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Fisher zeros and persistent temporal oscillations in nonunitary quantum circuits
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We present a quantum circuit with measurements and postselection that exhibits a panoply of space- and/or
time-ordered phases from ferromagnetic order to spin-density waves to time crystals. Unlike the time crystals
that have been found in unitary models, those that occur here are incommensurate with the drive frequency.
The period of the incommensurate time-crystal phase may be tuned by adjusting the circuit parameters. We
demonstrate that the phases of our quantum circuit, including the inherently nonequilibrium dynamical ones,
correspond to complex-temperature equilibrium phases of the exactly solvable square-lattice anisotropic Ising
model.
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I. INTRODUCTION

For a many-body quantum system with Hamiltonian opera-
tor Ĥ , there is an evident formal similarity between the unitary
time-evolution operator, e−iĤt/h̄, and the density operator for
a thermal equilibrium state, e−βĤ . Since the 1950s this has
led to very fruitful cross-fertilization between the theory of
quantum dynamics and the equilibrium statistical mechanics
of quantum systems. Perhaps the most influential of these is
Matsubara formalism [1], where the thermal density operator
is regarded as an evolution operator in imaginary time; this
allows many of the tools of diagrammatic perturbation theory
to be copied more or less directly from the statistical to the
dynamical case.

In recent decades, the development of the theory of open
quantum systems has led to a broadening of interest on the
dynamical side of dynamical-statistical correspondence, since
interactions between the quantum system of interest and its
environment generically induce (effectively) nonunitary evo-
lution. The quantum circuits in which we shall be mainly
interested here exhibit many-body mixed dynamics, with uni-
tary evolution interrupted by projection operations meant to
model measurements by a classical environment. Crucially,
the many-body system is allowed to continue evolving after
such measurements and displays a host of novel phenomena
due to the tunable interplay of nonunitary measurements and
the intrinsic unitary dynamics [2–20].
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There have been parallel broadenings of interest on the sta-
tistical side. Starting from the early 1950s, Lee, Yang, Fisher,
and others [21–24] pioneered the extension of conventional
statistical mechanics to the case where the coupling constants
in the Hamiltonian, or even the inverse temperature β itself,
are considered to be complex quantities. This opens up the
possibility of points in the complex β plane where the parti-
tion function vanishes, something that is not possible for real
temperature. For simple models, such as the isotropic zero-
field Ising model on the square lattice, these “Fisher zeros”
occur on contours in the complex β plane that cut the real β

axis at positions corresponding to the critical temperatures of
phase transitions in the model. If the density of zeros vanishes
as the real β axis is approached, the transition is continuous;
if the density remains finite, the transition is first order.

Complex-coupling approaches to statistical mechanics
have tended to be seen as an essentially formal tool. In light
of recent progress in understanding the rich phase structure
of nonunitary circuits such as those under continuous mea-
surement, it is timely to revisit canonical statistical mechanics
models at complex temperature considered as descriptions of
nonunitary evolution. This is the perspective we adopt here.
Classical measurements generically introduce randomness in
discrete space time. By contrast, the canonical Ising model is
disorder-free. The correspondence that we shall demonstrate
therefore requires postselection of measurement outcomes
[25–29], i.e., only certain outcomes are allowed to continue
evolving and contribute to the eventual disorder-free ensemble
of trajectories. Some of the features of the statistical side of
our correspondence were anticipated in prior work by some
of us [30], demonstrating the existence of long-range incom-
mensurately modulated correlations underlying Fisher zeros
in the thermodynamics of Ising ladders.

We shall show that the dynamics of the corresponding M-
qubit circuits exhibit long-range correlations that coalesce, in
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FIG. 1. Phase diagram showing the various spatially and/or tem-
porally ordered phases of our quantum circuit, or—equivalently—the
spatially ordered phases of the anisotropic 2D Ising model with
couplings Jx = 1, Jy = 0.1, and a complex inverse temperature β.
PM: Short-range order in both space and time. FM: Uniform long-
range order in both space and time. NFM1 (non-FM 1): Modulated
quasi-long-range order in time (“algebraic time crystal”). NFM2
(non-FM 2): modulated quasi-long-range order in space. The color
scheme is used to indicate the evolution of period of oscillations.
The oscillations in NFM1 are “temporal,’ i.e., along the x axis, with
frequency evolving from π/2 (red color, near tanh β = i, the Floquet
Ising unitary point, as expected from Sec. II B) to 0 (blue). NFM2
exhibits “spatial” oscillations, i.e., along the y axis (refer to Table I).

the M → ∞ limit, into extended ordered regions (see Fig. 1).
These can be interpreted as phases of the anisotropic 2D
Ising model at complex temperature. They include not only
relatively conventional short-range ordered “paramagnetic”
(PM) phases and long-range-ordered ferromagnetic (FM) and
anti-FM phases but also somewhat peculiar incommensurate
critical phases. These latter phases exhibit spatially and/or
temporally modulated correlators with a dynamically deter-
mined modulation period untethered from the underlying
lattice. At least one of these latter phases bears a phenomeno-
logical resemblance to the time crystals recently discussed
in the context of unitary dynamics of isolated many-body
localized systems [31]. However, it does not fit into the classi-
fication presented in that work, since the circuits we consider
are nonunitary, and the no-go theorems [32] forbidding time-
crystalline order consequently do not apply.

