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Reduction of Singular Pencils of Matrices1 

By w. LEDERMANN. 

(Received 14th October 1934. Read 2nd November 1!:134.) 

§ l. Introduction. 

Let pA + aB = [pa~'-v + abfLv] be a pencil of type m X m', i.e. with 
m rows and m' columns, where A and B are matrices with constant 
elements which are not mere scalar multiples of each other; and p 

and a are homogeneous parameters. 
The pencil pA 1 + aB1 of the same type is said to be equivalent to 

pA +aB if two non-singular constant square matrices P and Q of 
degree m and m' respectively can be found of such a kind as to yield 
an equation 

(I) 

Hence the totality of pencils of type m X m' may be divided 
up into different classes such that all members of a class are 
equivalent to one another, while no pencils belonging to different 
classes can be transformed into each other by an equation ( l ). 
The problem which now arises, viz. to carry out this classification, 
was first solved by Weierstrass and Kronecker in classical papers, 
and has since been treated by many authors. 2 

They have distinguished a certain "canonical" pencil in every 
class such that any pencil is equivalent to one of these canonical 
pencils. 

W eierstrass dealt only with the case in which m = m' and the 
determinant. of pA + aB does not vanish identically. The general 
case which includes rectangular and singular pencils has been treated 
by Kronecker. According to Kronecker the general canonical 
form is 

(2) 

1 This paper is intended as a continuation of Prof. Turnbull's paper, pages 
67 to 76 above. I should like to express my special thanks to Prof. Turnbull for 
suggesting this investigation to me, and to thank both him and Dr Aitken for their 
helpful criticism. 

2 Cf. Turn bull and Aitken, Canonical Mat1·ices (1928), p. 125 if, where references may 
be found. 
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where Ap is a pencil of type (p + 1) x p, thus 

(3) 

p 

up 

. a p 

a p 

.... u 

In (2) A'P is the transposed matrix of AP, and M is a non-singular 
pencil which may be reduced either toW eierstrass's classical canonical 
shape, the knowledge of which we shall assume, or to a rational 
form. 1 

Kronecker deduced the canonical form (2) under two conditions. 
In the first place he excluded degenerate pencils: i.e. although the 
pencil pA +aB is singular it must not be equivalent to a pencil 
pA1 + aB1 some rows or columns of which are zero. In particular, 
no non-zero vector u = [uv u 2 , •••• , um] can be found for which 

uA = uB = 0. 

For then we could construct a non-singular square matrix U o£ 
degree m whose first row is u. The pencil 

U (pA +aB)= pA 1 +aB, 

would be degenerate, its first row being zero. 
It is easy to see that this assumption is not an essential restriction 

and we shall therefore adopt it following Kronecker. 
But there is a second hypothesis which was made by Kronecker 

and most of the other authors 2 which from one point of view seems 
to be a loss of generality. They postulated that in pA +aB the 
rank of B should be as great as the rank of pA + aB (identically in 
panda). 

It is always possible to fulfil this condition by introducing new 
variables p', a' instead of p, a, where 

p' = au p + al2a, 

u' = a21 p + a22 a, 

This may, be described as changing the basis A, B of the pencil. This 
process, however, can in general not be effected by an equivalent 

1 Of Turnbull and Aitken, Cctnonical Matrices, Chapter IX. 

2 Bromwich, however, deals with the general case (P1·oc. London Math. Soc. (1), 32 
(1900) ). 
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transformation (1) so that we lose some classes of pencils if we admit 
transformations of basis as well as equivalent transformations. 

This applies also to the non-singular case of a square pencil 
pA +aB the determinant of which does not vanish identically. It 
has mostly been assumed that B is non-singular so that the deter­
minant jpA +aB I has no root p = 0, a=!= 0 or, putting ,\ = ajp, that 
the determinant I A + ..\B j has no infinite elementary divisors. 

In what follows we shall give a new proof for the fact that every 
pencil can be reduced to the form 

(4) diag (Ap,, Ap,, .... , Ap"' N 7 ,, Nr,, .... , Nr,, A'q, A'q,, .... , A'q"' M) 

Ap being the same as defined in (3) and A'p being its transposed. 
Here M is a pencil pA 1 + aB1 in which I B1 J =!= 0 so that the Weier­
strassian method may be applied. The pencils N 7 which do not occur 
in Kronecker's form (2) correspond to the infinite elementary divisors; 
thus 

Nr = l; .. ~ ... :. __ : .... : .. _: J = plr + aHr 
...• a p 

(5) 

the determinant of Nr being pr. In (5) 1; is the unit matrix of 
degree rand 

(6) 

There is no loss of generality in assuming that in pA + aB the 
number of rows is at least as great as the number of columns, i.e. 
m> m'. If we had originally m< m', we should consider the trans­
posed pencil pA' +aB'. We can transform this pencil into (4) and 
hence pA + aB into 

diag (A'p,, .... , A'Pn' N'r,• .... , N'rJ• Aq,• .... , Aqk' M'), 

involving N'r instead of N 7 • But as is well known, N and N' are 
equivalent (they are, in fact, similar), e.g. 

[P . '] = [' . 1] [p a '] [' . I] ap . • 1 . . pa .1 .• 
. ap I . .. p 1. 
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Our proof will partly be based on the 

LEMMA: 

The matrix equation for Z, 

(7) Z=P+QZK, 

where P and Q are given constant matrices admits of one and only one 
solution if a power of K vanishes (or if all latent roots of K are zero). 

Proof: 

Let Kk = 0. Then 

r=O 

is a solution of (7) as is easily verified. In order to prove that there 
is but one solution we show that the homogeneous equation 

(7') Y=QYK 

has only the trivial solution Y = 0. Let Y 0 be a solution of (7'), thus 

Yo= QYoK. 

By iterating this equation we get 

Y 0 = Q Y 0 K = Q2 Y0 K 2 = ..• , = Qk-1 Y 0 Kk-1 = Qk Y 0 Kk = 0, 

since Kk = 0. 

§ 2. Special Basis for a System of Vectors. 

Consider a system of le row-vectors of degree m: 

(1) 

If a row~vector z of the same type can be expressed as a linear 
aggregate of the vectors (1), we write: 

It will be convenient to introduce a matrix Z the rows of which are 
the vectors (1). Thus 

(2) 

so that Z is of type k x m. 
independent of one another. 

The vectors ( 1) need not be linearly 
Let l be their rank (and the rank 
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of Z). We may then find l basis vectors zk,, zk,• .... , zk, out of the 

system (1) which are linearly independent themselves and which 
allow every zk of (1) to be represented as a linear aggregate of the 
basis vectors. The most natural way to construct such a basis 
is the following: We go through the sequence (I) beginning 
with z1 canceJling every vector that is linearly dependent on its 
predecessors. In particular every zero-vector has to be dropped. 
The remaining vectors may be called zk,• zk,• •... , zk,· This basis is 

uniquely determined by the process and may be named a "special 

basis." Every zk is a member of the sequence (1) and we have 
X 

We put 

(3} 
[

zk,l 
Z= zt, . 

zk, 

E.g. Consider the set of vectors z1, z2, z3 = az1 + fJz2, z4, z5 = yz1 + 8z~ 
z1 , z2 , z4 being independent of one another. Then we have zk, = z1 , 

zk, = z2, z"" = z4. 

§ 3. Rough Reduction of the Pencil pA +aB. 

I. DEFINITION. The k linearly independent vectors x1, x2, •••• , xk 

form an A-stair if they satisfy the conditions 

(1) 

X1 B C (0), (i.e. x1 B = 0) 

XzB C(x1 A), 

XsB C(x1 A,x2 A), 

x4 B C(x1 A, x2 A_, x3 A), 

xkBC(x1 A,x2 A_, ..•• ,xk_1 A). 

In the notation of § 2 (2), we may write this a.o: 

(2) XB=M·XA, 

where M is a square matrix of degree k in which only the elements 
below the diagonal can be non-zero. The number k is, of course, le~s 
than or equal to m, since there are only m linearly independent 
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vectors x of degree m. Let us suppose that k < m and that the stair 
cannot be continued. 

We may add further rows to X to make a non-singular square 
matrix of degree m, thus 

Let the rows of Y be y1, y2, ... , Ym-k· The vectors 

(3) x 1 A, x2 A, .... , X~.; A 

need not be linearly independent. Let their special basis be 

(4) 

which is represented by the matrix 

l :::.~ t XA, 

X~.;, AJ 
the rows of (XA) being independent. We shall now prove tha~ the 

rows of [ ;~J are independent. Supposing this were not true, we 

should have a relation 

(5) (al Y1+ a2Y2+ · · · · +am-kYm-k) B= ({31 xk, +f32 xk, + · ·. · +f3z xk,) A. 

The a cannot all vanish for we should then get 

(f3I xk, + f32 xk, + .... + f3z xk,) A = 0 

which is impossible because the vectors ( 4) are independent. 
Hence 

Y = a1Y1 + a2Y2 + · · · · + am-kYm-k 

is non-zero and independent of x1, x2 , •••• , xk since the rows of the 

non-singular matrix [ ~ J are independent. 

From (5) it now follows that 

yB = (xk, A, xk,A, .... , xk
1 

A); 

or since every x~.;" is a certain x~'-

yB C (x1 A, x2 A, .... , xkA) 

which would prolong our stair by another step in contradiction to 
our hypothesis. Hence (5) is impossible. We may therefore add 
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further rows to [ XYABJ to form a non-singular square matrix of 

degree n, 

(6) 

whose rows form a basis for all vectors of degree m'. 

Let 
k~~. =g. 

According to the properties of our special basis each of the vectors 

x 1 A, x2 A, ••.. , xu_ 1 A 

can be expressed by xk, A, xk, A, .... , xk~~._ 1 A. Instead of 

xuB C(x1 A, x2 A, ... . , xu_ 1 A} 

(by ( l)) we may therefore write 

xk B C(xk A,xk"A, .... ,xk A) 
11. 1 " 11.-1 

or in matrix notation 

(7) 

where K (like M in (2)) has non-zero elements only below the main 
diagonal. As is known, such a matrix has only the latent root zero 
and a certain power of it must vanish. 

Consider the matrix Y A. As its rows are vectors of degree m 1 

they must be expressible by the rows of the matrix (6); thus 

(8) YA =PXA +QYB+RZ. 

It is obvious that XA and XB can be expressed by the rows of XA. 
Let 
(9) XA=F·XA and XB=G·XA by(l). 

If in [~] we add a certain aggregate of x11 x2, •••• , xk or of 

xk,, xk"' ..•. , xk, to every row of Y the matrix will still be non­
singular. We may for example replace Y by Y1 = Y- iEJ X where 
::; is an arbitrary matrix of type (m- k) x l which we shall choose in 
a suitable way. If we carry out this substitution in (8), we get 

YtA = (P- !EJ) XA + Q (YJ +A X) B + RZ 
and by (7) 
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According to the lemma of § 1 we can choose :$ so as to make 

P-:E:+Q:E:K 
vanish. Hence 

(10) Y 1 A = QY1 B + RZ. 

If we now multiply the original pencil by [ :J we get by (9) and (10) 

[X] (pA +aB)= [ pXA + aXB J = 
Y1 pY1A + aY1B 

The last matrix is non-singular, because 

0 
pQ +al 

[ 
XA J [ XA J [ XA J Y~B = YB-z:E:XB = YB-:KXA by (7) 

Hence the pencil 

A + B [
pF + aG . . ] 

P 1 a 1 = 
. pQ + al, pR 

is equivalent to the original pencil. But pA 1 + aB1 splits up into two 
pencils with fewer rows and columns unless k = rn (p. 93). Therefore 
if k < rn, the proof is completed by induction. 

II. We shall now suppose that k =m, i.e. the longest A-stair 
contains m independent vectors xv x2 , •••• , Xm· We may assume 
that the original pencil has this property. According to (2) we have 

(2) XB=MXA, 

where now X is a non-singular square matrix of degree m and M is a 
matrix with zero latent roots only. 

We have to distinguish two cases. 

(a) In pA +aB the matrix A has no row dependence: i.e. there is 
no vector y =f: 0 for which yA = 0. Since we had assumed m > m' it 
follows m= m' and [A l =f: 0. The reduction of pA +aB can easily 
be performed; multiply by X: 

X (pA +aB)= pXA + aXB =(pi+ aM) X.A, 
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by (2), where X and XA are non-singular. 
continue by reducing pi+ aM. Since M has 
0, the Weierstrassian form of M will be 

We may therefore 
only the latent root 

PMP-1 = diag (Hr,• Hr,, .... Hr,)• r 1 + r2 + .... + Tz =m= m' 

where 

Hence 
P (pi +aM) P- 1 = diag (plr, +a Hr,• pir" + aH,.", .... , pl1 + aH,) 

1' I 

= diag (NI',, Nr,, .. , • , Nrt) 

which proves the theorem. 

(b) We have now to deal with the more difficult case when a vector 
y ==!= 0 exists for which yA = 0. It is then possible to construct a 
" B-stair" in the same way as inU)only with A and B interchanged. 
Every other step remains unaltered: We construct a stair whose 
length1 may be l. If l be less than m, we should again be able to split 
up the pencil and the proof would be concluded by induction. We 
shall therefore suppose that not only the A-stair but also the B-sta.ir 
exhausts the whole m-dimensional vector-space. Writing these 
conditions down in full, we have 

x1 B =0 y1 A = 0 
(ll) x2 B C (x1 A) YzA C CY1 B) 

(a) x3 B C(x1 A, x2 A) ({3) Ys A C (yl B, Y2 B) 

Ym A C CY1 B, Yz B, · · · ·, Ym-IB}, 

where x1 , x2, •••• , xm and Y1> y2 , •••• , Ym are two sets of m linearly 
independent vectors of degree m. Pencils pA + aB with the 
properties (I) require a more elaborate study which we are going 
to explain in § 4. 

§ 4. Reduction by means of Vector Chains. 

Let pA +aB be a pencil which fulfils the condition ( ll) of § 3, 
i.e. we assume that at least one B-stair and one A -stair exists, each 
of length m. But it is easy to see that every non-zero vector z that 
annihilates B can be extended to a stair of m elements unless the 

1 By saying the stair is of length l, we mean that it consists of l vectors and cannot 
be continued hy another vector. 
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pencil splits up into two pieces. For if a stair beginning with z 
should break down at the kth step, i.e. if the stair be of length 
k (k <m), we could split up the pencil as shown in§ 3. 

From § 3 (ll), we see that for every vector u we can find a 
vector u such that 

(I) uA = uB, 

for u must be a linear aggregate of y1 , y2, •••• , Yrn whence the 
existence of u is evident from § 3 (ll) {3. It is not self-evident that the 
unknown components of the vector u can be calculated from the non­
homogeneous equation (1) because the coefficients of the unknowns 
do not form a non-singular matrix. The vector u, however, is not 
uniquely determined. 

Let v0 B = 0 (v0 =f= 0). We may then. determine other vectors 
v1, v2, •••• , vp,, .... , which form the following "vector chain." 
(cf. Turnbull, page 72 of this volume.) 

(2) 0 = v0 B, v0A = v1 B, v1 A = v2 B, ... . , Vp,-lA = Vp, B, 
Vp, A = Vp, +1 B, ... . 

