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Matching in Power Graphs of Finite Groups
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Abstract. The power graph P (G) of a finite group G is the undirected
simple graph with vertex set G, where two elements are adjacent if one is
a power of the other. In this paper, the matching numbers of power graphs
of finite groups are investigated. We give upper and lower bounds, and
conditions for the power graph of a group to possess a perfect matching.
We give a formula for the matching number for any finite nilpotent group.
In addition, using some elementary number theory, we show that the
matching number of the enhanced power graph Pe(G) of G (in which two
elements are adjacent if both are powers of a common element) is equal
to that of the power graph of G.
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1. Introduction

Associating graphs to algebraic structures is an interesting research topic. Cay-
ley graphs, intersection graphs, zero divisor graphs, commuting graphs and
power graphs are some examples of graphs constructed from semigroups and
groups.

The directed power graph was first proposed in 2002 by Kelarev and
Quinn [11]. For a group G, the directed power graph

−→
P (G) is a graph with

vertex set G with an arc from the vertex x to the vertex y if and only if
y = xn for some natural number n ∈ N. Motivated by this, Chakrabarty et al.
[7] defined the undirected power graph P (G), whose vertex set is G and the
edge set consists of pairs of distinct vertices x and y if y = xj or x = yk for
some j, k ∈ N. (These definitions were first given for semigroups, but we only
consider groups here.)

Many fascinating results on directed and undirected power graphs were
established by several authors. The authors of [7] proved that the necessary
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and sufficient condition for P (G) to be complete is that G is a finite cyclic
group having order 1 or pi, for some prime number p and positive integer i.

Curtin and Pourgholi [8,9] proved that power graphs of cyclic groups
have the largest clique and maximum number of edges, among all finite groups
of a given order.

In [6], the first author and Shamik Ghosh proved that finite abelian
groups having isomorphic power graphs are isomorphic. They also showed
that the Klein 4-group is the only finite group whose automorphism group
is isomorphic to that of its power graph. In [4], the first author proved that
finite groups having isomorphic power graphs have isomorphic directed power
graphs.

The chromatic number of power graphs of finite groups is investigated in
[12,15] and some results on the independence number of the same is proved in
[14].

Ma et al. [13] found, for certain graphs Γ, the smallest group G for which
Γ can be embedded in P (G).

We denote graphs by Γ: our graphs are simple graphs with vertex set
V and edge set E. A matching or independent edge set M in a graph Γ is
a set of edges in which no two of them share a common vertex. A vertex is
said to be matched (or saturated) if it is incident to one of the edges in the
matching. Otherwise the vertex is unmatched. A matching M of a graph Γ
is maximal if it is not a subset of any other matching in Γ. A matching that
contains the largest possible number of edges is called a maximum matching.
The size (number of edges) in a maximum matching in a graph Γ is known
as its matching number, which is denoted by μ(Γ). A perfect matching is a
matching which saturates all vertices of the graph: it has size |V |/2.

Let G be a finite group. Together with the power graph, the enhanced
power graph and the commuting graph are some of the examples of graphs
whose vertex set is G and whose edges reflect the group structure in some
way. In the enhanced power graph of G, denoted by Pe(G), two vertices x
and y are adjacent if and only if 〈x, y〉 is cyclic, and in the commuting graph
Com(G) of G, two vertices are adjacent if they commute.

We denote the order of a group G by |G|, while for a ∈ G, the order of
the element a is denoted by o(a).

In this paper, we concentrate on finding matchings in the power graphs.
We investigate several class of groups to obtain groups whose power graphs
have a perfect matching. In particular, we find the size of a maximum matching
in the power graph of any abelian group. We also include some results we
obtained on the enhanced power graph and commuting graph. In particular,
the power graph and enhanced power graph have the same matching number.

The context for this result is the classification of finite groups for which
the power graph and enhanced power graph are equal: these are the groups
in which every element has prime power order, determined by Brandl [2] in
1981; see [5] for a discussion of these groups and their connection with graphs.
These form an interesting class of groups, and we thought to investigate wider
classes as follows: choose a monotone graph parameter π, and determine the
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groups G for which π takes the same value on the power graph and enhanced
power graph of G. To our surprise, we found that, for matching number, this
is the class of all groups. (For further comments see the end of the paper.)

2. A Preliminary Result

We begin this section by noting that a finite group G of odd order has match-
ing number (|G| − 1)/2; that is, a maximum matching leaves just one vertex
unmatched. To see this, note that, for any x ∈ G, if x �= 1, then x �= x−1 and
{x, x−1} is an edge of P (G); these edges form a matching of the required size.