Before turning to our results, we briefly discuss some
connections to superficially similar questions discussed in
previous literature. Temporally modulated phases in open
quantum systems (i.e., limit cycles) have been shown to exist
in more than two spatial dimensions [33,34]. The nonunitary
quantum circuits we consider can be regarded as Trotterized
non-Hermitian Hamiltonians, which have been extensively
explored [25–27,35]. Unlike these works, we keep the Trotter
“time step” finite, so the models we consider are two-
dimensional (2D) statistical mechanics models with a transfer
matrix that may be contracted either sideways or from top to
bottom. In addition, many-body entanglement properties have

FIG. 2. Sketch of the quantum circuit defined in Eq. (1).

been computed by contracting transfer matrices sideways in
a series of recent works [36–45], but primarily in contexts
where the dynamics is unitary along one or both directions.
In particular, Refs. [38,43,46] have proposed experimental
protocols to study the non-Hermitian dynamics of large sys-
tems using space-time duality. On the statistical mechanics
side, Ref. [47] used tensor-network methods similar to those
we use here [48] to characterize the thermodynamics of the
Yang-Lee model. The present work applies tools from the
complex-temperature statistical mechanics literature [47,48]
to discuss the unexplored physics of spatiotemporal corre-
lations in nonunitary quantum circuits. So far these circuits
have primarily been studied for their entanglement properties;
we demonstrate here that even their conventional correlation
functions can exhibit striking phenomena that would be for-
bidden by unitarity (in closed systems) or by dimensionality
(in open systems [33,34]).

The remainder of the paper is organized as follows.
In Sec. II we define our quantum circuit by explicitly
constructing the local gates necessary to reproduce the
complex-temperature statistical mechanics of the Ising model.
We also discuss observables of interest, both “thermody-
namic” quantities and two-point correlation functions, and
construct the transfer matrices that govern the complex-
temperature statistical mechanics of interest. In Sec. III we
study the anisotropic complex-temperature Ising model ana-
lytically using fermionization and also numerically using a
tensor-network coarse-graining scheme. The fermionization
treatment is restricted to the case without an externally ap-
plied magnetic field, but the tensor-network coarse-graining
approach allows us to identify additional metamagnetic tran-
sitions as a function of field strength. We conclude with a
summary and a discussion of open problems.

II. QUANTUM CIRCUITS, OBSERVABLES,
AND TRANSFER MATRICES

A. Quantum circuit formalism

A quantum circuit consists of a set of qubits, which we may
label {1, . . . , M}, successively subjected to operations in the
form of quantum gates. In the scenario investigated here, the
qubits are Ising spins and the gates are of two types: Two-qubit
gates Wm,m+1 = exp(JZmZm+1) and single-qubit gates Vm =
A exp(γ Xm), where {Xm,Ym, Zm} are the Pauli spin matrices
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for qubit m (see Fig. 2). Defining

W = W1,2 · · ·WM−1,M = exp

(
J

M−1∑
m=1

Zm ⊗ Zm+1

)

V = V1V2 · · ·VM = AM exp

(
γ

M∑
m=1

Xm

)
, (1)

the single-step evolution operator T for each temporal slice
of the circuit is T = VW , and the evolution operator for the
full circuit is T L, where L is the total number of temporal
slices. Note that our qubits are arranged in a finite chain viz.
the operator W , rather than a ring with periodic boundary
conditions. This is a common context for models of quantum
circuits; what is new here is that the parameters J , γ , and A
are all allowed to be complex; hence the individual quantum
gates are not in general unitary. Acting on a density matrix ρ j ,
the result of each temporal slice of the circuit is the update
ρ j+1 = T ρ jT †. Requiring that Tr ρ j be preserved then im-
poses a relationship among the complex parameters {J, γ , A}.

B. Single-qubit transfer matrix

At each site, our single-qubit transfer matrix V is a prod-
uct of a unitary U = exp(iωd̂ · σ) and a POVM (positive
operator-valued measure),

P(n̂, φ | α) = 1√
2
(cos φ 1 + α sin φ n̂ · σ ), (2)

where both d̂ and n̂ are unit vectors on S2 and where α =
±1 is the specified measurement outcome. The fact that∑

α P†(n̂, φ | α) P(n̂, φ | α) = 1 is what makes P(n̂, φ | α) a
POVM; the fact that there is one such operator for each
measurement outcome α means that the measurement is “effi-
cient.” We choose d̂ = n̂ = x̂, and we write

V (α) = eiωX · 1√
2

(
cos φ 1 + α sin φ X

) ≡ A eαγ X , (3)

where A = √
cos(2φ)/2 and

Re γ = tanh−1 tan φ, Im γ = ω. (4)

We define the operator

V (α1, . . . , αM ) ≡ V1(α1) · · ·VM (αM ). (5)

Below we shall postselect αm = 1 for all sites; hence

V ≡ V (1, 1, . . . , 1) = AM exp

(
γ

M∑
m=1

Xm

)
. (6)

The single-site transfer matrix V = A exp(γ X ) is iden-
tical to that of the 1D classical Ising model H =
−Jx

∑L
j=1 σ jσ j+1 :

Vσσ ′ = eβJxσσ ′ = eβJx (1 + e−2βJx X )σσ ′, (7)

with

tanh γ = e−2βJx , (8)

A =
√

coth γ − tanh γ . (9)

Throughout the remainder of this paper we shall set Jx ≡ 1.
Assuming periodicity in this (temporal) direction, the classical

partition function is ZL(β ) = TrV L = coshLβ + sinhLβ and
the condition ZL(β ) = 0 requires tanh β = e(2
+1)π i/L, occur-
ring at L equally spaced values 
 ∈ {0, . . . , L − 1} around the
circle | tanh β| = 1 in the complex tanh β plane, as noted by
Beichert et al. [30]. Interleaved with these Fisher zeros are L
points tanh β = e2π i
/L where the correlation function,

C(r; β ) = 〈σ jσ j+r〉 = Tr (Z V rZ V L−r )

= tanhrβ + tanhL−rβ

1 + tanhLβ
,

(10)

is long ranged, with C(r, β ) = cos(2π
r/L) (restricting 0 �
r � L), corresponding to a wave-vector q = arg tanh β =
2π
/L. In the thermodynamic limit L → ∞, the Fisher zeros
coalesce into a branch cut along the unit circle, with the free
energy exhibiting a simple first-order-like cusp nonanalyticity
across the cut.

