
Continual Learning in Sensor-based Human Activity Recognition: an
Empirical Benchmark Analysis

Saurav Jhaa, Martin Schiemera, Franco Zambonellib, Juan Yea

aSchool of Computer Science, University of St Andrews, UK
bDipartimento di Scienze e Metodi dell’Ingegneria, Universita’ di Modena e Reggio Emilia

Abstract

Sensor-based human activity recognition (HAR), with the ability of discovering human daily activity

patterns from wearable or embedded sensors, is a key enabler for many real-world applications in

smart home, personal healthcare, and urban planning. As we are witnessing an increasing number of

activity-aware applications are deployed in real-world environments, emerges an important question:

how can a HAR system autonomously learn new activities over a long period of time without being

re-engineered from scratch? This is referred to as continual learning, which has been particularly

popular in computer vision. With a high volume of techniques being developed, this paper aims to

assess to what extent the existing continual learning techniques can be applied to HAR. We design

a general framework to evaluate their performance on various types of commonly used datasets,

perform comprehensive empirical analysis on their computational cost and effectiveness of tackling

HAR challenges such as sensor noise and lack of sufficient labels. The results have uncovered

insights and future research directions for HAR systems.

Keywords: Human activity recognition, continual learning, lifelong learning, incremental learning

1. Introduction

Sensor-based human activity recognition (HAR) is to infer human daily activities from data

collected on various types of sensors [46]. It can be regarded as a classification problem; that is,

given raw sensor data, extracting features and classifying them into a class label; i.e., an activity.

For example, by monitoring users’ interaction with everyday objects via ambient binary sensors

we can infer whether the user is watching TV or preparing a meal. By tracking users’ movement

via accelerometers or gyroscopes on wearables we can recognise their physical activities such as

jogging or climbing stairs. These daily activities can have a significant impact on a wide range of

Preprint submitted to Information Sciences April 6, 2021

real-world applications, ranging from smart home [46] and adaptive environments [41] to personal

healthcare [31] and disease diagnosis.

We have witnessed an increasing number of HAR applications being deployed and running over

longer spans [46]. This drives an important research question: how does a HAR system continuously

discover and learn new types of activities? We cannot assume that once a HAR system is trained

with an initial set of activities, then the users of the system will only perform the same set of

activities all the time. People tend to change their behaviour patterns for internal or external

factors. Such change requires a HAR system to adapt their learning and include new types of

activities in order to provide desired services. For example, the COVID outbreak has impacted the

routine of people across the world, including practising different exercises, cooking new cuisines, and

switching work patterns. For a personal healthcare monitoring application, failure to recognise new

exercise routines may lead to misdiagnosis and inappropriate medication prescription. Therefore,

continual learning is the key enabler for a long-term, sustainable HAR system.

1st task = {C1, C2} 2nd task = {C3}
Time

Extend the network to
include new classes and train
it with the new task’s data

…
……

Nth task = {Ck, …, Cm}…
Build and train
the network with
1st task’s data

Input layer

Output layer

Incrementally extend and
train the network with the
new task’s data

Figure 1: An example of task-incremental continual learning with neural network

Continual learning, or lifelong learning, is evoking increasing attention in the field of machine

learning, aiming to retaining old knowledge and accumulating new knowledge by continually learn-

ing new tasks over time [25]. In HAR, we are concerned with task-incremental continual learning,

where a system learns one task at a time and each task contains training data on a new set of

classes. Take a neural network as an example in Figure 1, where for each new task, the network

needs to be extended to include new classes and/or add more parameters, and then be trained with

the new task’s data. Faced with this continual learning setting is often the catastrophic forgetting

(CF) challenge; that is, the network will be optimised towards the new task’s data while forgetting

the old knowledge and thus degrade the performance on inferring the old classes. As presented in

2

the example of Figure 2, if no CF mitigation method is employed, the network can only achieve

high accuracy on the current classes after training on each new task, while obtaining low accuracy

on all the old classes.

Figure 2: An example of catastrophic forgetting effect [47] where the accuracy on new classes is high and

the accuracy on old classes remains low as the network keeps forgetting the old knowledge

A large number of continual learning techniques with neural networks have devoted to tackling

the CF challenge [25, 32]: (1) regularisation – constraining the network parameter updates such

that old knowledge is retained; (2) rehearsal – storing a small number of old classes’ data to replay

with new classes’ data when training a network; and (3) dynamic architectures – extending the

network architecture for new knowledge while keeping the parameters important for the old classes.

The purpose of this paper is to benchmark the state-of-the-art continual learning techniques on

sensor-based human activity recognition datasets via extensive empirical evaluation1. We exclu-

sively focus on neural network based techniques as they have been widely adopted in HAR tasks.

Continual learning techniques have achieved promising performance in computer vision [25] and

robotics [26], and it would benefit to assess to what degree they can tackle the continual learning

problem in HAR. Unlike image data, sensor data exhibits its limitations.

• Scarce labels – In HAR, it is very time- and effort-consuming to label sensor data from real-world

deployment. As continual learning is concerned with new, unobserved, unpredicted activities, it

relies on users’ self-annotation; e.g., a user provides a free-text label for the new activity that

he/she is performing. Such labels can be sparse and noisy. Due to the labelling challenge, there

is a smaller amount of labelled training data in HAR compared to the image datasets.

1The code and all the experiments are available at https://github.com/srvCodes/

continual-learning-benchmark.

3

• Imbalanced class distribution – Some activity classes can have a high occurrence frequency and

dominate the dataset while others being rare. For example, hiking can be relatively infrequent

compared to sleeping.

• Sensor noise – Sensors can produce noisy readings due to unintended interactions with the

environment or degradation over time. For example, a visitor or a pet can trigger unexpected

sensor traces in a single-resident dwelling.

Also, sensor data in HAR shares the characteristics with image data: (1) Intra-class diversity

– one activity class can have multiple patterns due to different ways of performing an activity;

e.g., different ways of preparing a meal. (2) Inter-class similarity – some activity classes have

overlapping decision boundaries, which makes them difficult to separate. For example, reading and

writing for a sedentary user can have very similar distributions in sensor feature space.

The above limitations of sensor data will bring extra complication in continual learning. This

paper seeks to answer to the following questions: how accurately are the existing continual learn-

ing techniques in recognising new and old activities? how computationally expensive are they in

terms of memory and training time?, is it affordable to run them on resource-constrained devices?,

or is their performance sensitive to the amount of training data? To answer these questions, we

adapt the existing continual learning evaluation methodology to HAR and design a general evalu-

ation framework to assess 10 recent techniques published between 2016 and 2020 on 8 commonly

used HAR datasets including both ambient binary sensors and accelerometers. We focus on two

types of continual learning techniques: regularisation and rehearsal based methods, which are most

appropriate for HAR tasks. Our evaluation has uncovered the following findings.

• The rehearsal techniques significantly outperform regularisation techniques on our selected datasets,

and the regularisation terms alone are not able to retain the old knowledge. The regularisation

terms that tackle class imbalance and inter-class separation are most effective for HAR.

• Most of the rehearsal techniques do not need to store many samples in memory (e.g., 4 or 6 sam-

ples per class), and often random sampling can outperform the other sophisticated, computation-

expensive techniques.

• The selected continual learning techniques are not sensitive to training data size, and training

with 30% of each dataset can achieve good accuracy.

• The computation cost for most of the selected techniques is relatively low; i.e., around 33 sec-

4

onds for training each incremental task. Therefore, these techniques are affordable on resource-

constrained devices.

The paper is outlined as follows. Section 2 defines the continual learning problem and briefly

reviews the state of the art techniques in three categories: regularisation, rehearsal, and dynamic

architecture. Section 3 presents a detailed description of the selected techniques. Section 4 intro-

duces the experimental setup including datasets, evaluation process, metrics and baseline. Section 5

describes the results and Section 6 discusses our findings to shed light on the future direction of

continual learning in sensor-based HAR. Finally, Section 7 concludes the paper.

2. Problem Statement

In this section, we define the setup for our continual learning problem in a task-incremental

setting and briefly introduce the mainstream continual learning techniques.

The task-incremental continual learning setting assumes tasks arriving in a sequential manner,

where each task comprises one or more classes. Formally, let a task sequence T of N tasks be

T = [t1, t2, t3, .., tN], and a task ti (i ∈ [1, .., N]) is coupled with a set of classes Ci = {ci1, ..., ciKi
}

and a collection of training data {(xij , yij)|yij ∈ Ci}M
i

j=1, where Ki is the number of classes and Mi

is the number of training data in a task ti. The learning objective on the ith task is to optimise

a model to classify the current classes in Ci and all the previous classes in Ci−1 ∪ ... ∪ C1, where

Ci ∩ (Ci−1 ∪ ... ∪C1) = ∅; i.e., each task has a mutually exclusive set of classes and new classes in

the current task have not been observed in the previous tasks.

The major problem in task-incremental setting resides in catastrophic forgetting (CF), where

the new knowledge learnt by the model interferes with the old knowledge so that the performance

on classifying old classes degrades over time. CF is caused by the stability-plasticity dilemma [32].

Plasticity refers to the ability of a model to accommodate new knowledge while stability refers to its

ability to retain old knowledge. High plasticity often causes drastic changes in the model’s parame-

ters, thus interfering with the previous knowledge captured by them. Most of the existing continual

learning techniques are trying to balance plasticity and stability, and these techniques are often

grouped in three categories [32]: (1) regularisation, (2) rehearsal, and (3) dynamic architectures.

5

2.1. Regularisation Techniques

Regularisation techniques often introduce additional terms to the loss function that constrains

the weight updates of the network so as to prevent compromising the performance on old tasks.

Knowledge Distillation (KD) [17], a way to transfer knowledge between different networks, has been

widely adopted to retain the knowledge of old tasks when learning new ones. It prevents the current

model’s output deviating from the previous model’s prediction that is recorded as logit output as

soft labels for old classes. Learning without forgetting (LwF) [27] is the earliest attempt to employ

the distillation loss in continual learning, followed by many others such as cross-distilled loss [4]

and attention distillation loss [12].

Another category of regularisation techniques is to identify important parameters for old tasks

and penalise updates on them. For example, Elastic weight consolidation (EWC) applies Fisher

Information matrix to measure the importance of the network parameters [23]. Memory Aware

Synapse (MAS) estimates the importance of a parameter based on the magnitude of the gradient;

that is, how much change the output of the network is caused by a small perturbation to the

parameter [1].