For groups of even order, we begin with the following observation.

Theorem 1. Let G be a group of even order. Let T = {g ∈ G : g2 = 1} be
the set consisting of the identity and the involutions in G. Let Γ be a graph
with vertex set G with the property that every element of G\T is joined to
its inverse. Then there is a maximum-size matching in Γ for which the set of
unmatched vertices is contained in T .

Proof. Clearly |T | > 1.
Take any matching M of Γ. We describe a transformation to another

matching M ′ such that either |M ′| > |M |, or |M ′| = |M | and the number of
unmatched vertices not in T is smaller in M ′ than in M .

Suppose that g is an unmatched vertex which is not in T . If g−1 is also
unmatched then we can match g to g−1, increasing the size of the matching.
So suppose g−1 is matched.

Put g = g0. Let g1 be the vertex matched to g−1
0 ; let g2 be the vertex

matched to g−1
1 ; and so on, as long as possible. The process terminates when

either g−1
m is unmatched, or gm ∈ T .

In the first case, we replace the edges {g−1
0 , g1}, {g−1

1 , g2}, . . . , {g−1
m−1, gm}

with the edges {g0, g
−1
0 }, {g1, g

−1
1 }, . . . , {gm, g−1

m }, and the size of the matching
is increased by one.

In the second case, we replace the edges {g−1
0 , g1}, {g−1

1 , g2}, . . . , {g−1
m−1,

gm} with the edges {g0, g
−1
0 }, {g1, g

−1
1 }, . . . , {gm−1, g

−1
m−1}. The resulting match-

ing has the same size, but we have replaced the unmatched vertex g0 /∈ T by
gm ∈ T , so we have decreased by one the number of unmatched vertices not
in T .

If we begin the process with a maximum matching, then each step must
reduce the number of unmatched vertices not in T , and the process concludes
when this number reaches zero. �

Now the power graph P (G) has the property of Γ in this theorem, so we
can take a maximum matching in P (G) with all unmatched vertices lying in
T . If |T | > 1 (so that |G| is even) and the identity is unmatched, then we may
add the edge {1, t} to the matching, where t is an involution. So the following
holds.

Corollary 1. (a) Let G be a group of even order. Then the size of a maximum
matching in the power graph or enhanced power graph of G is at least
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1 + (|G| − |T |)/2, where T consists of the identity and the involutions in
G.

(b) If G is a group with a unique involution, then P (G) has a perfect match-
ing.

Remark 1. Groups with a unique involution are known; see [1].

3. Upper and Lower Bounds

In this section, we describe upper and lower bounds for the matching number
of the power graph of a group of even order. First, an upper bound.

Theorem 2. Let G be a finite group of even order. Let I(G) be the set of invo-
lutions in G, and O(G) the set of elements of odd order. Then
(a) any matching of P (G) leaves at least |I(G)|− |O(G)| vertices unmatched;
(b) if G has a perfect matching, then |I(G)| ≤ |O(G)|.

Proof. We use Tutte’s 1-factor theorem [17], which asserts that a graph Γ =
(V,E) has a perfect matching if and only if for every subset U of V , the
induced subgraph Γ − U on V \U has at most |U | connected components with
an odd number of vertices. The Tutte–Berge formula (the “deficit form” of
the theorem) asserts that the number of unmatched vertices in a maximum
matching of a graph Γ is equal to the maximum, over all subsets U of V , of
the number of odd components of Γ − U minus |U |.

Let Γ′ be the induced subgraph of P (G) on G\O(G) (the set of elements
of even order in G). For t ∈ I(G), let

Ct = {x ∈ G : t ∈ 〈x〉}.

Note that elements of Ct have even order, and no element of G can lie in more
than one of these sets, since a cyclic group contains at most one involution.

We will show that the sets Ct for t ∈ I(G) are connected components
of Γ′, and that they all have odd cardinality. It follows from Tutte’s 1-factor
theorem that, if P (G) has a perfect matching, then |I(G)| (the number of odd
components of Γ′) does not exceed |O(G)|. Moreover, the deficit form of the
theorem shows that, if |I(G)| > |O(G)|, there are at least |I(G)| − |O(G)|
vertices uncovered in any matching of P (G).