Along the contour of Fisher zeros tanh β = eiθ , with θ real.
It follows that e−2β = tanh γ = −i tan(θ/2). Thus the entire
unit circle in the complex tanh β plane corresponds to simple
unitary stroboscopic precession, i.e., coherent spin-flipping.
The value θ = 0 corresponds to a perfectly static spin with no
flipping and perfect persistence, analogous to the FM ground
state of the corresponding statistical mechanics problem. The
value θ = π corresponds to a complete spin flip with no iden-
tity component and no persistence, analogous to the anti-FM
ground state.

Values of tanh β that do not lie on the unit circle are
associated with circuits that include measurement. Such
circuits in the single-qubit case generically exhibit exponen-
tially decaying temporal correlations, just as the analogous
complex-temperature Ising models exhibit exponentially de-
caying spatial correlations. However, as we shall see, the
multiqubit case is richer: When M > 1 we shall find
“decoherence-free subspaces” along lines in the complex-
temperature plane, though fully unitary evolution occurs only
at isolated points.

C. Two-qubit transfer matrix

As noted above, our single-step evolution operator is a
product of single-qubit and two-qubit terms. For M > 1 we
introduce the two-qubit transfer matrix Wm,m+1, which can be
expressed as conditioning a symplectic operation exp(ηJZm)
on the POVM Pm+1(ẑ, π

4 |η), where η = ±1, for each qubit
m ∈ {1, . . . , L − 1}. Explicitly, we have

Wm,m+1 ≡ eJZm ⊗ Pm+1

(
ẑ, π

4 |1) + e−JZm ⊗ Pm+1

(
ẑ, π

4 | − 1
)

= exp(JZm ⊗ Zm+1), (11)

and W ≡ ∏M−1
m=1 Wm,m+1 as given in Eq. (1). The connection

to the 2D statistical mechanics is made by identifying J with
coupling along y,

J = βJy. (12)

D. Mapping to complex-temperature statistical mechanics

The correspondence between statistical mechanics in d + 1
dimensions and quantum mechanics in d dimensions is well
known [49]. Traditionally it requires fine tuning to a critical
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point of some sort (the so-called τ -continuum limit) to enable
passing to continuum time where the correspondence is most
powerful. More generally, however, the correspondence is to
a discrete-time “kicked” quantum evolution of the type exhib-
ited by our quantum circuit.

By construction, the one-step evolution operator of our
quantum circuit resembles the transfer matrix of a statisti-
cal mechanical system; specifically, an anisotropic 2D Ising
model. That model is characterized by its couplings in the x
and y directions, Jx and Jy, respectively, and by its inverse
temperature, β. These are functions of the quantum circuit
parameters {J, γ , A}—see Eqs. (8), (9), and (12). In what
follows, we shall consider the subspace of circuit parameters
for which the inverse temperature β is complex while the
coupling constants Jx and Jy are real. From the point of view of
the quantum circuit, there is no particular reason why Jx and
Jy should be real. However, this choice keeps the parameter
space manageable, as well as including the case where β, Jx,
and Jy are all real, i.e., the usual real-temperature statistical
mechanics of the anisotropic 2D Ising model.

One important question is which direction in our 2D sta-
tistical model will be identified as the time direction in the
quantum circuit. In isotropic models one typically chooses a
diagonal direction; here, by contrast, we choose the x axis of
our 2D anisotropic Ising model—the one with the stronger
coupling (Jx > Jy)—to correspond to the time direction of our
quantum circuit.

E. The M-qubit transfer matrix

For complex {J, γ , A}, the transfer matrix T = VW , which
is of dimension 2M × 2M , is in general not normal, i.e., it does
not in general commute with its Hermitian conjugate. Nev-
ertheless, any non-normal complex matrix V can be brought
to Jordan canonical form by a similarity transformation T ′ =
R−1T R, where R is invertible. If we assume there are no
Jordan blocks, then T may be decomposed in terms of its
eigenvalues and its left and right eigenvectors, viz.

T =
2M−1∑
a=0

λa || Ra 〉〉〈〈 La ||, (13)

where 〈〈 La || Rb 〉〉 = δab and where there is no complex conju-
gation implied in the bra vector 〈〈 La || with a doubled bracket.
The eigenvalues {λa} are in general complex. If we order the
eigenvalues such that |λa| > |λa+1| for all a, then assuming
the largest eigenvalue λ0 is nondegenerate, after a sufficiently
large number of iterations s we have

T s = λs
0 ||R0〉〉〈〈L0|| + O(|λ1/λ0|s). (14)

It is convenient here and henceforth to implement a similar-
ity transformation and redefine T ≡ V1/2 W V1/2, which is
manifestly symmetric: T = T �. The corresponding right and
left eigenvectors of T are then mutual transposes, with no
complex conjugation, which we write as || �a 〉〉 and 〈〈�a ||,
respectively.

We consider two natural correlation functions which may
be used to characterize the properties of the circuit. The first

is the quantum two-time correlator,

C(s; i, j) = Tr [ZiT sZ j ρ0 (T †)s]

Tr [T s ρ0 (T †)s].
(15)

With ρ0 = 1, we have

C(s; i, j) = 〈〈�∗
0 || Zi || �0 〉〉〈〈�0 || Zj || �∗

0 〉〉
|〈〈�∗

0 || �0 〉〉|2

+ 2Re

{(
λ1

λ0

)s 〈〈�∗
0 || Zi || �1 〉〉〈〈�1 || Zj || �∗

0 〉〉
|〈〈�∗

0 || �0 〉〉|2
}

+ . . . (16)

The second is the statistical correlator,

CL(s; i, j) = Tr [ZiT sZ jT L−s]

Tr [T L]

