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The extraordinary advancements in neuroscientific technology for brain record-
ings over the last decades have led to increasingly complex spatiotemporal data
sets. To reduce oversimplifications, new models have been developed to be able
to identify meaningful patterns and new insights within a highly demanding
data environment. To this extent, we propose a new model called parame-
ter clustering functional principal component analysis (PCl-fPCA) that merges
ideas from functional data analysis and Bayesian nonparametrics to obtain
a flexible and computationally feasible signal reconstruction and exploration
of spatiotemporal neuroscientific data. In particular, we use a Dirichlet pro-
cess Gaussian mixture model to cluster functional principal component scores
within the standard Bayesian functional PCA framework. This approach cap-
tures the spatial dependence structure among smoothed time series (curves) and
its interaction with the time domain without imposing a prior spatial structure
on the data. Moreover, by moving the mixture from data to functional prin-
cipal component scores, we obtain a more general clustering procedure, thus
allowing a higher level of intricate insight and understanding of the data. We
present results from a simulation study showing improvements in curve and
correlation reconstruction compared with different Bayesian and frequentist
fPCA models and we apply our method to functional magnetic resonance imag-
ing and electroencephalogram data analyses providing a rich exploration of the
spatiotemporal dependence in brain time series.
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1 INTRODUCTION

Several tools for the recording of different brain processes, such as functional magnetic resonance imaging (fMRI) and
electroencephalogram (EEG) produce remarkable amounts of spatiotemporal data which challenge researchers to find
suitable models for increasingly complex data sets. Consequently, the last decade has seen a marked increase in the
developmentof flexible methods for high-dimensional data in neuroscience. Functional data analysis (FDA) is a fairly
recent research field in statistics concerned with the analysis of data providing information about curves, shapes, and
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images which vary over a continuum, usually time or space (see Ramsay and Silverman1 for an overview). In the FDA
framework, data can be considered as noise-corrupted, discretized realizations of underlying smooth functions (curves
or trajectories) which are recovered using basis expansions and smoothing.2 Many standard statistical tools have been
translated into the FDA framework. Functional principal component analysis (fPCA) is a technique that defines a set
of smooth trajectories as an expansion of orthonormal bases (eigenfunctions) and weights which are called functional
principal component scores (fPC scores).1 One of the advantages of fPCA is that it can be conveniently represented as a
hierarchical mixed model in the Bayesian setting, with the joint posterior distribution of the fPC scores being the main
target of inference.3

There has been a growing interest in applying FDA to neuroscientific data (see, among others, Viviani et al,4 Tian
et al,5 and Hasenstab et al6). Often, in the FDA literature, underlying random curves are assumed to be independent and
their correlation is ignored if believed to be mild.7 However, curve dependence is of particular importance in the analysis
of brain activity because of the complex architecture of spatiotemporal connections between brain areas.8 Recently, Liu
et al7 considered spatial dependence among trajectories by modeling the covariance of the fPC scores within a frequentist
approach. Their results showed significant improvements in curve reconstruction compared with the standard approach
assuming independence, especially with low signal-to-noise ratios.

The present study introduces a new method for the analysis of functional data in neuroscience. We develop a novel
Bayesian fPCA model called parameter clustering fPCA (PCl-fPCA) that makes use of a Dirichlet process (DP) mixture9-11

to model the prior distribution of the fPC scores. Different functional mixture models that cluster functions through clus-
tering of the coefficients in a basis expansion have been proposed in the literature.12-19 However, these works have focused
on a global clustering of curves, without considering local differences as well as the possibility of a dynamic evolution of
dependence among curves. In this work we use the principal component bases due to their straightforward interpretation
and employ DP mixture priors for every eigendimension retained. By allowing different clustering of the fPC scores for
each eigendimension retained, we avoid the limitations of assuming separability of the cross-covariance and any a priori
spatial covariance structure of the data, obtaining further insights from space-time interactions. The study of how inter-
actions among brain regions change dynamically during an experiment (ie, dynamic functional connectivity) has recently
attracted wide interest in the neuroimaging literature. This analysis has the potential to improve our understanding of
how the brain works under both physiological and pathological conditions with recent studies focusing on the applica-
tion of dynamic functional connectivity to aging,20 schizophrenia,21 dementia, and Parkinson’s disease.22 This is a new
frontier for neuroscientific research and the development of suitable models able to capture the intricate spatiotempo-
ral dynamics in the data will lay the foundations for the progress in this area in coming years.23 In this regard, we show
that our approach has multiple advantages in the analysis of neuroscientific data as it offers further insights into the spa-
tiotemporal structure of the data as a result of dimension-specific curve classification; it improves curve reconstruction
thanks to the local borrowing of information compared with current fPCA approaches; and it can be defined as a simple
and computationally feasible hierarchical model which can be easily implemented in R.

The rest of the article is structured as follows: in Section 2 we overview the standard Bayesian fPCA model and intro-
duce our new method, along with computational details. Section 3 reports the setting and results of a simulation study
where we compare the performance of PCl-fPCA with standard Bayesian and frequentist fPCA approaches under differ-
ent data generating processes and noise levels. Section 4 addresses the application of our method to a resting-state fMRI
data set and a task-based EEG recording and we discuss the further insights obtained in the spatiotemporal structure of
the data and the underlying neurophysiological processes. Conclusions are discussed in Section 5.

