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4

1Centre for Statistics in Ecology, the Environment and Conservation, Department of Statistical5

Sciences, University of Cape Town, South Africa6

2Centre for Research into Ecological and Environmental Modelling, University of St Andrews, UK7

3African Institute for Mathematical Sciences, South Africa8

4Faculty of Mechanical Engineering and Transport Systems, Technische Universität Berlin, Germany9

5Ipsos Laboratories, Cape Town, South Africa10

6Centre for Operational Research, Management Science and Information Systems, University of11

Southampton Business School, UK12

7Department of Computer Science, University of Bath, UK13

Abstract14

We consider portfolio decision problems with positive interactions between projects. Exact15

solutions to this problem require that all interactions are assessed, requiring time, expertise16

and effort that may not always be available. We develop and test a number of fast and frugal17

heuristics – psychologically plausible models that limit the number of assessments to be made18

and combine these in computationally simple ways – for portfolio decisions. The proposed19

“add-the-best” family of heuristics constructs a portfolio by iteratively adding a project that20

is best in a greedy sense, with various definitions of “best”. We present analytical results21

showing that information savings achievable by heuristics can be considerable; a simulation22

experiment showing that portfolios selected by heuristics can be close to optimal under cer-23

tain conditions; and a behavioral laboratory experiment demonstrating that choices are often24

consistent with the use of heuristics. Add-the-best heuristics combine descriptive plausibility25

with effort-accuracy trade-offs that make them potentially attractive for prescriptive use.26

Keywords: Decision making; decision analysis; portfolio selection; heuristics; behavioural de-27

cision making28

∗Corresponding author: ian.durbach@uct.ac.za

1



1 Introduction29

Portfolio decisions involve selecting a subset of alternatives or “projects” that together maximize30

some measure of value, subject to resource constraints (Salo et al., 2011). Examples include cap-31

ital investment (Kleinmuntz, 2007; Airoldi and Morton, 2011), R&D project selection (Phillips32

and Bana e Costa, 2007; Jung and Seo, 2010; Arratia et al., 2016; Liesiö and Salo, 2012; Jang,33

2019), maintenance planning (Mild et al., 2015), and windfarm location (Cranmer et al., 2018).34

This paper considers portfolio problems in which benefits and costs are not necessarily additive:35

some projects may interact with one another.36

Exact solutions to this problem require that all project interactions are assessed, and the37

time and effort involved in this can be considerable. As the starting point for this paper we take38

the view that in some problems project interactions can only be assessed by consulting a human39

decision maker or expert, and that sometimes the number of interactions will be too large for40

the assessment of all of them to be feasible. The purpose of this paper is to propose several41

heuristics that limit the number of assessments that are made and thus may be suitable for42

portfolio decision problems in which the complete assessment of interactions is not an option.43

We evaluate these heuristics in terms of how many assessments they save, and how close their44

portfolio values are to the theoretical optimal value that would be achieved if all interactions45

were known and exact methods used. We also use a behavioral laboratory experiment to provide46

evidence of behaviour that is consistent with using some of the proposed heuristics.47

We draw a distinction between our heuristics and those developed in the optimization litera-48

ture, where the problem above has been extensively studied for decades, either in its interaction-49

free version as the standard knapsack problem or, with some restrictions (value interactions50

involving pairs of projects only) as the quadratic knapsack problem. Exact algorithms (pseudo-51

polynomial in the standard case), efficient approximations, and numerous computational heuris-52

tics have been developed for both problems (Pisinger, 2007). These require all interactions to be53

assessed upfront and their goal is to limit the amount of computation time required to solve the54

problem. This is important when the number of projects is very large, but less relevant when55

projects number in the tens or hundreds, as is typically the case for portfolio problems in which56

decision support is provided (see e.g. applications reported in Salo et al. (2011)). In these cases57

using a computational heuristic is inappropriate – if all interactions can be assessed then an exact58

method should be used. The heuristics we propose address a different kind of time- and effort-59
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saving to computational heuristics – time and effort in assessment – and are in the tradition of60

so-called fast and frugal heuristics (Gigerenzer et al., 1999) or psychological heuristics (Keller61

and Katsikopoulos, 2016), which use limited information and process this information in compu-62

tationally simple ways e.g. elimination-by-aspects Tversky (1972), take-the-best (Gigerenzer and63

Goldstein, 1996). These heuristics are typically not normative, but invoke bounded rationality64

arguments to argue for both potential prescriptive use (if environments in which cases good per-65

formance is obtained are known) and descriptive plausibility (Gigerenzer and Goldstein, 1996).66

Different heuristics may of course vary in the degree to which they emphasise prescriptive or67

descriptive aspects (Todd, 2007; Katsikopoulos et al., 2018).68

Our heuristics construct a portfolio by iteratively adding a project that is best in a greedy69

(i.e. locally optimal) sense. Sharing this common structure, we collectively call them the add-the-70

best family of heuristics. For example, in a computationally demanding version of add-the-best,71

the “best” project is the one whose selection leads to the largest immediate increase in portfolio72

value, including the value added by project interactions. In computationally simpler heuristics,73

a best project is again one which leads to the largest immediate increase in portfolio value, but74

this is now calculated without considering interactions. Add-the-best heuristics are conceptually75

closely related to single-cue heuristics that make decisions using a single piece of information;76

in cases where this single piece of information does not discriminate among the projects, the77

heuristic decides randomly (Hogarth and Karelaia, 2005).78

The primary goal of our paper is to extend fast and frugal heuristics, which have been ex-79

tensively studied in traditional choice problems, to portfolio decision making involving project80

interactions. We find that, in contrast to choice problems, where simple heuristics often perform81

unexpectedly well (e.g. Hogarth and Karelaia, 2005; Todd, 2007), it is much harder to strike82

a balance between frugal information use and good performance in portfolio problems. Our83

main contribution is to develop two heuristics called Added Value and Unit Value with Syn-84

ergy that achieve this balance, returning portfolios that are competitive with those obtained85

by exact methods while limiting the number of assessments to potentially manageable levels.86

These heuristics combine descriptive plausibility with effort-accuracy trade-offs that make them87

potentially attractive for prescriptive use in cases where complete assessement of interactions is88

not feasible.89
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2 Portfolio decision making90

Stummer and Heidenberger (2003) describe the formulation of the portfolio decision problem91

with interactions, whose goal is to decide which projects to select from a set of candidates92

{P1, . . . , PJ}, so as to maximize the overall value of the portfolio subject to budget and any93

other constraints. Interactions between projects are modelled by defining interaction subsets94

