Received: 4 April 2020 Accepted: 4 February 2022

DOI: 10.1111/rssc.12553

[or—
Series C

ORIGINAL ARTICLE

Assessing seismic origin of geological features
by fitting equidistant parallel lines

P.E. Jupp'® | LB.J. Goudie'® | R.A. Batchelor"' | R.J.B. Goudie?

University of St Andrews, St Andrews,

UK Abstract

2University of Cambridge, Cambridge, Some planes in sedimentary rocks contain features that

UK appear to lie near equally spaced parallel lines. Deter-
mining whether or not they do so can provide informa-

Correspondence

P.E. Jupp, School of Mathematics and tion on possible mechanisms for their formation. The

Statistics, North Haugh, St Andrews, Fife problem is recast here in terms of circular statistics,

KY16 9SS, UK.

Email: pej@st-andrews.ac.uk enabling closeness of candidate sets of lines to the points
to be measured by a mean resultant length. This leads
to a test of goodness of fit and to estimates of the direc-
tion of the lines and of the spacing between them. Two

contrasting data sets are analysed.

KEYWORDS

directional statistics, quantal model

1 | INTRODUCTION

Geological features that are points or line segments and lie near almost-parallel straight lines
occur in various contexts in the earth sciences. Examples include corrugations on fault surfaces
(Resor & Meer, 2009), fault lines in the Earth’s crust and magma dyke swarms. One class of such
features is that in which (a) each feature consists of a set of points near some straight line, (b)
interest lies in whether or not these straight lines are equally spaced. Some intriguing groups of
features of this kind are found in bedding planes in Lower Carboniferous sediments. It was these
that motivated the work described here. If it can be shown that there is support for the assertion
that these features tend to lie near equally spaced parallel straight lines then this can be regarded
as evidence that they were formed as the result of seismic activity.
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FIGURE 1 Positions of raised sedimentary features in Lower Carboniferous sediment at Cellardyke, Fife,
UK. Units of measurement of axes in metres
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FIGURE 2 Positions of saucer-shaped depressions in Lower Carboniferous sediment at Catcraig, East
Lothian, UK. Data from Batchelor et al. (submitted). Units of measurement of axes in metres

Two data sets of interest here are (a) 17 locations of raised sedimentary features in a bedding
plane at Cellardyke, Fife, UK, shown in Figure 1, and (b) 300 locations of saucer-shaped depres-
sions in a bedding plane at Catcraig, East Lothian, UK, shown in Figure 2. Data set (b) is from
Batchelor et al. (submitted). The way in which the depressions were formed has long been contro-
versial. They were popularly believed to be organic in origin, which would be expected to imply
that their locations are uniformly distributed. The analysis of this data set in Section 3.2 indicates
that, rather than this being the case, they are aligned near parallel lines. The alignment indicates
to the authors of Batchelor et al. (submitted) that an underlying geophysical process was involved,
which is interpreted as the result of sediment liquefaction caused by seismic waves generated
during an earthquake.
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In the present paper we give a general formalisation of near linearity of points x;, ... ,x,ina
plane and we introduce a method of investigating the conjecture that

X, ... ,Xy lie ‘near’ equally spaced parallel lines in the plane. 1)

Conjecture (1) is reminiscent of the conjecture about given (real number) observations ys, ... ,y,
that

Y1, ... ,¥n are ‘nearly’ multiples of g 2

for some unknown fixed quantum q. A slightly weaker conjecture is
the differences between y, ... ,y, are ‘nearly’ multiples of g. 3)

Conjectures (2) and (3) are assessed using quantal models. An early instance of conjecture (2)
in which g is known (considered before the discovery of isotopes) concerned whether or not
atomic weights are almost integers (von Mises, 1918); see Mardia and Jupp (2000), Example 6.4.
Another important instance, considered in detail in Kendall (1974), arose from the conjecture
that key distances in megalithic stone structures in the British Isles are almost multiples of
a hypothesised unit of length, the megalithic yard. A Bayesian analysis of this problem was
given by Freeman (1976). Pakkanen (2002) applied Kendall’s methods to the detection and
estimation of a standard length (‘foot’) in ancient Greek architecture. Further examples in
archaeology, biology and cosmology are discussed in the historical survey part of Cankaya and
Fieller (2009).