= 〈〈�0 || Zi || �0 〉〉〈〈�0 || Zj || �0 〉〉

+
(

λ1

λ0

)s

〈〈�0 || Zi || �1 〉〉〈〈�1 || Zj || �0 〉〉

+
(

λ1

λ0

)L−s

〈〈�1 || Zi || �0 〉〉〈〈�0 || Zj || �1 〉〉

+ . . . . (17)

Let X = ∏M
j=1 Xj . Since [T ,X ] = 0, assuming || �0 〉〉 is

nondegenerate, X || �0 〉〉 = ± || �0 〉〉. Then

〈〈�0 || Zj || �0 〉〉 = 〈〈�0 ||XZjX || �0 〉〉 = −〈〈�0 || Zj || �0 〉〉
(18)

and thus the s-independent terms in the above two correlators
both vanish. We then have that both C(s; i, j) and CL(s; i, j)
decay exponentially in the time direction with a correlation
time τ = 1/ ln |λ0/λ1| and a frequency ω = arg(λ1/λ0) which
is generally incommensurate (i.e., irrational). When the spec-
tral gap collapses, both correlation functions become long
ranged.

At short times we do not expect them to agree, e.g., for uni-
tary circuits, quantum correlators obey rigid Lieb-Robinson
bounds with strictly vanishing correlators outside the light
cone, while statistical correlators are small but finite for space-
like separations at short times.

It will also be useful to extend some of our expressions
from real-temperature thermodynamics to complex inverse
temperature, β. We examine the modulus the partition func-
tion and define the free-energy density accordingly f ≡
log |Z|/MLβ, where M × L is the total number of spins, fol-
lowed by the internal energy density and the specific heat
capacity,

u ≡
∣∣∣∣∂ f

∂β

∣∣∣∣, c ≡
∣∣∣∣ ∂u

∂β

∣∣∣∣. (19)

We typically plot our results not in the complex β plane but
rather in the complex tanh β plane, which we shall refer to
simply as the “complex temperature plane.”
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III. LARGE-M LIMIT: THE ANISOTROPIC
2D ISING MODEL

In this section we consider our quantum circuit in the limit
of a large number of qubits, M 
 1. In the M → ∞ limit,
the dynamical correlation functions of the circuit may be
written in terms of the statistical correlations of an anisotropic
2D Ising model at complex temperature. We analyze this
model using three complementary methods: Analytic con-
tinuation of the Onsager solution, numerical evaluation of a
tensor-network representation of the partition and correlation
functions, and exact fermionization of the zero-field problem
using the Jordan-Wigner transformation.

A. Thermodynamics from the Onsager solution

In the isotropic Ising model, the zeros of the partition
function lie on linear contours in the complex-temperature
plane. In such a case, provided that the linear density of zeros
reaches a finite value in the thermodynamic limit, we expect a
simple slope discontinuity in the free energy, as already noted
by Fisher [50]. The anisotropic Ising model was examined
similarly [51]; however, in that case we observe a far more
complicated situation with patterns of zeros that appear to
occupy extended regions in the complex-temperature plane.
This makes the expected behavior of the free energy less clear.

We note at this point that Fisher’s observation and the
majority of others that have followed it are in fact based on
a portion of Onsager’s result; as demonstrated in Appendix A,
it is manifestly incorrect for the case of finite-width Ising
ladders (corresponding to circuits with a finite number of
qubits). Nevertheless, one might anticipate that the approxi-
mation remains asymptotically exact for 2D bulk (intensive)
quantities. The Onsager expression for the real part of the (di-
mensionless) free energy per spin of the anisotropic model is

β f = ln 2 + 1

2

∫ π

−π

dkx

2π

∫ π

−π

dky

2π
ln| cosh jx cosh jy

− sinh jx cos kx − sinh jy cos ky|, (20)

where jx,y ≡ 2βJx,y. For the case Jx = 1, Jy = 0.1, and
complex β we have evaluated this for the infinite system
numerically. Figure 1 was obtained by taking numerous cuts
through the complex temperature plane. One particular cut
that is especially revealing is a radial cut away from the real-
temperature axis (Fig. 3) that clearly displays the continuous
nature of the PM-NFM1 transition (these results are also
reproduced by the fermionization solution; see below).

B. Correlations from tensor-network renormalization

We would like to characterize the different phases that
appear in Fig. 1, especially the NFM1 and NFM2 phases that
are not simple continuations of real-temperature phases. For
this we need to know the spin-spin correlation functions in
both the x (time) and the y (qubit array) directions. Our most
general method for determining these, which has the addi-
tional advantage of allowing the inclusion of a longitudinal
magnetic field, is via a renormalization group algorithm based
on tensor networks, in particular the Tensor Renormalization
Group (TRG) [48], a method that involves representing classi-

FIG. 3. Top left: The internal energy as a function of distance
along a radial line at angle 2π/9 to the positive real axis in the
complex tanh β plane. The two transitions are those into and out of
the 1” phase (see Fig. 1). Top right: The specific heat capacity along
the same contour (see text for the precise definition of pecific heat
capacity” at complex temperature). Bottom panels: The same specific
heat graph but multiplied by the specified factor, demonstrating that
the two singularities are one-sided square-root singularities.

cal partition functions as tensor networks and coarse-graining
these tensor networks numerically.

Most of our results are obtained with bond dimensions up
to 50, and we use relatively modest convergence goals which
we check throughout, e.g., that the free-energy density is con-
verged to ∼0.001. In the Jy → 0 limit, our system is a set of
uncoupled Ising chains; we know that, in this limit, the entire
complex-temperature plane is PM with the exception of the
unit circle | tanh β| = 1. We therefore expect that, for Jy � 1,
correlated nonparamagnetic phases will be concentrated near
the unit circle.

We have used finite-field TRG to establish the disappear-
ance of uniform FM order as we traverse the unit circle
| tanh β| = 1 counterclockwise from the real-temperature line
for several values of the coupling Jy; see Fig. 4. It is clear that
the FM phase is progressively suppressed as the interchain
coupling is reduced. We interpret this as the gradual rever-
sion to the incommensurately modulated order seen on the
unit circle in the case of decoupled chains. This perspective
already suggests that the NFM1 phase exhibits some form of
long-range incommensurate order; we show below that that is
essentially true.

