
Pattern Recognition 129 (2022) 108743 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Believe the HiPe: Hierarchical perturbation for fast, robust, and 

model-agnostic saliency mapping 

Jessica Cooper ∗, Ognjen Arandjelovi ́c , David J Harrison 

University of St Andrews, United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 23 February 2021 

Revised 11 April 2022 

Accepted 24 April 2022 

Available online 26 April 2022 

Keywords: 

XAI 

AI safety 

Saliency mapping 

Deep learning explanation 

Interpretability 

Prediction attribution 

a b s t r a c t 

Understanding the predictions made by Artificial Intelligence (AI) systems is becoming more and more 

important as deep learning models are used for increasingly complex and high-stakes tasks. Saliency 

mapping – a popular visual attribution method – is one important tool for this, but existing formulations 

are limited by either computational cost or architectural constraints. We therefore propose Hierarchical 

Perturbation, a very fast and completely model-agnostic method for interpreting model predictions with 

robust saliency maps. Using standard benchmarks and datasets, we show that our saliency maps are of 

competitive or superior quality to those generated by existing model-agnostic methods – and are over 

20 × faster to compute. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

As deep learning is applied to increasingly high-stakes domains, 

he ability to accurately explain model predictions in a human- 

nterpretable way is becoming more and more important [1,2] . De- 

eloping tools to understand whether, for example, a model classi- 

es a biopsy image as malignant due to cell morphology, or due to 

 smudge on the slide, is crucial if we are to see safe, widespread

doption of powerful AI techniques [3–6] . 

It is important to note that interpretability research, also known 

s XAI (eXplainable Artificial Intelligence) research, is relatively 

ascent and as such is as yet somewhat ill-defined: the terms in- 

erpretability and explainability are typically used interchangeably, 

nd there is a lack of consensus regarding formal definitions of ei- 

her or both of them [7–9] . This problem is beyond the scope of

ur work here, so for our purposes we simply define them as does 

iller: “the degree to which a human can understand the cause of 

 decision” [9] . 

Which XAI methods are best suited to a given model is pri- 

arily determined by the architecture of that model. Some sim- 

ler models (sometimes called ‘white-box’ models) are considered 

ntrinsically explainable, such as small decision trees and regres- 

ion models [10] – however, this restriction of complexity severely 

imits their application. For example, we might use gradient de- 

cent to fit a linear regression model to predict patient mortal- 
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ty m based on clinical data x 0 ... n – such as age x 0 , immune cell

ount x 1 , and cancer stage x 2 etc: m = x 0 θ0 + x 1 θ1 + x 2 θ2 + . . . θn .

his hypothetical model would be intrinsically interpretable – we 

lready understand the input features (i.e. we know what ’immune 

ell count’ is, and what it means), and we can simply inspect the 

earned coefficient vector θ to see how the model combines them 

o make a prediction. 

This inherent interpretability cannot be relied upon if input fea- 

ures interact to produce the output prediction in complex, non- 

inear ways, and so require complex, non-linear models, as is of- 

en the case in modern applied machine learning – and so we 

urn to more complex models which are able to capture these 

omplex relationships, but which are not inherently interpretable. 

aking the hypothetical mortality predictor above as an example, 

e might find that linear regression is unable to adequately cap- 

ure the relationship between input features and mortality. Instead, 

e might use a neural network for its greater expressive power. 

owever, even small neural networks cannot be interpreted in the 

ame straightforward way - instead of m = 

∑ n 
i =0 x i θi , where the 

earned parameters θ consist of a single vector with each element 

orresponding to the learned weight of an input feature, we are 

aced with m = a (θ (2) + β(2) a (θ (1) + β(1) a (xθ (0) + β(0) ))) , where 

 is some non-linearity, θ are the learned weights, β is the bias 

t each layer (denoted L 0 ... n −1 for a network with n layers – in this 

ase, three). XAI methods therefore aim to explain or interpret the 

redictions of these kinds of more complex models – that is, mod- 

ls that we cannot understand by merely inspecting their parame- 

ers (often termed ‘black-box’ models [11,12] ). 
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Interpretability methods fall into two broad groups: global 

what has the model learned from the dataset?); and local (what 

as caused the model to produce this particular output for an in- 

ividual sample?). Global methods aim to explain how a model 

akes predictions holistically, identifying which features are im- 

ortant across the whole dataset and how model outputs are dis- 

ributed based upon the data, learned parameters and model ar- 

hitecture. For complex models this is hard to achieve in a way 

hat is interpretable by humans (for example, it is very difficult to 

mage a hyperplane with more than three dimensions), so in prac- 

ice most global methods focus only on some parts of the model 

such as the learned weights in a convolutional layer, to explain 

hich features the model has learned to identify. Feature visual- 

sation [13] is one example of this kind of global interpretability 

ethod, in which a single input sample is optimised to maximise 

he output of a particular node, layer, or logit. This optimised input 

an then be inspected in order to identify what kinds of features 

n the input that particular node, layer, or logit has learned to re- 

pond to. 

Local methods, by contrast, are concerned only with individual 

ata samples and aim to explain why the model produces the out- 

ut that it does given that particular input [14] . These methods are 

ypically much easier for humans to parse as they answer ques- 

ions which can be easily visually interpreted – “Which elements 

f this sample influenced the output most?”. 

In this work we are concerned with this kind of local explana- 

ion – also known as attribution – that is, the identification of the 

ortions of a given input that are most important in determining 

 model’s output. One way of doing this in an easily interpretable 

ay is by generating a saliency map – a heat-map assigning colour 

r brightness to regions of the input according to how much each 

egion contributed to the output. Saliency visualisation of this kind 

s widely used in machine learning, particularly in image classifi- 

ation tasks that often require the use of large and complex neural 

etworks which are troublesome to interpret otherwise. Saliency 

aps are intuitive to interpret, and are typically used to validate 

hat models are learning to identify sensible features to make pre- 

ictions and identify biases, which is not only crucial for safety as 

I is increasingly applied to high stakes domains such as medicine 

nd autonomous vehicles, but also a valuable tool in increasing 

rust in and adoption of these powerful technologies. 

