to those in Section 3, because there are relatively few maximal
subgroups of Sp and Ap and these have been classified. We first consider an exceptional case.
See [?] for the code used in the proof of the following.

Lemma 5.1. The group M23 is a maximal coclique in A23.

Proof. Let G = A23. A quick calculation in Magma shows that the only transitive maximal
subgroups of G are two conjugacy classes of groups isomorphic to M23, which we denote A
and B. SinceA and B are conjugate in S23 it suffices to consider M ∈ A. Recall that the Sylow
23-subgroups of A23 are cyclic and transitive.

First suppose that the order of x is at least 4. We claim that there exists Z ∈ Syl23(M)
such that 〈x, Z〉 = G. By calculating the permutation character of A23 on the cosets of M23 in
Magma, we see that x lies in at most 4608 groups B ∈ B, and each element of order 23 lies in
exactly one A ∈ A and exactly one B ∈ B. Let Z ∈ Syl23(M), since M ∈ A it follows from
[?], that NM(Z) = NG(Z) and NM(Z) 6max M . Hence |Syl23(M)| = [M : NM(Z)] = 40320,
and so there are 40320 − 4608 = 35712 possibilities for Z ∈ Syl23(M) such that H := 〈x, Z〉
is contained in no B ∈ B. Since x /∈ M , and M is the unique subgroup of A containing Z, it
follows that H = G.

Now suppose that x has order 2 or 3 and let Z ∈ Syl23(M). By the previous case, M is the
unique group of A containing Z and there exists a unique B ∈ B with Z 6 B. Therefore if
x /∈ B then 〈x, Z〉 = G. Hence suppose that x ∈ B and proceed using Magma. Let M be the
representative of one conjugacy class of M23 in G, and let B0 be the representative of the other.
Then B can by found by conjugating B0 by the element of S23 which conjugates a subgroup of
Syl23(B0) to Z. It is then possible to check that for each element x ∈ B\M of order 2 or 3,
there exists y ∈M such that 〈x, y〉 = G.

The following theorem enables us to classify the maximal subgroups of Sp and Ap.

Theorem 5.2 ([?, p.99]). A transitive group of prime degree p is one of the following:

(i) the symmetric group Sp or the alternating group Ap;

(ii) a subgroup of AGL1(p);

(iii) a permutation representation of PSL2(11) of degree 11;

(iv) one of the Mathieu groups M11 or M23 of degree 11 or 23, respectively;

(v) a group G with PSLd(q) 6 G 6 PΓLd(q) of degree p = qd−1
q−1

.

In the following lemma we collect some standard facts about AGL1(p).

Lemma 5.3. Let G = Sp and M = AGL1(p) 6 G.

(i) The group M is sharply 2-transitive.
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(ii) M has a unique Sylow p-subgroup, P = 〈z〉, and M = NG(P ) ∼= Cp : Cp−1.

(iii) The elements of M are p-cycles or powers of (p− 1)-cycles.

(iv) If y1, y2 ∈M are (p− 1)-cycles such that 〈y1〉 6= 〈y2〉, then M = 〈y1, y2〉.

We now have the tools required to prove Theorem 1.4.

Proof of Theorem 1.4. Since p is prime, for all k with p > k > p
2
, it follows that gcd(k, p−k) =

1. If G = Sp, then by Theorem 1.1 each intransitive maximal subgroup is a maximal coclique.
If G = Ap, then for p 6= 5 each intransitive maximal subgroup is a maximal coclique, and if
p = 5, then (S4 × S1) ∩ A5 is a maximal coclique but (S2 × S3) ∩ A5 is not.

If p = 11 or 23 and G = Ap, then the transitive maximal subgroups are the respective
Mathieu groups. If p = 11, then the result follows from a straightforward Magma calculation
(see [?]), similar to the one described in the proof of Lemma 3.2. The result for p = 23 follows
from Lemma 5.1. Hence assume from now on that if G = Ap, then p 6= 11, 23.

Let G = Sp, let M = Ap and let x ∈ G\M . Let y ∈ M be a p-cycle such that y is not
normalized by x. Then 〈x, y〉 is a transitive subgroup and lies in no conjugate of AGL1(p) ∩G
by Lemma 5.3(ii). Hence Ap 6 〈x, y〉 = G, and so M is a maximal coclique.