Additional work is required to use TRG to compute
correlation functions. As the method is multiplicative, i.e.,
distances are reduced by a factor of 2 per iteration, evaluating
the correlation function at separations 2n is relatively easy.
These are useful in cases for which we expect simple power-
law decays. Here, however, we are interested in modulated
correlators, which requires careful renormalization at short
distances.

Our TRG-computed correlation functions in the NFM1
phase are shown in the left-hand panels of Fig. 5. We observe
modulated correlations along the direction of strong coupling
(x in the statistical mechanics setting; time in the quantum
circuit picture). The correlations along the weak direction (y in
the statmech picture; interqubit in the quantum circuit picture)
are nonoscillatory and apparently power-law decaying. In the
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FIG. 4. The spontaneous magnetization of the anisotropic 2D
Ising model as a function of angle from the real-temperature axis on
the contour |tanh β| = 1 for four different values of the interchain
coupling Jy. The jump corresponds to the FM-NFM1 transition,
shown for the Jy = 0.1 case in Fig. 1.

next section we shall provide an interpretation of these results
in terms of a fermionized version of the model.

Our TRG results for the correlation functions in the NFM2
phase are shown in the middle panels of Fig. 5. Surprisingly,
we discover that the directions of the modulated and sim-
ply decaying correlations are swapped in NFM2 relative to
NFM1. It is worth noting that for the NFM1 phase the Jy → 0
limit is solvable and contains modulated correlations already,
whereas the NFM2 phase does not exist in the decoupled limit,
owing its existence to interchain interactions.

The upper right-hand panel of Fig. 5 shows the correlation
function in the x (time) direction at a different point in the
NFM1 phase, where the period of the temporal oscillations is
shorter. It also shows the effect on these correlations of the
application of a longitudinal magnetic field. We see that they
survive almost entirely unaltered, i.e., that this phenomenon is
insensitive to the breaking of integrability.

The lower right-hand panel of Fig. 5 shows the magne-
tization as a function of longitudinal field in the modulated
phases. Up to some critical field (which depends on the extent
of anisotropy), these modulated phases are stable. At this
critical field a metamagnetic transition takes place and the
system exits the modulated phase.

The TRG method makes it straightforward to compute cor-
relations even for large systems, for particular exponentially
spaced sets of distances. Evaluating the spatial decay of the
correlator in the NFM1 phase, we see clear signs of algebraic
decay (Fig. 6), exactly as one would expect in a 1D critical
phase.

C. Fermionization and the origin of oscillations

Finally, we present an approach to the zero-field problem
that uses the Jordan-Wigner transformation to represent the

spins/qubits in terms of fermionic degrees of freedom. We
shall show that the occurrence of correlations is due to a
certain type of resonance between two eigenvalues of these
fermionic operators. We may use this picture to predict both
the temporal period of the oscillations in the NFM1 phase
and the spatial period of the oscillations in the NFM2 phase;
in both cases, we find good agreement with our TRG results
presented above.

In the Jordan-Wigner representation, we write the Pauli
matrices on site j as follows:

Xj = 2c†
j c j − 1

Zj = (c†
j + c j )

j−1∏
l=1

eiπc†
l cl ,

(21)

where the operator c j annihilates a (spinless) fermion on site
j of the qubit register. It follows that

ZjZ j+1 = c†
j c j+1 + c†

j+1c j − c jc j+1 − c†
j+1c†

j . (22)

We now Fourier transform the fermion operators with respect
to the index j, i.e., we move to a plane-wave basis in our qubit
register:

c j = 1√
M

∑
k

′
e−ik jck, c†

j = 1√
M

∑
k

′
e+ik jc†

k , (23)

where the prime on the sum restricts k to the first Bril-
louin zone, i.e., k ∈ [−π, π ). In terms of these plane-wave
operators, the components of our single-step time-evolution
operator become

W = exp

(
2J

∑
k>0

′
[cos k (c†

kck + c†
−kc−k )

+ i sin k (c−kck − c†
kc†

−k )]

)

V = exp

(
2γ

∑
k>0

′
[c†

kck + c†
−kc−k − 1 + γ −1 ln A]

)
,

(24)

with T = V1/2 W V1/2.
We may streamline our notation using Anderson pseu-

dospin operators τα
k , defined as follows:

τα
k ≡ (c†

k c−k )σα

(
ck

c†
−k

)
, (25)

where α ∈ {0, 1, 2, 3}. In terms of these operators, the gates
can now be rewritten as follows:

W =
∏
k>0

′
exp

(
2J

(
τ z

k cos k + τ
y
k sin k

))
(26)

V =
∏
k>0

′
A2 exp

(
2γ τ z

k

)
(27)

V1/2 =
∏
k>0

′
A exp

(
γ τ z

k

)
. (28)
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FIG. 5. Spin-spin correlations in the NFM1 and NFM2 phases obtained via the TRG algorithm. Left-hand panels: (a) The spin-spin
correlation function in the x (time) direction (upper panel) and (d) in the y (intraregister) direction (lower panel) in the NFM1 phase, at the
point tanh β = eiπ/6. Middle panels: (b) and (e) The same but in the NFM2 phase at the point tanh β = 1.3eiπ/90. Notice that the oscillations
in the NFM2 phase run in the y (intraregister) direction, while those in the NFM1 phase run in the x (time) direction. Right-hand upper panel:
(c) The spin-spin correlation function in the x (time) direction in the NFM1 phase, at the point tanh β = eiπ/3, for three different values of
the applied longitudinal magnetic field. Right-hand lower panel: (f) The magnetization m = −∂ Re(β f )/∂h as a function of applied external
magnetic field h, at various points tanh β = eiθ . The point θ = 10◦ is in the FM phase; the others are in the NFM1 phase.