Existing saliency mapping methods fall into two broad cate- 

ories – those which are model-specific [15] , and depend on ac- 

ess to the structure and internal state of the trained model, and 

hose which are model-agnostic [16] , and only require access to the 

nput and output of the model. Model-specific methods are typi- 

ally much more efficient, as they work by inspecting the internal 

tate of the model and as such, do not require iteration over dif- 

erent permutations of the input, but can only be used when the 

rained architecture of the model in question is both accessible, 

nd of a specific type (typically a deep convolutional neural net- 

ork), which limits their application [14] . They cannot be used at 

ll for models in which the internal state and structure is inacces- 

ible. 

In contrast, model-agnostic methods work by perturbing the in- 

ut and inspecting the change in model output to determine the 

erturbed region’s importance, irrespective of the internal state of 

he model – and so can be used for any type of model at all, in-

luding ensemble methods which could combine both white- and 

lack-box models, and so have wide-ranging applications. However, 

xisting techniques of this kind are slow, as they build up an em- 

irical estimation of region importance through many iterations –

nd moreover, require a number of hyperparameters to be spec- 

fied – the optimal values of which are difficult to know ahead 

f time for new datasets, necessitating computationally expensive 

euristic tuning. 
2 
There are a number of important AI applications where explica- 

ility is very important, but where the individual data samples are 

oo large for existing model-agnostic saliency methods to be com- 

utationally feasible. Additionally, in many cases the network ar- 

hitecture is inaccessible or unsuitable for the application of faster 

radient- and activation-based model-specific explanatory meth- 

ds, or those methods would result in saliency maps too coarse 

or the task at hand. These might be things like healthcare triage 

sing ensemble architectures taking both clinical data and high 

esolution medical imaging; very high resolution image inputs in 

eneral; legal tasks using very large textual or tabular datasets, or 

utonomous vehicle decision-making combining video, sensor and 

ime-series input, to name a few [14,17] . 

We therefore contribute a novel model-agnostic saliency map- 

ing method, Hierarchical Perturbation (HiPe) which is fast, robust, 

nd completely model-agnostic, and evaluate it on the commonly- 

sed MSCOCO and VOC2007 validation and test datasets, using the 

ointing game benchmark [18] and the causal insertion/deletion 

etrics [19] . We show that HiPe is over 20 × faster than existing 

odel-agnostic methods, while achieving comparable or superior 

erformance on these benchmarks. 

. Related work 

.1. Model-specific saliency mapping methods 

Model-Specific methods typically leverage the convolutional 

etwork architecture to visualise explanations by using gradients, 

ctivations, or some combination of the two [ 18,20–22 ]. They are 

fficient, but the resolution of the maps they generate is archi- 

ecture dependent, and some (guided backprop and deconvnet, in 

articular) have proven unreliable – in some cases no better than 

dge detection [ 23–25 ]. As pointed out by Fong and Vedaldi [ 26 ],

hey are also fundamentally ungrounded in what makes some re- 

ion of the input more or less salient – their explanatory power is 

ssessed a posteriori. At present, even the most successful methods 

f this kind are only applicable to a limited subset of architectures 

nd only when the trained model’s internal state is accessible. 

.2. Model-agnostic saliency mapping methods 

Fong and Vedaldi [30] propose Extremal Perturbation, using 

radient descent to learn a perturbation mask which minimises 

or conversely, maximises) the prediction of the target class. This 

ethod produces binary segmentations, which look appealing, 

ut obscure any difference in feature salience within the broadly 

alient region of pre-specified size. Extremal Perturbation requires 

he selection of many hyperparameters (learning rate, number 

f iterations, mask upsampling factor, degree of blur, degree 

f jitter, et cetera) which are chosen empirically and may not 

eneralise to novel models or datasets – once more raising the 

engthy and uncertain prospect of manual tuning to generate 

nformative, interpretable saliency maps. The published settings 

or PASCAL VOC and COCO result in excellent performance, but 

ake an extremely long time in comparison to other methods (over 

fty seconds, compared to sub-second performance for most other 

ethods). Other techniques consist of training a second model 

sing a saliency criterion to generate attribution maps directly 

rom the input sample [31,32] , an approach which is very fast 

nce the saliency model has been trained. However, applying this 

pproach to a new dataset and model would require retraining the 

aliency model too, which may not be trivial – necessitating not 

nly training a predictive model to succeed at the task at hand, 

ut also training a separate second model for saliency – effectively 

oubling the hyperparameter and architecture tuning burden, and 

ncreasing computational cost. More importantly, explanations 
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Fig. 1. Examples of saliency maps generated by: Hierarchical Perturbation (HiPe, our proposed method); RISE [19] ; Extremal Perturbation (ExtP) [ 27 ]; Guided Backpropagation 

(Guid.) [ 28 ]; Gradient (Grad) [ 20 ]; Grad-CAM (GCAM) [ 21 ]; Contrastive Excitation Backpropagation (cMWP) [18] ; Deconvnet (DConv) [ 29 ]; and Excitation Backpropagation 

(MWP) [18] . 
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enerated in this way are by their nature fundamentally divorced 

rom the model in question, and invite biased tuning to generate 

aliency maps that look sensible to humans, rather than optimising 

or explanatory power. 

