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Abstract

We consider the use of propagating kink waves, such as those observed by the Coronal Multi-channel Polarimeter,
as a diagnostic technique. The transverse structuring of the plasma may be inferred by the frequency-dependent
wave damping, which is attributed to resonant absorption. We include the effect of reflection of waves at the loop
footpoints, which leads to the asymmetry parameter, describing the ratio of driven wave power at the footpoints
becoming weakly constrained. The classical model of resonant absorption based on an exponential damping profile
significantly overestimates the damping rate in coronal loops with low density contrast ratios. The use of the
exponential profile in an analysis of observations therefore leads to underestimates for the density contrast ratio and
associated parameters such as the heating rate following phase mixing.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Solar coronal seismology (1994); Solar
corona (1483); Solar coronal waves (1995); Bayesian statistics (1900); Markov chain Monte Carlo (1889)

1. Introduction

Propagating transverse waves are ubiquitous in the solar
atmosphere, having been detected in the corona using the
Coronal Multi-channel Polarimeter (CoMP; Tomczyk et al.
2007) and in the chromosphere using Hinode (De Pontieu et al.
2007; Okamoto et al. 2007). Their strong damping in the
corona was reported by Tomczyk & McIntosh (2009). The
strong damping supported the interpretation of these waves as
kink oscillations damped by resonant absorption. The detection
of ubiquitous waves in the corona is interesting in terms of our
understanding of magnetohydrodynamic (MHD) waves (e.g.,
Nakariakov et al. 2021), their potential contribution to coronal
heating (e.g., Van Doorsselaere et al. 2020b), and the
application of seismological techniques (e.g., Anfinogentov &
Nakariakov 2019; Anfinogentov et al. 2022; Nakariakov et al.

2021).

Resonant absorption (Ionson 1978) had previously been used
to explain the strong damping of standing kink oscillations in
coronal loops (e.g., Goossens et al. 2002; Ruderman &
Roberts 2002). This interpretation was applied to propagating
kink waves through numerical simulations (e.g., Pascoe et al.
2010, 2011) and theoretical analysis (e.g., Terradas et al. 2010).
The strong damping of propagating kink waves was measured
by CoMP as a discrepancy between outward and inward wave
power for a signal spatially averaged over part of a coronal
loop (see Figure 1 and the top panel of Figure 3). Verth et al.
(2010) demonstrated that the frequency-dependence of the ratio
of powers was consistent with resonant absorption.

Numerical simulations by Pascoe et al. (2012) found that the
exponential damping profile typically used to describe the
attenuation of the kink mode due to resonant absorption
provided a very poor description of the behavior in loops with
low density contrast ratios. The simulations suggested a
Gaussian damping profile instead, which was later supported
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by the analytical derivation by Hood et al. (2013), who
specifically considered the behavior for early times and
provided a relation for the Gaussian damping rate as a function
of the loop transverse density profile parameters. Pascoe et al.
(2013) proposed a seismological method based on measuring
both the Gaussian damping behavior at early times and the
exponential damping behavior at later times (see also the
review by De Moortel et al. 2016). The location of the switch
from Gaussian to exponential depends on the density contrast
ratio and can therefore be used to estimate this parameter. The
additional information provided by the shape of the damping
profile addresses the problem that the damping rate alone is
unable to provide unique values (e.g., Arregui & Goos-
sens 2019) for the two unknown density profile parameters, i.e.,
the density contrast ratio ¢, and the inhomogeneous layer width
1. The layer width is commonly normalized by the (minor) loop
radius R to give e=1/R. The center of the inhomogeneous
layer is at a radial distance = R, and so limiting cases of ¢ =0
and 2 correspond to a loop with a step function density profile
and a continuously varying density profile, respectively.
There is ample observational evidence for the nonexponen-
tial or Gaussian damping regime for kink oscillations (De
Moortel et al. 2002; Goddard et al. 2016; Pascoe et al. 2016b;
Morton & Mooroogen 2016), and it has also been shown in
linear (Ruderman & Terradas 2013; Pascoe et al. 2019a) and
nonlinear (Magyar & Van Doorsselaere 2016; Pagano et al.
2018; Goddard et al. 2018; Pascoe et al. 2020) numerical
models of standing kink waves. Observations analyzed using
both the Gaussian and exponential damping regimes have been
used to perform seismological inferences of coronal loop
density profiles (Pascoe et al. 2016a, 2017a, 2017c, 2018).
Pascoe et al. (2017b) estimated the width of the inhomoge-
neous layer using a method based on forward modeling the
transverse extreme ultraviolet (EUV) profile of a coronal loop.
This was applied by Goddard et al. (2017) in a statistical study
of 233 loops. Pascoe et al. (2020) demonstrated that the
distribution of layer widths covers the full range of
e = [0, 2], but favors higher values. This is consistent with
the evolution of the loop density profile due to the Kelvin—