Ak containing those projects making up interaction k = 1, . . . ,K. A set Ak is defined for each95

subset of projects whose total value or cost is not simply the sum of their individual values and96

costs. Overall portfolio value is given by97

V (z) = V (z1, . . . , zJ) =

J∑
j=1

bjzj +

K∑
k=1

Bkgk (1)

where bj is the individual value of project Pj if implemented on its own, zj = 1 if project Pj98

is selected (zj = 0 otherwise), Bk is the incremental change in value if all of the projects in99

interaction subset Ak are included in the portfolio, and gk = 1 if all projects in interaction100

subset Ak are selected (gk = 0 otherwise). This is to be maximized, subject to the budget101

constraint102

C(z) = C(z1, . . . , zJ) =

J∑
j=1

cjzj +

K∑
k=1

Ckgk ≤ ζ (2)

where cj is the individual cost of project Pj if implemented on its own, Ck is the incremental103

change in cost if all of the projects in interaction subset Ak are included, ζ is the total budget,104

and zj and gk are as defined previously. We restrict ourselves to cases where interactions are105

expressed as positive increases in value (Bk ≥ 0, Ck = 0,∀k). For convenience, we sometimes106

refer to the budget in relative terms, as a proportion of the sum of individual costs i.e. ζ/
∑J

j=1 cj .107

The problem above can be formulated as an integer linear program using auxiliary constraints108

to define the gk, and solved using standard techniques (Stummer and Heidenberger, 2003),109

provided that all interactions are known. Many extensions have been proposed to treat different110

kinds of interactions (Liesiö et al., 2007; Liesiö, 2014; Barbati et al., 2018; Cranmer et al., 2018;111

Vilkkumaa et al., 2018; Korotkov and Wu, 2020). These too require the complete enumeration112

of interactions in order to compute the optimal portfolio and so are not discussed further here.113

Methods are available for cases where the coefficients in (1) or (2) e.g. those capturing interaction114

values and costs, are imprecisely known. These either integrate out uncertainty to maximize115

some combination of expected value and risk (e.g. Hassanzadeh et al., 2014; Jang, 2019), or116
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identify sets of potentially optimal portfolios and provide robustness diagnostics on these, rather117

than select a single portfolio (e.g. Lourenco et al., 2012; Baker et al., 2020). All methods still118

require the assessment of all interactions, even though these can be imprecise.119

Heuristics (Tversky, 1972; Gigerenzer and Goldstein, 1996; Katsikopoulos, 2011) have been120

extensively studied for traditional (one-out-of-n) choice problems. Findings indicate with rea-121

sonable confidence that (a) psychologically plausible heuristics can offer outcomes that are com-122

petitive with theoretically optimal models under reasonably well-known conditions (Hogarth and123

Karelaia, 2005; Todd, 2007; Baucells et al., 2008; Buckmann and Şimşek, 2017; Katsikopoulos124

et al., 2018), (b) some of these conditions often occur in real-world contexts (Şimşek, 2013),125

and (c) decision makers use heuristics, particularly when time pressure or the cost of gathering126

information is high (Ford et al., 1989; Bröder and Newell, 2008).127

Very little equivalent work exists for portfolio problems (Fasolo et al., 2011; Schiffels et al.,128

2018), particularly for (a) and (b) above and even more so when project interactions are involved.129

Keisler (2004, 2008) implemented a portfolio heuristic that adds projects in order of their value-130

to-cost ratios (our Unit Value heuristic). The focus of the paper was on the value of gathering131

additional information about project values and costs when these were initially uncertain, so that132

heuristic performance (relative to an optimal solution) was not assessed. Interactions were also133

not included. A later working paper (Keisler, 2005) included interactions, but again focused on134

improvements in portfolio value achieved by gathering additional information (this time about135

the interactions themselves). All possible portfolios were enumerated, so no selection heuristics136

were used.137

The few behavioral studies to date have suggested that many decision makers use some138

form of heuristic reasoning when solving portfolio problems. When solving standard knapsack139

problems without interactions, untrained participants commonly selected projects by sorting on140

their value-to-cost ratios or, to a lesser extent, on their costs or value-to-cost differences (Schiffels141

et al., 2018; Pape et al., 2019), with evidence of multiple heuristic use over the course of the142

experiment (Schiffels et al., 2018) and a bias towards selecting low-cost projects (Pape et al.,143

2019). Phillips and Bana e Costa (2007) report that 23 out of 28 companies used judgments144

such as ranking projects by expected benefit and adding these until reaching a budget limit (our145

Highest Value heuristic) to prioritize drug development, a higher proportion than achieved by any146

mathematical model. Langholtz and colleagues show both novice and experts use heuristics that147

they group into “solve-and-schedule” and “consume-and-check” strategies to allocate resources148
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across projects (Langholtz et al., 1993, 1997; Ball et al., 1998; Langholtz et al., 2002). Solve-and-149

schedule strategies start by setting a total objective function value and then allocate resources150

across projects so that this value is achieved. Consume-and-check strategies make a sequence of151

related decisions about which resource to consume “next”, at each stage checking on remaining152

resources and constraint violations. In a key experiment participants decided how to allocate153

their time and money to consume a maximum number of meals of either restaurant or home-154

cooked “types”. A solve-and-schedule approach decides on the total number of meals and then155

searches for ways to allocate these between meal types without violating constraints, while156

consume-and-check asks only whether the next meal should be from a restaurant or home-157

cooked.158

These descriptive studies motivate and inform our work but tend to employ decision problems159

that support their aim of inferring descriptive detail, an aim quite different to our own. For160

example, Langholtz et al. (1997) use resource allocation problems where there are only two161

types of projects, people can consume many of each, and each project type shares the same162

benefit and cost values. This simplifies the context and makes solving to optimality possible163

(using graphical methods) even if it is unlikely. The problem we address involves selecting a best164

subset from a discrete set of projects, all of which differ in terms of benefits and costs. Each165

project can be selected once or not at all. Solve-and-schedule strategies are unlikely in contexts166

like these, because the “solve” step requires assessing a desired overall portfolio value from dozens167

of projects with different costs, benefits, and interactions. Adding projects sequentially, which168

is by definition a “consume-and-check” heuristic, would seem to be the rule (see also Rieskamp169

et al. (2003)). There is no simple mapping of consume-and-check heuristics to the heuristics we170

propose. Fasolo et al. (2011) point out that the resource allocation and best-subset selection171

formulations are only the same “where projects are associated with particular organisational172

subunits (i.e. projects can be partitioned into subsets of projects which ‘belong’ to particular173

subunits)”, which is not the case here. Finally, interactions are not considered, and all project174

information is known beforehand. In contrast our focus is on interactions, which individuals175

must assess as they go.176
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3 Proposed fast and frugal portfolio heuristics177

In this section we propose a family of fast and frugal heuristics for selecting portfolios. A178

numerical example illustrating each heuristic is given in Appendix A. The heuristics are frugal179

in that they do not use all of the available information, and fast because they integrate the180

information in simple ways to decide which project to include next, and when to stop. All181

except one uses a single well-defined criterion in adding projects to the portfolio, extending182

single-cue heuristics developed for simpler decision problems (such as choice and comparison)183

into the domain of portfolio selection problems.184

Our heuristics construct portfolios by sequentially adding projects, excluding those additions185

that would, if implemented, violate budget or other logical (e.g. project interaction) constraints1.186

We specify a stopping rule by which portfolio construction terminates after a user-specified num-187

ber of consecutive constraint violations. Note that setting this number suitably large guarantees188

an exhaustive search through the list of projects. We call the proposed family of heuristics189

