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This thesis is a study of Singular Natrix Fencils

under various aspects.in partCL)a new derivation of

the Canonical Form of sinfular matrix pencils iz ~i-
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Reduction of Singular Pencils of Matrices'
By W. LEDERMANN.
(Received 14th October 1934, Read 2nd November 1934.)

§1. Introduction.

Let pA + B = [pa,, + ob,,] be a pencil of type m X m’, i.e. with
m rows and m’ columns, where 4 and B are matrices with constant
elements which are not mere scalar multiples of each other; and p
and o are homogeneous parameters.

The pencil p4; + oB; of the same type is said to be equivalent to
pA +oB if two non-singular constant square matrices P and @ of
degree m and m’ respectively can be found of such a kind as to yield
an equation
(1) P(pA + oB)Q = pA; + oBy; | P50, [Q(F0.

Hence the totality of pencils of type m X m’ may be divided
up into different classes such that all members of a class are
equivalent to one another, while no pencils belonging to different
classes can be transformed into each other by an equation (1).
The problem which now arises, viz. to carry out this classification,
was first solved by Weierstrass and Kronecker in classical papers,
and has since been treated by many authors.?

They have distinguished a certain ‘‘ canonical ” pencil in every
clags such that any pencil is equivalent to one of these canonical
pencils.

Weierstrass dealt only with the case in which m = m’ and the
determinant of p4 4+ oB does not vanish identically., The general
cage which includes rectangular and singular pencils has been treated

by Kronecker. According to Kronecker the general canonical
form is

(2) diag (A, Mgy oo Ay s Ay Ny oo, N, M)

aq

! This paper is intended as a continuation of Prof. Turnbull's paper, pages
67 to 76 above. T should like to express my special thanks to Prof. Turnbull for

suggesting this investigation to me, and to thank both him and Dr Aitken for their
helpful eriticism.

2 ¢f. Turnbull and Aitken, Canonical Matrices (1928), p. 125 ff, where references may
be found.
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where A, is a pencil of type (p + 1) X p, thus

P - |
(3) A1=[£],A2= epi,...., A, = PoP

In (2) A’, is the transposed matrix of A,, and M is a non-singular
pencil which may be reduced either to Weierstrass’s classical canonical
shape, the knowledge of which we shall assume, or to a rational
form.!

Kronecker deduced the canonical form (2) under two conditions.
In the first place he excluded degenerate pencils: 7.e. although the
pencil pd 4+ 0B is singular it must not be equivalent to a pencil
pA; + oB, some rows or columns of which are zero. In particular,
NO NON-Zero vector % = [u, U, . ..., %,] can be found for which

uA = uB = 0.

For then we could construct a non-singular square matrix U of
degree m whose first row is u. The pencil

U (o4 + oB) = pd, + 0B,

would be degenerate, its first row being zero.

It is easy to see that this assumption is not an essential restriction
and we shall therefore adopt it following Kronecker.

But there is a second hypothesis which was made by Kronecker
and most of the other authors®? which from one point of view seems
to be a loss of generality. They postulated that in p4 + oB the
rank of B should be as great as the rank of p4 4 oB (identically in
p and o).

It is always possible to fulfil this condition by introducing new
variables p’, o' instead of p, o, where
p = ay p + a0,

!

g = O121P‘|“ Ggg O,

11 Q12

0.

Qg1 Ugg

This may be described as changing the basis A, B of the pencil. This
process, however, can in general not be effected by an equivalent

1 0f. Turnbull and Aitken, Canonical Matrices, Chapter IX.

2 Bromwich, however, deals with the general case (Proc. London Math. Soc. (1), 32
(1900)).
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transformation (1) so that we lose some classes of pencils if we admit
transformations of basis as well as equivalent transformations.

This applies also to the non-singular case of a square pencil
pA + oB the determinant of which does not vanish identically. It
has mostly been assumed that B is non-singular so that the deter-
minant |p4 -+ oB| has no root p = 0, 00 or, putting A = g/p, that
the determinant | 4 + AB| has no infinite elementary divisors.

In what follows we shall give a new proof for the fact that every
pencil can be reduced to the form

(4) diag(Aps Mgy oo s Ay, Ny Nyy oo, Ny Ay Ny oo A M)

A, being the same as defined in (3) and A’, being its transposed.
Here M is a pencil pA; 4 oB; in which | B;| ==0 so that the Weier-
strassian method may be applied. The pencils N, which do not occur
in Kronecker’s form (2) correspond to the infinite elementary divisors;
thus

(5) Nr= ap ... =Plr+0'Hr

the determinant of N, being p*. In (5) I} is the unit matrix of
degree r and

There is no loss of generality in assuming that in p4 + ¢B the
number of rows is at least as great as the number of columns, 7.e.
m=zm'. If we had originally m < m’, we should consider the trans-

posed pencil pd’ + ¢B. We can transform this pencil into (4) and
hence pd -+ ¢B into

diag (A'ps vy Ay Nys oy Ny Ay, oo, Ay, M),

involving N’, instead of N,. But as is well known, N and N’ are
equivalent (they are, in fact, similar), e.g.

oL L)

P
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Our proof will partly be based on the
LEMMA:
The matriz equation for Z,
(7) Z =P 4+ QZK,
where P and Q are given constant matrices admits of one and only one
solution if a power of K vanishes (or if all latent roots of K are zero).
Proof
Let K¥=0. Then
~1
Z, =%2 Q" PK"
r=0

is a solution of (7) as is easily verified. In order to prove that there
is but one solution we show that the homogeneous equation

(7 Y=QYK
has only the trivial solution ¥ = 0.. Let Y, be a solution of (7'), thus
) Y,=QY, K.

By iterating this equation we get
Yo=QYy K=@Q@ Y K2=....= @ 1Y Ki-1=Qt¥Y  K* =0,

since K% = 0.

§2. Special Basis for a System of Vectors.

Consider a system of & row-vectors of degree m:

(1) %1y %25 v o eoy Rpe

If a row-vector z of the same type can be expressed as a linear
aggregate of the vectors (1), we write:

2 C (21, 225 -« - -5 22)

It will be convenient to introduce a matrix Z the rows of which are
the vectors (1). Thus

(2) ' Z =

so that Z is of type k£ x m. The vectors (1) need not be linearly
independent of one another. Let ! be their rank (and the rank
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of Z). We may then find / basis vectors z;, z,, ...., z;, out of the
system (1) which are linearly independent themselves and which
allow every z; of (1) to be represented as a linear aggregate of the
basis veetors. The most natural way to construct such a basis
is the following: We go through the sequence (1) beginning
with 2z, cancelling every vector that is linearly dependent on its
predecessors. In particular every zero-vector has to be dropped.
The remaining vectors may be called z;, 2, .. .., zt,. This basis is
uniquely determined by the process and may be named a ‘ special
basis.” Every %, is a member of the sequence (1) and we have

ky<ky<.... <k,
We put
2,
(3) Z=| %

E.g. Consider the set of vectors zy, 2, 23 = a2y + Bz, 24, 25 = vz, + 82,
21, %9, 24 being independent of one another. Then we have 2, = 21,
Zkz = 22, Zk:; == 24.

§3. Rough Reduction of the Pencil pd + oB.
I. Derinirion. The k linearly independent vectors a;, s, .. .., x;
form an A-stair if they satisfy the conditions
21 B C(0), (i.e. 2, B = 0)
2o B C (2, 4),
23 B C (xlA‘sz),
1) 2y B C(ry A, 204 , 23 A),

ka C(x]_A_, sz:, c ey xk_lA).
In the notation of §2 (2), we may write this ac:
(2) " XB=M-XA,

where M is a square matrix of degree % in which only the elements
below the diagonal can be non-zero. The number £ is, of course, less
than or equal to m, since there are only m linearly independent
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vectors x of degree m. Let us suppose that k <m and that the stair
cannot be continued.

We may add further rows to X to make a non-singular square
matrix of degree m, thus
7]
y I

Let the rows of Y be ¥y, y2 ... Ym—s The vectors

(3) 214,224, ..., 2, A

need not be linearly independent. Let their special basis be
(4) wp, A4, 2, A, RPN |

which is represented by the matrix

_:va

w4 | = X4,
xk‘A

(3

the rows of (XA4) being independent. We shall now prove that the

rows of [?g} are independent. Supposing this were not true, we

should have a relation

(6) (myit agfot. ... Fop-pYns) B=Brap +Pavs,+ .. .. +Pi2y) 4.
The a cannot all vanish for we should then get
By, + Boag, + ... + B ) A=0

which is impossible because the vectors (4) are independent.
Hence

y=apr+aya+ ... oy ;1 Yn-z
is non-zero and indepeundent of z, ,, ...., 2, since the rows of the

non-singular matrix [?] are independent.

From (5) it now follows that

yB:(xklA,xkgA, ....,kuA);
or since every z; is a certain z,
yB C(x}A, sz, ey xLA)

which would prolong our stair by another step in contradiction to
our hypothesis. Hence (5) is impossible. We may therefore add
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further rows to [2}(,‘;] to form a non-singular square matrix of

degree n,

X4
0 [33]
Z

whose rows form a basis for all vectors of degree m’.

Let
k. =g.

According to the properties of our special basis each of the vectors
w1 A, 204, oo, 2,0 A

can be expressed by x, 4, 2, 4, ..., xk}\_lA. Instead of
2, B C(x1 4, 24, ....,0,_14)

(by (1)) we may therefore write
zy, B C (24, A, 2, 4, ..., x’ﬂ)\—1A)

or in matrix notation

(7) XB=K-XA4

where K (like M in (2)) has non-zero elements only below the main
diagonal. As is known, such a matrix has only the latent root zero
and a certain power of it must vanish.

Consider the matrix YA. As its rows are vectors of degree '
they must be expressible by the rows of the matrix (6); thus

(8) YA =PXA+ QYB+ RZ.
It is obvious that XA and XB can be expressed by the rows of XA.
Let .
(9) X4A=F-X4 and XB=G-XA4 by (1).
. |X

If in [Y
Ty T,y --..> ¥, to every row of ¥ the matrix will still be non-
singular. We may for example replace ¥ by ¥;= Y — =X where
& is an arbitrary matrix of type (m — k) x I which we shall choose in
a suitable way. If we carry out this substitution in (8), we get

Y1 A= P —=)XA+Q(Ys+=X)B+ RZ
and by (7) 3

Y/ A=(P—-—=+Q=EK)XA 4+ QY,B+ RZ.

] we add a certain aggregate of x, 2, ...., 2 or of
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According to the lemma of § 1 we can choose = so0 as to make

P—=4+@QEK
vanish. Hence

If we now multiply the original pencil by [IX;]’ we get by (9) and (10)
1

Ly Jeaem = o s )=

\:pF 4 o@@ 0 0 ;Elz
0 pQ 4ol pR Zl )
The last matrix is non-singular, because

X4 - X4 XA
[Y]B:I: YB—EXB}: [YB—EJKXA:l by (7)
Z | Z Z '
-1 . X4
=|—=K I ] [YB} .
. S zZ
Hence the pencil

pA4; + 0By = [PF o

p@ + O'I: pR]

is equivalent to the original pencil. But pA4, 4 ¢B; splits up into two
pencils with fewer rows and columns unless k¥ =m (p. 93). Therefore
if k£ < m, the proof is completed by induction.

II. We shall now suppose that k ==m, i.e. the longest A-stair

contains m independent vectors z;, %5, ...., z,. We may assume
that the original pencil has this property. According to (2) we have
(2) XB=MXA,

where now X is a non-singular square matrix of degree m and M is a
matrix with zero latent roots only.

- We have to distinguish two cases.

(@) In pA +oB the matrix 4 has no row dependence: i.e. there is
no vector y=5=0 for which y4 =0. Since we had assumed m = m' it
follows m = m’ and |4 |==0. The reduction of p4 + ¢B can easily
be performed; multiply by X:

X(pAd +0B) =pXA + 0XB=(pl +oM)XA,
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by (2), where X and XA are non-singular. We may therefore
continue by reducing pl + oM. Since M has only the latent root
0, the Weierstrassian form of M will be

PMP-!=diag (H,, H,,, .... H, ), 1y + 12+ ety =m=m
where
1 .
H, = 1. .
1 . d»
Hence

P (pI +oM)P~* =diag(pl,, +oH,, pl,,+oH,, ...., pl, 4 cH,)
= diag (N, , Ny, -.ves Ny ) '

which proves the theorem.

(b) We have now to deal with the more difficult case when a vector
y =0 exists for which y4 = 0. It is then possible to construct a
¢ B-stair ” in the same way as in(/)only with 4 and B interchanged.
Every other step remains unaltered: We construct a stair whose
length! may bel. If I be less than m, we should again be able to split
up the pencil and the proof would be concluded by induction. We
shall therefore suppose that not only the 4-stair but also the B-stair
exhausts the whole m-dimensional vector-space. Writing these
conditions down in full, we have

B =0 y1 A=0
(11) 2, B C(x 4) y2 A C (41 B)
(o) 23 B C (x4, xs A) B) ys 4 C(y1 B, y2 B)
Ty B C(ey A, 204, ... 2y 4 A4) Yn AC (Y, B,y B, ..., yn_1B),
where 2y, %9, .. .., Zp, a0d Yy, Yo, .. .., Yp 8Te two sets of m linearly

independent vectors of degree m. Pencils pd + ¢B with the
properties (1) require a more elaborate study which we are going
to explain in §4.

§$4. Reduction by means of Vector Chains.
Let pA -+ 0B be a pencil which fulfils the condition (11) of § 3,
1.e. we assume that at least one B-stair and one A4-stair exists, each
of length m. But it is easy to see that every non-zero vector z that
annihilates B can be extended to a stair of m elements unless the

1 By saying the stair is of length I, we mean that it consists of I vectors and cannot
" be continued by another vector.
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pencil splits up into two pieces. For if a stair beginning with z
should break down at the k™ step, i.e. if the stair be of length
k (k <m), we could split up the pencil as shown in § 3.

From §3(11), we see that for every vector u we can find a
vector % such that

(n ud = 4B,

for v must be a linear aggregate of ¥, %o, ...., ¥, whence the
existence of 4 is evident from §3(11) 8. It is not self-evident that the
unknown components of the vector # can be calculated from the non-
homogeneous equation (1) because the coefficients of the unknowns
do not form a non-singular matrix. The vector #%, however, is not
uniquely determined.