We can continue the chain as long as we want, but the vectors 
occurring in it will not be linearly independent. Let Vp, A be the 
first vector in (2) to be linearly dependent on its predecessors 
v0 A, v1 A, .... , vp,-1 A. We then have the relation 

(3) 
p, 

( ~ av Vp, -v) A = 0, where a0 =f= 0. 
v~O 

It is convenient to put 

(4) v_k = 0, k = 1, 2, 3, .... ' 

making the equation vv-l A = vv B valid also for zero and negative 
integersv. The number PI> i.e. the number of consecutive linearly 
independent vectors in (2) starting with v0 A is called the length of 
the chain. The length is always positive, otherwise we should have 
v0 B = v0 A= 0 and the pencil pA + aB would be degenerate (§ 1). 
Let p 1 be as small as possible. We derive another chain from (2) by 
putting 

(5) 
p, 

u1l) = ~ av vk-v 
v=O 

In fact, the u~l form a chain, for by (2) 

Pt Pt 

uZ) B = ( ~ av Vk-v) B = ( ~ av vk-l-v) A = u~12..1 A. 
v=O v=O 
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In particular u~1l B = 0 by (4) and 
p,-

1l~: A = ( ~ av Vp,-v) A= 0 by (3). 
v=O 

We have therefore constructed the chain 

(6) O __ .,(llB u<llA-un>B u<OA=u<1lB um A=u(1lB u,OlA=O -wo ' o - 1 ' 1 2 ' · • · ·' p,-1 p, ' p, 

The vectors u~1l A, u~l) A, .... , u~1; _ 1A must be independent, other­
wise we could build up a chain of length less than PI which would be 
contradictory. 

If there is a vector u62l =f: 0 which annihilates B and which is 
independent of the first chain, i.e. of the vectors u61l, u~ll, .... , u~~ we 
form another chain like (6} the length p 2 of which shall be taken as 
small as possible. Naturally p 1 < pz. We then proceed to a third 
chain provided that its first or " leading" vector u&3l is independent 
of all vectors of the first and second chain its length p 3 being minimal. 
In this way we get a whole system of chains 

0-u(lJB u<1lA-u<1lB u<1lA-u(1lB u<1l A-u<1lB u<1lA-O - 0 ' 0 - 1 ' 1 - 2 ' •••. ' p, -1 - p, ' p, -

(7) 0=u~2JB, u~2lA=u~2lB, u~2lA=uh2lB, .... , u1~_1A=u12! B, u~;A =0 

O=u<nlB u<nJA-'-u<nJB u<nlA-u<nJB ucn) A-u<nJB u<tt24--0 
0 ' 0 - 1 ' 1 - 2 '• • • •' Pn -1 - P

11 
' p

11 
-

As we have shown, this system possesses the following properties : 

(a) The lengths are increasing 

{ 8) PI < Pz < · · · · < Pn• 
(b) The first vector of every chain is independent of all vectors 

of the preceding chains. 

(c) Each length is as small as possible, i.e. there is no chain 
independent of the first chain whose length is less than p 2 , nor does 
a chain exist whose first vector is independent of the first and second 
chains and the length of which is less than p 3 , etc. 

(d) We have exhausted all chains, i.e. we cannot find any vector 
u~n+ll for which u~n+lJB=O unless u~ntl) is a linear aggregate of the 
previous chains. 

We shall now prove that the vectors 

{ 9) u<lJ A u,Zll A u<1l . A ~/2> A u<2l A u<2l A u<nJ A u<nl A 
0 ' 1 ' .. ' .lJ• -1 ' 0 ' 1 ' .. ' p" -1 ' .. ' 0 ' 1 ' .. ' 

u<nl-I A are independent of one another. If this were not so we 
pn ' 

should have a relation 

(10) 
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where 

(11) 

and u<TJ is the last element of the Tth chain that really enters the 
qT 

relation (10) with a non-zero coefficient ,B~l =f: 0. 

If the Tth chain does not occur at all in (10), we put q7 =0 and 
f3&T) = 0. Let q(/ be the maximum of q1, q2 , .• , qn ; if several q are­
equally great, we take g as great as possible so that 

(12) qg > qk (k = 1, 2, .. ' g) ; qg > q" (,\ = g + 1, .. ,'Yl.). 

We now construct the chain 

( 13) f3(T) 
h 

In fact, the vectors v0, v1 ••• , Vq form a chain. For 
g 

n n 

T = 1 
,8~; U k+qT -qo -p.T) B = (2: 

JL7 =0 r=l JL, = 0 

= vk-.1 A because according to the chain properties (7) we have 
u~T) B = u~T2_ 1 A for every v < P

7
• 

In particular we get v 0 B = v_ 1 A = 0 and vq
0 
A= 0 by (10). 

Also v0 reduces to 

Vo = f3&l) U~~)-qg + /3&2) u~:)-qg + ..... + f3'tl uw> (by (4) and ,8~) =j= 0). 

The suffixes of the u are either 0 or negative since q > q 
(/ T 

(T = 1, 2, .. h). All terms behind the gth term could be dropped 
because qg > q" for,.\> g. v0 is independent of the first, second, .. , 
(g- 1)th chain. For, otherwise u'tl would be dependent upon its 
predecessors in contradiction to (b). It is therefore permissible to 
start the gth chain with Vo instead of uw). But the length of the v­

chain is q "£'p - 1 or less, viz. if the vectors v0 A, v1 A, .. , Vq _ 1 A be 
g g g 

linearly dependent. In any case the length of this modified gth chain 
would be smaller than Pu which contradicts (c). Hence the vectors (9) 
must be independent of each other. 

\Ve shall now show that also the vectors 

(14) U (l) u(lJ yCl). u(2) (2) u<2J. . u<n) u(n) u<n) 
0 ., 1 ' ••• ' PI ' 0 ' ul ' ••• ' p'!. ' •••• ' 0 ' 1 ' ••• ' Pn 

are linearly independent. 
If there were a relation between them, it could be written : 

n 

(15) h ttbl> + Y2 u&2) + .... + Yn u~> + 2: 
T=l 
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The ()CT) cannot all vanish. For then the " leading " vectors 
/J-T 

u~J, ub2>, •• , ubn> would be dependent in contradiction to (b). Multiply-
ing (15) by B we get 

n PT 
(~ ~ 0 (T) u (T) ) B = 0 

MT P.r 
T~1 p.T~1 

since u~> B = 0 ; applying the chain properties (7) we have 
n pT-1 
(~ ~ 8 (T) ' u (T) ) A = 0 

p.T -,! IJ-T 

T=1 p.T=O 

which is incompatible with the vectors (9) being independent. 
Hence the vectors (14) are independent. 

What are the connections between the vector chains and the reduc­
tion of the pencil pA +aB 1 Consider one of the chains (7): 

0-u<TlB u<TlA -n<TlB u<TlA =n<TlB 1t<Tl A -n<TJ B u<Tl A -0 
- 0 ' 0 - 1 ' 1 2 ' •••••• ' PT-1 - PT ' PT - . 

Let 

,(16) 

It follows by (7) that 

and 

and UT= 

pn~> A + a'U~l B 
pniT> A + uniT) B 

p 
ap 

( 17) UT (pA +aB)= 

u<T> 
0 

n<;> 

u<T> 
PT-1 

ap 

(T = 1, 2, .. , n). 

p'U~T)A -~ 
put> A + an&T) A 

p 
.. a 

where APT has been defined in§ l {3). 
Hence 

-I 
\ul(pA +aB)-1

1 

-
~ I ul 1 Ap, i U 1 A 

U2 (pA +aB)= U2(pA+aB) I= Ap, U2 A 

Un Un(pA +aB) _I APn UnA [_ 



or 
( 18) 
where 

and 

(19) 
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U(pA +aB) =A · UA, 

A = diag (Av A2, ... , An) 

1- -, 
~ u1 • 
I u I 

U =, 2 and U = 

:_u''-- !_Un_1 

Obviously, the equations (7) can be interpreted as a vector 
A-stair in the sense explained in § 2. It contains k= (p1 + 1) +(p2+ I) 
+ .. + (Pn + I) vectors the independency of which we have proved. 

We shall show that k = m. If k <m, it must be possible to 
continue the stair by another vector z such that 

(20) zB C (u&1
) A, ui1) A, ... , u~~-1 A, u1~ A) 

z being independent of all u. By (7) we may write instead of (20) 
B C ( 11) B (1) B (n) B) z ul ' u2 ' .... ' uPn 

or in full 
(z-(Ei1) ui1>+E~1) u~1)+ .. .. +E1n~ut;)~)) B = 0 

Ev~T) being certain coefficients. Here we should have obtained a 
vector which is independent of the u and yet annihilates B in con­
tradiction to condition d). Hence k must be m and U has rn rows 
and is therefore square and non-singular. 

Finally, we shall show that also UA is square (of degreem~. If 
it were not so, we could add further rows to make a non-singular 

. [UAJ square matrix z . 
From (18) we should then get 

U (pA +aB)= [A, 0] [Ut]. 

Hence [A, 0] would be equivalent to pA +aB but it contains null 
rows and columns which we had excluded. The matrix Z must 
therefore be illusory and (18) may be written as 

U (pA +aB) (UA)-1 = diag (A~> A2, .. , An)· 

This co~pletes the proof. 
In his paper Professor Turnbull has shown how the minimal 

vector chains are connected with Kronecker's minimal relations 
between the rows of the pencil pA + aB. In particular, it has been 
pointed out that the lengths of the vector chains ( 7) are identical 
with Kronecker's M inimalgradzahlen. 
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THE AU'rOMORPHIC 'fRANSFORl'flATIONS OF A SINGULAR MATRIX. PENCIL. 



I . 

§ 1.. 

In the theory of Canonical Matrices two matrix pencils 

r:.: f .,I, + IS" I{ and !;__ = f A?" +- o-4 
each with m rows and n columns, are said to be eguiv­

-alent if two constant non-singular matrices P and Q 

of degrees m and n exist such that 

( 1) i J P/-:t: o / I e / ==1- o 

The fundamental result is that two pencils can be 

reduced to the same canonical form, if and only if, 

they are equivalent •. Suppose now that r; and;-;: are 

equivalent; then it is possible to solve (1) for P and 

Q, and the natural question arises, what is the most 

general solution of this equation. It is easily seen 

that this problem is equivalent to finding the most 

general pair of matrices P ,Q which transforms a 

given pencil P=f-4+-oB into itself,i.e.,which 

satisfies the equation 

(2) !lra = r ) 

or, comparing coefficients of f and er 

(2a) 

(2b) ?B & 

; 

B 

In this case He shall say that the pair of matrices 

(~,Q) is" an automorphic transformation of r and we 

propose to determine all such automorphic transformations; 

in particular, we 8hall express the number of linearly 

independent ones among them in terms of the invariants 

of r ,i.e.,in terms of the Invariant Pactors and! the 

Kronecker Indices of r • 



2. 

Let us now make some convenient as.sumptions 

regarding r= yv4~6B without restricting the gener­

-ality of our investigations. 

First we shall assume that A is of the same rank 

as r itself', a COndition Vlhich Can always be fulfilled 

by a linear transformation of the variables ~ 1 6' • 

For, let ~o 1 6;; be such that 

._.4
1 

-=- fo .,4- + 60 B 
is of maximun rank, i.e., of the same rank as r itself, 

and put 

·Nhere f-. and <.1; are only subject to the condition 

(3) 

If we now introduce ne•:v variables f 1
, a' by the trans­

-formation 

f = fo f I -1- ft 0 I 

0 = De ~ I +- CJ1 0 
1 

we see that r cab be written as 

r = f'~ -1- o/4 
and that it no1·1 has the property re(luired. Again, the 

automorphic transformations remain the same, sine-' the 

equations 

(4a) 

(4b) 

and 

are equivalent to (2a) and(2b) on account of (3). After 

this preliminary remark we shall replace the two homo-

geneaus variables f 
1 

6 by ~ variable, ~ 1 and >'rite 
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the pencil in the form 

r= A.-4+-B 

where A is of the same rank as r. 
Next, r may be replaced by any pencil r: 1Nhich is 

eouivalent to r . For, let 

i I SI+ 0 J I 'T' I-# 0 . 

7/wnif (P ,Q) is an automorphic transformation of F, 
' 

i. (SPS-1 ,T-1 QT) is an automorphic transformation of r;, 
and vice versa. Thus a (1-1) correspondence is established 

between the automorphic tranformations of r and /7, • In 

particular, we may assume that !;, is the. c'anonical form 
1

) 

of r 7vhich we write in the form 

(5) 

wHERe: 

(5,1) 

( 5, 2) 

(5,3) 

using the "direct 

r;_ = A -4 + .;Jtk 

r?> = t c !!t· 11 "':!) ( o < ??1 < 'Y/2. <. . . < ?7,) 
" J = J 

su..rn of matrices which is defined as follows : 

!; + r;_ .;. -. -· i- !!.- = t r; = ~ r;;, r;_, .. J ry-) = [r, r; l ) 
z= I , r 

. ~ 

and when I;= !;_ -== ·-- ·- = t;_ = f) we 1fJrite 

r ~ r+-- -+r= r/Lr) . 
In (5,1) and (5,3) .1\ ?>1· is the typical singular submatrix 

~ 

corresponding to a ro·,y vector of minimal degree 'Ynz" 

annihilating r ,e ·-~.' 

~See Turnbull and Ait1cen 11 Canonical Matricesu (Glasgow 1932) 

and :/if.Ledermann Proc.-~din.l\Iath.Soc.(2) Vol 4 (19?i4)J=p.v.ti"/~?ui; . .:.,;, 
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and in general 

(6) 

); 

1 I. 
1 

= r: ~ :J-. 1 ) J 

1 

A 
1 S+-1, S 

We remark that As has s+ 1 ro rs and s columns. The 

pencil r:.. in ( 5, 2) is the. ll nonsingular core of r fl 

of type kx k ,say, and there is no loss of generality in 
'i). 

assuming that the matrix coefficient in r is the unit 

matrix; for since that coefficient is of the same rank 

as·~ , it must be nonsingular and may be removed as a 

factor. 

The Kronecker Minimal Indices are exhibited in the 

canonical form,viz~ 

OC., times rrn-t , 0(2 times -?7')2 
1 

• • • • • • • • for the first set, 

(3
1 
times /}'"}-t , (3, times 'Yl:z_, •••••• for the second set. 

these numbers together with the Invariant Factors of 

are the invariants of r , they are the same for all 

pencils eauivalent to p • In what follovvs ''ie shall 

J 

ass~e that [' is alre~dy in canonical form, i.e., l'o-= r. 
Since 1&1-=F 0, we may put R= &- 1 and write (2) 

as 

( 7) 

or by (5) 

•( 8) 

J 
J pI :f 0 ) I R 1=¥ 0 
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We now partition P and R in accordance vJith the three 

isolated submatrices of~ i.e., we put 

{ l~J ,... 1, 2, 3) 

Hence (8) resolves~nto nine partial equations 

or in full 

(!') Pt, r:, = ;: !( '11 ( lt!) Jj2 r:_ = r; 1?,2 C ni) f/-a r; = !; ~3 

(9) (i/) ~I r: = 11_ ~I ( 11) ll2- !}_ = !;__ R22 (/ltil) lj_3 !} = fZ /(,_ 3 

Ui'/) !&, r: = ~ /?3/ (vi) fl2. r;_ = r; R32 (iK) '11 r; = ~ ~3 

and it is the object of the follo,ning pages to give a 

complete solution to these equations, the m2..+-n' elements 

of p· and R being regarded as the unknovms. Only equation (V) 

seems to have received attention in the literature. Fo~ 

substituting for~ from (5,2) and suppressing unnecessary 

indices we can write this equation as 

whence 

and 

Hence 

!P=- R 
p v1t =- ,/}{ /( 

p ,;Jt = ,/}( p 

The solution of (v), therefore, involves the finding of 

the most general matrix P that connnutes witbja given 

matrix' M. 