Add-the-best.190

Add-the-best A family of heuristics for portfolio selection. Starting with an empty set of191

selected projects, at each stage the heuristics evaluate those projects not yet added to the192

portfolio. Evaluation is independent and over a single well-defined criterion. The project193

that has the highest value on this criterion is added to the portfolio provided its addition194

does not violate budget constraints. Ties are broken randomly. Individual heuristics in195

the family differ on the criterion they use in evaluating candidate projects. The process196

terminates after a user-specified consecutive violations of the budget constraint or when197

no projects remain to be considered.198

We first define three heuristics that do not use project interactions at all. While these199

heuristics may appear excessively simple, there is evidence that they are used in real-world200

portfolio decision making (Phillips and Bana e Costa, 2007; Schiffels et al., 2018) and they201

provide a useful starting point for our study by allowing us to measure the impact of ignoring202

interaction information on overall portfolio value.203

Highest Value Adds projects in descending order of their values.204

1Constraints on project combinations are most easily handled in this way i.e. as a veto, but it is also possible
to modify add-the-best heuristics so that, for example, if an already-included project is repeatedly involved in
interaction violations that prevent the addition of otherwise good projects, then that project is removed.
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Lowest Cost Adds projects in ascending order of their costs.205

Unit Value Adds projects in descending order of their value-to-cost ratios. Values are based206

on individual project values only.207

To these three heuristics we add a fourth that makes use of dominance relationships. In this208

case, the criterion for “best” is simply that the project is not dominated by any project that209

remains outside the portfolio (in the sense of having both a lower value and higher cost e.g.210

Lourenco et al. (2012)) .211

Pareto This heuristic adds a randomly chosen project provided it is within budget and does212

not have both a lower value and higher cost that any project not already in the portfolio.213

We base dominance assessments on individual values and costs only, although other informa-214

tion could also be used. For example, dominance across multiple attributes is easily assessed and215

thus the heuristic extends easily to a multi-attribute context. Importantly, we consider domi-216

nance relations only between projects that are not already part of the portfolio. Our motivation217

is that while we do not want to add a project that is unambiguously worse than another can-218

didate project, portfolios may well be improved by the addition of projects that are dominated219

by one of the already selected projects. For example, in cases where a single project dominates220

all others we would still want to add further projects until the budget is reached. The Pareto221

heuristic can pick many different sets of projects because it involves, at each step, a random222

selection from the set of non-dominated candidates.223

The four heuristics above ignore all information about project interactions. Our next heuris-224

tic uses binary information indicating whether a project is involved in any positive interaction,225

without evaluating the number or magnitude of these interactions, and uses this information to226

preferentially select projects that are involved in positive interactions. This provides a bridge227

to heuristics that make use of the magnitude of project interactions.228

Unit value with Synergy Identifies all projects that are involved in at least one positive229

interaction. Adds projects from this set using the Unit Value heuristic i.e. in descending230

order of their value-to-cost ratios, with values based on individual project values only.231

Once this set has been exhausted, adds projects from outside the set, again using Unit232

Value.233
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Our remaining heuristics make use of quantitative information about interactions between234

projects. These remain greedy (projects are added to the portfolio one at a time) and naive (el-235

igible projects are evaluated independently), and differ from one another depending on whether236

they consider all interaction subsets or restrict themselves to a subset of the interactions. We237

first consider a heuristic that uses all interactions:238

Added Value This heuristic adds the project whose selection would lead to the largest increase239

in overall portfolio value per unit cost. The incremental benefit includes the individual240

value of the project, as well as the value of all interaction subsets that would be completed241

if the project were to be added.242

At each step, Added Value must search over all interaction subsets that are not already active,243

each time assessing whether adding a particular project would complete any of the interaction244

subsets. More frugal heuristics do not search all interaction sets, but only those that fulfill245

some additional criteria. We list three such heuristics below – although only the first has an246

intuitive appeal, the others allow us to examine the sensitivity of heuristics to how the shortlist247

of interaction subsets is constructed.248

Added Value Most This heuristic only considers interaction subsets that involve the project249

that currently contributes the most to portfolio value. When assessing which project250

contributes most, the contribution of each project already in the portfolio is defined as the251

decrease in portfolio value that would be experienced if the project was removed. This252

includes the marginal value of the project as well as the value of any complete interaction253

subsets the project belongs to. The incremental benefit of a project not already in the254

portfolio is the sum of its individual value and the value of any interaction subsets involving255

the most valuable project that would be completed by the addition of the project to the256

portfolio.257

Added Value Least This heuristic is defined as Added Value Most except that it considers258

only interaction subsets that involve the project that currently contributes the least to259

portfolio value.260

Added Value Random This heuristic randomly chooses one of the projects already in the261

portfolio and considers only the interaction subsets that involve this project.262
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4 Analytical results on information requirements263

Exact methods require the assessment of all m-way interactions up to order M . Assuming that264

M is somehow known, this equates to
∑M

m=2

(
J
m

)
interactions. While many of these interactions265

could easily be ruled out by statements such as “project X does not interact with any other266

project”, the number of interactions provides a useful baseline for comparison with heuristics.267

How much information do the add-the-best heuristics use? Let P(s) denote the s-th project268

added, and J ∗s denote the set of J − s projects remaining in contention after s projects have269

been included. We call projects that have not yet been included in the portfolio ‘candidate’270

projects, and those that have been included ‘existing’ projects.271

The number of m-way interactions assessed by Added Value can be calculated as follows. No272

m-way interactions need be assessed until m − 1 projects are already in the portfolio. At step273

s ∈ {m− 1, . . . , J − 1} there are s projects in the portfolio and J − s candidates. The only new274

m-way interactions that need to be assessed involve (a) the most recently added project P(s), (b)275

a candidate project Pj ∈ J ∗s , and (c) m−2 other existing projects drawn from {P(1), . . . , P(s−1)}.276

All m-way interactions that do not involve the most recently added project will have already277

been assessed in previous iterations. There are J − s candidate projects and
(
s−1
m−2

)
ways of278

arranging the other existing projects in part (c); the number of assessments that Added Value279

needs to do is given by the product
(
s−1
m−2

)
(J − s).280

The Added Value Most heuristic assesses only a subset of these interactions; those that281

involve, at a particular step s, the project that contributes most to the portfolio at that time,282

called the “most valued project” or MVP. The number of new interactions to assess thus depends283

on whether or not the MVP has changed. Bounds are easily calculated – the upper bound,284

obtained when the MVP changes at every step, is the number of assessments Added Value285

needs; while the lower bound is obtained as
(
s−2
m−3

)
(J − s), for m ≥ 3 if the MVP never changes.286

The same bounds apply to Added Value Least and Added Value Random heuristics.287

The Added Value heuristic requires only a small fraction of the assessments required by a full288

optimization approach, provided that the constructed portfolio contains relatively few projects289

as a proportion of the total available (Figure 1). As the number of projects that can be selected290

is almost entirely a function of the available budget, this means that heuristics are relatively291

more frugal when budgets are limited. If the final portfolio contains 10 out of the 50 available292

projects, Added Value requires 445 (36%) of 1225 two-way, 1920 (10%) of 19600 three-way, 5010293
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(2%) of 230300 four-way, and 8652 (0.4%) of 2118760 five-way interactions. The more restrictive294

Added Value Most requires a minimum of 49 (4%) of 1225 two-way, 396 (2%) of 19600 three-way,295

1524 (0.7%) of 230300 four-way, and 3486 (0.2%) of 2118760 five-way interactions.296

The relative reduction from what is required by an optimal model is substantial, particularly297

with small budgets, but in absolute terms the number of assessments needed by Added Value298

remains large. Practical applications of the heuristic may depend on finding alternate ways299

of directly estimating the marginal increase in portfolio value, or else ignoring higher-order300

interactions.301

Figure 1: Cumulative number of m-way interactions that need to be assessed by the add-the-
best heuristics, expressed as a proportion of the total number of possible interactions for J = 50
projects and m ∈ {2, 3, 4, 5}. The grey shaded area indicates the lower and upper bounds of the
Added Value Most heuristic. The total number of interactions i.e.