Group sparsity regularisation has been applied to allow for selective training of a subset of neu-

rons. Adaptive Group Sparsity based Continual learning (AGS-CL) [20] introduces regularisation

terms using two node-wise group sparsity based penalties. The first term assigns and learns new

important nodes via the ordinary group Lasso penalty when learning a new task, while the second

term applies the group-sparsity based deviation penalty to prevent the drift on important node

parameters.

Other regularisation terms have been designed to tackle specific problems. Weight alignment has

been employed to balance the distribution of new tasks’ training samples and old tasks’ in-memory

samples [22, 50]. Customised regularisation terms have been designed to prevent task interference;

for example, forcing a large margin between the old and new classes [18].

2.2. Rehearsal Techniques

Rehearsal techniques mitigate catastrophic forgetting by mixing data from previous tasks with

the current task. The previous task data can be used as inputs for re-training the network or as a

constraint to the network updates for penalising the interference with the previous tasks. iCaRL,

a class-incremental learning technique, stores a small set of representative samples for each class in

6

memory, and combines these samples with new task data to update the network every time [34].

This type of techniques often requires extra memory space for old task samples and also can be

prone to overfitting the stored data, instead of generalising to old tasks [25]. REMIND [15] utilises

data compression and augmentation to enable more effective replay.

In contrast, gradient episodic memory (GEM) [29] uses these old task samples to impose a con-

straint to allow positive backward transfer; that is, preventing the gradient update from increasing

the loss on previous tasks. Similarly, orthogonal gradient descent (OGD) [14] maintains a space

consisting of the gradient directions of the network predictions on previous tasks and projects the

loss gradients of new samples orthogonal to this gradient before backpropagation. In this way, OGD

minimises the interference on old tasks and thus preserves old knowledge.

In addition to sampling from training data, in-memory samples on previous tasks can also be

generated via a generative model that learns the distribution of old tasks. Generative replay model

(GRM) [38] employs a Generative Adversarial Network (GAN) for generating samples on previous

tasks for pseudo rehearsal. This type of techniques relies on the quality of generated samples;

for example, GANs might suffer mode collapse in that the generated samples are clustered in one

specific space, rather than diverse across the whole space. Also training GANs can add extra

computation cost to training and GANs’ performance can degrade over time with more and more

classes being learnt [48].

2.3. Dynamic Architectures and Ensemble Techniques

Dynamic architectures tackle catastrophic forgetting by retaining the model on the old tasks

while extending it with new parameters to learn new tasks. They are closely tied with ensemble

methods which train multiple models for different tasks. ExpertGate [2] consists of a network of

experts where each expert is a model trained on a specific task. A gating mechanism decides which

expert is required for activation. This bypasses the need for loading all models, which is memory

efficient as each model can be computationally intensive. Net2Net [7] is another type of dynamically

evolving network which can be widened (adding more neurons) and deepened (adding more layers).

Knowledge from the previous network is preserved in the newly constructed network.

Progressive network [37] keeps a pool of models that are pre-trained with previous knowledge

and adds lateral connections to them for a new task. To mitigate forgetting, the parameters for

previous tasks are never modified while new parameters are learned for the new task. Therefore, it

7

does not deteriorate the performance of previous tasks. One drawback of using this technique is that

the network can become complex with an increasing number of tasks learned. Since a new network

is learned for each task and it needs to be connected to the previous network, the complexity of

the network structure and parameters increases quickly.

Dynamically Expandable Networks (DEN) [49] allows layer expansion and employs group spar-

sity regularisation to identify the neurons that are relevant to new tasks and allow selective retrain-

ing on these neurons. Compacting, Picking, and Growing (CPG) continual learning [19] adds new

neurons for accommodating new tasks and then constantly applies network compression by deleting

unnecessary weights.

Dynamic architectures often have been employed in computer vision applications, where there

exist hundreds or thousands of classes. As our selected HAR datasets do not have such a high

number of activities to learn and a decent size of a neural network often works well, we exclude this

category of techniques in our study.

3. Comparison of Techniques

After presenting the overview of continual learning techniques in the previous section, now we

will focus on a small set of techniques. We set three criteria for selecting state-of-the-art continual

learning techniques: (1) the techniques are built on neural networks and target classification tasks,

as neural networks have been widely adopted in HAR tasks for their effectiveness at feature extrac-

tion and recognition [42], (2) the techniques should be the most representative ones, which have

been included in several recent continual learning surveys [25, 32], and (3) the techniques target

HAR limitations including class imbalance and inter-class separation. With these criteria, we select

10 techniques from regularisation and rehearsal categories and in the following, we will provide a

brief description of each and illustrate their key characteristics.

3.1. Regularisation Techniques

Learning without Forgetting [27] aims to keep the output of the old tasks from the new network

close to the output from the original model. This is achieved by using the knowledge distillation

(KD) loss as a regularisation term. KD is a way to transfer knowledge from a complex teacher

model to a simpler student model by minimising the loss on the output class probabilities from the

8

teacher model [17]. KD has been widely applied to various continual learning techniques [12, 27]

to distil knowledge learnt from old tasks to the model for new tasks, which is defined as follows:

LKD(yo, ŷo) = −
l∑

i=1

y
′(i)
o log ŷ

′(i)
o , (1)

where l is the number of class labels, and y
′(i)
o and ŷ

′(i)
o are temperature-scaled recorded and predicted

probabilities of the current sample for an old class label i. The temperature is used to tackle the

over-confident probability that the teacher model produces on their prediction. That is,

y′(i)o =
(y

(i)
o)1/T∑

j(y
(j)
o)1/T

and ŷ′(i)o =
(ŷ

(i)
o)1/T∑

j(ŷ
(j)
o)1/T

.

The loss LKD is combined with the cross-entropy loss on a new task’s samples LnCE ; that is,

L(yn, ŷn, yo, ŷo) = λoLKD(yo, ŷo) + LCE(yn, ŷn), (2)

LnCE(yn, ŷn) = −yn log ŷn, (3)

where yn is the one-hot encoded vector of the ground-truth label, ŷn is the predicted logit (i.e., the

softmax output of the network) on new class labels, and λo is a loss balance weight. A larger λo

will favour the old task performance over the new task. During training, a new batch gets first fed

through the old network to record its outputs, which then are used for LKD so that the network

updates will not deviate from the old network.

Elastic Weight Consolidation (EWC) [23] draws inspiration from research on mammalian brains,

which suggests that catastrophic forgetting can be avoided through the protection of synapses. EWC

tries to mimic this by inhibiting changes on parameters that are deemed important for previous

tasks. The importance of parameters is modelled as the posterior distribution p(θ|D); that is,

optimising the parameters is to find their most probable values with respect to some data D. In

the context of continual learning, if the data D is assumed to consist of two independent tasks A

and B, then

log p(θ|D) = log p(DB|θ) + log p(θ|DA)− log p(DB).

The posterior probability p(θ|DA) contains information about which parameters are important to

task A. However, the true probability p(θ|DA) is intractable, and thus it is estimated via Laplace

9

approximation as a Gaussian with diagonal precision determined by the Fisher Information Matrix

(FIM). The loss function of EWC is defined as:

L(θ) = LBCE(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)2, (4)

where LBCE is the loss on the new task B only, λ indicates the importance of the old task A with

respect to B, and i is the parameter index. Originally, one FIM is required for each task, and later

it can be resolved by propagating them into a quadratic penalty term. However, this formulation

assumes the FIM to be diagonal, which is not always the case. Rotating EWC (R-EWC) [28]

improves upon EWC by reparameterising θ through rotation in a way that it does not change

outputs of the forward pass but the computed FIM is approximately diagonal.

Memory Aware Synapse (MAS) [1], inspired by neuroplasticity, also considers the importance of

network parameters, which is measured in an online, unsupervised manner. Here, the importance

is approximated by the sensitivity of the learned function to a parameter change. Given a data

point xk, the network output is defined as F (xk; θ). A change in the network output caused by a

small perturbation δ = {δij} in the parameters θ = {θij} can be approximated as:

F (xk; θ + δ)− F (xk; θ) ≈
∑
i,j

gij(xk)δij

gij(xk) =
∂(F (xk, θ)

∂θij
.

where g is the gradient with respect to the parameter θ. By accumulating gradients over all the

data points, the importance weight on a parameter θij is computed as:

Ωij =
1

N

N∑
k=1

||gij(xk)||.

When learning a new task, the loss function is defined as:

L(θ) = LnCE(θ) +
λ

2

∑
i,j

Ωij(θij − θ∗ij)2, (5)

where LnCE(θ) is the CE loss on the new task, θij and θ∗ij are the new and old network parameters,

and λ is a hyperparameter that indicates the regularisation strength. The idea is to retain the old

knowledge by penalising large updates on the sensitive network parameters.

10

3.2. Rehearsal Technique

Incremental Classifier and Representation Learning (iCaRL) [34] is an early attempt of

rehearsal approaches for class-incremental learning. It leverages memory replay and regularisation.

After training on each task, it employs the herding sampling technique [43] to select a small number

of exemplars (i.e., representative samples) from the current task’s training data and stores them

in memory. Herding works by choosing samples that are closest to the centroid of each old class.

When the next task becomes available, the in-memory exemplars will be combined with the new

task’s training data to update the network. The loss function of iCaRL is the same as Equation 1

in LwF, which is a combination of CE loss on new classes and the KD loss on old classes to allow

knowledge transfer.

Incremental Learning In Online Scenario (ILOS) [16], similar to iCaRL, also employs memory

replay with KD loss for regularisation. The key difference is that ILOS uses an updated version of

the CE loss. It introduces an accommodation ratio 0 ≤ β ≤ 1 to adjust the proportion of logits

between the current and previous model:

ỹ′(i) =


βy(i) + (1− β)ŷ′(i), 1 ≤ i ≤ n

y(i), n+ 1 ≤ i ≤ n+m

(6)

where the indices [1, n] refer to old classes, [n+ 1, n+m] refer to new classes, y(i) are the one-hot

encoded output logits of the current model and ŷ′(i) are the recorded old classes’ output logits from

the previous model. In this way, the output from the previous model will be retained in the current

network and the retaining degree is regulated via the parameter β. The larger the β, the more

retained the output from the previous model. While the KD loss is still calculated using y(i), the

CE loss is now based on the adjusted output ỹ′(i) instead of the recorded output ŷ(i):

L̃CE =

n+m∑
i=1

−y(i) log[ỹ′(i)]. (7)

The final loss is the combination of the above CE loss and KD loss:

LILOS = αLKD + (1− α)L̃CE . (8)

Following the guideline in the original paper, both α and β can be set to 0.5.