This problem was first solved by Frobenius and has since 
1) 

been treated by several authors: 

' 

·---·---------~---------- ·~--- ---------
YFrobenius, " Ueber die mit einer Matrix vertauschbaren 
Matrisen 11 ~b.(l910) .rhere other references may 
be found, also D.E.Rutherford, Proc. Amsterdam Vol 35 (1932) 
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It vvas found that the number of linearly independent 

solutions of (V) is 

(10) is- "" -c .., et -r3e2. +ss + ?e4 + - - . 

where e., is the degree in il of .the Y th. Invariant Factor 

of the matrix l.l.; -~-At~ • In what follows we shall obtain 

similar results for the remaining eight equations (9) to 

which we shall refer later simply by Roman numerals. 

The total number ~ of parameters in the general solution 

of (7) is equal to the sum of the subtotals t
1 

,t.2.., •• • ,t, 

giving the numbers of parameters in the solutions of those 

nine equations ( 9) • It will be found that three of these 

n~bers are zero, i.e., that the corresponding equations 

have only the trivial solution in ihich all unkno~Yns vanish, 

and the final result will be 

t= ±t-s = -r:+-2_,tx.;~·{mi-mi+l)+-.2.f1 ~·('ni-ncr-t) r R~cr£ +~~)+~d~·!;·(???;+~). 
S==1 i:Z/ J:Zt. ' .; I t 1J 

-----··----
§.z. 

Before solving the conunutantal equations§ l( 9), -,·ie 

shall make some remarks on the typical singular submatrix 

). 
1 S+l, S 

where Is is the unit matrix of degree s, and the dot below 

or above indicates a row of zeros. 

First, we wish to determine row vectors and column 

vectors that annihilate 1\ s • Let 
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be a column vector with s elements and 

J' = [ "YJo, 17__, t - - ' '>?.s J 
a row vector with s+l elements. We then prove the following 

lennna 

LEMMA I. 

The equation 

( 2) j\ 5 X= 0 

admits only of the equation x=O, i.e., the columns of 1\s 

are linearly imdependent ; the general solution of 

{ 3) yl\s = 0 

is ~ = cptA) [ 1, -J, L-n~-- -/c-.J rJ 
where tj>O..} is an arbitrary function of A and 

u = f 1 - .:1, c-4 ) -:- - - . , r-AJ s J 
5 I 

is the 11 ve.ctor of apolarity" of degree s. 

froof : The rank of /\ 5 is s , because on cancelling 

the first rO'N of /\ 5 we obtain ·a minor vvhich is ident­

-ically equal·to unity. In the set of homogeneous equations 

(2) , the number of unknowns therefore equals the rank, 

and by the fundamental theorem of linear equations the 

system has only the trivial solution x = 0. In the set of 

equations (3) , however, the number of unkno·;ms exceeds 

the rank by unity and the most general solution is a 

scalar multiple of any particular solution which may 

be taken to be the vector of apolarity Us , since 

(4) 

as is easily verified. 



8, 
LB:MMA II 

IfPcs~tconstant matrix with s+l ro~~Is,then the equa­

-tion 

Us P= 0 

is impossible unless 

'P=O 

The proof follows immediately on writing out(5)in full 
. z. s 

and equati ·ng the coefficients of 1, ) , .A,---., .A to zero • 
..__/ 

§3. 

'Ne -now turn to the discussion of equation f1/(9). 

consider the simple case 

(1) 

which is solved by the following theorem; 

THEOREM I 

When S/< S ,equation(l)has only the trivial solution 

f-l= 0 ) R. = 0 j 

When S~ S and 0 2. $ 1 - S = d 1 sy, tg~n the general - --
solution is 

( 3) P = [ fl-i J s+1 S-r1 
I 

( 

~· "> Ql 1, • • 1 sI) 
J = 0, 1, - 1 S' 

and 
n = [ dJ ·- · Js' s f\.. 1 c;; , 

( l: =: -j t 2, · · 1 $ ') 

J = 1, 2, --, s 

where fc, ~~ ___ .1 cfYct are d+l arb~tra!X_~onstants and 

,;., = 0 {for t'-/ -;;-c( 
ji-,i t for z'-i <:a. 

E.g.,in the case s'== 5,s::::: 3,d=2,we have 



Cf. 

<Po -
if;() 

4'1 cro cp1 <k p fz. r1 <f;o 7(= 
rf<- p, cro 

4'z. fi cpo 
Pz.. cp/ o/2. f., 

lp2.. cjz_ 

Proof On premultiplying (1) by u5, we obtain by § 2)4) 

{ US' J') /)S = (} 

i.e., the vector Ct<s-.P)annihilates 1\s • Hence by lemma I (cj2) 

we have (5) 

(5) 

The elements of the vector on the left hand side are 

polynomials of degree not higher than s'. Hence compar­

-ing the first elements of either side He see that ~f~)is 

also such a polynomial. 

Now, .vhen s' is less than s , equation (5) is obvi­

•ously impossible unless rJO.) is equal to zero and hence 

(6) 

which, by lemma II <§" 2) implies 

P=O ~ 

Equation ( 1) then becomes 0 = 1\s R which entails 

R-=0 

since the columns of !1 5 are linearly independent. This 

proves.the first part of the theorem. 

Next, when s 1 2 s, { 5) can evidently be solved 

and ~(,1,) will generally be a polynomial of degree d= s'-sJ 

Putting 

{>(A)= 9o-rAA -1- tfz~ 2 -- --- '-+(;a:_ (-).Y:{ , say. 

( '- 0 I ' ,J l - I 1, - - I s / rJ = q 1, - -/ S; 

and comparing the j-th elements of either side of (5) we 
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obtain 

h h { ) ') 2. ) s/ )/ /+-' , /+2 )/ .. ~t roi +r·t,;" -;\ +)':ti {-r. r-- -·-rfs.l.{-,1 = Y'a {-~ +cj?(-).j rf"-(-~) .. ---r<f>r:i.(-A 

(j'-~~2, .. ,s) 
Hence 

P".i = Ai = ~ ~ - - = J,;--'1,/ = o 

fJ/ = cfo ; fv-+',J' = !>., j - • • i /;+<~, c:( = cfc£ 

or 
/J:.,_d.+~J = · · · · = Ps;/ = 0 

{ 

0 P-t z,'-/ < 0 

h = _,{• './_A os.. l.:-/ ~cL r t-(;' 'f't.-<~ rr-c. - (/ -
0 0 L'-i > d 

which proves the statement (3) regarding P. In order to 

,\rj dete""'f'l;'e R, we substitute § ~(l) in (1): 

' :P {A [ ~~) r {I,) j = { l {I,] • [ i,) j R . 
Comparing the constant terms we get 

J [;s'] = [Is] R 
·!ihich on premultiplication by [ · Is ] becomes 

[ · Is ] j> [ I 5 ] = R w 

The matrix R is thus expressed in terms of P, and it is 

readily seen that R is obtained by cancelling the first 

row and column of P. This proves equation(4) .It is easily 

verified that (4) and (5) are also sufficient conditions 

that P and R should satisfy ( 1). 

Corollar:y_: 

When s '= s , the general solution of 

is 
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involKing one parameter 'fo • The solution is nonsingular, 

if and only if ~ #0. 

V/e now come to the equation 

(7) 

where (o<. 1\s ),. J\sil1/··--/ll) o< times repeated). 'Hriting P and 

( ~-::; 1, 2, ... ,o(') 
\J -== '1, 2, - -~ o( 

R as 

we see that (7) resolves into O(o(/ matrix equations: 

( 8) 

of the type which we have just considered. Hence, if s 1< s 

(8) and therefore (7) is impossi'Dl1e , and if s' > s , each 

eouation (8) has s1 - s + 1 linearly independent solutions, 

and the number of parameters in thB general solution (7) 

is consequently 

C( CX I (sI- s + 1) ~ 

In particular, '.vhen s 1 :: s and 0(
1 

c< / fl;i and ~i must 

be of the form 

where 1't.i are o< 2 constants ( Corollary to theorem I) • 

Introducing a matrix 

we can·write the result as 

p - [ ~tj' Lr1 1 = _j X Lrl 
R - [ ~ti Is J - P )( Is 

using the familiar notation for Zehfuss (or Kronec~zer) 

matrices. The solutions P and Q are nonsingular , if and 

only if P is nonsingular. 
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This enables us at last to obtain the complete solu-

-tion of(i)(§l,(9)): 

THEOREM II 

the general solution of 

( 9) p [ t, (o<~· /1?7?1 8 = [ t Cct; ;L.,,)] R 

is of the .form 

[ 

!;/ . 

;: ~-~ 
involving i~all 

(10) 

arbi~~ary parameters. 

The proof.is obvious from the preceding results.For, 

again,we partition P and R in ~suitable way so as to 

resolve(9)into the equations 

~.l (Cl'/ 11'";1.) = {rx,. ILn,) R,/ 

which have already been discussed. 1 ;.ihe~i < j, vre\have m<.< '}??c/ 

<§1, (5, 1)) and therefore ~.:/ = 0; R v· = o .Further, ~i and 

1(~, are of the formJ}..=~xJ<m.-rt,·-f£""ix:.L.and F and Hare 
t ' 

non-singular if anclv1r <?.,, P2 , _ --.1 ~ are non-singu-

-lar. 

The solution of(IX),(11,(9)),viz., 

!1 [{ rfii1; J] = CJ,rf..·il~/J] R 
does not involve any nev difficulties,since the trans-

-position of this ee:uation leads us back to the pre-

-vious case.The number of parameters in the general 

solution of(IX)is therefore 

(11) -6'1 = ?. (1,: (3,. (ni - n~· + 1) 
.J;f,i.- cl 



13. 

"l'!e shall now consider(IV),viz., 

:t;;_ = C; R or 

{ 12) .? r;_ = [ J_ ( ~L· 11-mJ] R 
l=l 

where 

is a nonsingular pencil of type k~k.As before,(12Jre­

solves into a lll.J_t~ the kind 

(13) .J;.~ = 1\s, Rt' {2'=1,2,-rf'1J) 

rhere si stands for -m.., ( o< 1 times repeated), ?n2.. ( <X:~. times 

repeated)etc •• It is easy to see that (13)is impossible 

because premultiplying it by U..5L. ','Je get 

Since ~ is a non-singular pencil,it follo~s that 

Us_. J;. = 0 . 
and hence by lemma II <§ 1) 

J?- = 0 
L 

Equation(l3)novv becomes 

which entails 

the columns of A~ being independent.The solution of(IV) 

therefore contributes no parameters, i.e. . 

(14) 
r:..~;;aAe-

We get a different result, however, 1vhen V inter-

-changed,as is the case in (II),viz.: 

or 

< 1s) J> [ ~ t:~ ". A')'Y).)J = (A 4 o~-,j}(~v) R ) 
,_ 
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where S;. takes the values ?-YJ7 1 '?71 2 , • - - - ,'Yn,.., nrbeing re­

-peated· ~i times.Hence comparing coefffcients of~ 

vie get: 

J [~'] (l6dl-) 
- R 

(16-l) , r i,, J !)4 R 

':Ihere,for simplicity,~tve have dropped the suffixes of 

the matrices P and R.Let 

jJ =. [ fo I jJ '7 1 • - • I fJ~-] 

R = [--i_.., A-z.l ... I /2.,<..] 

introducing column vectors p", f>-u.- -/~ ... , /2:u -- · f'or the 

columns of' P and R each having k rows.It is easy to see 

that postmultiplication by [~") or [;s,.] has the eff'ect 

of cancelling the last or the first ro;;· .Hence ( l6a) and 

( J6~}become 
[ P<Jt f.,· · ·; A;.-1 J = [ ~~ 1 ~<.., - -~ -1s,-] 

[p~ I P2 ' . - I A- ] = [~ ll_, I ~ ~2.1 - - I 4 ~~.J 

and by eliminating ,z,, h..z._ I • - 1 .li_s-,. 

[p~, }Jz,-- -,jJs,-] = [A ;., 1 ~A~.- -~fl~ A.-'1] Nhence 
' 

' /) f<-1 ( ) a.., =- to J _.k2_ = v/(N l'c .J • ' '; A-_p.- = ~ ~ ; • f<- = '11 2 1 • I !:,-

where the k elements of the vector_.Po remain arbitrary. 

we have therefore: 
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TI_!EOREM(III) 

The general solution of the equation 

(16) 

involving k arbitrary parameters,namely the elements 

of pc . 

Since(l5),or(II),is equivalent to ~«. equatioBs of .C ,_ 

type(l6),we have at once 

(17) 

As\before,we see that(VI) (fi, (9)) ,i.e., 

pr:_ = G R 

and (VIII),i.e. 

are merely different froms of ( II) and (IV) to which they 

are reduced by transposition. !; is then replaced by a 

pencil of the same type as r; (§1, ( ~,l)and(5,3) )and the 

order of the factors is reversed while ~ 
I 

and f; play 

the same r'Ole since the only property ,-"e have used, was 

that r;_ ·was a non-singular pencil of type k><k. 

By 

(18) 

(19) 

analogy,we obtain therefore 

t: = h]p.. 
6' J"-1 (/ 

t-8 = 0_ 

fe shall no-,- show that (VII),i.e. 

P~ = r; R ,or 

( 20) 

and 

P[ f (fd.J· A'"i)J = [ ¥ c~/ 11~t· )] R 
is satisfied only in the trivial case P- 0 ; R = 0 .For 
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(20)splxts up into a number of equations 
r 

( 21) ~i 1\.,.,J """' I\ ??'le Rl'r/ 

which after premultiplication by u,~. yield 

( u'Ynt JJ.i ) 1\ ~· = 0 

whence 

the rows of A~being linearly independent(92,lemmaii). 