(
50
m

)
) is indicated in the top

left corner of each panel). Note that full optimization of portfolio value requires all interactions
to be assessed.

The number of assessments required by the Unit Value with Synergy heuristic is difficult to302

specify analytically because it depends on the assessment process used. The heuristic requires303

only that projects that do not interact at all are removed from consideration. At best this304

requires at most J questions of the form “does this project have any interactions with any305

project (or combinations of projects)?” These assessments are of a kind that are not directly306

comparable with the assessments used by other heuristics. It is also unclear if and under what307

conditions decision makers can reliably answer these questions, an issue we revisit in Section308

7. At worst the heuristic requires the decision maker to assess whether each of the
∑M

m=2

(
J
m

)
309

possible interactions exist, which is certainly impossible. In reality this worst case is highly310

unlikely because establishing one interaction immediately makes many others redundant, but it311

is sufficient to demonstrate the challenges in establishing information requirements. Following312
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the removal of non-interacting projects the Unit Value with Synergy heuristic applies the Unit313

Value heuristic, which even over the full set of projects is extremely frugal, as are the other314

heuristics that ignore interactions, Highest Value, and Lowest Cost. However, as we show in the315

next section, applying any heuristics ignoring project interactions in an unknown context would316

seem to require accepting a very high probability of selecting a poor portfolio.317

5 Simulation-based comparison of heuristic and optimal portfo-318

lios319

In previous sections we proposed a number of fast and frugal heuristics for portfolio selection,320

and showed that these have relatively low information requirements. In this section we evaluate321

the ability of these heuristics to achieve overall portfolio values comparable with those obtained322

by optimal portfolios. Our simulation structure consists of (a) generating a number of projects323

and their individual values and costs, (b) creating interdependencies between the projects, (c)324

defining the incremental values and costs associated with each of the interaction subsets, (d)325

running optimal and fast and frugal portfolio selection models, and (e) comparing the values326

obtained from fast and frugal and optimal portfolios. Simulations were written and analyzed in327

R 3.6.0 using packages Rglpk (Theussl and Hornik, 2019) and ggplot2 (Wickham, 2016). All328

code and results are available at https://github.com/iandurbach/portfolio-heuristics.329

5.1 Simulation study design330

5.1.1 Generating individual values and costs331

The problem context is defined by the number of projects J , the individual values bj and costs332

cj associated with each project Pj , and the total budget ζ. We simulated problems involving333

J = 50 projects. Individual project values were generated to be either uniform (bj ∼ U [0.5, 5]),334

positively skewed (bj ∼ Gamma(0.5, 2)), or negatively skewed (b∗j ∼ Gamma(0.5, 2); bj =335

maxj b
∗
j − bj +0.1). Project costs were generated as cj = ajbj , where aj ∼ U [80, 120]; the scaling336

of aj relative to bj is unimportant, since we use only one benefit and cost attribute. Generating337

values and costs in this way means that value per unit cost are, on average, uncorrelated with338

value and weakly negatively correlated with cost (uniform: −0.2; skewed: −0.1). We varied the339

available budget ζ by choosing the proportion ζ/
∑J

j=1 cj to lie between 0.1 and 0.9 in increments340

of 0.1. Note that if ζ/
∑J

j=1 cj = 1 then all projects can be selected.341
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5.1.2 Creating interactions between projects342

In the following we describe two ways of constructing subsets of interacting projects, which we343

term random and nested respectively. Both start by selecting J+ ≤ J projects to create a set344

of projects J + from which interdependencies will be drawn. Projects are selected either with345

selection probabilities (a) equal across projects, (b) directly proportional to their value-to-cost346

ratio bj/cj , in which case projects that are individually better are more likely to be involved in347

positive interactions, (c) inversely proportional to bj/cj , in which case worse projects are more348

likely to be involved in interactions. This is a simulation parameter, with conditions (b) and (c)349

expected to help and hinder heuristics respectively.350

Random interactions have no structure linking lower- and higher-order interaction subsets.351

Each interaction subset is obtained by randomly sampling the required number of projects352

from J +, independent of any other interaction subset. With nested interactions, a low-order353

interaction subset (one containing relatively few projects) is generated by sampling the required354

number of projects from one of the already-generated higher-order interaction subsets, rather355

than from J +. For example, in our study we set J+ = 10 and generated two interaction subsets356

involving five projects, six subsets of four projects, eight subsets of three projects, and ten subsets357

of two projects. We begin by generating the two highest-order subsets by randomly selecting358

five projects from the ten in J +, twice. To generate each of the fourth-order interactions, we359

randomly select one of the fifth-order interaction subsets and randomly select four projects from360

this subset. To generate each third-order interaction we randomly select one of the fourth-order361

interaction subsets and randomly select three projects from this subset. We continue in this362

fashion until all interactions have been generated.363

5.1.3 Computing values and costs of interactions364

Our study employs only positive interactions expressed through increases in benefits if certain365

combinations of projects are selected. We set the incremental benefit of completing interaction366

subset A+
k to be a proportion γ of the sum of the values of projects in A+

k i.e. Bk = γ
∑

j∈A+
k
bj ,367

with γ ∈ {0, 0.5, 1} a parameter of the simulation. Higher-value projects thus result in interac-368

tions with higher absolute values, although as these projects also tend to cost more lower-value369

projects may still be preferred per unit cost. We chose values of γ so that interactions contribute370

a substantial proportion of the overall value of the optimal portfolio, on a trial-and-error basis.371

With γ = 0.5, interactions contribute on average between 22% (at high budgets, ζ = 0.9
∑J

j=1 cj)372
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and 48% (ζ = 0.1
∑J

j=1 cj) of overall portfolio value. With γ = 1 these percentages rise to 36%373

and 65% respectively. Our motivation here is to avoid making overly favourable claims for those374

heuristics that ignore interactions between projects.375

5.1.4 Running portfolio selection models376

The optimal portfolio is found by maximizing (1) subject to the budget constraint (2), using the377

approach in Stummer and Heidenberger (2003). We implemented all nine heuristics described378

in Section 3, stopping after receiving three budget violations. We also computed (a) the mean379

value over 100 random feasible portfolios, constructed by randomly adding one of the remaining380

projects subject to budget constraints, and (b) the value of the worst-case or ‘nadir” portfolio,381

obtained by minimizing the objective function in Section 1 subject to the same constraints plus382

an additional one that forces projects to be chosen until at least 95% of the budget ζ has been383

spent. Random portfolio construction can be considered fast and frugal, as it terminates in a384

small number of steps and requires little information, but it is also ‘dumb’, in the sense that it385

exploits no information about the projects themselves. It therefore seems a reasonable basis for386

judging the performance of any other heuristic. Values of the nadir portfolio are shown largely387

so that the reader can compare these with what is achieved with a random selection.388

