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Abstract— The analysis of whole-slide pathological images
is a major area of deep learning applications in medicine.
The automation of disease identification, prevention, diagnosis,
and treatment selection from whole-slide images (WSIs) has
seen many advances in the last decade due to the progress
made in the areas of computer vision and machine learning.
The focus of this work is on patch level to slide image
level analysis of WSIs, popular in the existing literature. In
particular, we investigate the nature of the information content
present in images on the local level of individual patches
using autoencoding. Driven by our findings at this stage, which
raise questions about the us of autoencoders, we next address
the challenge posed by what we argue is an overly coarse
classification of patches as tumorous and non-tumorous, which
leads to the loss of important information. We showed that
task specific modifications of the loss function, which take into
account the content of individual patches in a more nuanced
manner, facilitate a dramatic reduction in the false negative
classification rate.

I. INTRODUCTION

In broad terms, the focus of this work is on the ana-
lysis of images of pathology slides in medicine, which
is an increasingly important task in the realm of digital
pathology [1], [2], [3], [4]. The information contained in
a whole-slide image (WSI) of a patient’s tissue can aid
in the early identification, prevention or treatment of vari-
ous diseases, not the least important of which is cancer.
However, analysis of WSIs by human pathologists is very
time consuming and could greatly benefit from automation,
be it partial or full. Due to the nature of WSI, ordinary
computer vision techniques are poorly suitable for such
analysis. In particular large volume of the images makes the
application of off-the-shelf machine learning computationally
infeasible, whereas the large image size poses challenges to
deep learning. Some of the existing techniques addressing
this problem implement downsampling of WSIs, producing
lower-resolution and smaller volume image sets suitable
for analysis by convolutional neural networks (CNNs). Yet
this approach inevitably leads to the information loss due
to the loss of high frequency, local detail. An alternative,
also widely adopted in the existing literature, consists of
breaking up WSIs into image patches, making patch based
inferences, and then from these a whole slide level inf-
erence [5]. This approach also effects a loss of information,
albeit in a different manner than downsampling. In particular,
spatial information relating different patches, and any global

information is lost – the focus is on local (patch level)
information, and the assumption is that this information is
sufficient for slide level analysis.

A. Previous work

Computer-aided diagnostic systems are a major area of
development in digital pathology. The volume and compl-
exity of analysis tasks often make unassisted human inter-
pretation inefficient: apart from being time-consuming, hum-
an interpretation uses only a small fraction of morphological
information presented on pathology slides [6]. Therefore, a
more flexible and robust automated approach is required.

Deep learning techniques started to gain popularity in
the digital pathology field in roughly in 2015, following
the advances in optimising the training algorithms for deep
learning models. While widely ranging in design details,
CNN-based solutions became a common choice for histop-
athological image analysis [7], [8].

The aforementioned problem of high-dimensionality of
the input is mitigated with segmenting the WSIs into low-
dimensional patches and processing them separately. This
solution implies a trade-off: while the segmented input
is easier to process, the global context of the image is
lost. Nevertheless, it remains the most viable and efficient
option when processing whole slide images with CNNs,
since the segmentation preserves more morphological in-
formation than straightforward downsampling of the ima-
ge. Another issue faced by the researchers in this area
is the difficulty in obtaining a representative data set. For
supervised training, WSIs must be annotated by human pat-
hologists; the manual process of labelling gigapixel images
is time-consuming and in addition introduces a certain level
of labelling noise [9]. While this issue can be leveraged by
using weakly supervised models which employ slide-level
annotations, fully-supervised models require fine labelled
data large enough to provide a sufficient amount of class
balanced training data.

One of the factors that highly facilitated the advances in
computer vision applications in digital pathology were the
grand challenges introduced in 2012. Among the contests
targeted at evaluating and comparing algorithms for the
analysis of pathological images were EM segmentation chal-
lenge [10], mitosis detection challenges (2012 and 2013),
GLaS gland segmentation challenge (2013), TUPAC (2016)



and Camelyon Grand Challenge (2016 and 2017) aimed at
breast cancer detection [7]. Camelyon16 and Camelyon17
provided the participants with a fine-labelled dataset, which
is freely available for download. The deep learning architect-
ures such as GoogLeNet, AlexNet, VGG16 and others were
all evaluated during the Camelyon16 contest, with Goog-
LeNet achieving the best result and VGG16 placing second.
The winning team utilized a 27-layer GoogLeNet model
and achieved an AUROC (area under the receiver operat-
ing characteristic curve) of 0.9250, compared with human
pathologists’ 0.9664 [11]. These and other results presented
in response to the aforementioned challenges suggest that
there is significant potential of the deep learning in the field
of digital pathology.

In this work, we adopt the use of the Camelyon17 data
set and the VGG16 architecture as the baseline for our
investigations.

