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ABSTRACT

We present the results of a pilot Hubble Space Telescope (HST) imaging study of the host galaxies of

ten quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Probing

more than an order of magnitude in BH and stellar masses, our sample is the first statistical sample to

study the BH-host correlations beyond z > 0.3 with reliable BH masses from reverberation mapping

rather than from single-epoch spectroscopy. We perform image decomposition in two HST bands

(UVIS-F606W and IR-F110W) to measure host colors and estimate stellar masses using empirical

relations between broad-band colors and the mass-to-light ratio. The stellar masses of our targets are

mostly dominated by a bulge component. The BH masses and stellar masses of our sample broadly

follow the same correlations found for local RM AGN and quiescent bulge-dominant galaxies, with

no strong evidence of evolution in the MBH −M∗,bulge relation to z ∼ 0.6. We further compare the
host light fraction from HST imaging decomposition to that estimated from spectral decomposition.

We found a good correlation between the host fractions derived with both methods. However, the

host fraction derived from spectral decomposition is systematically smaller than that from imaging

decomposition by ∼ 30%, indicating different systematics in both approaches. This study paves the

way for upcoming more ambitious host galaxy studies of quasars with direct RM-based BH masses at

high redshift.

Keywords: black hole physics – galaxies: active – quasars: general – surveys

1. INTRODUCTION

The observed local scaling relations between the

masses of supermassive black holes (SMBHs) and their

host-galaxy properties (e.g., Magorrian et al. 1998;

∗ Alfred P. Sloan Research Fellow

Gültekin et al. 2009; McConnell & Ma 2013; Kormendy

& Ho 2013, and references therein) are the corner-

stone for the prevailing idea of the co-evolution between

SMBHs and galaxies through some form of self-regulated

black hole growth and feedback. A critical test of co-

evolution scenarios and feedback models is to measure

the evolution of the BH-host scaling relations beyond
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the nearby universe, and compare with theoretical work

that implements various SMBH feeding and feedback

recipes. In the past decade or so, large effort has been

dedicated to measuring the host-galaxy stellar prop-

erties of distant (i.e., z > 0.3) unobscured broad-line

Active Galactic Nuclei (or quasars) using either imag-

ing (e.g., Treu et al. 2004, 2007; Peng et al. 2006a,b;

Jahnke et al. 2009; Merloni et al. 2010; Targett et al.

2012; Sun et al. 2015) or spectroscopy (e.g., Shen et al.

2008; Woo et al. 2006, 2008; Matsuoka et al. 2015;

Shen et al. 2015a). Combined with the BH mass mea-

sured using spectral methods (e.g., Shen 2013) derived

from local reverberation mapping results (e.g., Peterson

2014), these measurements were used to evaluate the

correlations between SMBH mass and host properties

beyond the local universe. This is currently the primary

approach to measuring the evolution of the BH-host

scaling relations.

There are several challenges and caveats to this ap-

proach. First, host measurements are difficult due to

the faintness of the galaxy and the contamination from

the bright nucleus, requiring careful decomposition of

the nuclear and host light. In the case of imaging,

high spatial resolution is desired and sometimes nec-

essary, and is often achieved with Hubble Space Tele-

scope (HST). In terms of spectral decomposition (or

decomposition of the broad-band spectral energy den-

sity), high S/N is required to separate the weak stellar

continuum/absorption features from the bright quasar

continuum. The second challenge of measuring BH-host

properties at z > 0.3 is that most of these distant sam-

ples have limited dynamic range in BH mass and only

probe the high-mass end due to flux limit (for sufficient

S/N), preventing the measurement of the BH-host cor-

relations beyond simply inferring consistency or an “off-

set” from the local relations. There are a few recent

exceptions where the dynamic range is more than an or-

der of magnitude in BH mass (e.g., Shen et al. 2015a;

Matsuoka et al. 2015; Sexton et al. 2019), allowing for

the first time the determination of the slope and scat-

ter of the correlations beyond the nearby universe. The

third caveat, and perhaps the most significant one, is

the large uncertainty of the BH mass estimates. So far

all studies of the evolution of the BH-host scaling rela-

tions rely on BH masses estimated using the so-called

“single-epoch virial mass” technique bootstrapped from

local reverberation mapping results. These single-epoch

masses have large systematic uncertainties (e.g., ∼ 0.4

dex) that are fundamentally limited by the reverbera-

tion mapping sample (see detailed discussions in, e.g.,

Shen 2013).

In addition to these inherent caveats, selection effects

also play an important role in interpreting the observed

“evolution”. Neglecting selection effects, early studies

based on small samples with a narrow dynamic range

in mass often reported an excess of BH mass at fixed

host properties from the local relations. Later more

careful treatments of selection biases from the intrinsic

scatter in the BH-host relation (Lauer et al. 2007), BH

mass uncertainties (e.g., Shen & Kelly 2010), or popu-

lation biases (e.g., Schulze & Wisotzki 2011), combined

with larger samples, have produced more cautious con-

clusions about the possible evolution of these scaling

relations toward high redshift (e.g., Schulze & Wisotzki

2014; Shen et al. 2015a; Sun et al. 2015; Sexton et al.

2019; Ding et al. 2020). These latest studies generally

found that the results are consistent with non-evolving

BH-host relations, at least to z ∼ 1. Fully understand-

ing these selection biases is difficult at this point, but

future improvements in sample statistics and BH mass

recipes will help reduce the statistical ambiguity in the

interpretation of the observed evolution.

In this work we lay the foundation for improving the

constraints on the evolution of the MBH −M∗ relation,

using a subset of 10 quasars from the Sloan Digital Sky

Survey Reverberation Mapping (SDSS-RM, Shen et al.

2015b) project for which we have acquired HST imag-

ing data. The major advantage of our sample, compared

with those used in most previous evolutionary studies,

is that the BH mass estimates are based directly on re-

verberation mapping from a dedicated RM monitoring

program, eliminating the systematic uncertainties asso-

ciated with single-epoch BH masses. We use this sample

as a pilot study to verify our methodology and to derive

preliminary results on the evolution of the BH-host scal-

ing relations using the SDSS-RM sample.

This paper is organized as follows. In §2 we describe

the sample and the HST data processing. We describe

our imaging decomposition method in §3 and present the

results in §4. We discuss our results in §5 and conclude

in §6. Throughout this paper we adopt a flat ΛCDM

cosmology with ΩM = 0.3 and H0 = 70 km s−1 Mpc−1.