In Section 2 we propose a semi-parametric statistical model for points in a plane which
appear to lie near equally spaced parallel lines. It is similar in spirit to one of the standard
quantal models used to handle conjecture (2). A parametric sub-model is explored. Techniques
from directional statistics can be used (a) to test whether or not the points do indeed lie
close to a suitable set of parallel lines (as in conjecture (1)), (b) to estimate the spacing and
direction of the best-fitting set of parallel lines, (c) to assess the goodness of fit of the lines
(estimated using the parametric sub-model) to the observed points. The model assumes spa-
tial homogeneity across the region of the plane in which the points lie. A method of assessing
whether or not the data support this assumption is given in Section 2.6. Section 2.7 considers
inference for the case in which the data are measured only up to limited resolution. A small
simulation study is given in Section 2.8. Section 3 illustrates the methods by analysing the Cel-
lardyke and Catcraig data sets of Figures 1 and 2 respectively. Section 4 gives some concluding
remarks.

2 | ASTATISTICAL MODEL

Any set of parallel lines in the plane determines an axis +u normal to the lines. Here u is a direc-
tion (unit vector). The ambiguity of sign can be removed by transforming +u (where u is treated
as a column vector) to its ‘square’, the symmetric 2 x 2 matrix uu'. This is the standard way of
handling axes and is used, for example, in the Bingham distributions (see Section 9.4.3 of Mar-
dia & Jupp, 2000). For computational purposes it is convenient to restrict u to lie in some given
semi-circle.
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2.1 | The general model

A reasonable statistical model in our contextis thatu'xy, ... ,u"x, are independent observations
on real random variables Y7, ... , Y, that satisfy
Yi = ﬁ + m;q +¢; i= 1,..n, (4)
for some quantum g, where m, ... ,m, are unknown integers. Conjecture (1) can be formalised
as the hypothesis
u'x,, ... ,u'x, are generated by model (4). (5)

Although, in principle, the quantum q in conjectures (2)-(3) and Equation (4) can take any posi-
tive value, when estimating q it is necessary to restrict g to values that are neither too small (e.g.
so that each point lies near its ‘own’ line) nor too large (e.g. so that all the points are contained
within a single pair of parallel lines). Allowing such extreme values of g would lead to an estimate
of unrealistic size. We shall take g in (qmin, gmax) for some suitable positive gmpin and gmax. With-
out loss of generality we can take the parameter g in Equation (4) to satisfy —q/2 < # < g/2 and
assume that the random variables e, ... , e, tend to be near 0. Model (4) is the ‘shifted quantal
model’ (2) of Cankaya and Fieller (2009).
It is useful to combine u and q into the vector v, where

v=2zq'u. (6)
Fori=1,...,n, put
0:(v) =2z {v'x;/(2n)}, 7

where {-} denotes the fractional part, as it does henceforth. Then 6;(v), ... , 8,(v) liein [0, 2x), and
so can be considered as angles representing points on the circle of unit radius. Ifx,, ... , X, lie near
parallel lines normal to u and distance q apart then 6,(v), ... , 8,(v) will be near 2z /q on the cir-
cle. On the other hand, if the components of x;, ... , x, along u are more or less uniformly spread
over some interval of length much greater than g then 6,(v), ... , 8,(v) will resemble observations
from the uniform distribution on the circle.

The concentration of the angles 6;(v), ... ,0,(Vv) is conveniently measured by the mean
resultant length, ﬁ(v), defined as

_ _ _ 1/2
R(Wv) = [C<v>2 + 5(v>2] , )

where
Cw) = n_lz cos 6;(V), S(v) = n‘lz sin 6;(v). 9
i=1 i=1

A value of R(v) near 1 indicates that the angles are concentrated, whereas a value near 0 occurs
when the angles are almost uniformly spread around the circle (or, more generally, display some
antipodal symmetry). The location of 8;(v), ... , 8,(v) can be described by the mean direction j,,
given by

C(V) =R(W)cosfi,,  S(V)=R(Vv)sin . (10)



JUPP ET AL. 5

FIGURE 3 Heat map of the mean resultant length R(v) for the Catcraig data set as a function of
v = (v1,1,), with the boundaries between red, orange, yellow, green, blue and purple at multiples of 0.75, 0.6, 0.4,
0.3 and 0.1, respectively, of the maximum of E(v)

