1 Quantitative cognition in carpenter ants

2 Patrizia d'Ettorre ${ }^{1,2}$, Patricia Meunier ${ }^{1}$, Pietro Simonelli ${ }^{1}$, Josep Call ${ }^{3}$
$3{ }^{1}$ Laboratory of Experimental and Comparative Ethology, University of Sorbonne Paris Nord,
499 avenue J.-B. Clément, 93430 Villetaneuse, France
$5 \quad{ }^{2}$ Institut Universitaire de France (IUF)
$6 \quad{ }^{3}$ School of Psychology and Neuroscience, University of St Andrew, St Mary's Quad, South 7 Street, St Andrews, Fife, KY16 9JP, Scotland, United Kingdom.

8 Corresponding Author: Patrizia d'Ettorre
9 Phone: +33 14940 3196, e-mail: d-ettorre @univ-paris13.fr

Keywords: Camponotus, spontaneous quantitative discrimination, sequential landmarks, training, social insects

Abstract

Processing information about quantities allows animals to make optimal decisions during many natural contexts, such as foraging, territorial defense, offspring care, mate choice and intrasexual competition. Compared to the wealth of information available in vertebrates, much less is known in invertebrates, even though the processing of quantities is equally relevant for both taxa. Here, we used two separate ecologically relevant tasks (brood pile preference and landmark-guided foraging) to investigate two dimensions of quantitative cognition in carpenter ants: spontaneous quantitative judgements and trained use of sequential landmarks. Individual ants spontaneously discriminated between two piles of dummy cocoons both when the choice involved smaller (1 vs. 2, 3, 4) and larger numerical contrasts ($2 \mathrm{vs} .4,6,8$). Ants used both chemical and visual/tactile cues and their performance was dependent on the numerical ratio. In the second task, ants preferentially searched near the trained landmark (out of five identical ones) despite alterations in its position, suggesting that they used ordinal information about its location when searching for food. In this experiment, ants showed a limit at four since their performance drastically decreased when they were trained to the $5^{\text {th }}$ landmark. We showed that carpenter ants use both relative quantity and relative position to make efficient decisions. Our study contributes to the scant body of knowledge available on quantitative cognition in invertebrate species.

Significance Statement

There is ample experimental evidence that non-human animals are able to process quantitative information, in particular mammals, some birds and fish, and that this ability is useful in a variety of ecologically relevant situations. Yet, information about quantitative cognition in invertebrates is very scarce. We show that individual ants are able to use both relative quantity and relative position of items. Nurse ants spontaneously discriminated between two brood piles of different size and foragers were able to learn to identify a landmark associated to food on the basis of its position in a series of identical ones. These results suggest that ants might use quantitative information to make optimal choices in their natural environment although the precise mechanisms underlying this ability should be further investigated.

Introduction

Many animals have evolved the ability to discriminate between two different quantities, i.e. to make relative judgments of magnitude differences (more versus less), because this has a significant adaptive value in several ecologically relevant contexts, such as antipredator behavior, social interactions and foraging. For instance, the preference of guppies and other fish to join the larger shoal of conspecifics (Agrillo 2008; Bisazza et al. 2010) is an efficient antipredator strategy given that being in a larger group decreases an individual's chances of being predated upon (dilution effect, Dehn 1990). Similarly, treefrogs facing a dichotomous choice prefer a patch with more abundant or tall grass than one with shorter or less abundant grass since this type of microhabitat offers greater protection and more resources (LuconXiccato et al. 2018). As predicted by game theory (Maynard Smith and Parker 1976), the willingness to engage in contests should relate to numerical advantage in social species. Therefore, it is advantageous for lions, chimpanzees and spotted hyaenas to perform relative numerical assessment in order to adjust their agonistic behavior to the number of potential opponents (McComb et al. 1994; Wilson et al. 2001; Benson-Amram et al. 2011). In the context of foraging, being able to spontaneously select the higher amount of food is clearly beneficial. For instance, birds and fish can discriminate the number or size of food items and prefer the larger food quantity (e.g., crows: Bogale et al. 2014; guppies: Lucon-Xiccato et al. 2015). In laboratory experiments, orangutans and baboons showed the capacity to select the larger quantity of food items (Call 2000; Barnard et al. 2013) and semi-free ranging rhesus monkeys discriminated between different quantities of apple pieces (Hauser et al., 2000). Several other vertebrate species have been shown to prefer large over small quantities of food, including domestic dogs and coyotes (Ward and Smuts 2007; Baker et al. 2011), horses (Uller and Lewis 2009) and elephants (Plotnik et al. 2019).

Another ability that can be advantageous for animals is keeping track of the serial position of targets in the context of repeated foraging trips to valuable food sources. Several species can identify a landmark associated with food in a series of identical landmarks based on its relative position. For instance, rats could easily learn to select a target box containing food based on its position in an array of several identical boxes (up to the $12^{\text {th }}$ position is a sequence of 18 boxes) and remembered this information for more than 1 year (Davis and Bradford 1986; Suzuki and Kobayashi 2000). Young domestic chicks were able to learn to identify a target and peck for food on the basis of its serial position in a sequence of 10 targets (Rugani et al. 2007). More recently, similar results were obtained with fish. Guppies easily learned to identify the $3^{\text {rd }}$ feeder in a row of 8 identical feeders, but made more errors when
they were trained to a feeder in the $5^{\text {th }}$ position, suggesting that 5 is close to their numerical threshold (Miletto Petrazzini et al. 2015). Several primate species, including rhesus and capuchin monkeys were able to order stimuli containing one, two, three, or four items in ascending order and generalized the learned rule to novel stimuli outside of the trained range (Brannon and Terrace 1998; Judge et al. 2005).