All host-galaxy measurements refer to the stellar popu-

lation only.

2. DATA

2.1. SDSS-RM and Sample Selection

The Sloan Digital Sky Survey Reverberation Mapping

(SDSS-RM) project (Shen et al. 2015b) has simultane-

ously monitored a uniform, flux-limited sample of 849

quasars in a 7 deg2 field since 2014 with both imag-

ing and spectroscopy. The primary goal of SDSS-RM is

to measure direct, RM-based BH masses for a uniform
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Table 1. Target Properties

RMID RA DEC z ipsf L5100,QSO σ∗ log(MBH,SE) log(MBH,RM)

[deg] [deg] [mag] [erg/s] [km/s] [M�] [M�]

101 213.0592 53.4296 0.4581 18.84 44.4 – 7.89±0.004 7.26+0.17
−0.19

229 212.5752 53.4937 0.4696 20.27 43.6 130±8.7 8.00±0.07 7.65+0.17
−0.20

272 214.1071 53.9107 0.2628 18.82 43.9 – 7.82±0.02 7.58+0.18
−0.21

320 215.1605 53.4046 0.2647 19.47 43.4 66.4±4.6 8.06±0.02 7.67+0.18
−0.18

377 215.1814 52.6032 0.3368 19.77 43.4 115±4.6 7.90±0.03 7.20+0.16
−0.16

457 213.5714 51.9563 0.6037 20.29 43.4 110±18 8.10±0.1 8.03+0.18
−0.21

519 214.3012 51.9460 0.5538 21.54 43.2 – 7.36±0.08 8.99+0.17
−0.18

694 214.2778 51.7278 0.5324 19.62 44.2 – 7.59±0.008 6.70+0.35
−0.17

767 214.2122 53.8658 0.5266 20.23 43.9 – 7.51±0.04 ∗8.80+0.17
−0.17 (8.26+0.20

−0.18)

775 211.9961 53.7999 0.1725 17.91 43.5 130±2.6 7.93±0.008 7.67+0.39
−0.24

Note—∗The RM black hole mass of RM767 is calculated using the Mg ii lag reported in Homayouni et al. (2020) and Shen
et al. (2016, value in brackets) and the broad Mg ii FWHM measured from the mean spectrum from Shen et al. (2019). All

other RM black hole masses are based on Hβ lags from Grier et al. (2017). The host stellar velocity dispersion σ∗ and
single-epoch mass uncertainties are 1σ measurement errors only, while the RM mass uncertainties also include 0.16 dex

systematic uncertainty following Grier et al. (2017).

quasar sample that covers a broad luminosity and red-

shift range. As of June 2020, RM BH masses have been

successfully measured for ∼ 150 SDSS-RM quasars us-

ing multiple broad emission lines, including 18 with Hα

(Grier et al. 2017), 44 with Hβ (Shen et al. 2016; Grier

et al. 2017), 57 with Mg ii (Shen et al. 2016; Homayouni

et al. 2020), and 48 with C iv (Grier et al. 2019).

Ten quasars with significant lag detections from the

first year of monitoring (Shen et al. 2015b) were cho-

sen for a pilot study of their host galaxies using HST

imaging. The RM time lags and BH masses of these ten

quasars are presented in Shen et al. (2016), Grier et al.

(2017) and Homayouni et al. (2020), and the host galaxy

properties derived from spectral analysis are presented

in Shen et al. (2015a) and Matsuoka et al. (2015). These

quasars spread over a factor of ten in luminosity within

a redshift range of 0.2 . z . 0.6 (with 〈z〉 = 0.4). Table

1 summarizes the physical properties of the ten targets.

2.2. HST Imaging

The ten quasars were observed with the Wide Field

Camera 3 (WFC3) UVIS F606W filter and IR F110W

filter in Cycle 23 (GO-14109; PI: Shen). To improve

the point-spread-function (PSF) sampling, we used a

basic 3-point dithering pattern for the F606W obser-

vations and a 4-point dithering pattern for the F110W

observations. Multiple short exposures were used for the

F606W observations to avoid saturation of the central

point source. For IR F110W, we use the multi-step read-

out sequence (STEP) to correct for central-pixel satu-

ration and to improve the dynamic range in the image.

Two orbits were dedicated to each target, one for each

filter.

To reliably subtract the central quasar light in the

image, we construct PSF models by dedicating one or-

bit to observing the white dwarf EGGR-26 using the

same filters and dithering patterns as our science ob-

servations. We group the observations within a 7-day

window to minimize effects from optics changes of the

instrument that may slightly change the PSF. Observa-

tions of seven targets (RM272, RM320, RM377, RM457,

RM519, RM694, RM775) and the white dwarf were car-

ried out between January 8th and 17th 2017. Initial

visits for the remaining three targets (RM101, RM229,

and RM767) failed and were repeated between March

6th and 9th 2017. There is no significant change in the

quasar PSF of the later repeated observations for the re-

maining three targets, suggesting that the PSF is stable

within the extended period of our observations.

We followed the standard HST pipeline procedures

to reduce and calibrate these data with the best ref-

erence files provided by the HST Calibration Refer-

ence Data System (CRDS). The individual exposures

are geometrically-corrected and dither-combined with

astrodrizzle. We adjust the final pixel size (final scale)

and pixel fraction (final pixfrac) following the astrodriz-

zle handbook to optimize the resolution of the drizzled

images and to create a narrower, sharper PSF. The final

image samplings are chosen to be 0.033′′/pixel for the

F606W images and 0.066′′/pixel for the F110W images,

which correspond to ∼0.18 and ∼ 0.35 kpc at z = 0.4.

Since the detector counts are conserved during the driz-

zling procedure, the chosen image sampling does not

affect the photometry measurements.