https://orcid.org/0000-0002-0338-3962
https://orcid.org/0000-0002-0338-3962
https://orcid.org/0000-0002-0338-3962
https://orcid.org/0000-0001-9628-4113
https://orcid.org/0000-0001-9628-4113
https://orcid.org/0000-0001-9628-4113
https://orcid.org/0000-0002-1452-9330
https://orcid.org/0000-0002-1452-9330
https://orcid.org/0000-0002-1452-9330
mailto:david.pascoe@st-andrews.ac.uk
http://astrothesaurus.org/uat/1964
http://astrothesaurus.org/uat/1994
http://astrothesaurus.org/uat/1483
http://astrothesaurus.org/uat/1483
http://astrothesaurus.org/uat/1995
http://astrothesaurus.org/uat/1900
http://astrothesaurus.org/uat/1889
https://doi.org/10.3847/1538-4357/ac5e30
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac5e30&domain=pdf&date_stamp=2022-04-18
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac5e30&domain=pdf&date_stamp=2022-04-18
http://creativecommons.org/licenses/by/4.0/

THE ASTROPHYSICAL JOURNAL, 929:101 (10pp), 2022 April 10

s=1L

I‘Dfm'(f) Pnear (})

Figure 1. Data analysis method illustrated for a single reflection at the loop
footpoints. The oscillation power is integrated over half the loop
(s = [0, L]). Solid and dashed lines correspond to waves generated at the
near and far footpoints, respectively. Outward-traveling waves are shown in red
and inward-traveling waves in blue, with the direction defined relative to the
integration region (gray).

Helmholtz instability (KHI; e.g., Terradas et al. 2008; Soler
et al. 2010; Antolin et al. 2014, 2017). Analytical descriptions
of resonant absorption are based on the approximation that € is
small. The error associated with this approximation was
considered for the exponential regime by Van Doorsselaere
et al. (2004) and Soler et al. (2014) and by Pascoe et al. (2019a)
for the nonexponential damping regime, demonstrating that the
density contrast ratio was underestimated by 50% for a typical
observational case with € ~ 1. The numerical results from the
parametric study by Pascoe et al. (2019a) are available* as a
lookup table (LUT) that can be used, as in this paper, to
generate the damping profile for some desired combination of ¢
and € without relying on the thin-boundary (TB) approx-
imation. We note that this correction does not include nonlinear
effects such as the KHI (e.g., Browning & Priest 1984; Ofman
et al. 1994; Antolin et al. 2014). The structures generated by
the KHI can increase the damping rate due to resonant
absorption (Pascoe et al. 2020), which has been detected in an
observation of a loop perturbed by two separate flaring releases
(Pascoe et al. 2020a). Nonlinear damping can persist in the
limit (— 1 in the case of standing waves (Van Doorsselaere
et al. 2021), but not for the propagating waves (Van
Doorsselaere et al. 2020a) considered in this paper. We also
do not consider additional model details such as magnetic twist
(e.g., Giagkiozis et al. 2016), stratification (e.g., Arregui et al.
2005; Soler et al. 2011; Ruderman et al. 2019), or flows (e.g.,
Bahari et al. 2020), which can also affect the damping rate.

Pascoe et al. (2015) demonstrated that a Gaussian damping
profile is able to account for the CoMP power ratios analyzed
by Verth et al. (2010) because the same frequency-dependent
behavior is present. The data analysis is based on integrating
the wave signal over half of the loop, and consequently, spatial
information is lost and the exponential and Gaussian damping
profiles cannot be directly distinguished in these particular
observations. Pascoe et al. (2015) proposed a method using a
narrower, and moving, integration window. This method was
able to preserve spatial information and reveal the Gaussian
damping behavior in numerical simulations, but this has not
been attempted so far with observational data.

The application of the exponential model of resonant
absorption to loops with low density contrast introduces errors
in two ways: first, lower values of the density contrast { require
higher values of the (normalized) layer width € to provide
reasonable damping rates, which makes the TB approximation

4 lookup table and corresponding IDL code available at https: //github.com/

djpascoe/kinkLUT.
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an invalid assumption. Second, the shape of the damping
profile is poorly described by an exponential profile when ( is
small. In this paper, we extend the method of analyzing CoMP
data to consider these effects. We also include the influence of
reflections at the loop footpoints for the first time. In Section 2
we describe our method and apply it to the CoMP observations
initially analyzed by Verth et al. (2010) and later by Montes-
Solis & Arregui (2020). In Section 3 we discuss our results in
the context of the observations analyzed by Tiwari et al.
(2019). Conclusions are presented in Section 4.