2.2 | Estimation

It is intuitively reasonable to estimate v by ¥, which brings the equally spaced parallel lines as
close as possible to the points xy, ... ,X,; more precisely,

¥ maximises R(v) over all vectors v, with 27|[v]| ™! € (@min, Gmax)- (11)

The parameter § in Equation (4) can then be estimated by

A

B=11%" . (12)

A little algebra (like that used to obtain (3.8) of Pewsey et al., 2013) shows that

Rw) =n") cos[0i(v) — i ]. (13)

i=1

It follows from (7), (9), (10) and (13) that R(v) is a smooth (i.e. infinitely differentiable) function
of v. In spite of this smoothness, the function can appear very spiky, as is evident from both the
heat map in Figure 3 and the three-dimensional plot in Figure 4 of the mean resultant length R(v)
for the Catcraig data set. The spikiness means that iterative methods of obtaining ¥ that are based
on derivatives will succeed only if initiated from a large number of initial values located at the
points of a fine grid.

It is useful to define the i-th residual as

r=60,0)— fi, (mod 27) i=1,...,n, (14)

where the reduction mod 27 is chosen to ensure that r; lies in [—7x, 7).
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FIGURE 4 Three-dimensional plot of the mean resultant length R(v) for the Catcraig data set as a function
of v = (v1,1,), with the colours and boundaries matching those in Figure 3

The i-th fitted point, X;, is the projection of the observed point x; along & onto the nearest fitted
line. Thus

)A(i =X;— (Q/27r)rlﬁ (15)
2.3 | The von Mises case

Von Mises (1918) showed that, under mild conditions, the maximum likelihood estimate of the
location parameter u in a distribution on the unit circle is the sample mean direction if and only
if the distribution is the one that he introduced and that now bears his name. A circular random
variable has the von Mises distribution M(u, ) with mean direction g and concentration « if it
has density

f0; u,x) exp[k cos(d — u)], 0<6 <2nx, (16)

_ 1

h 2xly(x)
I, denoting the modified Bessel function of the first kind and order v. Details of von Mises dis-
tributions and of the above characterisation of them are discussed in Mardia and Jupp (2000),
Section 3.5.4. See also Fisher (1993), Section 3.3.6 and Jammalamadaka and SenGupta (2001),
Section 2.2.4.

It follows from von Mises’s characterisation that, under rather weak conditions, the class of
parametric models for 6,(v), ... , 8,(v) for which the maximum likelihood estimates of v are the
moment estimates given by definition (11) consists only of von Mises distributions. More pre-
cisely, if (a) 1(v), ... ,8,(v) are independent observations from a density on the circle of the form
f(0; ) = g(0 — u) for some positive function g with continuous second derivative, (b) for n = 2, 3,
the maximum likelihood estimate of y is the sample mean direction, as defined in Equations (10),
then

01(v), ... ,0,(v) are independent observations from M(u, k) 17)
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for some positive . Note that condition (b) needs be satisfied only for n = 2 and n = 3 for the
resulting von Mises property to hold, as is shown in Mardia and Jupp (2000) Section 3.5.4.
In view of Equations (4), (6), (7) and hypothesis (5), it is appropriate to take

u=2rp/q. (18)

Model (17) is analogous to the model used in Cankaya and Fieller (2009) to assess whether or
not scalar observations y;, ... ,y, satisfy (2) or (3). On the region « > 0, the parameters +(v, p),
x in the model given by Equation (7) and assumption (17) are identifiable, and so are estimated
consistently by their maximum likelihood estimators. Ifxy, ... , X, are independent then the joint
density of 6,(v), ... ,8,(V)is

fOL1(V), ... ,0,(V);V, 1, k) = m exp lKZ; cos (6;(v) — ,bl)] , (19)

where 0 < 6,(v), ... ,0,(V) < 2.

Assumption (17) of an underlying von Mises distribution can be tested by applying the test
of ‘von Misesness’ based on Watson’s U? test of uniformity (Mardia & Jupp, 2000, Sections 6.3.3,
6.4.2) to 6;(V), ... ,0,(¥). Small values of U? indicate a good fit.