5.1.5 Comparing results389

From each simulation run we obtain the value of the portfolio selected by each of the heuristics,390

as well as the value of the optimal portfolio. We show performance both in absolute terms, i.e.391

the values of the portfolios, and in a standardized form in which portfolio values are normalized392

relative to the optimal portfolio, which is assigned a value of 100.393

5.2 Results394

The Added Value and Unit Value with Synergy heuristics perform well across a range of simulated395

contexts, and offer close to optimal performance with moderate-or-larger budgets (Figure 2).396

Once the budget is 30% of total cost, the Added Value and Unit Value with Synergy heuristics397

achieves 85% and 80% of the available gains respectively. The good performance of the Unit398

Value with Synergy heuristic suggests that quantitative information is not strictly necessary for399

good performance – knowing only about the presence of interactions can improve performance400

substantially.401
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Figure 2: Mean values of portfolios selected by fast and frugal portfolio heuristics under different
budget constraints. Panel (a) shows heuristics that consider quantitative project interactions;
panel (b) shows heuristics that do not. Confidence intervals around these means are neglible
(smaller than the symbols used to plot the means). The grey polygon plots the envelope between
the value of the optimal portfolio and the mean value returned by a random selection of projects,
which we consider a useful lower bound for benchmarking performance. The dashed line denotes
the value of the nadir portfolio.

It is important that all interactions are assessed, as both Added Value and Unit Value with402

Synergy do. If not, performance worsens considerably. The set of heuristics Added Value Most,403

Added Value Least and Added Value Random offer large improvements over randomly selected404

portfolios but perform substantially worse than Added Value or Unit Value with Synergy. There405

are no material differences between the Added Value Random heuristic and the Added Value406

Most heuristic over the entire budget range, while as the budget increases the Added Value407

Least heuristic performs substantially worse than the other two. Of the second set of heuristics408

shown in Figure 2b, those that do not consider interactions between projects at all perform on409

the whole substantially worse, and cannot in general be recommended as selection strategies.410

The Highest Value heuristic performs worse than Unit Value and Lowest Cost because project411

values are highly correlated with project costs, so fewer projects are added before the budget412

is exceeded and interactions are less likely. The poor performance of Unit Value is determined413

by the magnitude of our simulated interactions, but remains poor even in the smaller of our414

conditions (Figure 3).415

The performance of Added Value and Unit Value with Synergy at very low budget levels416

(10% of total cost) is worse when interactions are nested than when they are random (Figure 4).417
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Figure 3: Relative performance of add-the-best variants for different project interaction magni-
tudes. Projects making up an interaction subset each have individual project values, and hence
a sum exists for the interaction subset. The γ parameter indicates the proportion of this sum
that is awarded when the entire interaction subset is selected.

Figure 4: Mean relative portfolio value as a function of how projects interact with one another,
for the best-performing fast and frugal portfolio heuristics. Plots in the bottom (top) row
indicate whether higher-order interactions are nested within lower-order ones, or are random.
Plots in different columns denote whether projects involved in interactions have high value-to-
cost ratios (i.e. are “good” projects), low value-to-cost ratios (“poor” projects), or whether the
selection is random.
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This difference is erased and indeed reversed by the time budget levels reach 20% of total costs,418

with differences remaining small as budgets increase further. Thus the improvement in these419

two heuristics as budgets are initially increased from very low levels is larger when interactions420

are nested.421

Both Added Value and Added Value Most perform better when interactions are constructed422

from “good” projects with high value-to-cost ratios than from relatively “poor” projects (Figure423

4). Differences between “good” and “poor” interaction conditions are larger at lower budgets for424

the Added Value heuristic, but are relatively constant over budget conditions for Added Value425

Most. For both heuristics the random case occupies an intermediate condition between “good”426

and “poor”.427

6 Behavioural study of portfolio decision making428

6.1 Task description429

We presented 75 participants with two versions of a simple portfolio selection task (the same430

one used in the numerical illustration in Appendix A). One version of the task was exactly431

the same as the example (Task 2); in the other version no project interactions were present432

(Task 1). Participants saw tasks in random order, were students from the African Institute of433

Mathematics and the University of the Western Cape, and were paid approximately $4 for their434

participation. Data collection errors occurred for two and one participants’ in Task 1 and 2435

respectively, leaving 73 and 74 participants respectively.436

The task was worded generically, with no reference to any particular application area, to437

avoid biasing responses. Participants were instructed to choose a subset of “projects” that438

would collectively give them as many “points” as possible, subject to the same budget of 7439

units. Participants were explicitly told that interactions existed between projects in some of440

the tasks, but were not told which projects were involved or the magnitude of the interactions441

– to do so would, in our opinion, bias responses and make the problem somewhat trivial. The442

decision problem thus involves an element of information gathering, because participants can443

only assess whether projects interact by selecting them, and in both tasks participants were444

allowed to remove or add projects. This has implications for analysis, which we discuss below.445

Tasks were performed individually on a computer using an R Shiny web application (Chang446

et al., 2020). The interface consisted of a set of checkboxes in which participants could add447
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or remove projects from their portfolios, and tables showing (a) individual project values and448

costs, (b) for each project not in the portfolio, the incremental change in portfolio value and449

cost that would result from its selection; (c) for each project in the portfolio, the incremental450

change in portfolio value and cost that would result from its deselection, (d) the current value451

and remaining budget of the currently selected portfolio. Part (a) is fixed but (b) – (d) depend452

on the current portfolio and are thus updated each time a project is selected or deselected.453

Each selection and deselection made by a respondent was recorded with an timestamp, and454

in this way it was possible to reconstruct the order in which projects were added or removed.455

When participants were satisfied with their chosen portfolio they clicked a button to submit456

their selection. The experimental interface was written in R 3.6.0 using shiny (Chang et al.,457

2020); results plots make use of packages ggplot2 (Wickham, 2016) and ggalluvial (Brunson,458

2020). All data and code used to set up the task and analyze responses are available at https:459

//github.com/iandurbach/portfolio-heuristics.460

6.2 Analysis461

The assessment of the use of heuristics empirically faces problems of identifiability. The same462

project can be selected by different heuristics, and a random selection may lead to the same463

selection as any heuristic. Furthermore, because participants were not told which projects had464

interactions, some selections and deselections will be made with the purpose of gathering this465

information. In the absence of a search cost, it is not clear how much searching participants466

“should” do. We therefore analyzed both the final submitted portfolios as well as the order467

in which projects where added or removed before the final submission. For each respondent,468

we linked each project addition to a set of potential heuristics i.e. heuristics that would have469

selected the same project as was added, from the heuristics Unit Value, Highest Value, Lowest470

Cost, and Added Value. This association took into account the state of the current portfolio i.e.471

the projects already selected. Each project addition was allocated a single “vote”; in cases where472

the added project was selected by more than one heuristic, the vote was shared evenly between473

those heuristics. If the selection was not compatible with any heuristics it was allocated to an474