Hence as before, it follo·'JS that 

~/ = 0 and f?<f = 0 

We therefore have 

(22) / = 0 1::7 

It remains to solve(III)·r1hich we ;vrite as 

( 23) p [ f cc;{z 11~,· )] = C/ CA· 11~.)] R 
and which reduces to(? o<L·) ·{_ f (3_:) partial equations 

v 

( 24) J;J' 1\ '»'1.- = 1\ ;.,/ R ,./ 

each occurringc:xt' fdi times .Substituting for l1'"',and 11;.from 

§ 2, (lhve get 

P.y {A {~-m.J t [in>J] = t) [I~.·] + [· I rni J} R~;;~ i.e., 

(25) ~;;- [I:n.!} = [ I-ni . J R "i 
(26) JQ· [i~J = [· ~-] R,;;-
Let (;~""' I, 2, .. , "")' I 

J;_.i 
/ / 
\.. {/ = J, 2, - · 1 ?n,- f -1 / 

R~'J· 
'rhen( 25) and( 26)become 

(27) 

(28) ( ~ = f, 2 1 • • / "";;• ) 

'//' = 1, 2., .. ' /YY)< 

From these two eauations we infer 
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or, replacing V by v-1 and iterating the equation: 

frv = fJ-<-+-'1, V-1 =- fj-'-+-2, 0-Z ::::: . - .. = I~~ 1{ I V-~ = ... .=- ~ +-v -2 } 

say, i .e .the value of /?.v depends only on the sum of the 

suffixes,and similarly 
• 

ftj-<-,v= ~1',v-l =/l__.u..,..z,v-2... = ··=;~,«v-= ~--~-1/-2. 

1e have therefore proved the follmlfing theorem: 

THEOREM IV: 

The general solution of 

is of the form 

involvingm,+??J·parameters &t..t...!. __ . .:..~.....P....,.,.-~n· -"1 

The number of parameters that occur in the general 

solution of(III)is therefore 
( 2 9 ) {; 

3 
= ;;. 0( t' !{;· ( ?n i -1- 71/ ) { z' = '1, 2., . . , p i J' = I, 2. • ~ . , f) 

~ive now add up the subtotalS ~,1:,_, t3 , •. ,{~as given 

in§ 1,(10) and § 3, ( 10) , ( 11) , ( 14), ( 17), ( 18), ( 19), ( 22), 

and(29),and we find that the number of linearly inde-

-pendent solutions of 

(30) 

is given by 

f = £ f = r-r klc<.i -r AI.!?. +- 2. c<,ul.,;·fml-m/+ 1) r-2_ f•fv· (n_rrJ,-rl) + J. C1 1·fc· [?'Yl,t-n.;-J 
"-"'1 A. l J ru t";?.j ' J'.? i . '•J . , 

(I = 1, 2, • · 1 ~ / J " ~ 2., · ., 'J) , 
Moreover,a method has been given for actually ob-

-taining all matrices P and R satisfying (30).Since 

,1:-'t == -t-7 -= 1-a = 0 , 
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it follows that in the scheme~ 1, ( 9) 

~2. = 0 / 'R,2- =- 0 ; .7;3 = 6/ !<;:, = 0 / ~?, = 0 I R2.3 = 0 / 

so that the general solution is o~ the rorm 

Further,P and R are non-singular if and only if the 

matrices ~ / ~:~-, .lj 3 

-gular,and we have already round the necessary and 

sufricient conditions that those matrices should be 

n01i.- singular (see p .11.) • 
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1. 
ON SINGULAR PENCILS OF 

ZEHFUSS,COMPOUND,AND INDUCED MATRICES • 

§1. 

Introduction. 

In this paper the canonical form of matrix pen­
cils will be disscussed which are based on a pair 
of direct products(Zehfuss matrices) ,compound[~ 
duced)matrices derived from given pencils wh6se cano­
nicel forms are known. 

When all the pencils concerned are non singular 
(i.e.when their determinants do not vanish identi­
cally),the problem is equivalent to finding the ele­
mentary divisors of the pencil.This has been solved 
by.A..O:Ait)ten(ref.l),D.E.Littlewood(ref.2),andW.E. 
Roth(ref.3).In the singu.lar case~however,the so­
called minimal indices or Kronecker Invariants have 
to be determined in addition to the elementary divi­
sors,ref.4,Chapter IX).The answer to ~his question 
forms the subject of the following investigation. 

The method employed is that of the princi~ of 
vector chains which was first used in this connec­
tion by H.W.Turnbull(ref.5). 

Let ~A+aB be a pencils of type mKn i.e.with m 
rows and n columns.It is then possible DO find two 

-non-singular constant matrices P of degree m and R 
of d~gree n such th~ 

(la) 

there 
(lb) 

where 

being e6o zero rows and f~o zero columns and 

{ ~A;,+<11,p=diag(L,;lt .. -··L~M .. ,M~ ... M~~~~~.:- ~,Z) 

tbe symbols on th~hand side have the follow-

ing meanins 

ref.6,p.94. 
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(2a) 

is a\P•noil. of 

8lld: 

(2b) Mj=~Gj+6Fj [
~ ~ ... "l 

= . ~ : 

. . . . ~ ~I ' A • 

.=I ) .J Ji- '; ;J 
has j+l rows and j oolumns.Nkis define~as " 

(3) Ilk· fik+cSUk • l~ r 0~ ,6\ 
. ~ J ~I~ 

wherellt \.~9-/Ult are the .. u.ni t aatrix and t~e auxili::­
ary matrix of degree k. Nkrepresents the infinite la­
tent roots while L1 and K,.oorrespond to the linear 
~M.-.sa-...l ~ ~ " 
relationsVof the pencil.Pinally, 

z = ~+6D 

is a non-singular pencil for which\D\ ~o.It will be 
noticed that this canonical form is slightly diffe­
rent from that given loc.oit .But it is easy to see 
that the two forms are equivalent;for apart from re­
arranging the submatrices we have 

I 
L1 = .1\:i (loc.oito§l,(3) ) 

Mj = J j+l .1\;J j ,where 
.- 1l ' . . 

L 
' 

(4't) Jj = 
A 

. J.;; / 
' 

and N; is replaced by W:. •JPNPJP • p 

In order to state the result (1.) more conveni­

ently, we introduce the "direct sum" of utrices,viz. 
1'1:" lU./-. 'f I p-62-. 



·t . 'I .l.t.B = , B j 
and in general 

1 

.A.1.:i.2+' . •••t'h = iAi = diag(Ai,A2, ••••• ,.A.h) 
We shall als~se the abbreviation 

A~A = 2A ,A+A+A = 3A ,etc. 

lurther,for the sake of symmetry we introduce the 
two symbels 

L
0
end K

0 

to the following effect:if A is a matrix with r(>o) 
rows and s (>o} columns,we define 
( 5a) L •A • C· 4] · r ' · o ; 2L0 +• •._ · · .lJ ,etc. 

( 5b) ll
0

+A • [.4 lj, ; 214
0

-i-A == f: l ,etc. 
LA 1 

• 

i.e. the tera L
0 

[ &
0 
j means that A has to be augmen­

ted by a zero column [rowj.L
0

andM
0 

are,of course,not 
proper matrices. 

Ia this notation we can write(la)and(lb)as 

{6a) 

{6b) 

P( ~A+dB )R= eL
0 

+fM0 +( "~+6.a,) 

~At6B1 = LLn. •ll\l'W1· + ,E NP + Z 
t t / ·? ~ I( 

or mere briefly 

(7) fA+6B~"'-'ILn· +I•.,;n. + Llfp + Z 
. ' t i J - ~ 

if we include the zero indices,if any,aaong the n1 
and mj • 

According to the general theory, Z may be trans-

formed into the classical Weierstrassian form,viz. 



(8) 

and 

(9) QC = W ( o) = 6I +~U' = l' 0 
6- . --; 

" . " " f. 'f .6J,,, 
The quanti ties ex?/ Q'.v · · · are non-zero, but not neaessarily 
diatinet.SUbstituting in(7) we obtain 

(l.o) ~ ~A+cffi r-v ZLn· + ~ v . +IN + 2 Q + f wlot { «,-.) 
-z, L 7 --.., lt Pk A & .,... ......,. 

where ~ and •j are -the two sets of minimal indices of 
the pencil ~A+6B referring to the columns and rows re­
spectively.They are the minimal degrees in ~ ando of 
the column and row vectors which annihilate the pen­
cil,and they may be positive or zero.It is no loss of 
generality,however,to assume that no zeros occur among 

"1) 
thea i.e.that e=f=o in(la).But later on)when dealing 
whith composite pencils we shall see that zero values 
for ~and mjcannot be avoided. 

It shouid be noted that direct summation of matri­
ces is commutative if we do not distinguish between 

.f-' 
equivalent pencilslthus 

y(o1 +c2 )+cr(n1 +n2 )"" ~( c2+c1 )+6(D2+n1 ) 

i.e.those two pencils have the same canonical form. 

§2. 

Vector Chains and Canonical Form of a Pencil. 

In two papers by H. W. TurnbullY and the autho/1 it has 

"'! ref 6 ,:p. 93 
2) ref 2 ,§3 
}) ref 5 and ref 6. 



lm-) 
been shown how a pencil can be brought &o its canoni-
cal shape by suocessively forming certain vector chains. 
We shall here use an exteasion of this principle which 
has also been hinted at by Prof.Turnbull.Let 

~A+6B 

be a pencil with m rows and n columns and consider 
the equation 

(Ia) ( ~A+<1B)R= R· Li-l 

where Li-l is deftied in §1,(2), R is of type nx i 
and ~--is of type m x(~-'0-l!_hroughout iWl this: sectiln 
the columns of R and R f¥1 1 "be supposed to be linear­
ly independent.Put 

(1) R = [r1, r 2.,..-. ">ri] and j·'• [r1 ,r~p ... ,~ ,ri-V 
where the r's and the r•s are column vectors of nand 
~ elements respectively.Writing(Ia)in full,we have 

f <J 

(2) 

Hence 

[~A:r~-t6Br1 ,~Ar2+t1Br2 , •• -~Ari +t1Br~ = [~i\ ,o-r1+~r2 , .. ,.-r,._,J 

---- fi..td~ 

(4) Br1,:=0; Br2=r1 ; ••.•..•.........•. ;Bri_1=ri-2i··,Bri =Tt-i 

~rom(3)and(4)we derive the vector chain* 

------~------------In the two papers cited at the beginning of this pa­
ragraph row vectors are used instead of column vectors 
which we here prefer merely for technical reasons.The 
fact tha~ithe~ow or column vectors have to be dis­
tinguished,is certainly a diaantvantag~hich is,how­
ever shared by most of the other theories. 

z~i 
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On the other hand 1 suppose we have found i vectors 
~,r~ , ••• ,ri satisfying(I.);we can then define the vec­
tors i\ ,r2 , •••• r 1·_1 by( 3) or( 4) and 1et back to( I~). 
Hence(Ia)and(Ib)are fully equivalent.In the same man­
ner we can deal with the other submatrioes Lj,Mk,Q~ 
and· 'Wh(Ol) that occur in the general canonical form §1(10). 

Let 

(IIa) ~A+6B)R = RMj , 
where R must now be of type (nxj)and n of type (m~~-~) 

Put 

( 5) R= [ r l , r 2 , ••• r j 1 and l'l= l r 0 , r l , ••• r j 1 
SUbstituting(5)and §l,(~in(IIa) we~et 

Hence 
( 6) .Ar1 =r1 ; Ar 2=r 2; ••••••• ;Ar j-l =r j-l ;Ar j=r 3 ·· 

(7) Br1=r
0

;Br2=r1 ; •••••••• ;Brj_1=r3_~;Brj=rj-l 
whence we derive the vector chain 

f ~ . . • \ J-1, l. 

" " (lib) ~Br1 ;Ar1=Br2 ; ••••••• ;Ar3_1=Brj; Ar 3-f.o , eiftedt · 

Next,consider 

(Ilia) 

where • is of type·fn)(k) and n of type(m~k) .Put 
(8) R=[r1 ,r2 , ••• ,rkJ and R= [r1 ,r2 , ••• ,rk) 
and subetitute(8)and§l,(3)in(IIIa) 
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Hence 

(9) Ar1;.r1 ; Ar2=r2; ••••••• ;Ark_1=rk_1 ; Ark=rk. 

(1o) Br1=o; Br2=r1 ; •••••••• ;Brk_1=rk_2; Brk=rk_1 • 
Equation(9)and(lo)yield the chain 

-(IVa) (~A+6B)· R = R·Qg 

where r is of type(nxg) and~ of type (mKg).Put 

(11) R =(r1 ,r2, ••• r~;l= (r1 ,r2, ••• rg1 

On substituting(1l)and §1(9)in(IVa)we obtain 

Hence comparing coefficien~of ~and 6 we get 

(12) Ar1=r2; Ar2=r3; ••••••••• ;Arg_1=rg; Arg=o 

(13) Br1-r1 ; Br2=r2; •••••••••• ;Brg_1=rg_1;Brg=rg. 

this gives rise to the vector chain 

(IVb) OFBr1 ; Ar1=Br2; Ar2=Br3; •••• ; Arg-l=Brg; Arg=o 1 ¥"We & '' 

It will facilitate the work if we write the chains(Ib) 
(iib),(IIIb),and(IVb) in the following standari form 
which enables us to deal w.ith those types more uni-
formly.Let 



s. 

According as r 0 and rp are zero or not the vector 
chain(l4)1s of one of those four types,viz.of 

(15) 

type L if r 
0 

= o; 

type~;r if r = o; 
0 

Cr-t) 

(]J[~) 

type Q if r
0 
~o; rp = o CIV-C) 

type M if r
0 
~ o; rp ~ o CIU') 

They correspond to the submatrices Lp-l~~.The 
number p is called the lensth of the chain(4). R al­
ways has the columns r 1 ,r2 , ••• ,rp while the columns 
of~ are-the non zero vectors out of the set r

0
,r1 , ••• 

•• ,rp-l'rp • 

We add a simple example in order to show the prin­
cipal idea of our method.Supposing we have determined 
three pairs of matrices R1 ,R1 ;R2,R2;R3 ,R3 whijch satis­
fy(Ia),(II~),x1d (IVa)resp.We can then comprehend 
these equations in 

(~A+6B} [ R1,R2 ,R31= (R1 ,R2 ,R3l (Li +Mj+Qg ) 

Now, if the numbers of columns in R1 ,R2,R3 and R1 ,R2, R3 
~re such that the matrices R1 ,R2 ,R3 axaxa~ax• and 

R1 ,R2 , ~ are !!9.;!:! and !!2!!=!!!!!~!~!:, then we have 

proved that the canonical form of eA+6B is L1+Mj+Qg 

Our plan will therefore be to construct as many matri-
ces R1 ,R2, ••• ; R1 ,R2 , ••• as are necessary to build up 
two non ... singular niatrices (R1 ,R2,. • • ] and llt1 ,R2, • • .]. 
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Preliminary Remarks about Direct Products. 

If A =[a1;.J is a matrix of type mxn and B =(bk11 
a matrix of type pxq ,then their direct product 

(1.) Ax B = rallB. • • ·~nB\ 
laml B. • • • amnB j 

is a matrix of type (mpxn~).It can be defined for 
any two matrices.Direct multiplication obeys the asso­
ciative and the distributive law,viz. 

(A~B)xC = A~(BxC) = AxBxC 

Ax{B+C)= (AxB) + (AxC) 

(A+B)xC = (AxC ) + (BxC) 

as can easily be verified. 
T~here is also a distributivf law connecting di­

rect addition and direct multiplication,viz. 

Again, 

(3) ( AxB )' = (A'xB') 

Both these rules readily follow from the definition(l). 
It should be noted that no simple relation like(2) 
exists when the second factor is a direct sum. 

the most important property of direct multipli­
cation is the multiplicative law 

(4) (RxS) • (AxB) = ((R·A)x(S•B)) ' ) 

if A and B are square matrices of non-singular de~­
minants,so is AXE .This follows from(4) •y putting 
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A-1 d -1 R = an S = B .The right hand side then be-
comes a unit matrix and neither of the factors on 
the left can be of zero determinant. 