2. CoMP Power Ratio

We start by analyzing power ratios for propagating kink
waves as measured by CoMP. We consider the effect of
different analytical methods, damping profiles, and the effect of
footpoint reflections on the observed kink waves. First we
summarize previous results based on the exponential damping
profile.

2.1. Model

The analysis of CoMP data by Verth et al. (2010) was based
on an exponential spatial damping profile of the form

A(s) = Agexp(—s/La), ey

where s is the propagation distance along the loop, Ay is the
initial amplitude, and the damping length L, is given by the
thin-tube TB approximation (Terradas et al. 2010) as

1

Ly = vppé—, 2
d phf f ( )
where v, is the phase speed of the kink wave, f is the
frequency, and & represents the oscillation quality factor, i.e.,
the ratio of damping length to wavelength, due to resonant
absorption. This is a constant that depends on the transverse

density profile of the loop,

¢ - — 3)

’
T RE

where k = ((— 1)/((+ 1) and (= po/p. is the density contrast
ratio. The factor 4 /7 corresponds to a linear transition between
po and p. (e.g., Arregui & Goossens 2019). We consider a
linear transition profile in this paper because that is also the
profile available for the Gaussian and LUT damping profiles
(see also further discussion of transition profiles in Section 6.2
of Pascoe et al. 2018).

The oscillation quality factor £ depends on two density
profile parameters (¢, €) that are generally unknown. For a
given value of & we can consider the limit of a fully
inhomogeneous loop (e =2) for which the density contrast
ratio will be its minimum value,

1 +2/(x?
Coin # 4)
1 =2/(7)
where (.. — 1 from above as £ — oo . This is equivalent to

Equation (37) of Goossens et al. (2012), with the constants
corresponding to the linear rather than sinusoidal transition
profile. For a given damping rate, the inferred density contrast
ratio varies weakly in the limit of large e, such that it is
typically not much larger than { . (see, e.g., the inversion

min
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curves in Goossens et al. 2008). On the other hand, it is
important to note that the expressions for (., for both
exponential and Gaussian damping profiles are based on the TB
approximation, which becomes inaccurate in this limit. The
value of £ =2.69 estimated by Verth et al. (2010) corresponds
to ¢, = 1.16, while the maximum likelihood estimation
(MLE) values of ¢ reported in Tiwari et al. (2019) correspond
to (., ~ 1.1-1.25. Based on the correction for wide
inhomogeneous layers calculated by Pascoe et al. (2019a),
we can expect these to be underestimates by approxi-
mately 50%.

The observational analysis is based on integrating the
oscillation power over part of the loop length. In Verth et al.
(2010), the integration is assumed to be over half of the loop,
while Tiwari et al. (2019) generalize the solution to an arbitrary
fraction. A key feature is that the integration region is closer to
one loop footpoint than the other. Consequently, even if the
drivers at the two footpoints are identical, a disparity between
inward- and outward-propagating waves is revealed because
the inward-propagating waves must travel farther and hence are
expected to undergo greater damping.

In this paper we include the reflection of waves at the
footpoints, which has the effect of turning an inward-
propagating wave into an outward-propagating wave, and
vice versa. To clarify this effect, we denote the power spectra at
the near (s = 0) and far (s =2L) loop footpoints as Pea (f)
and P (f), respectively. Using this notation and following
Verth et al. (2010), we define the spatially averaged outward
power as

L
PPl = 1 [ Bea(Dexp(-25/La(fNds, ()
L Jo
and the corresponding inward power as
1 p2L
PP = = [ PulPexp(=25/La(fds.  (©)
LJL

The ratio of the powers is then defined as

(P(f))out Prcar (f) exp( 2L ) -

P ratio — =
P (P(f))in Prar (f) Ly(f)

Using the notation of Montes-Solis & Arregui (2020), we
define the footpoint power ratio as Ry = PBiear(f)/Prac(f)
and note that asymmetry corresponds to Ry = 1.

If we now consider the case of a single reflection occurring
at each footpoint (see Figure 1), we obtain

(PP = + [ BrawFrexp(~25/Ly(f)ds
out — . Jo near p d

21 3L
+szj;L Prac(f)exp (—=2s/Lq(f))ds

Pnear
= %[hexp(#\)}
+R2Pf‘“(f)[exp( 2A) — exp(=3A)],

®)

where R;is a coefficient representing the efficiency of reflection
and A = 2L/L;(f). No reflection corresponds to R;=0,
whereas R~ 1 describes perfect reflection (without decrease in
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amplitude). The inward power is similarly given by

P = 1 2LP 2s/L d
Pl = 7 fL e () exp (—25/La(f))ds

1 4L
R}%Z»/;L Biear (f)exp (—2s/Lq(f))ds

Par
— M[exp(—A)—exp(—zA)]

2 nedr (f)

+ R ———[exp(—3A) — exp(—4A)].