The partition function Z = Tr (T L ) may be expressed as
the product

Z =
∏
k>0

′
Tr

[
�L

k

]
�k ≡ A2 exp

(
γ τ z

k

)
exp

[
2J

(
τ z

k cos k + τ
y
k sin k

)]
exp

(
γ τ z

k

)
.

(29)

For each wave-vector k > 0, the operator �k has two eigen-
values, λk,± (see Appendix C),

λ±(k) = 2(hk ± δk ), (30)

where hk and δk are given by

hk = cosh(2β ) cosh(2J ) + sinh(2J ) cos(k) (31)

and

δk = [sinh2(2β ) sinh2(2J ) sin2k

+ [cosh(2J ) + cosh(2β ) sinh(2J ) cos k]2 ]1/2, (32)

where we have used a mixed notation, trading coupling con-
stants γ and A for β—recall the relations tanh γ = e−2β and
A = √

coth γ − tanh γ . To analyze the late-time properties
of the evolution, we find the largest-amplitude eigenvalue of
�k [Eq. (29)] for each wave-number k. We denote this as
λ0(k) and the corresponding right eigenvector as || ψ0(k) 〉〉.
These eigenvalues determine the decay rate and precession of
a typical initial condition at late times (t → ∞):

| 0 〉 →
∏
k>0

′
[λ0(k)]t || ψ0(k) 〉〉. (33)

We now discuss the behavior of this late-time state in
terms of properties of the fermionic spectrum. Outside the
NFM1 phase, either the + or the − branch is consistently
larger-amplitude throughout the Brillouin zone, and there is
generically a unique steady-state || 0 〉〉. In the NFM1 phase,
however, the branches “invert” as a function of k, which is
to say |λ+(k)| > |λ−(k)| for k ≈ 0 but the opposite inequality
holds for k ≈ ±π . At special momenta ±k∗, the two eigen-
values are degenerate. Therefore, in the subspace of ±k∗, the
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FIG. 6. Correlations along the nonoscillatory y direction on a
log-log scale, extracted from TRG for tanh β = eiπ/6 and Jy = 0.1Jx

(NFM1 phase), showing clear evidence of power-law decay with
exponent ∼0.33

system never reaches a unique steady state, and instead one
has persistent oscillations at the frequency

ω∗ = | arg λ+(k∗) − arg λ−(k∗)|. (34)

The band inversion point k∗ sweeps across the Brillouin zone
as one progresses through the NFM1 phase, leading to incom-
mensurate temporal modulations of varying frequency.

By comparing with the numerical solutions we see that this
phase exhibits temporal oscillations but no apparent spatial
oscillations. While the momentum 2k∗ appears to be special
in some sense, from the above argument there is no simple
relation between spectral degeneracies of the sort described
above and spatial oscillations. To capture modulated correla-
tions in the NFM2 phase, it is convenient instead to fermionize
the model by performing the Jordan-Wigner transformation
along the x axis (which hitherto we took to be the tem-
poral direction). The “band inversion” described above now
happens in the NFM2 phase, leading to oscillations in the

TABLE I. Comparison of numerically estimated periods of
order-parameter oscillations (TTRG) against exact Jordan-Wigner
fermion periods, TJW ≡ 4π/ω∗. Note the additional factor of 2 due
to a two-site unit cell in the time direction implicit in the definition
of the one step evolution operator. First three rows corresponds to
points inside NFM1, where modulations are along the x axis, while
the last row is in NFM2.

spatial direction (i.e., along y). Table I shows a comparison
of modulation period obtained numerically from TRG and
analytically from fermionization.

IV. DISCUSSION

In the present work we have exploited the correspondence
between nonunitary quantum circuits and complex temper-
ature statistical mechanics to construct a simple quantum
circuit that has a surprisingly rich phase diagram, including a
phase with incommensurate temporal order. Such incommen-
surate time crystals do not seem to occur in closed systems,
nor do they occur in 1D open quantum systems with short-
range interactions, for entropic reasons. Our results suggest
that an important class of quantum circuits that exhibit in-
commensurate time-crystalline order are space-time duals of
circuits that realize incommensurate density-wave phases. In
this simple 1D case, such phases occur only for complex
couplings, but in more general settings it might be possible
to write down quantum circuits that cool the system into a
ground state with density-wave order [52]. These would also
be space-time dual to temporally modulated phases.

In practice, postselection is an expensive operation requir-
ing effort that scales exponentially in the area of the quantum
circuit. Thus, practical realizations of the physics discussed
here will be restricted to circuits that are either very shal-
low or involve only a small number of qubits evolved for a
long time. These map onto Ising ladders at complex tempera-
ture, which can be solved using the methods discussed above
(Appendix A). We find that signatures of the modulated
phases are present even for systems with modest numbers of
spins (M = 5), which should be realistic to explore in a variety
of present-day experiments.
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APPENDIX A: COMPLEX-TEMPERATURE STATISTICAL
MECHANICS OF ISING LADDERS

In this Appendix we review previously obtained results
on loci of Fisher zeros as they coalesce into branch cuts for
M > 1. We also present some new results where we identify
the regions of the complex-temperature plane in which the
correlation lengths exceed 10 lattice spacings. These latter
results foreshadow the form of the phase diagram in the M →
∞ limit; Fig. 1.