Consider the transformation of two sets of vari­
ables: 

..,., 

fi 2: C(z. 
r_. Cz· = 1 2 ., ?-n) 

~·~ -1 ',! 
;; ' ' 

(5a) 

~ i 4k}j {-4== 1, 2, 
\ 

-== 1-~~ ... , PJ 
't= 1 

or in vector form 

(5b) r = A x 

s = B y 

introducing column vectors 

r = { f1 f 2 . · · · , f,., J X = { f'l ( '(2. ' .. ' s'>r J 

s -{~ 0 
- 1( }..1 ( 6j, ] y = { ?J,, ~,_, .. I ~r] 

On account of( 5a) the m ·P products f; ~ are linear 
functions of the np products ~·~~the matrix of the 
coefficients being A x B ; this follows at once from 
( 4) , because 

(rxs) = (Ax ><By) = (A x B)(xxy) 

and the elements of rxs and of(xxy)~-~/just 
the products Yi o~ and ~· ??-,; 

Direct mul tiplica·sion is not commutative, but we 
shall obtain a substitute for this property through 

THEOREM I 
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THEOREM I 

The two products AxB and BxA are related to 
each other by an identity 

(6) Q(~B)P-l = (BxA) 
where P and Q are permutation matrices 
which depend only on the types of A and B 
and not on their elements. 

Proof: Apart from the order the vectors(xxy) and(yxx) 
contain the same elements, viz. the nq products ~· ~;" · 
We can therefore find a p•rmutation matrix P of de­
gree nq such that 

(7) (yxx) = P(xxy) 

(sxr) = Q(rxs) 

and similarly 

where Q is a permutation matrix of degree mr .Evi-
p~& 

dently tbese mat~iee~ do not depend on the elements 
of x,y,u,v but only on the numbers m,n,p,q. By(5a) 
and(4-) we have 

(rxs) = (AxB)(xxy) 

( sxr) = (BxA)(y~x) 
p-u-

OnAmultipljing the first equation by Q and substitu-
ting(7) we get 

(r~~) = Q(AxB)(x~y) = (BxA)P(xxy) • 

Since there is obviously no linear relation between 
the elements o:f (xxy) we obtain 

Q(AxB) = (BxA)P 

or 
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Let r 1 ,r2 , ••• ,rm be the columns of the non-singu­
lar matrix 

(8) 

• • • .rmm 1 
i.e.suppose that the m vectors 

r1 = [r11 ,r23 , ••• rmj\ (j=l,2, •• ,m) 
i 

are linearly independent. Si~arly,let s1 ,s2 , •• ,sm 
be the columns of a non-singular matrix-

611 612 • • • • 6ln\ 
I 

(9) s = ~l,s2, ••• ,s~ 

where 

(k=l ,2, ..• n) 

We shall then prove the 

LEMMA I 
If rJ (j=l,2, •• ,m)are m linearly independent 

column vectors of degree m,and sk ~k=l 2, •• n) 
,...~ 

n linea~yvcolumn vectorJ of degree n,then 
the mn vectors 

(lo) r j >< sk 

of degree mn are linearly independent. 



Proof: Supposing we had a linear relation 

~ cjk rij shk = o (i=l,~.,m;h=1,2, •• ,n) 
g;/? 

which is equivalent to the matrix equation 
• 

RO,S' = o ; 

if we put 

(j=l,2, •• ,m;k=l,2, •• ,n). 

Since R and S are non-singular,it follows that 

c = 0 

i.e. the vectors(lo) are linearly independent. 

We shall require another lemma which goes a 
little further than the preceding one: 

LEMMA II 
Let rj(j=l,2, ••• ,m)and sk~k =1(2, ••• ,n)be de­
fined as in lemma I and let E k)(k=l,2, •• ,n) 

be a set of n non-singular matrices of de­
gree m;then\the mn vectors 

(E(k)r x s ) 
of degree ~re k linearly independent. 

Proof:. Since R in(8)is non-singular,we can write 
a. 

down the matrix equ~ion 

(12) 

where 

(13) 

is non-singular.By picking out the jth column on 



14. 

either side of(l2)we get by(8)and(l3) 

E(k)r. = 2 r.,;,~~) 
J ""~ .&..1 J 

and after direct~ultiplication by sk 

Supposing these vectors were linearly dependent we 
could find mn constants zjk not all zero such that 

· L zjk(E(k)rj xsk) ~ 2._ zjka(~~(rh>< sk) 
J, ll -f, .;~ k 

According to lemma I it now follows that 

or 

(14) 

if we put 

' a.(k) z = 0 L -nj jk 
i 

(ll=l,2, •• ,m) 
(k=l,2, •• ,n) 

(k=l,2, •• ,m) 

zk = { zlk' z2k' • • • zmk} 

= 0 

But since A(k)is non-singular,we infer from(l4)that 

zk = o (k=l,2, ••• ,m) 

i.e.the, vectors(ll)are linearly independent. 

Now,oonsider the pencils: 

(15) B = (>A+6B of type mxn 

and 
(16) of type pxq 

From these we derive a new pencil 
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(17) (H\K) = Q(A-,cC)+6(B,c.D) = QX+6Y *) 

of type mp~nq.In the subsequent section we shall de­
termine the minimal indices and the elementary divi­
sors of(l7)~those of(l5)and(l6)are known.Here we 
will first estavlish some simple rules regarding 
(HIK)which will facilitate~he investigation~ 

(18) (H\K)' = (H'\K') 

(19) (H\K) ('V (K\H) 

For by theorem I the products(AxC)and(BxD)can simul­
taneously be transformed into (CxA)and (DxB),i.e.we 
have 

Q(AxB)P-l = (B~A) 

Q(C~D)P-l = (D~C) 

with the same matrices Q and P.On multiplying by ~ 

and 6 and adding we get(l9). 

If R is equivalent to H and if [ is equivalent to 

K,then 

(2o) (H iK").., (H !K) 

For let Ii = pl (~A+6B)Ql = ~PlAQ1.•6P1BQl 

and 

then 

(P1~p2 ) [\>(AxC)+6(BxD)] · ( Q1x.Q2) = ~(P1AQJ.?<p2cQ2 ~+6(P1 BQy<~ D~) 

..llj This is, of course ,not eq~l to (H~) which would be 
in general of the\second degree with respect to ~ and 6 • 
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or ~ 1.-n -1/..t-~Ll7)~ : . 

(P~P2 )(H\K)(Q1xQ2 ) = (H\t) 

Next,let 

H = Hl+H2 = ~(Al+~2)+6(Bl+B2) • 

By(2),we obtain 
(21) 

If,on the other hand 

K = K1+K2 , 

we have 
(H\K1+K2 )~(K1+K2!H) 

by(l9) and hence 

(22) (H\K1+K2)0V(H\K1 )+(H!K2) • 

(2l)and(22) t~ogether yield the useful formula 

(H1+H2 lK1+K2)~(H1\K1 )+(H1\K2 )+(H2 \K1 )+(H2 (K2 ) 

or,more generally* 

(23) ( 2: Hi! EK. )"-' g<Hi\ Kj) 
i (/ J z;,l 

When investigating the invariants(i.e.minimal 
indices and elementary divisors)of the pencil 

(H\K) 

we shall first of all replace H and K by their canoni­
cal forms(§l,lo)which is permissible by(2o).Secondly, 
since H and K will then appear as a direct s~we only 
need to determine the invariants of the different te~ 

~This formula has implicitly been used before by va­
rious writers,e.g. 

Williamson,Bull.Amer.Math. Soc. 37 ,p: 586 ( I~J-t) 
Rutherford,Proc ,Akad. Wetensch.A.msterdam, 36, p435 C/133) 
Roth, ref.3,p.463. 
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(24) 

by(23).Now,in the canonical form§lilo)there occur 
five different kinds of pencils,viz. 

(25) ~,M,N,Q,andw, 

if we for brevity leave out the indices referring to 
the degree and write W instead of W(~)or W(~)etc •. 
Hence twenty-five different pairs(24)seem to be 
posstble since each pencil(25)must be combined with 
itself and all the others.But on account of(l9)their~ 
number at once reduces to fifteeB which may be arrangect 
in the following scheme: 

1, (Ll L) 2.(LIM) 3. (LI N) 4.(1\Q) 5.(1\ W) 

6. (M\M) 7.(M\N) a. (M\ Q) 9.(M\W) 

(26) lo.(NfN) . ll.(N\Q) l2,(NI W) 

13. ( Q\ Q) 14.(QIW) 

15.(W\yO 

Some of these cases will r~ily be eliminated on 
account of symmetry in the formulae or similar argu­

ments; ~tly the last three cases have ~n\~~~~-~dvcon­
sidered;they cover the case: of non-singular pencils. 
For the remaining ones we shall obtain explicit solu­
tions in the next section. 

§4. 
Special Pencils of Direct Products. 

We shall first q~te Ai tkerrs and Roth' s results in · 

our notation: 

ref.l, 2, 3. 
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~REM II•(casel5) 
If m~, ~/=o , (d ~o ,we have 

(WcO\J\ w (/3) )c-..w (<(f,J)+w (o.fJ)+w (~p).+ .••• +w («ft). 
?r~-tn-, m~.....,_~ m.-n-s .,.,1->1 .... , / 

if m~n,~·~ interchan~; m and n in the 
above results. 

THEOREM III(case 14) 

( ~ J W n ( o< ) ) ......_ Qm +~ +. • • • • +Qm = nQ 

for o(.~o. 

THEOREM IV (case 13) 

(~\Qn)c--.- 2Ql+2Q2+ ••• -t-2Qn-l+(m-n+l) Qn 

for m~n .If m~n,we have to interchan~ m 
and n in the result. 

An equation between or an equivalence of two pencils 
is always an identity in (' and 61' we are therefore 
allowed e.g.to interchange ~ and 6.If we do this,the 
pencil 

(§1,9) 

becomes 
(91,4) 

which is equivalent to 

(see p.2).By the same substitution 

(~\Qn) = 6(Im~n)+p(U~xU~) 

is transformed into 

( NJti \Nn) = p( !ut' In)I(U~xU~) 
~il ,which is equivalent to 



~. 

by§3 ,2o 

Hence from theorem IV we can at once derive the 

COROLLARY (case lo). 

( Nml Nn) "'2N1+2N2+ •••• +2Nn-l +(m-n+l )Nm 

for m~. If m4n,the indices m and n have to 

be interchanged. 

Before entering into the discussion of new cases 
we shall explain our method by a simple example: 
Fi~~ the __ c~onical form of the pencil 

(1) 

where· 

(la) 

and 

(lb) X = (A,cC) ; Y = (BxD) • 

L2 is of type 2x3 and M3 is of type 4"3 (§1,(2)and(3)) 
Hence (L2\M3) is of type 8x9 .We write(la) as 

(2} 

(3} 

(~A+6B)R = RL2 

(~C+6D)S = SM3 

where R,R,s,S are non-singular matrices;let 

(4} a) R=[r1 ,r2 ,r3) b) R=[i\,r2] 

(5) 

The vectors ri ,rot, s/, si!:, are thera:ore of degrees 3 , 
2,3,and4 resp.According to§2 equations(2)and(3)are 
equivalent to vector chains of type(Ib}and(IIb)which 
we write in the standard form §2,(14): 
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(6) - Br • - r2= Ar2= r = rl= Ar1= Br2; Br3; r 3= Ar3 0 1' 

( 7) - Ds1 ; - cs1= Ds 2; s2= cs2= s 3= cs3 
:s = S1= Ds 3; 0 

where 

(8) - - sol=o; s31=o ~ = 0;. r3;::: o; • 0 

We now introduce 9 vectors of degree 9 

( 9) 

and 16 vectors of degree 8 

(lo) 

The sets (9)and(lm) can be arranged in two arrays: 

- (11) (12) (13) 
(11) a)(21) (22) (23) 

(31) (32) (33) 
b) 

roar cor> r02> <03> 
(lo) (11) (12) (13) 
(20) (2L) (22) (23) 
(3o) (31) (32) (33) 

Since R and S are non-singular matrices,the 9 vectors 
of(lla)are linearly independent(§3,lemma I ).In scheme 
b)the vectors in the first and in the last row are zero 
on accoun~of (8);the remaining 8 vectors are linearly 
independent according to the same lemma because ~ 
and 'S are non-singular.Next, we m5..mber the diagonals 
of thlbse two schemes bJ' attaching to them the diffe­
rences j-i which are constant for all elements(i,j) 

:;;-... 
that lie on the same diagonal~ach diagonal jo~on-
~R a matrix whose columns are the vectors 
which lie on this diagonal,provided they are not zero. 
Thus 
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'-2- [(31)) 

T_1= [(21)
1
(32)) 

T0 -,= ~11),(22);(33~ 
(12) a) ._ 

T1 = [(12), ( 23 )) 

T2 = [(13)] 

T_2= [(2o)J 

T _1 = [< lO) ,(21)) 

b) T0 = ~11),(22)] 

T1 = ~121(23)) 

¥2 = [(13)] 

Now by(6}and(7)and by §3,(4)we have 

(r~sk)=(ArhxCsk)=(rh~sk)(A~C) (h::l,2,3;k=l,2,3) 

and 

(for h=o,l,-2;k=o ,1, 2) ; or 

(13) (h,k) = X(h,k) 

: (14) (h;k) =Y(h+1,k+1) 

(h=l,2,3;k=1,2,3) 

(h=o,l,2;k=o,l,2) 

These two equations enable us to set up vector chains for 
the pencil ~X+6Y. 