©))

Taking the ratio of powers as before will include terms for both
Piear (f) and P, (f) in the numerator and denominator. We note
that if Pear(f) = Prar(f), the additional terms do not affect
the ratio, with (P (f))aio = exp(2L/Ly) as in Equation (7).
For an exponential damping profile, the effect of reflections can
therefore be neglected in the limit of weak footpoint asymmetry
(Ro 2 1). However, this result does not extend to nonexponen-
tial damping profiles. For the Gaussian damping profile in
particular, the ratio of values for two locations depends on their
distance from the origin (footpoint) in addition to their relative
separation (see also Section 3 of Pascoe et al. 2015). Figure 2
shows examples of the variation in power ratio for a single
frequency for each of the three damping profiles considered in
this paper. The presence of reflections affects the power ratio
for the Gaussian and LUT damping profiles even in the case of
weak footpoint asymmetry, whereas the power ratio for the
exponential damping profile is unaffected.

We can consider the efficiency of the reflection as an
additional parameter of the model with limits R = [0, 1]. In
future analysis, Ry might be considered as a function of the
frequency.

2.2. Least-squares Fitting

Figure 3 shows the results of analyzing the power ratio
measured by CoMP using methods based on an exponential
damping profile. This analysis is not based on a single
reflection, as illustrated above. Instead, the calculation of
reflections continues until the reflected amplitude is lower than
some cutoff, here taken to be 0.1% of the initial amplitude.

We apply our models to the data using least-squares fitting
using MPFIT (Markwardt 2009). Tiwari et al. (2019) show that
least-squares fitting of the power ratio can bias the inferred
model parameters and overestimate the quality factor & in
comparison with values calculated using MLE. However, here
our initial aim is to demonstrate the effect of including
reflections and comparison with previous analysis. We fit the
observational data (circles in the top panel of Figure 3) using
our model to infer the free parameters R, and £ for a chosen
value of Ry Solid lines correspond to model fits using
unweighted data points as in Verth et al. (2010). In the limit of
Rf— 0, the values of Rp=0.91 and £=2.69 found in that
study are recovered. The dashed lines use normal weights with
a standard deviation of 10% of the measured value as in
Montes-Solis & Arregui (2020). Again, in the limit Rr— 0, the
values are comparable to the maximum a posteriori (MAP)
estimates of Rp=0.50 +£0.02 and & 1.9703 found in that
study.
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Figure 2. Variation in power ratio with the efficiency of reflection (Ry) and
footpoint asymmetry (Ry) for an oscillation with frequency f = 2 mHz in a loop
of length 2L = 500 Mm with v, = 0.6 Mm s 'and density profile parameters
(=15 and e=1. The top, middle, and bottom panels correspond to the
exponential, Gaussian, and LUT damping profiles, respectively.

The middle and bottom panels of Figure 3 show the fitted
values of Ry and § as Ry is varied from O to 1. For both
unweighted and weighted fits, the inclusion of reflections leads
to higher estimates for the footpoint asymmetry and to lower
estimates for the oscillation quality factor & In the case of
unweighted fits, the uncertainties are large and increase with R,
such that the case of Ry =1 cannot be reliably excluded. For
weighted fits, there is much less uncertainty in the model
parameters, although this is based on the assumption that the
observational error is lower for lower frequencies.

In the top panel of Figure 3, blue and green lines correspond
to the limiting cases of R,= 0 and Ry= 1, respectively. Due to
the frequency-dependent damping rate in Equation (2), we can
expect that the power ratio is insensitive to reflections for
sufficiently large f because the propagating waves will already
be heavily damped before they reach the other footpoint. In the
limit f— 0, the damping due to resonant absorption is weak
and multiple reflections occur, such that inward- and outward-
propagating waves are well mixed and (P(f))aio — 1.
Including reflections has a larger effect on the analysis using
normal weighting because the inferred footpoint asymmetry
(Ro= 1) is larger in this case, and reflections are negligible for
an exponential damping profile with Ry~ 1, as discussed
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Figure 3. Analysis of the power ratio measured by CoMP based on damping
due to resonant absorption with an exponential damping profile. The top panel
shows the observational data (circles) with model fits for several limiting cases.
Blue and green lines correspond to the limits R, = 0 and Ry= 1, respectively.
Solid lines correspond to unweighted least-squares fitting of the data points,
and dashed lines show normal weighting with standard deviations assumed to
be 10% of the measured value. The middle and bottom panels show the
dependence of Ry and £ on R Shaded regions correspond to the estimated
errors in the fitted values.