These are only some of the many documented examples showing that quantitative cognition is widespread in non-human animals and helps individuals make adaptive decisions in a wide range of ecological contexts. Compared to the wealth of information available in vertebrates (see Agrillo and Bisazza 2018; Nieder 2018; Rugani 2018 for reviews), less is known about quantitative cognition in invertebrates, with the exception of honey bees (see Pahl et al. 2013; Skorupski et al. 2018; Giurfa 2019 for reviews). Worker honey bees can be trained to use a sequence of identical landmarks, with the limit of four, to find a food source. This was first shown in field experiments (Chittka and Geiger 1995) and then confirmed in controlled laboratory experiments (Dacke and Srinivasan 2008) in which the use of other cues, for instance, the distance from the starting point of the fly tunnel, was ruled out. Honey bees can use the number of items on a stimulus to perform a match-to-sample task (Gross et al. 2009) and, among other numerical skills (Giurfa 2019), individual honey bees appear to be able to represent zero (an empty set) as the low end of a series of positive numbers (Howard et al. 2018). Recently, honey bees have been tested for spontaneous quantity discrimination of artificial flowers and appear to make the difference only between one versus more (1 vs 3,1 vs 4,1 vs 12 ; Howard et al. 2020).

Information about the quantitative abilities of other insects is relatively scant and it is unclear whether other insects can cope with various aspects of quantitative information. Mealworm beetles spontaneously discriminate chemical cues reflecting different numbers of females (Carazo et al. 2009), and are also able to keep track of up to 4 rival males encountered sequentially in the context of sperm competition and mate guarding (Carazo et al. 2012). Crickets tested in a dichotomous choice between different sets of geometrical shapes representing potential shelters spontaneously chose those with the larger numerosity, with the limit at 3-4 items (Gatto and Carlesso 2019). These crickets make use of continuous variables of objects, such as surface area, convex hull, rather than counting the number of items in each set. Animals might be able to use both pure number and continuous quantities, and possibly be more efficient when both cues are available, as in mosquitofish (Agrillo et al. 2011).

Ants have evolved the most advanced social organization and show remarkable
learning, memory and recognition of identity (d'Ettorre 2013; Perez et al. 2015; Piqueret et al. 2019), but their quantitative skills have been less explored than those of honey bees. Similar to chimpanzees, lions and hyaenas, workers of the ant species Formica xerophila appear to assess the number of potential competitors and are more aggressive when they perceive themselves as part of a large group (Tanner 2006). Workers of the Japanese ant, Myrmecina nipponica are able to quantify the number of nestmates present in a new nest site during a relocation process (Cronin 2014). By conditioning entire colonies of Myrmica sabuleti in the laboratory, Cammaerts (2008) showed that ant workers can distinguish figures containing different numbers of the same element (e.g. 1vs 2 and 2 vs 3 black circles) by using continuous variables, and appear to react to the basic notion of zero, i.e. the absence of visual or olfactory cues is rewarded (Cammaerts and Cammaerts 2019). Individual founding queens of the ant Lasius niger adjust their egg laying to the quantity of brood present in the nest. Queens produced fewer eggs when their colony contained ample brood, suggesting that they could estimate the total amount of brood present (Holman et al. 2010). Studies in red wood ants suggested that workers possess numerical competence and symbolic communication (Reznikova and Ryabko 1996; 2011). Ant scouts were trained in different variants of a "counting maze", equipped with several different branches, to find food on a particular branch. When returning to the nest, a scout typically engaged in antennal contact with foragers and the duration of this antennation was proportional to the number of branches to be passed on the way to reach the food. The foragers could often find the location of the food without the scout. As noted by Reznikova (2008), this is not direct evidence that a scout memorized the number of branches, since the ant could pass information about the distance to the food (see also Pahl et al. 2013). Indeed, ants can measure distance very accurately, as shown in desert ants that use an internal odometer to count steps (Wittlinger et al. 2006).

We investigated two aspects of the quantitative abilities of carpenter ants, Camponotus aethiops: spontaneous quantitative judgements and trained use of sequential landmarks. We investigated each of these two aspects in two separate tasks reflecting the ecology of the ants. The first task was a brood pile preference task. We presented nurse ants with two options containing different numbers of cocoons (dummies made of pieces of filter paper impregnated with chemical extract of natural cocoons). We expected that ants would select the option with the largest quantity of cocoons. The second task was a landmark-guided foraging task. Ants moved along a straight corridor aligned with five landmarks. After they learned that food could be found next to one of the landmarks (e.g., the second from the entrance), we changed the relative position of the landmarks to investigate, during an unrewarded test, whether ants
encoded the position of the food in terms of the distance travelled or the relative position of the landmark. We expected that, if ants used the order of appearance of the landmarks, they would search near the location of the landmark whose ordinal position matched the original position of the food.

Material and Methods

Study organism. Queenright colonies of Camponotus aethiops were collected in 2016 at Pompertuzat (Midi-Pyrénées, France, latitude 43.5°, longitude 1.516667°) and kept in the laboratory $\left(25^{\circ} \mathrm{C}\right.$, light-dark cycle $=12: 12,40 \%$ humidity $)$ in artificial nests composed of two plastic boxes connected by a plastic hose. One of the boxes ($25.5 \times 18 \times 9 \mathrm{~cm}$) was covered by cardboard and contained a plaster floor to form the nest; the other box ($27.5 \times 28 \times 8 \mathrm{~cm}$), exposed to light constituted the foraging arena. The inner sides of the two boxes were coated with Fluon© to prevent ants from escaping. Ants were fed twice a week with a mixture of apples and honey and frozen crickets, water was provided ad libitum.