“other” category. Over all participants, this gave the weighted proportion of all selections that475

were consistent with the use of a particular heuristic. We excluded the Unit Value with Synergy476

and Pareto heuristics from this analysis as our collected data does not allow us to infer whether477

participants restricted their choices to interacting and non-dominated projects respectively.478
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We compared these proportions to what might be expected under a null model in which479

projects are added and removed at random. We did this by simulating a hypothetical sample of480

participants (of the same size as the real sample), with the same distribution of project additions481

and removals as observed in the experiment. For each participant, we added projects at random482

until the budget was exceeded. We then removed the project whose selection led to the budget483

violation, as well as one further project selected at random. We repeated this procedure of484

adding and removing projects until the desired number of removals had been achieved. The485

next time the budget was exceeded we removed the offending project and selected the remaining486

projects as the final portfolio. Once the hypothetical sample had been constructed in this way487

we calculated the proportion of selections consistent with each heuristic, in the same way as done488

for the true sample. We repeated this process 2000 times to create a distribution of proportions489

associated with each heuristic, under the null “random selection” model.490

6.3 Results491

The majority of participants’ submitted portfolios that were consistent with portfolios selected492

by one of five major heuristics Highest Value, Lowest Cost, Unit Value, Unit Value with Synergy,493

or Added Value (Task 1: 55/73; Task 2: 61/74, see Table 1). In both tasks the most frequently494

selected portfolio consisted of {P1, P3, P5}, which was selected by the Unit Value heuristic and495

was one of three possible portfolios selected by the Highest Value heuristic. The Lowest Cost496

and Added Value portfolios were rarely selected. In Task 1, 51/73 participants selected one of497

the optimal portfolios; in the more difficult Task 2 this proportion fell to 16/74. The sum of498

additions and removals, which can be considered a measure of participant effort, was positively499

associated with decision quality in both tasks but was particularly strong in Task 2, where500

participants selecting the optimal portfolio {P1, P2, P3} made on average 17.6 selections and501

deselections, compared to the sample mean of 7.7 (Table 1).502

Of the 34 participants who chose portfolio {P1, P3, P5} in Task 2, the majority added projects503

in the same order as the Highest Value heuristic (5-3-1, 13/34 participants) or the Unit Value504

heuristic (5-1-3, 9/34 participants, see Table 2). Only 3 of the 16 participants who chose the505

optimal portfolio chose projects in the same order as predicted by Unit Value with Synergy506

(1-3-2), although no ordering was particularly popular. In Task 1 the most frequent ordering507

was not associated with any heuristic (1-3-5, 11/33 participants), with the second most frequent508

following the Highest Value heuristic (5-3-1, 10/33 heuristics). Other portfolios selected by the509
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Highest Value heuristic tended most often to have projects selected in the order dictated by the510

heuristic (Table 2).511

Heuristics
z supported n V (z) C(z) s̄a s̄r

Task 1 (no interactions):
135 uv,hv 33 8 6 4.4 1.4
235 hv 13 8 7 4.5 1.5
145 hv 5 8 7 6.2 3.4
124 – 5 4 7 3.8 0.8
125 lc 4 7 5 5.5 2.5

Task 2 (with interactions):
135 uv,hv 34 11 6 4.4 1.4
123 sy 16 13 6 10.2 7.4
235 hv 8 8 7 3.8 0.8
34 – 4 4 7 2.0 0.0
125 av,lc 3 10 5 4.3 1.3

Table 1: Properties of the most frequently chosen portfolios in each task condition. For each
portfolio z (shown using subscripts of selected projects) we show the number of participants
choosing that portfolio, n, the set of heuristics that select z (hv = Highest Value, lc = Lowest
Cost, uv = Unit Value, av = Added Value, sy = Unit Value with Synergy), portfolio value V (z)
and cost C(z), and the mean number of selections (project additions) and deselections (removals)
performed by participants during the experiment, s̄a and s̄r, the sum of which can be considered
a measure of effort. Optimal portfolios in each task are indicated in bold.

In both tasks the projects most frequently selected first were P5 or P1 (Task 1: P5, 29/73;512

P1, 25/73. Task 2: P5, 35/73; P1, 19/73, see Figure 5). Project P5 is selected first by either513

Highest Value or Unit Value heuristics, while P1 is selected by Lowest Cost. Regardless of which514

project was selected first the project most commonly added next was P3, which in Task 1 is the515

project selected by Unit Value and one of two projects selected by Highest Value. In Task 2 P3516

is also selected by Added Value if P1 is selected first (Task 1: 27/29; Task 2: 33/35). Subsequent517

additions are much more evenly distributed over projects as the choice becomes more heavily518

influenced by which projects are already in the portfolio. The most common initial additions519

are 1-3-5, 5-3-1 and 5-3-2 in Task 1 (10, 7 and 6 participants respectively, see Figure 5), and520

5-3-1, 5-1-3 and 1-3-5 in Task 2 (16, 8, and 8 participants respectively). As mentioned, 5-3-1521

and 5-3-2 are both consistent with the Highest Value heuristic, while 5-1-3 is consistent with522

Unit Value.523

The proportion of selections that were consistent with the Highest Value or Unit Value524

heuristics in Task 1, and with the Unit Value, Added Value, and Highest Value heuristics in525

Task 2, are very unlikely to arise from a random selection strategy (Task 1: p = 1/2000 and526

p < 1/2000 respectively; Task 2: p = 3/2000, p = 10/2000, p = 113/2000 respectively, see Figure527
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Task 1: no interactions Task 2: with interactions
z Order R1 Order R2 Order R3 z Order R1 Order R2 Order R3

135 1-3-5 (11) 5-3-1 (10) 3-5-1 (5) 135 5-3-1 (13) 5-1-3 (9) 1-3-5 (7)
235 5-3-2 (7) 5-2-3 (3) 2-3-5 (2) 123 3-1-2 (5) 1-2-3 (4) 1-3-2 (3)
145 5-4-1 (2) 4-5-1 (2) 5-1-4 (1) 235 5-3-2 (5) 3-5-2 (1) 2-3-5 (1)
124 1-2-4 (3) 2-1-4 (1) 4-1-2 (1) 34 4-3 (3) 3-4 (1)
125 5-2-1 (1) 1-5-2 (1) 2-5-1 (1) 125 2-5-1 (1) 1-2-5 (1) 5-1-2 (1)

Table 2: Selection order for projects appearing in the most frequently chosen portfolios. For
each portfolio z we show the order in which the projects making up the portofolio were added.
We show the three most popular orderings, which in most cases account for the majority of
participants. The number of participants using each sequence is shown in parentheses.

6). Similarly, a much lower proportion of selections could not be explained by any heuristics528

than would be expected if selections were made randomly (p < 1/2000, see the “Other” column529

of Figure 6). While variation from a random strategy is not a particularly stringent hurdle, in530

conjunction with our other results these provide some evidence that unassisted decision makers531

are employing at least some of the heuristics we propose in this study. We also examined532

consecutive selections and assessed the proportion of opportunities to complete an interaction533

subset that were taken. Participants were more likely to select a project that completed one of534

the two-project interactions i.e. 1-2, 1-3, in Task 2 than in Task 1, suggesting that interaction535

information was used (Task 1: 61/121 selections (50%), Task 2: 98/156 selections (63%), z = 2.1,536

p = 0.04). This proportion increased further to 73% (42/58) if the project was also the Added537

Value selection.538

7 Conclusions and further research539

Portfolio decisions are an important and increasingly studied class of decision problem, with540

optimization models developed for a variety of settings (e.g. Salo et al., 2011; Cranmer et al.,541

2018; Vilkkumaa et al., 2018). We see two gaps in this literature. Firstly, portfolio optimization542

typically means that one has to assess all project interactions. The effort involved in this can543

be considerable and, even in a prescriptive setting, it is reasonable that decision makers might544

want to limit this. There is currently relatively little guidance from portfolio decision analysis545

for how to do so. Secondly, relatively little is known about how people actually go about making546

portfolio decisions involving project interactions (Fasolo et al., 2011; Phillips and Bana e Costa,547

2007; Schiffels et al., 2018).548

Heuristics have played an important role in addressing these two issues in conventional549
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Figure 5: Visualizing the frequencies of the first three selections made. The height of a block
represents the number of participants who selected that project in a particular position (1st,
2nd, 3rd). The width of a stream between two projects represents the number of participants
who chose both projects in the respective positions traversed by the stream. The colour of a
stream denotes the first project chosen.