above. For the models with R,= 1 (green lines), the power ratio
(P(f))raio — 1 as f— 0, whereas without reflections (blue
lines), they tend to the value of the inferred footpoint
asymmetry, i.e., Ry=0.91 for the unweighted fit and
Ry = 0.50 for normal weighting. This demonstrates that without
reflections, the inferred asymmetry will be sensitive to data
points in the limit f — 0, whereas including reflections makes
the model less sensitive to these particular points and the
footpoint asymmetry will instead be inferred based on the
overall properties of the data.

2.3. Bayesian Analysis

Montes-Solis & Arregui (2020) apply Bayesian analysis to
the exponential damping model in Equation (7), including
comparing models with and without the asymmetry parameter
Ry. For the model with imposed symmetry (Ryo=1), the
inferred oscillation quality factor is found to increase to
¢ = 4377 We perform a Bayesian analysis using the Solar
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Bayesian Analysis Toolkit (SoBAT; Anfinogentov et al.
2021b). SOBAT” allows a wide range of data analysis problems
to be investigated using Bayesian inference and Markov chain
Monte Carlo (MCMC) sampling. It was initially used for the
seismological analysis of kink oscillations (Pascoe et al. 2017a)
and has also been applied to problems such as EUV intensity
profiles (Goddard et al. 2017; Pascoe et al. 2017b), gamma-ray
emission spectra (Lysenko et al. 2019), stellar superflares
(Kuznetsov & Kolotkov 2021), and quasiperiodic pulsations
(Broombhall et al. 2019; Pascoe et al. 2020b).

Using the same models and parameter priors as Montes-Solis
& Arregui (2020), our results, based on 10° MCMC samples,

are Ry = 0.5070%3 and ¢ = 1.8170%) with footpoint
asymmetry and ¢ = 4.227]3) without footpoint asymmetry

(Rp=1). The uncertainties correspond to the 95% credible
interval and so are larger than those in Montes-Solis & Arregui
(2020), who state a 68% credible interval, but otherwise, the
results are in complete agreement.

We can use Equation (3) to rewrite the model in terms of ¢
and € as the unknown parameters. This increase in model
parameters would not permit a unique solution for methods
such as least-squares fitting, but the parameter space can still be
investigated using MCMC sampling. The benefit of this
approach is that it is simpler to describe our prior knowledge
for ¢ and € directly than for the combination of parameters in
the definition of £. In particular, € is defined to have limits of
[0, 2]. Figure 6 of Pascoe et al. (2020) shows that there is a
preference toward higher values, but this is based on the
statistical study of loops observed with SDO/AIA (Goddard
et al. 2017). It may be the case that these loops typically have a
higher density contrast ratio than those observed with CoMP
and that the bias toward larger € arises due to the KHI, which is
stronger for larger (. It is therefore reasonable to use a uniform
prior with limits [0, 2] for simplicity.

The density contrast ratio must be greater than unity for an
interpretation of the waves as kink oscillations damped by
resonant absorption. The upper limit is more subjective, but our
expectation that the density contrast ratio is low can be
incorporated into the analysis. The ubiquitous waves detected
by CoMP were initially interpreted as Alfvén waves in a
uniform medium (¢ =1). An alternative interpretation as kink
waves (Van Doorsselaere et al. 2008) is supported by their
strong damping and requires ¢ > 1. However, the absence of
bright structures in SOHO/EIT observations suggests the
density contrast is not large (Tomczyk et al. 2007). Monte
Carlo simulations by Morton et al. (2021) suggest that values of
¢=1-1.25 are most consistent with observations of quiescent
coronal loops. Even if we assume that these are underestimates
due to the TB approximation, it seems unlikely that ¢ is much
larger than 2.

In this paper, we use a prior based on the generalized gamma
distribution. Since this distribution is defined for x >0, we
consider (=1+A, where A is the generalized gamma
distribution,

p/a’ 4,
PDF(x) = ———x%lexp—(x/a)?, (10)
I'(d/p)
with shape parameters a =2, d = 1.01, and p = 6, as shown in
the top panel of Figure 4. These parameters give a distribution
that satisfies a probability density function (PDF) ((<1)=0,

5> IDL code available at https://github.com/Sergey-Anfinogentov/SoBAT.
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Figure 4. Prior PDFs for ( based on a generalized gamma distribution (top
panel) and for R, using a beta prime distribution (bottom panel).

is approximately uniform for 1 < (<2, and then decreases
rapidly such that the effective upper limit is { &~ 3.5. In contrast,
a constraint on ¢ still implicitly allows values of (— oo as
€ — 0, which are not consistent with our expectations and so
need not be included in our analysis.