Spontaneous quantitative discrimination. In a circular arena (12 cm diameter) with clean filter paper on the floor, we placed dummy cocoons made of filter paper ($1 \mathrm{~cm}^{2}$ rolled as a cylinder) inside two circular zones (4 cm diameter defined with a light pencil trait) equidistant from the starting point of the ant, which was a plastic cylinder (2.2 cm diameter), Fig. S1. The position right/left of the different stimuli (i.e., groups of different number of cocoons) was alternated in different replicates.

Chemical extracts of real ant cocoons were prepared by immersing one freshly frozen cocoon in $200 \mu \mathrm{l}$ of pentane (HPLC grade, Sigma-Aldrich, France) for 10 minutes. Each dummy cocoon was perfumed with 20μ of chemical extract ($1 / 10$ cocoon equivalent). In any given trial, each dummy cocoon was perfumed with a chemical extract from a different cocoon issued from the same colony as the tested ant. Three numerical ratios were presented: $0.50,0.33$ and 0.25 , for smaller ($1 \mathrm{vs} .2,1 \mathrm{vs} .3,1 \mathrm{vs} .4$) and larger numerical contrasts ($2 \mathrm{vs} .4,2 \mathrm{vs} .6,2$ vs. 8). For each of the six combinations, the number of tested ants was $n=15$.

The tested ant was a nurse collected from inside the nest. The ant was placed in the plastic cylinder and allowed to acclimatize for one minute, then the cylinder was gently lifted and the ant was free to explore the arena for 5 minutes, during which the time spent in contact with the dummy cocoons in the two different zones was recorded with the help of a behavioral transcription software (Ethoc version 1.2, CNRS Research Centre on Animal Cognition, Toulouse). Each ant was tested only once.

Cues used for discrimination. To investigate the importance of chemical cues compared to visual/tactile cues, we tested ants in the same apparatus as above but this time either the number of cocoons in each pile or the total amount of chemical extract was constant. Ants were either confronted to the same number of dummy cocoons perfumed with different amounts of the same chemical extract (1 cocoon without chemical extract $v s .1$ cocoon with $20 \mu \mathrm{l}$ of chemical extract, $n=12 ; 1$ cocoon with $10 \mu 1$ of extract $v s$. 1 cocoon with $20 \mu l$ of extract, $n=15$) or to different number of cocoons perfumed with the same total amount of chemical extract (1 cocoon with $20 \mu \mathrm{l}$ extract v s. 2 cocoons with 10μ l extract each, $n=15$; 2 cocoons with $20 \mu \mathrm{l}$ extract each $v s .4$ cocoons with 10μ l extract each, $n=15$). Each ant was tested only once.

Statistical analyses. Statistical analyses were performed with R (R Core Team 2019). The time spent in contact with the two stimuli (cocoon piles) was compared using the Paired Samples Wilcoxon test for all combinations separately. To check if ants inspected the cocoons sequentially, and therefore spent more time with the pile containing a higher number of cocoons, we recorded the behaviour of the ants after the first inspection of both piles in the 2 versus 6 trials. For this, in each test we waited that the ant inspected one pile, then the other pile, and only after these first inspections we recorded the time spent antennating each pile and the occurrences of contact (Fig. S3). For the effect of numerical ratio, data were analyzed with a linear model in which the percentage of time spent investigating the larger cocoon pile was the dependent variable and ratio $(0.50,0.33,0.25)$ was inserted as a factor. P -values were extracted by permutation test (1000 permutations, R package pgirmess (Giraudoux 2016)). If the effect of the factor ratio was significant, post-hoc comparisons were performed with the same model but a reduced dataset.

Sequential landmark test. A rectangular plexiglass corridor (length 50 cm , width 5 cm) with clean filter paper on the floor was equipped with 5 landmarks consisting of cardboard stripes (length 9 cm , width 1.6 cm) covered with grey adhesive tape. When placed on the floor, the stripes climbed 2 cm on both side walls as shown in Fig. 3a. The walls were covered with Fluon® so that the ants could not climb and all around the corridor there were cardboard walls to prevent the use of visual cues outside the corridor. During the training phase, the reward (2 $\mu 1$ of sugar solution $30 \% \mathrm{w} / \mathrm{w}$) was placed right after the first, second, third, fourth or fifth landmark depending on the experimental group of ants. A separate group of ants was individually trained for each landmark reward position (Landmark 1: $n=15$; L2: $n=15$; L3: $n=17$; L4: $n=14$; L5: $n=15$). For each ant, the training phase consisted of 8 consecutive training trials. Within each trial, the inter-landmark distance was held constant, but across trials the distance varied (Fig. 2a, Fig. S2, Table S1). In this way, the ants could not use any spatial
information to locate the reward (e.g., distance from the starting point) because even if the reward was always placed after the same landmark, its position in the arena varied at every training trial.

An ant marked with a small dot of paint was collected from the foraging area of its colony, placed in a plastic cylinder (2.2 cm diameter) at one end of the arena (Fig. 2a) and allowed to acclimatize for one minute. After the removal of the cylinder the forager ant was free to explore the arena. Once the reward found, the ant was allowed to drink the sugar solution and then was placed for 3 minutes back to the foraging area of its colony where it usually engaged in trophallaxis (mouth to mouth exchange of liquid food) with nestmates. During this time the filter paper at the floor of the experimental arena was changed and the stripes constituting the landmarks cleaned to avoid the use of any possible chemical cue left by the ant. The position of the landmarks was changed and then the next training trial for the same ant started. For each training trial, the time needed to the ant to find the reward was recorded. At the end of the 8 training trials, the ant was placed back to its colony for 10 minutes and then tested in the same arena (after cleaning). The test was unrewarded and lasted two minutes. The landmarks were irregularly spaced and their configuration was new compared to the training trials (Fig. 2a and Fig. S2). Each test was videotaped. Each ant was used only for one training sequence and one unrewarded test.