Let v B=0 (v,==0). We may then determine other vectors
V1, Vg +evey Uy, ..., which form the following ¢ wector chain.”
(¢f- Turnbull, page 72 of this volume.) ’

(2) O0=wvyB, vpd=v;B, nd=v,B,....,v, A=, B,
. ?)],]A=Upl+1B,....

We can continue the chain as long as we want, but the vectors
occurring in it will not be linearly independent. Let v, A be the
first vector in (2) to be linearly dependent on its predecessors
vod, v A, ...., v, -14. We then have the relation

i

(3) (2 a,vp-,) 4 =0, where ay=5=0.
v=0

It is convenient to put

(4) vop=0 k=1,2,3,,...,

making the equation »,_; 4 = v, B valid also for zero and negative
integersy. The number p;, 7.e. the number of consecutive linearly
independent vectors in (2) starting with v, 4 is called the length of
the chain. The length is always positive, otherwise we should have
9B =vyA=0 and the pencil p4 + o B would be degenerate (§1).

Let p; be as small as possible. We derive another chain from (2) by
putting
P,y
(5) : ud =% a,v;,_, k < py).
v=0
In fact, the 4{ form a chain, for by (2)
»,

Dy
u?)B =( % GVU]C_V)B = ( pN a,,’UL«_1~V)A =u§c1)_1A.
v=0 v=0
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In particular «{’ B = 0 by (4) and
Pr
WP A4 =(Za,v,_,)A4=0 by (3)
0

v=

We have therefore constructed the chain

(6) Ow=u B, uld A=ud B,uP A=uP B, ..., u)_; A=ud B, ul =0
The vectors u’ 4, uP A4, .. .., ug}‘)_lA must be independent, other-

wise we could build up a chain of length less than p; which would be
contradictory.

If there is a vector «{=F0 which annihilates B and which is
independent of the first chain, i.e. of the vectors uf, «{, .. .., ulk we
form another chain like (6) the length p, of which shall be taken as
small as possible. Naturally p, = p,. We then proceed to a third
chain provided that its first or ¢ leading ™ vector «}¥ is independent
of all vectors of the first and second chain its length p; being minimal,
In this way we get a whole system of chains

0=u{PB, uPA=uPB, uVA=uPB,. ..., u) A=ulB, u4=0
(7) 0=uPB, uPA=uPB, uPA=uPB,...., uP_A=ul)B, ¥PA=0
0=u{B, uPA=u"B, uPA=uPB,. ..., uj‘;’:) 4= ung, u;n)A ==0

As we have shown, this system possesses the following properties :

{a) The lengths are increasing
(8) PIEPE oo & Dpe

(by The first vector of every chain is independent of all vectors
of the preceding chains.

(¢) Bach length is as small as possible, 7.e. there is no chain
independent of the first chain whose length is less than p,, nor does
a chain exist whose first vector is independent of the first and second
chains and the length of which is less than pg, ete.

(d) We have exhausted all chains, ¢.e. we cannot find any vector
ug' ™D for which #{**PB=0 unless «{1{V is a linear aggregate of the
previous chains.

We shall now prove that the vectors
(9) wPA,u4PA,.., ugl)_iA,zL()Z)A, uPAd,.., “;22)—1 4, ., uP 4,4 A4,. .,
u;"n"l A are independent of one another. If this were not so, we

should have a relation
n g

(10) . (= ET Bff,)u“) )4 =0

Ay = #r
=1 p, =0 .
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where
(11) q: é b — 1,
and u{ is the last element of the rth chain that really enters the

relation (10) with a non-zero coefficient 8 == 0.
If the rth chain does not occur at all in (10), we put ¢,=0 and

B? =0. Let g, be the maximum of ¢y, gy, .., g, ; if several ¢ are
equally great, we take g as great as possible so that
(12) =z (k=12 ..,9); ¢>0n (A=g+1,..n).

We now construct the chain

% S g W
(13) Uy = z pX B,;)_ L4~q —q, —pr®
T=1 g =0

In fact, the vectors vy, vy, .. , Y, form a chain. For

2 [ qr
’l/AB == (E E ﬁ(T) uk-l—q-r -g, _l“"r) B = (Z Y 652 Up—14q, —-q, —i"r) 4
T=1 p, =1 p =0
=uv,_, 4 beeause according to the chain properties (7) we have
u" B=ul? A for every v = p..
In particular we get v, B=v_;4 =0 and v, 4 =0 by (10).
Also 7y reduces to

vo = B ul_ o+ + BRuP_, + gt + B@ u (by (4) and BY ==0).
The suffixes of the u are either 0 or negative since qggq

(r=1,2, .. h). All terms behind the ¢g** term could be dropped
because g, > ¢, for A > g. v, is independent of the first, second, ..,
(g9 — 1)™ chain. For, otherwise ujf’ would be dependent upon its
predecessors in contradiction to (6). It is therefore permissible to
start the g™ chain with v, instead of «{). But the length of the »-
chain is q, é\py — 1 or less, viz. if the vectors vy 4, v1 4,. ., vqg_lA be
linearly dependent. In any case the length of this modified ¢* chain

would be smaller than p, which contradicts (¢). Hence the vectors (9)
must be independent of each other.

We shall now show that also the vectors

(14) wul, w, ..., '“;11); u, ud, ..., uﬁ); ceees WP A, L ugz
are linearly independent.

If there were a relation between them, it could be written :

n
(15) yr ) + oy u@ A+ oy, u + 2 Z 8(7) u<’) = 0.

=1 pr=1
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The &7 cannot all vanish. For then the “leading” vectors

ui), u®, .., uf would be dependent in contradiction to (b). Multiply-
ing (15) by B we get
n
(Z ZS(T)u(’))B—O
=1 p,=1
since u§) B = 0 ; applying the chain properties (7) we have
n pr—1
(280, u0)4=0
=1 p,=0
which is ihcompatible with the vectors (9) being independent.
Hence the vectors (14) are independent.
What are the connections between the vector chains and the reduec-
tion of the pencil p4 4- cB? Consider one of the chains (7):

0=u{"B, w0 A=u{"B, uPA=u{'B,...... ,uf)_ A= =ufy) B, ul) A=0.
Let
Kd W
v G PR
(16) U.— Z_c(l) and U, = |uf (r=1,2,..,n).
) s
It follows by (7) that
I - ; B
- pu4 4 oul)B ‘ Lopud J
U, (oA +0B)= \ pupd toupB | A Foupd |
pull A + oul) B ] | ou) A [
and - - - n
R |
{ cp .
17) U (pAd +0B)= | 7P U, A=A, U, A,
’ P
— ¢ G —
where A, has been defined in § 1 (3).
Hence
C U, K B 74
: 71 ’ Ul(PA+0B) ‘ AP1 P gl 4 ‘
?2 } (pA + oB) = 'Usz—l—-aB = A, ‘ - Uz 4 ‘
P T
U, | U pd +0B) i | A, | T4 i
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or
(18) UpAd +oB) =A - UA,
where
A = diag (A}, A, s Ay)
and o - _
I
(19) v— U ana?- Y2,
c
| Un “ U” 1\

Obviously, the equations (7) can be interpreted as a vector
A-stair in the sense explained in § 2. It contains k=(p;+1)+{p.+1)
+ ..+ (p, + 1) vectors the independency of which we have proved.

We shall show that & = m. If k< m, it must be possible to
continue the stair by another vector z such that

(20) B Cu) A, uP A, . .., ufd A, ufdA)
z being independent of all . By (7) we may write instead of (20)
» zB C (4P B, uf) B,....,ugZB)
or in full
(2 — (V) u® e ulD - ... +eugd)) B =0

" being certain coefficients. Here we should have obtained a
vector which is independent of the # and yet annihilates B in cou-
tradiction to condition d). Hence & must be m and U has m rows
and is therefore square and non-singular.

Finally, we shall show that also UA is square (of degreem). If
it were not so, we could add further rows to make a non-gingular

. [6‘4
square matrix 7 ]
From (18) we should then get _
Uted +oB) =14, 0[]

Hence [A, 0] would be equivalent to pA4 + ¢B but it contains null
rows and columns which we had excluded. The matrix Z must
therefore be illusory and (18) may be written as

, U (pA 4+ oB) (UA)~L = diag (Ay, Ag, .., Ay).
This completes the proof.

In his paper Professor Turnbull has shown how the minimal
vector chains are connected with Kronecker’'s minimal relations
between the rows of the pencil pd 4 oB. In particular, it has been

pointed out that the lengths of the vector chains (7) are identical
with Kronecker’s Minimalgradzahlen.
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THE AUTOMORPHIC TRANSFORMATIONS OF A SINGULAR MATRIX. PENCIL.
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y1.

In the theory of Canonical Matrices two matrix pencils

[=ghrsB and [l = ¢ roh

each with m rows and n columns, are said to be equiv-
-alent if two constant non-singular matriceé P and @
of degrees m and n exist such that
(1) - rPha =7 ; IFlwo, lal=#o0

The fundamental result is that two pencils can be
reduced to the same canonleal form, if and only if,
they are eqguivalent. Suppose now that /: and/,z are
equivalent; then it is possible to solve (1) for P and
Q,. and the natural question arises, what is the most
general solution of this eqguation. It is easily seen
that this problem is equivalent to finding the most
general pair of matrices P ,& which transforms a
given pencil /= ¢4+ B into itself,i.e.,which

satisfies the equation

(2) rra =7 )

or, comparing coefficients of 4 and o
(2a) Pht A = A&

~(2b) PR A= B

In this case we shall say that the pair of matrices
(#,&) 1s" an automorphic transformation of /7 and we
propose .to determine all such automorphic transformations;
in particular, we shall express the number of linearly
independent ones among them in terms of the invariants

of [N ,i.e.,in terms of the Invariant Factors an@ the

Kronecker Indices of /” .
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Let us now make some convenient assumptions
regarding [= f¢¢f1f5‘without restricting the gener-
-ality of our investgations.

First we shall assume that A is of the same rank
as /7 itself, a condition which can always be fulfilled
by a linear transformation of the variables ¢, ©

For, let ¢, , 6o Dbe such that

A =g A+ B
is of maximun rank, i.e., of the same rank as / itself,
and put

B, = g, # +0, 8B

where ¢, and 0, are only subject to the condition

po f‘z/
= 0

So

(3)

"If we now introduce new variables ?C o’ by the trans-
-formation
/ /
f=f *p 0
o = 5~o€/"‘o-:16-/
we see that /' cah be written as
’ /
[=yA4+6'5
and that it now has the property recuired. Again, the

automorphic transformations remaln the same, sinc: the

eghations
(4a) J€€<Q = ”é and
(4b) PB 4= 5

are equivalent to (2a) and(2b) on account of (3). Aftsr
this preliminary remark we shall replace the two homo-

geneous variables ?,‘5 by one variable,‘},and yrite



the pencil in the form
= A4 +8
where A is of the same rank as /.

Next, [’ may be replaced by any pencil /:, which is

ecuivalent to /° . For, let
L =SrT L SI+o0 /T /=0 .
Then if (P,Q) is an automorphic'transformation of /7,

. (8PS, T7QT) is an automorphic transformation of [l
and vice versa. Thus a (1-1) correspondence is established
between the automorphic tranformations of /° and /, . In
particular, we may assume that /) is the‘ canonical f’orm1)

of /" which we write in the form

(5) fo = [74 I3 + /5
wHERE
(5,1) fo= ﬁ (d, /)m‘_) ( O<my <mMy<- <mp)
(5,2) = A2, +/{,\,
(5,3) [y = 27:(/5 (0<m,<my< - <7m,)
using the “direct sum of matrlces which is defined as follows :
I\
. ) val .
/177‘/21‘-“'7‘/; Zf' aécaf(F ..,/—:—)= Fi J

=y

and when ["—"— /1 = m= /; = ﬁ,we write
Jow Pwe ot =2 /7),
In (5,1) and (5,3) A’”’c is the typical singular submatrix

corresponding to a rowv vector of minimal degree 477,

annihilating /7 3€eT .,

1)See Turnbull and Aitken " Canonical Matrices" (Glasgow 1932)

and W.Ledermann Proc.zdin.VMath.80c.(2) Vol 4 (1954) [retZof #eolesis,
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A..
)‘
A :12' -
A A [jj]i A= 11 45]-
D

and in general

- >0
-

(6) As = _
A
4 dser s
We remark that /\S has s+l ro s and s columns. The
pencil /Z in (5,2) is the. " nonsingular core of /7~ %
of type kx k ,say, and there is no loss of generality in
assuming that the matrix coefficienﬁigjl /7 is the unit
métrix; for since that coefficient i1s of the same rank
as /; s 1t must be nonsingular and may be removed as a
factor.
The Kronecker Minimal Indices are exhibited in the

canonical form,vigs:
bqtimes 7, 5, K,times 7, ........ for the first set,
ﬁqtimes m, , ﬂ?_times 75, esseeefOr the ‘second set.
thess numbers together with the Invariant Factors of
are the invariants of /7 , they are the same for all
pencils equivalent to /7 . In what follows we shall
assume that /' 1is alres_dy in cenonical form, i.e., /o=/7".

Since /AR/+ O , we may put R = Q"7 and write (2)

as

() pr=rrR , IPIFo, IRIFO
or by (5) |

(8) PCr el i) = (F+T 43R

7 2.
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We now partition P and R in accordance with the three

isolated submatrices of /) i.e., we put

P= [72;/] ; R= [PL;/-] (54=123)
Hence (8) resolvesb.nto nine partial equations
7 - A
or in full ‘ .
a) B0 =15 R, () 2 /Z =R, vii) B 1} = 17 R,
(9) an 2,1 =11 R, (V) 2,7 =[] &y Cvir) 63'/;= 7R,
) B, =15 Ry, i) /3)?_/;“; /3 R, (%) B I3 = 75 Ry

and it is the object of the following pages to give a
completke solution to these equations, the m™+7*elements

of P and R being regarded as the unknowns. Only equation (V)
seems to have received attention in the literature. For,
substituting for/l from (5,2) and suppressing unnecessary

indices we can write this equation as

PUAT + M) = (AT +HIR

whence P 'Q
Hence PAH = JP

The solution of (v), therefore, involves the finding of
the most general matrix P that commutes with}a given
matrix M.