We also consider a different prior for R, than U(Ry, 0.1, 4)
used in Montes-Solis & Arregui (2020). Since Ry is the ratio of
powers at the two footpoints and the choice of which half of the
loop is analyzed is arbitrary, we expect Ry = x to have the same
probability as Ro=1/x, and for Ry=1 to have the greatest
probability. A convenient choice with these properties is the
beta prime distribution with shape parameters « =7 and =15,

a— —a—p3
PDE(x) = > A +0? (11)

B(a, p)

where B(w, () is the beta function. The particular choice of
shape parameters is based on a mode of (aw — 1)/(B+ 1) =1
for which PDF(x) = PDF(1/x), and to reflect our expecta-
tion that large asymmetries are unlikely. The uniform prior
U(Ry, 0.1, 4) in Montes-Solis & Arregui (2020) allows power
ratios of 10:1 when P, (f) < Pear(f) but only 4:1 when
Biear (f) > Pror(f). In that study (and our reproduction of the
results discussed above), R is well constrained by the data for
the chosen model (exponential damping profile without
reflections) and so the uniform prior did not affect the results.
Our choice of a beta prime prior is therefore relevant when R,
is not well constrained, as is the case when the effect of
reflections is included.

The analyzed data being ratios of powers was also
motivation for the use of the F-distribution to describe their
statistical properties by Tiwari et al. (2019). We therefore also
consider an F-distribution, given by Equation (18) in their
study, as the likelihood (£) function in the following Bayesian
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panels) and with reflections (right panels). The panels show histograms representing the marginalized posterior probability density functions for model parameters; the
density profile parameters ¢ and e (top), the footpoint power ratio Ry (middle), and the degrees of freedom v (bottom). Dotted lines denote the median values, and

dashed lines show the 95% credible intervals. Solid lines are the (scaled) prior PDF.

analysis,

InL = -Y'_ InSi+Inpw/2,v/2)

+d—-v/2)InR;/S) +vIn(l +R;/S), (12)

where R; are the observed and power ratios and S; are the true
values of the model. Since the number of degrees of freedom v
is unknown, we consider it as an additional free parameter of
the model with the prior U(v, 2, 100). The results of this
Bayesian analysis are summarized in Figure 5 for an
exponential damping profile and in Figure 6 for a Gaussian
damping profile. We first consider again the model for an
exponential damping profile and without reflections (left panels
of Figure 5). The top panels show 2D histograms approximat-
ing the marginalized posterior PDF for the loop transverse
density profile parameters ((, €). We see that ( is being
constrained by our choice of prior and that the effective

maximum value defines a minimum value for e. Aside from this
upper limit for (, the posterior distribution resembles the
inversion curve in Goossens et al. (2012). The asymmetry
Ry = 0.70793% is weaker than that found by Montes-Solis &
Arregui (2020) using relative errors of 10%, and the
uncertainty is larger. We repeat our analysis with Ry =1 and
calculate the Bayesian evidence for our models with and
without footpoint asymmetry. The Bayes factor (Jeffreys 1961;
Kass & Raftery 1995) is calculated as the ratio of evidence for
two models M;; that describe the observational data D,
P(DIM;)

= , 1
B P(DIM)) )

and
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Gaussian damping profile (with reflections)
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Figure 6. Same as Figure 5, but for a Gaussian damping profile.

The Bayes factor in favor of the model with asymmetry is
K =4.3, which is sufficient to be considered “positive” (K > 2)
but not “strong” (K >6). However, when we repeat our
analysis including reflections, the Bayesian evidence for the
footpoint asymmetry again becomes inconclusive. This is the
case for both exponential and Gaussian damping profiles and is
a consequence of a much weaker constraint on Ry The
exponential model without reflections uniquely relates R, to the
power ratio observed in the limit f— 0, as discussed earlier.
The weaker constraint on R, also corresponds to weaker
constraints on ( and e.

It would be beneficial to further constrain the model
parameters using additional observational results. For example,
the footpoint asymmetry might be measured directly by
observations of photospheric motions (e.g., DKIST; Rast
et al. 2021). The density contrast ratio may be obtained by
forward modeling of EUV emission (e.g., De Moortel &
Bradshaw 2008; Van Doorsselaere et al. 2016), which has been
used to estimate the density and temperature contrast ratios of
coronal holes (Pascoe et al. 2019b). The inhomogeneous layer

width € has been estimated using EUV intensity profiles
(Goddard et al. 2017; Pascoe et al. 2017b), but this technique is
more difficult for the case of fainter loops, especially if there
are multiple overlapping structures within the observational
window.