Under assumption (17), it follows from (13) and (19) that the log-likelihood of the parameters
v, u, k based on the angles 6;(v), ... ,0,(V) is

£V, 1, K3 01(V), ... ,0,(V)) = nkR(V) cos(fly — u) — nlogIo(k). (20)
For fixed v, the maximum of expression (20) is at (u, k) = ({, Ky) with
A(ky) = RW), 1)
where A(x) = I (x)/Ip(x). Thus the profile log-likelihood of v is
Cp(V) = £(V, fiy, Rv; 01(V), ..., 0p(V))

= nkyR(V) — nlog Iy(ky)
= nkvA(Ry) — nlog In(Ry). (22)

Differentiation of Equation (22) with respect to & gives

dep(v) _
TS

n{A&y) + KVA (Ry) —A(Ky)} = nKVA (&),

and so, using the derivative of Equation (21),

dfp(V) dfp(V)/dR(V)
dR(v) diy

Thus

¢p(V) is an increasing function of R(W). (23)
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It follows that the maximum likelihood estimate of v in the von Mises model is the same as the
estimate v given in definition (11). The maximum likelihood estimates f and & of g and « are
given by Equation (12) and

A®) =R, (24)
where

R =R®). (25)
The scenario of 6;(Vv), ... ,8,(v) resembling observations from the uniform distribution can be

formalised under assumption (17) as the null hypothesis

HO K= 0,
whereas the scenario of 6;(v), ... ,8,(v) being clustered near the point u on the circle can be
formalised as the alternative hypothesis

H1 k> 0.

The likelihood ratio test of H; versus Hy rejects Hy for large values of the maximised log-likelihood,
¢p(¥). Since £p(V) is an increasing function of R(v), the likelihood ratio test is equivalent (in that
both tests reject uniformity for large values of R) to the test described in Section 2.4. (This is a
slight extension of the standard result that the likelihood ratio test of uniformity within the von
Mises distributions is equivalent to the Rayleigh test; see Section 6.3.1 of Mardia & Jupp, 2000.)

2.4 | Testing quantality

The estimate ¥ can be used as the basis of a test of quantality, that is, that the quantal model (4)
fitsu'xy, ... ,u'x, for some unit vector u and some quantum q in (gmin, max)- Large values of R
provide evidence against 6;(v), ... ,0,(v) being a random sample from the uniform distribution
on the circle, and so such values support the idea that x,, ... , x, lie near equally spaced parallel
lines. Significance of R can be assessed by simulation based on the fact that if x, ... ,x, arise
as n independent points generated by some Poisson point process then 6;(v), ... , 8,(v) resemble
points obtained from the uniform distribution on the circle. In the jth of B—1 simulations (for
some suitable B), the points x, ... ,X, are replaced by n independent points in some rectangle
containing X, ... ,X, in which the x and y coordinates of the simulated points are independent
and uniform on appropriate intervals. For each j the corresponding value R; of R is evaluated. It is
appropriate to take the p-value as the proportion of R, Ry, ... , Rp_; that are greater than or equal
to the observed R.

2.5 | Confidence regions for v

It is often appropriate to consider v as an interest parameter and (u, k) as nuisance parameters.
We now give two methods of assessing the precision of the estimate ¥ of v.

For the von Mises model (17), approximate confidence regions can be obtained using standard
large-sample asymptotics. Because R(v) in Equation (13) is a smooth function of v, the profile



JUPP ET AL. | 9

log-likelihood (22) for the von Mises model is smooth. Thus, for 0 < @ < 1 and for large n, the
deviance regions

(V12060 = 600 < Brooa | (26)

are approximate 100(1 — )% confidence regions. The coverage probability of the regions (26) can
be quite different from 100(1 — «) unless the region is quite closely clustered around ¥.

For the general model (5), one way of obtaining confidence regions for v is to compare ¥
with corresponding estimates based on pseudo-data that are obtained by resampling from the
residuals, as follows. For a suitably large N, put

X?O) =X+ (Q/27F)Ej(j)ﬁ, i=1,..,n j=1, .., Nsms (27)

where X; is the i-th fitted point, defined in Equation (15), and ef(i), ,e:(j) are a sample (with
replacement) from the residuals ry, ... , r,. Denote by ¥ the estimate of v based on xj(i), . ,x:(j).