This problem was first solved by Frobenius and has since

1
been treated by several authors):

7Frobenius, " Ueber die mit einer Matrix vertauschbaren
Matrizen" Berl.Sitzb.(1910) -here other references may
be found, also D. E.Rutherford, Proc. Amsterdam Vol 35 (1932)
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It was found that the number of linearly independent

solutions of (V) is

(10) {5=t=€1+3€2+5_€3+7€9+""

where €, 1s the degree in ) of the v % Invariant Factor
of the matrix A\ +/#, . In what follows we shall obtain
similar results for the remaining eight equations (9) to
which we shall refer later simply by Roman numefals.

The total number t of parameters in the general solution
of (7) is equal to the sum of the subtotals Tt 50005ty
giving the numbers of parameters in the solutions of those
nine equations (9). It will be found that three of these
numbers are iero, i.e., that the corresponding equations

have only the trivial solttion in which all unknowns wvanish,

and the final result will be
q .
f=g{-s = ‘C‘-}—[é/:.lx‘; 09'(71’)1.—7;3/'./-/) :gﬂ, é’-(nd'-—nt-f—l) + éé_do' +‘/2é) +l;(/£,0(lv/5' (7;0(-;-72/)

[£2

Before solving the commubantal equations_§l(9), e

shall make some remarks on the typical singular submatrix

(§1(6)):

]S- .
(l) /\55— j -—)[]f[]'s])

14 ) $#1,8§
where Ig is the unit matrix of degree s, and the dot below
or above ' indicates a row of zeros.
First, we wish to deftermine row vectors and column

vectors that annihilate /g . Let

X={¥1, {2, < 7 {S}



7

be a column vector with s elements and

=L, e - -1 9]
a row vector with s+l elements. We then prove the following
lemma @
LEMMA T.

The equation
(2) . Nox =0

admits only of the equation x=0, i.e., the columns of s

are linearly imdependent ; the general solution of

(3) CyAs =0

is | y=g)[1, -1, D5 - ()]

where $(1)1s an arbitrary function of A and
wg= L7 -2, €7 -, (2)°]

is the " vector of apolarity" of degree s.

ggggg : The rank of Ag is s , because on cancelling

the first row of /| we obtain ‘4 minor which is ident-
~ically equal to unity. In the set of homogeneous equations
(2) , the number of unknowns therefore equals the rank,

and by the fundamental theorem of linear equations the
system has only the trivial solution x=0. In the set of
equations (3) , however, the number of unknowns exceeds

the rank by unity and the most general solution is a

scalar multiple of any particular solution which may

be taken to be the vector of apolarity u; , since

(4) ‘ Usg /\s =0

as is easlily verified.



I8MMA II

IfPiseconstant matrix with s+1 rows,then the eaua-

-tlion
L(—szo

1s Impossible unless

P=0

The proof follows immedliately on writing out(5)in full

and equati\/eng the coefficients of 7, A ,A,Lu--,/?sto Zero.

§3

We now turn to the discussion of equation §7,(9).

consider the simple case

(l) ﬂ/‘s = As/ /Q
 which is solved by the following theorem:
THEOREMI

‘When §°< § ,equation(l)has only the trivial solution

=0 , R=0

whensSzSand 02 $/—§ =

j

A ,say,then the general

solution is

(z‘=. o .-, 8
(3) P = [ﬂ"‘(/.]s{fzsf_// J.:' <, 7, - y 5
and | = ", 2,~-,.§’)
R = [9557-35,’5 (/: 7,2, - S
where ¢, &,..-., 8, @are dl arbitrary constants and

- O for z'—-d'?G{
fbl‘—g' for z—) < O.

Eege,in the case 8'=5,s= 5,d=2,we have



¢O . . . ‘—¢a .
431 ‘Po ' . 957 ) dp .
P= P2 4 Po ; R = b b b
SRCE (A b b
T e ’ © G

Broof : On premultiplying (1) by ¢y we obtain by § 2(4)
(ug, P} Ng =0

i.e., the vector (L{S,P)annihilates As . Hence by lemma I (§2)

we have (5)

(5) ' U P = ﬁzz)(f,'() [, -/?,C—/U,l~ -y [“A)S).

The elements of the vector on the left hand side are
polynomials of degree not higher than s'. Hence compar-
-ingﬁhe first elements of either side we see that ¢()is
also such a polynomial.

Now, when s* is less than s , eguation (5) is obvi-
-~ously impossible unless;b//l) is equal to zero and hence
(6) - Us P=0O

which, by lemma IT (§2) implies

P=0 -
Equation (1) then becomes 0= As R which entails
| R=0C

since the columns of AN¢ are linearly independent. This
pfoﬁes‘the first part of the theorem.
Next, when s' X s, (5) can evidentlv be solved
and 7)[/{) will generally be a polynomial of degree d—-——-s‘-si
PN= =, 4 + g V=~ - -+ +g, A3, say.
Putting |
= [ pi] (2= G, 5y~ 015

‘and comparing the j-th elements of either side of (5) we
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obtain

Ibod' +ﬂ’/(_A)+/bz‘/ (_))Z+ _ ,~.,./%:/ (__A)S - ¢a (~/l)/+¢l [“-A)/?/*Si’l(;J)J}Z
() =9 ﬂ2,.~,5)

Hence
Pop =By == p, = O
/b(/;/' =P Prong = Po; - - 5 /‘3;/,4( = Px
p/-f—d-f‘f,(}'-..._—ps =0
or .
o }A?Q L\~J'< 0
pop = o feyfer 08 v/ 5 d
fo) ;[w( i~y > L

which proves the statement (3) regarding P. In order to
determfiik R, we substitute §3(1) in (1):
A2 [¥]+ )] = D[] -[allR
Comparing the constant terms we get
?la] - [1]%

vhich on premultiplication by [-']}j] becomes

r517[5] -k
The matrix R is thus expressed in terms of P, and it is
readily seen that R is obtained by cancelling the first
row and column of P. This proves equation(4) .It is easily
verified that (4) and (5) are also sufficient conditions
that P and R should satisfy (1).
Corollary:

When s'= s , the general solution of

~7J/l; —:/IS'IQ

'"" P="4 L
R= ¢ I

o %L (‘J)J-’q
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involuing one parameter ¢, . The solution is nonsingular,

if and only if ¢ o,

Ve néw come to the'equation

(7) | Pl Ns) = («” A )R

where (& /\s)'-‘/\s*'/';""*'/(;( X times repeated). Writing P and

R as‘ = 7,2,..,d’
r=L21 R=[Ry] QEmanwj

we see that (7) resolves into « o’ matrix equations:

(8) B Ny = N Ry
of the type which we have just considered. Hence, if s s
(8) and therefore (7) is impossible , and if s'> s , each
ecquation (8) has 8/— 8 + 1 linearly independent solutions,
and the number of parameters in ths general solution (7)
is consequently

o' ($-5 +1),

In particular, when s'= 8 and o= , *7;);/' and IPz'd' must

be of the form
‘7%/=¢{/~Z.;+1 ; /Ql-d-——-yfg]; (z,“/‘=7,2,_,,0()
where ¢, are o? constants ( Corollary to theorem I).

Introducing a matrix
b =1L¢y]
we can write the result as
P=1[py L] = 9% L,
R=[¢; I, ] =9~ 1,
using the familiar notation for Zehfuss (or Kronecker)
matrices. The solutions P and § are nonsingular , if and

only if § is nonsingulare.
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This enables us at last to obtain the complete solu-
~-tion Of(i)(§l,(9)):
THEOREM IT

The general solution of

(90 PLEwAm)] = [ £ eihn)] R

{w ]

is of the form

. ‘p/) : ' - Rll ¢
po | B B2 o R=| R Rau
P _ _
A B B Ry
involving in all
(10) =5 g 2 +7)
LZ/

arbitrary parameters.

The proof is obvious from the preceding results.For,
again,we partition P and R in a{suitable way so as to
resolve(9)into the equations

2, (o Py ) = (8 i) R
which have already been discussed.’imenf\i < j,we&have My < My’

(§l,(5,l))and therefore 2.= 0 ; ng/“;O.Further,?; and

I

</
R:; are of the form J[i= ?-".Zm.ﬂ,- £, ié"z;and F and R are
non-singular if anéﬁf £, b, #  are non-singu-

=-lar.
The solution of(IX),(d1,(9)),viz.,
/
2[f ) = [£ 50K
does not involve anv new difficulties,since the trans-
-position of this ecuation leads us back to the pre-
-vious case.The numbsr of parameters in the general
solution of(IX)is therefore

(11) Z /? IBJ [fn — N, .,.'-’I)

Sz



#e shall now consider(IV),viz.,

PLo=1r R
(12) PR =[5 @A)l R
where o= Al + Ar

or

i

is a nonsingular pencil of type k=k.As before,(12)re-
solves into a an{% the kind
(13) ' 2RI = Ns R, (=172, -,—(}509')
here § stands form, ( &,times repeated), m, ( «,times
repeatedjetc..It is easy to see that (13)is impossible
because premultiplying it by «&s. we gel

(“s‘- Pz) /_77, =0
Sinée /; is a non-singular pencil,it follows that

g, 2 =0

‘and hence by lemma II(§1)
P =0

i

Equation(13)now becomes

which entails
/?z' = 0

the columns of /\; being independent.The solution of(IV)

therefore contributes no parameters,i.e.

(14) t, = O
Land /) are
iie get a different result,however,when V. inter-

-changed,as 1is the case in (II),viz.:
PR =R
or

(15) ?lS (ot; o)) = (A Ly *2 )R,
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which may be resolved into 20( equations of this kind:

(16) 2 A, ‘=77{)[J’] [I,]} = (AL, +A4)R. (z'—~—7,2,~-,d£a’-,)

where S; takes the values m, m,, . - - - .7, mbeing re-

-peated - &, times.Hence comparing coefffcients of A

We get:b I.,
(16a) 7 [ } B
(166) 2 [1,]) - %R

where,for simplicity,we have dropped the suffixes of

the matrices P and R.Let
[f’"//’v, - --//051-_7
R=[2, ta, ... 2]
introducing column vectors p,, A, .--,/%4,7%, --- for the
columns of P and R each having k rows.It is easy to ses
that postmultiplication by [‘Z;] or [L] has the effect

of cancelling the last or the first ro:;:.Hence(léa)and
(166)oecome

[/oi’//b’ll"'//%‘ﬁ’l]: [04//22_,.-,/2‘;".]
Lous bas - -0 b ] = [, Ky, .., Mg,
and by eliminating =, »4,, .., 4.

[/741 Par - '~’/]“¢'] = [‘/4' Po, ‘”i R 7/? /:79-7-7 ahence

'/%'z‘%/bo / /712%&/67 :ﬂ{@zlp?-,' - /'/by::ﬂkv/bo,'“"' (V= 0/7/“/‘2')
A T A - S

where the k elements of the vectorp, remain arbitrary.

we have therefore:
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PHEOREM(III)
The general solution of the equation

(16) PAs = (AT, ) R:

is of the form

P Lo, Hape, Ky s A p]

b S
C Lp Mpe, Ko, s ]
involving k arbitrary parameters,namely the elements

of p -

Since(15),0r(II),is equivalent to %:db equations of

type(1l8),we have at once
(17) t, = KJd
Aspefore,we see that(VI) ($1,(9)),1i.e.,
, /; 2

and (VIII),i.e.

| =R
ard merely different froms of(II)and(IV)to which they
are reduced by transposition.lq is then replaced by a
pencil of the same type as C’(gl,( 5,1)and(5,3))and the
order of the factors is reversed whileng and /Z/play
the same rGle since the only property we have used,was
that 12 was a non-singular pencil of type kxk.

By aﬁalogy,we obtain therefore

(18] 4=k

and

4e shall now show that (VII),i.e.
P =1"R ,or

(200 P[5 (gAY = [ N, IR

is satisfled only in the trivial case P= 0 ; pzré).For
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(20)splits up into a number of equations

(21) ZJ A'ﬂ‘/- = /\""'C /?l‘/

which after premultiplication by «,.. yield
(o, /%J/\%; - 0

whence

2 /3.d, =0
the rows of /\;ybeing linearly independent(¢z,lemmall) .
Hence as before,it follows that

By = O and ﬁ‘./-sO
#e therefore have
(22) ¢, =0

It remains to solve(IIT)which we write as

(28)  PLE @ Am)] = [2 5 15)]R
and which re:i-l;ces to (%NL-)'C%'@;,) partial equations
(24) P Ny = N Rey
each occurringa, #; times.Substituting for /lm.and /%from

§ 2,(1)we get

p”d'{/] [J-;nu] 4 [Im‘]; - {’2 [I'”‘j ]+ I””(}')_}Z’Qc‘d'/ioé.,

(25) ‘Z){/ [J:m”'] = [:I'n‘f '] Rz‘d'
(26) [ ' - .
£ [5)-0 Bk
Let ’f/,u. = // 2, -, fn/' \i
, ]2}/. - [ /J/u,,/_] o= 72 -, 41
/f‘= 7, 2, ~-'/M/*/ )
RL;/‘ [/Zré'] (‘f:" 7, 2[ e, m7‘_~ /
Then(25)and(26)become
(/"L= 7/21. '“IM}' 3
(27) : /://\_V - /z/-o" v =17 2,.., v,
(28) f}ﬁyﬂ — Krrs //'L= 1,2, -, 7y

N 4[21 L, e
From these two ecquations we infer
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P/u.,V+-l = /b/"°'+7/ v

or, replacing v by v-7and iterating the equation :

ﬁ/"/‘/ = P/,of-’l, Vasf :/t/)ba-/—% Ve 2 = T /}2“#%,1/——7{ == g,(-f-‘,‘z J
say,i.e.the value oflg*vdepends only on the sum of the
suffixes,and similarly

1}
/L/&,v: %7/,/_, = Mpewz, rma N/Z?Ml/ = g,u_p_.z

“ie have therefore proved the following theorem:

THEOREM IV:

/
The general solution of ~Z§'/4¢m[ —- /wa Q%/
is of the form
¢d ¢’1 T -¢'ry)L- j; ¢° ¢7 - "gmj-ﬂ
Po= b b ot | CR= [ Fo A
L‘/ 2 ’I ;
| A i
¢o.1/.~i /b,’:/‘ - ¢m{.*?../. ’@/%.,m(fi i—¢m‘/ }ﬁ(;z*'ﬂ A “J—'J};CL_‘,L‘_ ‘}04 - .
involvingm 7 parameters ¢., &, , oy B =1

The number of parameters that occur in the general

solution of (III)is therefore ‘
(29) 4Sd/@(w74ﬂ4) (v=7,2, -, p; J =2 ~s7)
We niow add up the subtotals £ 4, 4, ... 4 {as given
1n§1,(1@)and§5,(1o),(11),(14),(17),(18),(19),(22),
and(29),and we find that the number of linearly inde-
-pendent solutions of
(20) P77 =R
is given by
t= Zé — T+ RI% +/é2,9 +Z % (om, - m+f)+5.f’ﬁ('n el "Z"’ﬁf'"“”'y/

A=y

(1=12,. ,ﬁ(//Z ,7/
Moreover,a method has been given for actually ob-

~taining all matrices T and R satisfying (30).3ince

\é% ="é7 - 44 =0 ,
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it follows that in the scheme §1,(9)

‘21:0/ R, =0 ; =0, ’?/330,' 2

3 5= O, ,P23=O,

so that the general solution is of the form

‘73/1 ' ’ R// ' ’
.73""’ '723./ 7?"2' ) /'\? = E R:.z. '
2, 2P x
EY 32 33 R?H E’51 E33j
Purther,?P and R are non-singular if and only if the
matrices 2 , A, ., @3 and R, Rz, /?33 are non-sin-

~gular,and we have already found the necessary and

sufficient conditions that those matrices should be

non-singular(see p.1l.).