By default, SOBAT uses a likelihood function based on a
multivariate normal distribution, rather than the F-distribution
used here, and estimates the level of noise in the data assuming
it is normally distributed. Tiwari et al. (2019) find that footpoint
power ratios calculated using least-squares fitting are approxi-
mately 20%-35% higher than those using MLE analysis with
an F-distribution. We find similar differences when comparing
our analysis with an F-distribution likelihood function to a
multivariate normal distribution. For example, with an
exponential damping profile and no reflections, our inferred
Ry values are approximately 0.69 and 0.92, respectively. For
our analysis using the multivariate normal distribution, the
residuals (calculated using the model with MAP values for
parameters) pass Kolmogorov—Smirnov, Anderson—Darling,
and Lilliefors tests for normality. This indicates that a normally
distributed error is capable of reproducing the behavior of this
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Figure 7. Exponential (dotted), Gaussian (dashed), and LUT (solid) damping
profiles for (=15 and e=1. The wavelength is 300 Mm, based on a
frequency f= 2 mHz and v,, = 0.6 Mm s L

data. However, an F-distribution is more justified based on the
nature of the observational data and so allows more accurate
inferences, as discussed by Tiwari et al. (2019). The F-
distribution also has the benefit of potentially relating the
distribution of data points with the number of structures present
within the observational window, although this may be an
underestimate depending on details of line-of-sight integration
(e.g., De Moortel & Pascoe 2012; Karampelas et al. 2019; Pant
et al. 2019). Our results (bottom panels of Figure 6) find
v=26 £ 7, which would correspond to the spatial integration
of approximately 13 pairs of input and output power spectra.
This estimate, and the apparent applicability of a normal
distribution, are consistent with the analysis in Appendix A of
Tiwari et al. (2019), which shows the effect on the power ratios
and inferred model parameters as v increases.

3. Discussion

Accurate seismological application of propagating kink
oscillations requires correction for the effect of wide inhomo-
geneous layers. For standing kink oscillations, this correction
was calculated by Pascoe et al. (2019a). We note that this
correction does not include nonlinear effects such as the KHI.
However, the development of this instability depends on the
density contrast ratio and our assumption of low ( is consistent
with weak KHI. The LUT damping profile can be used directly
in the seismological analysis of kink waves, as demonstrated in
Pascoe et al. (2019a) for a standing kink wave. However, the
Gaussian damping profile provides a reasonable approximation
with a much lower computational cost. Examples of the LUT,
Gaussian, and exponential profiles for a coronal loop with
(=1.5 and e =1 are shown in Figure 7.

Tiwari et al. (2019) find that the rate of damping decreases
for longer coronal loops, i.e., the inferred values of £ are higher
for longer loops. The range of frequencies measured by CoMP
and analyzed remains the same for each loop, and so
considering longer loops means that the kink waves propagate
farther and damp more before they reach the other side of the
loop. This is demonstrated in Figure 3 of Tiwari et al. (2019),
which shows that the typical power ratio increases for longer
loops as the inward waves become increasingly attenuated
relative to the outward waves. Since there is typically more
damping in longer loops, the effect of reflections becomes less
important. Here we consider the implications of our model for
this type of analysis. Figure 3 shows that not taking reflections
into account causes £ to be overestimated (assuming that
reflections are actually present). The values will therefore be
overestimated in general due to the assumption of the
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exponential damping behavior, and more so for shorter loops,
for which the additional effect of reflections is greater.

To demonstrate this, we consider loops with half lengths
L =100-600 Mm as in Tiwari et al. (2019). For simplicity, we
assume the same physical parameters for each loop and only
vary the length. We take (=15 and e=1, for which
Equation (3) gives £ 2.0 (see also Figure 7). The exponential
damping profile overestimates the damping rate when e is large
and/or  is small, both of which apply here, and so we expect
this to be an underestimate of the actual damping that occurs.
However, this value of £ is what an analysis based on an
exponential damping profile should reproduce if observations
are to be used for accurate seismological diagnostics.

We assume a footpoint asymmetry of Ry=0.9. For each
loop length, we generate a synthetic power ratio as a function
of frequency using the LUT damping profile and including the
effect of reflections (R,=1). This demonstration does not
include the effect of noise in the data. We then fit the
exponential model (without reflections) used in previous
studies to the synthetic data. The values of ¢ and R, inferred
by unweighted least-squares fitting are shown in Figure 8.
Tiwari et al. (2019) show that the use of least-squares fitting
overestimates the values of ¢ compared with MLE by ~40%.
However, in Figure 8, the overestimation compared to the
known value is typically ~250%, i.e., the inaccuracy associated
with the exponential damping profile is far greater.