Recall from the beginning of Section 2 that the axis +u can be represented by the 2 x 2
matrix uu'. It is only for computational convenience that u has been restricted to some arbitrary
semi-circle. Confidence regions for +v can be obtained using a suitable measure of squared dis-
tance between multiples +w; and +w, of axes. A convenient such measure is the squared matrix

norm of the difference between the corresponding symmetric matrices wlwI and wow!, i.e.

T T2
d(xw1, W) = [[Wiw, — WoW, [|56

2 2
=tr [(W1WI - wW,w, ) ] = [lwil|* = 2(wiwy)” + [lwz |, (28)

where || - ||gs denotes the Hilbert-Schmidt norm (alias the Frobenius norm). For 0 < a < 1, define
¢, as the | (1 — a)Ngims | -th order statistic of d+0P, +9), ..., d(x0Psm) | +%), where |-] denotes
the integer part. Then the confidence region

{2V d(zv, V) < ¢y} (29)

for +v has asymptotic coverage 100 X (1 — @)% as n, Ngims — 0. The corresponding confidence
region for v is obtained by restricting v to lie in the same half-plane as the semi-circle containing
permissible values of u.

If a test of von Misesness does not reject assumption (17) then an alternative to using (27)
is to take x;‘(i), ,x:(i) (for j =1, ..., Nsims) to be a random sample from the fitted von Mises
distribution.

Confidence intervals for y and « can be obtained from confidence regions for v by using (12)

and (21).

2.6 | Assessing spatial homogeneity

The general model given by hypothesis (5) is spatially homogeneous in that the distribution of
0;(v) does not depend on x;. One way of assessing such spatial homogeneity is by means of a plot
(such as a contour plot or heat plot) of the residuals r;, defined by Equation (14), against the fitted
points X; fori =1, ..., n. A pronounced pattern in this plot may indicate heterogeneity. For data
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sets of moderate size, a three-dimensional plot of the residuals against the fitted points can be
useful.

2.7 | The effect of limited resolution

In general, limitations on the resolution of measurements mean that the measured positions
X1, ... ,Xy are not the (unknown) true positions z, ... , z, but some perturbed versions of them.
Let & and &, be the resolutions in the x-direction and y-direction respectively. Then x;, ... , X,
are on a rectangular lattice with distances 2&; and 2&, between adjacent points in the x-direction
and y-direction respectively. For each i, x; is the nearest lattice point to z;.

Define 0,(v), ... ,0,(v) by Equation (7) and let R be the maximised mean resultant length of
0:1(V), ... ,0,(v), asin Equation (25). As in Sections 2.3-2.4, it is appropriate to regard large values
of R as providing evidence against 8;(v), ... , 8,(v) being a random sample from the uniform dis-
tribution on the circle. Thus such values of R support the idea that the unobserved z,, ... ,z, lie
near equally spaced parallel lines. Significance of R can be assessed by simulation based on the
fact that if z;, ... , z, are distributed independently and uniformly on some rectangle with sides
parallel to the coordinate axes then x;, ... ,X, are distributed independently and uniformly on
the corresponding rectangular part of the lattice.

As the awareness that the data are rounded provides no change in the information avail-
able, it is appropriate to estimate the parameter v in the limited-resolution model by ¥ defined
in definition (11). Thus the estimate is the same for both the limited-resolution model and the
perfect-resolution model of Section 2.1. On the other hand, the significance of the value of R
in a test of quantality (i.e. 6;(v), ... , 8,(V) being a random sample from a non-uniform distri-
bution on the circle) depends on the model; the limited-resolution model is a coarsening of the
perfect-resolution model.

2.8 | Simulation study

The performance of the test of quantality, the estimator ¥ given by definition (11), and the
confidence region (29), was investigated in a small simulation study.

For n = 50, 100, 200, 300 and x = 0.5, 0.75, 1, 1.5, Ngns independent sets XY), e x(,{)
(j=1, ..., Nsms) of n independent points were simulated over a (0, 125) X (1.75, 75.25) rect-
angle (similar to that arising in the Catcraig' data set). Fori=1, ...,nandj=1, ..., Nsms,

xy) = (w?), 3.5 zl@ + nl.(j) ), where wl@, z?) and ni(’) were independent, w?) was distributed uniformly
on (0, 125), z?) was distributed uniformly on {1, ..., 21}, and (2z/ 3.5);71.(") had the M(-2.57, k)
distribution.