Figure 6: Proportion of project selections that were consistent with each heuristic (red vertical
lines). As at any stage in the process different heuristics can select the same project, these
proportions are of limited value on their own. We therefore compare each one against a dis-
tribution of proportions generated by a random selection heuristic (grey histograms; see text
for details). In cases where the same project is selected by different heuristics, that selection’s
“vote” is distributed evenly between those heuristics, and hence the proportion is a weighted
one
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one-out-of-n decisions (e.g. Tversky and Kahneman, 1974; Hogarth and Karelaia, 2005, 2006),550

and there is every reason to think that they may be useful for portfolio decision making too.551

Ours is not the first paper to study portfolio heuristics (Keisler, 2004, 2005, 2008; Schiffels552

et al., 2018), but we do propose a number of new heuristics, include the key issue of project553

interactions, and use a multi-method approach employing simulation, analytical results, and554

behavioral experiment. This provides a more detailed understanding of the potential benefits of555

heuristics in finding a balance between the effort required to assess all possible interactions and556

the value of the selected portfolio.557

Analytical results showed that heuristics require a small fraction of the assessments needed558

for exact methods. Nevertheless, the number of assessments can still be large, at least for the559

Added Value heuristic at most realistic problem settings. This is indicative of the complexity560

of portfolio decision making, and the poor performance of heuristics that ignore interactions561

show the price to be paid for more extreme frugality. Still, it is not entirely clear how “fast”562

the Added Value heuristic could be, if for example interactions must be constantly evaluated563

but are time-consuming to assess. The Unit Value with Synergy heuristic would appear to be564

more frugal and thus to offer a more intuitively attractive balance between assessment effort565

and portfolio value, although it is difficult to precisely specify its information requirements. The566

heuristic of course depends strongly on interactions between projects being positive. How best567

to incorporate negative and other forms of project interactions is a topic we leave to future568

research.569

Our simulation results showed that two heuristics, Added Value and Unit Value with Synergy570

provided outcomes that were competitive with theoretically optimal models under a fairly wide571

range of environmental conditions. Conclusions drawn from our simulations are, as with all572

simulations, heavily dependent on the ranges of assumed parameter values, but provide initial573

evidence that at least these two heuristics may provide trade-offs between assessment effort574

and portfolio value that could be viewed favourably by decision makers. The two heuristics575

performed best when interactions between projects were nested rather than random (except at576

very low budgets), and when positive interactions existed primarily between projects that were577

also individually good. These specify the conditions under which it would be ecologically rational578

(Gigerenzer et al., 1999) to use either heuristic and thus features that a future empirical study579

of real-world portfolio decisions might search for. The mostly extremely poor performance of all580

heuristics ignoring interactions, including the Pareto heuristic, is an important and somewhat581
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surprising negative result.582

Studying portfolio decision making in a laboratory context is difficult because the experi-583

menter is faced with a choice between making all project interactions known (in which case the584

key issue of interaction assessment is ignored, and responses likely biased) or not (in which case585

responses are a mixture of gathering information on interactions and statements of preference).586

Our choice was the latter, and we assessed results by examining the final portfolios selected and587

by comparing project additions to what would be expected under a random selection strategy.588

Our results showed that (a) participants tended to choose certain portfolios more often than589

would be expected by chance alone, and that these portfolios were the same as those selected by590

our Unit Value or Highest Value heuristics, (b) a greater-than-chance proportion of participants591

who chose these portfolios added the projects making up the portfolios in the same order as the592

two heuristics, and (c) the most popular initial selections of projects were also consistent with593

Unit Value or Highest Value heuristics. Our findings are in broad agreement with what Schiffels594

et al. (2018) found for portfolio problems without interactions – we also find common use of595

Unit Value (although not Lowest Cost) and substantial variability of heuristic use both between596

and within participants.597

Our core result is that psychologically plausible heuristics can select excellent portfolios598

using a fraction of the information required by optimal methods, but they must use at least599

some interaction information to do so. Crucially, it appears that a little interaction informa-600

tion goes a long way; in our simulated contexts it was more important to know which projects601

were involved in any positive interaction than to estimate the magnitude of those interactions.602

Our work suggests two possible modes for using portfolio heuristics in the broader context of603

a portfolio decision support system (Ghasemzadeh and Archer, 2000; Lourenco et al., 2012;604

Jang, 2019; Kreuzer et al., 2020). The first mode views portfolio heuristics as a drop-in replace-605

ment for more information-intensive optimization methods, appropriate for applications where606

time or other constraints make it impossible to assess the information required by optimization607

methods. Portfolio heuristics are computationally straightforward to implement and decision608

support facilitating the application of a particular heuristic follows more-or-less directly from609

the heuristic’s definition. Implementation of Unit Value with Synergy requires an initial step in610

which the set of candidate projects is pruned to include only those projects with any positive611

interactions, followed by a second step establishing the value-to-cost ratios of those projects,612

following which projects are added greedily. Implementation of Added Value requires the initial613
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assessment of individual projects’ values and costs, and ranking by their value-to-cost ratios.614

After each addition of a project to the portfolio, an assessment round is required to collect data615

on any interactions between the project just included and the remaining candidate projects,616

after which value-to-cost ratios of candidate projects can be updated and the next addition617

made. The second mode is to use portfolios selected by fast and frugal heuristics as a basis618

for comparison with portfolios selected by exact methods, where all interaction information is619

available. Decision support systems for portfolio decision making routinely include value-to-620

cost ratios, and include a comparison with portfolios constructed on a greedy basis from these621

data (e.g. PROBE, Lourenco et al., 2012). Fast and frugal heuristics augment these sources622

of comparative information and also allow one to estimate the value of assessing interaction623

information beyond that required by portfolio heuristics, in the manner of Keisler (2004, 2008).624

Our study suggests a number of promising avenues for further work: characterizing the fea-625

tures of real-world portfolio decisions, incorporating other kinds of interactions between projects,626

incorporating multiple attributes and uncertainties, and developing assessment procedures for627

Unit Value with Synergy. Given our results on the importance of project interactions, develop-628

ment of further heuristics is probably best aimed at heuristics that simplify interaction informa-629

tion in some way. Most of the heuristics considered in this paper are single-cue heuristics that630

use one piece of information to discriminate between options, but the good performance offered631

by our one multiple cue heuristic (Unit Value with Synergy, which lexicographically considers632

the potential for positive interaction and unit value) suggests that combining cues in imaginative633

ways may be a fruitful way to reduce information requirements.634
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levels in portfolio decision analysis. Omega, 78:192–204, 2018.649