3. DATA ANALYSIS
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Figure 1. Surface brightness decomposition of all sources in F606W and F110W bands. The left panel is the surface
brightness profile of the data (black dots), the model (grey solid line) and each modeled component (red solid lines for PSFs,
orange dotted-dash lines for hosts/bulges (n=4), blue dash lines for exponential disks (n=1), and purple dotted lines for truncated
rings (RM775)). The radial profiles are directly measured from the GALFIT decomposed models and the HST images with
isophote fitting. The bottom sub-panel (in the leftmost panel) is the residual of the surface brightness profile, with rms along
the elliptical path plotted in grey shaded area. The right three images are (from left to right) the HST image, the GALFIT
model and the residual. The reduced χ2 of the model is labeled in the lower right corner of the residual image.
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Figure 1. (continued).
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Figure 1. (continued).
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Figure 1. (continued).
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Figure 1. (continued).
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Table 2. Galaxy decomposition results

RMID Comp. MagF606W MagF110W r (′′) n q P. A. rχ2
F606W rχ2

F110W

101 PSF 19.41 20.57 1.57 1.66

Bulge 21.03 21.11 0.71 4 0.88 -36.1

229 PSF 21.49 22.51 1.36 1.60

Bulge 24.53 23.15 0.31 4 0.21 -26.0

Disk 21.67 21.62 0.78 1 0.69 -40.7

272 PSF 19.11 20.37 1.61 1.91

Bulge 20.29 20.52 0.56 4 0.42 -74.1

320 PSF 20.68 21.58 1.90 2.28

Bulge 21.10 20.38 1.51 4 0.82 -58.9

Disk 20.08 21.18 1.77 1 0.36 -63.0

377 PSF 22.49 22.83 1.22 2.00

Bulge 20.46 20.40 0.67 4 0.69 -85.5

457 PSF 22.71 23.55 1.25 1.49

Bulge 22.38 22.21 0.80 4 0.75 -59.5

519 PSF 22.79 23.66 1.27 1.79

Bulge 23.45 23.46 0.13 4 0.65 20.9

694 PSF 20.41 21.62 1.30 1.58

Bulge 23.10 23.56 0.54 4 0.54 -25.4

767 PSF 21.69 22.18 1.24 2.27

Bulge 21.15 21.24 1.57 4 0.73 89.6

775 PSF 19.69 21.38 1.63 3.27

Bulge 19.84 19.64 0.15 4 0.72 -14.6

Disk 18.30 19.18 2.40 1 0.80 -52.1

Note—r is the effective radius of the Sérsic component, n is the Sérsic index, q is the ratio between the semi-minor axis and
the semi-major axis, and P.A. is the position angle in degrees. The reduced χ2 is calculated from the image residual, as

reported by GALFIT. Magnitudes are reported in ST magnitude (magST = −2.5 log(Fλ)− 21.1), which is the default output
from GALFIT. No extinction corrections are made for these magnitudes. The uncertainties of the GALFIT results are

discussed in Section 3.2.



10 Li et al.

3.1. Surface Brightness Decomposition

We perform 2-dimensional surface brightness decom-

position with GALFIT (Peng et al. 2010). GALFIT is

a package that performs 2D χ2-fitting of galaxy images

using different functional models, including PSF, Sérsic

profiles and structures such as rings, spiral arms and

truncated models.

The PSF model for the F110W images is directly con-

structed from the calibrated image of the dedicated PSF

observation of the white dwarf EGGR-26. However, for

unknown reasons1, the PSF profiles of EGGR-26 and

nearby stars in the dedicated F606W PSF observation

are systematically wider than that of the field stars in

the target frames. Therefore, instead of using the ded-

icated F606W PSF observation, we identified isolated

field stars in all of the science frames (seven in total),

and chose the brightest one to construct the PSF model

for image decomposition in all F606W images, which

proved to work well.

Since the IR images are deeper and more host-

dominant than the UVIS images, we first perform GAL-

FIT for the F110W images, and use the best-fit pa-

rameters as constraints (fixing all structural parameters

except for the amplitude) in fitting the UVIS-F606W

images. Our fitting procedure starts with fitting the IR

image with a PSF component for the quasar, a Sérsic

component for the host galaxy and a flat sky back-

ground. Typical bulges have Sérsic indices (n) around

1–4, and typical elliptical galaxies have Sérsic indices

around 3–8 (Gadotti 2009; Huang et al. 2013; Salo et al.

2015; Méndez-Abreu et al. 2017; Dalla Bontà et al. 2018;

Gao et al. 2020). Extensive simulations by Kim et al.

(2008a) have shown that, in these ranges of Sérsic in-

dices, fixing n = 4 recovers the host magnitudes better

than allowing n to be a free parameter. Therefore, we fix

n = 4 for the bulge component in all our targets. Image

decomposition of nearby (z < 0.3) AGN has shown that

a single Sérsic component is usually sufficient for decom-

posing the host from the AGN (Kim et al. 2008b, 2017).

An additional disk component (fixed to n = 1, i.e., an

exponential disk) is added only when there is strong

evidence of a disk in the residuals of the image and

surface brightness profile. Similarly, Kim et al. (2008a)

have shown that n = 1 is a reasonable assumption for

recovering magnitudes of Sérsic components with n < 2.

We further discuss the uncertainties originated from fix-

1 We have checked other programs that used this specific white
dwarf as the PSF observation with similar UVIS filters and dither
patterns and did not find this problem. Thus we believe this is
not a common failure of our strategy of acquiring a dedicated PSF
observation.

ing the Sérsic indices in our magnitude measurement in

Section 3.2. Bennert et al. (2010) showed that the bulge

contribution tends to be underestimated when fitting

more than one Sérsic components to images with low

S/N. Following these earlier studies, we only include

the disk component if it significantly improves the fit-

ting (reduced χ2 in GALFIT improved by more than

0.25). For seven targets, fitting with one point source

(quasar light) plus one bulge component is sufficient,

and adding a disk component to the fit does not im-

prove the reduced χ2 by more than 0.25. We include a

disk component for three targets (RM229, 320, 775) in

which adding the disk improves the reduced χ2 by more

than 0.25.

In addition, RM775 shows a prominent asymmetric

ring feature at ∼1′′ from its center in the IR image,

which cannot be modeled by simple Sérsic profiles and

could bias the host flux measurement if not removed

properly. We model this ring component using a n =

1 disk with a truncated inner edge and Fourier modes

enabled by GALFIT.