Other model-agnostic methods work by iteratively perturbing 

egions of the input sample [ 19,29 ], and using the sensitivity of 

he model output to these perturbations to generate a saliency 

ap, as shown in Fig. 1 . These methods have the nice property 

f direct interpretability (i.e. a perturbation in the input can be 

irectly mapped to a change in the output), but are computa- 

ionally expensive. Typically they also require heuristic parameter 

election (for example, selecting the size of the perturbation 

ernel or number of masks to generate) to produce informative 

isualisations, which may necessitate many trials, and thereby also 

rove costly. Zeiler and Fergus [ 29 ] outline an early form of this

pproach, in which a perturbation kernel of fixed size is iteratively 

pplied to the input, and the difference in output at each kernel 

ocation is collated to form a saliency map. This is intuitive, but 

ery time consuming, as it relies on running potentially many 

rials with different kernel dimensions to generate informative 

isualisations, since it is impossible to know the scale of the most 

alient features ahead of time. RISE [19] is based on the same 

erturbation technique, and works by generating a number of low 

esolution random binary masks, upsampling them using bilinear 

nterpolation, using them to mask the input, and weighting each 

ask by the model’s output for the correspondingly masked 

nput (the perturbation in this case being the dimming of the 

nput). The weighted masks are then aggregated and normalised, 

roducing a saliency map. The dimensions of the low resolution 

nd upsampled masks, and the number of masks used, are chosen 

mpirically (80 0 0 masks were used for ResNet50). The fact that 

he masks are randomly generated means that RISE must always 

se a relatively large enough number of masks in order to avoid 

iasing the saliency map with unevenly distributed perturbations, 

specially when there are several salient regions of varying sizes 

ontained in the input. The larger the input dimension, the larger 

he number of masks must be – and crucially, one cannot really 

now ahead of time how many masks is sufficient to generate a 

aithful map. Decreasing the resolution of the initial binary mask 

efore interpolation decreases the number of masks necessary 

however, the lower resolution this mask is, the coarser the 

nal saliency map will be, making RISE prohibitively expensive 

or high resolution data which demands high resolution saliency. 

hese limitations are explicitly mentioned in the original pub- 
b

3 
ication [19] , which calls for future work to address this by 

ntelligently selecting a smaller number of masks – as we do here. 

To address the limitations outlined above we propose a novel 

pproach to perturbation-based saliency mapping which identifies 

alient regions regardless of scale, largely removes the need for 

euristic parameter selection, and dramatically reduces computa- 

ional cost whilst maintaining accurate saliency identification. We 

all this approach Hierarchical Perturbation (HiPe), as it provides 

hese benefits by iteratively identifying salient sub-regions and dis- 

egarding relatively unimportant ones in increasing resolution. We 

ompare our approach to other saliency mapping methods on the 

ell established pointing game benchmark and the causal inser- 

ion/deletion metric [19] . 

. Proposed method 

Hierarchical Perturbation is a natural extension of iterative oc- 

lusion [ 29 ] and the random masking of RISE [19] described in the 

revious section, in which we adopt the same principles of empir- 

cal salience estimation, but apply them in a more directed fashion 

o minimise computational cost and thereby make model-agnostic 

aliency mapping a realistic prospect for large samples or datasets. 

ur key insight is that a large amount of superfluous computa- 

ion is performed when regions that have little effect on the model 

utput are iteratively perturbed, or when random perturbation re- 

ion selection results in spatially similar or overlapping regions. 

y avoiding this unnecessary cost through salience thresholding 

e are able to perform model-agnostic saliency mapping an or- 

er of magnitude faster than existing methods. As shown in Fig. 2 , 

iPe does this by focusing on perturbing the most salient regions 

ith increasing resolution whilst ignoring regions which do not 

ot change the models output. 

Let f : x → R be our trained model, which takes x , a matrix of

ize 3 × h × w (in our case a three channel colour image with vari-

ble height and width), and returns a scalar confidence which we 

ish to attribute to a greater or lesser degree to some elements of 

 . We instantiate s as our saliency map, initially a zero matrix of 

ize h × w , and populate it as follows: 

We let our mask placeholder m : � → { 0 , 1 } be a zero matrix of

ize d × d, where d = � log 2 ( min (h, w ) ) � . Using the rounded log of

ase two results in a mask that is neatly divisible by two, ensur- 

ng that the perturbation regions will evenly overlap. We use the 

inimum input dimension for convenience, as most real-life and 

enchmark data images do not stray too far from the square. For 
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Fig. 2. Saliency Mapping with Hierarchical Perturbation. 
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mages with greater eccentricity it would be necessary to adjust 

his. 

We then use a step function t(s, m ) → { 0 , 1 } using the mid-

ange of the current saliency map as a threshold to identify re- 

ions of high salience for higher-resolution mapping thus (where ◦
enotes the Hadamard product): 

(s, m ) = 

{
1 , i f max (s ◦ m ) ≥ min s + 

( max s −min s ) 
2 

0 , otherwise 

(1) 

The mid-range of the current saliency map is used in prefer- 

nce to some arbitrary threshold as it allows us to handle vary- 

ng saliency distributions across different samples. Selecting an op- 

imal threshold for all samples would require either knowledge 

bout the saliency distribution beforehand, or costly heuristic trials 

whilst manually selecting one for each sample would optimise 

or achieving visually pleasing saliency maps, and render compar- 

ng the relative saliency of different samples across the dataset dif- 

cult. We use the mid-range for this rather than the mean or some 

ther aggregate of the current map, as the mid-range is extremely 

ensitive to outliers. This sensitivity allows us to focus on the most 

alient regions extremely quickly in cases where only a small re- 

ion of the input is salient, greatly improving performance com- 

ared to the mean. An example of this is shown in Fig. 3 . 