2 METHODS

2.1 Bayesian functional PCA

The standard FDA model is given by

Yit = Xit + 𝜖it, (1)

where Y it denote the noise-corrupted, discretized, observed data for every spatially correlated region (trajectory)
i= 1, … , n and time point t = 1, … , T; Xit is the associated underlying random curve as a realization of an L2 stochastic
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process {Xt ∶ t ∈ [1,T] ⊆ } with mean 𝜇t and covariance function G(s, t); and 𝜖it the noise term with zero mean and
precision 𝜏.24

Functional PCA assumes that the covariance kernel G(s, t) of the process Xt can be represented by the Karhunen-Loève
expansion, such that

G(s, t) =
∞∑

k=1
𝜆k𝜙kt𝜙ks, s, t ∈ [1,T], (2)

Xit = 𝜇t +
∞∑

k=1
𝜉ik𝜙kt, i = 1, … ,n, (3)

where 𝜙kt are orthonormal eigenfunctions and 𝜆k are the associated eigenvalues. Then, each realization Xit can be repre-
sented by a linear combination of eigenfunctions 𝜙kt, which are usually assumed to be observed, and fPC scores 𝜉ik, which
are the main goal of inference. The reader is referred to chapter 8 of Ramsay and Silverman1 and the recent review of
Joliffe and Cadima25 for a more detailed presentation of functional PCA. Although the number of eigendimensions can
also be modeled with an appropriate distribution (see, eg, Suarez et al26), this considerably increases the computational
complexity of the model and thus in practice only K predetermined terms of the linear expansion are retained pertaining
to those that explain a sufficiently large part of the total variability in the data.27 Often the case 𝜇t = 0 is assumed and the
centered data Ỹ it are obtained by subtracting an estimate 𝜇̂t of the population average.3

The fPC scores 𝜉ik are given prior probability distributions in the Bayesian framework. The standard Bayesian fPCA
model3 assumes fPC scores to be independent draws from a univariate zero-centered normal distribution whose variance
is dependent on the eigendimension k. The most straightforward hierarchical representation of the standard Bayesian
fPCA model is

Ỹ it =
K∑

k=1
𝜉ik𝜙kt + 𝜖it,

𝜉ik|sk ∼ N(0, s−1
k ),

𝜖it|𝜏 ∼ N(0, 𝜏−1),
sk ∼ Γ(a, b),
𝜏 ∼ Γ(a′, b′), (4)

with a, a′, b, b′ usually set to low values (eg, 10−3). In this model the noise term is assumed to be Gaussian and indepen-
dent gamma priors are placed over the precision parameters because of their conjugacy property, permitting closed-form
conditional posterior distributions and the use of Gibbs sampling.

Recently, Liu et al7 proposed to capture spatial dependence through a suitable model for the covariance of fPC
scores. In particular, they defined Cov(𝜉ik, 𝜉i′k) as a function of the correlation coefficient 𝜌ii′k which they modeled
using the Matérn function family and estimated the corresponding parameters. This approach implies the a priori
definition of a covariance structure which depends on the distance between observations; such assumptions might not
be suitable for complex spatiotemporal phenomena such as brain activity where dependencies are the result of both
structural and functional neuronal pathways as well as task-specific characteristics. In this study, we overcome these
limitations to achieve a higher level of flexibility in the modeling of the spatiotemporal covariance of neuroscientific
data.

2.2 PCl-fPCA model

In this section we present the structure of the PCl-fPCA model and the features of this approach that improve the current
methods for functional PCA. The following hierarchical model defines the probability distribution generating observed
time series. We present and comment on each level separately.
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Level 1: As the standard Bayesian fPCA model in Equation (4), the distribution of the centered data given the
parameters of the underlying smooth function and the noise term is given by:

Ỹi|Xi, 𝜏 ∼ NT(Xi, 𝜏
−1I),

Xi =
K∑

k=1
𝜉ik𝝓k, (5)

where Ỹi, Xi, and 𝝓k are T-dimensional vectors and NT(Xi, 𝜏
−1I) denotes a multivariate Gaussian distribution with mean

Xi and variance-covariance matrix 𝜏−1I such that I denotes the T ×T identity matrix. As in Equation (4), the eigenfuctions
𝝓k are assumed to be observed and the parameter 𝜏 does not depend on i or t, that is, the noise is assumed to be constant
in both space and time, although other characterizations are possible.24 It follows that the likelihood function is given by

L(Ỹ|X, 𝜏) =
(

𝜏

2𝜋

)Tn∕2
exp

{
−𝜏

2

n∑
i=1

(Ỹi − Xi)′(Ỹi − Xi)

}
. (6)

Level 2: To encode fPC scores cluster membership we introduce a classification variable cik as a stochastic indicator that
identifies which latent class j in eigendimension k is associated with parameter 𝜉ik. Prior distributions of the fPC scores
𝜉ik, given the parameters of underlying clusters [(𝜇1k, s1k), … , (𝜇Jk, sJk)] and the classification variable cik, are given by

𝜉ik|cik, 𝜇1k, … , 𝜇Jk, s1k, … , sJk ∼ N(𝜇cik , s−1
cik
), (7)

where 𝜇cik=j and scik=j denote the mean and precision for the jth cluster in the kth eigendimension, respectively. Here we
use a J-dimensional mixture of Gaussian distributions, independently, for each retained eigendimension k= 1, … , K as
we permit different (independent) partitions of the fPC scores for each mode of variation. It is worth recalling that, in the
context of DP mixtures, J represents an upper bound on the number of fPC score clusters.28 In the rest of the article we
define J+k < J as the (data-driven) number of nonempty clusters in each eigendimension k.29

Level 3: Prior distributions for [(𝜇1k, s1k), … , (𝜇Jk, sJk)] and (c1k, … , cnk), given hyperparameters rk, 𝛽k and parameters
(p1k, … , pJk), are given by

c1k, … , cnk|p1k, … , pJk ∼ fC(p1k, … , pJk),
𝜇jk|r ∼ N(0, r−1

k ),
sjk|𝛽 ∼ Γ(1, 𝛽k), (8)

where f C denotes the categorical distribution which generalizes the Bernoulli random variable to J outcomes. Cluster
precision sjk can also be modeled using uniform distributions on the cluster standard deviation where 𝜎jk = 1∕

√
(sjk).30

Hyperparameters r and 𝛽 are often centered around empirical estimates in the literature;31 here, we take advantage of the
properties of fPCA decomposition to tune the higher hierarchical levels in our model around weakly informative prior
distributions. It follows from the Karhunen-Loève representation that, for any given i, 𝜉ik are uncorrelated fPC scores with
monotonically decreasing variance given by the eigenvalues 𝜆k;7 therefore, sensible functions of the empirical estimates
of the eigenvalues 𝜆̂k can be used to fix r and 𝛽 under the assumption that, for every eigendimension k, the position and
dispersion of a cluster are both functions of 𝜆̂k. We note that setting r = 1∕𝜆̂k and 𝛽 = 𝜆̂k worked well in our simulations
and application.