Gradient Episodic Memory (GEM) [29] alleviates forgetting by controlling the gradient updates

to balance the performance on old and new classes. GEM uses a memory space to host examples

11

from previous classes ∪k∈[1,t−1]Mk, whereMk is the samples stored on a previous task k (k ≤ t) and

t is the current task’s index. When training a new task t, Mk is used in an inequality constraint to

avoid an increase in loss. Hence, the loss of a current task L must be smaller than or equal to the

loss of the previous model:

minimizeθ L(fθ, Dt) s.t. L(fθ,Mk) ≤ L(f t−1θ ,Mk) ∀k < t (9)

where fθ represents the model with parameters θ. To achieve this, GEM restricts the angle between

gradient vectors gk of previous and current task gt to be no greater than 90◦. If the angle is greater

than 90◦, the new gradient vector gets projected to the euclidean distance closest vector g̃ that is

inside the allowed range. Thus, the optimisation problem can be defined as:

minimizeg̃
1

2
||g − g̃||22 s.t. 〈g̃, gk〉 ≥ 0 ∀k < t

Solving this quadratic program problem for all in-memory samples is very computationally expen-

sive. To address the computational cost, A-GEM [6] is proposed to ensure that there is no increase

in the average loss over the episodic memory. That is, A-GEM only uses a smaller set of in-memory

samples to calculate an average gradient instead of all gradients for a task.

Learning a Unified Classifier Incrementally via Rebalancing (LUCIR) [18] was proposed

to tackle the imbalance between a small number of in-memory samples from old tasks and a larger

number of samples from a new task. The imbalance results in the training being biased towards new

tasks. LUCIR proposes multiple (loss-) components to mitigate this adverse effect. Firstly, cosine

normalisation is used in the last layer to level the difference of the embeddings and biases between

all classes since those are significantly higher for new tasks. Secondly, less-forget constraint is

introduced to prevent forgetting old classes’ geometric configurations by encouraging the extracted

features of new classes similarly rotated to those of old ones; that is:

LGdis(x) = 1− 〈f̃∗(x), f̃(x)〉, (10)

where f̃(x) and f̃∗(x) are normalised features generated by the new and old model, and 〈, 〉measures

the cosine similarity between the two normalised vectors. Thirdly, a margin ranking loss is used to

enhance inter-class separation. For each in-memory sample x, it aims to separate old classes from all

the new classes by a margin. Using x as an anchor, LUCIR finds positive and negative embeddings

and aims to maximise their distances. The positive embeddings are from the ground-truth class of

12

x (represented as θ̃(x)), while the negative embeddings are from the top-K new classes that produce

the highest response to x (represented as θ̃k), indicating the classes that x is mostly confused with.

Then the margin ranking loss is defined as:

Lmr(x) =
K∑
k=1

max(m− 〈θ̃(x), f̃(x)〉+ 〈θ̃k.f̃(x)〉, 0). (11)

This leads to the combined loss function as follows:

L =
1

|N |
∑
x∈N

(LCE(x) + λLGDIS(x)) +
1

|No|
∑
x∈No

LMR(x), (12)

where N refers to all the training samples and No (⊂ N) refers to the reserved old samples. λ

is a dynamic weight to adjust how much knowledge of the previous model needs to be preserved

depending on how many new classes are introduced. It is calculated by multiplying the base λ

with the squared root of the ratio between new and old classes; that is, λ = λbase
√
|CN |/|Co|. It

regulates the degree of preserving the old knowledge by taking into account the number of new

classes being added. For example, when there are many new classes are introduced, the model

would preserve less old knowledge to allow the model to adapt to the new knowledge, and vice

versa. In general, λbase is set as 5.0 and the margin value m in Eq 11 as 0.5 [18].

Weight Alignment for Maintaining Discrimination and Fairness (WA-MDF) is another

approach that tackles the mentioned imbalance problem by correcting the biased weights in the

last fully connected (FC) layer after training each task. It aligns the norms of the weight vectors of

new classes to those of old classes. The FC layer output of a model can be expressed in a general

form: o(x) = W Tφ(x), where φ(x) is the feature extraction function of an input x and W is the

weight vector of the FC layer. W can be separated into W = (Wo,Wn), where Wo and Wn refers

to the weights corresponding to the old and new classes; that is,

Wo = (w1, w2, ..., wCb
o
)

Wn = (wCb
o+1, ..., wCb

o+C
b),

where Cb is the total number of classes and Cbo is the number of old classes. Their norms are defined

as:

Normo = (||w1||, ||w2||, ..., ||wCb
o
||)

Normn = (||wCb
o+1||, ..., ||wCb

o+C
b ||).

13

The normalised weights on new classes are Ŵn = γWn, where γ = Mean(Normo)
Mean(Normn)

. In this way, the

average norm of the weights on the new classes will be the same as that on the old classes. The

corrected output logits from the FC layer will be written as:

Ocorrected(x) = (W T
o φ(x), γW T

n φ(x))T . (13)

As a norm-control method; i.e., keeping a check on the norms of class embeddings following each

gradient update, WA-MDF clamps the parameters of the FC layer at zero. Assuming that a network

usually employs variants of ReLU activation units, the clipping facilitates the projection of weights.

This helps eliminate large negative elements of weight vectors thus making its norm more consistent

with the non-negative output logits of the ReLU function. While such a restriction seems to interfere

with the convergence of the model, several studies have shown that training neural networks with

weights projected via such distortions makes them robust to other types of distortions [30]. Here,

distortion refers to different ways of weight projection operations; for example, adding Gaussian

noise or performing additive, multiplicative, or power operations on weights [30]. Such distortion

allows weights to accumulate small gradient updates and thus leads to improved performance.

Weight Alignment for Adjusting Decision Boundary (WA-ADB) is also proposed to re-

scale the weight vectors of majority and minority classes, but in a more general class-imbalance

scenario [22]. Different from the above WA-MDF, WA-ADB re-scales the weights based on the

sample ratio of old and new classes instead of their weight norms. For a dataset D with K classes,

given that ni is the number of samples of class i (n1 ≥ ...ni... ≥ nK), the weight vectors of each class

are re-scaled by an exponent of the re-scaling factor n1/ni; i.e., wi = (n1
ni

)γwi. During training, the

weight vectors will be normalised after each gradient update. While a larger γ scales up the volume

of feature space of a model allocated to infrequent classes, weight vector normalisation forces the

class conditional probability to have the same variance independent of the sample size.

To adapt WA-ADB to incremental learning scenario, we make the following adjustment. For an

incremental training step i, the dataset D is the combination of in-memory samples on old tasks

and new training samples on a new task. We then re-scale the weights of all the classes of old tasks

by the same factor, i.e., n1/ni, where n1 is the number of samples on the largest class that has been

seen so far and ni is the holdout size. Because ni is fixed due to the memory size, we only compute

this number once. While the bias term is dropped in the original work [22], we take into account

that the biases for classes of new tasks also have norms larger in average than that of classes from

14

old tasks. As a result, we re-scale the biases of each class by the corresponding weight re-scaling

factor computed in the above step.

Bias Correction (BiC) [45] introduces a BiC correction layer after the last FC layer to adjust the

weights in order to tackle the imbalance problem. There are two stages of training. In the first

stage, the network will be trained with new task data and in-memory samples of old tasks using

the CE and KD loss similar to iCaRL. In the second stage, the layers of the network are frozen

and a linear BiC layer is added to the end of the network and trained with a small validation set

consisting of samples from both old and new tasks. The linear model of the BiC layer corrects the

bias on the output logits for the new classes:

ỹk =


ŷk 1 ≤ i ≤ n

αŷk + β, n+ 1 ≤ i ≤ n+m

where ŷk is the output logits on the kth class, the old classes are [1, ..., n] and the new classes are

[n+ 1, ..., n+m]. α and β are the bias parameters of the linear model, which are optimised in the

following loss function:

LBiC = −
n+m∑
k=1

δy=k log softmax(ỹk),

where δy=k is the indicator function to check if the ground-truth label y is the same as a class

label k. The intuition is that a balanced small validation set for all seen classes can counter the

accumulated bias during the training of the new task. As the non-linearities in the data are already

captured by the model’s parameters, the linear function proves to be quite effective in estimating

the bias in the output logits of the model arising.

So far we have described all the 10 selected continual learning techniques and in the next section,

we will introduce the evaluation framework and methodology for assessing and comparing them on

the HAR datasets.

4. Experimental Setup and Evaluation Methodology

The main objective of this paper is to assess to what degree the state-of-the-art continual learning

techniques can enable continual activity recognition. More specifically, we will seek to answer the

following questions:

15

1. What is the performance of these continual learning techniques on HAR datasets?

2. Which techniques best balance plasticity and stability when incrementally learning new activi-

ties?

3. Which regularisation term works best for what type of data?

4. What is the impact of in-memory sample sizes on the accuracy of these techniques?

5. Are these techniques sensitive to the size of training data?

6. What is the computation cost of these techniques in terms of memory and training time?

To answer these questions, we select 8 HAR datasets (in Section 4.1), design the evaluation

process (in Section 4.2), select the evaluation metrics (in Section 4.3) that are appropriate for

HAR, describe the baseline approach for comparison (in Section 4.4), and illustrate the architecture

configuration and hyperparameter tuning for all the techniques (in Section 4.5).

4.1. Datasets

To present a comprehensive profile of selected continual learning techniques, we will assess on

a wide variety of most representative, state-of-the-art HAR datasets, ranging from simple datasets

(with a single user, a small number of features and activity classes) to more complex datasets (with

multiple users, a large number of features and activity classes). Driven by these criteria, we select

the following set of publicly available, third-party datasets that are collected on accelerometer and

event-driven binary sensor data, as these two are the most common sensor types in HAR. Table 1

and Figure 3 summarise the main characteristics of these datasets.

Table 1: Main characteristics of selected datasets

Sensor Types
Datasets HA WS MILAN ARUBA TWOR PAMAP2 HAPT DSADS
No. of samples 488 909 20525 71278 30128 7312 10929 9120
No. of features 16 32 28 31 43 243 561 405
No. of classes 7 9 15 11 23 12 12 19
Balanced (Y/N) N N N N N N N Y

Binary Sensors Accelerometers

Binary sensor data We use House A (denoted as HA) from the University of Amsterdam [40] and

4 CASAS smart home datasets (denoted as WS, Milan, Twor, and Aruba) from Washington State

University [9]. They are collected on a wide range of event-driven binary sensors, including passive

infra-red sensors, state-change sensors, switch sensors, pressure sensors, and water flow sensors.