II. EXPERIMENTS AND DISCUSSION

A. Data

Experiments and analysis in the present work were perfor-
med on the Camelyon17 data set. It is a cancer metastases in
lymph nodes detection challenge organised by the Diagnostic
Image Analysis Group and Department of Pathology of
the Radboud University Medical Centre. The data provided
to the participants at the time of the contest is currently
open access and therefore has high potential for reuse [12].
Camelyon17 consists of a total of 1000 WSIs across 5
different medical centres, converted into TIFF format. Slide
level labels are available. Additionally, 10 WSIs from each
medical centre are exhaustively annotated.

B. Latent space representation of patches

Each 224 × 224 pixel RGB patch extracted from a WSI
represents a 150528-element input for the CNN. Undou-
btedly, not all of the information conveyed in such input
is useful for the classification task at hand. Eliminating
confounding information is helpful in several ways. Firstly,
by reducing the dimensionality of data, it facilitates easier
and more efficient learning. Secondly, it has the potential of
representing the data in a more meaningful manner, thereby
also aiding in the learning process [12]. Thus, our first goal
in the present work is to investigate the impact of the size
of this latent representation on patch based classification.

To preserve as much information as possible with a
compact embedding, we decided to use convolutional
autoencoders which have proven as highly successful in the
task. A basic autoencoder is a simple network transforming
an input into an output while minimising the error, where
the error is the difference between input and output [13].
Between the input and output layers there are one or more
hidden layers, consisting of encoder and decoder parts. The
former extracts the latent representation from input data,
whereas the latter decodes the feature representation in the
latent space, thus producing output in the same space as
input. Autoencoders have been successfully used for di-
mensionality reduction, information retrieval, and numerous

other tasks [14]. A convolutional autoencoder differs from
more basic autoencoder models, such as linear, in preserving
the spatial locality of the input in a manner similar to other
convolutional networks [15].

1) Experiments & findings: To examine the effect of the
latent space dimensionality on performance, and thereby
gain insight into the information content of patches, we
designed a custom autoencoder architecture used for every
compression level. Specifically, our models were trained with
the embedding dimensionality being respectively 2, 8, 32, 65,
125, 250, 500, and 1000 times lower than the dimensionality
of raw input.

For lower compression levels (up to 65 times) the internal
autoencoder architecture features six layers (3-layer encoder
and 3-layer decoder), whereas for more severe compressions
the architecture was deeper, comprising ten layers (5-layer
encoder and 5-layer decoder).

Each convolutional layer except the last layer of encoder
and decoder use the Rectified Linear Unit (ReLU) activation
function, and the last layers use the Parametric Rectified
Linear Unit (PReLU) instead of a more common sigmoid
activation function. Sigmoid activation function is often
successfully applied in binary classifiers, yet it gives rise to
the problem of vanishing gradients: if a neuron’s activation
is saturated (is either 0 or 1), the gradient will be too close
to zero for the network to learn efficiently [16]. ReLU has
no upper bound for the output and therefore eliminates the
problem of vanishing gradients [17]. However, ReLU must
be used with caution with reconstruction units because of
the hard saturation below the threshold of 0 [18]. PReLU
(Parametric Rectified Linear Unit) alleviates this issue by
introducing a learned parameter [19]. The use of ReLU and
PReLU in the autoencoders architecture used in this work
is in large part motivated by the fact that the input data
does not contain any negative values and the empirical evi-
dence that autoencoders with ReLU and PReLU often show
better performance than the more common configuration with
hyperbolic tangent and sigmoid functions.

Mean Squared Error loss function with Adam optimiser
was used for training the autoencoders.

a) Findings & discussion: We start with qualitative,
visual analysis. Examples of the patches reconstructed from
the respective embeddings are shown in Figure 1. It can be
readily seen that a severe reduction in the patch representati-
on dimensionality effects major distortion both with respect
to colour and texture, as well as the shape of cells. Nevert-
heless, significant compression is possible without virtually
any observable loss of perceptual information. Overall, out
findings suggest that the intrinsic dimensionality (or intuiti-
vely, complexity) of patches is indeed much lower than of
their raw form.

However, perceptual change is of rather tangential interest
and importance. It is possible that relevant, class discrim-
inative information (non-tumorous vs tumorous) is retained
even with major distortion to appearance. Hence, we next
sought to examine quantitatively the effects of autoencoding,
by looking at the ultimate goal: patch level classification



Fig. 1: Example of autoencoded pathological WSI patch, for
different ratios of latent to input space dimensionality (2–
100).

performance. The corresponding confusion matrices using
original and autoencoded (with the latent space dimensiona-
lity 250 times lower than that of the original input space)
are shown in Tables I and II.

It can be immediately observed that the autoencoding
process significantly affects performance – negatively so.
Considering that the latent space dimensionality in the case
shown is still rather high, approximately 600, the findings
suggests a number of conclusions. The first one is that the
dimensionality reduction effected by this autoencoder is not
sufficiently sophisticated to capture the kind of appearance
variation as can be observed in pathological WSI patches.
A more important insight pertains to the very nature of the
dimensionality reduction approach. In particular, our findings
suggest that the focus on best describing local appearance in
a latent space may not be the best approach to take when
the end goal is that of discrimination.