(15a) (oo)•Y(11); (fi)=X(ll)=Y( 22); ( 22)=X( 22)=Y( 33); ( 33)=X( 33) 
(15b) (Ol)=Y(l2);(12)=X(l2)=Y(23);(23)=X(23) 
(15c) (o2)=Y(13};(13)=X(13) 
(15d) (1o)=Y(21);(21)=X(21)=Y(32);(32)=X(32) 
(15e) (2o)=Y(31);{31)=X(31) 

In order to see to what submatrices these chains 
belon&,we h~ve to investigate their initial and final 
11nks.In(l5a)we have by(8) 

(oo)=o (33)=o 
[ft.p5}) 

Hence(l5a)is of type(.LJ.v,and corresponds to the subma-
trix L2.In fact,we can establish the equation 

(16a) (pX+6Y)T0 = T0L2 
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~he ohain(l5b)starts with a zero v~r and finishes 
with a non-zero one.It is of type( )and equivalent 
to: 

(16b) 

In the same way we obtain the equations 

(16)) 

(16d) 

(16e) 

(~X+6Y)T2 = T2 .1 

(~X+6Y)T_1= T_1Q2 
(QX+6Y)T_2= T_2Q1 

The classification of the chains(l5)can be illu­
strated by means of the scheme(llb)which is .\divided 
into three areas by the two horizontal lines;the 
middle part is occupied by u:xma non-zero vectors 
while the top and the bottom is filled up by z~os. 
When produced both ends of the diagonal with suffix 
zero enter the zero area;the corresponding chain(l5a) 
therefore starts and finishes with a zero-vector. 

~~~~~~ The diagonals 1 and 2 ~ only at the top,-1 and 
-2 only at the bottom.This is characteristic for sub -
matrices N and Q resp, 

Equations(l6)can be combined in: 

(17) (~X+6I)m = ~(L2+N2+N1+Q2+Q1 ) 

where 
T=[T

0
, Tll T21 T_1T_2l ~ T-[T01 T1, 'T2, T_l!'T_2J 

T has nine columns,viz.the columns of T
0

,T1 , •• taken 
together;they are linearly independent because they 
are just the vectors arranged in(lla).Hence T is a 
square matri~ of non-zero determinant;th~an be shown 
for t and we have therefore proved that the canonical 
form of eX+6Y is 

L2-i-N2i-Nl4~i+Ql • 
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?~~l!e~io 
£nYthe general case we have two standard chains(§2,14) 
of length m and n reap. 

(18) r 0 =Br1 ;r:l=A:£1:;:Br2;r2=Ar2=Br3; ••• rm-l=Arm-l=Brm;rm::Arm 

(19) s0 =Ds1 ;s1=cs1=Ds2;e2=Cs2=Ds3; ••• sn-l=Csn-l=Dsn;sn=Csn 

As iru~ the example we define the vectors 

(2o) ( i , -~) = ( r 11( s j ) (i=l,2, •• ,m;j=l,2, •• ,n) 

and 

(21) (h=o,l,,.,m;k=o,l, •• ,n) 

and arrange them in two arrays 

(11) (12) •••• (Ln) 

( 22 ) a) (21) (22) •••• (2n) 

- .. ' \ . .. ~ . -'. '("\" ) > ·~:.i.~ , ; ~. : . ~ 

(ml) (m2) (mn) 

Again, put 
X=(A~) l 

'1 

(oo) ( o1) •••• (on) 

( lo) ( 11) •••• ( ln) 
b) 

~- . . 

(iilo) (ml) •••• (mn) • 

Y=(BxD) • 

As in (13)and (14)we have then by~8)and(19): 

( 23) (h,k)=~,k) , (h=l, 2, •• ,m; k=l, 2, •• ,n) 

( 24) (ll.,,k)=Y(h+l ,k+l) (h=o, 1, •• ,m-Jyik=o, l, •• ,n-1) 
-~ 

which allows us to establish vector chains correspon-
ding to the diagonals of the schemes(22).E.g.if m<n, 
the iiBg...XBx*l~exlxa~: chains referring to the diago-

nals -l,o,andl are: 

(!O)=Y( 21); (2r)=X(2::L)=Y( 32); •• ,; (m-1 1m-2)=X(m-l ,m-2) =Y(m,m-1); 

(m,m-1 )=X(m,m-1) 
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('oo)=Y(ll); (IT)=X( 11 )=Y( 22); •• ; (m-1 ,m-l)=X(m-1 ,m-l)=Y(nyn); 

(m,m)=X(m,m) 

( ol )=YQ12); (n")=X(l2 )=Y( 23); •• j (m-1 ,m)=X(m-1 ,m)=Y(m,m+l); 

(m,m+l)=X(m,m+l) 

An investigation of the initial and final terms will show us 
what submatrices these chains represent;this can best 
be done by examining the corresponding diagonals -l,o, 
and 1 in the scheme(22b). 

Let us now consider the case 

(Lm-1\Ln-1) • 

In analogy to(2)and(3)we put 

((>A+6B)R = RLm-l 

(QC+6D)S = SLn-l 

where(cf.§2,1) 

(S5) a) R=(r1 ,r2, •• ,rml b) R=[r1 ,"r2, •• ,~m-lJ 

(26) a) S=[s1 ,s2, •• ,sJ b) S=[e1 ,s2 , •• ,sn-lJ 

~Hilil!ti:k.x are non-singular ma-trices whence 
the column vectors r.,rk,s.,sh are of degrees m,m-l,n, 

ecl:i.,.J.., 1 J 
and n-1 resP..In the chains(l8)and(i9)we have by§2(15) 

A 

(27) r = o; r = o; s = o; sn= o. o m o 

Consequently,the first and last row~ and column# of the 
scheme(22b) consist of zero vectors while the remai­
ning(m-l)(n-l)vectors of degree(m-l)(n-1) 

(h,k) (h=l,2, •• ,m-l;k=l,2, •• ,n-l) 
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are linearly independent by§3,lemma !.Suppose that ~n. 

The two schemes(22)are then sufficiently described by~ 
the diagrams: 

._ . .,. ________ ----
[-!t)..--_...;..,-___ ~1'11) 

( 28) a) b) 

{~1) hh-, ... ) (.,.,, ... ) ( --------- ~'YJ) 

From the left diagram we can find out the lengths of 
the n+m-1 diagonals.In the right hand diagram the non­
zero vectors(h,k) fill up the inner rectangle while 

CL-~-~~ 
the space between the two rectangles is (oeeuried l:ty) 

zero vectors.From(28a)we see that the diagonals 

(ZV -(m-1) ,-(m-2), •• ,-l,o ,1, 2, •• , (n-m) (n-m+l), (n-m+2) •• , (n-1) 

are of the respective lengths . 

1_ , 2 , •• ,m-l,m,m,m, •• ,m , m-1 , m-2 , , 1 

On the other hand,diagram(28b)show~ us that every diago­
~t Cf;J 

nal enters the zero area at either en~i.e.every chain 
A 

starts and finishes with a zero vector and is therefore 
of type(~),(§z).As in(l2)we introduce matrices Tpand 
T whose columns are the~ectors which lie on the pth 

p 
diagonal of diagram a)and b).In the latter caee we have 
to leave out the zeros of the diagonal

1
if any,e.g.: 

T_1= [C1o)(21) ••• (~-1)) T_1= [(21)(32) ••• (m-1,m-2)] 

The corresponding chain is of length m-1 (by(29))and 
is therefore equivalent to 

(3o) (§2,end) 
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Similar equations hold for all indices.Finally,we re­
mark that 

and 

are non-singular matrices their columns being the vec­
tors arranged in (22a) and b).We can therefore sum up 
equations(3o)and those related to other diagonals [U 

m-,2_ 

(311) (~X+6Y)T=T( (n-m+l)Lm_1+2J:Li). 
,_~o 

Special attention is to be drawn to the fact that T con­
tains two partial matrices more than T viz. T-m+l and 
Tn-l because in diagram(28b)the corresponding diago­
nals -m+l and n-1 consist only of zero vectors.In~act, 
by(27)we have 

(~X+6Y)(m,l)= o 

( (>X+6Y)(l ,n)= o 

This is accounted for by two zero columns in the cano­
nical form(§l,end)which we write asjL0 (~1,5).(3l)may 
be enunciated as 

THEOREM V ~case 1): 

If m~n, we have 

Since 
(§3,19) 

the assumption m~ is no loss of generality.If m~n,we 

have to interchange m and n. 

Again,by transposition we obtain(§3,18): 



27. 

m-:L 

( 32) (L~l L~)rv (n-m+l )L' +2 fL! 
m i~o l. 

Evidently, 

OJJ 

(see p.2,equat.4).Hence Lj_"-'Mi and(32)yields the 

COROLLARY (case 6 ) 
,-1. 

(Mm! Mn)"-' (n-m+l)IVI +2,EM. m . l. 
l~O 

for m~n. 

Next,consider ~he case 

( Lm-1\Mn) = ~X+6Y 

Th~l8)and(li)still hold if we put 

(~A+6B)R = RLm-l 

(~C+6D)S = SMn 

where 
(34) a) R=(r1 ,r2 , ••• ,rm] ;b) R=(r1 ,r2 , ••• ,rm_1 j 

(35) a) S=[s1 ,s2:,J ••• ,snJ ;b) S=[s
0
,s1 , ••• ,sn] 

Instead of(27)we have now(§2,15) 

(36) ro= o; rm= o; so~ o; snf 0 

Consequently,the first and the last row of the scheme 
(22b)c?nsist of zero vectors while the remaining vec­
tors are a complete set*of vectors of degree(m-l)(n+l). 
Supposing m-l~n we can represent(22a)and b)by the dia-
grams: 

*i.e.they are linearly independent and their number 
equals their degree so that a matrix whose columns 
(rows)they are will be of non-zero determinant. 
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~ {.0") 
(To· ci?ij 

I", . . 
' ",._ , I 
I •• "" I G) : <X)··,, (J) 'J) 
; "" ',. ! 

c;m.:;i;t>J : '-, • '•. I Gn- :.i., nJ 
i 

~~ .__ _____ __j(.m, ... ) 

The top and bottom story of b) are occupied ty zeros. 
We have to distinguish three categories of diagonals: 

ol.) the diagonals 
-m+l,-m+2, •••• ,-l 

are of lengths 
1 , 2 , ••• ,m-1 • 

the corresponding diagonals in b) enter the zero area 
at the bottom. The chains are therefore of. type G.: ( §2, 

(15))and give rise to equations 

( 38«) 

where the columns of Tx and Tx are the vectors that lie 
on the xth diagonal of the schemes(37a)and b). 

~) the diagonals 
o,l,2, •••• ,n-m-l,n-m 

~1-h-~kk 
are all of length m;in b)they overlap twice and the 
chains are consequently of type~.Hence 

r> in the third category the diagonals 
n-m+l,n-m+2, ••••• ,n-l,n 

are of lengths 
m-1 , m-2 , ••••• , 2 ,1 • 
~fk~ 

In b)they &Vsrlapvat the top;the corresponding chains 
are therefore of type Hi-N -: 

(~X+6Y)Tz=TzNn-p (z=n-m+l,n-m+2, •• ,n) 
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We\can summarize the three equations(38)in·;,, . 
.,._1 .,-3.. 

(39) (~X+6Y)T = T(~Qi+(n-m+l)Lm-l+~N1 ) 
where T and T consist of the columns of T and T ta-

P p 
ken together;as before we see that they are non-singu-
lar matrices whose columns are the complete sets of 
vectors arranged in diagram(37a)and in the non-zero 
area of diagram(37b).It can easily be shown that the 
formula still holds when m-l=n in which case area p) 
does not appear.Replacing m-1 by m we have 

THEOREM VI (case 2) 
.,.,... ""' 

( 4o) (Lm \Mn) "'(n-m)Lm+ .f Qf+- Iui 
ll-=-1 i•J 

for m~n and 

for m~n. 

The second part of the theorem easily follows from the 
first one;for by transposition we obtain from(4o): 

.., m 

(L' \M')"-' (n-m)L~+ LQj_+ }Nj_ 
m n t .. t i=' 

By(33)we have 

( 41) L~ "'~ ; M::,_ rv Ln 

and similarly 
(42) Qj_ = 4'iQ1J 1 ;henceQj_r-..JQi 

(43) N' 1 

Substituting this and using §3,(19)we get 
.,.,., ,., 

(L jM )rV(n-m)~+~Qi+~Ni (m~n) n m 1 ,.:~. .: .. 

which is identical with the second statement of the 

above theorem when m and n are interchanged. 
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The case m=n is especially interisting;for although 
both Ln and Mn are singular pencils,the compesite pen­
cil(Ln1Mn)is non-singular of degree n(n+l) its determi­
nants being equal to 

~!n(n+l) 6 !n(n+l) • 

We now proceede to the discussion of the pencil 

(Lm-liQn) = ~X+6Y 

Instead of(36)we have here: 
(44)' ro=o·r :::o•s _Lo·s =0 

' m ' oF ' n (§2,15) 

diagrams which repre-

where the space between the two rectangles in b) is 
occupied by zero-vectors in virtue of(44).Again,we have 
three categories of diagonals K&Btai•iwg which may be 
arranged in the following table containing the number o£ 
each diagonal,its length,and the submatrix which it 
represents according to §2,15. 

f3J rJ ot) 
diagonals -1, -2, •• ,-m+l o , 1 , •• , n-m n-m+l,n-m+2, •• ,n-l 

lengths m-l,m-2, •• , 1 m, m, •• , m a-1, m-2 ,,., 1 

submatrices et_;; Qrn-l' •• ,Q 1 

Hence we can establish three kinds of equations: 
~ I 

I (nX+6Y)t =T Q L (x=-l,-2, •• -m+l) 
' X X m+;lJ 
(~X+dY)Ty=TyLm-l (y= o, l, •• ,n-m) 

(l)X+6Y)T ~•!f.:·L (2=r.-m1-:;., . .. ) n-3) 
' 2i . z .-n-l-1 
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or 

(47) 

where T and T are non-singular matrices whose columns 
are those of Tx,Ty,Tz taken together,i.e.the vectors 

( i, j) ( i=l, 2, •• ,m; j=1, 2, •• ,n-.r>d 
and 

(h,k) (h=1,2, •• m-l;k=o,1, •• n-1). 

resp.which again form two complete seta of vectors. 
) 

if m~>the characteristic rectangles assume the sha-
pes 

(48) 

i""'r~~~-)- l ""' 
a) [ ;),~· 

I . l 
(m-t) L j ) ______ .... (~ 17) 

and the table of diagonals becomes 

diagonals o , 1 , 2 , •• ,n-1' -1,-2 •• ,-m+n -m+n-1, ,-m+l 

lengths n ,m.!l,n-2, •• , 1 n, n, •• , n n-1 ' .. ' 1 

Q..,_~ ' •• ' Q :t 

In the same manner we now get 

(~X+6Y)T = T(~i+(m-n)Qn+~Qi) 
t=o a-... 

(49) (m,: ~71) 

It is easy to see that(47)and(49)yield identical results 
when m=n : 

THEOREM VII{case 4 ) 
..,_1 M1'-J. 

(Lm-1\Qn)~(n-m)Lm-l+~Qi+~Li 
~- ... 

,-::1. n-:t. 

<I.m-1 \Qn)N (m-n}Qn+ [Qi+ ~Li 
l-::1.. ?;"'0 

for a~n 

for ~n 
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By transposition and by(4l)and(42)we obtain 

COROLLARY I (case 8) 
m~-.1 .,._:1 

<~-l.f Qn) rv(n-m)~-1+ EQr+ JMi for m~n 
t-: I i~O 

(~-l l QA "'1(~~n) Q11 + %Qf+- f:Mi for :uu.n 
o-~ 

Further corollaries can be obtained by interchanging ~ 
and 6 in the above results.This process replaces Q1 by 
N1 and vice versa,while Li and M1 are transformed into 

resp.and therefore remain equivalent to themselves 

COROLLARY II (case 3) _ 
-t'rl-:1 ,_""" 

. (Lm-11Nn)rv(n-m)Lm-l+~Ni+ JoLi 

<~-llNn)'"'"' (n-m)Nn +lNi i[f;. - ""' ,.., 

and 

Next,consider the pencil 

;(Nm \Qn) = ~X+6Y • 

We have now to put 

where 

(~A+6B)R = R Nm 

(QC+6D)S = S Qn 

for m?:n 

for ~n 

for m~n 

(5o) a) R=[r1 ,r2, •• ,rm1 

(51) a) S= [s1 , s 2 , • • , sn] 

b) Ii=[r1 ,r2 , •• ,rml 

b) "S'= [so, 'il' •• ;sn-~ 
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are non-singular matrices and 

(52) r == o· 0 • 

supposing that •sn we can illustrate the different vec­
tor chains by the diagrams 

((JOT------------,\(~) 
t11} (1"!) (~ C-t, n-1) 

(53) \ ' ~ ~-----, 
a) '\ b) ' '-._ . 

' \, o{~" ~~~'-",,~) eA)·\. #) ) 
\ 

( <7n1} {mnJ 
- ' ·, 

(m, d) " Gn,.,J 
from which we tabulate the diagonals as follows 

diagonals -1, -2, •• ,-m+l o, l, •• ,n-m-1 n-m,n-m+l, •• ,n-1 

lengths m-l,m-2, •• , 1 m, m, •• , m m, m-1 , •• , l 

subaa.trices M.,.-:1. ,14,..2 , •• ,M 1. 