PART III
ON SINGULAR PENCILS OF ZHEHFUSS,COMPOUND,AND
SCHAFLIAN MATRICES,



1.
ON SINGULAR PENCILS OF
ZEHFUSS,COMPOUND,AND INDUCED MATRICES .

§1o

Introduction.

In this paper the canonical form of matrix pen~
cils will be disscussed which are based on a pair
of direct products(Zehfuss matrices),compound, or(iﬁ-
duce@)matrices derived from given pencils whise cano-
nicel forms are known.

When all the pencils concerndd are non singular
(i.e.when their determinants do not vanish identi-
cally),the problem is equivalent to finding the ele-
mantary divisors of the pencil.This has been solved
byA.C.Aitken(ref.l),D.E.Littlewood(ref.2),andW.E.
Roth(ref.3).In the singular case,however,the so-
called minimal indices or Kronecker Invariants have
to be determined in addition to the elemantary divi-
sors{ref.4,Chapter IX).The answer to fhis question
forms the subject of the following investlgation.

The method employed is that of the principéi of
vector chains which was first used in this connec-
tion by H.W.Turnbull(ref.5).

Let QA+0B be a pencils of type mxn i.e.with m
rows and n columns.It is then possible to find two
-non-singular constant matrices P of degree m and R
of degree n such the#

{o,, 0 J
(1a) P(QA+0B)R= (O pA+oB

there being e20 zero rows and fzo zero columns and
(1v) (9A+03) diag(L L. L,M M @, JN.-N,2)

where the symbols on thezﬁand side have the follow-
ing meaning

ref.6,p.94,
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6 - - .0
S { & - o
(2a) Ly = QF;+6G, = ,
is JPencil of i rows and i+l colunns,e;g.eo‘£'z+’
e
Uy
L4 = . <P g .
. ¢ |
e
and:
6 + .« - .
<)
b = ' ' = ) 2 i
(z0)  MjqelroRy -
. . '3’2*‘/'
has j+1 rows and }J columns.Nkis defineias
(o} 7
foe
(3) Ny= pI,+0U, = 0 6 X
‘ S 4,4

Wherelk\ggg/uk are the unit matrix and the auxili-
ary matrix of degree k. N represents the “infinite la-
tent roots while Li and M_ correspond to the linear
Bttt Noewrs aoel Gttroeen colivy., 3

relationsvof the pencil.Pinally,
Z=?G+6])

is a non-singular pencil for which]D\ #o.It will be

noticed that this‘canonical form is slightly diffe-~

rent from that given loc.cit ,But it is easy to see

that the two forms are equivalent;for apart from re-
arranging the submatrices we have

Li ==_/\_/,L' (100.01to§1’(3) )

Mj = Jj+11@ij swhere

(47) Iy = L» 7 -J
‘ 4 - - ey
and N, is replaced by H% =JprJp .

In order to state the result (1) more conveni-

entl
;:E;:%%?ggzintroduce the "direct sum" of matrices,viz.
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. ﬁ'T
MB= | . B

and in general

4

Al** .. o-‘A-h i‘ki = diag(Al,Az, oo 'Ah) .
We shall alsduse the abbreviation

A$A = 2A ,AYA+A = 3A ,etc.

Purther,for the sake of symmetry we introduce the
two symbels

Loand Mo
to the following effect:if A is a matrix with r(>o0)
rows and 8 (>0) columns,we define
(5a) Lo#p =(° AJ; 2L°-'m a[' . A::’ ,eté.
(5v) CMGA = [A} ; M tA = F] ,etc.
[+ ‘ [+ LAJ
i.e.the term L, [ﬂb] means that A has to be augmen~-

ted by a zero column {row}.LoandMO are,of course,not
proper matrices.

In this notation we can write(la)and(lb)as
(6a) P(9A+GB)R='eLoifmoi(ngdﬁ)

(6D) QA+6B, = ;Zz,nia- ;M-’”f ;%NPR i3z

or mére briefly

(n 9A+6:B_Ngx.ni */’Z"wj +%Npk i3

if we inelude the zero indices,if any,among the ny
and m, .

According to the general theory, Z may be trans-

formed into the classical Weierstrassian form,viz.

7 = gwhio"’) 5 %Qg[

where
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°(Q + g .
(8) wh(O() = (d?+6)Ih+QUi1 = R 0‘?‘*0—
and '
A
(9) Qg = We(o) = 6I+qU: = U‘ & J
p 6y,

The quantities «,,«, .- are non-zero,but not nesessarily
distinet.Substituting in(7) we obtain

{ro). QA+GB NZL ; , +ZN +ZQ +ZW (o)
where n, and ‘j are the ’cwe sets of mi mal indices of
the pencil QA+0B referring to the columns and rows re-
spectively.They are the minimal degrees in ¢ andd of
the column and row vectors which annihilate the pen-
cil,and they may be positive or gero.It is no loss of
generality,however,to assume that no zeros occur among
them i.e.that e=f=o in(1la)%But later on,when dealing
whith composite pencils we shall see that zero values
for niand mjcannot be avoided.

It shoudd be noted that direct summation of matri-
ces is commutative if we do not distinguish between
equivalent pencils’? thus

94C1+C,) +a(D; 4D, )~ @(Cy 40y ) +6(Dy+D, )

i.e.those two pencils have the same canonical form.

§2o

Vector Chains and Canonical Form of a Pencil.

In two papers by H.W.Turnbully and the authm?j it has

7 ref 6 ¢ 95
Y ref 2,983

yref 5 and ref 6.

R

Q O(Qi-d“]/h’,h
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W/
been shown how a pencil can be brought %o its canoni-

cal shepe by successively forming certain vector chains.
We shall here use an extemsion of this principle which
has also been hinted at by Prof.Turnbull.let

©A+0B

be‘a pencil with m rows and n columns and consider
the equation

(1a) (Qa+0B)R= R 1L, _,

where L; ; is defihed in §1,(2), R is of type nxi

and B 7is of type m x(i-1 +Throughout i=n this, sectifn
the columns of R and ﬁ“ ill\\be supposed to be linear-
ly independent.Put

(1) - . R = [1‘1; r2-pa.2ri] a.nd. §‘Fy3 [Fl,fé’yaa Le¥ )Ei-ﬂ
where the r's and the Trés are column vectors of n and
m elements respectively.Writing(Ia)in full,we have

P <

(2)  (pA+0B) - [rysTpseryry) =(F T p0es 4Ty ) ¢

2

Hence

feAzftﬁBrl,gAr2+dBr2,...QAri+§Brg = [éfl,dfﬁfefzy-v‘quJ
o8 Hetio

(3) AI;[=§1; Ar2= 52; cevssesss e ;Ari_l=-1'.ﬂ? A‘ri=0

-1

(4’) BI‘:I=O; Brz—_‘?l; TR R R R R Y ) ;Bri_l‘-':?—i-a).Bri =T‘L
From(3)and(4)we derive the vector chain®

. @ 7

(Id) o=Br, ; Ar =Br, ; Ax, =Br; ;....,Ar;; =Br; ;A =0 , of type &
In the two papers cited at the beginning of this pa-

ragraph row vectors are used instead of column vectors

which we here prefer merely for technical reasons.The

fact thaﬂeitherhow or column vectors have to be dis-

tinguished,is certainly a diaantvantagdﬂhich is,how-

ever shared by most of the other theories.
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On the other hand,suppose we have found i vectors
TyT, geeesly satisfying(Ib);we can then define the vec-
tors 51,52,....51;1 by(3)or(4)and get back to(Ik).
Hence(Ia)and(Ib)are fully equivalent.In the same man-
ner we can deal with the other submatrices L M, ,Q
andthﬂa) that occur in the general canonical form §1(10)-

Let ‘
(11a) QA+0B)R = ij
9
where R must now be of type (nxj)and R of type (mx(j-1)
Put

(5) R={rl,r2,...rj]tnd Rz{i:o’?l’...-fj-]
Substituting(5)and §%,(2)in(IIa) welget

, s -
(pA+6B) [ Ty Tpp- 575 = [FooFpseennBy) | T

Hence

(6) Ar1=rl; AI‘2=I‘2;.......;Arj_1=rj_1;Arj=rj
whence we derive the vector chain

Next,consider

(I11a) ‘(9A+63)-R = RNy
where R is of typefnxk)and R of type(m~xk) sPut
(8) R=[r1,r2,...,1‘k] a-nd R-—- [El’;z,oo.,flk]
and substitute(8)and§l,(3)in(IIIa)

SJ g .

- g T
(9A+GB) [I‘l,r2,...,rk-)= {El,EZ,OOQEk-_\

f S
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Hence

(9) Ary=T;; Ar2=r2;.......;Ark_lzik_l; Arszk .
(1o0) Br,=o0; Br2=rl;........;Brk_lsz_z; Brkzik_l .
Equation(9)and(lo)yield the chain

Finjally,let

(Iva) (pA+6B) R = £-Qg

where r is of type(nxg) and R of type (mxg).Put

(11) R =[I‘1,r2,...r£)-ﬁ= E§1,§2,uo-§g]
On substituting(ll)and §1(9)in (IVa)we obtain
oq"o' : |
(pA+6B) [r,,r r) =[%,F 7 J RS
e 1’ 2,00. g = 1, 2,00- g .
| L7

Hence comparing coefficients of @ and ¢ we get

g-l=§g; Argzo

(13) Brlt'f‘l; 31'2=i'2; es 600 0e 00 ;Br

(12) AI'1=T‘2; Ar2=§3; ee s s0 00 e ;Ar

=-I-‘g_l; Br 3-1: .

g-1 g £

this gives rise to the vector chain

(IVD) ofBr,; Ar,=Br,; Ary=Brsj....; AT, 4=Br ; AT =0, of "Cppe @
It will facilitate the work if we write the chains(Ib)
(1Iv),(IIIb),and(IVb) in the following standard& form

which enables us to deal with those types more uni-

formly.Let

=Br_;T_=Ar

=Ar, 1 =Brpi T =Ar,

(14) 3oaBrl; §1=Arl=Br2;...;§p_l
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According as T, and rp are zero or not the vector
chain(l4)is of one of those four types,viz.of
type L if fo = 0} T =0 (%)

type. [ if Eoz 03 T_# o (<)

type X 12 F_ o5 T =0 (T4

type M if 50 # 03 D £ o (I¢)

They correspond to the submatrices L -l’Mp »Q. ) «The
number p is called the length of the chain(4€. R al-~
ways has the columns rl,rz,...,rp while the columns
of R are the non zero vectors out of the set Eo,fl,...

(15)

..’rp-l,rp L[]

We add a simple example in order to show the prin-
cipal idea of our method.Supposing we have determined
three pairs of matrices Rl’ﬁlng'Rz;RB'RB whi¥ch satis—

£y(Ia),(1I2),2ad (IVa)resp.We can then comprehend
these equations in

(oa+B) [ Ry,Ry,R51= LBy, E,, R, ) (1 dm 4, ) )
Now, 1f the numbers of columns in Rl’Rz’R3 and Rl,Rz,'Kg

g _re such that the matrices Rl’Rz’R3 axsxayaxe and
Rl,R2,33 are géégg and non-singular,thenwe have

proved that the canonical form of QA+6B is L14M34Qg
Our plan will therefore be to construct as many matri-
ces Ry, Rypeee; Rl,ﬁz,... as are necessary to build up
two non-singular matrices CRl,Rz,... ] and [RI,RZ,..J.
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§3.
Preliminary Remarks about Direct Products.

If A =(a,.;] is & matrix of type mxn and B =[bki)
a matrix of type pxq ,then their direct product

allBO L N AN ) alnB}

amlB. L I ] amnB

(1) AxB =

is a matrix of type (mpxng).It can be defined for
any two matrices.Direct multiplication obeys the asso-
ciative and the distributive law,viz.

(AxB)xC = Ax(BxC) = AxBxC
Ax(B+C)= (AxB) + (Ax0Q)
(A+B)xC = (AxC ) + (BxC)

as can easily be verified.

T:here is also a distributivé law connecting di-
rect addition and direct multiplication,viz.

(2) (A ¥ 4,) x B =(4 yxB) + (4,xB)
Again,
(3) ( AxB)' = (A'xB')

Both these rules readily follow from the definition(l).
It should be noted that no simple relation like(2)
exists when the second factor is a direct sum.

The most important property of direct multipli-
cation is the multiplicative law

(4) (RxS)+ (AxB) = (R-A)=<(°B)

if A and B are square matrices of non-singular det¥-
minants,so is AxXB .This follows from(4) By putting
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-1 -~
R=A""and S = B 1 +The right hand side then be-

comes a2 unit matrix and neither of the factors on
the left can be of zero determinant.