Note that any element of Ct is joined to t in the power graph, so any two
elements of Ct have distance at most 2; thus Ct is contained in a connected
component. Take an edge {x, y} of the power graph contained in G\O(G).
Without loss of generality, x is a power of y. Suppose that t is the involution
in 〈x〉, so that x ∈ Ct. Then t ∈ 〈x〉 ≤ 〈y〉, so also y ∈ Ct. This shows that Ct

is a connected component of Γ.
Now all elements of Ct\{t} have order greater than 2; so they can be

paired with their inverses, leaving only t unpaired. So |Ct| is odd, as required.
�

Now we give a lower bound.
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Theorem 3. Let G be a finite group of even order. Let S = I(G) be the set
of involutions in G, and O(CG(S)) the set of elements of odd order which
commute with all involutions.
(a) There is a matching leaving at most max{0, |I(G)|−|O(CG(S))|} vertices

unmatched.
(b) If |I(G)| ≤ |O(CG(S))|, then P (G) has a perfect matching.

Proof. Let n = |I(G)| and m = |O(CG(S))|. We start as usual with the match-
ing M on G in which each element of order greater than 2 is matched to its
inverse, leaving the identity and the involutions unmatched. In addition, we
match the identity to one of the involutions. This leaves n − 1 unmatched
involutions, which we partition into (n − 1)/2 pairs in any manner, and m − 1
elements of odd order commuting with them, falling into (m − 1)/2 inverse
pairs.

Assume that both n and m are greater than 1. Let u, v be involutions, and
x, x−1 a pair of elements of odd order commuting with u and v. In the given
matching, we have edges {x, x−1}, {ux, ux−1}, and {vx, vx−1}. We delete these
and include instead the edges {u, ux}, {v, vx−1}, {ux−1, x−1} and {vx, x}.
Now all previously matched elements are still matched, and in addition u and
v are matched.

Repeating this process, if m ≥ n we match all the involutions, while if
m < n we match (m − 1)/2 pairs of involutions with elements of odd order,
leaving n − m involutions unmatched. �

With these results we can calculate the matching number of the power
graph of a nilpotent group.

Theorem 4. Let G be nilpotent; let I(G) and O(G) be the sets of involutions
and elements of odd order, respectively.
(a) If |I(G)| < |O(G)|, then P (G) has a perfect matching.
(b) Otherwise, a maximum matching of P (G) leaves |I(G)| − |O(G)| vertices

unmatched.

Proof. If G is nilpotent, then the elements of odd order form a normal subgroup
O(G), and G ∼= H × O(G) where H is a Sylow 2-subgroup. So all involutions
commute with all elements of odd order. So the result follows from Theorems 2
and 3. �

4. Related Results

In this section, we give some miscellaneous related results.

4.1. Groups Whose Power Graph Has Small Matching Number

Theorem 5. For every positive integer m, there are only finitely many finite
groups G with μ(G) = m, apart from elementary abelian 2-groups (with μ(G) =
1); such groups satisfy |G| < 8m + 4.
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Proof. If |G| is odd, then m = μ(G) = (|G|−1)/2, so |G| = 2m+1. So suppose
that |G| is even. Then |O(CG(S))| ≥ 1, and the number of vertices uncovered
in a maximum matching is |G| − 2m. So

|I(G)| − 1 ≥ |G| − 2m,

whence |I(G)| ≥ |G| − 2m + 1. However, if G is not elementary abelian, then
|I(G)| < 3

4 |G|. (This known result has been described in the literature as an
“easy exercise”). So |G| < 8m + 4. �

Using this, we can give the determination of groups whose power graph
has matching number 1 or 2. The dihedral group Dn is the group of order 2n
which is the symmetry group of a regular n-gon, for n ≥ 3.

Theorem 6. Let G be a finite group.
(a) If μ(P (G)) = 1, then G is either an elementary abelian 2-group or C3.
(b) If μ(P (G)) = 2, then G is one of the following groups: C4, C5, D3 or D4.

Proof. Part (a) follows immediately from the preceding theorem. For part (b),
we know that such a group has order at most 11, and there are only a small
number of groups to analyse. �

4.2. Groups with Few Involutions

We have seen that, if G has a unique involution, then P (G) has a perfect
matching. We now extend this result.

Theorem 7. Let G be a group with exactly three involutions, not all pairs of
which commute. Then either G ∼= S3, or P (G) has a perfect matching.