Video recordings of the tests were analyzed with EthoVision 8.5 tracking software (Noldus). The arena was virtually divided in 50 zones of equal size (1 cm) and the time spent by the ant in each zone was calculated.

Statistical analyses. To analyze the dynamics of time needed to find the reward during the 8 successive training trials, we used linear mixed models (LMM, R package nlme (Pinheiro et al. 2016)) with time as dependent variable and trial as factor, individual identity was entered as random factor to account for repeated measures. P values were calculated by 1000 permutations $(\alpha$ level $=0.05)$. For the analysis of the unrewarded test, we considered three contiguous zones around each landmark and calculated the 'Counting Performance Index' (CPI), as was done for an experiment with honey bees (Dacke and Srinivasan 2008), which is the ratio of time spent searching around the trained landmark to the average of the time spent searching at the other landmarks. A CPI higher than 1 indicates preference for the trained landmark, this was tested using the One-Sample Wilcoxon test for each group of ants trained to a different landmark (L1 to L5). To compare the time spent searching by the tested ants in the zone of the trained
landmark to the time spent searching in the zone were the reward was positioned at the last training trial we used the Paired Samples Wilcoxon test.

Results

Spontaneous quantitative discrimination

Individual ants tested in a neutral arena were able to make relative quantity judgments between two finite sets (piles) containing different amounts of dummy cocoons. Ants spent more time inspecting a group of 2,3 or 4 cocoons than inspecting a single cocoon (1 vs. $2: \mathrm{z}=2.613, \mathrm{p}=$ $0.009, n=15 ; 1$ vs. $3: \mathrm{z}=3.107, \mathrm{p}=0.002, n=15 ; 1 \mathrm{vs} .4: \mathrm{z}=3.351, \mathrm{p}=0.001, n=15$; Fig. 1a), and they spent more time investigating a group of 4,6 or 8 cocoons than investigating a group of 2 cocoons (2 vs. $4: \mathrm{z}=3.237, \mathrm{p}=0.001, n=15 ; 2$ vs. $6: \mathrm{z}=3.408, \mathrm{p}=0.001, n=15$; 2 vs. 8: $\mathrm{z}=3.408, \mathrm{p}=0.001, n=15$; Fig. 1a). Overall, investigation time was significantly influenced by numerical ratio, discrimination increased when the numerosity ratio was smaller (Fig. 1b, overall: LM, $\mathrm{p}=0.05$; post-hoc tests: ratio 0.5 vs ratio $0.33, \mathrm{p}=0.16 ; 0.5$ vs $0.25, \mathrm{p}=$ $0.03 ; 0.33$ vs $0.25, \mathrm{p}=0.29$).

To investigate the importance of chemical cues relative to other visual/tactile cues, we tested the ants with the same number of dummy cocoons in each pile (1 vs .1) but different amount of chemical extract (natural odor of cocoons). In all cases, ants spent significantly more time investigating the cocoon with the higher amount of chemical extract (no extract vs. $20 \mu \mathrm{l}$ extract: $\mathrm{z}=3.059, \mathrm{p}=0.002, n=12 ; 10 \mu \mathrm{l}$ vs. $20 \mu \mathrm{l}$ extract: $\mathrm{z}=1.988, \mathrm{p}=0.047, n=15$; Fig. 1 c , top panel).

We then tested ants with different numbers of cocoons but the same total amount of chemical extract in each pile. Ants spent significantly more time with the higher number of cocoons (1 cocoon with 20μ l extract vs. 2 with 10μ lextract: $z=2.300, p=0.021, n=15 ; 2$ with $20 \mu \mathrm{l} v .4$ with $10 \mu \mathrm{l}: \mathrm{z}=2.385, \mathrm{p}=0.017, n=15$; Fig. 1c, bottom panel), indicating that ants use not only chemical cues but also visual and/or tactile cues for quantity discrimination.

One could hypothesize that ants would contact each pile one time and inspect each cocoon sequentially, which would lead to the observed longer time spent in contact with the pile containing the higher number of cocoons. This is very unlikely since the test lasted 5 minutes and each ant returned several times to each pile of cocoons. Typically, ants inspected both cocoon piles within the first 30 seconds, and then moved from one pile to the other. In the 2 versus 6 trials, after the first inspection of both piles, the duration and occurrence of contact were significantly higher for the pile containing 6 cocoons than for the pile containing 2 cocoons (duration: 6 cocoons $37.42 \pm 4.54 \mathrm{~s}$ (mean \pm SE); 2 cocoons $8.58 \pm 1.75 \mathrm{~s} ; \mathrm{z}=3.06$,
$\mathrm{p}=0.002$; occurrence: 6 cocoons $9.33 \pm 1.36 ; 2$ cocoons $3.92 \pm 0.47 ; \mathrm{z}=2.82, \mathrm{p}=0.0047$; Fig. S3), indicating that the ants are more attracted by the pile with more cocoons after they have assessed both piles. On the other hand, the time spent by the ants investigating the cocoons increased with the area occupied by the cocoons on the soil of the arena (Linear Model, $\mathrm{t}=$ $12.33, p=0.001$; Fig. S4).

Trained sequential landmark test

Ants were trained to find a food reward in a rectangular arena equipped with 5 landmarks, the reward was placed just after one of the landmarks (Fig. 2a). The ant could not use any spatial information to locate the reward (e.g., distance from the starting point) because even if the reward was always placed after the same landmark, its position in the arena varied at every training trial (example for reward at landmark 3: Fig. 2a; for all other landmarks: Fig. S2). Along the training trials, in all five configurations (reward positioned after landmark 1, 2, 3, 4 or 5) ants progressively reduced the time needed to reach the reward, as revealed by the significant effect of trials on the time to find the reward (LMM, effect of trial $\mathrm{p}<0.001$ in all cases, Fig. 2b), which indicates that the ants learned the rule.