Quite generally, the only place where long-range order can
occur in an infinite Ising system is on the same contours where
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FIG. 7. The contours containing the zeros of the partition func-
tion in the complex temperature plane for Ising spin ladders with
4 legs and isotropic spin-spin interactions (Jx = Jy). Dashed lines
represent the expected location of Fisher zeros of the isotropic 2D
Ising model [50]. The total number of contours is equal to the number
of legs; their location was found to be only weakly sensitive to
boundary conditions in the short (rung) direction and insensitive to
the boundary conditions in the long (infinite) direction. (Reproduced
from F. Beichert et al. [30].)

the partition function zeros for the finite system concentrate.
This is because the condition for the two is the same, viz.,
that the largest two eigenvalues of the transfer matrix be-
come equimodular. As explicitly demonstrated analytically
for M = 1 and numerically for M > 1, Fisher zeros merge
into ≈M branch cuts in the complex temperature plane in the
thermodynamic (long-time) limit, thus allowing for a smooth
evolution of correlation functions, with the correlation time
becoming infinite on branch cuts and the correlations them-
selves retaining an oscillatory character inherited from the
relative phase of the two dominant eigenvalues [30].

What happens to the spin-spin correlation length (decay
time) in the regions between the contours? The answer is that,
between the M contours that are “coalescing” into the ordered
region in the 2D Ising model, the correlation length stays very
high. The existence of ferromagnetism over a finite region of
the complex-temperature plane may be anticipated by notic-
ing that phases of the largest and second-largest eigenvalues
“lock” to each other (as M → ∞). This appears to be the
only type of correlated “phase” that occurs in the isotropic
case. Anisotropic lattices, however, appear to support another
type of “gapless” correlated phase, which exhibits multiple
long length scales and which shows precursor signatures in
the behavior of the correlation lengths in the finite-M case.

We begin by reviewing our prior results [30] in which the
limiting behavior of Fisher zeros in ladders was computed—
see Fig. 7. It can be shown, via a low-temperature expansion,
that the number of contours (branch cuts) emerging from the
two zero-temperature points tanh β = ±1 is equal to M. It
is less clear how to compute the total number of contours,
although contours that do not emerge from tanh β = ±1 do
not appear to proliferate and may be strongly dependent on
boundary conditions.

Fisher’s original proposal overlooked this behavior en-
tirely. The exact solutions of the Ising model by Onsager

M = 2, longest M = 2, second-longest

M = 5, longest M = 5, second-longest

FIG. 8. The top-right quadrant of the complex tanh β plane of
Fig. 7 for an M-leg Ising spin ladder with isotropic interactions,
Jx = Jy = 1. Upper panels: For a 2-leg ladder, the longest correlation
length (left) and the second-longest correlation length (right), both in
the “long” direction, i.e., along the legs of the ladder. Lower panels:
The same for a 5-leg ladder. The regions in which the correlation
length in question exceeds 10 lattice sites are shaded black. Note that,
except near the unitary point tanh β = i, only the longest correlation
length shows significant structure.

and several others in the years that followed [53] usually
consist of several contributions, only one of which dominates
in the thermodynamic limit. Fisher’s original argument for
generalizing Yang-Lee results was based on a seemingly in-
correct procedure whereby he analytically continued only the
portion of the result that was important at real temperature. As
explicitly demonstrated by Beichert et al. [30], this produces
entirely wrong patterns of zeros in ladders. Remarkably, how-
ever, Fisher’s approximate solution is accurately reproduced
by the unbiased TRG computational scheme applied to the
2D lattice.

Next we examine the growth of correlation lengths in the
x (time) direction as we increase M. Each correlation length
is controlled by the ratio between one of the subdominant
eigenvalues of the transfer matrix, λ j ( j > 0), and the dom-
inant one, λ0. In the left-hand panels of Fig. 8, the shaded
areas mark the regions of the complex-temperature plane in
which the longest correlation length, i.e., the one controlled
by λ1/λ0, is greater than 10 lattice spacings. This is shown for
the two-qubit case (top left) and for the five-qubit case (bottom
left). It is clear that our arbitrarily determined threshold of
10 lattice sites is already exceeded for M = 5 in the entire
crescent region outlined by Fisher’s original 2D proposal.
The right-hand panels show the same information but for the
second-longest correlation length, i.e., the one controlled by
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M = 2, longest M = 2, second-longest

M = 5, longest M = 5, second-longest

FIG. 9. The same as Fig. 8, but for the case of anisotropic interac-
tions, Jy = Jx/10 = 0.1. Note that, in a region roughly corresponding
to the ‘NFM1’ and ‘NFM2’ regions of Fig. 1, the second-longest
correlation length also shows nontrivial structure.

λ2/λ0. We note that there is no other long correlation length
present; as we can see from these plots, the eigenvalue λ2 does
not approach λ0 except near the unitary point tanh β = i, i.e.,
the FM phase is ‘gapped’.

We next turn to the case of anisotropic couplings, Jy < 1.
It was observed by van Saarloos and Kurtze [51] that, in
this case, Fisher’s approximation to the partition function
produces highly complex patterns of zeros. For simple inte-
ger fractions Jy = 1/n it is possible to compute and plot the
contours [54] and observe an erratic pattern that does not
show simple convergence to the limit of decoupled qubits.
Numerically exact computations for finite-M transfer matri-
ces, however, produce a nicely regular and convergent pattern,
from which Fig. 9 was obtained. The ordered phase is reduced
in its extent as we have reduced Jy tenfold. As with the
isotropic model we observe a growth of the longest correlation
length as we increase M. However, in this anisotropic case
we also see additional regions away from the unitary point
in which the second-longest correlation length also becomes
long: one tracking the unit circle, and another small patch on
the real tanh β axes at values exceeding 1. These locations are
suggestively similar in shape and location to the NFM1 and
NFM2 phases in Fig. 1.

APPENDIX B: TRG RESULTS FOR THE
MAGNETIZATION: ISOTROPIC CASE

In this Appendix we present our TRG results for the behav-
ior of the isotropic Ising model in a longitudinal field.

FIG. 10. Magnetization, m = −∂ Re(β f )/∂h as a function of ap-
plied uniform magnetic field in the two phases of (a) the isotropic 2D
Ising model in the complex sinh(2β ) plane. Upper panel: FM phase,
|sinh(2β )| = 1.3. Lower panel (b): metamagnetic response in the PM
phase, | sinh(2β )| = 0.9.