Consider the transformation of two sets of vari—
ables:

P£=ZM.Q.¥' Ce=1 2, ..
(58) 75

Te = 425 4 (£- 7,2
A=1

or in vector form

(5b) r
8

Ax

By

introducing column vectors

r={91€2""’/f»,} xz{f‘l'?z"";’”}

s:{o;lo’zl_,,,o;} J = Zr?]’/ Dot -y ?77}

On account of(5a) the m.p products {; o, are linear
functions of the np products'§ 7, the matrlx of the
coefficients being Ax B j3;this follows at once from
" (4),because

(rxs) = (AxxBy) = (AxB)(xxy)

and the elements of rxs and of(xxy»6ggzg£§i§\ffezqust
the products ¢;%, and % 7

Direct multiplicetion is not commutative,but we
shall obtain a substitute for this property through

THEOREM I
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THEOREM I

The two products AxB and BxA are related to
each other by an identity |

(6) Q(a<B)P~L = (BxA)
where P and Q@ are permutetion matrices

which depend only on the types of A and B
and not on their elements,

Proof: Apart from the order the vectors(xxy) and(yxx)
contain the same elements,viz.the ng products 5 74

We can therefore find a pnrmutatioq’matrix P of de-
gree ng such that

(7 (yxx) = P(xxy) and similarly -
(sxr) = Q(rxs)

where Q is a permg;ation matrix of degree mr Evie-
dently the§§=ma$¥iees do not depend on the elements

of x,y,u,v but only on the numbers m,n,p,a. By(5a)
and(4) we have

(rxs) = (AxB)(xxy)

(sxx) = (BxA)(¥=x)

-

Onrmultiplying the first equation by Q end substitu-
ting(7) we get

(ex2) = Q(AxB) (xxy) = (BxA)P(xxy) .

Since there is obviously no linear relation between
the elements of (xxy) we obtain

Q(AxB) = (BxA)P

or -1
Q(AxB)P™"=(Bx4) , g-e d.
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Let TysToyeeesTy be the columns of the non-singu-
lar matrix

Ty Tyo ”"rlm—\
(8) R = [rl,.':z’.o.,rm] = » \

rml I‘m2 cve .I‘mm

i.e.suppose that the m vectors

ri = {I‘lj,rzj,...rmjg (j=l,2,..,m)
. 2
are linearly independent. Simlarly,let S198550048

m
be the columns of a non-singular matrix .

811 895 ....slﬁ}

1
1

(9) » S = %:81’82,...,81:,%

Snl Sn2 ....Sm

where

sk ={slk,82k,.‘.’snk5 (k=1,2,...n)
We shall then prove the

LEMMA I
If rj (j=1,2,+.,m)are m linearly independent

column vectors of degree m,and s, (k=1 2,..n)
n linealyvcolumn vectors of degree n,then
the mn vectors

(lo) rjxsk

of degree mn are linearly independent.
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Proof: Supposing we had a linear relation

SGdTx &) = o
or written in components
chk rij Shk = 0 (i=l’£0 ’m;h=1,2,lo,n)
71 R
which is equivalent to the matrix equation
RC3' = o H
if we put

C = [Cjk] (j=l,2,..,m;k=l,2,..,n).

Since R and S are non-singular,it follows that
‘C=O
i.e. the vectors(lo) are linearly independent.

We shall require another lemma which goes a
little further than the preceding one:
LEMMA TITI
Let rj(j=l,2,...,m)and s, Ak =1(2,...,n)be de-
fined as in lemma I and let E(X)(k=1,2,..,n)
be a set of n non-singular matrices of de-
gree m;thenkhe mn vectors

(E(k)r x sk)
of degree md&re linearly independent.

Proofs . Since R in(8)is non-singular,we can write

down the matrix eqﬁ%ion

(12) - g 2 g lE(®)R) = ra(®)
where '

- k
(13) al®) g-1g(k)p _ (91(11) )

is non~singular.By picking out the.jth column on
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either side of(1l2)we get by(8)and(13)
56, Z (x)

and after direct 5mu1t1pllcation by s

(E(k)rjxsk) -_-.;a}(ll;) (rhxsk) (j=l,2,.m;3 %=1,2..m)

Supposing these vectors were linearly dependent we
could find mn constants zjk not all zero such that

' k k
;% ij(E( )rjxsk) = %zjka(h)j(rh" sk) =

According to lemma I it now follows that

(k) _ _
R R =T

or
(14) 2z =0 (k1,2,..,m)
if we put
g = {Zlk'zzk""zmk}
But since A(.k)is non-singular,we infer from(l4)that
z, = 0 (k=1,2y40.,m)

i.é."chq vectors(ll)are linearly independent.

Now,consider the pencilss

(15) B
and )
(16) X

QA+¢B of type mxn

0

QC+6D of type pxq

Prom these we derive a new pencil
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(17 (HIK) = Q(AxC)+6(BxD) = gX+6Y

of type mpxng.In the subsequent section we shall de-
termine the minimal indices and the elementary divi-
sors of(l7)gmthose of(15)and(16)are known.Here we
will first establish some simple rules regarding
(H}K)which will facilitakelthe investigation:

(18) (H\R)' = (H'|K")
(19) (H\K) ~v (K|H)

For by theorem I the products(AxC)and(BxD)can simul-
taneously be transformed into (CxA)and (Dx»B),i.e.we
have

Q(AXB)P-l (‘BxA)

"

Q(cxD)P~t = (DxC)

with the seame matrices Q and P.On multiplying by ¢
and ¢ and adding we get(19).

If B is equivalent to H and if R is equivalent to
K,then '

(20) (BB) (1]K)
For let ﬁ - Pl(QA"'dB)Ql = QP AQy*0P;BQy
and

R = P,(pC+6D)Q, = QP,CQ,+6P,DQy,
then

b,<2,) [p(AxC)+0(BxD)] (9 xQp) = p(PyAQxP,CA,)+0(P Q<R DY)

¥ Thig is,0f course,not equial to(HxK)which would be
in general of thejgecond degree with respect o and 6.
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or AR s Yo motation(17). ¢

Next,let
H = Hy+4H, = Q(A1$A2)+6(BI$BZ) .
By(2),we obtain
(21) (H,3H,|X) = :
1, K) = (H;|K)+(H,| K)
If,on the other hand
we have
(BlK, #K, )~ (K, 3K,| H)
by(19) and hence
(22) (H|K 4K,)~v (H\K) ) +(H|K,) .
(21)and(22) tMogether yield the useful formula
(Hp+H, | Ky 3K, )~ (B B )4 (Hy LK) +(H, Ky ([ K,)
or,more generally*' :
(23) (S8 Sk~ S0H,|K))
z 7 ¥
When investigating the invariants(i.e.minimal
indices and elementary divisors)of the pencil
(HIK)

we shall first of all replace H and K by their canoni-
cal forms(§1l,lo)which is permissible by(20).Secondly,

since H and K will then appear as a direct sum,we only
need to determine the invariants of the different terms

% This formula has implicitly been used before by va-
rious writers,e.g.
Williamson,Bull.Amer.Math.Soc.37,p.586 (/737)
Rutherford,Proc,Akad.Wetensch.Amsterdam,36,p435 (/733
Roth, I'ef-3 ,P-463.
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(24y (HKEY)

by(23).Now,in the canonical form§l,1lo) there occur
five different kinds of pencils,viz.

(25) L,M,N,Q,andw,

if we for brevity leave out the indices referring to
the degree and write W instead of W(x)or W(3)etec..
Hence twenty-five different pairs(24)seem to be

. possible since each pencil(25)must be combined with
itself and all the others.But on account of(19)theirg
number at once reduces to fifteem which may be arranged
in the following scheme:

1,(LiL)  2.(L1M)  3.(LIN)  4.(10Q)  5.(1\W
6.(MiM) 7.(MIN) 8.(MIQ) 9.(MIW)

(26) | lo.(NIN)  11.(N{Q) 12,(N|W)
| 13.(QlQ)  14.(Qlw)
15.(wlw

Some of these cases will rﬁ%dily be eliminated on
account of symmetry in the formulae or similar argu—

sidered s they cover the case:: of. non—singular pencils.
For the remaining ones we shall obtain explicit solu-
tione in the next section.

§4.
Special Pencils of Direct Products.

We shall first qégte Aitken's and Roth's results in -

our notation:




18.

THEOREM II;(casel5)
If man, «70 , [ #o,we have

(Wl W () )c»\iZNS:(/S)-i-zIMSf/«?)-FW (aB)Feeet (AF).

min-5 wi~vier
we. .

if m<n, .%o 1nterchan9e3 m and n in the

above results.

THEOREM III(case 14)

(%‘Wn(“) )~ QFQ F... . ofQ = 0Q
for o #o.

and
THEOREM IV (case 13)

(Q, Q) ~ 2@, +2Q % . . 42Q_+(me-n+l) Q

for m2n .If msn,we have to interchan9£z m
and n in the result.

An equation between or an equivalence of two pencils
is always an identity in e and ¢, we are therefore
allowed e.g.to interchange ¢ and 6.If we do this,the
pencil -

Q = 6L, +oUy  (§1,9)
becomes

S

QIk+6U£ (81,4)

which is equiavalent to

N, = oL+ 6Uy f=eex ,for Ny =dy Ny Iy
(see p.2).By the same substitution

(Qpla,) = 6(T <1, )+o(UpxUY)
is transformed into

(NRINY) = o(Igx In)+‘f(Ufnxu;1)

P¥EXX35kax ,which is equivalent to
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(N,I¥,) = (I I )+6(U xU ) by§3 ,20

Hence from theorem IV we can at once derive the

COROLLARY (c@se 10).

(leun)rv2N142N2;....#2Nn_14(m-n+1)nm

for myn, If m<n,the indices m and n have to

be interchanged.

- Before entering into the discussion of new cases
we shall explain our method by a simple example:
Find the canonical form of the pencil

(1) (L,)My) v E(AXC)+G6(BXD) = QX+6Y
where |

(1a) L2a19A+éB : MsﬁJQC+6B

and

(1v) X = (AxC) s Y = (BxD) .

L, is of type 2x3 and M; is of type 4x3 (§1,(2)and(3))
Hence (LZ\MB) is of type 8x9 .We write(la) as

(2) (pA+6B)R = RL2
(3) (pC+6D)S = BM,
where R,R,S5,5 are non-singular matrices;jlet
(4) &) R=[ry,r,,7s) b) E=iT,%,))

- - - - 1
(5) a) S={s1,32,s3} b) S={éo,sl,sz,s3j

The vectors ri,ik,gf,gi, are then%ore of degrees 3 ,
2,3,and4 resp.According to§2 equations(2)and(3)are
equivalent to vector chains of type(Ib)and(IIb)which

we write in the standard form §2,(14):
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(6) T,= Bry; T;= Ar;= Br,; §2= Ar,= Br3; 53= Arg
(7 5= Dsl; 8= Csy= Ds,3 8,= Cs,= Dss; §3= 053
where

(8) £.=0;. Tz= 05 S £0; 8sfo .

We now introduce 9 vectors of degree 9

(9) C(5,3) = (ryxsy)  (121,2,333=1,2,3)
and 16 vectors of degree 8
(10) (LK) = (fh’(-s-k) (h=°)1,2’3;k=°119273)
The sets (9)and(1ld) can be arranged in two arrays:
- (11) (12) (13) (‘f’__ﬂ) (E_I) (@2) (ﬁ)
(11) a)(21) €22) (23) py  (10) (I1) (I2) (I3)
(31) (32) (33) {20) (21} (%2) (23)
(30) (31) (32) (33)

- Since R and S are non-singular matrices,the 9 vectors
of(lla)are linearly independent(§3,lemma I ).In scheme
b)the vectors in the first and in the last row are zero
on accounﬂof (8);the remaining 8 vectors are linearly
independent according to the same lemma because R
and 5 are non-singular.Next,we ndmber the diagonals
of thdse two schemes by attaching to them the diffe-
rences j-i which are constant}fgr all elements(i, j)
that lie on the same diagonalyPach diagonal ia“Een-

a matrix whose columns are the vectors
which lie on this diagonal,provided they are not zero.
Thus
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2_p= [(31)) T_,= [(%0)]
?_y=[(21)(32)) T_;=[(To)(21))
(12) a)Tog-- [(11)(22),(33)) . T, = [(T1)(z2)]
7, =((12)(23)) T, =[(12)(23)
r, =[(13) T, =[(13)
Now by(6)and(7)and by §3,(4)we have

(?HKEk)=(Arthsk)=(rhxsk)(Axc) (h=1,2,3;k=1,2,3)
and
(rp*s, )=(Ar,xCs, )= (Br,,

XDs

1 k+1)=(rh+lxsk+l)(BxD)

@or h=0,1,2;k=0,1,2) jor

(13) (h,k) = X(h,k) (h=1,2,3;k=1,2,3)
© (14)  (h,k) =Y(h+l,k+1) (h=0,1,2;k=0,1,2)

These ﬁwo equations enable us to set up vector chains for
the pencil pX+6Y.

(15a) (00)=Y(11);(I1)=X(11)=Y(22);(22)=X(22)=¥(33);(33)=X(33)
(150) (o1)=Y(12);(12)=X(12)=¥(23);(23)=Xx(23)

(15¢) (02)=¥(13);(13)=X(13)

(15d4) (To)=¥(21);(21)=X(21)=Y(32);(32)=X(32)

(15e) (20)=Y(31);(31)=X(31)

In order to see to what submatrices these chains
belong,we have to investigate their initial and final
links.In(15a)we have by(8)

(o0)=0 (33)=0

24/9)
Hence(l5a)is of type(L,iand corresponds to the subma-

trix L,.In fact,we can establish the equation

(16a) (PX+6Y)T0= T L,
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The chain(15b)starts with a zero vegtor and finishes

with a non-zero one.It is of type( Jand equivalent.

to:

(160) (pX46Y)T, = TN,

In the same way we obtain the equations
(16)) (9X+6Y)'.L‘2 =T, &

(16e) (QX+6Y)T Y

The classification of the chains(1l5)can be illu-
strated by means of the scheme(llb)which is .divided
into three areas by the two horizontal linesj;the
middle part is occupied by zmxmx non-zero vectors
while the top and the bottom is filled up by zheos.
When produced both ends of the diagonal with suffix
zero enter the zero area;the corresponding chain(l5a)
‘therefore starts and fihishes with a zero-vector.