~~~ CV<.U-

for the diagonals of o<)do not o"erJ ep at allJthose of fl) 

~~~ once viz. at the top and those of y) twice.Correspon­
ding to the three kinds of diagonals we have three sets 

of equations 

( 54ot) 

(54~} 

(54!) 

(~X+6Y)Tx= Tx~+P 

( ~X+6Y)Ty= 'TyNm 

(x=-1,-2, •• ,-m+l) 

(y= o, l, •• ,n-m-1) 

Let T .be the matrix whose columns are those of Tx' 
T ,T taken together;it will then evidently posses as 

y z 
columns the mn vectors (i,j) arranged in(53a);they 

form a complete set of vectors and hence T is square 

and non-singular.If we define T in a similar way,we 

have by( 54) rxj ~~ t> : 
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(55) 

ButT is not a square matrix,in that it contains only 
nm-1 columns,viz.all non-zero vectors o~ the scheme 
(53b)except(m,o)=;;.(rmxs

0
),Fo which lies on the diagonal 

with suf~ix -m.This diagonal has not been considered 
since it does not occur in diagram a).The matrix 

T-It= [(m, o) ¥] 

is,however,square and non-singular and we shall write 
the right hand side of(55)as 

[(m,o) T] [ • l 
~X1+6Y1 

i.e.the canonical form is to be augmented by a zero 
e~a which we deno~ M

0
(§1,5b).This is analo­

gous to the term Lcf"nic~ is due to the fact that 

a non-zero diagonal with index n-1 occurs in a)but not 
in b). We have therefore proved 

THEOREM VIII(case 11 ) 
-m-:1. -n>-1. 

(Nm\ Qn)rv l,Mi+(n-m)Nm+ f.:oL1 
~ 0 

for m~ 
~-1 ~-1 

(Nm \Qn)"' i~Mi+(m-n)Qn+ ~Li for m~n 

The second result easily follows from the first one 
by interchanging ~ and tS and m and n(cf.p.32).Although 
composed out of two non-singular pencils N11 and Qn the 
pencil(N

11
\Qn)is always singular. 

For the remaining cases our method has to be modified 
owing to the appearence of the submatrix Wm(q-), CAFO• 
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We shall first consider the pencil 

(Wm(~)ILn) = ~X+6Y. 

By §1, (8 )we have 

(56) Wm(~) = n(~I +U')+6I 
t" m m m (<X/:o) 

Put 

or 

(58) (~C+6D)S = S·Ln 

where 

are square matrices of non-zero determinant;they are, 
in fact,unit matrices of degree n+l and n. W~ have 
then byt%~ §3,17: 

(6o) X = (E~C) Y = (IxD) 

where 

(61) E = o(I +U' m m (0\.~o) 

is a non-singular matrix;for brevity,we shall write 
I instead of I .According to§2,equ.(58)above is equi-
- -m . 
valent to a vector chain of type( L ,)viz. 

(62) o=Dso; Sl=Cso=Dsl; s2=Csl=Ds2; ••• ; Sn=Csn-l=Dsn;. Csn=o. 

Next,let 

be·any set of m linearly independent column vectors of 

degree m.By §3,lemma II,the m(n+l) vectors 
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(63) (i=l,2, •• ,m;j=o,l, •• ,n) 

each of which has m(n+l) elements,are linearly inde­
pendent and so are the vectors 

(64) (h=l,2, •• ,m;k=~~··• n) 

which are of degree mn .We arrange these two com­
plete sets in two schemes 

( 65) a) 

(lo) (ll) ••• (ln) 
(2o) (21) ••• (2n) 

(mo) (ml) ••• (mn) 

b) 

(11) (12) ••• (ln) 
( 21) ( 22) ••• ( 2n) 

( ml ) ( m2 ) ••• ( mn) 

By(60)and (62)we have (s~ Ds.,=o/ Csn=O): 

(66) Y(i,o)=o ; X(i,n)=o (i=l,2, •• ,m) 

(67) X(i,j-l)=(EjrixCsj-l)=(Ejr~Dsj)=Y(i,j)=(i,j) 
for i=l,2, •• ,m;j=l,2, •• ,n .These relations can be 
summarized in the vector chains: 

(68) o=Y(i,o);(T;l)=X(i,o)=Y(i,l); ••• ;(i,n)=X(i,n-l)=Y(i,n); 

X(i,n)=o 

for i=l,2, •• ,m. If we put 

(69) T. = r(io) {il) •• (in)1 ; Tl..= [(il), (i2)
7 
•• ,(in)] J l. ~ } , ) 

(68)is ~quivalent tm(cf.§2,Ia and b): 

(QX+6Y)Ti= TiLn (i=l,2, •• ,m) 

and 

(7o) 

where 
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T and T are square matrices of non-zero determinants be­
cause their columns are just the vectors tabulated in(65a) 
and b).We have therefore proved: 

THEOREM IX (case 5) 

If tX. f. o 

By transposition we obtain the 

COROLLARY (case 9) 

If 0{ ~ o 

We can treat the case 

oX+6Y 
\ 

briefly as it is very similar to the preceding one.Putting 

(()C+6D)S = S Nn 

we now have the chain 

(71) o=Ds1 ; s 1=cs1=Ds2; ••• ;sn_1=Csn_1=Dsn; sn=Cs~o 

wnere 

are non-singular and square.Again,let 

(72) '(i,j) = (Ejr1.><-sj) (i=l,2, •• ,m;j=l,2, •• ,n) 

and 
(73) (h,k) = (Ekrh.,.;sk) (h=l,2, •• ,m;k=l,2, •• ,n) 

It then follows that 

(74) Y(i,l)=o; X(i,j)=Y(i,j+l); ••• ; X(i,n)Fo 

which yields :the vector chains 
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{75) o=YCil);(II)=X{i2); •• ;(i,n-l)=X{i,n-l)=Y(in);X(in)~o 
j , 

for i=l,2, •• ,m;i.e.we have m vector chains each of 

which represents a submatrix Nn(§2.type ~.(75) iS 
equivalent to 

( 76) (i=l,2, •• ,m) 

where 
Ti= [(il)1 (i2), •••. (in)) ; Ti= [(il), (i2), ••• ,(in)) 

Hence 

As before we can show that T and T are square matri­
ces of non-zero determinant and we have proved 

THEOREM X (case 12) 

If ot./= o 

( Wm(cx) \ Nn)"" m.Nn 

This is the last of the fifteen pencils(§3,26) whose 
canonical forms we wished to determine;hence we have 
obtained a method of finding the canonical form of 
any pencil of Zehfuss matrices,since the most gene­
ral such pencil can be transformed into an aggre­
gate of those fifteen pencils which we have consi­
dered. 

Pencils of Compound Matrices. 

If A is a matrix of type mxn,its pth compound~ 
A(p) (~m;p~n) is a matrix whose elements are the 

* ref,l,p.355 
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~))((~) minors of degree p that can be :formed from the 

elements o:f A.The general element of AW) will be den~ 
'"" ted by 

. . . 

The two groups of indices f~ and j~) are supposed to 
be arranged-in dictionary order and the (;)combi-

nations of indices i~ refer to the rows of A~) while 

th~ (;)combinations j~ specify the co~umns•As is 

well known,compound matrices obey the multiplica­
tive law 

(1) 

We also note the rule 

( 2) 

Again,if A is of non-zero determinant,then so is 
A~);this follows from(l)by putting B=A-1 • 

We shall now consider the pth compound of a 
direct sum.Let 

and 

m=m1+m2 
n=n1+n2 

A= UC = l~ ~ ~ 
where B is _of type m1~f1· an~ ~-,o~ -~Y;P~ m2')(n2• We 

can then prove the 

*ref.l,p.365 

·-
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THEOREMXI {cf. Littlewood loo.cit.§3) 

Two permutation matrices P and R can be 
found such that 

( 3) P(B+ciPR = !.cJfP-s>yJ.:fs>) 
),.o 

where P and R depend only on the number of 
rows and columns in B and C and not on their 
elements. 

In(3)we have to put B~=dcy=l and to omit every term 
that is meaningless,i.e.in which the upper index 
exceeds the number of either rows or columns.Little­
wood loc.cit.proves the theorem for the case of a 
square matrix;his arguments equally hold for a rec­
tangular matrix and would also show that P and R 

do not depend on the elements of this matrix.But 
we will here deduce the theorem directly from the 
definition of a compound matrix.According to the 
partition of A we shall denote the elements by 

(
. h .. 1 ~ .~ •• ks) ci C:p-~j k(S), 

(4) 1• .. {-~h h •• h = jC.O-t>h~-t-J)(s=o,l,2, •• p) 
1 .,:t. p-t; 1 ~ ~ 

where 

( 6) 1~~/~ ... • ~~m~; l~h1dl~<.·. ~n~ 

First of all it is easy to see that an element is 
zero unless s=t(Aitken loc.cit.p.366)and any non­
zero minor of A is a product of a minor of B and a 
minor of C(one of which must in the limiting cases 
p=s and s=o be replaced by unity);in fact,we have 

( 7) ( i'~s) k<.sJ) = (i ~-s)·'. ( k ls)) 
:f~>-SJ h u>j . j trsj h '~Yj 
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Next,we-pick out all combinations of indices iw-~ 
j~-s~~s~h~) which are possible for a fixed value of 
s and arrange them in each of these four groups in 
dictionary order.By(7)the corresponding elements 
form the matrix 

(8) 

This is to be done for s=o,l,2, •• ,p.Since the sub­
matrices belonging to different values of s are evi­
dently isolated,we obtain 

( 9) t.:BP-B!c <:fi!J 
S"'-O 

The final arrangement of all indices is,of course, 
not the dictionary order;but we may say that(9)is de­
rived from ~~)by a permutation of rows and columns 
which depends only on the partition of A into B 
and C.This proves the theorem. 

In this paragraph we shall deal with pencils 
of the form 
(lo) (H;p) = \>J(P~6:iP) 

when the invariants of 

(11) H = ~A+6B 

are known.We may assume that(ll)is already in cano­
nical form,because if 

S(~A+6B)T = \>A•6B 
i.e. · SAT = A ; SBT = B 

we obtain by(l) 

~p~ \'Alp)+6B~) tpb: 

Aga.in,if the-given pencil can be written as a di-
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rect sum 

we have by theorem XI : 

PiPR = fBtp-t$)1. ~ 
$"0 1 2 

wi~ the same matrices P and R for A and B.Hence 
on multiplying by ~ and 6 and adding we get 

P(~A<p~61fP))R = i ~(A<p-s1_ACS)+6(~-s~~} 
s==o 1 2 1 2 

or in the notation of §3,17 

. ~Atp4-6:8-P1(') f_ ( ~A~-s>+6HpiS)\ ~A~)+6H~l) 
s=o 

We may assume that ~A1+6B1 is one of the elementa­
ry submatrices(§l)and since the case of direct pro­
ducts was fully treated in the last section,we have 
only to find the canonical form of 

(H;p) = ~A(p)+6BP) 

when H = ~A+6B is one of the elementary pencils 

La)Mn,Nn,Qn,wn(£X) 

(§1,(~,~,(8),and(8)).The last two of these pen­
cils also occur in the canonical forms of a non­
singular pencil and have been dealt with by Aitken* 
and Littlewoodt.we state their results in our no­
tation: 

-lie 

ref.l and 3. 



THE~REM XII (Littlewood loc.cit,theorem IV ) 

If oc;.o ~ 

(Wn(oc);p} rv.t~sWq_28 (cx") 
.s :.o 

where .q = p(n-p)+l.,and 1 e5 is the numb.er of 
partitions of s minus the number of parti­
tions of s-1 into ~P parts each<. n-p.l<l21} 
as usual,denotes the greatest integer less 
than or equal to 921 • 

THEOREM XIII (Littlewood loc.cit~Jfheorem V ) 

'»~-2) ( Qn; p) rv .[ -2 Qn+l.-s 
!:.,., • 

If we_interchan~e p and 6 in theorem XIII and trans­
pose the matrices,we obtain the 

COROLLARY 

We now turn to the discussion of ~A +6B when 

~A+6B~Ln 

It will be usefuL first to consider a simple 
example.Let p = 3 and 

(12) (\>A+~B)R,_= R•;L4 
where 

(13) R = [r
0
,r1 ,r!,r3 ,r 4} and R =[r1 ,r2 ,r3 ,r4) 

are non-singul.ar matrioes(e.g.unit matrioes).Acoor-

* Littlewood denotes the coefficient of Qn-p+l-iby c1 
and defines ci. as the number of partitions into i 
parts each~m-l.But it is easy to see that this num­
ber is etqual to(i+i-2), 
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ding to §2)eq~at.(l2)above is equivalent to a vec­
tor chain of type (II'\viz. 

(14) o=Br0 ;Ar0 =Br1=r1 ;Ar1=Br2=r2;Ar2=Br3=r3;Ar3=Br4=r4;Ar4=o 

Put 
(15) 

These are(~)column vectors of degree(~).They are line­
arly independent because by definiti~n they are the 
columns of~ • Similarly ,we define the(~) vectors 

(16) {i,k,h) =[ri,rk,rh1cs)(l~i<.k<h.;:.~) 
of degree(~)which are likewise linearly independent~be­
ing the columns of if3'.By(l4)w$ave 

A[ri-l,rk-l)rh-11 =B[ri,rk,rhl =(ri, rkJrj 

for l~i<k<h~4;or taking the third compound we obtain: 

(17) AG~i-l,k-l,h-l)=~ki,k,h)={i,k,h~ 
Again, 

(18) B~(o,k,h)=o ; 13{i,k,4)=o 

Equa~ions(l7)and(l8)enable us. to .set up the following vec­
tor chains for the pencil p1P~6B(3l·: 

( 19a) i3)( o12 )=o;A(3~ ol2)=J!3)( 123)={123] ;A(3J( 123) =J3)( 234 )= {234}; 

( 19b) JP{ ol3 )=o ;A(3)( ol3 )=:tf3Jc 1!4 )= {124~;A(3)( 124)=0 

( 19c) -,aG>( ol4) =o; l 3-)( o14 )=o 

(19d) J!3)(o23)=o;A0J(o23)=B(3)(134)= ll34S ;l3'(134)=o 

(19e) BGko24)=o;A3~o24)=o 
(19f) ~(o34)=o;AC3)(o34)=o 

i 3J(234)=0 
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oe 
These six chains ~e all of type E&(§2)and correspond 
to terms L2 ,L1 ,L0 ,~,L0 ,L0 in the canonical form, 
where L 0 means that the canonical form contains a 