16

0

50

100

150

200

Toile
t

Sleep
Dinner

Leave house
Bath

Breakfas
t

HA

0

200

400

Sitting Lying on back Ascending stairs Standing in an
elevator still

Walking in a
parking lot

Walking on a
treadmill with a
speed of 4 km/h

(in 15 deg
inclined

positions)

Exercising on a
stepper

Cycling on an
exercise bike in

horizontal
positions

Rowing Playing
basketball

DSADS

0
50

100
150
200
250
300

Hygiene

Liv
ing_room_act

Enter/l
eave Home

Cooking

Sleeping

Grooming
Eatin

g

Working

Reading

WS

0
1000
2000
3000
4000
5000
6000

Re
ad

Kit
che

n_
Ac
tiv
ity

Wa
tch
_T
V
Sle
ep

Ma
ste
r_B
R

Ma
ste
r_B
R_
A

Gu
est
_B
ath
roo

m

De
sk_
Ac
tiv
ity

Lea
ve_

Ho
me

Ch
ore
s

Din
ing
_R
m

Me
dit
ate

Be
d_
To
_T
oil
et

Mo
rni
ng
_M
ed
s

Eve
_M
ed
s

MILAN

0
10000
20000
30000
40000
50000

Re
lax

Me
al_
Pre
pa
rat
ion

Sle
ep
ing Wo

rk
Ea
tin
g

Ho
use

kee
pin
g

Wa
sh_

Dis
he
s

Be
d_
To
_T
oil
et

Re
spa

rat
e

Lea
ve_

Ho
me

En
ter
_H
om
e

ARUBA

0
1000
2000
3000
4000
5000
6000
7000

R1
_S
lee
p

R1
_W
or
k

R2
_S
lee
p

R2
_W
or
k

R1
_W
at
ch
_T
V

R1
_P
er
_H
yg

R2
_P
er
_H
yg

R2
_M
ea
l_P
re
p

R2
_W
at
ch
_T
V

R1
_M
ea
l_P
re
p

R1
_E
at
ing

R2
_E
at
ing

R1
_L
ea
ve
_H
om
e

R1
_E
nt
er
_H
om
e

R1
_W
an
de
r_
In_
Rm

R2
_L
ea
ve
_H
om
e

R1
_B
ed
_t
o_
To
ile
t

R2
_E
nt
er
_H
om
e

R1
_H
ou
se
ke
ep
ing

R2
_B
at
hin
g

R2
_B
ed
_t
o_
To
ile
t

R2
_W
an
de
r_
in_
Rm

R1
_B
at
hin
g

TWOR

0
500

1000
1500
2000
2500

Stan
ding

Layin
g

Sitti
ng

Walk
ing

Walk
ing u

psta
irs

Walk
ing d

ownsta
irs

Stan
d to

 lie

Sit t
o lie

Lie
 to

 sit

Lie
 to

 sta
nd

Stan
d to

 sit

Sit t
o st

and

HAPT

0
200
400
600
800

1000

Iro
ning

Walk
ing

Lyi
ng

Stan
ding

Nordic w
alk

ing
Sitti

ng

Vacuum cle
aning

Cyclin
g

Asce
nding sta

irs

Desce
nding s

tairs

Running

Rope ju
mping

PAMAP2

Figure 3: Activity histograms on all the selected datasets.

On these datasets, we apply state-of-the-art techniques [13] to segment the raw sensor data into a

60-second interval and generate features as an activation ratio of each sensor in the interval.

Accelerometer sensor data Physical Activity Monitoring Dataset (PAMAP2) [35] contains 12

activities such as sitting, lying, and house cleaning. The data is collected on 9 users with 3 ac-

celerometer units on each user’s chest, dominant arm and side ankle. Daily and Sports Activities

Dataset (DSADS) [3] contains 19 activities such as running, rowing, and sitting. The data is col-

lected on 8 users with 5 accelerometer units on each user’s torso, arms, and legs. On these datasets,

we use the sensor features that have been extracted from raw accelerometer data; that is, on each

accelerometer unit, 27 features are generated, including mean, standard deviation, correlations,

and spectrum peak position. Human Activity Recognition Dataset (HAPT) [36] contains 12 daily

activities collected on 30 subjects with a smartphone (Samsung Galaxy S II) on their waist. There

are 561 features extracted from accelerometer and gyroscope readings.

4.2. Evaluation Process

We follow the state-of-the-art task-incremental evaluation methodology [39], where we assign 2

randomly sampled classes to each task and form a sequence of |C|/2 consecutive tasks, where |C|

is the total number of classes in a dataset. In practice, the number of classes in each task can vary,

depending on the arrival of new classes and update cycle of the model. Here, we set the number of

classes as 2, as a good trade-off to assess the incremental learning capability and the training time.

Also, we employ the stratified train-test split [39] to split each class’s data into 70% for training

and 30% for testing. As accelerometer datasets often have multiple users, to avoid data leakage, we

split training and testing data of each class by users; that is, we use 70% of users’ data for training

and the remaining 30% of users’ data for testing.

Given a task sequence, the network will be initialised and trained with the first task’s training

17

1st task t1 = {Sleep, Toilet} 2nd task t2 = {Breakfast, Shower}

Normalised sensor featuresClass

Train the network with t1’s training data

Sample a small number of samples from
t1’s training data and store them in memory
for replay techniques

Extend the network’s output layer to include t2’s classes

Train the network with t2’s training data, or together with in-memory
data on previous tasks

Sample a small number of samples from t2’s training data and store
them in memory

t1’s training data

t2’s training data

…

Figure 4: An example of task-incremental evaluation

data. Then for each subsequent task, the network’s output layer will be extended to include its

new classes and the network will be trained with the task’s training data and in-memory data.

The in-memory data are sampled from all the previous tasks’ training data. The size of in-memory

data is determined by the memory constraint of a particular HAR system, and it will contribute to

retaining old knowledge and thus affect the accuracy of old class classification. Figure 4 presents

an example of task-incremental evaluation on a HAR dataset. As the performance of continual

learning can be subject to task sequences, to reduce the bias, we generate several random task

sequences (i.e., 30) and report averaged accuracy.

4.3. Evaluation Metrics

When training a new task, we compute three types of accuracy. (1) Base accuracy – the accuracy

of recognising the activity classes in the first task; (2) Old accuracy – the accuracy of recognising

all the old activity classes that have learnt before the current task. Both base and old accuracy will

indicate the stability of the model; (3) New accuracy – the accuracy of recognising the new activity

classes in the current task, which will indicate the plasticity of the model; and (4) All accuracy –

the accuracy of recognising all the activity classes that have learned so far, which will indicate the

overall performance of the model. The accuracy is measured in F1-scores, which balances precision

and recall. As most of the HAR datasets have an imbalanced class distribution, we use F1-macro

and F1-micro.

To understand the retention of knowledge for a given task j at an incremental task k, we employ

a commonly used measure – forgetting score (FS) [5]. After a model is trained incrementally till

task k > j, the forgetting score f jk is computed as the difference between the maximum accuracy

18

gained for the task j throughout the learning process. However, this score does not concern with the

difficulty level of each task. For example, the accuracy decreasing from 60% to 40% on a difficult

task suggests more forgetting than the accuracy decreasing from 90% to 70% on an easy task. To

address this limitation, we propose an adapted forgetting score by normalising it with the best

accuracy that can be achieved on a task. That is,

f jk = 1−
ak,j

max
l∈1,..,k−1

al,j
,

where ak,j is the accuracy for a previous task j at the current task k2. Finally, the average forgetting

FSk at k−th task is normalised against the number of tasks seen previously, i.e.,

FSk =
1

k − 1

k−1∑
j=1

f jk .

A large FS score implies server forgetting. At the extreme, when FS is 1, it suggests that the

knowledge on the old task is completely forgotten.

4.4. Baseline

Besides the selected models, we consider two baselines that serve as an upper and lower bound

of the performance of continual learning. (1) Offline batch learning: we train a network with

the training data on all the classes simultaneously, and (2) finetuning: we do not use any holdout

samples for replay and only use training data on each new class to update the model with the plain

cross-entropy loss.

4.5. Architecture Configuration

While the original implementations of our selected techniques use a variety of architectures3

and classifiers4, we try to maintain a fair comparison premise by using the fully connected networks

across all our experiments. To retain the best characteristics of these techniques, we follow the

state-of-the-art methodology [5, 21] to conduct grid search for the network architecture on each

dataset. Table 2 provides a list of optimised configurations. The initial learning rate (LR) is

reduced by a factor of 10 after every scheduler step following the first scheduling epoch. For the

2We ignore classes whose maximum accuracy is not greater than 0, avoiding the arithmetic error.
3Most of the vision-based methods use standard CNN architectures.
4For instance, iCaRL uses nearest-of-mean classifier.

19

choice of the number of neurons in the hidden layers, we rely on fractions of feature dimensions

of each dataset. For the particular case of training GEM, we tune the initial learning rate to 0.01

for TWOR and ARUBA, and to 0.001 for DSADS, as a larger learning rate makes it difficult to

converge and leads to low accuracy. The scheduling epochs for TWOR and ARUBA are set to 40

and that for DSADS to 50 while the wight decay rates are set to 1e−6, 1e−4 and 2e−6 for TWOR,

DSADS and ARUBA respectively.

Table 2: Hyperparameter configuration for training
Hyperparameter HA WS MILAN ARUBA TWOR PAMAP2 HAPT DSADS
Hidden layer dimensions [16, 8, 8] [32, 16, 16] [56, 28, 14] [62, 31, 15] [43, 21, 10] [486, 243, 121] [1122, 561, 280] [405, 202, 202, 101]
Batch size 15 15 15 64 15 20 20 20
Initial LR 0.01 0.01 0.01 0.1 0.1 0.01 0.01 0.01
LR scheduler step 50 40 70 40 30 50 40 50
First scheduling epoch 110 90 70 40 30 100 60 100
Epochs till convergence 200 200 200 200 150 200 160 200
Weight decay rate 1.00E-04 1.00E-04 2.00E-04 2.00E-06 1.00E-04 1.00E-04 2.00E-04 1.00E-04

For each comparison technique, we run grid search on their own hyperparameters, and select the

best value that leads to the highest accuracy on each dataset. We list the setting in the following.