Levels 4 and 5: Prior distribution for (p1k, … , pJk), given hyperparameter 𝛼 and prior distribution for 𝛼 are given by

p′
jk|𝛼k ∼ Beta(1, 𝛼k),

p1k =
p′

1k∑J
j=1 p′

jk

; pjk =
p′

jk
∏

l<j(1 − plk)∑J
j=1 p′

jk

, j = 1, … , J,

𝛼k ∼ U[0,Qk], (9)
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where pjk follow the stick-breaking construction32 with parameter 𝛼k modeling the prior belief over the mixing propor-
tions p1k, … , pJk. The dispersion parameter 𝛼 is usually fixed or modeled with a prior distribution; here we used a uniform
distribution with sufficiently large Q.11,33-35

Different specifications of sjk and Q can be employed for k= 1 and k= 2, … , K to incorporate the knowledge that
the first eigendimension is more likely to capture global patterns in the data while the following dimensions are more
sensitive to local features. For example, in the first eigendimension one can use the gamma distribution for the cluster
precision in Equation (8) as it assigns more weights to large clusters than a uniform on the standard deviation which can
be used instead in the subsequent dimensions. We provide specific examples in Section 3.1 and the results of a sensitivity
analysis on Q, 𝛽, and s in the WebA section of the Supplementary Material file.

The model structure can be displayed with a direct acyclic graph (DAG) (Supplementary Material, WebB section,
Figure 1). As J approaches infinity the model corresponds to a DP mixture model10,11,33,34,36 with the difference that we
have placed here multiple independent mixtures over the prior distribution of the fPC scores. In practice we used the
truncated stick-breaking construction and tested the model with different commonly chosen values of J (J = 20, 30, and
50). The upper bound J should be chosen sufficiently large to ensure J+k < J in each eigendimension. Larger Js will nat-
urally impact on computations (eg, in our applications we observed the computational time of the model with J = 50 to
be ∼1.5 higher than with J = 20). All the conditional posteriors of this model (most of them available in closed form) are
provided in the Appendix. Markov chain Monte Carlo (MCMC) techniques are used to simulate from the joint posterior
distribution of all parameters given the data. Reconstruction of the smooth trajectories xit is made easy by its linear rela-
tionship with the model parameters 𝜉ik; thus it is possible to obtain the posterior distribution of the ith curve for every t
and at every MCMC iteration w,

x(w)
it = xt +

K∑
k=1

𝜉
(w)
ik 𝜙kt, i = 1, … ,n; t = 1, … ,T, w = 1, … ,W , (10)

where xt is the smoothed estimate of the sample mean
∑n

i=1 yit∕n. It follows that symmetric 95% pointwise credible inter-
vals for each trajectory-specific mean can be obtained easily from Equation (10) by considering the (1 − 𝛼)∕2 and 𝛼∕2
quantiles of the {x(1)it , … , x(W)

it } empirical distribution.

2.3 Clustering

In this section we focus on the clustering of fPC scores. The discrete nature of the DP is very useful for clustering as it
allows ties among the latent cik;37 therefore, DP mixtures implicitly return classification through the allocation of each fPC
score to a generating distribution with some probability. Clustering uncertainty can be evaluated at different levels such
as the number of clusters, the size of each cluster, and the fPC scores assigned to them. For the explorative purpose of our
model we avoid the use of automated algorithms to select a final partition of the fPC scores (either classical hierarchical
or partitioning algorithms based on the similarity matrix34 or more recently proposed algorithms based on a loss function
over clusterings38). Instead, we propose a three-step exploration of the empirical distribution of generated clusterings
which we find useful to evaluate clusters uncertainty arising from the data. After burn-in, the empirical distribution of
generated clusterings {c(1)k , … , c(W)

k } can be considered a good approximation of the true posterior distribution10 and
it can be used to obtain other distributions of interest, such as the number and size of nonempty clusters, maximum
a posteriori probabilities (MAPs), and pairwise probability matrices (PPMs). We make use of these distributions in a
three-step exploration.

Step 1: The distribution of the number of nonempty clusters J+k can be obtained by exploring the values of the classifi-
cation variable ck for all the W iterations retained after burn-in (J+,wk = maxj{cw

k }). Although considering the number of
nonempty clusters J+k does not account for size and stability (ie, the number of times a cluster appears in the MCMC chain),
the distribution of J+k provides a useful first check for assessing the presence of more than one cluster in each eigendi-
mension. For this purpose, we used the Bayes factor (BF) defined as {P𝜋(J+k = 1)∕P𝜋(J+k > 1)} × {P(J+k > 1)∕P(J+k = 1)}
where P𝜋(J+k = j) denote posterior probabilities and P(J+k = j) is the relative prior probabilities which can be obtained by
simulating from the prior distribution of ck. A BF greater than 1 suggests absence of clusters in the fPC scores of a specific
eigendimension; hence, this step identifies those eigendimensions where clusters are more likely to exist in the data.
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Step 2: The distribution of the cluster size can be obtained by counting for each iteration w the number of fPC scores
allocated to the same label

(∑n
i=1 I(c(w)

ik = j), ∀j ∈ [1, J+k ]
)

or by monitoring the posterior distribution of the mixing pro-
portions pjk. Although there is no guarantee that fPC scores joining a cluster remain loyal to it, the size of clusters permits
the identification of clusters which are populated only sporadically as a result of the uncertainty in the classification of
subsets of fPC scores. The distribution of these clusters has typically a notable probability mass at zero. Therefore, this
second step can help understand the number and dimension of clusters we expect to see in each eigendimension and
the relative uncertainty. Step 3: Finally, MAPs and PPMs can help refine our understanding of the underlying clustering.
MAPs are commonly used to identify the most probable clustering for each observation and they can be computed by
identifying for each fPC score the posterior mode of cik from the empirical distribution of generated clusterings. MAPs are
known to be limited by the possible presence of multiple modes and cases where individuals who share the same modal
group are less frequently together than with others in different clusters. These issues can be addressed by the PPMs which
represent the posterior belief for all pairs of curves to belong to the same cluster regardless of the clustering label.33,34,36

For each iteration w, an n×n association matrix 𝛿(ck) can be obtained with indicators 𝛿ii′ (ck) which takes value 1 if fPC
score i and i′ in eigendimension k are clustered together and 0 otherwise. Elementwise averaging over all these associa-
tion matrices yields the PPM. Combining the exploration of MAP and pairwise probabilities can narrow down a decision
on the most likely partition of the fPC scores.