During the subsequent unrewarded test, the landmarks were irregularly spaced and their configuration was new compared to the training trials (Fig. 2a, Fig. S2). We calculated a 'Counting Performance Index’ (CPI) (Dacke and Srinivasan 2008), the ratio of the searching time in three zones around the trained landmark, to the average of the searching time around the other landmarks ($\mathrm{CPI}=1$ represents uniform searching).

In all cases, the CPI of ants was higher than 1 (Fig. 3a, Supplementary Video 1 and Video 2) and it was significantly different from 1 for ants trained to landmark $1(\mathrm{z}=1.978, \mathrm{p}=0.048, n$ $=15)$, for ants trained to landmark $2(\mathrm{z}=2.499, \mathrm{p}=0.012, n=15)$ and for ants trained to landmark 3 ($\mathrm{z}=3.955, \mathrm{p}<0.0001, n=17$). It was not significantly different from uniform searching for ants trained at landmark $4(\mathrm{z}=1.759, \mathrm{p}=0.078, n=14)$ and particularly for ants trained at landmark $5(\mathrm{z}=1.202, \mathrm{p}=0.23, n=15)$.

We also compared the time spent searching in the zone where the reward was supposed to be under the hypothesis that the ants used the sequence of landmarks as cue (i.e., right after the trained landmark), to the searching time in the zone were the reward was found during the last training trial. This analysis shows that ants spent significantly more time searching at the trained landmark (Fig. 3b, L1: $\mathrm{z}=2.613, \mathrm{p}=0.009$; L2: $\mathrm{z}=2.698, \mathrm{p}=0.007$; L3: $\mathrm{z}=2.84, \mathrm{p}=$ $0.004 ; \mathrm{L} 4: \mathrm{z}=2.574, \mathrm{p}=0.01 ; \mathrm{L} 5: \mathrm{z}=3.09, \mathrm{p}=0.002$), indicating that the ants did not use the last memorized distance from the starting point to locate the reward.

Discussion

The ability to perform relative numerosity judgements is widespread throughout the animal kingdom but most studies concern vertebrates. Using a free choice test, we found that nurse carpenter ants discriminated the larger of two quantities of cocoons. This spontaneous behavior is likely similar to the behavior expressed in natural conditions in which a larger pile of cocoons inside the nest would require more attention and care than a smaller pile. Ants' discrimination of small sets of items ($1 \mathrm{vs} 2,1$ vs 3 and 1 vs 4) is consistent with much of the literature on invertebrates which places a limit of four items for successful discrimination. For instance, male beetles could discriminate between odors representing 1 vs 3 and 1 vs 4 females (Carazo et al. 2009) and crickets between shapes representing shelters when given the choice between 1 vs 3 , 1 vs 4,2 vs 3 and 2 vs 4 (Gatto and Carlesso 2019). However, ants also discriminated between larger quantities of cocoons (2 vs 4,2 vs 6,2 vs 8), contrarily to honeybees, which spontaneously discriminated 1 vs 12,1 vs 4 , and 1 vs 3 artificial flowers but did not make a difference between 2 vs more (Howard et al. 2020). As the authors suggest, preferring multiple flowers to one flower may be useful for honeybees, while differentiating between patches containing multiple flowers may not necessary increase foraging efficiency. For nurse ants tending cocoons it will always be useful to discriminate between quantities. When grouping and moving cocoon piles across different nest chambers, it is more advantageous to pick up two cocoons to add them to a pile of four, than doing the opposite.

The accuracy of numerosity discrimination typically improves with increasing numerical distance between two values (distance effect: 1 vs 4 is easier than 1 vs 3) and decreases with absolute magnitude at a given numerical distance (magnitude effect: 1 vs 4 is easier than 11 vs 14) (Moyer and Landauer 1967). The combination of these magnitude and distance effects gives rise to a discrimination performance that is ratio-dependent with an accuracy set by Weber's Law (Jordan and Brannon 2006), which states that the smallest noticeable difference is a constant proportion of the stimulus magnitude. Indeed, the male beetles cited above could not discriminate 1 vs 2 and 2 vs 4 females (ratio 0.5), although they successfully discriminated a numerical ratio equal to $0.33(1 \mathrm{vs} 3)$ and $0.25(1 \mathrm{vs} 4)$. Ants were successful at discriminating all tested ratio ($0.5,0.33$ and 0.25), but their overall performance improved when the numerical ratio was smaller. Ratio-dependent discrimination is very common and it is typically stronger for numerosities larger than four (e.g., Agrillo et al. 2012). This ratio effect may support the existence of an approximate number system. Several cognitive systems have been proposed to explain quantity discrimination. Two of the best well-known core number systems are the object file system (OFS) and the analogical magnitude system (AMS) (Feigenson et al. 2004).

Whereas OFS allows individuals to conduct precise operations with small quantities (between 1 and 4 items), the AMS allows individuals to process large quantities (virtually no upper limit) but only returns approximate calculations (approximate number system) and it is constrained by a ratio distance. The AMS appears to be widespread among vertebrates (Cacchione et al. 2014; Beran 2017). Future studies should expand the number of quantities tested to obtain a more robust estimation of the ratio effect in carpenter ants to more clearly elucidate the system underlying their spontaneous quantity judgments.