An important observation to make is the poor performance
in the classification of patches deemed tumorous. An und-
erstandable first reaction to this finding could attempt to
explain it by the heterogeneity of tumour, noted earlier.
However, we believe that a more considered examination
suggests an alternative etymology. Firstly, the aforementi-
oned heterogeneity is exhibited as much, if not more, in
the non-tumorous tissue and is reflected in the immune
system response. Hence, were heterogeneity the principal
driver behind the phenomenon, it would have been seen
in the classification performance of non-tumorous patches
too. Rather, we hypothesised that the reason lies in the
manner patches are labelled in the Camelyon17 data set –
the presence of any amount of tumour within a patch results
in the patch being labelled as tumorous. This sharp discont-
inuity, which does not take into account fully the content of
the patch, that is the amount of healthy vs tumorous tissue,
fails to facilitate good learning. To test our hypothesis, we
examined the probability of false negative classification of
a tumour patch as a function of the proportion of tumour
within the patch, see Figure 2. The plot clearly supports our
explanation. In particular, it can be seen that misclassification
probability is low when (approximately) at least half of the

Ground truth
Non-tumorous Tumorous

Predicted
Non-tumorous 95.12% 17.20%

Tumorous 4.88% 82.80%

TABLE I: Baseline patch classification performance, using
raw image data.

Ground truth
Non-tumorous Tumorous

Predicted
Non-tumorous 88.54% 41.93%

Tumorous 11.46% 58.07%

TABLE II: Baseline patch classification performance, using
autoencoding with latent to input space dimensionality ratio
of 250.

patch is covered by tumour, but rises dramatically when there
is little (but nevertheless, some) tumour presence. Motivated
by this insight, in the next section we investigate how this
challenge may be overcome.

C. Improving patch analysis

As argued and evidenced in the previous section, labelling
all patches which contain any tumour as tumorous is an
impediment to the learning process. Indeed, the serious con-
sequence of this is that the baseline VGG16 network based
model results in an unacceptably high false positive rate of
nearly 42%. Hence we now describe different approaches we
investigated as a way of tackling this problem. A summary
of the results follows.

1) Non-binary, class weighted approach 1: To address the
previously highlighted, overly coarse labelling of patches
as tumorous vs non-tumorous, we introduce a finer set of
classes for use in the training stage. In particular, we classify
patches as either having (i) 0% (no tumour content), (ii)
more than 0% but less than 20% (low tumour content), (iii)
between 20% and 60% (medium tumour content), or (iv) over
60% of tumorous content (high tumour content). In addition,
to account for the greater seriousness of misclassifying
patches with greater amount of tumour within them, we

Fig. 2: Probability of false negative classification of patches
deemed tumorous, using the baseline VGG16 network.



Approach False positive rate False negative rate
Baseline 11.46% 41.93%
Class weighted 1 14.41% 33.33%
Class weighted 2 13.24% 22.96%
Error weighted 27.72% 5.38%
Decoderless 24.84% 9.49%

TABLE III: Comparison of the effects of different train-
ing strategies, all using the same dimensionality of the
autoencoder latent space (250 lower than the original input,
i.e. approximately 600).

adjust the loss function so that the errors associated with the
misclassification of the four classes are weighted in proporti-
on 0.15:0.05:0.3:0.5 (n.b. in principle this weighting can be
learned using the standard cross-validation methodology).

2) Non-binary, class weighted approach 2: The second
approach we investigated is in substance nearly identical to
the previous one, with the exception that previous classes
(i) and (ii) were merged into one class. Hence, training was
done using three classes, namely (i) less than 20% (no or
low tumour content), (ii) between 20% and 60% (medium
tumour content), or (iii) over 60% of tumorous content (high
tumour content). The corresponding error weighting was
0.15:0.35:0.5.

3) Non-binary, error weighted approach: In this approach
we retain the three classes of the previous method, but
change the loss function in a substantially different manner.
In particular, we adjust the form of the cost function so
that instead of penalizing all misclassifications equally, more
severe errors contribute to the loss more heavily. Specifically,
the weighting is proportional to the difference of the true
proportion of tumour within a patch and the nearest boundary
of the incorrectly predicted class.

4) Decoderless, non-binary, error weighted approach:
Lastly, we also examined the effects of removing the decoder
from the process. In other words, we directly connected
the output of the autoencoder encoding stage, i.e. the latent
representation, to the classification convolutional neural
network. In other aspects, the methodology is identical to the
previously described three class, error weighting approach.

5) Results & discussion: Our findings are summarized in
Table III. The first observation that can be readily made is
that all of the proposed approaches aimed at reducing the
false negative rate of the baseline method are successful
in achieving this. Recall that our focus on false negatives
is driven by clinical needs – an error in the form of a
missed cancer detection is a far more serious one than an
unnecessary alert to a healthy person. The best performing
method in this context can be seen to employ error weighting
in the loss function during the training stage, reducing the
false negative rate from the original 41.93% to only 5.38%
(nearly eightfold). At the same time, it is also insightful
to observe the associated proverbial cost, in the form of
the increased false positive rate. While this is of course
undesirable, considering the aforementioned asymmetry in

error type importance, the trade-off provides a net overall
benefit.
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