By Theorem 5.2 the only remaining case is M = AGL1(p) ∩G. First consider together the
cases G = Ap, or G = Sp and x /∈ M is an odd permutation. Let y ∈ M be a p-cycle, so H =
〈x, y〉 is transitive. By Lemma 5.3(ii), y is contained in no other conjugate of M = NG(〈y〉).
Since x /∈M , it follows that H 6= M , and so H = G.

Assume instead that G = Sp and x /∈ M is an even permutation. First let x be of order p.
Let y1, y2 ∈ M be (p − 1)-cycles with 〈y1〉 6= 〈y2〉. Then H1 = 〈x, y1〉 and H2 = 〈x, y2〉 are
transitive subgroups of G. Note that y1, y2 ∈ G\Ap, and so H1 and H2 either conjugate to M ,
or equal toG. In the latter case the result holds, so assume that bothH1 andH2 are conjugate to
M . Since x ∈ H1 ∩H2 and NG(〈x〉) is the unique conjugate of M containing x, it immediately
follows that H1 = NG(〈x〉) = H2, a contradiction since M 6 〈y1, y2〉.

Assume next that x lies in no conjugate of M . Let t ∈ Supp(x) and let y be a (p− 1)-cycle
of M fixing t. Then 〈x, y〉 is transitive and contained in no conjugate of M , and so 〈x, y〉 = G.

Finally assume that x is an even permutation, not a p-cycle and lies in some conjugate ofM .
By Lemma 5.3(iii), x is a proper power of a (p− 1)-cycle. We claim there exists a (p− 1)-cycle
y in M , and z ∈ 〈y〉, such that H = 〈x, y〉 is transitive and 1 < Fix(z−1x) < p. Since, by
Lemma 5.3(i), each non-identity element of M has at most one fixed point it will follow that H
lies in no conjugate of M , and so H = G.

It remains to prove the claim. Since x is a proper power of a (p − 1)-cycle, x has one fixed
point which we shall call f . Let Mf denote the point stabilizer of f in M , and P denote the
cyclic p-subgroup of M .

Since p > 5, there exist a, b ∈ Supp(x) with a 6= b. By sharp 2-transitivity there exists an
element y1 in M such that ay1 = ax and by1 = bx. If y1 /∈ Mf ∪ P , then y1 lies in a cyclic
subgroup 〈y〉 of order (p − 1) and H = 〈x, y〉 is transitive. In addition a, b ∈ Fix(y−1

1 x), as
claimed.
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Suppose instead that y1 ∈ Mf ∪ P . Since y1 6= x and p > 5, there exists c ∈ Supp(x) with
c 6= a, b such that cy1 6= cx. By sharp 2-transitivity, there exists y2 ∈ M such that ay2 = ax and
cy2 = cx. If y2 /∈Mf ∪ P , then the result follows as for y1 with a, c ∈ Fix(y−1

2 x).
Suppose that y1, y2 ∈ Mf ∪ P . It follows from cy1 6= cy2 that y1 6= y2. Therefore because

ay1 = ay2 , by sharp 2-transitivity, it follows that by2 6= by1 = bx. There is a unique element of
Mf , and a unique element of P , sending a to ax. Let Y1 and Y2 be the maximal cyclic subgroups
containing y1 and y2. Then Y1 ∪ Y2 = Mf ∪ P .

Since M is sharply 2-transitive, there exists y3 ∈ M such that by3 = bx and cy3 = cx. Since
y1 is the unique element of Y1 sending b to bx, and cy1 6= cy3 , it follows that y3 /∈ Y1. Since
y2 is the unique element of Y2 sending c to cx and by2 6= by3 , it follows that y3 /∈ Y2. Hence
y3 /∈ Y1 ∪ Y2 = Mf ∪ P . Thus let y ∈ M be a (p− 1)-cycle such that yt = y3 for some t ∈ N.
Then y satisfies the claim with b, c ∈ Fix(y−tx) = Fix(y−1

3 x). Therefore the claim and the
theorem follow.
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