The diagonals 1 and Z%g;;§i2§§ubnly at the top,-1 and
-2 only at the bottom.This is characteristic for sub -
matrices N and Q resp,

Equations(l6)can be combined in:
(17)  (QX+6X)T = T(L,#N, N, Q,%Q,)
where

?=[1,,T, Ty, T_T_p) anid 'rw['r Ty Ty Ty __2]

T has nine columns,viz.the columns of To,Tl,..taken
together; they are linearly independent because they
are just the vectors arranged in(lla).Hence T is a
square matriy of non-zero determinant;théﬁg%n be shown
for ® and we have therefore proved that the canonical
form of QX+6Y'is

L2+N2+N1$Q5#Ql R
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En/the general case we have two standard chains(§2,14)
of length m and n resp.

(18) ;BzBrl;;izAflfBr23;2“Aré=Br3;'“;ﬁ-lnArm;lzBrmﬁfhéA?m

(19) 80=Dsl;81=Csl=D92a92=032mD33;...sn_1=csn_l=Dsn;§n=Csn

As in:, the example we define the vectors

(20) (ia;a)=(ri7(sj) | (131920-0113;3:1’2“-911)
and
(21) (h,k)=(7x8,) (h=o0,1,,.,m;k=0,1,..,n)

and arrange them in two arrays

(A1) (12) ....(1n) (00) (Z5 ++e(on)

(22) a) '21) (22) w..u(2m) o (Io) (11) ....(In)
(@) (@)  (mn)  (50) (BI) ....(FH).
Again,put
X=(A7‘C), Y=(BXD) .

As in (13)and (14)we have then byfl8)and(19):
(23) (m‘—’XQhk)“: (h=1,2,..,m3k=1,2,..,n)
(24) (B,K)ffa+1,k+1) (h=0,1,..,m-15k=0,1,..,0-1)

which aliows us to establish vector chains correspon—
ding to the diagonals of the schemes(22).E.g.if m<n,
the dkppenaisekymckrnre: chains referring to the diago-

nals -l,0,andl are:

(To)=¥(21); (21)=X(21)=Y(32) ;.. ; (m-17m-2)=X(m-1,m~2)=Y(m,m-1)
(m,m~T)=X(m,n-1)
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(00)=Y(11); (IT)=X(11)=¥(22);.. 3 (B=T,m=-T)=X(m-1,m-1)=Y (mm) ;

(m,m)=X(m,m)

(BT)=Y612);(I?):X(iZ)zY(23);..}Cﬁ:ITE)zx(m—l,m):Y(m,m+1);
(m,m+1)=X(m,m+1)

An investigation of the initial and final terms will show us
what submatrices these chains representjthis can best

be done by examining the corresponding diagonals -1,0,
and 1 in the scheme(22D).
Let us now consider the case
(Lm-l\Ln—l) y

In analogy to(2)and(3)we put

(QA+6B)R = RL_ .

(pC+6D)S = SL

n-1

where(cf.§2,1)
(25) a) R= [I‘l,rz, o ,I‘m] b) -R—z[-fl ,-r_zy *e ’r_m_lj
(26) &) S=[87,8,,++58) b) 5=[5,,5,,..,5, ;]

iﬁ&xﬁﬁﬁkﬁiﬁﬁ&&kx are non-singular matrices whence
the column vijgors ri,?k,sj,Eh are of degrees m,m-l,n,
. eck
and n-1 resp.In the chains(18)and(i9)we have by§2(15)

(27) . r,= 05 Ip,= 05 8,= 05 8,= 0,

Consequently,the first and last row$§ and columng of the
scheme(22b) consist of zero vectors while the remai-
ning(m-1)(n-1)vectors of degree(m-1)(n-1)

(h,k) (h=1,2,oo,m-1;k=l,2,oo,n-l)
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are linearly independent by§3,lemma I.Suppose that m¢n.

The two schemes(22)are then sufflclently described by Q&«
the diagrams:

—
o s 44%)
(0 —Lm & @ |
(28) a) | . - b)
N AN On-1,4) ICea =N
{m T tmm) n,m) ICor T -LC')??U

From the left diagram we can find out the lengths of

- the n+m-1 diapgonals.In the right hand diagram the non-
zero vectors(HTE) fill up the inner rectangle while
the space between the two rectangles is(a'

zero vectors.,From(28a)we see that the diagonals

@%—(m-l),-(m—Z),..,-1;0,1,2,..,(n—m)(n-m+l),(n—m+2)9.,(n—v
are of the respective lengths .

. i-, ' 2 >,..,m—m,m,m,m,..,m ’ m-l 9 m—2 9 [} 1

On the other hand, d1agram(28b)sh?y§ us that every diago-
nal enters the zero area at eltheyhendsi.e.every chain
starts and finishes with a zero vector and is therefore
of iype(é;),(§é§iAs in(12)we introduce matrices T_and
Tp whose columns are thelvectors which lie on the pth
diagonal of diagram a)and b).In the latter case we have
to leave out the zeros of the diagonallif any,e.g.s

T_y= [(19)(21) cee(mp-1) T =[(ED(3D).. . (u-1,m-2)]

'The corresponding chain is of length m-1 (by(28))and
is therefore equivalent to

(30) (QX+6Y)T_4 =T _1Lpo (§2,end)
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Similar equations hold for all indices.Finally,we re-
mark that

D= (T 1T meor e ToeeT 1]

and
T

=[T_m+2 _m+3o . OTO. . oTn~2]
are non-singular matrices their columns being the vec-
tors arranged in (22a) and b).We can therefore sum up
equations(30)and those related to other diagonals Yy

—_ . 2
(3%2) (QX+62)T=T((ngm+1)Lm_1+2£iLi),
Special attention is to be drawn to the fact that T con-
tains two partial matrices more than T viz. T-m+1 and
T,.1 because in diagram(28b)the corresponding diago-

nals -m+1 and n-1l consist only of zero vectors.Infact,
by(27)we have ‘

(QX+6Y)(m,1)= o)
(eX+6Y)(1,n)= o
This is accounted for by two zero columns in the cano-

nical form(§1l,end)which we write asLy (L,5).(31)may
be enunciated as

THEOREM V fcase 1):

If mgn,we have

m-1
(Lm\Ln)V(n—m+l)Lm¥%égLi )

Since

(B, L)~ (T Tp) (§3,19)

the assumption msn is no loss of generality.If mzn,we
have to interchange n and n.

Again,by transposition we obtain(§3,18):
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(32) (LﬁlLﬁ)mJ(n-m+l)Lh42;£Pi
Evidently,
(33) Li = J5aMidy

(see p.2,equat.4).Hence Li~M,; and(32)yields the
COROLLARY (case 6 )
1'“_1
(Mman)ﬁJ(n-m+l)Mm+2£;Mi

for msn.

Next,consider the case
(L M) = QX+6Y

Thé(18)and (19 )still hold if we put
(QA+6B)R

~ (QC+6D)S

" ]
v =
= H'

ﬁhere
(34) a) R=[r1,r2,...,rﬁ] ;b) ﬁ:(?l;Eg,..;,?ﬁ_ll

-—

(35) a) S=[sl,szs,z...,sn] ;b) §=[§0,§1,...,§nj
Instead of(27)we have now(§2,15)

(3%6) -i‘-oz 03 I-[‘-m= 03 _S_ojé 03 —Snnjé 0
Consequently,the first and the last row of the scheme
(225)¢9nsist of zero vectors while the remaining vec-—
tors are a complete set” of vectors of degree(m-1)(n+l).

Supposing m-lgn we can represent(22a)and b)by the dia-
gramss:

*i.e.they are linearly independent and their number
equals their degree so that a matrix whose columns
(rows)they are will be of non-zero determinant.
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“% " “) (o (@
N N : \\ ‘ AN |
N N RN .
B) @ |9\, A & 9 1w Y
‘ . (=70 N Gt %)
tn®) ‘ = ) {7,0) |

j(;rj
The top and bottom story of b) are occupied ﬁy Zeros,

We have to distinguish three categories of diagonals:
i) the diagonals

—m*l,-m+2,....,—l
are of lengths
1 [ 2 ,ooo’mFl .
the corresponding diagonals in b) enter the zero area
at the bottom.The chains are therefore of type A (§2,

(15))and give rise to equations

(38“)‘ (QX+6Y)TX-TXQp+m (x=-l,—2,...—m+l)

where the columns of T and T are the vectors that lie
on the X8 diagonal of the schemes(37a)and b).

f) the diagonals
O, 1 2,....,n—m-l n—m

9nam J%d%‘ }
are all of length m;in b)they e&eriap twice and the
chains are consequently of type £ .Hence

(38p) (@X+6Y) Ty-TyLm 1 (y=0,1,.....n-m)
y) in the third category the diagonals
n-ﬁﬁl,n‘m+2,ooooo,n“l n
are of lengths
m—l 9 m—2 9o e s 0y 2 ,1 L]

In b)they exexiapvat the top;the corresponding chains

are therefore of type EE N«
(38y) (QX+6Y)TZ£Tan_p (z=n-m+1,n~-m+2,..,n)
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Welcan summarize the three equations(38)in::

m-1 m-
(39)  (M+6V)T = T3 Qi (nmel)y 1+ 5T,
where T and T consist of the columns of T_ and Tp ta-
ken together;as before we see that they are non-singu-
lar matrices whose columns are the complete sets of
vectors arranged in diagram(37a)and in the non-zero
area of diagram(37b).It can easily be shown that the
formula still holds when m-l=n in which case area f3)
does not appear.Replacing m-1 by m we have

THEOREM VI (case 2)
(40)  (Ty\My)~v(n-m)Ly+3Q % SW;

Emy

for msn and

(Lm\Mn)nJ(m-n)Mn4g;Qi4é§Ni

for mz2n.

The second part of the theorem easily follows from the
first one;for by transposition we obtain from(4o):

(B (M)~ (n-m)Tyk S @p+ SNy

By(33)we have

(42) Lgviy 5 T,

and similarly

(42) Q) = 939494 shenceQ}~ Q4
(43) , N} = J;N;J; shence Nj~ N,

Substituting this and using §3,(19)we get
(T, M,) fv(n-m)Mm-’»giQi%ENi (msn)

7=1

which is identical with the second statement of the

above theorem when m and n are interchanged.
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The case m=n is especially inter®sting;for although
both Ln and Mn are singular pencils,the compésite pen-
cil(LnIMn)is non-singular of degree n(n+l) its determi-
nants being equal to

in(n+l) 6%n(n+l)

e

We now proceede to the discussion of the pencil
<Lm—llQn) = 9X+6Y
Instead of(36)we have here:

(44) ;O = 03 ih = 03 EO £ o3 Eh =0 (§2,15)

First let m<n .The caracteristic diagrams which repre-

sent(22a)and b)are in this case: tft:i_*__~wm @
) (4‘ ) L . (4:—71:1)1

) Gf)r-"——"—_‘ T C‘l”’;/ ‘
(45) a) [ b | Vi
X s oo AT
' \ =) ~ mﬁ:’)
tom = N g - O

where the space between the two rectangles in b) is
occupied by zero-vectors in virtue Of(44).Again,we have
three categories of diagonals mmmakairimg which may be
arranged in the following table containing the number of
‘each diagonal,its length,and the submatrix which it
represents according to §2,15.

o) B/ ,)’)
diagonals =1, =2,..,~-m+1 0y 1 y5e0y N-M|N=-Mm+l,N-M+2,,.,0=~1
1ength8 m—-l,m—Q,.., l i+ [) m [ N ] m n-l, m-2 99ey 1
submatrices Qmﬁ QM,..,Q1 I.gn_i,]Z-m_i,..,]'..,%1 L, 0D, seerl

Hence we can establish three kinds of equations:
(464) . (9X+6Y)!x=fx9mté'(x=-l,-2,..—m+1) /

(46/3) v (?X+ﬂ)¢y=TyLm_l (y= oy 1ly¢.,n-m)

(463/) (QX*-GY)TZ”?EEL—,:-%J (2= %=y -y n-1) q;'/
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or

b K<y . . 2
(47)  (pX+6Y)T = T(gQi+(n—m+1)Lm_l+igoLi) (m<n)
where T and T are non-singular maetrices whose columns
are those of Tx,Ty,'l‘z taken together,i.e.the vectors

(i,j) (i=1’2'°"m;j'_"'l,z"o,n"r#..)
and

(h,E) (h=1’2,-Om"l';k:O,l,oon"l),

resp.which again form two complete set& of vectors.

if m2n,the characteristic rectangles assume the sha-

pes @
oy

(%)

Gy

(Toy T
I V) |
! “

and the table of diagonals becomes

diagonals o,1, 2 ,..,n—ﬂ -1,=-2 ;.,-m+n\—m+n-l, y=m+1
lengﬁhs ] n ,ni-'zl,n—Z,.., 1 \ n’ n,o-, n \7 n-l XN 1
submatrices L, L,‘.Z,Lﬂ_a‘,..,Iao \me L eee s, l Q,. 200y Q

In the same manner we now get

"n-1

(49)  (gX+o0)T = TOL +(mn)Qi Q)  (man

It is easy to see that(47)and(49)yield identical results
when m=n ¢

THEOREM VII(case 4 )

on-i

(Lm_l\ Q. (n—m)Lm_li- gQii» —20 Ly for m<n

(g 1Q,) (m-n)Q ¥ ?ZQi-'i- ELi for mzn
. t=4 =0
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By transposition and by(41)and(42)we obtain
COROLLARY I (case 8)

m—1

(e, ]_IQ ) ~(n-m)M_ 1+§Q +2Mi for m<n

259

(My_1}Q) ~(m=n) Q +ZQ1+ SM,  for mn

=0

Farther corollaries can be obtained by interchanging ¢
and 6 in the above results.This process replaceS'Qi by
Ni and vice versa,while I'i and Mi are transformed into

J3Li93,¢ and Jy M dy

resp.and therefore remain equivalent to themselves
COROLLARY II (case 3) .
L,_18)~(a-m)L l+§n +2L foxmen

(L [Fy) (n-m)N, ‘“gNi*mR

for mz2n
and

COROLLARY III (case 7)
m-1 m-d
(M _y V)~ (n-m)My 4, SNy ¢§M for men

1’1

(My_yINy) ~ (m-n)N, fZN+ZM for mzn

Next,consider the pencil

':(Nm\Qn) = pX+6Y .
We have now to put
(QA+6B)R = R Ny
(QC+6D)S = 5Q,
where
(50) &) R=[ry,Tys-e»7y] b) B=[T1,TpsesTy)