Although we find limitations for each of these steps individually to draw robust conclusions, considering them
together as a whole provides rich information on the (a posteriori) most likely partition for each eigendimension. Partic-
ularly in the case of complex phenomena, such as those captured by neuroscientific recordings, a thorough exploration of
cluster uncertainty in the data should be always considered to ensure a sensible interpretation of the results. We present
an application of these analyses to fMRI and EEG data in Section 4. In a Bayesian mixture model where cluster identi-
fication is of interest, extra care should be taken to avoid label switching arising from the symmetry in the likelihood of
model parameters. This can be avoided either by imposing identifiability constraints on the parameter space or by employ-
ing relabeling algorithms. In our simulation study and applications we found that imposing constraints on the order of
cluster means (𝜇1k <, … , < 𝜇Jk) or weights (p1k < , … ,< pJk) was enough to successfully control label switching.

2.4 fPC score clustering as generalization of standard clustering

In the standard infinite mixture model based clustering, the indicators ci = ci′ = j with i≠ i′ would associate a couple of
trajectories to a certain cluster j with probability Pii′ . On the other hand, by placing infinite mixtures over the fPC scores
for every eigendimension retained, we allow for a more complex network of dependence among curves. In our model,
cik and ci′k would associate fPC scores i and i′ to potentially different clusters in every eigendimension k with probability
Pii′k. It follows that a pair of curves could happen to share the same cluster in only part of the K eigendimension retained,
expanding the standard model based clustering to a richer classification method. Furthermore, as each dimension repre-
sents a mode of variation (eigenfunction) and its importance (eigenvalue), our method offers additional insights into the
underlying spatiotemporal structure of the data. In the following sections we show how clustering fPC scores produces a
rich spatiotemporal exploration of complex neuroscientific data.

3 SIMULATION STUDY

3.1 Simulation scenarios

We performed a simulation study to assess the performance of PCl-fPCA model and compare it to the standard Bayesian
fPCA model in terms of both curve reconstruction and classification for different data generating processes and noise
levels. We also included for comparison two frequentist approaches: the standard fPCA model1 and a modified version
of the model by Liu et al7 that we adapted to the features of neuroscientific data. In this latter model, curve dependence
is captured through the fPC scores by means of independent Matérn functions for each eigendimension retained.

In order to test model performance with simulated data matching those of the targeted neuroscientific applications as
closely as possible, we generated two eigenfunctions from simulated data resembling evoked responses in the brain using
the function pca.fd from the fda package in R.39 Subsequently, we defined three data generating processes (DGP) that
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F I G U R E 1 Simulation study:
(Top) an example of curves from DGP1
with low random noise (STN6) and high
random noise (STN1). (Bottom) the first
and second eigenfunctions extracted
from a set of DGP1 curves with STN6.
This figure appears in color in the
electronic version of this article [Colour
figure can be viewed at
wileyonlinelibrary.com]
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differ in the way the fPC scores are generated: in the first DGP (DGP1), scores are generated from different mixtures of
Gaussian distributions in the two eigendimensions considered; in the second DGP (DGP2), fPC scores dependence in
the first eigendimension is generated from a Matérn function, while in the third DGP (DGP3), dependence of fPC scores
is generated by independent Matérn covariance functions with different parameter values in each eigendimension. For
each DGP, we combined the two eigenfunctions with the fPC scores to build the simulated data sets. We applied a random
Gaussian noise and tested the models with both high and low signal-to-noise ratios (STN = 6 and 1, respectively). Figure 1
shows an example from the set of 100 generated curves in DGP1 where either a low or high random noise is added.

One hundred data sets (L= 100) for each DGP and STN were input to fPCA first for curve smoothing using cubic
B-splines and dimension reduction by estimating the respective eigenvalues and eigenfunctions using the function
pca.fd from the fda package in R.39 We retained a number of dimensions K explaining at least 95% of the total vari-
ability in curves. Figure 1 shows eigenfunctions and their weights extracted after smoothing a set of low-noise curves for
the first DGP.

We adapted the general model presented in Section 2.2 to the specific simulation analysis using eigenvalues 𝜆k and
their properties to develop vaguely informative prior distributions for the parameters r, 𝛽, and Q (Equations (8) and (9))
in the two eigendimensions retained k= 1, 2. We set r ∈ {1∕𝜆̂1, 1∕𝜆̂2} and Q ∈ {10, 5} as well as setting sj,1 ∼ Γ(1, 𝜆1) and
𝜎j2 ∼ U[0,

√
𝜆2]. The use of a uniform distribution in the second dimension favors the search of smaller clusters than

in the first eigendimension, as increasingly local features should be expected in trailing modes of variation.7 We made
sure that even the smallest upper bound Q of the dispersion parameter 𝛼 distribution represented an expected number of
clusters a priori far higher than the ground truth.40,41 A similar choice for 𝛼 was specified by De Iorio et al35 due to the
resulting stable computations.

We coded the model in R using the rjags package,42 and employed a conservative approach using 100 000 iterations
for the burn-in and retaining the subsequent 100 000 MCMC iterations.33,43 The convergence diagnostics did not suggest
lack of convergence for all the parameters of interest. We used a thinning of five to store results from 100 simulated data
sets efficiently (approximately 70 MB each with K = 2). It takes 36 minutes on average to complete one simulation run on
a 2-core Intel CPU running at 2.7 GHz with 8 GB RAM.