Our data show that chemical information was a significant cue used by ants to perform relative quantitative discrimination. It is not surprising that insects use chemical cues in similar tasks (Carazo et al. 2009; Thomas and Simmons 2009) but also some vertebrate species do, such as meadow voles (Ferkin et al. 2005) and elephants (Plotnik et al. 2019). While it is possible to consider discrete objects in the visual modality -in which most of the experiments have been carried out- it is improbable that the odors of objects could be perceived as separate units. However, relative numerosity judgements do not require animals to know the precise numerical value in order to make a correct choice, as occurs in crickets which can estimate quantities without relying on numerical information (Gatto and Carlesso 2019). Animals might discriminate between quantity via a representation of the number of objects (true number processing) or by relaying on continuous variables that covary with numerosity (e.g., cumulative surface area, cumulative stimulus intensity) and it is not always simple to distinguish between these alternatives because animals might be able to use both (e.g. fish, Agrillo et al. 2011). We present compelling data showing that visual (and/or tactile) stimuli and olfactory stimuli are both important for ants when they quantify, suggesting that they use different sources of information to make their choice. The inspection time increased significantly with the area occupied by the cocoons, suggesting that ants might assess size/area information and/or true numerical information. We can safely exclude the ants spent more time with the larger pile due to sequential investigation of the stimuli (as occurs in bumblebees, MaBouDi et al. 2020), because our ants explored both cocoons piles first and returned several times to both piles (Figure S3). Further experiments should clarify whether ants rely on genuine numerical information rather than, more generally, quantitative information to discriminate stimuli.

In the second task, foraging ants learned to search for food near a landmark that changed its absolute position over time while maintaining its relative position to four other identical landmarks. During the unrewarded test, ants continued to search near the trained landmark in the absence of food and despite a further change in its absolute position in relation to previous
trials (including the last one). Ants could not use any spatial information, such as distance from the starting point, to locate the reward. Ants' search accuracy was best explained by the relative position of the landmark (i.e., the order in which it was encountered upon entering the arena) rather than the distance travelled from the starting point. Indeed, they did not stop searching at the last baited location prior to the test. This suggests that ants can count the number of landmarks that they encounter on the way to a food source. Our findings are comparable to those found in honey bees in analogous tasks (Chittka and Geiger 1995; Dacke and Srinivasan 2008). Similar to honey bees and guppies (Dacke and Srinivasan 2008; Miletto Petrazzini et al. 2015), our ants show a limit at four since their performance in the unrewarded test decreased drastically when trained to forage at landmark 5, while rats appear to have a much higher upper limit in analogous experimental conditions (Davis and Bradford 1986; Suzuki and Kobayashi 2000).

In conclusion, our study contributes to the scant body of knowledge available on individual quantitative cognition in insects besides bees. Using two ecologically relevant tasks, we showed that carpenter ants used relative quantity and relative position to make efficient decisions. Our results suggest that ants might use two types of relative information about quantities, numerousness and ordinality, although further studies are necessary to precisely elucidate which kind of cues are used by ants and what is the underlying system allowing these cognitive performances and whether they can use numerical information after controlling for stimulus size or area which are confounded in quantitative judgments.

Acknowledgements. We are grateful to Paul Devienne for technical assistance and for the ant picture in figure 3. Thanks to Heiko Rödel and Jean-Luc Durand for advice about the statistics. Many thanks to Angelo Bisazza for helpful comments. P.dE. is funded by 'Institut Universitaire de France (IUF)'.

Author Contributions. P.dE. and J.C. conceived the experiments. P.dE. and P.M. developed the methodology. Experimental data were taken by P.S. for spontaneous quantity discrimination (cocoon experiment) and by P.M. for use of ordinal information (landmark experiment). Data analysis was performed by P.dE. The paper was written by P.dE. and J.C., with input from all authors.

Competing interests. The authors declare no competing interests.
Data availability: The data used in this study are available at the Open Science Framework (https://osf.io/m2k3b/?view_only=73691a2fe7114712b40ebedbb6bd1da8).

References

Agrillo C, Bisazza A (2018) Understanding the origin of number sense: a review of fish studies. Phil. Trans. R. Soc. B 373:20160511

Agrillo C, Dadda M, Serena G, Bisazza A (2008) Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition 11:495-503

Agrillo C, Piffer L, Bisazza A (2011) Number versus continuous quantity in numerosity judgments by fish. Cognition 119:281-287

Agrillo C, Piffer L, Bisazza A, Butterworth B (2012) Evidence for two numerical systems that are similar in humans and guppies. PLoS ONE 7:e31923

Baker JM, Shivik J, Jordan KE (2011) Tracking of food quantity by coyotes (Canis latrans). Behav Process 88:72-75

Barnard AM, Hughes KD, Gerhardt RR, DiVincenti L Jr, Bovee JM, Cantlon JF (2013) Inher-ently analog quantity representations in olive baboons (Papio anubis). Front Psychol 4:253

Benson-Amram S, Heinen VK, Dryer SL, Holekamp KE (2011) Numerical assessment and individual call discrimination by wild spotted hyaenas, Crocuta crocuta. Anim Behav 82:743-752

Beran MJ (2017) Quantitative cognition. In: Call J, Burghardt GM, Pepperberg IM, Snowdon CT, Zentall T (eds) APA Handbook of Comparative Psychology, American Psychological Association, Washington DC, pp 553-577
Bisazza A, Piffer L, Serena G, Agrillo C (2010) Ontogeny of numerical abilities in fish. PLoS ONE 5: e15516

Bogale BA, Aoyama M, Sugita S (2014) Spontaneous discrimination of food quantities in the jungle crow, Corvus macrorhynchos. Anim Behav 94:73-78

Brannon EM, Terrace HS (1998) Ordering of the numerosities 1 to 9 by monkeys. Science 282, 746

Cacchione T, Christine Hrubesch C, Call J (2014) Phylogenetic roots of quantity processing: Apes do not rely on object indexing to process quantities. Cognitive Development 31:79-95