For each n and «, let A denote the proportion of the Ny simulated samples for which quan-
tality is detected at the 5% level, using the test of Section 2.4 that compares the value of R with
values obtained from B — 1 samples of n uniformly distributed points.

We define the (empirical) root mean square error of £V as an estimator of +v, by

sims

Nsims 1/2
rmse = l 1 Z d(ifl(j),ivo)] , (30)
=
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TABLE 1 Performance of test of quantality, estimators and 95% confidence regions

n K A (%) u, q) rmse cov (%)
50 0.50 8 (84.8,2.68) 8.07 88
0.75 11 (88.2,2.79) 6.60 87
1.00 36 (88.8, 3.08) 3.40 920
1.50 93 (89.6, 3.50) 0.30 93
100 0.50 16 (84.2,2.91) 6.56 87
0.75 59 (91.1, 3.29) 3.29 92
1.00 94 (89.4, 3.50) 0.57 93
1.50 100 (90.0, 3.50) 0.02 91
200 0.50 50 (85.4,3.27) 4.15 92
0.75 98 (89.2,3.49) 1.06 91
1.00 100 (90.0, 3.50) 0.02 92
1.50 100 (90.0, 3.50) 0.01 94
300 0.50 82 (84.2,2.91) 2.37 91
0.75 100 (91.1, 3.29) 0.02 90
1.00 100 (89.4, 3.50) 0.02 92
1.50 100 (90.0, 3.50) 0.01 92

Based on Ny, = 100 (Ngjrms = 500 for cov) simulations from artificial data sets described in text. A is the proportion of the
Ngims simulated samples for which quantality is detected at the 5% level by the test of Section 2.4 with B = 2000. (i, q) is the
mean of estimates (2", §P), ... , (@M g™y rmse is the empirical root mean square error defined in (30). cov is the
empirical coverage probability of the 95% confidence regions (29).

where, forj =1, ... , Nsims, ¥ is the estimate of v based on x(li), ,x(,{) given by definition (11)
and d is defined in (28).

The performances of the test of quantality given in Section 2.4, the estimators ¥, and the 95%
confidence regions (29) are summarised in Table 1. The value of vy was (27 /3.5)(0,1)". The val-
ues of A indicate that, not surprisingly, the test of quantality performs poorly when x = 0.50 (so
that the samples tend to be nearly uniform), especially for small n, but its performance improves
markedly as x increases, with the probability of detecting quantality for x = 1.50 being very high
even for moderately small n. As n and « increase, rmse decreases, and so the accuracy of +V as
an estimator of +v, increases. Table 1 shows also that, while the coverage of the 95% confidence
regions falls below the nominal 95% level, this coverage is above 90%, except when both n and x
are small.

R code for implementation of the techniques described in this Section is available
at http://www.mcs.st-and.ac.uk/~pej/quantal. With the chosen default values of the pro-
gram control parameters, for the Catcraig data, running on a 2021 MacBook Pro laptop
(10-core M1 Pro processor with 32 GB memory), the first 10 sections of the code run in
less than 8 s, while the combined running time of the tests of quantality in sections 11
and 12 is around 80 s and the confidence regions in section 13 are produced in around
410s.
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3 | DATA ANALYSIS

In this section we analyse the Cellardyke and Catcraig data sets, as described in Section 1.

3.1 | Cellardyke data set

The Cellardyke data set shown in Figure 1 was analysed using the methods of Section 2.
The p-value of the test of uniformity (given in Section 2.4) based on B = 1,000 simulations
was 0.18, and so we deduce that x;, ... ,X, do not lie near equally spaced parallel lines. The
same conclusion is obtained from the limited-resolution model of Section 2.7, for which the
p-value of the corresponding test of uniformity is 0.16. Ignoring this lack of fit and nonetheless
estimating v by definition (11) (with g restricted to the range (0.5, 2.5)) leads to the esti-
mate (&, §) = (—65°,1.80), where @& = (cos i, sin )", giving the fitted lines shown in Figure 5.
The apparently good fit of model (4) suggested by the Figure is shown by the test not to be
significant.