For the UVIS image, we fix all the shape and struc-

tural parameters (Sérsic index, effective radius, elliptic-

ity and position angle) to the best-fit values from the IR

image decomposition, and fit for the fluxes of each com-

ponent only. While the host galaxy does not necessarily

have the exact same shape and profile in the two bands,

constraining the host parameters can provide more rea-

sonable results on the bulge measurements in the UVIS

band images, especially for sources with dim or compact

hosts. We have tested fitting the UVIS images without

the constraints from the IR results and found that the

magnitudes of the decomposed components are roughly

the same as before (typical difference is ∼ 0.02 mag in

PSF magnitude and ∼ 0.2 mag in bulge and disk mag-

nitudes). However, relaxing these constraints often re-

sults in structural parameters (such as the Sérsic in-

dex) reaching the limits of GALFIT. Therefore we re-

port our fiducial UVIS decomposition results with the

constrained fits.

Figure 1 shows the HST images and the best-fit GAL-

FIT results. Table 2 summarizes the best-fit parameters

from GALFIT.

3.2. Flux Uncertainties

The flux uncertainties output by GALFIT are usually

very small (< 0.02 mag) as GALFIT treats the differ-

ence between data and model as purely statistical, and

does not consider deviations from the model due to more

complex galaxy structures, non-uniform sky background

or PSF mismatches, etc. (Peng et al. 2010). To estimate

the true uncertainties of the GALFIT magnitudes, we
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measure the total flux directly from the HST images

within an ellipse including the entire host galaxy (deter-

mined by isophote fitting with photutils, Bradley et al.

2019) and compare with the total GALFIT magnitudes.

We adopt the median difference between the isophote fit-

ting magnitude and GALFIT magnitude as our flux un-

certainty from GALFIT, which is ∼ 0.06 mag in F606W

and ∼ 0.07 mag in F110W for the total (host+quasar)

magnitude.

We also evaluate the uncertainties due to fixing the

Sérsic index in GALFIT. The Sérsic index is degener-

ate with other fitting parameters, in particular the flux

and effective radius of the Sérsic component. Therefore,

we have chosen to fix the Sérsic index for the bulge or

disk component during our fitting procedure to remove

parameter degeneracy and to prevent unphysical fitting

results (e.g. n > 10). For a sanity check, we allow the

Sérsic index to vary in the IR fit. The Sérsic index con-

verges within 0.9 < n < 4.4 for the bulge component

(median n = 2.1) and 0.4 < n < 2.4 for the additional

disk component (median n = 0.7) for all but one source,

RM320. For RM320, the best-fit Sérsic index converges

to the GALFIT upper bound of n = 20, which is due to

GALFIT attempting to compensate PSF mismatch with

a compact host bulge. Comparing the two cases with

and without fixing the Sérsic indices, the central point

source fluxes are typically consistent within ∼0.03 mag,

the bulge and disk fluxes are consistent within ∼0.2 mag,

which is consistent with the Kim et al. (2008a) simula-

tions. The effective radii of the bulge and disk compo-

nents are on average consistent within 15%.

Combining the flux measurement uncertainties from

fitting residuals in images and parameter constraints in

the fitting procedure (i.e., fixing the Sérsic index) in

quadrature, we adopt final flux uncertainties of 0.1 mag

for the quasar component, 0.25 mag for the bulge, the

disk and the entire host. When disks are present, we still

adopt ∼ 0.25 mag as the uncertainty for the entire host

galaxy, since GALFIT is capable of recovering the total

host flux even when the decomposition of the bulge and

disk component is ambiguous. These adopted magni-

tude uncertainties are consistent with the typical uncer-

tainties adopted in previous work based on HST imaging

decomposition of quasar hosts (e.g., Kim et al. 2008b;

Jahnke et al. 2009; Bennert et al. 2010; Park et al. 2015;

Kim et al. 2017; Bentz & Manne-Nicholas 2018) and sim-

ulations of similar sensitivity and host/AGN contrast

(Kim et al. 2008a).

3.3. Final Photometry

To derive the final photometry for our host measure-

ments, we first correct the GALFIT decomposed magni-

109 1010 1011

M* [MSun]

109

1010

1011

M
*,

bu
lg

e [
M

Su
n]

 101

 229

 272

 320

 377 457

 519

 694

 767

 775

Figure 2. Comparison of the stellar masses of the host
galaxy (total host mass) and the bulge component. The
bulge mass is larger than the total host mass for RM320,
which is further discussed in Section 3.5.

tudes in Table 2 for Galactic extinction using the recali-

brated Schlegel et al. (1998) dust map and reddening in

the F606W and F110W bandpasses provided by Schlafly

& Finkbeiner (2011).

To obtain rest-frame photometry, we apply k-

corrections and color transformations between the HST

filters and Johnson-Cousins filters. We use CIGALE (Bo-

quien et al. 2019) to fit the HST photometry of the hosts

with simple population synthesis models, and use the

best-fitted spectrum to obtain k-corrections and color

corrections in each filter. The CIGALE modeling is per-

formed on the bulge and the total host separately if the

host is decomposed into a bulge and a disk. We then

convert the F606W magnitudes to B-band magnitudes
for all ten targets. For F110W magnitudes, we convert

them to I-band magnitudes for sources at z < 0.4 and

to R-band magnitudes for sources at z > 0.4. We visu-

ally compare the best-fit CIGALE model spectra with the

decomposed host-only spectra from the SDSS-RM for

eight of our targets, as provided by spectral decomposi-

tion in Shen et al. (2015a), to ensure the CIGALE model

spectra are reasonable. The SDSS-RM spectra and the

CIGALE model spectra are generally consistent with each

other for compact sources (RM101, RM457, RM519,

and RM694), but the CIGALE model spectra tend to

have more blue flux for more extended sources (RM229,

RM320, RM377, and RM775). The SDSS-RM spectra

are only from the 2′′-diameter nucleus region, and do

not cover the full wavelength range of the F110W band,

so they are not suitable for computing color correc-
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Table 3. Final photometry, color, luminosity and stellar mass

RMID Bands Comp mB mI/R Color logLB logLI/R logM∗ logM∗,CIGALE

[mag] [mag] [mag] [LSun] [LSun] [MSun] [MSun]