We used integrated mean squared error (IMSE) to measure and compare reconstruction performance between
PCl-fPCA model and the competitor models. IMSE and its associated approximation for every curve i are given by

IMSEi = E
{
∫ (x̂it − xit)2dt

}
≈ 1

L

L∑
l=1

{
1
T

T∑
t=1

(x̂ilt − xit)2

}
, (11)

where the expectation is taken with respect to the underlying curve xi. The IMSE is a useful measure of performance
in density estimation and is frequently used in curve reconstruction.44,45 In addition, as curves correlation 𝜌ii′ is often
of interest in neuroscientific applications (eg, for measuring the degree of functional connectivity between brain areas),
we measured correlations reconstruction using the L2 norm ||𝜌̂ii′ − 𝜌ii′ ||2 and compared it with those of the competitor
models.

http://wileyonlinelibrary.com
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F I G U R E 2 Simulation study: curve and correlation reconstruction for data generating processes (DGP) 1 and 2 with high noise
(STN1). IMSE and RMSE improvement percentage using PCl-fPCA model versus standard Bayesian fPCA (BfPCA), fPCA model for
correlated curves (Matérn), and standard fPCA model (fPCA). This figure appears in color in the electronic version of this article [Colour
figure can be viewed at wileyonlinelibrary.com]

In order to assess the proposed model clustering performance in DGP1, we adopted the Adjusted Rand Index
(ARI) to quantify the similarity between the estimated partitions (using MAP) and the ground truth for every simu-
lated data set l and eigendimension k. The ARI is commonly used in the literature to assess clustering performance
as it varies between exact partition agreement (1) and when partitions agree no more than is expected by chance
(0).36,46 Moreover, we measured the improvement in distance (L2 norm) between the posterior pairwise probability
matrices and the ground truth to evaluate the clustering performance of PCl-fPCA model by taking into account
cluster uncertainty. Further details on the simulations setting can be found in WebC section of the Supplementary
Material.

3.2 Simulation results

Results of curve and correlation reconstruction are reported in Figure 2. The case where STN = 1 is particularly relevant
because neuroscientific data are usually affected by high noise. In this scenario, PCl-fPCA model highly improved curve
reconstruction compared to all competitor models as 100% of the true curves were better recovered under PCl-fPCA and
the median improvement in IMSE ranged from 22% to 45%. Moreover, a similar improvement was also obtained for DGP2
where clustering is present in only one eigendimension (Figure 2, bottom left). In addition, correlation reconstruction
was also better achieved under PCl-fPCA with a median percentage of improvement ranging from 20% to 30% for DGP1
and 2% to 8% for DGP2 (Figure 2, right column). In the case of low noise (STN6), the proposed model still performed
better than the competitors for DGP1 and achieved values of IMSE and RMSE similar to those of the best competitor
models in DGP2 (Supplementary Material, WebB, Figure 2). Interestingly, even when no clusters are expected in both
eigendimensions (DGP3), the performance of the PCl-fPCA was still comparable to the best ones achieved by competitor
models for both low and high noise levels (Supplementary Material, WebB, Figure 3).

The performance of the PCl-fPCA model in terms of classification is reported in Table 1. The proposed model scored
high in the ARI classification index in both eigendimensions studied; two and three clusters were expected in the first
and second dimension, respectively, in DGP1. Clusters in the first eigendimension were always correctly identified by
ARI for both high and low signal to noise ratios. The identification of three clusters in the second eigendimension was
more challenging as they were smaller and nearer to each other; however, scores near 1 were almost always obtained
when the low noise scenario was tested and even in the case of high noise we observed fairly high scores. Similar results
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F I G U R E 3 fMRI data analysis: cluster identification. The first row shows the posterior probabilities of being empty for the second to
tenth clusters in the three eigendimensions (Dim 1:3) analyzed. The second row shows the posterior distributions of cluster size (given it is
not empty) among the first four clusters (Cl1:Cl4, right to left). This figure appears in color in the electronic version of this article [Colour
figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Simulation study: clustering performance of PCl-fPCA in DGP1 Eigendimension ARI

STN = 1

First dim 1 [1,1]

Second dim 0.753 [0.444,0.868]

STN = 6

First dim 1 [1,1]

Second dim 0.966 [0.933,0.966]

Note: The table reports median and interquartile range
of ARI computed for each simulated data set and every
STN and eigendimension analyzed.

were achieved by measuring the improvement in distance (L2 norm) between the posterior pairwise probability matri-
ces and the ground truth to account for cluster uncertainty in the classification performance (Supplementary Material,
WebC, Table 3).

Figure 4 in section WebB of the Supplementary Material provides evidence of the improved level of informa-
tion achieved by PCl-fPCA in the DGP1 scenario. Overall, PCl-fPCA model outperformed the competitors in curve
reconstruction under different data generating processes, especially in the case of high noise in the data; more-
over, for the case where clusters are not limited to one eigendimension, the proposed model was able to retrieve

http://wileyonlinelibrary.com


176 MARGARITELLA et al.

Pairwise probability matrix

0.0

0.2

0.4

0.6

0.8

1.0

−20

0

20

0 10 20 30
Time

Cluster 2 (1st dim) F I G U R E 4 fMRI data analysis:
cluster identification with pairwise
probabilities. Top-left: pairwise
probabilities suggesting a tripartition of
curves in the first eigendimension.
Top-right: cluster 2 updated according to
the partition suggested by pairwise
probabilities. The thick line represents the
cluster mean. Bottom: the 3-D
representation of clusters 2 and 3 over
sagittal and axial slices of the human brain,
where yellow (light) dots represent
locations in cluster 2 and blue (dark) dots
those in cluster 3. This figure appears in
color in the electronic version of this
article [Colour figure can be viewed at
wileyonlinelibrary.com]

the original spatial partition in each eigendimension and bring to light important relationships between clus-
ters. These results could further help the understanding of underlying neuroscientific phenomena in a real data
scenario.