Note that the first time this thresholding operation is applied, 

he saliency map consists only of zeros, and so t(s, m ) = 1 in every

ase. We define the set of perturbation masks M such that 

 m ∈ M| ∑ 

m i : i +2 , j : j +2 = 4 ∧ t(s, m ) = 1 } (2)

o all masks which contain a 2 × 2 region of ones, with all other

lements set to zero (this is to ensure an overlap of perturbation to 

apture features on the border of regions), and meet the threshold. 

or each mask we perturb a region of the input (which we might 

hink of as the region of x which corresponds to the non-zero re- 

ion of each m → M), by replacing all pixels therein with the mean

f that region, such that (with scaling factors σ = 
 H 
d 
� , ω = 
 W 

d 
� ):

 

′ = x | x i ·σ :(i +2) ·σ, j·ω:( j+2) ·ω = 

∑ x i ·σ :(i +2) ·σ, j·ω:( j+2) ·ω 
4 σω 

(3) 

This usage of the local mean as a perturbation substrate is fur- 

her discussed in Section 5 . We upsample M to size h × w using 

roximal interpolation – note that we do not artificially smooth 

he mask during upsampling – and update our saliency map s such 

hat: 

 = s + ReLU( f (x ) − f (x ′ )) ◦ | M − 1 | (4) 
4 
We use ReLU so that we are thresholding only with respect to 

erturbations which decrease the confidence of the target class, 

nd therefore only highlight regions which, when available to the 

odel, have a positive influence on the target class confidence. We 

hen double d, and repeat the above while d ≤ min (h,w ) 
4 ∧ # M > 0 .

his effectively means that HiPe can capture features as small as 

 × 2 pixels in size, as the minimum perturbation region size is 

 × 4 , with a 50% overlap. 

To summarise intuitively, HiPe begins by perturbing large, over- 

apping regions and using the difference in the model output for 

ach of these perturbations to update the saliency map. All regions 

f the saliency map which exceed the saliency threshold are split 

nto smaller overlapping regions, which are then each perturbed, 

nd the saliency map updated in turn – and so on – until either 

he minimum perturbation size is reached, or no region remains 

bove the saliency threshold. By discarding regions with little im- 

act on the model’s output and focusing only on the more salient 

reas, we are able to generate saliency maps of comparable quality 

o the state-of-the-art for model-agnostic methods, at a fraction of 

he computational cost. 

. Experiments 

In this section we evaluate our method and compare it with 

opular alternatives from the literature using two widely used 

aliency mapping benchmarks – the pointing game and inser- 

ion/deletion causal metrics. As raised by Zeiler and Fergus [ 29 ] 

e believe the pointing game is something of a flawed metric – it 

elies on the assumption that if a model is good, it is good because 

t learns the same features that a human would, and so a good 

aliency map would highlight those same features. This means 

hat it rewards maps that encode what a human being would con- 

ider to be salient, rather than what is in fact salient to the model 

hich we hope to understand. For example, a model classifying 

 fridge may also identify a microwave as equally salient, as it 

rovides important contextual information which may contribute 

 large part of the ‘fridge’ confidence. A saliency method faithfully 

dentifying this would be penalised for it. We cannot assume 

hat even an 100% accurate model has learned to use the same 

eatures that we would to make a prediction, and so must beware 

f biasing the development of saliency methods to confirm our 

ssumptions, rather than provide accurate characterisations of 

hat the model is really doing. 

Nonetheless, it appears that the pointing game is at least a rea- 

onable proxy, given a well trained model, and since it is a stan- 

ard comparator we include it here, along with the more objec- 

ive insertion and deletion metrics [19] . We use a publicly available 
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Fig. 3. Here we generate some arbitrary 256 × 256 input data with a central blurred ‘salient’ region of two sizes (diameter 4 above, and diameter 32 below), use a summation 

operation as a proxy model, and compare RISE with default parameters (and the default 80 0 0 masks) against HiPe with two different saliency threshold methods. We show 

that for HiPe, using the mid-range of the current saliency map as the threshold generates comparable maps to using the mean, but does so far more efficiently, using higher 

thresholds and so requiring fewer masks. We also show that HiPe generates superior saliency maps with far fewer masks than RISE at both feature sizes. 

5 
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Table 1 

Pointing Game : Mean accuracy and time per sample on full and difficult vali- 

dation/test sets of VOC07 and COCO14 (as defined by Zhang et al. [34] ), using 

contemporary model-specific and model-agnostic (MA) methods (italicized). We 

highlight superior results within the model-agnostic subset. Accuracy results for 

methods other than our own are taken from Fong and Vedaldi [ 26 ], whereas 

average saliency map generation times are obtained using Torchray implemen- 

tations with default settings for 10 0 0 random samples (one random class per 

sample) using an NVIDIA GeForce RTX 2060. ∗RISE results taken from Petsuik 

et al. [19] which excluded the difficult subset. 

COCO14 Val VOC07 Test 

Method All Diff Time (s) All Diff Time (s) 

cMWP [18] 58.5 53.6 0.08 90.6 82.2 0.09 

GCAM [ 21 ] 57.3 52.3 0.03 90.4 82.3 0.03 

MA ExtP [ 27 ] 55.7 46.9 53.4 86.3 73.4 53.5 

MA RISE ∗ [19] 55.6 – 25.87 88.9 – 23.61 

MA HiPe 54.6 49.6 0.94 85.6 75.1 0.95 

MWP [18] 49.6 43.9 0.06 84.4 70.8 0.06 

Guid. [ 28 ] 42.1 35.3 0.1 77.2 59.5 0.1 

Grad [ 20 ] 35.0 29.4 0.06 72.3 56.8 0.06 

DConv [ 29 ] 30.0 21.9 0.06 68.6 44.7 0.06 
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Table 2 

Insertion and Deletion AUC: mean Area Under Curve for insertion 

(higher is better) and deletion (lower is better) causal metrics de- 

scribed by Petsuik et al. [19] on 10 0 0 randomly selected samples. 

As in Table 1 we highlight superiority within the subset of model- 

agnostic (MA) methods (italicized). 