3.2 | Catcraig data set

The Catcraig data set shown in Figure 2 was analysed using the methods of Section 2. The quan-
tum parameter, g, was restricted to the range (1.5, 4.5). The p-value of the test of uniformity based
on B = 1,000 simulations was 0.03, and so we deduce that %1, ... ,x, do lie near equally spaced
parallel lines.

The heat map of the deviance, 2{Z(¥) — Z(v)}, in Figure 6 shows that it has a clear global
maximum at (¥1, P;) = (1.63, 0.66), corresponding to (i1, §) = (22°,3.57). The fitted lines are shown
in Figure 7.

Due to limitations in measuring the centres of saucer-shaped depressions from an aerial image
using a ground-based 2 m graduated (10 cm) scale bar, we have & = & = 5 cm. However, Wat-
son’s U? test is not significant at the 10% level, indicating good fit of 8;(¥), ... , 8,(¥) to a von
Mises distribution, so that we can assume that (17) holds. Thus there is no need to use the
limited-resolution model of Section 2.7.

Figure 8 is a heat map of the residuals. Since there is no obvious pattern, we have
no reason to doubt that the spatial homogeneity implicit in model (5) is appropriate
here.

FIGURE 5 Equally spaced parallel lines fitted to Cellardyke data set
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FIGURE 6 Heat map of deviance, 2{#(¥) — £(v)}, as function of v for Catcraig data set. The 95% deviance

region for v is indicated by the red region. Corresponding regions at the 99.9% and 99.99% levels are those
obtained by successive additional inclusion of the yellow and black regions respectively

50 60 70

y
20 30 40

10

FIGURE 7 Equally spaced parallel lines fitted to Catcraig data set

The spikiness of the mean resultant length in Figure 4 suggests that the deviance regions
(26) will not have the nominal coverage probability of 100(1 — «)% unless the region is quite
closely clustered around V. The 95% deviance region {v : 2[£(¥) — £(V)] < ;(22;0.95} (shown in
red in Figure 6) is tightly clustered round ¥ and is almost elliptical. On the other hand, the

99.9% deviance region {(v : 2[£(¥) — (V)] < ;(22,0.999} (shown in red and yellow) is not even
connected.
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FIGURE 8 Heat map of the residuals, taking values in [z, 7), for the Catcraig data set. The areas
coloured red, orange, yellow, green, blue and purple are separated by contours at 2.76, 1.08, —0.021, —1.15 and
—2.86, respectively, corresponding to the 95th, 75th, 50th, 25th and 5th percentiles of the residuals. Black dots
denote fitted points. Units of measurement of axes in metres

FIGURE 9 80% confidence region for v (shown in red) given by Equation (29) with Ny,,s = 25,600 for the
Catcraig data set. Corresponding regions at the 82%, 84%, 90% and 95% levels are those obtained by successive
additional inclusion of orange, yellow, green and blue areas respectively

Figure 9 shows 80%, 82%, 84%, 90% and 95% confidence regions (29) for v obtained from
pseudo-data generated by resampling from the residuals, as described in Section 2.5. These
non-parametric confidence regions are much larger than the deviance regions of Figure 6. They
are also much smoother as, unlike the deviance regions, they do not reflect the spikiness of the
underlying likelihood surface.
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4 | DISCUSSION

A natural three-dimensional analogue of conjecture (1) is the conjecture for given points
X, ... , Xy in 3-space that

X, ... ,Xp, lie ‘near’ equally spaced parallel planes in 3-space. (31)

Then conjecture (31) can be handled using (6)—(12), where now u is a unit vector in 3-space.
The 3-vectors X, ... ,X, are transformed to the real numbers u'x, ... ,u'x, and then to
the angles 2z{u'x,/q}, ... ,2z{u'x,/q}. Equally spaced parallel planes occur as very narrow
planes of glassy material in grains of silicate materials; see https://en.wikipedia.org/wiki/Planar_
deformation_features or Langenhorst and Deutsch (1993).

It is straightforward to extend the methods of this paper to fit (a) several sets of equally spaced
parallel lines, (b) several sets of equally spaced concentric circles, to points in the plane. If the
normals to any two sets of equally spaced parallel lines are nearly parallel then it is difficult to
estimate their directions. Similarly, if any two sets of equally spaced concentric circles are almost
concentric then it is difficult to estimate their centres. Furthermore, unless the observed points
near a circle lie on a large arc, it is not possible to estimate the centre very precisely.
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