For LwF, the loss balance weight λo is set as 1.6 for all the datasets. For R-EWC, the regularisation

coefficient λ in Eq 4 is set as 5 for ARUBA and TWOR and 3 for all the other datasets. For MAS,

the regularisation coefficient λ in Eq 5 is set as 0.1 for TWOR, ARUBA, and MILAN datasets and

0.25 for all the other datasets.

5. Results and Analysis

This section presents the results in response to the research questions raised in Section 4. For

each question, we summarise the key results in bold, followed by the analysis.

5.1. Overall Comparison

Table 3 and 4 report the mean and standard deviation of micro- and macro-F1 scores on 10

selected and 2 baseline models across 8 datasets over 30 runs. The last column of these two tables

averages the accuracy across all the datasets and demonstrates which technique works best. For

all the models that use memory replay, we randomly sample 6 samples from each old class after

training each task.

The offline baseline provides the reference accuracy which implies the difficulty level of each

dataset. As shown in Table 3 and 4, the datasets that have more balanced activity distribution and

20

Table 3: Comparison of micro-F1 scores on comparison techniques (The best accuracy is highlighted in bold.)

Model HA WS MILAN ARUBA TWOR PAMAP2 HAPT DSADS Average

Offline 91.84 94.14 84.20 96.82 77.29 88.07 94.91 82.06 89.30

ILOS 82.97 +/- 09.71 90.98 +/- 03.34 62.81 +/- 09.52 85.52 +/- 16.18 66.36 +/- 04.39 80.37 +/- 03.09 81.20 +/- 03.50 60.91 +/- 04.46 76.39
WA-MDF 79.91 +/- 09.59 87.95 +/- 06.84 59.75 +/- 12.09 82.09 +/- 08.38 61.09 +/- 07.17 79.39 +/- 03.63 79.80 +/- 05.03 60.96 +/- 03.98 73.87
WA-ADB 81.97 +/- 19.11 89.81 +/- 03.11 64.28 +/- 04.89 73.76 +/- 21.59 55.71 +/- 08.74 76.73 +/- 03.81 75.74 +/- 05.82 59.52 +/- 03.89 72.19
BiC 84.40 +/- 08.74 89.17 +/- 04.31 47.09 +/- 15.27 64.81 +/- 26.70 57.63 +/- 11.70 76.53 +/- 03.23 75.65 +/- 05.19 63.86 +/- 03.36 69.89
GEM 81.07 +/- 19.35 85.60 +/- 04.31 63.01 +/- 04.80 79.71 +/- 05.27 54.55 +/- 14.95 67.62 +/- 04.43 77.37 +/- 04.39 51.99 +/- 07.66 70.12
LUCIR 65.08 +/- 31.22 80.68 +/- 16.48 46.08 +/- 18.14 56.05 +/- 27.30 62.22 +/- 30.88 76.95 +/- 02.31 77.78 +/- 05.37 71.69 +/- 02.39 67.07
iCaRL 76.80 +/- 12.39 87.52 +/- 04.92 34.53 +/- 15.19 54.23 +/- 28.18 49.83 +/- 16.06 71.48 +/- 03.75 73.02 +/- 06.10 59.50 +/- 04.24 63.36
R-EWC 18.75 +/- 09.05 13.16 +/- 09.94 07.36 +/- 08.02 04.79 +/- 12.69 05.60 +/- 06.79 17.43 +/- 05.38 16.91 +/- 09.52 05.68 +/- 01.34 11.20
MAS 15.10 +/- 06.79 10.40 +/- 07.61 05.74 +/- 07.63 03.13 +/- 04.81 04.48 +/- 05.82 17.39 +/- 05.34 16.91 +/- 09.53 05.70 +/- 01.39 09.86
LwF 14.88 +/- 7.34 10.44 +/- 07.59 08.80 +/- 10.15 12.49 +/- 20.22 04.84 +/- 07.50 17.44 +/- 05.35 16.96 +/- 09.54 05.77 +/- 01.49 11.45
Finetuning 13.76 +/- 06.86 09.90 +/- 07.66 05.73 +/- 07.63 03.11 +/- 04.82 03.91 +/- 05.34 17.40 +/- 05.35 16.90 +/- 09.52 05.40 +/- 00.72 09.51

Model HA WS MILAN ARUBA TWOR PAMAP2 HAPT DSADS Average

Offline 79.50 87.41 56.26 58.82 45.35 84.78 84.45 81.70 72.28

ILOS 69.89 +/- 12.38 79.16 +/- 06.48 38.51 +/- 07.04 48.82 +/- 10.97 36.12 +/- 05.09 76.40 +/- 04.01 68.31 +/- 4.02 58.71 +/- 04.76 59.49
WA-MDF 68.51 +/- 11.71 78.17 +/- 05.54 40.01 +/- 08.86 48.01 +/- 06.97 37.17 +/- 03.77 75.72 +/- 04.02 67.33 +/- 04.18 59.71 +/- 04.32 59.37
WA-ADB 73.25 +/- 19.83 80.37 +/- 04.19 45.68 +/- 04.08 44.60 +/- 12.45 36.41 +/- 05.22 73.27 +/- 03.66 64.68 +/- 03.58 58.13 +/- 04.07 59.55
BiC 74.51 +/- 08.10 80.11 +/- 04.23 31.82 +/- 08.72 37.59 +/- 13.06 34.83 +/- 08.70 72.75 +/- 03.82 64.79 +/- 04.19 62.55 +/- 03.41 57.37
GEM 70.87 +/- 19.27 70.68 +/- 07.31 41.20 +/- 02.88 38.87 +/- 07.16 27.91 +/- 08.46 62.92 +/- 04.79 55.55 +/- 05.44 50.35 +/- 08.34 52.29
LUCIR 57.42 +/- 34.24 72.31 +/- 15.97 34.97 +/- 12.63 35.97 +/- 12.85 53.43 +/- 32.82 72.74 +/- 02.26 68.68 +/- 04.38 70.54 +/- 02.74 58.26
iCaRL 68.12 +/- 13.03 77.93 +/- 04.92 24.94 +/- 08.98 34.43 +/- 11.06 29.14 +/- 09.49 67.91 +/- 03.47 60.89 +/- 04.69 57.37 +/- 04.67 52.59
R-EWC 06.82 +/- 05.26 04.10 +/- 04.08 01.46 +/- 01.83 00.67 +/- 01.45 00.73 +/- 00.94 05.12 +/- 01.28 04.36 +/- 02.77 00.75 +/- 00.68 03.00
MAS 04.22 +/- 02.48 02.46 +/- 02.41 00.82 +/- 01.13 00.56 +/- 00.78 00.48 +/- 00.82 04.99 +/- 01.27 04.42 +/- 02.72 00.72 +/- 00.60 02.33
LwF 03.75 +/- 01.54 02.38 +/- 02.26 00.98 +/- 01.06 01.63 +/- 02.28 00.36 +/- 00.54 05.05 +/- 01.36 04.49 +/- 02.65 00.76 +/- 00.65 02.43
Finetuning 03.38 +/- 01.45 01.91 +/- 01.38 00.67+/- 00.81 00.51 +/- 00.76 00.31 +/- 00.40 05.01 +/- 01.28 04.41 +/- 02.74 00.68 +/- 0.83 02.11

easier-to-separate classes gain higher micro- and macro-F1 scores; e.g., WS (94.14% and 87.41% in

micro- and macro-F1) and PAMAP2 (94.91% and 84.78% in micro- and macro-F1). The imbalanced

datasets often result in higher micro-F1 but lower macro-F1; e.g., ARUBA (96.82% and 58.82% in

micro- and macro-F1) and TWOR (77.20% and 45.35% in micro- and macro-F1). As lower bound,

the finetuning baseline suffers the most catastrophic forgetting, with the overall micro-F1 9.51% and

macro-F1 2.11% averaged across all the datasets, which are significantly lower than the accuracy

achieved from offline. In comparison with the above baselines, we draw the following observations

on the selected continual learning techniques.

Table 4: Comparison of macro-F1 scores on comparison techniques (The best accuracy is highlighted in bold.)

Model HA WS MILAN ARUBA TWOR PAMAP2 HAPT DSADS Average

Offline 79.50 87.41 56.26 58.82 45.35 84.78 84.45 81.70 72.28

ILOS 69.89 +/- 12.38 79.16 +/- 06.48 38.51 +/- 07.04 48.82 +/- 10.97 36.12 +/- 05.09 76.40 +/- 04.01 68.31 +/- 4.02 58.71 +/- 04.76 59.49
WA-MDF 68.51 +/- 11.71 78.17 +/- 05.54 40.01 +/- 08.86 48.01 +/- 06.97 37.17 +/- 03.77 75.72 +/- 04.02 67.33 +/- 04.18 59.71 +/- 04.32 59.37
WA-ADB 73.25 +/- 19.83 80.37 +/- 04.19 45.68 +/- 04.08 44.60 +/- 12.45 36.41 +/- 05.22 73.27 +/- 03.66 64.68 +/- 03.58 58.13 +/- 04.07 59.55
BiC 74.51 +/- 08.10 80.11 +/- 04.23 31.82 +/- 08.72 37.59 +/- 13.06 34.83 +/- 08.70 72.75 +/- 03.82 64.79 +/- 04.19 62.55 +/- 03.41 57.37
GEM 70.87 +/- 19.27 70.68 +/- 07.31 41.20 +/- 02.88 38.87 +/- 07.16 27.91 +/- 08.46 62.92 +/- 04.79 55.55 +/- 05.44 50.35 +/- 08.34 52.29
LUCIR 57.42 +/- 34.24 72.31 +/- 15.97 34.97 +/- 12.63 35.97 +/- 12.85 53.43 +/- 32.82 72.74 +/- 02.26 68.68 +/- 04.38 70.54 +/- 02.74 58.26
iCaRL 68.12 +/- 13.03 77.93 +/- 04.92 24.94 +/- 08.98 34.43 +/- 11.06 29.14 +/- 09.49 67.91 +/- 03.47 60.89 +/- 04.69 57.37 +/- 04.67 52.59
R-EWC 06.82 +/- 05.26 04.10 +/- 04.08 01.46 +/- 01.83 00.67 +/- 01.45 00.73 +/- 00.94 05.12 +/- 01.28 04.36 +/- 02.77 00.75 +/- 00.68 03.00
MAS 04.22 +/- 02.48 02.46 +/- 02.41 00.82 +/- 01.13 00.56 +/- 00.78 00.48 +/- 00.82 04.99 +/- 01.27 04.42 +/- 02.72 00.72 +/- 00.60 02.33
LwF 03.75 +/- 01.54 02.38 +/- 02.26 00.98 +/- 01.06 01.63 +/- 02.28 00.36 +/- 00.54 05.05 +/- 01.36 04.49 +/- 02.65 00.76 +/- 00.65 02.43
Finetuning 03.38 +/- 01.45 01.91 +/- 01.38 00.67+/- 00.81 00.51 +/- 00.76 00.31 +/- 00.40 05.01 +/- 01.28 04.41 +/- 02.74 00.68 +/- 0.83 02.11

Rehearsal methods significantly outperform regularisation-alone methods, as the aver-

aged difference in micro- and macro-F1 is around 50%. More specifically, from R-EWC to iCaRL,

micro-F1 increases from 11.20% to 63.36% in Table 3, and macro-F1 from 3% to 52.59% in Table 4.