Based on the patterns of Fisher zeros, it seems that the
isotropic Ising model in zero applied magnetic field exhibits,
for general complex temperature, a first-order transition be-
tween a PM and a FM phase. We explicitly verify this through
a direct computation of the magnetization process in the vicin-
ity of that phase boundary.

The phase boundary between the PM and FM phases
forms the famous double crescent in the tanh β plane, but
becomes a yet simpler unit circle in the complex sinh 2β

plane: this appears to be a more natural variable for the
isotropic case. A trajectory with a fixed modulus of sinh 2β

slightly above/below 1 allows us to study the evolution of
the character of the transition as we move away from the
real-temperature critical point.

In Fig. 10, we show our results for the magnetization as a
function of field for a variety of angles along two such circular
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contours in the complex sinh 2β plane. In the upper panel,
we observe that the FM phase indeed exhibits spontaneous
magnetization, the magnitude of which drops to zero as the
point arg sinh 2β = π/2 is approached. The PM phase shows
initially linear response, followed by a metamagnetic jump,
as expected near conventional first-order transitions [55]. In-
terestingly, there is a large domain of diamagnetic response,
which would be a rather peculiar state of affairs for a more
conventional statistical problem.

APPENDIX C: FERMIONIZATION

In this Appendix, we provide the details of the various steps
of our fermionization approach to the zero-field case.

In III C it was shown that the partition function Z =
Tr (V1/2 W V1/2)

L
is given by Z = ∏′

k>0 Tr [�L
k ], where

�k ≡ A2 eγ τ z
k e2J (τ z

k cos k+τ
y
k sin k) eγ τ z

k . (C1)

For our purposes here, considering one k mode at a time,
we write τ = {X,Y, Z} for the Pauli matrices {τ x

k , τ
y
k , τ z

k }. We
then have

eγ Z = cosh γ + Z sinh γ (C2)

and

e2J (Y sin k+Z cos k) = cosh(2J )

+ sinh(2J ) (Y sin k + Z cos k) . (C3)

We find �k = 2[d0(k) + d(k) · τ] with

d0(k) = cosh(2β ) cosh(2J ) + sinh(2J ) cos k

dx(k) = 0

dy(k) = sinh(2β ) sinh(2J ) sin k

dz(k) = cosh(2J ) + cosh(2β ) sinh(2J ) cos k.

(C4)

Thus the eigenvalues of �k are given by

λ±(k) = 2d0(k) ± 2
√

d2
y (k) + d2

z (k)

= 2d0(k) {1 ±
√

�+(k) �−(k)}
(C5)

where

�±(k) ≡ dz(k) ± idy(k)

d0(k)
. (C6)

Resonances : The resonance condition |λ+(k)| = |λ−(k)|
thus pertains when

�+(k) �−(k) = −α2 ∈ R−. (C7)

This entails
0 = d+(k) d−(k) + α2d2

0 (k)

= (1 + α2) cosh2(2β ) cosh2(2J ) − sinh2(2β )

+ (1 + α2) cosh(2β ) sinh(4J ) cos k

+ (1 + α2) sinh2(2J ) cos2k,

(C8)

which is a quadratic equation in cos k, with the solution

cos k = 1

sinh(2J )

{
− cosh(2β ) cosh(2J ) ± sinh(2β )√

1 + α2

}
(C9)

Now we know that α ∈ R and hence the closed form expres-
sion for the resonance condition can be derived from equating
Im(α2) = 0 and Re(α2) � 0.

From (C9), we can derive the expression for α2 as

α2 = sinh2(2β )

[cosh(2β ) cosh(2J ) + cos k sinh(2J )]2
− 1 (C10)

and the subsequent closed form resonance conditions for per-
sistent oscillations immediately follow

Im

(
sinh2(2β )

[cosh(2β ) cosh(2J ) + cos k sinh(2J )]2

)
= 0 (C11)

Re

(
sinh2(2β )

[cosh(2β ) cosh(2J ) + cos k sinh(2J )]2

)
� 1. (C12)

Note that both conditions in (C11) and (C12) need to be satis-
fied simultaneously in order to get the correct phase diagram,
which matches the phase diagram obtained from TRG and
analytically continued Onsager solution (see Fig. 1).

Steady state–We now obtain an expression for the steady
state, where each (k,−k) mode pair is in an eigenstate of �k .
With �μ(k) ≡ dμ(k)/d0(k) for μ ∈ {x, y, z}, we have

�k = 2d0(k)

(
1 + �z(k) −i�y(k)

i�y(k) 1 − �z(k)

)
. (C13)

As �k is in general non-Hermitian, its right and left eigenvec-
tors are not necessarily related by complex conjugation, and
are given by

|| R±(k) 〉〉 =
(

μ±(k)
μ∓(k)

)

〈〈 L±(k) || = ±Nk (μ±(k), −μ∓(k)) ,

(C14)

where

μ±(k) = √
�+(k) ± √

�−(k) (C15)

and Nk = 1/4
√

�+(k) �−(k). These states are normalized so
that 〈〈 La(k) || Rb(k) 〉〉 = δab (with no complex conjugation of
the left eigenvector).

In the t → ∞ limit, and at each wavevector k ∈ (0, π ),
one of these states is selected–the one corresponding to the
greater value of |λ±(k)|. The surviving state’s wavefunction is
given by the appropriately normalized right eigenvector, and
the asymptotic state is thus of the BCS form,

|�(t → ∞)〉 =
∏
k>0

′
Ck [μ∓(k) + μ±(k) c†

kc†
−k] |0〉, (C16)

where Ck = 1/
√

2(|�k,+| + |�k,−|), and where | 0 〉 is the
Fock space vacuum, equivalent to the state |↓↓ · · · ↓ 〉 for all
the k-space Anderson pseudospins.
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