4 APPLICATION

In this section we present two applications of the PCl-fPCA model to the analysis of neuroscientific data from fMRI and
EEG recordings. In Sections 4.1 and 4.2, the PCl-fPCA model is used to explore underlying brain patterns arising from a
short-time window fMRI recording of a healthy subject at rest. In the emerging field of dynamic functional connectivity,
the analysis of the evolution of brain patterns within a short-time window is of particular interest as it could uncover
transient configurations of coordinated brain activity.47 The aim of the present fMRI analysis is to verify whether the
results obtained on a short-time window recording (1 minute) are in line with the current knowledge on brain resting-state
networks obtained from static functional connectivity studies where results are typically averaged over 5 to15 minutes
recordings. In Sections 4.3 and 4.4 the PCl-fPCA model is used for artifacts identification in the EEG recording of a healthy
subject under a two-stimuli paradigm (match vs unmatch images). The presence of artifacts originating from sources
different from the brain and contaminating brain signals is a well-known problem in EEG recordings and an active area
of research in neurophysiology.48 The aim of the present EEG analysis is to check whether the fPC-PCA model can be
successfully used to identify the spatiotemporal features of different artifacts and the location of the relative affected brain
areas.

4.1 fMRI setting

The study relates to a 30-year-old healthy woman volunteer who underwent a resting-state fMRI at the Department of
Radiology, Scientific Institute Santa Maria Nascente, Don Gnocchi Foundation (Milan, Italy) during February 2015. The
recording was carried out using a 1.5 T Siemens Magnetom Avanto (Erlangen, Germany) MRI scanner with eight-channel
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head coil. The subject was asked to lie down in the MRI machine in supine position with eyes closed while blood oxy-
genation level dependent echo planar imaging (BOLD EPI) images were acquired. She was instructed to keep alert and
relaxed; no specific mental task was requested.

High-resolution T1-weighted 3D scans were also collected to be employed as anatomical references for fMRI data
analysis. Standard preprocessing involved the following steps: motion and EPI distortion corrections, nonbrain tissues
removal, high-pass temporal filtering (cut-off 0.01 Hz), and artifacts removal using the FMRIB ICA-based Xnoiseifier
(FIX) toolbox.49 After the preprocessing, the resulting 4D data set was aligned to the subject’s high-resolution T1-weighted
image, registered to MNI152 standard space and resampled to 2× 2× 2 mm3 resolution. One minute length series (sam-
pled at 0.5 Hz) were extracted as the average signal within each of 90 regions of interest (ROIs) according to the automated
anatomical labeling (AAL90) coordinates. The resulting 30× 90 data set was input to fPCA for curve smoothing and
dimension reduction using the pca.fd function from the fda package in R.39 The set of 90 smooth curves and the
retained eigendimensions are shown in Figure 5 of Supplementary Material WebB. We kept the first three dimensions
explaining more than 85% of the total variability while accounting for more than 10% each.

We adapted the general model in Section 2.2 following the approach taken in the simulation study (Section 3.1), favor-
ing global patterns in the first eigendimension and local patterns in the remaining dimensions. We assessed convergence
using trace plots and BGR diagnostics and the number of independent retained samples by computing the effective sam-
ple size (WebD, Supplementary Material). We employed the same computational approach described in Section 3.1 and
it took 59 minutes to run the analysis with K = 3 on a 2-core Intel CPU running at 2.7 GHz with 8 GB RAM. Furthermore,
we carried out a sensitivity analysis by varying the values of the hyperparameters 𝛽,Q and the distribution of s in each
dimension (WebA, Supplementary Material).

4.2 fMRI analysis results

The posterior probabilities associated with the single cluster (ie, no clusters) scenario were 0.012, 0.124, and 0.058 for
the three eigendimensions k, respectively. The Bayes factors for the first eigendimension was 0.53, which indicates some
evidence against no clusters. Conversely, the second and third dimensions returned BF= 2.93 and 1.33, respectively, which
can be interpreted as evidence in favor of a single cluster. It is worth noting that, as the implied prior probabilities were
highly in support of multiple clusters, the BF for k= 2 and 3 show a diametrical change from prior to posterior belief.
These results are also confirmed by a BF sensitivity analysis which is reported in the Supplementary Material (WebA).

Figure 3 shows the posterior probability for a cluster being empty and the posterior distributions of cluster size given
it is not empty. Two to three clusters seem to emerge in dimension 1; the size of the second cluster (Cl2, second from
the right in Figure 3, bottom-left panel) has a peak around 20%, very small mass near zero, and a very low probability of
being empty. The third cluster (Cl3) has a size peaking at 12% but more mass near zero and a higher probability of being
empty. On the other hand, dimensions 2 and 3 seem to suggest the presence of no more than one cluster each. The second
cluster in both these dimensions has higher probability of being empty and the distributions of size have much more mass
around zero. Furthermore, the distributions of the first cluster (Cl1) in both dimensions have a notable peak around 90%
suggesting that, even when more than one cluster is considered, the large majority of fPC scores in dimensions 2 and 3
tends to be gathered within a single large cluster.

The use of MAPs suggests there might be no more than two groups in the first dimension and one group in the
second and third dimensions. Clustering with MAPs in the first dimension identified 9% of curves whose trajectories
are wigglier and with a visibly shorter interpeak difference between the first positive and negative peaks compared with
the other group (WebB, Figure 6). Figure 7 of section WebB in the Supplementary Material shows an example of curve
reconstruction using the posterior mean and 95% pointwise credible bands of the subject specific mean. Curves in cluster
2 pertain to brain areas from the occipital lobe (calcarine, cuneus, lingual, inferior occipital gyrus) and parietal lobe
(precuneus).