Regularisation alone does not help retain the knowledge of the original model as LwF, MAS and

EWC only produce roughly the lower bound accuracy. For example, the success of LwF depends

on the similarity of new tasks to old tasks. Distribution shift between old and new tasks will result

21

in a discrepancy in the KD loss when predicting the class probability using the old model. The

errors are accumulated over incremental learning and will significantly impact its performance [25].

In HAR, each activity class can have a drastically different sensor feature signature, so in our ex-

periment these regularisation-only methods perform much worse than they do in computer vision

experiments.

Among rehearsal methods, ILOS, WA-MDF, and WA-ADB perform the best, improving

on the basic rehearsal method iCaRL over 13% in micro-F1 and 7% in macro-F1. With memory

replay, retraining the model is often affected by the imbalance between a large number of new task’s

data and a small number of in-memory samples. These methods have effectively avoided optimising

the model towards the majority classes and thus better retained the knowledge of the old classes.

GEM does not perform better than iCaRL, as it only achieves an increase of 7% in micro-F1

and the same macro-F1 score as iCaRL. We have also considered the improved version of GEM:

A-GEM [6]. However, in our experiments, A-GEM often produces worse accuracy than GEM;

for example, on PAMAP2 dataset, A-GEM achieves micro-F1 of 37.86% and macro-F1 of 28.35%,

which is more than 30% lower than GEM. One possible reason is that activities can have diverse

patterns, so when A-GEM down-samples the holdout data, it has an even smaller coverage of space

and thus its accuracy is worse than GEM.

5.2. Balance between Stability and Plasticity

To look into stability and plasticity over incremental learning, Figure 5 presents task-level micro-

F1 of base, old, new, and all classes on each technique. As we can see, regularisation methods

demonstrate better plasticity as with the increase of tasks, the new accuracy of LwF and EWC

remains high. These methods also exhibit poor stability as their base and old accuracy stays at

the bottom of the plots, even from the second task on. Overall, the weight alignment methods

in the rehearsal category achieve a better balance between stability and plasticity, as the overall

accuracy of ILOS, WA-MDF, and WA-ADB suffers less steep drop. Besides, we can observe that

each technique has a different performance profile on these 8 datasets, implying the characteristics

of the datasets might impact the effectiveness of each technique.

Rehearsal methods that tackle imbalance are less plastic to new classes. With a direct

tuning of the new model’s logits based on the previous model, ILOS can help surpass complex

regularisation operations in retaining the knowledge but it is not able to quickly adapt to new

22

classes. We also observe that LUCIR performs poorly on new tasks but is robust at preserving

old knowledge. An intuitive explanation could be that the design of marginal ranking reinforces

the model’s confidence at recognising ground truth embedding for old class samples after multiple

incremental training steps.

To further inspect the catastrophic forgetting, we present the new forgetting score FS in Fig-

ure 6. FS on these three regularisation methods is at the upper bound of 1.0 for the first task and

stays much higher than the other techniques for the following tasks, suggesting that these tech-

niques suffer an almost immediate total forgetting effect where they cannot come back from. The

high forgetting scores of R-EWC conform to the finding of [21] stating that EWC-based methods

are poor at learning new categories incrementally.

Among rehearsal-based methods, ILOS and WA-ADB exhibit the best knowledge retention as

their averaged FS across the tasks on all the datasets is the lowest; e.g., the old classes only lose

20% of their best accuracy throughout continuous learning. In contrast, iCaRL and LUCIR are the

worst with their FS being 30%, which is averaged over all the datasets in Figure 6. GEM shows

a relatively greater tendency of increase in FS as the number of incremental tasks grows. This is

evident across the plots for DSADS, ARUBA, TWOR, WS and HA.

We also observe that after a certain number of incremental tasks, the inertia of forgetting on

rehearsal methods is relieved. For instance, iCaRL, BiC, LUCIR and ILOS reach the threshold on

ARUBA at the 3rd task while GEM and WA-ADB attain this at the 4th task following which their

respective FS witnesses either a plateau or start decreasing. There is no clear correlation between

the forgetting effect and the number of tasks being learnt, as it can be dataset-specific, especially

the interference between the old and new activities.

There exists a strong effect of the amount and distribution of training data attributes

on forgetting. For the rehearsal methods, we can see that the datasets that have a long tail

distribution (i.e., many activities have low frequency) have much higher forgetting scores. For

example in Figure 3, TWOR has 19 out of 23 activities whose occurrence is less than 6%, MILAN

has 11 out of 15 activities whose occurrence is less than 8%, and ARUBA has 8 out of 11 activities

whose occurrence is less than 3%. As shown in Figure 6, FS of the rehearsal based techniques on

these datasets is around 15% higher than those on the other datasets.

23

HA WS

MILAN ARUBA

TWOR PAMAP2

HAPT DSADS

Figure 5: Accuracy comparison of task-level performance. It records micro-F1 scores on Base, Old, New

and All classes.

5.3. Effect of Regularisation

From the above results, we can see that regularisation alone does not demonstrate any advantage

from a naive finetuning approach, but will their performance be improved when combined with
24

HA WS MILAN ARUBA

TWOR PAMAP2 HAPT DSADS

Figure 6: Comparison of forgetting scores on selected techniques

memory replay? If so, which regularisation is more effective in HAR? To answer these two questions,

we design the following experiment that uses holdout samples with each regularisation term. More

specifically, we look into the following settings: (1) cross-entropy (CE) only (as a baseline without

any regularisation) in Eq 4, (2) KD in Eq 1, (3) EWC in Eq 4, (4) MAS in Eq 5, (5) LUCIR

discrimination loss (LUCIR-DIS) LGdis in Eq 10, (6) LUCIR marginal ranking loss (LUCIR-MR)

Lmr in Eq 11, (7) LUCIR combination loss (LUCIR) in Eq 12, (8) ILOS cross-entropy loss (ILOS-

CE) in Eq 7 and (9) ILOS combination loss (ILOS) in Eq 8. To make a fair comparison, we set up

the same setting for each technique, including randomly sampling holdout data from old classes’

training data and employing the same training procedure.

Figure 7 compares micro- and macro-F1 scores of different regularisation terms with memory

replay. We draw the following observations. Firstly, LUCIR-MR and ILOS produce better accuracy

than a simple cross-entropy loss. As shown in Figure 7, ILOS and LUCIR-MR have produced

averaged 77% and 61% in micro-F1, which are 13% and 7% higher than the plain CE loss. A

possible reason is that LUCIR-MR is dedicated to separating classes and ILOS adjusts the logit

output to balance the old and new classes.

Secondly, the other regularisation terms do not improve the results from the CE loss. We can

only see 5% and 3% improvement in micro- and macro-F1 from the other regularisation terms over

CE in Figure 7. It seems that memory replay and the regularisation terms are dealing with the

same problem: interclass discrepancies. Therefore, there might not be a distinct advantage for

25

0

20

40

60

80

100

HA WS MILAN ARUBA TWOR PAMAP2 HAPT DSADS Average

M
ic

ro
-F

1
(%

)

Datasets

Micro-F1 scores on different regularisation terms
CE KD R-EWC MAS LUCIR-DIS LUCIR-MR LUCIR ILOS

0

20

40

60

80

100

HA WS MILAN ARUBA TWOR PAMAP2 HAPT DSADS Average

M
ac

ro
-F

1
(%

)

Datasets

Macro-F1 scores on different regularisation terms
CE KD R-EWC MAS LUCIR-DIS LUCIR-MR LUCIR ILOS

Figure 7: Performance comparison of different regularisation terms with memory replay

regularisation. This finding is consistent with the latest theoretical work [24]. The terms that

decrease the difference between micro- and macro-F1 the most are inhibiting the learning outcome

if used in conjunction with memory replay. For example, ILOS and R-EWC have the lowest F1

scores with memory replay. Looking back at Figure 5, we can see that ILOS is inhibiting new

classes from being learned.

5.4. Effect of Sampling

Since rehearsal methods can improve knowledge retention significantly, now the questions are

(1) how many samples are needed to store in memory and (2) what sampling strategy is most

effective for selecting these samples that are representative for old classes. To investigate these

questions, we experiment different holdout sizes from 2 to 15 with a step size of 2 on widely

adopted sampling techniques, including random sampling, herding [43], exemplar sampling, Frank-

Wolfe Sparse Representation (FWSR) sampling [8], and boundary sampling. Herding is to select the

top s samples that are the closest to the mean of each class [43]. FWSR sampling selects a subset of

the data that effectively describes the entire data set. Exemplar sampling selects the centroid data

26

points of each class. Boundary sampling [11], a recent sampling technique for incremental learning,

selects exemplars on the class decision boundary and overlapping region based on local geometrical

and statistical information. Figure 8 compares the micro-F1 scores of sampling techniques on

different sample sizes on 4 selected methods and 4 datasets.