COCO14 Val VOC07 Test 

Method Insertion Deletion Insertion Deletion 

MA HiPe 0.68 0.43 0.67 0.42 

GCAM 0.67 0.41 0.67 0.39 

Guid. 0.66 0.39 0.65 0.38 

cMWP 0.66 0.39 0.65 0.38 

MA RISE ∗ 0.65 0.40 0.65 0.39 

MA ExtP 0.63 0.45 0.62 0.45 

MWP 0.62 0.38 0.62 0.34 

DConv 0.62 0.39 0.62 0.44 

Grad 0.62 0.46 0.61 0.44 
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re-trained ResNet50 model [33] , the MSCOCO 2014 validation set 

nd the VOC 2007 test set, to allow for comparison with previous 

orks. 

.1. Pointing game 

The pointing game measures the accuracy of a given saliency 

ap by examining the correlation between the most salient point 

n that map with the location of the object in question. This is 

one by generating a saliency map for some class prediction for a 

iven image, and comparing the location of the semantic annota- 

ion of the class object with the maximum (therefore most salient 

oint) on that map. If the maximum point falls within the bound- 

ry of the object annotation, one point is gained, and the overall 

ccuracy is calculated as the number of hits divided by the num- 

er of hits plus misses. 

Table 1 shows that HiPe is competitive with existing model- 

gnostic saliency mapping methods Extremal Perturbation (ExtP) 

nd RISE, whilst taking on average, under a second to produce a 

aliency map. In contrast, RISE requires over 23s, and Extremal Per- 

urbation nearly a minute per image. Both of these methods could 

e made faster by decreasing the number of random masks, or the 

umber of iterations, respectively – but at the cost of increasing 

oise in the saliency map generated. 

.2. Insertion and deletion metrics 

Proposed by Petsuik et al. [19] , the idea behind the insertion 

nd deletion metrics is that, intuitively, the more salient pixels we 

how the model, the more confident its prediction should be – and 

onversely, the more salient pixels we remove from the input, the 

ore the confidence should drop. If the pixels identified as salient 

y some method are indeed the same pixels that most influence a 

odel’s output, we would expect to see a sharp drop in confidence 

nd a low AUC as they are removed in decreasing order of salience. 

ikewise, if we begin with an entirely obscured input and introduce 

ixels in decreasing order of salience, we would expect a sharp in- 

rease in confidence and a large AUC – see Fig. 4 . Unlike the point-

ng game, these metrics are self-contained and unbiased by human 

ssumptions, and approximate only whether the ascribed saliency 

alues per pixel map accurately to the change in model output. 

or our experiments, the percentage of pixels removed or added at 

ach step is set to 1%, we use the blurred substrate for insertion, 

nd the zero substrate for deletion as per the literature. 
6 
In Table 2 we see that HiPe is competitive with all methods 

cross both metrics and datasets, and outperforms all methods on 

he insertion metric. We would expect this to be the case, because 

nlike the model-specific methods, the saliency maps generated by 

iPe are products of directly perturbing the input, in a comparable 

ay to the causal metrics we use here. This is also the case for 

ISE – the small decrease in comparative performance is due to 

he stochasticity inherent in this method. 

Fig. 5 shows examples of saliency maps generated with HiPe, 

nd Fig. 6 compares saliency maps across all methods for a sin- 

le image, for the class ‘fork’. We can see that HiPe, Grad-CAM 

nd cMWP identify the fork in the image as salient, but the other 

ethods do not. It has been shown that deconvnet and guided 

ackpropagation are in some cases invariant to reparameterization 

n later layers [ 25 ], and essentially act as image reconstructors –

his is particularly evident in the guided backpropagation (Guid.) 

ap here. We suspect that the failure of RISE and Extremal Per- 

urbation to localise the fork in the image is due to the small size 

f the features in question – both RISE and Extremal Perturbation 

ely on heuristic hyperparameters which dictate the size of salient 

egions to be localised. HiPe, by contrast, performs well on inputs 

ontaining salient regions of all sizes. 

Fig. 7 shows an example of HiPe applied to a segmentation task 

that of immune cell segmentation from Hoechst-stained Whole 

lide Images (WSIs) using a deep residual U-net [35] . This example 

howcases the applicability of our model-agnostic method to arbi- 

rary architectures, and leverages the speed and robustness of HiPe 

n a use-case where other perturbation-based techniques would 

ave been prohibitively slow for multiple large WSI images, and 

radient-based methods too indistinct for the relatively small and 

parse salient features (as shown in our benchmark experiments –

ee Fig. 6 ). 

As raised by Adebayo et al. [ 23 ] and Kindermans et al. [36] , ro-

ust saliency mapping algorithms must be sensitive to input in re- 

pect to their target output class – for example, given an image 

ontaining both a cat and a dog, and a trained neural network that 

lassifies cats and dogs we would expect that a saliency map gen- 

rated with respect to the ’cat’ output would look very different to 

hat of ’dog’ – given of course, that the neural network has suc- 

essfully learned ’cat’ and ’dog’ specific features. 

In order to investigate this property, we generate class-specific 

iPe saliency maps on the MNIST dataset. We choose MNIST in 

his case partly because it a common sanity-checking dataset in 

he literature and therefore allows for easy comparison with other 

aliency-mapping experiments [36] , but primarily because due to 

ts simplicity it is free from potentially confounding spurious cor- 

elations in the input. Therefore we can confidently expect a well- 
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Fig. 4. Example of the insertion and deletion metrics using HiPe, for the class ‘baseball glove’. The area under the curve (AUC) is used to benchmark the accuracy of the 

saliency maps – lower is better for deletion, higher is better for insertion. 

Fig. 5. Examples of saliency maps generated with Hierarchical Perturbation. Note that more salient regions are of higher resolution. 

7 
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Fig. 6. Examples of saliency maps for the class ‘fork’. This example was chosen to highlight the surprising variation in maps generated with different methods. 

Fig. 7. Use of HiPe for an immune cell segmentation task using a deep residual U-net on Hoechst-stained biopsy slides. Here HiPe enables fast and detailed saliency map 

generation for high resolution images with small, sparse features. 