M. Baucells, J. A. Carrasco, and R. M. Hogarth. Cumulative dominance and heuristic perfor-650

mance in binary multiattribute choice. Operations Research, 56(5):1289–1304, 2008.651
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A Numerical illustration of add-the-best heuristics762

Suppose that a decision maker must construct a portfolio from five projects P1–P5 with values763

and costs given in Table A.1. Positive interactions exist between the following subsets of projects:764

P1, P2, P3 (interaction subset A1); P2, P3, P4 (interaction subset A2); P1, P2 (interaction subset765

A3); P1, P3 (interaction subset A4). If all of the projects in any of these interaction subsets are766

selected, an additional value of B = 3 is added to the value of the portfolio. The decision maker767

has a budget of ζ = 7. The optimal solution is to select P1, P2, P3, which returns a portfolio768

value of 13 at a cost of 6.769

Unit Value Highest Value Lowest Cost
Criterion value at stage Criterion value at stage Criterion value at stage

bj cj 0 1 2 3 0 1 2 3 0 1 2 3
P1 1 1 1/1 1/1 – – 1 1 1 – 1 – – –
P2 1 2 1/2 1/2 1/2 1/2∗ 1 1 1∗ 1∗ 2 2 – –
P3 2 3 2/3 2/3 2/3 – 2 2 2∗ 2∗ 3 3 3 3∗

P4 2 4 1/2 1/2 1/2 1/2∗ 2 2 – – 4 4 4 4∗

P5 5 2 5/2 – – – 5 – – – 2 2 2 –
Selection P5 P1 P3 – P5 P4 P1 – P1 P2 P5 –

Table A.1: A numerical illustration of proposed fast and frugal portfolio heuristics ignoring
quantitative interaction information. Relevant columns show the information required by each
heuristic at each iteration i.e. as projects are sequentially added to the portfolio (project values,
costs, and the ratio between the two for Highest Value, Lowest Cost, and Unit Value respec-
tively). Projects that cannot be added due to budget constraints are indicated with an asterisk.

The Highest Value heuristic selects projects in decreasing order of value. In our example it770

first adds P5 and then picks randomly between P4 and P3. If P4 is chosen only P1 can be chosen771
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without exceeding the budget. If P3 is chosen after P5 then two units of budget remain and772

either P1 or P2 (which have the same value) can be chosen. Thus Highest Value can select any773

of the portfolios {P5, P4, P1}, {P5, P3, P2}, or {P5, P3, P1}, which have values 8, 8, and 11 and774

costs 7, 7, and 6, respectively.775

The Lowest Cost heuristic starts by selecting the cheapest project, P1. The next cheapest776

projects, P2 and P5, both have a cost of two and are thus added in either order. Adding any777

other project would exceed the budget so the final selection is {P1, P2, P5}, which has a value of778

10 and a cost of 5.779

The Unit Value heuristic sequentially adds projects P5, P1, and P3, after which the cost of780

both remaining projects exceeds the available budget. The selected portfolio has a total value781

of 11 (8 for the value of each of the projects plus the value of interaction A4) and a cost of 6.782

The Pareto heuristic involves a random selection from the set of non-dominated candidates783

at each step. Suppose the first candidate is P2. As it is dominated by P1, P2 is not chosen and784

a new candidate it randomly chosen. Suppose that P1 is now picked; it is non-dominated and785

thus selected. Suppose that P2 is again randomly selected as the next candidate. Although P2786

is dominated by P1, P1 is already in the portfolio and thus, because it is not dominated by any787

other candidate and is within budget, P2 would be selected. After selecting P2, P4 could not be788

accepted because it is dominated by P3 but P3 and P5 are equally likely to be selected in the789

next and final step. These portfolios have values of 13 and 10 and costs of 6 and 5, respectively.790

The Unit Value with Synergy heuristic first identifies any project that has a positive inter-791

action with another project – all projects except for P5. It then adds projects in this set using792

the Unit Value heuristic, that is by their individual value-to-cost ratios, and thus adds P1, P3,793

and P2 (since P4 would exceed the available budget). The selected portfolio is the optimal one.794

The Added Value heuristic first adds P5 and P1, which give the biggest increases in portfolio795

value per unit cost (there are no two-project interactions). After this there are two interaction796

subsets that may be completed by the addition of a new project: interaction subset A3 would be797

completed by adding P2 while interaction subset A4 would be completed by adding P3. Adding798

P2 increases portfolio value by 4 at a cost of 2 while adding P3 increases value by 5 at a cost799

of 3 (Table A.2). Thus P2 is selected. Adding any other candidate project would exceed the800

available budget of 7 and so the final selection is {P5, P1, P2}, giving a value of 10 at a cost of 5.801

Added Value Most, Added Value Least, and Added Value Random all begin by adding P5 and802

then, as P5 does not belong to any interaction subsets, P1. The three then diverge. Added Value803
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Added Value Added Value Most Added Value Least
Criterion value at stage Criterion value at stage Criterion value at stage

Proj bj cj 0 1 2 3 0 1 2 3 0 1 2 3
P1 1 1 1 1 – – 1 1 – – 1 1 – -
P2 1 2 1/2 1/2 2/1 – 1/2 1/2 1/2 1/2∗ 1/2 1/2 2/1 -
P3 2 3 2/3 2/3 5/3 8/3∗ 2/3 2/3 2/3 – 2/3 2/3 5/3 8/3∗

P4 2 4 1/2 1/2 1/2 1/2∗ 1/2 1/2 1/2 1/2∗ 1/2 1/2 1/2 1/2∗

P5 5 2 5/2 – – – 5/2 – – – 5/2 – - –
Selection P5 P1 P2 – P5 P1 P3 – P5 P1 P2 –

Table A.2: A numerical illustration of proposed fast and frugal portfolio heuristics making use
of quantitative interaction information. The table shows, at each decision stage, the criterion
value assigned by each heuristic to each of the eligible projects (i.e. the estimated increase in
portfolio value per unit cost as projects are sequentially added to the portfolio). Projects that
cannot be added due to budget constraints are indicated with a superscripted asterisk.

Most identifies the most valuable of the already included projects, which is P5. It therefore does804

not need to update the values of the remaining projects, since P5 has no possible interactions805

with any of them (see Table A.2). Thus the next project added is P3. Further selections exceed806

the budget, and the selected portfolio {P5, P1, P3} has a value of 11 and a cost of 6.807

Added Value Least considers only the interactions involving the least valuable project in808

the portfolio (P1). This makes project P2 and P3 more attractive because of the completable809

interaction sets A3 = {P1, P2} and A4 = {P1, P3}. Project P2 is selected next, after which no810

further projects are within budget. The final selection is {P5, P1, P2}, giving a value of 10 at a811

cost of 5. Updates to the value-cost ratios are shown in Table A.2.812

Added Value Random randomly chooses one of them: only interactions with the selected813

project will be considered in the next step. If P5 is chosen then the heuristic selects P3 next.814

It then randomly chooses between P5, P3, and P1, again only considering interactions with the815

selected project in the following step. Regardless of this choice, further selections exceed the816

budget, and the selected portfolio is {P5, P1, P3}. If P1 is randomly chosen in the first step then817

P2 is added at the next step and the heuristic terminates.818
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