Call J (2000) Estimating and operating on discrete quantities in orangutans (Pongo pygmaeus). J Comp Psychol 114:136-147
Cammaerts M-C (2008) Visual discrimination of cues differing as for their number of elements, their shape or their orientation, by the ant Myrmica sabuleti. Biologia 63:1169-1180

Cammaerts M-C, Cammaerts R (2019) Ants' notion of zero through the perception of the absence of an odor. International Journal of Biology 11:2 doi:10.5539/ijb.v11n2p1

Carazo P, Fernández-Perea R, Font E (2012) Quantity estimation based on numerical cues in the mealworm beetle (Tenebrio molitor). Frontiers in Psychology 3:502

Carazo P, Font E, Forteza-Behrendt E, Desfilis E (2009) Quantity discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate? Anim Cogn 12:46370

Chittka L, Geiger K (1995) Can honey bees count landmarks? Anim Behav 49:159-164

Cronin AL (2014) Ratio-dependent quantity discrimination in quorum sensing ants. Anim Cogn 17:1261-1268

Dacke M, Srinivasan M (2008) Evidence for counting in insects. Anim Cogn 11:683-689
Davis H, Bradford SA (1986) Counting behavior by rats in a simulated natural environment. Ethology 73:265-280
d'Ettorre P (2013) Learning and recognition of identity in ants. In: Menzel R, Benjamin PR (eds) Invertebrate Learning and Memory. Elsevier, pp 501-513

Dehn MM (1990) Vigilance for predators - detection and dilution Effects. Behav Ecol Sociobiol 26:337-342

Feigenson L, Dehaene S, Spelke E (2004) Core systems of number. Trends Cogn Sci 8:307 314

Ferkin MH, Pierce AA, Sealand RO, delBarco-Trillo J (2005) Meadow voles, Microtus pennsylvanicus, can distinguish more over-marks from fewer over-marks. Anim Cogn 8:182-189

Gatto E, Carlesso D (2019) Spontaneous quantity discrimination in crickets. Ethology 125: 613-619

Giraudoux P (2016) Pgirmess: Data analysis in ecology. R package version 1.6.4. https://CRAN.R-project.org/package=pgirmess.
Giurfa M (2019) An insect's sense of number. Trends Cogn Sci 23:720-722
Gross H, Pahl M, Si A, Zhu H, Tautz J, Zhang S (2009) Number-based visual generalization in the honeybee. Plos One 4:e4263

Hauser M.D., Carey S., Hauser L.B. (2000) Spontaneous number representation in semi-freeranging rhesus monkeys. Proc R Soc Lond B 267:829-833
Holman L, Dreier S, d'Ettorre P (2010) Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc R Soc Lond B 277:2007-2015
Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2018) Numerical ordering of zero in honey bees. Science 360:1124-1126
Howard SR, Schramme J, Garcia JE, Ng L, Avarguès-Weber A, Greentree AD, Dyer AG (2020) Spontaneous quantity discrimination of artificial flowers by foraging honeybees. J Exp Biol 223. doi: 10.1242/jeb. 223610.
Jordan KE, Brannon EM (2006) A common representational system governed by Weber's law: Nonverbal numerical similarity judgments in 6 -year-olds and rhesus macaques. Journal of Experimental Child Psychology 95:215-229
Judge PG, Evans TA, Vyas DK (2005) Ordinal Representation of Numeric Quantities by Brown Capuchin Monkeys (Cebus apella). Journal of Experimental Psychology Animal Behavior Processes 31:79-94
Lucon-Xiccato T, Miletto Petrazzini ME, Agrillo C, Bisazza A (2015) Guppies discriminate between two quantities of food items but prioritize item size over total amount. Anim Behav 107:183-191

Lucon-Xiccato T, Gatto E, Bisazza A (2018) Quantity discrimination by treefrogs. Anim Behav 139:61-69

MaBouDi H, Dona H, Gatto E, Loukola OJ, Buckley E, Onoufriou PD, Skorupski P, Chittka L (2020) Bumblebees use sequential scanning of countable items in visual patterns to solve numerosity tasks. Integrative and Comparative Biology, icaa025, https://doi.org/10.1093/icb/icaa025

Maynard Smith J, Parker GA (1976) The logic of asymmetric contests. Anim Behav 24:159175

McComb K, Packer C, Pusey A (1994) Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim Behav 47:379-387

Miletto Petrazzini ME, Lucon-Xiccato T, Agrillo C, Bisazza A (2015) Use of ordinal information by fish. Scientific reports 5:15497

Moyer RS, Landauer TK (1967) Time required for judgements of numerical inequality. Nature 215:1519-1520.

Nieder A (2018) Evolution of cognitive and neural solutions enabling numerosity judgements: lessons from primates and corvids. Phil. Trans. R. Soc. B 373:20160514.

Pahl M, Si A, Zhang S (2013) Numerical cognition in bees and other insects. Frontiers in psychology 4:162. https://doi.org/10.3389/fpsyg.2013.00162

Perez M, Giurfa M, d'Ettorre P (2015) The scent of mixtures: rules of odour processing in ants. Scientific Reports 5:8659. doi: 10.1038/srep08659

Pinheiro J, Bates D, DebRoy S, Sarkar DR (2016) Core Team. nlme: Linear and nonlinear mixed effects models. R package version 3.1-127 http://CRAN.Rproject.org/package=nlme.

Piqueret B, Sandoz JC, d’Ettorre P (2019) Ants learn fast and do not forget: associative olfactory learning, memory and extinction in Formica fusca. Royal Society Open Science 6:190778.