(51) a) S=[8),8,5.058,] D) 3=[5,55ys0095,_1)
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are non-singular matrices and

(52) ~ry= o5 rf 0; 8 # 05 8= O

supposing that m<n we can illustrate the different vec-
tor chains by the diagrame

G? (57
@1) (17 G2 &, 1)

N - \ \~ R
(53) a) . \\ b) \

“) \'\-\ ﬁ ) ¥e , ) \\ 6/ \ //)

() > e 6»77) \ ern% )

from which we tabulate the diagonsls as follows
diagonsals -1, —2,..,-m+l\ O, 1,..,n~m~l\n~m,n—m+l,..,n—l
lengths m—l’m"z,oo, l \m, m,o., m } m ] m-'l 9oy 1
submatrices M_,M_,eesd, (N, N yeesNom |L, 3Ly yeesl,

Mz‘/xegx/wma/
for the diagonals of «)do not exeriep at all,those of p)
exesxRap once viz. at the top and those of x)twice.Correspon—

ding to the three kinds of diagonals we have three sets

of equations

(540)  (QE6Y)T= T My o (x=-1,-2,..,-m+1)
(54ﬁ) (QX+6Y)Ty= T&Nm (y= 0y 1y¢0,n-m-1)
(54/) (QX+6Y)T,= T L . 1 (z=n-m,n-m+lye.,0-1)

Lét T be the matrix whose columns are those of T
Ty,T taken together;it will then evidently posses as
columnes the mn vectors (i,j) arranged in(5%a);they

form o complete set of vectors and hence T is square

and non-singular.If we define T in a similar way,we
have by(54) o ,gj,) :
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(55) (gx+o¥)® = T Fhy 4 (n-m)ws 3T, )= T(ox v61))

But T is not a square matrix,in that it contains only
nm-1 columns,viz,a;l non-zero vectors of the scheme
(53b)exceptﬁﬁjﬁjagfihxﬁb)#o which lies on the diagonal
with suffix -m.This diagonal has not been considered
since it does not occur in diagram a).The matrix

™= [(@9) T]

is,however,square and non-singular and we shall write
the right hand side of(55)as

[(E:E)TJ[ ) }
QX1+6Y1

i.e.the canonical form is to be augmented by a zero

eLizm which we den;%\by\mowl,sb).ﬂfhis is analo-
iehy

gous to the term Lof is due to the fact that

a non-zero diagonal with index n-1 occurs in a)but not
in b). We have therefore proved

THEOREM VIII(case 11 )

m-1 m=1
(Nm\Qn)nuﬁ;ki+(n~m)Nm+g§Li for m<n

»-1 .
ngi for m:n

”-1
(Nﬁ\Qn)“J£§Mi+(m-n)Qn+bo
The second result easily follows from the first one
by interchanging ¢ and ¢ and m and n(cf.p.32).Although
composed out of two non-singular pencils Nm and Qn the
pencil(Nm]Qn)is always singular.

For the remaining cases our method has to be modified
owing to the appearence of the submatrix WmOx),Ck#o.
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We shall first consider the pencil
(Wp(x) L)) = ox+6Y .

By §1,(8)we have

(56) W () = p(dIm+Uﬁ)+61m (o0)
Put
| pC+6D = L
or
(58) (pC+6D)S = §-L
where

(59) .a) s =[soyslnoasn] b) § =[§1’-§2”"§n]

are square matrices of non-zero determinant;they are,
in fact,unit matrices of degree n+l and n. W& have

then bykx%x §3,17:

(60) X = (ExC) Y = (IxD)
where
(61) E = oI +U} (A#0)

is & non-singular matrixj;for brevity,we shall write
I instead of I .According to§2,equ.(58)above is equi-
valent to a vector chain of type(I.)viz.

(62) o=Ds_; §1=Cso=Dsl; §2=Csl=Dsg;...; s _=Cs

n n—1=DSn’ Csn=o.

Next,let

. fl,rz,...,rm

be-any set of m linearly independent column vectors of
degree m.By §3,lemma II,the m(n+l) vectors
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(63) (i)J) = (Ejrixsj)‘ (131’230."111;3:0,1,..,1’1)}

each of which has m(n+l) elements,are linearly inde-
pendent and so are the vectors

(64) (E:E)= (E® *ng) (h=1’29°',m;k=%2:-’ n)

which are of degree mn .We arrange these two com-
plete sets in two schemes

(o) (11)...(1n) (IT) (32)...(TIn)

(o) (21)...(2n) (21) (22)...(Zn)
(65) a) b)

(mo) (ml)...(mn) (mI) (m2)...(mn)
By(60)and (62)we have (sernce D5=0; Cs, =0):
(66) Y(i,o)=0 ;3 X(i,n)=o (i=1,2,..,m)

(67)  X(1,3-1)=(8Ir;xCs_1)=(8IrxDs,)=¥(1,1)=(T;7)

for i=1,2,..,m;j=1,2,..yn «These relations can be
summarized in the wvector chains:

(68) o=Y(i,0);(I,1)=X(i,0)=Y(i,1)5...;(T,0)=X(i,n~1)=Y(i,n);
. X(ivn)=0
fOI‘ i=1,2’uo,mo If we put
(69) 1y =[(10), ¢11)..(in)) ; T;=[(3D), (T2). .(IW)),
(68)is equivalent ta(cf.§2,Ia and b):
(px+6Y)T;= T;L,  (i=1,2,..,m)
and
(70) - (eX+6Y)T = T(L 4L 4. .+L,) = T(nk))
where
T =[T1’T2’00,Tng ; T =[T1’T2,."TH]]

B
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T and T are square matrices of non-zero determinants be-

cause their columns are just the vectors tabulated in(65a)
and b).We have therefore proved:

THEOREM IX (case 5)
If#£ o

(W () | L)~ i

By transposition we obtain the
COROLLARY (case 9)

IfTX £ o
(W (o) VM Yo it

for Li~M by(4l) and W (a) = I W (R)J

We can treat the case
(Wm(cx)\Nn) = 0X+6Y
briefly as it is very similar to the preceding one.Putting

(pC+6D)S = § N,

we now have the chain

Where e _
S =[Sl,32,.o’sn] and S =le,82,..,sn]

are non-singular and square.Again,let
(72) ‘(i,j> = (Earixsj) (i=1,2’oo’m;j=1,2,oo,n)

and
(73) (h,k)

(Ekrh’{gk) (h=1’2’ . ,m;k=1,2’ ’e ,n)
It then follows that
(74) Y(i,l)‘:o; X(i’j)=Y(i,j+l);°°'; X(i’n)#o

which yields :the vector chains
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(75) 0=¥(il);(TI)=x(12);..;(T,0-1)=X(i,n-1)=Y(in);X(in)go
> 2
for i=1,2,..,m;i.e.we have m vector chains each of

which represents a submatrix Nn(§2.type Eé;h%.(75) is
equivalent to

(76) (QX+6Y)Ti = TiNn (i=1,2,..,m)

where

;= [(11), (12). .. (4n)] ; Ty= [(ID) (T2)...(IR)

Hence A
(QX+6Y)T = T(Nn$Nn+..+Nn)=T(mNn)

As before we can show that T and T are square matri-
ces of non-zero determinant and we have proved

THEOREM X (case 12)
Ifaf o
(W () \N )~ mN

This is the last of the fifteen pencils(§3,26) whose
canonical forms we wished to determinejhence we have
obtained a method of finding the canonical form of
any pencil of Zehfuss matrices,since the most gene-
ral such pencil can be transformed into an aggre-
gate of those fifteen pencils which we have consi-
dered.

§5.

Pencils of Compound Matrices.

If A is a matrix of type mxn,its pth compound*

A(p)(pém;pén) is a matrix whose elements are the

*fef,l,p.355
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m\ (n
(p)x(p) minors of degree p that can be formed from the

elements of A.The general element of K@)will be deho
¥
ted by

a LR S Y a- s
i
(11,12,..,1 )_ (im))__ 132 K
jl’j2""jp - j@ -
8 L a.
L R

The two groups of indices {P and fw are supposed to
be arranged in dictionary order and the (g)oombi-

nations of indices i® refer to the rows of 2P wnile
the (g)combinations §¥ specify the columnsiAs is

well known,compound matrices obey the multiplica-
tive law

(1) (48)P= 1 PHP
We also note the rule
(2) (4" YL (4P

Again,if A is of non-zero determinant,then so is
ém;this follows from(l)by putting B=A"1,
We shall now consider the pth compound of &
direct sum.Let
m=m, +0,
n=n,+0n,

. B X
A'=B+c= ’ 0

where B is of type myxn,, and ?;°¥,§XP§:m2§n2'W°

and

can then prove the

*ref.l,p.365
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THEOREMXI €cf. Littlewood loc.cit.§3)

Two permutation matrices P and R can be
found such that

(3) B(Bic)PR = S (BP-% o
S=o0

where P and R depend only on the number of

rows and columns in B and C and not on their
elements.

In(3)we have to put H%09=1 and to omit every term
that is meaningless,i.e.in which the upper index
exceeds the number of either rows or columns.Little-
wood loc.cit.proves the theorem for the case of a
square matrix;his arguments equally hold for a rec-
tangular matrix and would also show that P and R

do not depend on the elements of this matrix.But

we will here deduce the theorem directly from the
definition of a compound matrix.According to the
partition of A we shall denote the elements by

(4) (:3: i: ::%::%;ﬁz::k:) = (%Z:; ]};Z)J>(S=°’172’ .eP)

where

(5) ledd, eecm, 3 1gj Jgoosn
(6) 1$k1(%— L) o‘a-fémz ; 1é.h1<llz(0 Oénz

Pirst of all it is easy to see that an element is
zero unless s=t(Aitken loc.cit.p.366)and any non-
zero minor of A is a product of a minor of B and a
minor of C(one of which must in the limiting cases
p=s and s=o0 be replaced by unity);in fact,we have

( 7) iep—s) ,kCS) - i(?"s) k )
jcp-sl ne je -55] n®
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Next,we pick out all combinations of indices iP~9
fp'slﬁsaﬁS)which are possible for a fixed value of
s and arrange them in each of these four groups in

dictionary order.By(7)the corresponding elements
form the matrix

(8) -8, @

This is to be done for s=0,1,2,..,p.Since the sub-~

matrices belonging to different values of s are evi-
dently isolated,we obtain

(9) §B‘P'%’< e

The final arrangement of all indices is,of course,
not the dictionary order;but we may say that(9)is de-
rived from AP)by a permutation of rows and columns
which depends only on the partition of A into B

and C.This proves the theorem.

In this paragraph we shall deal with pencils
of the form

(10) (H;p) = ohPhoE?
when the invariants of
(11) H = pA+6B

are known.We may assume that(1ll)is already in cano-
nical form,because if

S(pA+6B)T = QAwGB

j.e. ' SAT =K ; SBT =B
we obtain by(l)

gp{eﬁpgogp)@pg 91@465@)

Again,if the given pencil can be written as a di-
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rect sum
PA+6B = p(Al+A2)+6(Bl$Bz)
we have by theorem XI :

PAPR = jiﬁ?‘sxﬁg

S=0
PEPR = SEP-9 9
~$=o 1 2
wikh the same matrices P and R for A and B.Hence
on multiplying by ¢ and 6 and adding we get

P(pAPsoBO)R = 3 o(AP~5 49) 4o (B0~ kES)
s=0
or in the notation of §3,17
T @), D) -9 (p=9 O .8
gﬁp+6§35052(9£§ +6ﬂ®15\9Ag+éﬂg)

We may assume that pA,+6B; is one of the elementa~
ry submatrices(§l)and since the case of direct pro-
ducts was fully treated in the last section,we have
only to find the canonical form of

(H;p) = pAPsoEP

when H = 9A+6B is one of the elementary pencils
Ln;Mn’Nn’Qn’wn(“)

(§1,(2),(29,(3),and(8)).The last two of these pen-
cils also occur in the canonical forms of a non-
singular pencil and have been dealt with by Aitken®
and Littlewood.We state their results in our no-
tation:

*
ref,l and 3.
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THEDREM XTI (Littlewood loc.cit,theorem IV )
If «#0
(W,(«)5p) ~>¢

Py
where g = p(n-p)+l,and,c,is the number of
partitions of s minus the number of parti-
tions of s-1 into £p parts each < n-p. (i?l
as usual, denotes the greatest 1nteger less

than or equal to S.E_l.

THEOREM XIII (Littlewood 1oc.citf,theorem V)
e} T(8-2
(Qn’ p) s%(y.'%) Qn+1_s

If we interchange p and 6 in theorem XIII and trans-
pose the matrices,we obtain the

COROLLARY

| T (8=2
(anp_) N%‘(p—Q) Nn+1--s.

2'_1

s q 28(“? )

¥e now turn to the discussion of oA +6B when
9A+OB~Ln

It will be useful. first to consider a simple
example.Let p = 3 and
(12) (QA+0B)R = R-L,
where

are non-singular matrices(e.g.p.nit matrices).Accor-

*11 ttlewood denotes the coefficient of Q,_ —ptl- iby ey
and defines °i as the number of partitions into i
.parts each {m-l.But it is easy to see that this num-
ber is efqual to (i+§-2)“
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ding to §2,equat.(12)above is equivalent to & vec-
tor chain of type (Li),viz.