By analyzing the pairwise probability matrix, a more comprehensive classification emerged. The previously dichoto-
mous partition in dimension k= 1 is now enriched by a third group of brain areas with no clear clustering preference
(gray band at the top-right of the pariwise probability matrix in Figure 4). Cluster 2 comprises 16% of curves which all
represent areas from the occipital lobe (yellow-light dots), while curves in cluster 3 (blue-dark dots) belong to the cingu-
late cortex (middle and posterior cingulate cortex), parietal (parietal superior lobule, precuneus), and temporal (middle
and inferior temporal gyrus) lobes (Figure 4).
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We note that these three clusters are supported in the neuroimaging literature. It is well established that primary
and extrastriate visual regions are active at rest50 and have a role in processing mental imagery.51 Just outside the
visual cortex, the temporal inferior gyrus takes part to the visual ventral stream which links information from the
visual cortex to memory and recognition.52 Moreover, the posterior cingulate cortex is known to interact with sev-
eral different brain networks simultaneously and it participates in the default mode network together with part of the
parietal lobe.53 Conversely, it has been suggested that areas pertain to the prefrontal cortex (all included in cluster
1) have less long-range connectivity in the resting state condition.54 Finally, the sensitivity analysis further confirmed
our findings as they were robust to changes in both shape and value of the hyperparameters (WebA, Supplementary
Material).

4.3 EEG setting

For our second application we employed data from an EEG study on brain activations following object recognition tasks
(event related potentials, ERPs).55 ERPs are very small bioelectrical signals generated by the brain in response to specific
events or stimuli. They are EEG changes time locked to motor, sensory or cognitive events that provide a noninvasive
approach to study psychophysiological correlates of mental processes.56 By contrast, body or eye movements introduce
large artifacts to EEG recordings and trials contaminated with artifacts need to be corrected or even discarded.57 In the
present study we employed the PC-fPCA model for artifacts identification in the EEG recording of a single healthy sub-
ject. The individual was presented with two separate stimuli in the forms of images taken from the 1980 Snodgrass and
Vanderwart picture set.58 The second stimulus was either a different image (unmatch) or the same image (match) as in
the first stimulus. We used the data-driven clustering of the PCl-fPCA model to identify the spatiotemporal features of
different artifacts and the relative affected brain areas.

The data were recorded using a cap with 64 electrodes placed on the subject’s scalp and the brain activity at each
recording electrode was sampled at 256 Hz for 1 second. Further details on the recording setting can be found in Zhang
et al.55 We considered both the unmatched and matched tasks within the same analysis and used our PCl-fPCA model to
find data-driven differences in the morphology of the curves. Therefore, a 128× 256 data set was input to fPCA for curve
smoothing and dimension reduction using the pca.fd function from the fda package in R.39 The set of 128 smooth
curves and the retained eigendimensions are shown in Figure 8 of Supplementary Material WebB. We kept the first two
dimensions explaining 90% of the total variability while accounting for more than 10% each. We applied the same model
settings described in Section 4.1; we assessed convergence using trace plots and BGR diagnostics and the number of
independent retained samples by computing the effective sample size (WebD, Supplementary Material). We employed
the same computational approach described in Section 3.1 and it took 64 minutes to run the analysis with K = 2 on a
2-core Intel CPU running at 2.7 GHz with 8 GB RAM.

4.4 EEG analysis results

Two clusters seem to emerge in dimension 1. The size of the second cluster (Cl2, second from the right in Figure 5,
bottom-left panel) has a peak around 20%, and a low probability of being empty. The third and fourth clusters (Cl3,
Cl4) have both sizes peaking near zero and higher probabilities of being empty. On the other hand, dimension 2 clearly
indicates the presence of three clusters with sizes peaking at 60%, 20%, and 20% and very low probabilities of being empty.
Furthermore, the distributions of the first cluster (Cl1) in both dimensions have very low mass near 1, supporting the
presence of multiple clusters in both dimensions.

Both MAP and pairwise probability analyses confirmed the presence of two clusters in the first dimension and three
clusters in the second dimension (Figure 6). The second cluster in the first eigendimension contains all the recordings
from electrodes in the frontal areas for both the matched and unmatched tasks (Figure 9, WebB, Supplementary Mate-
rial). These curves have a marked peak at the end of the recording, indicating a possible artifact (probably originated from
eye blinking), and they appear to have two separate underlying patterns. These trends are captured in the clustering of
the second eigendimension where the second and third clusters further divided the EEG activity in the frontal brain areas
between those recorded during the matched and unmatched tasks (Figure 9, WebB, Supplementary Material). Notably,
despite all curves showing more variability toward the end of the recordings, we found that only those from frontal areas
have a consistently different behavior from that of the group. This is in line with the work of Zhang et al,55 where the
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F I G U R E 5 EEG data
analysis: cluster identification.
The first row shows the
posterior probabilities of being
empty for the second to 10th
clusters in the two
eigendimensions analyzed. The
second row shows the posterior
distributions of cluster size
(when not empty) among the
first four clusters (Cl1:Cl4, right
to left). This figure appears in
color in the electronic version
of this article [Colour figure
can be viewed at
wileyonlinelibrary.com]
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authors excluded frontal region recordings from part of their analyses because of an inconsistent wave morphology com-
pared with the wave form of the other regions. Frontal areas are known to be prone to recording artifacts particularly from
eye movement which might have affected the different wave forms observed in these data.57 Furthermore, the data-driven
separation of frontal area curves into tasks (matched and unmatched) suggests the effect of two separate artifacts on the
amplitude of these recordings.

5 DISCUSSION

The processing of the human brain is a complex phenomenon in both time and space. The modeling of spatiotempo-
ral data sets in the big data era is a challenge becoming every day more demanding as we struggle to keep up with the
overwhelmingly larger data sets we are required to make sense of. Moreover, the extraordinary advancements in neu-
roimaging of the last decades have focused large part of neuroscientists and statisticians’ efforts on the spatial domain
both in clinical practice and research (see, eg, Durante et al59). Nevertheless, the study of how interactions among brain
regions change dynamically during an experiment (ie, dynamic functional connectivity) has recently attracted interest
in the neuroimaging literature.60 In fact, the time domain retains important neurophysiological information on brain
functioning and neuronal health and without it we are at risk of drawing partial and possibly wrong conclusions on how
the brain works.