Proof. Let s, t, u be the involutions. If s and t do not commute, then 〈s, t〉 is
a dihedral group of order 2n containing n involutions, with n ≥ 3; so we must
have n = 3, and s, t, u are the involutions in a normal subgroup of G isomorphic
to S3. Now S3 is a complete group: this means that its centre and its outer
automorphism group are both trivial. Hence every extension of S3 splits: that
is, if S3 is a normal subgroup of G, then G ∼= S3 × H. See [16, Section 13.5].
Now H contains no involutions, so has odd order. If |H| = 1, then G ∼= S3;
otherwise H = O(CG(S)), and the result follows from Theorem 3. �

For a group G, since E(P (G)) ⊆ E(Pe(G)) ⊆ E(Com(G)), the possibility
to have a perfect matching in the commuting graph is greater as compared to
the power graph. The following theorem shows that, if the order of a group is
much bigger than the number of involutions in it, then its commuting graph
has a perfect matching.

Proposition 1. There is a function F such that, if G is a group of even order
which has exactly n involutions, and |G| ≥ F (n), then the commuting graph of
G has a perfect matching.

Proof. We take F (n) = 2n·n!. So let G be a group with even order greater than
2n · n! and suppose that G contains n involutions. We begin with a matching
M as follows: elements of order greater than 2 are matched to their inverses;
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the identity is mapped to one involution. If n = 1 we are finished, so suppose
not.

The group G acts by conjugation on the set S of involutions. The kernel
of this action, which is CG(S), has index at most n! in G, and so has order at
least 2n; so, putting X = CG(S)\({1} ∪ S), we have |X| ≥ n − 1. Moreover,
elements of X have order greater than 2, and so are matched with their inverses
in M ; and X is inverse-closed.

Pick (n − 1)/2 inverse pairs in X, say {x1, x2}, . . . , {xn−2, xn−1}. Let
t1, . . . , tn−1 be the unmatched involutions in S. Now delete the edges {x2i−1, x2i}
from M for i = 1, . . . , (n − 1)/2, and add the edges {x1, t1}, {x2, t2}, . . . ,
{xn−1, tn−1} instead. (These are edges since ti ∈ S and xi ∈ CG(S).) The
result is a perfect matching M ′. �

The hypothesis in the above theorem is not enough in the case of power
graphs, since, the power graph of C2n × C2m has no perfect matching even if
we take n and m very large: the group has three involutions and one element
of odd order.

Proposition 2. There is a function F on the natural numbers with the following
property: Let G be a finite group of even order, and S the set of involutions
in G. Suppose that for every involution u ∈ S, there is an involution v in S
which does not commute with u. If |G| ≥ F (|S|), then the power graph of G
has a perfect matching.

Proof. Take F (n) = n.n!. Again, G acts by conjugation on S, so |G : CG(S)| ≤
n!. Thus, |CG(S)| ≥ n. Now by hypothesis, no involution belongs to CG(S),
so CG(S) is a group of odd order. Thus the assumptions of Theorem 3 are
satisfied. �

4.3. Embedding in Groups Whose Power Graph Has a Perfect Matching

Theorem 8. Let G be a finite group of even order, and suppose that the number
of elements of G not matched in a matching of maximum size in P (G) is s. If
p is an odd prime greater than s, then G × Cp has a perfect matching.

Proof. In the following, we use the internal direct product, so that G and Cp

are subgroups of G × Cp.
Let t1, . . . , ts be the elements unmatched in some matching of maximum

size in P (G). By Theorem 1 we can assume that t1, . . . , ts are involutions.
(The set of unmatched vertices can be taken to be a subset of I(G), and the
identity can be matched to any other vertex.) Note that s is even.

Take p > s, and let x be a generator of Cp in the group G×Cp. Let A0 =
〈x〉\{1}, and for 1 ≤ i ≤ s let Ai = A0ti. Each set Ai for 0 ≤ i ≤ s induces a
complete graph in P (G × Cp), and we have all possible edges between A0 and
Ai for i > 0. Moreover, ti is joined to every vertex in Ai. Also, |Ai| = p− 1 for
all i.

Choose an edge from ti to a vertex in Ai for each i and add to the
matching on G. There remain p−2 unmatched vertices in Ai; choose one, and
match it to a vertex in A0, using distinct vertices for different i. This leaves
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p − 3 unmatched vertices in Ai, an even number, and p − 1 − s unmatched
vertices in A0, also an even number since s is even. So we can extend the
matching by pairing up the unmatched vertices in Ai for all i.