(14) o=Br ;Ar °=Brl=-r'1 AT, =Br,=T,; Ar2=Br3=?E3 3 Ax;=Br 4=? 43AT =0
Put

(15) (1,k,h) =[ry, rk,rh)m (0¢ick<hd)

These are(g) column vectors of degree(g) They are line-

arly independent because by definition they are the

columns of@’) Similarly,we define the (;f) vectors

(16) fix,n =[7, ¥ T ]@(1<1<k<h <4)

of degree (g) which are likewise linearly independent:be-

" ing the columns of E@.By(ltt)we\have
Alry 3 Ty ,Tpog) =Blry, Ty, 1) =1T, T Ty

for 1ci<k<hé4j;or taking the third compound we obtain:

(17) 291-1,%-1,0-1)=8N1,%,h)={1,k,h}
Again,
(18) 5%0,k,h)=0 5 £1,k,4)=0

Equations(17)and(18)enable us to set up the following vec-
tor cheins for the pencil pA”koE:

(19a) BB)(olZ)—o,AB)(olz)-é}(123) {123} ; AB)(lza)—§3)(234) {234},
| ¥ 234)=0

(19v) B 013)=05 £ 013) =# 124) = 1124} Bl124)=0

(19¢) B o14)=0;8014)=0 |

(194) B9(023)=0; 4% 023)= Bl134)= {1345 s 10k 134)=0

(19¢) BN 024)=0; £ho24)=0

(19£) #3(034) =058 034) =0
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&L
These six chains are all of type Eb(§2)and correspond
to terms L2,L1,L°,L1,LO,LO in the canonical form,
where Lo means that the canonical form contains a
zero column due to a constant vector which ennihi-
lates all matrices of the pencil.Now,let

T, = [(012) ) (123),(234)) T o= [{123}, { 2343) |

T 5=[(013), (124)) T, 5= [{124}]
Ty 4= [(014 ) |
T,5= ((023) (134)] Tys= [{134))

T24¥'= [(024)]

T5,= [(034)] |
Equations(19)are equivalent to

S LIV A

(gdakééw)ml3sT13Ll
(s r, =T, 1, |
(QABLOﬂﬁbTl4=(pA3L6§3)T24=(9A3L6éy)T

Hence

34=9

(oaPh6dP) =T (31 i1 i1,)

where
=[T13 ,Tp4, 34, 13, 25, ) and T=[T)5,Tps T 5]

T is a square matrixy of non-zero determinant;its columns are
all the vectors (i,k,h)in a certain order.Similarly,we
see that the columns of £ are all the vectors {i,k,h)
which likewise make up a non-singular matrix.The cano-
nical form of QA§L6§5)is therefore

3L, +2L, +L

1772
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. o e
Instead of writing down the matrices le,le,..etc{}it
would have been sufficient to count the number of wvectors
(i,k,h)and {i,k,h} which occur in all the chains to-
gether and to convince ourselves that all of them have
been used.For since no vector appears twice in the abow
chains,we can then evidently construct a non-singu-
lar square matrix which transforms the pencil into the
aggregate of submeatrices represented by the vector
chains.The exact shape of the transforming matrix is
irrelevant.

Consider;now,the general case

PA+6B L i.e.

(20) (pA+6B)R = RL,

where

(21) R=(r_ ,r{,...r,) and R =[3~'1,'52,..,‘i~'n]

are non-singular matrices of degree n+l and n resp.(20)
is equivalent to
(22) Br o=O3AT ~Brl-rl,Ar1=Br2-r2,..,Ar 1=Brn=?n;Arn=o

Next,we 1ntroduce(n+acolumn vectors of degree n+%)
(23) (li,i ’Q.,i ) [-1‘11) l’...)I‘.]*)(Oéjg’<i2’<-..<ién)

which are linearly independent because they are the co-
lumns of EY.similarly,we define(g)vectors of degree(g)
viz. ‘

(24) {31) 2}...,3‘} Er37r12"3r 19 (

which are also linearly 1ndependent being the columns
of ﬁg.B;(ZZ)we have

1$j1<j’2_ s e 0 <jﬁ<=n)

A [rii-briz-:if . ’Jri?-lj =B{r; r:L yo o .,r )= [rl PEETRL ,riF]
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and taking the pth compound of the matrices on either
gside we get

(p)/ s oA s
(25) A %(11-1’12"‘-.1,0o’ip"l)=épb.l’12,oo,ip)'-:{il,iz'oo,ip}

for lgil<12<...<ipgn.The same method yields

(26) B@(O,iz,o.,ip)=0 ; A(p)(il,iz,.o,ip_l,n)=0

Equations(25)and(26)furnish the means of establishing

vector chains for the pencil gﬁp+dém;ﬁwﬁwdazfn‘4a”7”
BQ))(O,iZ T ,ip)=0

’ A@)(o’izgo o ,ip)-:ﬁ)(l,iz‘l’l, oo ,ip+l)={1’12+1’.. ,ip+l}

(1,1,41,. ,ip+1)=B@)(2,12+2,. 1igt2)= {2,15+2, 0,1 +2)
(27) * 8o 0 @ ’ ® 9 @ ® oo * e » ’ LN BN L B B 3

={n-ip,n-ip+12,..,n}

Aq))( n-ip ’ n—ip+12 v :)n) =0
where

(28) lgiz<13<..<iﬁ;n

Each of these chains is of type &:(§2)the initial and
the final link being zero.The number of chains is equal
to(pfl)since the p-1 indices 12,i3,..i are only sub-
ject to the condition(28).The chain(27§is of length
n-i_ i.e. n-i_+1 vectors of the kind{(23)and n-i_ vec-
tors of the kind(24)occur in it(see§2,Ib).It therefore
gives rise to the submatrix

L .
n-i
p

in the canonical form.The smallest value for ip is ob-
viously p-l;let

'ip=k (k=p=1,Dye, i)
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According to(28)the remainig p-2 indices then have to
fu%;ﬁill the conditions

l;<.12<i3< eeeci
k-1 . . . . .
Hence there are (p-2 chains for which 1p=k,1.e.whlch

are of length n-kj;they correspond to the aggregate of
submatrices

2 (k-1 .
(29) Z(p—2) Ln-—k
%=p-t
In order to show that(29)is already the canonical form
of QA(p B(p) we have only to prove that the number of
rows and columns is the same in pﬁrGB@) and in(29),i.e.

equal to(p) and n;l) resp.Indeed,since Lk has k rows
and k+1 columns,the pencil(29)has

s Se(s -3
rows and
(31) £ bgn-k-!-l) k ]2‘) (n+)

columns.(30)and(31)can be evaluated by using the for-
mulae*:—

(32) (s+l) <s+l)
o 3 (“ - <s+1>{(2,::% )- (%)

We have therefore proved the

*Mhese formulae _can be obtained by comparing the co-
efficients of x~ in the identity

jF(lﬂc):L L [( 1+x) Pi- (l+x)a]

=

and ‘in- 1ts derivative with respect to x.
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THEOREM XIV
7
v o Y1
(L,;p) f\;gﬂ(p_g) L

Since LthMn)we obtain by transposition the

COROLLARY

. k-1
( ’p)r\'églp—2>mn—k

This concludes the investigation of pencils baged on
compound matrices.

§6.

Pencils of Induced Matrices.

The treatment of induced matrices ‘does not lead
to any new difficulties since a close connection be=-
tween induced and compound matrices will make it pos-
sibie to refer to prEvious results.The procedure is
exactly as in the last section.

- Let A be a matrix of type mxn and consider the
transformation |

y = AX
where y and x are column vectors of degree m and n
resp.,viz.

(1) N ={yl>y2:'°3ym} X ={X1}X2)";xn}

The<m+§7¥)products and powers of degree p which can’

be formed from the quantities Y1sYose+Vp will then be
aggregates of the(?+§'%)products and powers of degree
p constructed from the variables X1 9Xo9e ey X 5WE assume
that these products and powers are arranged in dictio-

*%AW/»W,W’.L
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nary order and write this transformation as
(2) 7 = AR

Accordingly,ﬁpkand ﬂﬂ are column vectors and ﬁylis a
4 - -]
matrix of type m+p ;)X<?+g 1) 3it is called the pth

\p
induced matrix of A.We mention the following properties:
(3) (AB)P = APpD (mltiplicative law
(4) (AP = (4B

Further,if A is square and of non-zero determinant,
then so is A¥; this can easily be deduced from(3)(see p.39).

Next,we consider the induced matrix of a direct
sum.Let

m =m+m,
n =nl+n2
and B . \
| A=BiC =| . 4

where B is of type myxn, and C of type m2xn2.We,shall
then prove the

THEQREM XV

Two permutationmatrices P and R can be found

such that
P(BiC)P = 23@'53;0@
P and Q depend only on the number of rows and
columns of B and C and not on their elements.
Proof: Let
(5) u = Bx
(6) . ' v = Cy
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where
u = {ul) uz') . 0}1m1} X = {Xl)xz ’o . .)an}
v ={V1, V2, 't m2} y = {yl, I > ',yn_z}

are column vectors of degrees My s 1y 4Ty, 1, resp.,and the
elements of x and y are supposed to be variables.Put

=

Gley Rleew

We have then
{u,v} = A{X’ y}

and taking the pth induced of either side:

1Fi_ P @
(7) fa WP= APlx )
{x ¥} is a column vector whdse elements are the (g)

products and powers which can be formed by the elements
of x and y.Obviously,the vectors

(8) (Z} = {p,p-nxy) ch-z'jxy[-z) ooonyfp]}
and {x y/ have the same elements apart from the order.

We can therefore find a permutation matrix R such that

(9) x, 7B rez)
Similarly,

(10) P{u,vﬁﬁL iw)
where

(11) H{wi = {8, -1,y Jp'zxé%’...ﬁém}
Hence by(7)and(9)and(lo)

w} = PAPR{z)
On the other hand,we evidently have

" ) = (SE %) (z)

byY(5)and(6).Since there is no linear relation between
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the elements of {2z} it follows that
b
PAPR = SpP-9, 8
S=0

If
H = pA+6B
. . . new>
is a given pencil,we define a pencil
(H;0] = paPhor®
As before,we can show that
[E;p)~ [8;p]
if
H~H
We may therefore assume that H appears in canonical
shape.Again,if
H = Hy3H, = p(Aj#4,)+6(B 4B,) , H-p4+9B  H = ¢4+o8;
we have by the last theorem

(12) P(A14A2)@k.=‘£§é§‘s&é§

(13) P(B,+8,)PR = giﬂg‘skﬁ§
with the same matrices P and R in(12)and(13).Hence multi -
plying(12)by ¢ and(13)by ¢ and adding we get
[Hliﬂz;n]rVéi(UHl;p-s}\EH2;83)
It is therefore sufficient to consider the pencil
(H;p)
when H is one of the elementary submatrices L,M,N,Q,We.

As regards the last two of these cases,Littlewood(loc.
cit.§4)has proved the following theorems(cf.§5theorems
XI1 and XIII )
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THEOREM XVI

"LJJ

[#y () sp] ~ (We) _35p) ~ Seglr_s

where t = p(n—1)+l,and ¢y is the number of par-
titions of s minus the number of partitions of
s~1 into< p parts eachgn-1l

and
THEOREM XVIT

[Qus8) ~(Quup 150 ~ (p 2+S)

By transposing and interchanging p and 6 we obtain the
COROLLARY

-2+8
[Nn’ P] N(qu.p_l’p) Z pp—2 ) Hn—s

We shall now show that similar relations hold for the sin-
gular submatrices(cf.§5,theorem XIV)

THEOREM XVIII

[Tysp]) = (I‘n+p 15P) Z<S;g§2)1' -8

and by transposition

COROLLARY

- — . ™~/ S+p-
[Mn’g] - (Mn+p—1’p) 25(pq25) nes
Proof: By §1,2 we have
Ln= QFn+6Gn
where
(14) Fn= [' In:l-n,wu Gn=-[In ‘Jn, n+L

Hence
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(591 - oAb

. — ®)
(I'n+p-1 3p)= 9Fn+p-l+°G($1)+p-l

In order to prove theorem XVIII we have to show that

(15) E%)] = F(g-ﬁ-p-l
)
(16) di.zi = dgl-p—l

Consider the transformations

(17) a) Yy = an =[In‘] X

“s

b) y = G x =1[* In}x
where

X ={x1 12 ...Xn+1} y ={y1 y2 -ooyn}

We write(17)down in full:

1= X n= X2
. Yo= X, o= X3
(19) o) Pz .... b) G
In™ *n In= *n41

F:f)is the matrix which expresses the products

(20) i y%l ...yg” (jl+3‘2+...+jn= P3J, z0)
in terms of the products
(21) xixé% . .xi’_;_*i (1l+12+. . .+1n+l=p;i,,g o)

We associate the products(2o0)with the partitions
(22) (1d 2% ...n¥)

the p parts of which are arranged in non-decreasing order.

If we add zero tothe first part,unity to the second part ,
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two to the third part etc....p-l to the last part,we ob-
tain a partition

(22a) (hl,h2,...,hp) (1gh1<h2...h5§n*p-l)

These partitions are in one-one~correspondence to(22)and
hence also to(20).We may therefore put

3 3 dn =
(23) Vi Y5 ey = (111,1:12,...,1111))y
In the same way we introduée the notation.i
i i :L?) im+1 = -
(24) Xl X2 -an n+l (kl,kz,ooolfp‘})x

where the partition (kqgkz,...,kp)is derived from
(111 2%,  psrimz)

exactly as(22a)is obtained from(22), The prts k satisfy the
inequalities

lékl<k2<k3< .e okpg___ n+p .,

The effect of ﬂﬁ)can now be described by the equations

j1 yz 'onyJﬁ = X]jj Xj

21...xg”

or
(25&) %): (hl’hZ"'°’hp)y = (hl’hZ""'hp)x

In the same manner we get for dgi
v dn = w3149 3
yl 2...ynf x21x52...xnﬁl
or
(250) Pk (Byahpyeesshy) o = (B+lyhptlyees b bl)y

For the discussion of the compound matrices F%Lp 1and

0

n+p-1 we consider the transformations

(26) &) ypr= Ppyip1¥m 5 ©) Y= Cnap-1%y) (r=l,2,e¢.,D)

where x.and y.»are column veétd% of degrees n+p and n+p-l.
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Let
%if{xlr Xop "‘xn+p,r} and Wﬁz{ylr Yor ***Ynep-1,r)

As is well known,Fng_l is the matrix which expresées the
d%erminants

. yﬁ{t y%,,.?, ot 'yﬁ:}’
[hyshpseeesh ]y = (1¢hy <hco o b enep=l)
}%7,1 yﬁpi tee .yﬂﬁ'ﬂ

in terms of the determinants

?i1 xiz oooo%r

[k k5. I

(lékl<k2<oo.kpén+p)

X X veoe
L * §§p

when the y's are transformed according to(26),i.é. when

a) th =Xpr b) Vnr = *n4a,r
The effect of Fﬁlp—l and dﬁip—l can therefore be described

as:
(278) T, 1t [hyshpyeeeshj o= [g,hpyeech ]y
(270) @B, 5: by ihpseeein)y = [Byelynpel,ee,ned]

A comparisongiﬁy?25)and(27)shows that the transforma-
tions belonging to ﬂg]and dg differ only in the notation
of the variables from those associated with ﬁng_l and

dgip;l.The respective matrices are therefore identical

and theorem XVIII ig proved.
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