zero column due to a constant vector which annihi­
lates all matrices of the penoil.Now,let 

T12= [(ol2)> (123) )(234)] 

T13= [( ol3), ( 124 >1 
T14= [( ol4 )j 
T23= ((o23)(134)) 

T24 = [( o24 )1 
T34= ~o34)) 

¥12= [{_123}) { 234l) 

Tl3= Gl24D 

Equations(l9)are equivalent to 

( ~Al3~6JP)) Tl2=Tl2~2:-
(~A046B3))Tl3=Tl3Ll 
(~A0~6BB~T23=T23Ll 
(~A0~6i30T14=(QA0~6~))T24=(QA~~6g~)T34=o 

Hence 

(~Al3~~)T=T(3L0+2L1+L2 ) 

where 

T=[TllJT2,,T3'-'Tl~.,T2~>TlB1 and T=[Tl3,'T23'Tl2J. 

T is a square matri~ of non-zero determinant;its columns are 
all the vectors (i,k,h)in a certain order.Similarly,we 
see that the columns of 1! are all the vectors Li,k,h~ 

which likewise make up a non-singular matrix.The cano-
nical form of ~A~+6j3) is therefore 

3L
0

-i-2L1+L2 
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- ~~'-'$'j 
Instead of writing down the matrices T12 ,T12 , •• etc(,it 
would have been sufficient to count the number of vectors 
(i,k,h)and{i,k,h~ which occur in all the chains to­
gether and to convince ourselves that all of them have 
been used.For since no vector appears twice in the above 
chains,we can then evidently construct a non-singu-
lar square matrix which transforms the pencil into the 
aggregate of submatrices represented by the vector 
chains.The exact shape of the transforming matrix is 
irrelevant. 

Consider,now,the general case 

(2o) 
where· 

(21) 

f>A+6B cvLn i.e. 

(E>A+6B)R = RLn 

are non-singular matrices of degree n+l and n resp.(2o) 
is equivalent to 

(22) Br
0
=o;Ar

0
=Br1=r1 ;Ar1=Br2=r2; •• ;Arn_1=Brn=rn;Arn=o 

Next,we introduce(n;~column ~vectors of degree(n;~ 

(23) (i
1 
,1~ , •• ,i,J=[r1-tri.t ••• ,r~]4")(o~i_.,<iz.<-•••<i~n) 

which are linearly independent because they are the co­
lumns of RP>.similarly,we define(;)vectors of degree(~ 
viz. 

( ) { . . j J r:- - - rp> 24 J1, j.v···• P =Lrj1>rj_l •• lrjP ( l~ j <jo • • • <j~n) 
1 ""- p 

which are also linearly independent being the columns 

of ~.B~(22)we have 

A [r i:fll i£.1! • ~r i1'-JJ =B [r i1)r i-2..'• • -,r i)=[r i1.;r it, • • 'r i,) 
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th and taking the p compound of the matrices on either 
side we get 

(25) iP~i1-l,i 2-i, •• ,ip-l)=i~i1 ,i 2 , •• ,ip)={i1 ,i
2

, •• ,ip} 

for l~i1<i 2, ••• <ip~n.The same method yields 

(26) BP(o,i 2 , •• ,ip)=o ; A~J(i1 ,i 2 , •• ,i ~1 ,n)=o P. 
Equations(25)and(26)furnish the means of establishing 
vector chains for the pencil (>Aq;)+6IfP)~ ·tlu.-~ th1..e- ~: 

iP>co,i 2 , •• ,ip)=o 

A'l>>c o, i 2 , •• , iP) =If.PJc 1, i 2+1, •• , ip +1) = [1, i 2+1, •• , ip +1] 

A(p)(l,i2+l,. ,ip+l)=:iP)(2,i2+2,. ,ip+2)= L2,i2+2,. ,ip+2} 
( 27) • • • • • • • • • • • . • . • • • • •• 

AW~n-ip-l,i2+n-ip-l,.,n~l)=B~(n-ip,i2+n-ip,.,n) 
=Ln-ip,n-ip+i 2, •• ,n~ 

where 

( 28) l~i 2<i 3< •• <i:tfn 

Each of these chains is of type ~:(§2)the initial and 
the final link being zero.The number of chains is equal 
to(p~1)since the p-1 indices i 2 ,i3 , •• i are only sub­
ject to the condition(28).The chain(27)is of length 
n-i i.e. n-i +1 vectors of the kindr(23)and n-ip vec-p p 
tors of the kind(24)occur in it(see§2,Ib).It therefore 
gives rise to the submatrix 

Ln-i 
p 

in the canonical form.The smallest value for ip is ob­

viously p-l;let 

i =k (k=p-l,p, •• ,n) 
p 
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According to(28)the remainig p-2 indices then have to 
ful .fiL. the conditions ...__, 

l~i2<i3< •• ·<ip-1~ k-1. 

Hence there are (~:~)chains for which ip=k,i.e.which 

are of length n-k;they correspond to the aggregate of 
submatrices 
(29) 

:n 

L(~:~)Ln-k 
'4_:.p-:L 

In order to show that(29)is already the canonical form 
of ~A~~6B~)we have only to prove that the number of 
rows and columns is the same in ef~6B~jand in(29),i.e. 

equal to(~) and(n;~ resp.Indeed,since Lk has k rows 

and k+l columns,the pencil(29)has 
'Y1 

(3o) z)n-k)(~:~) =(~) 
~= p-1. 

rows and 

(31) 

columns.(3o)and(3l)can be evaluated by using the for­
-*" mulae: 

(32) ,f(~ = (~!i)- (s!l) 
~ ~ 

( 33) ~~i (i~~ = ( B+l) { (~!~)- Cs!2)) 
We have therefore proved the, 

*These formulae can be obtained by comparing the co­
efficients of xs in the identity 

Jt(l+x) 1 = ~ [Cl+x)b+l_(l+x)a] 
i ~a.... 

and ·1.n, its derivative with respect to x. 
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THEOREM XIV 
'Yl 

(L ;p) rv r-(k-1\ L 
n ~~-L p-4' n-k 

Since L~cvMn;we obtain by transposition the 

COROLLARY 

(M ;p) ~ t(k-l)M 
~=,.·'- p-2 n-k 

This concludes the investigation of pencils based on 
compound matrices. 

§6. 

Pencils of Induced Matrices. 

The treatment of induced matrices does not lead 
to any new difficulties since a close connection be­
tween induced and compound matrices will make it pos­
sible to refer to prtvious results.The procedure is 

*"" exactly as in the last section. 
Let A be a matrix of type mxn and consider the 

transformation 
y = Ax 

where y and x are column vectors of degree m and n 
rasp. ,viz. 
(1) 

The(m+~~1)products and powers of degree p which can 

be formed from the quantities y1 ,y2 , •• ym will then be 
aggregates of the (n+~-1) products and powers of degree 
p constructed from the variables x1 ,x2 , •• ,xn;we assume 
that these products and powers are arranged in dictio-
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nary order and write this transformation as 

( 2) 

Accordingly,iP} and ~] are column vectors and A~J is a 
matrix of type ~m+~-l) x (n+~-l) ; it is called the :p th 

induced matrix of A.We mention the following properties: 

(3) (AB)W) = A~~@ (mttiplicative la~ 

( 4) ( A' )WJ = ( AW) ' 

Further,if A is square and of non-zero determinant, 
then so is A~J;this can easily be deduced from(3)(see p.3~. 

Next,we consider the induced matrix of a direct 
swn.Let 

and 

m =m1+m2 
n =n1+n2 

~B . 

A = B-i-C = L . c ~ 
where B is of type m1xn2 and C of type m2xn2.we shall 

then prove the 

THEOREM XV 

Two permutation matrices P and R can be found 

such that 

P(B+c)'il>~ = IB@-s),..c[sj 
.S=o 

P and Q depend only on the number of rows and 
columns of B and C and not on their elements. 

Proof: Let 

(5) u = Bx 

( 6) • V = Cy 



where 

u = (u1 > u 23 •• • 7~~ 

v ={vl~v2~··~vm2J 

51.. 

x = [x1 x2 ••• x l 
> , J nlJ 

Y ={yl Y2 • • •Yn 1 
7 ~ 7 2} 

are column vectors of degrees m1 ,n1 ,m2 ,n2 resp.,and the 
elements of x and y are supposed to be variables.Put 

[~J={x1 y} [~1={u 1 vJ 
We have then 

{u, v} = A{x, yJ 
and taking the pth induced of either side: 

(7) f:a vfQ>:i= lPJrx Yl[P] 
> 1: ' 

{x y{ is a column vector whdse elements are the (~) 

products and powers which can be formed by the elements 
of x and y.Obviously,the vectors 

( 8) (z 1 = LiP, iJ>-U~'YJ iP-21xyl2) •••• jPJ J 
and {x yJ have the same elements apart from the order. 

We can therefore find a permutation matrix R such that 

(9) {x, y]ll2"1: R[zj 

Similarly, 

(lo) 

where 
r'l')) ~ ]J rn 21 ~ lbJj ( 11) ·t w I = L u~, ,lP- xv, ull:'- xv , ••• •1,_. 

Hence by(7)and(9)and(lo) 

{.wJ = P.~{zl 
On the other hand,we evidently have 

{wj = ( EiP-sl_ ofsJ) {z] 
(3~ s~o 

byV(5)and(6).Since there is no linear relation between 
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the .elements of {z1 it follows that 

PACpJR = lFJP-al,.,~1 
S'"'O 

If 
H = pA+6B 

't'let>V 
is a given pencil,we define a pencil 

[H; p) = ~A(gl+6#J . 

As before,we can show that 

[H; p)'"""' [H; p] 

if 

We may therefore assume that H appears in canonical 
shape-.Again, if 

we have 

(12) 

(13) 

H = H1 +H2 = {'(A1 +A2 )+6(B1 +B2 ) j H
1 
= rA.-1 o B1 ; Hz_ = S" ~ -ro-lt 

by the last theorem 

P(A -i-A )lP~ =. fA~-~,r_ACSJ 
1 2 s'"'o 1 2 

P(B +B )il!~ = fBIP-sl~~ 
1 2 S-=0 1 2 

with the same matrices P and R in(l2)and(l}).Hence multi­
plying(l2)by ~ and(l3)by 6 and adding we get 

[H1 +H2 ; pJ ,..; i( [H1 ; p-s] \ [H2 ; s)) 
S"O 

It is therefore sufficient to consider the pencil 

(H;p) 

when H is one of the elementary submatrices L,M,N,Q,W~j. 

As regards the last two of these cases,Littlewood(loc. 
cit.§4)has proved the following theorems(cf.§5theorems 
Xii and XIII ) 
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where t = p(n-l)+l,and cs is the number of par­
titions o~ s minus the number o~ partitions o~ 
s-1 into~ p parts each~n-1 

THEOREM XVII 

[Qn; p) ~ ( Qn+p-1; P) ~ sJ:(_P~=~s) Qn-s 

By transposing and interchanging ~ and 6 we obtain the 

COROLLARY 

We shall now show that similar relations hold for the sin­
gular submatrices(c~.§5,theorem XIV) 

THEOREM XVIII 

fLnn>] = (Ln+p-l;p) rv J:(s;~22):·Ln-s 
and by transposition 

COROLLARY 

[ = ( ) ~(s+p-2) M Mn; P] Mn+p-1; P r-../ 5~}, p-.Z, n-s 

Proof: By §1,2 we have 

Ln= <?Fn+6Gn 

where 
(i4) Fn= [ · IJ71,·rH·1 Gn=_[In ·Jn,m:l 

Hence 
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[Ln;p] = ~~+6~ 

(Ln+p-l;p)= pF~+p-1+6G~+p-1 
In order to prove theorem XVIII we have to show that 

(15) FPl- ~) n - n+p-1 

(16) rJP1 - cJP) 
n - n+p-1 

Consider the transformations 

( 17) a) y = F nx = [I,n ) x 

where 

x =[x1 x2 ••• xn+li 

We write(l7)down in full: 

Y].= X]. 

Y2= x2 
(19) a) Fn: •••• 

Yn= xn 

; b) y = G X = [. I ) X n n 

. ... 

F~Jis the matrix which expresses the products n 
( 2o) 

in terms of the products 

(21) 

We asso-ciate the products( 2o )with the partitions 

( 22) ( 1 j~ 2 j.t. ••• n j, ) 

the p parts of which are arranged in non-decreasing order. 

If we add zero tojthe first part, unity to the second part , 
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two to the th.lrd part eto •••• p-1 to the last part,we ob­
tain a partition 

( 22a) (h1 ,h2 , ••• ,hp) (l~h1 <h2 ••• h~n+p-1) 

These partitions are in one-one-correspondence to(22)and 
hence also to(2o).We may therefore put 

( 23) y!1 y~-2. ••• y1n = (h1 ,h2 , ••• ,hp) y 

In the same way we introduce the notation.; 

( 24) Xi1 x1.t xin xin+-:t - ( k k k' ) 1 2 • • • n n+l - l' 2' • • ._-p, x 

where the partition (k1 ,~, ••• ,kp)is derived from 

(l i 1 2~ ••• n+l ~+:r) 

exactly as(22a)is obtained from(22).The ~ts k satisfy the 
inequalities 

l.~k1.:..k2 <k3< ••• kp ~ n+p . 

The effect of ~ can now be described by the equations 

Y j1 yj2 yj?l - xj1 xjt- xj?'l l 2 ••• n - l 2 ••• n 

or 
(25a) ~: (h1 ,h2, ••• ,hp)y = (h1 ,h2, ••• ,hp)x 

In the same manner we get for ~: 
. j . j j j 

YI1 Yl• • .y~n = x21 Xf • • .xn:l 

or 
(25b) G~: (h1 ,h2 , ••• ,hp)y = (h1+1,h2+l, ••• ,hp+l)x 

For the discussion of the compound matrices ~+p-land 
G~+p-l we consider the transformations 

( 26) a) Yor Fn+p-lX(p; b) Yc7J= Gn+p-1Xcr) (r~, 2 ••••tP) 

where x<..,.,and Yc.fJare column vecto~ of degrees n+p and n+p-1. 
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Let 

~={xlr x2r ••• xn+p,rl and Y~=[ylr Y2r •••Yn+p-l,r} 

As is well known,~) 1 is the matrix which expresses the n+p-
d~erminants 

y Yt. •••• yP -o 
~1'"1 15)02.. 71,, 

in terms of the determinants 

X.,;1 xi~ • • • ·~ 
~ ~ ~pP 

when the y's are transformed according to(26),i.e. when 
a) b) 

The effect o~ ~~p-l and ~~p-l can therefore be described 
as: 

( 27a) ~+p-l: [h1 ,h2 , ••• ,hp] y = [h1 ,h2 , ••• hp 1x 

(27b) d~+p-l: [h1 ,h2 , ••• ,hp)y = [h1+l,h2+l, ••• ,hp+l]x 

~ A comparison et (25)and(27)shows that the transforma-

tions belonging to ~ and ~ differ only in the notation 

of the variables from those associated with ~+p-l and 

cJP) · 
1

.The respective matrices are therefore identical n+p- . 
and theorem XVIII is proved. 
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