8 
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Fig. 8. HiPe saliency on MNIST for each class. The left-to-right diagonal contains the saliency of the correct class for each sample. The probabilities shown here are the 

model output logits normalised to sum to one. 
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rained model to classify digits based only on the digits them- 

elves. 

We train a simple three layer convolutional network using cross 

ntropy loss and SGD with a learning rate of 0.001 and momen- 

um of 0.9. The network had two convolutional layers (the first 

aving 16 channels, and the second 32), each with a kernel size 

f 3, a stride of 1, and zero padding. Each was followed with a 

eLu and maximum pooling with kernel size 2. The final was a 

tandard linear layer. We train this network to 97% accuracy, and 

pply HiPe to each class output in turn. Fig. 8 shows the results 

f this experiment on a randomly chosen sample for each digit. 

he saliency maps for each digit are distinct and sensible. This im- 

ge confirms that HiPe is sensitive to target class for each map, 

nd can be interpreted intuitively – we see that the zero input has 

igh saliency for the zero class around the entirety of the digit. 

or other class saliency maps on the zero input, HiPe finds por- 

ions of the input salient – for example, the upper curve for class 

, the lower curve for classes 3 and 5, and the leftmost curve for 

lass 6. 
9

. Discussion 

Unlike RISE [19] which generates masks randomly, and meth- 

ds which learn secondary models through gradient descent such 

s those of Fong and Vedaldi [ 26 ], Ribeiro et al. [31] , Dabkowski

nd Gal [32] , HiPe contains no random elements. However, HiPe 

s not able to capture instances where the salience of two spa- 

ially distinct features in combination is greater than the sum of 

ach feature individually (i.e. if perturbing the microwave and oven 

t the same time changes the prediction more than the difference 

hen perturbing the oven plus the difference when perturbing the 

icrowave), since we perturb only one locality at a time – this 

nlike RISE, which with a large enough number of random masks 

ill capture this phenomenon, and unlike Extremal Perturbation, 

hich by design will capture any combination of features if trained 

or long enough (albeit at significant time cost, as our experiments 

how). 

As we have discussed, HiPe is model-agnostic and as such can 

e applied to any model which maps an input to an output. This 
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Fig. 9. A toy example of HiPe applied to non-image data. In this case, we generated a 2d array of values to represent the actual saliency, using summation as a proxy 

‘model’, and used HiPe to estimate the true salience. 

i

c

r

c

o  

H

p

F

t

c

g

p

d

o

a  

t

o

f

s

r

m

o  

m

t

e

a

–

p

s

p

v

p

f

6

m

r

m

m

s

c

t

t

m

p

e  

p

b

–

g

a

o

a

o

t

t  

m

t

i

t

a

a

w

m

c

b

m

i

a

D

c

i

A

i

o

1

R

 

ncludes data of arbitrary dimension – with minor adaptation HiPe 

ould be applied to data of any dimension in which the spatial 

elationship between input elements has predictive power. This in- 

ludes two-dimensional time-series data, four dimensional video, 

r graph data, et cetera. Fig. 9 shows a toy example of this, using

iPe to identify the most salient features in two-dimensional in- 

ut data using a proxy model which simply sums the input, as in 

ig. 3 . 

The choice of perturbation substrate is likely important in per- 

urbation based saliency mapping [37] , although we find empiri- 

ally that using our method, the local mean of the perturbed re- 

ion, results in marginally superior performance (around 1% on the 

ointing game benchmark) to a zero substrate (equivalent to the 

ataset mean, since inputs are standardised during pre-processing) 

r to a Gaussian blurred substrate. Blurred, noisy or zero substrates 

re the most commonly used [ 26 ] – we might add local mean to

hat list, given the results herein. It is possible to use any kind 

f perturbation technique or substrate with HiPe – this is use- 

ul, because how best to perturb the input for perturbation-based 

aliency mapping methods remains an open question [37] . 

HiPe does not apply any smoothing, either to the perturbed 

egion (which is typically done to make the perturbation appear 

ore natural), or to the resulting saliency map (which some meth- 

ds do purely for the sake of visual appeal rather than for a funda-

ental theoretical reason). We found that using a similar method 

o RISE in which a low resolution mask is upsampled using bilin- 

ar interpolation in order to generate smooth perturbations actu- 

lly resulted in a small decrease in performance when using HiPe 

this is in contrast to RISE and Extremal Perturbation, which ex- 

licitly apply smoothing. A possible hypothesis for the appeal of 

mooth perturbations, and resulting smooth saliency maps, is sim- 

ly human visual preference (we assume sharp artefacts are more 

isually disturbing than smooth ones [ 26 ]) rather than explanatory 

ower – we may assume that smooth perturbations are less con- 

ounding, but this is not borne out by our results. 

. Conclusion 

Most state of the art work in saliency mapping is limited by 

odel-specificity, assuming a certain subset of architectures and 

equiring on access to the internal state of the model. The few 

odel-agnostic methods that do exist perform well on the bench- 

arks we have examined, but can be very slow – prohibitively 

o for large samples. To address this, we have presented Hierar- 

hical Perturbation (HiPe), a fast and easily interpretable explana- 

ory algorithm for understanding arbitrary models, regardless of 

heir architecture. HiPe is able to create model-agnostic saliency 

aps so quickly because it is content-aware in a way that existing 

erturbation-based saliency mapping algorithms are not. Petsiuk 
10 
t al. [19] , Zeiler and Fergus [ 29 ], Fong and Vedaldi [30] require a