101 B,R Host 20.89 20.12 0.77 10.96 ± 0.10 10.54 ± 0.10 10.44 ± 0.35 10.30 ± 0.33

229 B,R Host 21.43 20.57 0.86 10.81 ± 0.10 10.39 ± 0.10 10.37 ± 0.35 10.30 ± 0.34

Bulge 24.23 22.63 1.60 9.99 ± 0.10 9.57 ± 0.10 10.24 ± 0.35 9.90 ± 0.42

Disk 21.61 20.52 1.09 10.83 ± 0.10 10.41 ± 0.10 10.60 ± 0.35 10.16 ± 0.34

272 B,I Host 20.39 19.39 1.00 10.69 ± 0.10 10.14 ± 0.10 9.80 ± 0.27 10.02 ± 0.34

320 B,I Host 19.87 18.75 1.12 10.96 ± 0.10 10.41 ± 0.10 10.14 ± 0.27 10.25 ± 0.34

Bulge 21.36 19.38 1.98 10.71 ± 0.10 10.15 ± 0.10 10.51 ± 0.27 10.27 ± 0.39

Disk 20.06 19.84 0.23 10.52 ± 0.10 9.97 ± 0.10 9.08 ± 0.27 9.60 ± 0.29

377 B,I Host 20.49 19.24 1.26 11.00 ± 0.10 10.45 ± 0.10 10.29 ± 0.27 10.37 ± 0.35

457 B,R Host 22.03 21.21 0.82 10.82 ± 0.10 10.40 ± 0.10 10.34 ± 0.35 10.20 ± 0.34

519 B,R Host 23.15 22.42 0.73 10.24 ± 0.10 9.82 ± 0.10 9.68 ± 0.35 9.56 ± 0.33

694 B,R Host 22.97 22.54 0.44 10.15 ± 0.10 9.73 ± 0.10 9.31 ± 0.35 9.39 ± 0.31

767 B,R Host 20.93 20.26 0.67 11.05 ± 0.10 10.63 ± 0.10 10.43 ± 0.35 10.38 ± 0.33

775 B,I Host 18.15 17.15 1.00 11.18 ± 0.10 10.63 ± 0.10 10.29 ± 0.27 10.44 ± 0.33

Bulge 20.19 18.64 1.55 10.58 ± 0.10 10.03 ± 0.10 10.08 ± 0.27 10.03 ± 0.36

Disk 18.12 17.44 0.69 11.06 ± 0.10 10.51 ± 0.10 9.94 ± 0.27 10.24 ± 0.32

Note—Magnitudes are reported in AB magnitudes, and color refers to either B-I or B-R. The bulge mass sometimes exceeds
the total host mass due to limitations in stellar mass estimation with 2-band photometry, as discussed in §3.5. The last

column lists the stellar masses estimated with CIGALE to compare with our fiducial stellar masses.
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Figure 3. Left: Comparison of host stellar masses derived from CMLRs and CIGALE. Right: Comparison of the total host
stellar mass and bulge mass derived from CMLRs and CIGALE.
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tions for the host galaxy. The final Galactic-extinction-

corrected, k-corrected and band-converted magnitudes

for the hosts and bulges are tabulated in Table 3, which

are used for stellar mass estimation in §3.5.

3.4. Black Hole Masses

Reverberation mapping measures BH masses by mea-

suring the time delay in variability between the contin-

uum and broad emission lines. The time delay corre-

sponds to the light travel time between the continuum-

emitting accretion disk and the Broad Line Region

(BLR). Assuming the BLR is virialized, BH masses can

be calculated with the time lag (τ) and the width of the

broad emission line (∆V ) via the equation:

MBH = f
cτ∆V 2

G
, (1)

where G is the gravitational constant and f is a dimen-

sionless factor that accounts for BLR geometry, kine-

matics, and inclination. ∆V can be computed from

either the FWHM or the line dispersion σline of the

broad line measured from the mean or RMS spectra

(e.g., Wang et al. 2019).

Nine of our targets (all except for RM767) have signif-

icant Hβ lag detections and RM BH masses from Grier

et al. (2017). For these nine sources, we adopt the RM

black hole masses from Grier et al. (2017) computed

using a virial coefficient of f =1.12 based on FWHM

(equivalent to f = 4.47 when using the line dispersion

σline for ∆V ). During the first-year of SDSS-RM obser-

vations, Shen et al. (2016) identified a lag between the

continuum and broad Mg ii line for RM767. However,

the lag significance is reduced in the most recent analy-

sis in Homayouni et al. (2020) using 4-year light curves2.

RM767 is one of the unusual sources that showed more

variability in the first-year monitoring, but not the other

three years. We use the reported Mg ii lags for RM767

in both Shen et al. (2016) and Homayouni et al. (2020),

and the broad Mg ii FWHM from the mean spectrum

reported in Shen et al. (2019) to estimate the black-hole

masses for this work (values reported in Table 1).

3.5. M∗ and M∗,bulge

Following standard practice in the literature (e.g., Ko-

rmendy & Ho 2013; Bentz & Manne-Nicholas 2018), we

use the color–M∗/L relations (CMLRs) for dusty galaxy

models from Into & Portinari (2013, their Table 6) to de-

rive the bulge and total stellar masses based on 2-band

2 RM767 is not reported in the final significant lag sample in
Homayouni et al. (2020) based on the fiducial lag measurements.
We use the Mg ii lag for RM767 in Homayouni et al. (2020) based
on an alternative approach of lag measurements.

photometry:

log10(M∗/LR) = 0.934× (B −R)− 0.832 (2)

log10(M∗/LI) = 0.711× (B − I)− 1.057 , (3)

where colors are rest-frame colors. We apply these

CMLRs to the final photometry compiled in Table 3.

We estimate the uncertainties in stellar masses using

the propagated uncertainties in photometry.

Into & Portinari (2013) constructed the dusty galaxy

CMLRs by modeling dust attenuation in a simple spiral

galaxy model (i.e., bulge+disk) in various bands follow-

ing the Tuffs et al. (2004) prescriptions. CMLRs using

optical bands are insensitive to the assumed star for-

mation history and metallicity. However, optical bands

are most affected by interstellar dust reddening. To first

order, the reddening and extinction effects of dust com-

pensate each other and the CMLRs for dusty galaxies

are on average consistent with those for dust-free galax-

ies (Into & Portinari 2013). However, the dusty galaxy

CMLRs have larger scatter, roughly 0.5 dex in log(M/L)

at fixed color. Since the colors of our host galaxies are

on the bluer end of the Into & Portinari (2013) galaxy

models, we also calculate the host and bulge mass using

the dust-free CMLRs in Into & Portinari (2013), and

the derived stellar masses are consistent within uncer-

tainties.