Plotnik JM, Brubaker DL, Dale R, Tiller LN, Mumby HS, Clayton NS (2019) Elephants have a nose for quantity. Proc Natl Acad Sci USA 116:12566-12571

R Core Team (2019) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: www.R-project.org

Reznikova Z (2008) Experimental paradigms for studying cognition and communication in ants (Hymenoptera: Formicidae) Myrmecological News 11:201-214

Reznikova Z, Ryabko B (1996) Transmission of information regarding the quantitative characteristics of an object in ants. Neurosci Behav Physiol 26:397-405

Reznikova Z, Ryabko B (2011) Numerical competence in animals, with an insight from ants. Behaviour 148:405-434

Rugani R (2018) Towards numerical cognition's origin: insights from day-old domestic chicks. Phil Trans R Soc B 373:20160509

Rugani R, Regolin L, Vallortigara G (2007) Rudimental numerical competence in 5-day-old domestic chicks (Gallus gallus): identification of ordinal position. Journal of Experimental Psychology Animal Behavior Processes 33:21- 31

Skorupski P, MaBouDi HD, Galpayage Dona HS, Chittka L (2018) Counting insects. Phil Trans R Soc B 373:20160513

Suzuki K, Kobayashi T (2000) Numerical competence in rats (Rattus norvegicus): Davis and Bradford (1986) extended. Journal of Comparative Psychology 114:73-85

Tanner CJ (2006) Numerical assessment affects aggression and competitive ability: A teamfighting strategy for the ant Formica xerophila. Proc R Soc Lond B 273:2737-2742

Thomas ML, Simmons LW (2009) Male-derived cuticular hydrocarbons signal sperm competition intensity and affect ejaculate expenditure in crickets. Proc R Soc Lond B 276:383-388

Uller C, Lewis J (2009) Horses (Equus caballus) select the greater of two quantities in small numerical contrasts. Anim Cogn 12:733-738

Ward C, and Smuts BB (2007) Quantity-based judgments in the domestic dog (Canis lupus familiaris). Anim Cogn 10:71-80

Wilson ML, Hauser MD, Wrangham RW (2001) Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees? Anim Behav 61:1203-1216

Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: Stepping on stilts and stumps. Science 312:1965-1967

Figure captions

Figure 1. Spontaneous quantitative discrimination. Time (seconds) spent by the ants inspecting different amounts of dummy cocoons, each perfumed with $20 \mu \mathrm{l}$ of chemical extract of natural cocoons, $\mathrm{n}=15$ in all cases (a). Proportion of time spent near the larger cocoon pile against the numerical ratio (b). Time (seconds) spent inspecting two zones with one cocoon each, but a different amount of chemical extract (top, $\mathrm{n}=12$ left, $\mathrm{n}=15$ right). Time spent inspecting piles of different numbers of cocoons, but with the same total amount of chemical extract (bottom, $\mathrm{n}=15$ in both cases) (c). Box plots show the median, $25^{\text {th }} / 75^{\text {th }}$ percentiles, whiskers indicate $5^{\text {th }} / 95^{\text {th }}$ percentiles. Asterisks indicate significant differences: * $\mathrm{p}<0.05$, ** $\mathrm{p}<0.01, * * * \mathrm{p}<0.001$.

Figure 2. Sequential landmark training. Picture of the rectangular arena with the ant starting point represented by the cylinder (left); position of the five landmarks over the eight training trials for the group of ants trained to find the reward after landmark 3 (the reward, a drop of sugar solution, is represented by an asterisk); unrewarded test for ants trained to landmark 3 (right): the landmarks are in a totally new configuration and are spaced at irregular intervals (a) See also Fig. S2 and Table S1. Learning curves showing that ants decrease the reward searching time along the 8 training trials (LMM, p<0.001 in all cases; L1: ants trained to find the reward at landmark $1, \mathrm{n}=15 ; \mathrm{L} 2, \mathrm{n}=15 ; \mathrm{L} 3, \mathrm{n}=17 ; \mathrm{L} 4, \mathrm{n}=14 ; \mathrm{L} 5, \mathrm{n}=15$). The picture shows an ant drinking the sugar reward, Photo by Paul Devienne (b).

Figure 3. Use of sequential landmark information. Distribution of time spent searching for the reward by ants that were tested without reward after being trained for reward at landmark 1 (L1), landmark 2 (L2), landmark 3 (L3), landmark 4 (L4) and landmark 5 (L5). The arena was divided in 50 equal zones of 1 cm each. The zones used to calculate the 'counting performance index', CPI (mean \pm SE), i.e., the ratio of time spent around the trained landmark to the average of the time spent searching at the other landmarks (Dacke and Srinivasan 2008) are highlighted: dark grey for the neutral landmarks, black for the trained landmark. Asterisks indicate significant differences (One-sample Wilcoxon test), L4: $\mathrm{p}=0.078$. The green dots indicate the position where the reward was expected to be (at the trained landmark) and the arrows show the position of the reward at the last training trial, just prior to the test (a). In all cases ants spent more time searching for the reward at the trained landmark (green), than at the position were the rewarded was located during the last training trial (Wilcoxon test) (b). Box plots show the median, $25^{\text {th }} / 75^{\text {th }}$ percentiles, whiskers indicate $5^{\text {th }} / 95^{\text {th }}$ percentiles. Asterisks indicate significant differences: $* \mathrm{p}<0.05, * * \mathrm{p}<0.01, * * * \mathrm{p}<0.001$.

Click here to access/download Supplementary Material Supplementary Information Figures and Table.docx

Click here to access/download Marked manuscript dEttorre et al_revised2_marked.docx

Click here to access/download Supplementary Material Unrewarded test - training L2.mov

Click here to access/download Supplementary Material Unrewarded test - training L3.mov

Click here to access/download
 Supplementary Material aneous Quantity Discrimin
 Data Spontaneous Quantity Discrimination.xlsx

Dat

Quant
\qquad
\qquad正
-
\square
都
(
-

0

\square

Click here to access/download Supplementary Material Data Sequential Landmark training and test.xlsx