re-specified number of iterations – whether that is epochs, num- 

er of random masks generated, or occlusion kernel size and step 

which fix the amount of computation required for an input of 

iven size irrespective of the proportion of the input that is actu- 

lly salient. It is also impossible to know ahead of time what the 

ptimal value for these parameters might be in order to trade-off

ccuracy and efficiency, and finding the optimal parameters (for 

ne input sample, or across an entire dataset) may require many 

rials. Additionally, these parameters limit the size of salient region 

hat can be detected, which can lead to omissions as in Fig. 6 . Our

ethod, by contrast, continually disregards regions which have lit- 

le impact on the model output, and by so doing so inherently lim- 

ts the amount of computation required without imposing restric- 

ions on the size of the salient region it is possible to detect. We 

lso note that HiPe is data-agnostic, as well as model-agnostic –

lthough we benchmark it on images here to allow for comparison 

ith existing methods, it may be applied to data of arbitrary di- 

ension. We have shown that the maps generated by HiPe are of 

omparable quality to state-of-the-art saliency mapping methods, 

ut require a fraction of the computational cost compared to other 

odel-agnostic approaches, and as such we expect HiPe to prove 

nvaluable to researchers and practitioners working with models of 

ll kinds. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgement 

This work is supported by the Industrial Centre for AI Research 

n Digital Diagnostics (iCAIRD) which is funded by Innovate UK 

n behalf of UK Research and Innovation (UKRI) [project number: 

04690 ]. 

eferences 

[1] A. Adadi, M. Berrada, Peeking inside the black-box: a survey on explainable 

artificial intelligence (XAI), IEEE Access PP (99) (2018) . 1–1 
[2] X. Bai, X. Wang, X. Liu, Q. Liu, J. Song, N. Sebe, B. Kim, Explainable deep learn-

ing for efficient and robust pattern recognition: a survey of recent develop- 
ments, Pattern Recognit. 120 (2021) 108102 . 

[3] H. Jiang, F. Shen, F. Gao, W. Han, Learning efficient, explainable and discrim- 

inative representations for pulmonary nodules classification, Pattern Recognit. 
113 (2021) 107825 . 

[4] S. Valsson, O. Arandjelovi ́c, Nuances of interpreting x-ray analysis by deep 
learning and lessons for reporting experimental findings, Science 4 (1) (2022) 

3 . 

https://doi.org/10.13039/501100006041
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0004


J. Cooper, O. Arandjelovi ́c and D.J. Harrison Pattern Recognition 129 (2022) 108743 

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[  

[  

[

[

J

n  

A

O

i  

t  

i
C

D
t  

o

d
fi

[5] C. Barata, M.E. Celebi, J.S. Marques, Explainable skin lesion diagnosis using tax- 
onomies, Pattern Recognit. 110 (2021) 107413 . 

[6] W. Hryniewska, P. Bombi ́nski, P. Szatkowski, P. Tomaszewska, A. Przelaskowski, 
P. Biecek, Checklist for responsible deep learning modeling of medical images 

based on COVID-19 detection studies, Pattern Recognit. 118 (2021) 108035 . 
[7] W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, Definitions, methods, 

and applications in interpretable machine learning, Proc. Natl. Acad. Sci. U. S. 
A. 116 (44) (2019) 22071–22080 . 

[8] P. Linardatos, V. Papastefanopoulos, S. Kotsiantis, Explainable AI: a review of 

machine learning interpretability methods, Entropy 23 (1) (2020) . 
[9] T. Miller, Explanation in artificial intelligence: insights from the social sciences, 

Artif. Intell. 267 (2019) 1–38 . 
[10] C. Rudin, Stop explaining black box machine learning models for high stakes 

decisions and use interpretable models instead, Nat. Mach. Intell. 1 (5) (2019) 
206–215 . 

[11] U. Johansson, C. Sönströd, T. Löfström, H. Boström, Rule extraction with guar- 

antees from regression models, Pattern Recognit. 126 (2022) 108554 . 
12] S.M. Muddamsetty, M.N.S. Jahromi, A.E. Ciontos, L.M. Fenoy, T.B. Moeslund, 

Visual explanation of black-box model: similarity difference and uniqueness 
(SIDU) method, Pattern Recognit. 127 (2022) 108604 . 

[13] C. Molnar, 10.1 Learned features, 2021a, ( https://christophm.github.io/ 
interpretable- ml- book/cnn- features.htmla ) Accessed: 2021-12-21. 

[14] C. Molnar, Chapter 5 model-agnostic methods, 2021b, ( https://christophm. 

github.io/interpretable- ml- book/agnostic.htmlb ) Accessed: 2021-7-6. 
[15] L. Kook, L. Herzog, T. Hothorn, O. Dürr, B. Sick, Deep and interpretable regres- 

sion models for ordinal outcomes, Pattern Recognit. 122 (2022) 108263 . 
[16] I. Rio-Torto, K. Fernandes, L.F. Teixeira, Understanding the decisions of CNNs: 

an in-model approach, Pattern Recognit. Lett. 133 (2020) 373–380 . 
[17] R. Manikandan, A. Kumar, D. Gupta, Chapter 5 - hybrid computational intel- 

ligence for healthcare and disease diagnosis, in: S. Bhattacharyya, V. Snasel, 

D. Gupta, A. Khanna (Eds.), Hybrid Computational Intelligence, Academic Press, 
2020, pp. 97–122 . 

[18] J. Zhang, Z. Lin, J. Brandt, X. Shen, S. Sclaroff, Top-down neural attention by 
excitation backprop, in: Computer Vision – ECCV 2016, Springer International 

Publishing, 2016, pp. 543–559 . 
[19] V. Petsiuk, A. Das, K. Saenko, RISE: randomized input sampling for explanation 

of black-box models, in: Proceedings of the British Machine Vision Conference 

(BMVC), 2018 . 
20] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: 

visualising image classification models and saliency maps, in: Workshop at In- 
ternational Conference on Learning Representations, 2014 . 

21] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad–
CAM: visual explanations from deep networks via gradient-based localiza- 

tion, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017, 

pp. 618–626 . 
22] A . Mahendran, A . Vedaldi, Salient deconvolutional networks, in: Computer Vi- 

sion – ECCV 2016, Springer International Publishing, 2016, pp. 120–135 . 
23] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, B. Kim, Sanity checks 

for saliency maps, NeurIPS, 2018 . 
24] J. Schneider, C. Meske, M. Vlachos, Deceptive AI explanations: creation and de- 

tection, in: Proceedings of the 14th International Conference on Agents and 
Artificial Intelligence, SCITEPRESS - Science and Technology Publications, 2022 . 

25] W. Nie, Y. Zhang, A. Patel, A theoretical explanation for perplexing behaviors 

of backpropagation-based visualizations, in: Proceedings of the 35th Interna- 
tional Conference on Machine Learning, in: Proceedings of Machine Learning 

Research, vol. 80, PMLR, 2018, pp. 3809–3818 . 
26] R. Fong, A. Vedaldi, Explanations for attributing deep neural network pre- 

dictions, in: W. Samek, G. Montavon, A. Vedaldi, L.K. Hansen, K.R. Müller 
(Eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 

Springer International Publishing, Cham, 2019, pp. 149–167 . 
11 
27] R. Fong, M. Patrick, A. Vedaldi, Understanding deep networks via extremal per- 
turbations and smooth masks, in: 2019 IEEE/CVF International Conference on 

Computer Vision (ICCV), IEEE, 2019 . 
28] J.T. Springenberg, A. Dosovitskiy, T. Brox, M.A. Riedmiller, Striving for simplic- 

ity: the all convolutional net, in: Y. Bengio, Y. LeCun (Eds.), 3rd International 
Conference on Learning Representations, ICLR 2015, San Diego, CA , USA , May 

7–9, 2015, Workshop Track Proceedings, 2015 . http://arxiv.org/abs/1412.6806 
29] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, 

in: Computer Vision – ECCV 2014, Springer International Publishing, 2014, 

pp. 818–833 . 
30] R.C. Fong, A. Vedaldi, Interpretable explanations of black boxes by meaning- 

ful perturbation, in: Proceedings of the IEEE International Conference on Com- 
puter Vision, 2017, pp. 3429–3437 . 

31] M.T. Ribeiro, S. Singh, C. Guestrin, “Why should i trust you?”: explaining the 
predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD Interna- 

tional Conference on Knowledge Discovery and Data Mining, in: KDD ’16, As- 

sociation for Computing Machinery, New York, NY, USA, 2016, pp. 1135–1144, 
doi: 10.1145/2939672.2939778 . 

32] P. Dabkowski, Y. Gal, Real time image saliency for black box classifiers, NIPS, 
2017 . 

33] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

2016, pp. 770–778, doi: 10.1109/CVPR.2016.90 . 

34] J. Zhang, S.A. Bargal, Z. Lin, J. Brandt, X. Shen, S. Sclaroff, Top-down neural at-
tention by excitation backprop, Int. J. Comput. Vis. 126 (10) (2018) 1084–1102 . 

35] J. Cooper, I.H. Um, O. Arandjelovi ́c, D.J. Harrison, Hoechst is all you need: lym-
phocyte classification with deep learning (2021). arXiv preprint arXiv:2107. 

04388 
36] P.J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K.T. Schütt, S. Dähne, D. Er- 

han, B. Kim, The (un)reliability of saliency methods, in: W. Samek, G. Mon- 

tavon, A. Vedaldi, L.K. Hansen, K.R. Müller (Eds.), Explainable AI: Interpreting, 
Explaining and Visualizing Deep Learning, Springer International Publishing, 

Cham, 2019, pp. 267–280 . 
37] L. Brunke, P. Agrawal, N. George, Evaluating input perturbation methods for in- 

terpreting CNNs and saliency map comparison, in: A. Bartoli, A. Fusiello (Eds.), 
Computer Vision - ECCV 2020 Workshops - Glasgow, UK, August 23–28, 2020, 

Proceedings, Part I, Lecture Notes in Computer Science, vol. 12535, Springer, 

2020, pp. 120–134, doi: 10.1007/978- 3- 030- 66415- 2 _ 8 . 

essica Cooper is a data scientist researching artificial intelligence for digital diag- 

ostics at the University of St Andrews. She holds a BA in Fine Art and an MSc in
dvanced Computer Science. 

gnjen Arandjelovic graduated top of his class from the Department of Engineer- 

ng Science at the University of Oxford (MEng). In 2007 he was awarded a PhD by
he University of Cambridge where he stayed for further 4 years as Fellow of Trin-

ty College Cambridge. Currently he holds the position of Reader in the School of 
omputer Science at the University of St Andrews in Scotland. 

avid Harrison is a medical pathologist who believes that we are about to unlock 
he vast amount of data captured in a tissue section. He holds the chair of pathol-

gy in St Andrews and has honorary professorships in Edinburgh and Glasgow. He 

irects iCAIRD, the Industrial Centre for AI Research in Digital Diagnostics, one of 
ve UK centres of excellence funded jointly by government and industry. 

http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0012
https://christophm.github.io/interpretable-ml-book/cnn-features.htmla
https://christophm.github.io/interpretable-ml-book/agnostic.htmlb
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0027
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0028
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0020
http://arxiv.org/abs/1412.6806
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0030
https://doi.org/10.1145/2939672.2939778
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0032
https://doi.org/10.1109/CVPR.2016.90
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0034
http://arxiv.org/abs/2107.04388
http://refhub.elsevier.com/S0031-3203(22)00224-2/sbref0036
https://doi.org/10.1007/978-3-030-66415-2_8

	Believe the HiPe: Hierarchical perturbation for fast, robust, and model-agnostic saliency mapping
	1 Introduction
	2 Related work
	2.1 Model-specific saliency mapping methods
	2.2 Model-agnostic saliency mapping methods

	3 Proposed method
	4 Experiments
	4.1 Pointing game
	4.2 Insertion and deletion metrics

	5 Discussion
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References