Figure 2 compares the derived total host mass and

bulge mass (if the host is decomposed into a bulge and

a disk). The inferred bulge mass is larger than the host

mass in RM320, with large uncertainties in both quan-

tities. This appears to be a generic problem for bulge

decomposition, and reflects the limitations of using only

two-band photometry and empirical CMLRs to estimate

stellar masses. For example, in about half of the sample

in Bentz & Manne-Nicholas (2018) the reported bulge

mass is larger than the total mass. The colors estimated

from photometry for our target carry significant uncer-

tainties, which could lead to an apparently larger bulge

mass than the host mass. Other systematics from the

decomposition procedure, such as PSF mismatch, likely

also contributed to this discrepancy.

We also extract the best-fit stellar masses from

CIGALE. CIGALE models galaxy Spectral Energy Distri-

bution (SED) by building composite stellar populations

with simple stellar populations (SSP), star formation

history and dust attenuation and emission model, using

the same IMF and SSP models as in Into & Portinari

(2013). Figure 3 compares the CIGALE stellar masses

with those from using the CMLRs in Into & Portinari

(2013). The stellar masses derived from both approaches

are generally consistent within 1σ uncertainties, but the

CIGALE model produces bulge masses smaller than host
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Figure 4. Black hole mass as functions of the host-galaxy mass (left) and bulge mass (right). The blue points are the local-RM
sample from Bentz & Manne-Nicholas (2018), and their best-fit relations and 1σ scatter are shown with blue solid lines and
the blue shaded area. The red line denotes the best fit of the black hole mass-bulge mass relation of the local quiescent galaxy
sample from Kormendy & Ho (2013). For RM767 (grey points), we plot the RM-based BH masses using lags measured from
both Shen et al. (2016, labeled with S) and Homayouni et al. (2020, labeled with H).

masses. To be consistent with earlier studies (e.g., Bentz

& Manne-Nicholas 2018; Vulic et al. 2018; Kim & Ho

2019) and facilitate direct comparisons, we adopt the

CMLR-based bulge and total host stellar masses as our

fiducial values, and report the CIGALE stellar masses in

Table 3 for reference.

4. RESULTS

4.1. The MBH −M∗ and MBH −M∗,bulge Relations

Figure 4 shows the relations between stellar mass and

BH mass for total stellar mass (left panel) and bulge stel-

lar mass (right panel). We compare our results with the

nearby (z < 0.3) RM AGN sample in Bentz & Manne-

Nicholas (2018). Their RM-based masses are taken from

the AGN Black Hole Mass Database (Bentz & Katz

2015) (originally calculated with f = 4.3, but rescaled

to use f = 4.47 in Figure 4 to compare with our BH

masses). Their best-fit MBH −M∗ and MBH −M∗,bulge
relations plotted in Figure 4 are based on stellar masses

derived using the Into & Portinari (2013) CMLRs (us-

ing V − H color and H band luminosity). Due to the

small sample size, we do not fit a linear relation to the

10 SDSS-RM quasars. Our objects generally fall within

the same region occupied by this nearby RM AGN sam-

ple. At the high BH-mass end, the two exceptions in our

sample (RM519 and RM767, if adopting the Homayouni

et al. (2020) black hole mass) and a small subset of the

Bentz & Manne-Nicholas (2018) sample significantly de-

viate from the best-fit relations. Quiescent galaxies with

over-massive black holes are also observed in the local

universe (e.g., Kormendy & Ho 2013; Walsh et al. 2015,

2017). Their origins are yet to be understood, but they

are suspected to be tidally-stripped or an outlier popu-

lation in the typical BH-galaxy co-evolution scenario.

Jahnke et al. (2009) measured host masses of ten type-

1 AGN at redshift ∼ 1.4 using two-band HST imaging.

Due to limited spatial resolution, they can only distin-

guish the quasar light from the host light, and were un-

able to distinguish between the disk and bulge compo-

nents. Their BH masses, which are derived from the

single-epoch method, and host masses (or bulge masses
if assuming the bulge is dominant) are in good agree-

ment with the low-z MBH − M∗ and MBH − M∗,bulge
relations (Figure 4).

As shown in Figure 4, our sample is also broadly con-

sistent with the MBH−M∗,bulge relation derived from lo-

cal quiescent galaxies in Kormendy & Ho (2013). For a

fair comparison, we recalibrate M∗,bulge using the Into &

Portinari (2013) CMLRs and the tabulated color (V−K)

and Ks-band bulge luminosity in their selected sample

of ellipticals and classic bulges. The derived M∗,bulge are

systematically smaller than the tabulated values in Kor-

mendy & Ho (2013), but consistent within uncertainties.

For simplicity, we use their best fit MBH−M∗,bulge (their

equation 11) as our local baseline in Section 5.2. Our

bulge masses are mostly within ∼ 2σ of the predicted
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Figure 5. Black hole mass as a function of bulge luminosity
(all in V band, except for Sexton et al. (2019) in SDSS-r
band). Blue line shows the best fit and scatter from the
Bentz & Manne-Nicholas (2018) sample and red line shows
best fit from the local sample of Kormendy & Ho (2013).

values (except for the outlier RM519 at ∼ 3.3σ) from

the local MBH −M∗,bulge relation in quiescent galaxies.

4.2. The MBH − L∗,bulge Relation

The MBH − L∗,bulge relation is also a commonly used

BH scaling relation. Figure 5 shows the MBH −L∗,bulge
relation, along with the local-RM sample (Bentz &

Manne-Nicholas 2018) and two other samples at inter-

mediate redshifts (Park et al. 2015; Sexton et al. 2019).

The Park et al. (2015) sample consists of 52 AGN at

z ∼ 0.36 and z ∼ 0.57, and the Sexton et al. (2019)

sample consists of 22 AGN in the redshift range of

0.03 < z < 0.57. These works both obtained their bulge

luminosity through surface brightness decomposition of

HST images, and black hole masses are from the single-

epoch BH mass estimation. Similar redshift and data

quality of the HST images allow us to make direct com-

parisons among these samples.

Park et al. (2015) and Bentz & Manne-Nicholas (2018)

reported their bulge luminosity in V band. Therefore,

we convert our F606W band luminosity to V band lu-

minosity using the best-fit CIGALE SED following the

same procedures described in Section 3.5. Sexton et al.

(2019) reported their bulge magnitudes in SDSS r band,

to which we applied a small color correction to V band

using galaxy templates of different morphological types

provided by Kinney et al. (1996) and Lim et al. (2015).