Finally, the vertices not yet matched come in inverse pairs, since they
lie outside the union of the subgroups G and 〈xti〉; so we can match each
remaining vertex with its inverse. �

As a companion piece we have the following:

Theorem 9. Let G be a finite group of odd order. Then P (G×C2) has a perfect
matching.

Proof. G × C2 has a unique involution. �

4.4. 2-Groups

The following theorem characterises the 2-groups having perfect matchings in
their power graphs.

Theorem 10. Let G be a finite group with |G| = 2n. Then P (G) has a perfect
matching if and only if G is cyclic or generalized quaternion.

Proof. We have |O(G)| = |O(GG(S))| = 1, so Theorems 2 and 3 show that G
has a perfect matching if and only if it has a unique involution. The 2-groups
with unique involution are the cyclic and generalized quaternion groups. �

5. A Number-Theoretic Result

We now head towards a proof that the matching numbers of P (G) and Pe(G)
are equal for any group G. First we require a little number theory.

The functions τ(n) (the number of divisors of n) and φ(n) (Euler’s totient
function) are two of the best-studied in number theory. The result we require
about them is elementary, but we have not found a proof in the literature.

Theorem 11. Let n be a positive integer. If n ≥ 30, then τ(n) < φ(n).

The proof depends on the formulae for these functions: if n =
∏r

i=1 pai
i ,

where p1, . . . , pr are distinct primes and a1, . . . , ar are positive integers, then
(a) τ(n) =

∏r
i=1(ai + 1),

(b) φ(n) =
∏r

i=1 pai−1
i (pi − 1).

We use the following technical lemma:

Lemma 1. Let p be a prime, and a a positive integer.
(a) If (p, a) /∈ {(2, 1), (2, 2)}, then pa−1(p − 1) ≥ a + 1, with equality only if

(p, a) ∈ {(2, 3), (3, 1)}.
(b) If p �= 2 and (p, a) �= (3, 1), then pa−1(p − 1) ≥ 2(a + 1), with equality

only if (p, a) = (5, 1).

Proof. The function f(x) = px−1(p − 1) − (x + 1) has derivative f ′(x) =
px−1(p − 1) log p − 1, which is positive for x ≥ 1 if p �= 2, and for x ≥ 2 if
p = 2. So for each p we only have to check the smallest values of x. �
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Proof of the Theorem. To prove the theorem, we see that if n is odd or divisible
by 8, then φ(n) ≥ τ(n), with strict inequality if the factorization includes 24,
32, or a prime larger than 3. If n is exactly divisible by 2a with a = 1 or
a = 2, then 2a−1(2 − 1) ≥ 1

2 (a + 1), and so as long as we have a factor 33,
52 or a prime greater than 5 the strict inequality holds. The cases n = 20
and n = 36 satisfy the conclusion. Thus, the only cases for which it fails are
1, 2, 3, 4, 6, 8, 10, 12, 18, 24, 30.

The result we actually require is the following corollary of this theorem.
Recall that the independence number α(Γ) of a graph Γ is the size of the largest
set of vertices containing no edges.

Corollary 2. Let n be a positive integer. If n /∈ {2, 6}, then the independence
number of the power graph of the cyclic group Cn is strictly less than φ(n).

Proof. In a cyclic group Cn, if two elements have the same order, then each is
a power of the other, so they are joined in the power graph. So an independent
set in the power graph has at most one element of each possible order, and its
cardinality is at most τ(n). By Theorem 11, the conclusion holds if n > 30; it
is easily checked directly for smaller values of n. �

Remark 2. In fact, it is easy to see that the independence number of P (Cn)
is the size of the largest antichain in the lattice of divisors of n. If n is a
product of m primes (not necessarily distinct), then an antichain of maximum
size is obtained by taking all distinct products of �m/2 primes, or all distinct
products of �m/2� primes. (This extension of the celebrated Sperner lemma
was proved by de Bruijn et al. [3].) This fact can be used to simplify the
calculations in the Corollary.

6. The Matching Number of the Enhanced Power Graph

Recall that the enhanced power graph Pe(G) of a finite group G is the graph
with vertex set G in which two vertices x and y are joined if there exists z
such that both x and y are powers of z (in other words, if 〈x, y〉 is cyclic). So
the enhanced power graph contains the power graph as a spanning subgraph,
and its matching number is at least as great as that of the power graph.

From our earlier work, there are several cases where equality holds:

(a) If |G| is odd, then the power graph has a matching covering all but one
vertex; therefore the same is true of the enhanced power graph.

(b) If the power graph of G has a perfect matching, then so does the enhanced
power graph.