In the present study we proposed a model that combines functional PCA and Bayesian nonparametric techniques to
explore spatiotemporal data sets flexibly. We combined the idea of introducing spatial dependence among curves through
the fPC scores proposed by Liu et al7 with the infinite Gaussian mixture model to obtain a flexible modeling of the
covariance structure. The main results show a clear improvement of the PCl-fPCA model both in curve and correlation
reconstruction compared with different state-of-the-art fPCA models, particularly in the presence of high noise (as it
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F I G U R E 6 EEG data analysis: cluster identification with pairwise probabilities. First column: pairwise probabilities suggesting a
bipartition of curves in the first eigendimension (top) and a tripartition in the second (bottom)

is often the case in brain recordings) and the ability of exploring curves dependence dynamically allowing for different
spatial patterns for each eigendimension retained.

Improvements in the reconstruction of high-noise corrupted curves were also reported by Liu et al;7 in fact, the
beneficial effect of accounting for curves similarity is more evident when the true signal is well masked behind the
noise. Nevertheless, a direct modeling of large covariance matrices often resorts to the use of common covariance
functions to avoid overparametrization. The use of functions such as Matérn or rational quadratic implies a priori
knowledge on the shape of spatial dependence. We believe that this approach does not suit highly complex phenom-
ena, such as brain processing, where dependence has a much more elaborate architecture than a simple function
of spatial proximity. Clustering the fPC scores allowed us to capture dependence among curve flexibly without the
need to estimate the relative spatial covariance matrix. Interestingly, our results suggest that the high flexibility of
PCl-fPCA model makes it a very suitable choice even in the cases where a single or even none of the eigendimen-
sions retained support clustering of fPC scores. Further improvements may be derived from modeling the correla-
tion or autocorrelation structure of the noise, although the trade-off with model complexity should be taken into
account.1

DP mixture models have also been used for clustering time series through the clustering of the relative coefficients
in a basis expansion representation. Many of these works have focused on global clustering, where curves are clustered
together for all their coefficients.12-19 However, not only in neuroscientific data, but in many other types of functional data,
curves might be characterized by regions of heterogeneous behaviors;61 therefore, some authors have proposed alternative
approaches that allow also for local differences in the clustering.62,63 In the present study we moved from a global clus-
tering of the data to a local clustering of fPC scores to address both the exploration of brain activity data and to improve
curve reconstruction. Dunson62 and MacLehose and Dunson63 used local clustering only as a means to improve estima-
tion and their methods either neglect intersubject variability in the coefficients (Dunson62) or lack cluster interpretability
(MacLehose and Dunson63). By contrast, our approach combines the straightforward interpretation of the eigenfunc-
tions with a local clustering of the fPC scores which account for intersubject variability within each cluster. Therefore, we
obtained both an improved curve reconstruction and a rich classification technique. In fact, curves are never identical,
they can be potentially assigned to different clusters in each eigendimension, and each eigendimension can have a differ-
ent number of clusters (see Figure 4 of Supplementary Material WebB for a visual example). In addition, the assumption
of separability of the cross-covariance matrix is avoided and complex time-space interactions are captured by the model;
as a consequence, this local borrowing of information also improves the reconstruction of the underlying smooth process.
Moreover, we benefit from the properties of the fPCA expansion to tune the hyperparameters and improve the MCMC
convergence.
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Cross-covariance matrices are often intractable if we do not resort to compromises in our models. A sensible com-
promise should be tailored to the type of specific data. In this study, we compromised with the time domain by using
fPCA with a fixed number of eigendimensions while giving flexibility in the modeling of spatial dependence. This
served the purpose of breaking off from the separability assumption while, at the same time, favoring interpretation
and a simple model structure. The fact that the fPCs are treated as known for posterior inference might affect poste-
rior uncertainty. One possible solution to improve coverage is to employ simultaneous credible bounds. These are a
finite collection of pointwise intervals, scaled to achieve a specified coverage probability. Existing approaches include
those of Besag et al,64 Krivobokova et al,65 and Crainiceanu et al.66 By means of a simulation study and the anal-
ysis of fMRI and EEG data, we demonstrate that PCl-fPCA is effective in recovering the underlying smooth curves
and it produces a valuable exploration of the spatiotemporal dependence in brain time series. The next step in our
approach is the extension to the modeling of multiple subjects’ recordings. There are different challenges to consider
in the analysis of groups such as the natural interindividual variability in brain functioning and the dimensionality of
the data. We intend to expand our method to replicated data and multiple subjects experiments in our future research.
Exploring interindividual patterns of functional connectivity and their uncertainty can help answer important ques-
tions not only in the study of brain processes but also in the characterization, early diagnosis and prognosis of brain
diseases.
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APPENDIX A. POSTERIOR CONDITIONAL DISTRIBUTIONS

In this section we present the posterior conditional distributions for the parameters of our model (Section 2.2).

𝜉ik|yit, ci,k, 𝜇jk, sjk, 𝜏 ∼ N

(
𝜏
∑T

t=1 yit𝜙tk + sjk𝜇jk

𝜏 + sjk
,

1
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)
,
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p1k =
p′

1k∑J
j=1 p′

jk

; pjk =
p′

jk
∏

l<j(1 − plk)∑J
j=1 p′

jk

,

p′

jk|cik, 𝛼k ∼ Beta

(
njk + 1, 𝛼k +

J∑
l=j+1

nlk

)
,

𝛼k|pk ∝ 𝛼J
k exp

{
𝛼k

J∑
j=1

log(1 − p′

jk)

}
; for 𝛼k = [0,Qk],

where njk denote the fPC scores in the jth cluster of the kth eigendimension and 𝛼k denotes the posterior support of 𝛼k.
In our model we fixed a′ = b′ = 10−3, zk = 1, vk = 0 and the upper bound for the support of 𝛼k takes into account the

dimension-specific features of functional PCA as detailed in the article, Section 2.2.