This color correction V − rSDSS has values in the range

of 0.34−0.55, with a typical uncertainty of 0.15 from dif-

ferent galaxy templates. As shown in Figure 5, all these

samples are consistent with the best-fit MBH − L∗,bulge
relation from Bentz & Manne-Nicholas (2018), although

the scatter is generally large.

For local quiescent galaxies, Kormendy & Ho (2013)

only reported the best-fit MBH−L∗,bulge relation in Ks

band but not in V band. To compare with our sample

and other non-local AGN samples, we use the tabulated

V -band luminosity and MBH to find a best-fit relation.

Our best fit relation has a slightly shallower slope, but

is still consistent with the MBH − L∗,bulge,Ks relation in

Kormendy & Ho (2013), with a scatter of 0.22 dex. We

use our best-fit relation as the local baseline in Section

5.2.

5. DISCUSSION

5.1. Spectral Decomposition versus Image

Decomposition

For large samples of RM quasars for which HST or

other high spatial resolution imaging is unavailable,

building a reliable calibration for host properties mea-

sured from spectral decomposition is highly desirable.

Shen et al. (2015a) and Matsuoka et al. (2015) both

measured the host galaxy properties using the high S/N

coadded spectra from the first year SDSS-RM monitor-

ing. Shen et al. (2015a) used a Principal Component

Analysis (PCA) method to decompose the coadded spec-

tra into the galaxy and quasar spectra to measure stellar

properties in quasar hosts, e.g., stellar velocity disper-

sion, host-free AGN luminosity (at rest frame 5100 Å).

Matsuoka et al. (2015) performed spectral decomposi-

tion using spectral models of AGN and galaxies. They

fit the decomposed galaxy spectra to stellar population

models and measured host galaxy properties, including

stellar velocity dispersion, stellar mass (M∗), and star

formation rate. The results from these two works are

consistent with each other despite differences in the de-

composition technique. To evaluate the robustness of

spectral decomposition techniques in deriving host prop-

erties, we compare the stellar fraction (f∗, the fractional

contribution of the host stellar component to the total

flux) from Shen et al. (2015a) and stellar masses (M∗)

from Matsuoka et al. (2015) with our HST imaging de-

composition results.

We calculate the stellar fraction from SDSS-RM spec-

tra by computing the expected flux density in the total

and decomposed host spectra from Shen et al. (2015a)

in the F606W filter (left panel of Figure 6). When com-

puting the host stellar fraction from our HST imaging

decomposition, we only use the decomposed GALFIT

models within the 2′′ diameter spectral aperture. The

host fractions from both methods correlate with each



16 Li et al.

4000 5000 6000 7000 8000 9000
Wavelength (Å)

0

5

10

15

20

25

30

f 
(1

0
17

 e
rg

 s
1  c

m
2  Å

1 ) Total
Host
F606W

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (%

)

RM101

0.0 0.2 0.4 0.6 0.8 1.0
f* (This Work)

0.0

0.2

0.4

0.6

0.8

1.0

f *
 (S

he
n+

15
)

 101

 229

 320

 377
 457

 519

 694

 775

Figure 6. Comparison of spectral decomposition and image decomposition in the estimation of host fraction in quasars. Left:
The HST F606W filter overlaid on the total and decomposed (host only) spectra from Shen et al. (2015a) in observed wavelength.
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Figure 7. Comparison of the derived host mass from this
work and Matsuoka et al. (2015).

other, but the host fraction from spectral decomposi-

tion is systematically smaller than that estimated from

imaging decomposition by ∼ 30%, with larger scatter at

increased f∗. Our results are consistent with the find-

ings in Yue et al. (2018) who decomposed SDSS-RM

quasars into a central point source+host with ground-

based deep imaging. During this comparison, we also

investigated how different resolutions (e.g., seeing) and

aperture sizes may impact the host-fraction measure-

ments from ground-based imaging decomposition, using

our HST images as the high-resolution counterparts. We

found that typical seeing blurring and aperture effects

(2′′ SDSS fibers) do not change our results. Therefore we

conclude there are systematic differences in imaging and

spectral decomposition to estimate the host starlight

fraction. Nevertheless, this systematic difference in esti-

mating host starlight contamination is not large enough

to account for the systematic offset in the BLR radius-

luminosity relation observed for the SDSS-RM sample

(Grier et al. 2017; Fonseca Alvarez et al. 2019).

Figure 7 compares the host stellar masses derived from

spectral decomposition in Matsuoka et al. (2015) and

from imaging decomposition in this work. The spectral

flux of host galaxies in Matsuoka et al. (2015) is cor-

rected for fiber losses. Our stellar masses appear to be

systematically smaller by ∼0.5 dex, which might be due

to different choices of initial mass functions (IMF) and

simple stellar population (SSP) models: Matsuoka et al.

(2015) used the Chabrier (2003) IMF and the Maraston

& Strömbäck (2011) SSP, while Into & Portinari (2013)

and our CIGALE fitting use the Kroupa (2001) IMF and

the Maraston (2005) SSP.

5.2. Redshift Evolution

The evolution of BH-host scaling relations with cos-

mic time is a key ingredient in understanding the origin

of these correlations. As such, in recent years there have

been numerous papers studying the cosmic evolution

of the BH-host scaling relations (e.g., Treu et al. 2004,

2007; McLure et al. 2006; Salviander et al. 2007; Jahnke

et al. 2009; Bennert et al. 2010; Canalizo et al. 2012;

Hiner et al. 2012; Salviander & Shields 2013; Schramm

& Silverman 2013; Busch et al. 2014; Park et al. 2015;

Shen et al. 2015a; Matsuoka et al. 2015; Ding et al. 2017,

2020; Sexton et al. 2019).

Figure 8 (upper panel) shows the deviation in MBH−
M∗,bulge from the local baseline defined by quiescent
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Figure 8. Evolution of ∆log(MBH) with redshift, with baselines adopted from the best-fit relations of MBH −MBulge and
MBH − LBulge from the Kormendy & Ho (2013) sample. Vertical error bars are from uncertainties in BH mass only.

galaxies (ellipticals and classic bulges, Kormendy & Ho

2013) as a function of redshift. ∆log10(MBH) is consis-

tent with zero within < 1.5σ for our sample (excluding

the outlier RM519). Despite the large scatter compared

to the local MBH−M∗,bulge relation (intrinsic scatter of

0.28 dex), there is no obvious evolution in the average

deviation with redshift.