M
ic

ro
-F

1(
%

)
M

ic
ro

-F
1(

%
)

M
ic

ro
-F

1(
%

)

M
ic

ro
-F

1(
%

)
M

ic
ro

-F
1(

%
)

M
ic

ro
-F

1(
%

)

M
ic

ro
-F

1(
%

)
M

ic
ro

-F
1(

%
)

M
ic

ro
-F

1(
%

)

M
ic

ro
-F

1(
%

)
M

ic
ro

-F
1(

%
)

M
ic

ro
-F

1(
%

)

MILAN: ILOS MILAN: WA-MDF MILAN: LUCIR MILAN: R-EWC

TWOR: ILOS TWOR: WA-MDF TWOR: LUCIR TWOR: R-EWC

PAMAP2: ILOS PAMAP2: WA-MDF PAMAP2: LUCIR PAMAP2: R-EWC

Holdout size per class

Holdout size per class

Holdout size per class

Holdout size per class

Holdout size per class

Holdout size per class

Holdout size per class

Holdout size per class

Holdout size per class

Holdout size per class

Holdout size per class

Holdout size per class

M
ic

ro
-F

1(
%

)

M
ic

ro
-F

1(
%

)

M
ic

ro
-F

1(
%

)

M
ic

ro
-F

1(
%

)

DSADS: ILOS DSADS: WA-MDF DSADS: LUCIR DSADS: R-EWC

Holdout size per class Holdout size per class Holdout size per class Holdout size per class

Random
Herding
Exemplar
Boundary
FWSR

Random
Herding
Exemplar
Boundary
FWSR

Random
Herding
Exemplar
Boundary
FWSR

Random
Herding
Exemplar
Boundary
FWSR

Figure 8: Comparison of accuracy on different sampling techniques and sample sizes.

Holdout size does not impact much on the accuracy in that the accuracy on ILOS, WA-

MDF, and LUCIR in Figure 8 does not vary much with the increase of the holdout size. For most

of the datasets, the accuracy converges when the holdout size is around 4 or 6.

In terms of the sampling techniques, random (in red), exemplar (in dark green), and

herding (in light green) work better than the other two more complex techniques, as presented

in Figure 8. Boundary sampling (in orange) works the worst, whose accuracy often stays at the

27

bottom. Sensor data often contains noise and outliers, so it is difficult to characterise geometric

shape or precise class boundary of an activity, and thus both boundary and FWSR do not work

well. Exemplar and herding try to capture most representative samples, and work well when the

holdout size is small; i.e., 2. Random sampling works generally well and is consistent with the

results on images [44], as randomness seems to have better coverage in the entirety of data space

with minimal bias for certain data distributions.

Training data percentage Training data percentage Training data percentage

Training data percentage Training data percentage Training data percentage

M
ic

ro
-F

1(
%

)

M
ic

ro
-F

1(
%

)

M
ic

ro
-F

1(
%

)
M

ac
ro

-F
1(

%
)

M
ac

ro
-F

1(
%

)

M
ac

ro
-F

1(
%

)

TWOR PAMAP2 DSADS

TWOR PAMAP2 DSADS

Figure 9: Comparison of accuracy on different training data percentage. The results demonstrate that the

selected lifelong learning techniques are insensitive to training data size.

5.5. Effect of Training Data Sizes

Training data for new classes can be more difficult to acquire in a continual learning setting

in HAR, as new classes are discovered when the system is already deployed and running. For

example, it often relies on users’ voluntary self-annotation when the sensor system is deployed in

the real world. These experiments are designed to assess the impact of training data size on the

selected techniques. We reduce the training data percentage from 70% to 10% with a step size of

20% and report their micro- and macro-F1 in Figure 9. The results show that these techniques

are not sensitive to training data size, as the accuracy does not change after 30% training data.

For datasets with high imbalance (TWOR), the accuracy of the selected methods does not change,

staying at 66% in micro-F1 and 36% in macro-F1. The reason is that some of the classes have

28

very little samples; e.g., the activity ‘R1_bath’ only has 19 samples, and the increase in training

percentage still does not lead to many samples. We observe that LUCIR decreases accuracy with

the increase in training data. The reason is that TWOR has many difficult-to-separate activities,

which makes it more challenging to find good anchors when more training data is available.

5.6. Computation Cost Analysis

Computation cost is an important consideration in HAR since devices are usually under memory

and computational power constraints. Table 5 presents the computation time of all the selected

methods on training a single incremental task and as well as the whole task sequence. For each

dataset, we highlight the technique with the longest training time. We report the averaged training

time in the last column for the overall comparison. All the training is performed on a modest

computer with Intel Core i5 8400, 32GB memory, and 2×500GB SSD.

Table 5: Comparison of computation time (in seconds) of training each incremental (Incre.) task and all

the tasks (Total). (The longest training time is highlighted in bold.)

Incre. Total Incre. Total Incre. Total Incre. Total Incre. Total Incre. Total Incre. Total Incre. Total Incre. Total
ILOS 2.11 7.28 2.90 13.39 30.07 227.08 47.74 254.17 22.41 260.39 30.58 171.19 84.59 470.80 33.52 33.52 31.74 179.73
WA-MDF 1.98 6.91 2.70 12.58 27.87 211.60 45.44 242.70 21.93 255.23 19.53 112.76 92.23 503.18 32.33 32.33 30.50 172.16
WA-ADB 1.99 6.94 2.72 12.68 29.90 226.34 45.63 243.42 21.30 248.23 21.83 124.60 86.11 482.14 32.43 32.43 30.24 172.10
BiC 2.61 8.74 3.42 15.31 43.92 322.51 53.93 283.09 38.81 439.46 20.77 114.23 81.80 451.57 28.56 28.56 34.23 207.93
GEM 2.55 8.61 3.34 15.14 67.49 488.94 73.64 383.29 59.97 673.61 121.08 623.63 596.56 3050.39 116.55 116.55 130.15 670.02
LUCIR 3.90 12.90 5.36 23.73 54.97 406.45 73.90 388.13 40.54 464.18 35.39 191.95 148.54 818.96 34.53 34.53 49.64 292.60
iCaRL 2.05 7.14 2.61 12.20 28.50 216.18 40.91 219.41 21.36 249.13 30.16 168.22 79.25 445.69 21.14 21.14 28.25 167.39
R-EWC 1.45 5.34 2.00 9.79 29.96 212.40 42.86 229.51 20.41 238.66 23.48 132.11 144.10 774.97 25.38 25.38 36.20 203.52
MAS 1.45 5.32 1.98 9.75 27.78 211.09 42.25 226.46 20.30 237.29 27.38 149.20 133.76 719.23 25.37 25.37 35.03 197.96
LwF 1.27 4.76 1.73 8.67 23.41 179.64 38.00 204.65 17.38 204.53 18.61 108.49 72.82 413.09 18.44 18.44 23.96 142.79
Finetuning 0.93 3.74 1.25 6.78 17.08 135.85 28.61 157.91 12.54 152.03 15.62 92.82 69.19 406.77 11.77 11.77 19.62 120.96

PAMAP2 HAPT DSADS AVGModel HA WS MILAN ARUBA TWOR

As shown in Table 5, GEM and LUCIR are the most expensive ones among the others,

especially the incremental training time of GEM (i.e., 130s) is 6 times higher than finetuning on

average (i.e., 20s). This is because since the quadratic optimisation in GEM is computationally

expensive. LUCIR needs to find good anchors, which incurs an extra cost, so it takes significantly

longer training time than the other 8 techniques. The rehearsal based methods take longer to

compute than the methods purely based on regularisation. For example, LwF, as the simplest

technique, is the least computationally expensive; that is, 20s longer in total training time than

finetuning on average. Comparing the weight alignment techniques, BiC is more expensive as it

requires to tune the bias correction layer, which happens after a new task has converged. This is

slightly more expensive (i.e., 30s more in total training time) than the relatively simple correction

methods of WA-MDF/ADB.

29

Table 6: Summary of selected techniques

Imbalanced
Activity
Distribution

Inter-class
Similarity

Computation
Cost

Sensitivity to the
amount of
training data

LwF Use knowledge distillation (KD) to retain knowledge on old classes No No Low No

EWC
Inhibit changes on parameters that are important to old tasks and the importance of
parameters is learnt from Fisher Information Matrix No No Low No

MAS
Similar to above and the importance of parameters is estimated on their sensitivity to
updates No No Low No

iCaRL Similar to LwF but store represenative samples from old classes in memory for replay No No Low No
ILOS Adjust norms on old class output in order to put more weight on them No No Medium No
GEM Constrain gradient update to avoid decreasing performance on old classes No No High No

LUCIR
Minimise the cosine similarity of features of old and new classes to reduce the impact
of updates and apply margin-ranking to enhance in-class separation Yes Yes High No

WA-MDF
Align the norm of weight vectors of new classes to those of old classes in order to deal
with imbalance Yes No Low No

WA-ADB Re-scale the weight vectors of majority and minority classes Yes No Low No

BiC
Introduce a linear layer at the end of the original network to adjust the weight on new
and old classes Yes No Medium No

Regularisation
Rehearsal

HAR Limitations

Type Techniques Key Idea

6. Discussion

This section summarises the above results and provides guidelines on what type of techniques

to use under what conditions for HAR systems. Table 6 lists the key ideas of each technique and

how well they tackle HAR limitations.

6.1. Imbalanced Activity Distribution

Among the selected techniques, ILOS and WA-ADB produce higher macro-F1 scores than the

others on more skewed datasets such as WS, MILAN and ARUBA. WA-ADB accounts for the ratio

of training samples in each class at each incremental training step. For ILOS, the averaging of

output logits reduces the magnitude of the logits of new dominant classes.

6.2. Inter-class Similarity

Inter-class similarity is the key characteristic of HAR. Some activities can have very similar

sensor signatures. For example in the DSADS dataset, the activity classes between ‘lying on right’

and ‘lying on back’ exhibit high correlation, which can result in overlapping decision boundaries.

LUCIR and GEM have attempted to tackle this problem, and LUCIR outperforms GEM with 6%

increase in macro-F1. In addition, LUCIR has achieved the highest accuracy on TWOR dataset that

faces the largest challenge of inter-class separation; that is, distinguishing meal preparation from

one resident to another. A promising future direction in HAR is to introduce regularisation terms

that enhance the discriminability of the network; e.g., the contrastive loss [10] that is dedicated to

learning the difference between two sets of data.

30

6.3. Computation Cost

Except for GEM and LUCIR, the other selected methods take about twice of training time as

finetuning. This is acceptable for most modern devices that run human activity recognition. In

terms of memory requirements, as the performance of these methods is not sensitive to the holdout

size, so we advise a small number (i.e., 2 or 4 data points per class) will be sufficient. Note that most

of the regularisation methods require to store the network parameters in memory to compare before

and after an update. For a large neural network that consists of a large number of parameters, this

might even be considerably more costly than keeping samples. Also, in our experiments, there is

no advantage of sophisticated sampling techniques over random sampling of our datasets.