(c) Examining the proof of the formula for the matching number of the power
graph of a nilpotent group (Theorem 4), we see that the same formula
holds for the enhanced power graph.

We are going to prove that the matching numbers are always equal, even
in cases where we cannot compute them from familiar group parameters.
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Theorem 12. Let G be a finite group. Then the matching numbers of the power
graph and the enhanced power graph of G are equal.

Proof. Let G be any finite group. Choose a matching M of maximum size in
the enhanced power graph. If all its edges belong to the power graph, there is
nothing to prove. Otherwise, we are going to change M to M ′ so that M ′ is
a matching of the same size and has one fewer edge which does not belong to
the power graph.

So let {g, h} be an edge of the matching M which belongs to the en-
hanced power graph but not to the power graph. Choose this edge so that
lcm(o(g), o(h)) is as large as possible. Let � be this lcm. Then 〈g, h〉 = C is
a cyclic group of order �. Let x1, . . . , xφ(�) be the generators of C. They are
joined to all vertices in C in the power graph.

Assume first that at least one of x1, . . . , xφ(�), say xi, is not covered by
the edges of M . Then we can replace the edge {g, h} by the edge {g, xi}, which
is an edge of the power graph. Similarly, if {xi, xj} is an edge of M , replace it
and {g, h} by {g, xi} and {h, xj}.

So we can assume that all of x1, . . . , xφ(�) are covered by edges in M . Let
{xi, yi} be an edge of M for i = 1, . . . , φ(�), with yi /∈ {x1, . . . , xφ(�)}.

For each i, there are three cases:
(a) xi is a power of yi;
(b) yi is a power of xi;
(c) neither of the above.

In case (a), g and h are powers of xi, and hence also powers of yi. So we
can replace the edges {g, h} and {xi, yi} by {g, xi} and {h, yi}, both of which
are edges of the power graph.

In case (c), {xi, yi} is an edge of the enhanced power graph but not of
the power graph, and lcm(o(xi), o(yi)) > � (since xi and yi are both powers of
some zi /∈ C), contradicting the choice of the edge {g, h}.

So we must be in case (b) for all i. This means that all of y1, . . . , yφ(�)

belong to C.
Now suppose that � /∈ {2, 6}. Then the independence number of the

power graph of C is strictly smaller than φ(�); so the set {y1, . . . , yφ(�)} is not
an independent set in the power graph, and so it contains at least one edge,
say {yi, yj}. In this case, we replace the three edges {g, h}, {xi, yi}, {xj , yj}
by {g, xi}, {h, xj}, {yi, yj}, all edges of the power graph.

Finally, the case � = 2 is clearly impossible. If � = 6, let C = 〈z〉 be
the cyclic group of order 6. There are just two nonedges of the power graph,
namely {z3, z2} and {z3, z4}; without loss of generality, {g, h} = {z2, z3}. We
have {x1, x2} = {z, z5}. Hence, necessarily {y1, y2} = {1, z4}. But this is an
edge of the power graph, so the argument in the preceding paragraph applies.

�

7. Conclusion and Open Problems

The most important problem we have been unable to solve is the following.



Matching in Power Graphs of Finite Groups

Problem 1. (a) Find a formula for the matching number of P (G) for any
finite group G, in terms of group-theoretic parameters of G.

(b) Find a necessary and sufficient condition on a group G for P (G) to have
a perfect matching.

As noted in Introduction, groups for which the power graph and enhanced
power graph coincide are the so-called EPPO groups or CP-groups, those for
which all elements have prime power order. (These are also the finite groups
whose Gruenberg–Kegel graph is null, see [5].) Their classification has a long
and interesting history. A natural extension of this problem runs as follows:

Problem 2. Let π be a monotone graph parameter (that is, if Γ is a spanning
subgraph of Δ then π(Γ) ≤ π(Δ)). Determine the finite groups for which
π(P (G)) = π(Pe(G)).

Theorem 12 shows that, if π is the matching number, then the solution
is “all finite groups”. Also, it is easy to show that, if π is the clique number
ω, then the solution is “all groups where the largest order of an element is a
prime power”. The same is true if π is the chromatic number χ: for, if G is a
group with χ(P (G)) = χ(Pe(G)), then

ω(Pe(G)) ≥ ω(P (G)) = χ(P (G)) = χ(Pe(G)) ≥ ω(Pe(G)),

the second and third terms being equal because P (G) is a perfect graph (see
[10]); so equality holds throughout.
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