This suggests that the MLE values of ¢ reported by Tiwari
et al. (2019) are still overestimates and that the overestimation
is larger for shorter loops. Figure 5 of Tiwari et al. (2019)
shows that ¢ increases with loop length, but reaches a plateau.
The dependence of the overestimation on loop length suggests
that this plateau may be wholly or partially a consequence of
the use of the exponential damping profile in the analysis. This
effect therefore potentially strengthens the observational
evidence that ¢ increases with length, which is interpreted as
longer loops having lower density contrast ratios, for example,
because a similar volume of evaporated mass is distributed
along a greater length.

The bottom left panel of Figure 8 shows the estimated
density contrast ratio based on Equation (3), taking ¢ = 1 to be
a known value. The inferred density contrast is underestimated
and falls in the range 1.1-1.2, consistent with the values
suggested by Morton et al. (2021).

Resonant absorption is an ideal process, but the finite
inhomogeneous layer that couples kink waves to Alfvén waves
also causes phase mixing of the Alfvén waves (Heyvaerts &
Priest 1983) and the subsequent dissipation of wave energy
(e.g., Pagano & De Moortel 2017; Pagano et al. 2018). Mann &
Wright (1995) estimated the lifetime of Alfvén waves as
Ta = ky/uwn’, where k, = 1/R is the azimuthal wavenumber
and wy ' is the gradient of the Alfvén frequency. Rewriting this
in terms of parameters relevant to propagating waves, we
obtain

€Vph 1
27f (Cae — Cao)’

This represents the timescale on which the transverse spatial
scale of the propagating wave decreases due to phase mixing.
The estimate of the phase mixing timescale is sensitive to the
inferred density contrast ratio (e.g., Pascoe et al. 2016a), and so
the value is overestimated by a factor of approximately 2—4 (as
is the case for &).

s)

TA
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Figure 8. Estimated values of £ and R, (top panels) based on an analysis of synthetic data using the exponential damping profile (without reflections). The bottom
panels show the inferred values of the density contrast ratio and the phase mixing timescale (for a frequency f = 2 mHz). Dashed lines correspond to the true values.
Dotted lines correspond to the same analysis using the Gaussian damping profile (without reflections), with the true value of £ given by Equation (16) indicated by the

dash—dotted line.

The dotted lines in Figure 8 correspond to the same analysis
using the Gaussian damping profile. This is done without
reflections to demonstrate the simplest but most effective
improvement to the data analysis method, which only requires
replacing Equations (1) and (3) with their Gaussian equivalents,

A(s) = Agexp(—s2/2L2),
2
= . 1
3 p—= (16)

This improvement therefore comes at no additional computa-
tional cost, whereas including the effects of reflections requires
some modification of the method, and the use of the LUT has a
significant computational cost because it is based on numerical
interpolation. We see that R, is overestimated by not
accounting for reflections, but otherwise, there is far greater
consistency between the actual and inferred values of £, and so
the corresponding estimates for ( and 7, are much more
accurate.

4. Conclusions

We have demonstrated an advanced method for the analysis
of propagating kink waves. In particular, we combine the
spatial integration method of Verth et al. (2010), the Gaussian
damping profile of Pascoe et al. (2015), the statistical analysis
of Tiwari et al. (2019), and a Bayesian approach as used by
Montes-Solis & Arregui (2020). We showed that the MCMC
method can be applied to this problem by considering the
density profile parameters ( (density contrast) and e (inhomo-
geneous layer width) directly in order to take advantage of our
greater prior knowledge for these parameters, rather than using
the oscillation quality factor £ (see Equations (3) and (16)). In

this paper, our priors for ¢ and e describe reasonable values, but
in future observational analyses, the same method could be
used with stronger constraints based on additional observable
properties such as the profile of the loop in EUV. We also used
our MCMC method to estimate the number of loop structures
within the data set based on the variations in the power ratio.

We included the additional effect of footpoint reflections for
the first time and demonstrated that the footpoint asymmetry
parameter becomes weakly constrained when reflections are
included. Accordingly, we find no evidence against Ry =1 for
this particular observation. The effect of reflections potentially
strengthens the dependence of the oscillation quality factor on
loop length found by Tiwari et al. (2019) because the influence
of reflections on the analysis is naturally stronger for shorter
loops.

The nonexponential damping profile naturally accounts for
the weak damping inferred by Morton et al. (2021) and Tiwari
et al. (2021) using the exponential damping profile. Since the
exponential damping profile is inaccurate for loops with low
density contrasts, it provides significant underestimates for the
density contrast itself and for associated processes such as the
heating rate due to phase mixing.
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