6.4. Scarcity of Labelled Data

The selected techniques are not sensitive to training data size, which is good for incremental

learning when labelling new activities is even more difficult. In our experiments, 30% of the training

data will be sufficient. However, given a large dataset, 30% still means a large number of samples;

e.g., DSADS needs to label 144 samples per class. In the future, we could look into few-shot learning

algorithms to further reduce the number of training samples on new classes.

7. Conclusion and Future Work

This paper presents a comprehensive, empirical evaluation of recent continual learning tech-

niques in a task-incremental setting. We seek answers to essential research questions in HAR.

We find that rehearsal techniques will lead to the best performance on most of the selected HAR

datasets. They can be computationally cheap and do not require much memory space. Sophis-

ticated regularisation terms or gradient updates fall short on their promises. The regularisation

terms that help to deal with imbalances and inter-class separation achieve more promising accuracy

on HAR datasets. In the following, we will focus on the future developments that HAR techniques

have to have.

The state-of-the-art continual learning techniques have paved a promising future for continual

learning in HAR. However, most of these techniques are either set in a non-realistic continual

learning scenario such as permutation MNIST [39], or in scenarios with distinct task boundaries.

We envision a continual learning system in a real-world HAR deployment where new activities

can occur spontaneously and interweave with the old activities. Therefore, it needs to be able to

31

discover new activities first. This requires to combine the existing continual learning techniques

with techniques for anomaly detection; i.e., detecting whether the current sensor data conforms to

any existing activity pattern. In HAR, new activity discovery has been extensively studied [46].

The question is how to combine these two types of techniques and form a feedback loop, where a

new activity is discovered and fed into a network for extension in an automated fashion without

any human intervention.

Furthermore, acquiring annotations on new tasks can be challenging, as they rely on user input,

which can be unavailable or imprecise. Unlike the existing scenario for most of the continual

learning techniques, where the training data is abundant (e.g., 1000 or 2000 examples per class)

and well-annotated. In HAR, research interest lies into how to obtain annotations and how to

produce robust HAR system in the face of imprecise, insufficient annotation.

Due to sensor degradation, sensor readings will drift over time, and users’ behaviour patterns

may change due to their health condition. Both will lead to changes in the distributions of the

activities over time. This can be considered as concept drift, a common problem in streaming data.

This adds complication when there is a need for not only learning new tasks but also adapting the

model on old tasks. A recent approach that provides a self-constructing methodology to extract

hidden layers and neurons from streaming data demonstrates its effectiveness in learning non-

stationary data [33].

In the future, we believe that given the promising results on the existing continual learning

techniques, a system-level approach for enabling longfor HAR can move on to a system-level ap-

proach: how to discover new tasks where there is no clear task boundary, deal with sensor noise

and concept drift, and more importantly, tackle noisy and scarce annotations on datasets.

References

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory

Aware Synapses: Learning What (not) to Forget. ECCV, 2018.

[2] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a network of

experts. In CVPR 2017, pages 7120–7129, 07 2017.

[3] Kerem Altun, Billur Barshan, and Orkun Tunael. Comparative study on classifying human activities with

miniature inertial and magnetic sensors. Pattern Recognition, 43(10):3605 – 3620, 2010.

[4] Francisco M. Castro, Manuel J. Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari. End-to-

32

end incremental learning. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors,

Computer Vision – ECCV 2018, pages 241–257, Cham, 2018. Springer International Publishing.

[5] Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H.S. Torr. Riemannian Walk for

Incremental Learning: Understanding Forgetting and Intransigence. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018.

[6] Arslan Chaudhry, Ranzato Marc’Aurelio, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong learning

with A-GEM. In 7th International Conference on Learning Representations, ICLR 2019, 2019.

[7] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge transfer.

arXiv e-prints, page arXiv:1511.05641, 11 2015.

[8] Gary Cheng, Armin Askari, Kannan Ramchandran, and Laurent El Ghaoui. Greedy Frank-Wolfe Algorithm for

Exemplar Selection. arXiv e-prints, nov 2018.

[9] D. Cook and M. Schmitter-Edgecombe. Assessing the quality of activities in a smart environment. Methods of

Information in Medicine, 48:480–485, 2009.

[10] Shuyang Dai, Yu Cheng, Yizhe Zhang, Zhe Gan, Jingjing Liu, and Lawrence Carin. Contrastively smoothed

class alignment for unsupervised domain adaptation. ArXiv, abs/1909.05288, 2019.

[11] S. Dang, Z. Cao, Z. Cui, Y. Pi, and N. Liu. Class boundary exemplar selection based incremental learning for

automatic target recognition. IEEE Transactions on Geoscience and Remote Sensing, pages 1–11, 2020.

[12] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning without

memorizing. In CVPR 2019, 2019.

[13] L. Fang, J. Ye, and S. Dobson. Discovery and recognition of emerging human activities using a hierarchical

mixture of directional statistical models. IEEE Transactions on Knowledge and Data Engineering, 2019.

[14] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual learning.

In AISTATS 2020, Palermo, Italy, 2020.

[15] Tyler L. Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Remind your neural

network to prevent catastrophic forgetting. In ECCV 2020, 2020.

[16] Jiangpeng He, Runyu Mao, Zeman Shao, and Fengqing Zhu. Incremental learning in online scenario. ArXiv,

abs/2003.13191, 2020.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. arXiv e-prints,

mar 2015.

[18] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier incrementally

via rebalancing. In CVPR 2019, 2019.

[19] Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song Chen. Com-

pacting, picking and growing for unforgetting continual learning. In NeurIPS, pages 13647–13657, 2019.

[20] Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-importance

based adaptive group sparse regularization. In NeurIPS 2020, 2020.

[21] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L. Hayes, and Christopher Kanan. Measuring catas-

trophic forgetting in neural networks. In AAAI-18, pages 3390–3398. AAAI Press, 2018.

[22] B. Kim and J. Kim. Adjusting decision boundary for class imbalanced learning. IEEE Access, 8:81674–81685,

33

2020.

[23] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu,

Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath,

Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural networks. arXiv e-prints,

dec 2016.

[24] Jeremias Knoblauch, Hisham Husain, and Tom Diethe. Optimal continual learning has perfect memory and

is NP-hard. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on

Machine Learning, volume 119, pages 5327–5337, Virtual, 13–18 Jul 2020. PMLR.

[25] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh,

and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. arXiv preprint

arXiv:1909.08383, 2019.

[26] Timothée Lesort, V. Lomonaco, A. Stoian, D. Maltoni, David Filliat, and N. Rodríguez. Continual learning for

robotics: Definition, framework, learning strategies, opportunities and challenges. Inf. Fusion, 58:52–68, 2020.

[27] Z. Li and D. Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 40(12):2935–2947, 2018.

[28] X. Liu, M. Masana, L. Herranz, J. Van de Weijer, A. M. López, and A. D. Bagdanov. Rotate your networks:

Better weight consolidation and less catastrophic forgetting. In 2018 24th International Conference on Pattern

Recognition (ICPR), pages 2262–2268, 2018.

[29] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In Proceedings

of the 31st International Conference on Neural Information Processing Systems, page 6470–6479, Red Hook,

NY, USA, 2017. Curran Associates Inc.

[30] Paul Merolla, Rathinakumar Appuswamy, John V. Arthur, Steven K. Esser, and Dharmendra S. Modha. Deep

neural networks are robust to weight binarization and other non-linear distortions. ArXiv, abs/1606.01981,

2016.

[31] Dariusz Mrozek, Anna Koczur, and Bożena Małysiak-Mrozek. Fall detection in older adults with mobile iot

devices and machine learning in the cloud and on the edge. Information Sciences, 537:132 – 147, 2020.

[32] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual lifelong

learning with neural networks: A review. Neural Networks, 113:54 – 71, 2019.

[33] Mahardhika Pratama and Dianhui Wang. Deep stacked stochastic configuration networks for lifelong learning

of non-stationary data streams. Information Sciences, 495:150 – 174, 2019.

[34] Sylvestre Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL: Incremental

classifier and representation learning. In CVPR 2017, 2017.

[35] A. Reiss and D. Stricker. Introducing a new benchmarked dataset for activity monitoring. In ISWC 2012, pages

108–109, June 2012.

[36] Jorge-L. Reyes-Ortiz, Luca Oneto, Albert SamÃ , Xavier Parra, and Davide Anguita. Transition-aware human

activity recognition using smartphones. Neurocomputing, 171:754 – 767, 2016.

[37] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray

Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR, abs/1606.04671, 2016.

34

[38] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay. In

Advances in Neural Information Processing Systems, pages 2990–2999, 2017.

[39] van de Ven, Gido M, and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint

arXiv:1904.07734, 2019.

[40] T. L. M. van Kasteren, G. Englebienne, and B. J. A. Kröse. Human Activity Recognition from Wireless Sensor

Network Data: Benchmark and Software, pages 165–186. Atlantis Press, Paris, 2011.

[41] Mirko Viroli and Franco Zambonelli. A biochemical approach to adaptive service ecosystems. Information

Sciences, 180(10):1876–1892, 2010.

[42] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep learning for sensor-based activity

recognition: A survey. Pattern Recognition Letters, 119:3 – 11, 2019.

[43] Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International Conference

on Machine Learning, page 1121–1128, New York, NY, USA, 2009. Association for Computing Machinery.

[44] Junfeng Wen, Yanshuai Cao, and Ruitong Huang. Few-shot self reminder to overcome catastrophic forgetting.

ArXiv, abs/1812.00543, 2018.

[45] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu. Large scale incremental learning. In 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 374–382, 2019.

[46] J. Ye, S. Dobson, and F. Zambonelli. Lifelong learning in sensor-based human activity recognition. IEEE

Pervasive Computing, 18(3):49–58, 2019.

[47] Juan Ye and Elise Callus. Evolving models for incrementally learning emerging activities. Journal of Ambient

Intelligence and Smart Environments, 12:313–325, 2020.

[48] Juan Ye, Pakawat Nakwijit, Martin Schiemer, Saurav Jha, and Franco Zambonelli. Continual activity recognition

with generative adversarial networks. ACM Trans. Internet Things, 2(2), March 2021.

[49] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically expandable

networks. ICLR, 2018.

[50] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shutao Xia. Maintaining discrimination and fairness in

class incremental learning. arXiv preprint arXiv:1911.07053, 2019.

35