Figure 8 (lower panel) shows the deviation in MBH −
L∗,bulge from the local baseline as a function of red-

shift. When L∗,bulge is not corrected for passive lumi-

nosity evolution (due to the aging of the stellar popula-

tion), our sample, as well as the two other intermediate-

redshift samples in Park et al. (2015) and Sexton et al.

(2019) are consistent with the local MBH − L∗,bulge re-

lation, albeit with larger scatter compared to that in

the local baseline relation for quiescent bulge-dominant

galaxies.

After correcting for passive luminosity evolution, Treu

et al. (2007), Bennert et al. (2010) and Park et al. (2015)

reported evolution (> 3σ confidence level of evolution)

in their sample (green diamonds in Figure 8) for the

MBH − L∗,bulge relation when compared to the local re-

lation. However, our sample is consistent with the local

MBH − L∗,bulge relation within ∼ 2.5σ (excluding the

outlier RM519) with no evolution in redshift when ap-

plying the same host luminosity correction (equation 2

in Park et al. 2015).

Our sample covers by far the most extended redshift

range with BH masses estimated directly from RM. Our

uniform analysis of HST imaging decomposition does

not reveal any noticeable evolution in the BH mass-bulge

mass/luminosity relations over 0.2 < z < 0.6. This is

also consistent with the lack of evolution in the MBH −
σ∗ relation measured for the SDSS-RM quasar sample
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(Shen et al. 2015a) over a similar redshift range. The

sample size in this pilot study is small, and therefore

we defer a more rigorous analysis of selection effects in

constraining the evolution of the BH-host relations to

future work.

6. CONCLUSIONS

Using high-resolution two-band HST imaging (UVIS

and IR), we have measured the host and bulge stel-

lar masses of ten quasars at 0.2 . z . 0.6 with RM-

based black-hole masses from the SDSS-RM project.

Our quasars span more than one order of magnitude

in BH and stellar masses. This represents the first sta-

tistical HST imaging study of quasar host galaxies at

z > 0.3 with direct RM-based black hole masses.

We present the MBH−M∗, MBH−M∗,bulge and MBH−
L∗,bulge relations from our sample, and compare with

local quiescent galaxies and other low-to-intermediate

redshift AGN samples. Our quasars broadly follow the

same BH–host scaling relations of local quiescent galax-

ies and local RM AGN. In addition, there is no signif-

icant evidence of evolution in the BH-host scaling rela-

tions with redshift.

We compared our imaging decomposition with spec-

tral decomposition in estimating the host starlight frac-

tion. We found general consistency between the host

fractions estimated with both methods. However, the

host fraction derived from spectral decomposition is sys-

tematically smaller by ∼ 30% than that from imag-

ing decomposition, consistent with the findings using

ground-based imaging (Yue et al. 2018).

While the sample size in this pilot study is too small to

provide rigorous constraints on the potential evolution

of the BH-host scaling relations and assess the impact

of selection effects, it demonstrates the feasibility of our

approach. We are acquiring HST imaging for 28 addi-

tional SDSS-RM quasars at 0.2 < z < 0.8 with direct

RM-based BH masses, which will enable more stringent

constraints on the evolution of the BH-bulge scaling re-

lations up to z ∼ 1.
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Price-Whelan, A. M., Sipőcz, B. M., Günther, H. M., et al.

2018, AJ, 156, 123

Salo, H., Laurikainen, E., Laine, J., et al. 2015, ApJS, 219, 4

Salviander, S., & Shields, G. A. 2013, ApJ, 764, 80

Salviander, S., Shields, G. A., Gebhardt, K., & Bonning,

E. W. 2007, ApJ, 662, 131

Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103

Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ,

500, 525

Schramm, M., & Silverman, J. D. 2013, ApJ, 767, 13

Schulze, A., & Wisotzki, L. 2011, A&A, 535, A87

—. 2014, MNRAS, 438, 3422

Sexton, R. O., Canalizo, G., Hiner, K. D., et al. 2019, ApJ,

878, 101

Shen, J., Vanden Berk, D. E., Schneider, D. P., & Hall,

P. B. 2008, AJ, 135, 928

Shen, Y. 2013, Bulletin of the Astronomical Society of

India, 41, 61

Shen, Y., & Kelly, B. C. 2010, ApJ, 713, 41

Shen, Y., Greene, J. E., Ho, L. C., et al. 2015a, ApJ, 805, 96

Shen, Y., Brandt, W. N., Dawson, K. S., et al. 2015b,

ApJS, 216, 4

Shen, Y., Horne, K., Grier, C. J., et al. 2016, ApJ, 818, 30

Shen, Y., Hall, P. B., Horne, K., et al. 2019, ApJS, 241, 34

Sun, M., Trump, J. R., Brandt, W. N., et al. 2015, ApJ,

802, 14

Targett, T. A., Dunlop, J. S., & McLure, R. J. 2012,

MNRAS, 420, 3621

Treu, T., Malkan, M. A., & Blandford, R. D. 2004, ApJL,

615, L97

Treu, T., Woo, J.-H., Malkan, M. A., & Blandford, R. D.

2007, ApJ, 667, 117

Tuffs, R. J., Popescu, C. C., Völk, H. J., Kylafis, N. D., &

Dopita, M. A. 2004, A&A, 419, 821

Vulic, N., Hornschemeier, A. E., Wik, D. R., et al. 2018,

ApJ, 864, 150

Walsh, J. L., van den Bosch, R. C. E., Gebhardt, K., et al.

2015, ApJ, 808, 183

—. 2017, ApJ, 835, 208

Wang, S., Shen, Y., Jiang, L., et al. 2019, ApJ, 882, 4

Waskom, M., Botvinnik, O., O’Kane, D., et al. 2017,

mwaskom/seaborn: v0.8.1 (September 2017), v.v0.8.1,

Zenodo, doi:10.5281/zenodo.883859

Woo, J.-H., Treu, T., Malkan, M. A., & Bland ford, R. D.

2006, ApJ, 645, 900

Woo, J.-H., Treu, T., Malkan, M. A., & Blandford, R. D.

2008, ApJ, 681, 925

Yue, M., Jiang, L., Shen, Y., et al. 2018, ApJ, 863, 21


