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This is a methodological guide to the use of deep neural networks in the processing of pulsed dipolar
spectroscopy (PDS) data encountered in structural biology, organic photovoltaics, photosynthesis
research, and other domains featuring long-lived radical pairs and paramagnetic metal ions. PDS uses dis-
tance dependence of magnetic dipolar interactions; measuring a single well-defined distance is straight-
forward, but extracting distance distributions is a hard and mathematically ill-posed problem requiring
careful regularisation and background fitting. Neural networks do this exceptionally well, but their ‘‘ro-
bust black box” reputation hides the complexity of their design and training – particularly when the
training dataset is effectively infinite. The objective of this paper is to give insight into training against
simulated databases, to discuss network architecture choices, to describe options for handling DEER
(double electron-electron resonance) and RIDME (relaxation-induced dipolar modulation enhancement)
experiments, and to provide a practical data processing flowchart.

� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The recent evolution of statistical analysis and numerical
regression into machine learning and neural nets has been a
remarkable success. The reason has been known since 1980s: some
neural networks are universal approximators [1,2] – but it was not
before teraflop scale computing power had arrived that highly vis-
ible applications emerged. One of those is deconvolution, defined
formally as solving Fredholm equations [3]. Neural nets are appar-
ently able to learn the kernel and produce numerically stable
inversions of the convolution operator [4,5]. Applications include
image and voice recognition [6–8], deeply subwavelength optical
microscopy [9], magnetic resonance imaging [10], and – in our pre-
sent case – pulsed dipolar spectroscopy (PDS) of electron spin
pairs.

The energy of the magnetic dipole interaction between
unpaired electrons depends on the inverse cube of the distance.
Electron magnetic moments can be determined precisely, and the
resulting distance measurement techniques are called pulsed
dipolar spectroscopy [11,12]. Double electron-electron resonance
(DEER) is the most popular one; it is essentially a spin echo exper-
iment, modified to keep only the dipole term in the effective
Hamiltonian, and implemented so as to avoid the dead times of
microwave electronics [13,14]. A similar experiment, called
relaxation-induced dipolar modulation enhancement (RIDME) uses
electron spin relaxation as a replacement for one of the magnetisa-
tion inversion steps [15,16]. Both methods are popular in structural
biology because they return distributions of distances and there-
fore offer a window into nanometre-scale conformational mobility
[17,18]; RIDME is particularly useful with paramagnetic metal ions
[19,20]. When unpaired electrons are not present naturally (e.g. in
metalloproteins), they are introduced by site-directed spin label-
ling: most commonly, selected amino acids are mutated into cys-
teines and stable radicals are attached to the thiol sulphur [21].
The most popular spin label is S-(1-oxyl-2,2,5,5-tetramethyl-2,5-
dihydro-1H-pyrrol-3-yl)methyl methanesulphonothioate (MTSL).
It is highly reactive towards cysteines; it is also small and flexible
enough to avoid disturbing protein folds [22].

In rigid and precisely oriented molecules, distances between 15
and 80 Å are easily measured with high accuracy [23], but in soft
matter the problem is more difficult. Firstly, a distribution of
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Fig. 1. DEERNet training and inference flowchart. The block schematic shows the relationship between the computationally generated training database, the neural
network, and its practical application in the context of pulsed dipolar spectroscopy (DEER, RIDME, etc.) distance measurement. To converge the training process, a carefully
designed database with many billions of question-answer pairs is necessary; it can only be generated by highly accurate simulations including models of instrumental
artefacts and noise. At the point when the network is used, it has no adjustable parameters.
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distances would normally be present. Secondly, biological samples
rarely have directional order – experimental data is an average
over all orientations. Thirdly, the presence of out-of-pair interac-
tions creates a background signal that depends on placement
topology and concentration of external spins [24]. All of this, and
the inevitable presence of noise, makes PDS data processing an
ill-posed problem in the Hadamard sense [25]: in the absence of
regularisation, the solution is neither unique nor a smooth function
of the experimental data [26]. Mathematically, the difficulty is
somewhere between the inverse Fourier transform [27] and the
inverse Laplace transform [28] – not as easy as the former, but
not as woefully unstable as the latter. In common with other
deconvolution problems, neural networks do well [29] for reasons
that are only starting to be explored [30].

A recent application of pulsed dipolar spectroscopy is
nanometre-scale distance measurement performed in frozen bio-
logical cells [31–33], in particular using Gd(III) spin labels [34–
37] that are chemically stable in the cytoplasm. Gd(III) tags pro-
duce an easily detectable ESR signal because their
�1=2ð Þ ! þ1=2ð Þ electron spin transition has a narrow line at
W-band and above [38]. They are also useful in mixed labelling
methods where the partner spin comes from an organic radical,
such as nitroxide [39,40] or trityl [41]. However, the complicated
quantum dynamics in Gd(III)-Gd(III) spin systems (S = 7/2, large
zero-field splitting) yields uninterpretable data unless certain
safety margins are observed that allow the use of the weak cou-
pling approximation [42,43] – pulse frequencies must be chosen
so that the system stays in the weak dipole-dipole coupling
regime [44,45]. Within those margins, Gd(III) spin labels are use-
ful and informative [34,36–41], but the general form of Gd(III)-
Gd(III) DEER kernel is unknown. A similar situation exists in
RIDME spectroscopy where high-frequency overtones are present
in high-spin systems, meaning that no simple analytical form
exists for the kernel function [46]. This brings us back to neural
networks that, from a large enough collection of examples, can
2

learn the kernel (Fig. 1) in a way that does not depend on mag-
netic or structural parameters of any specific physical system –
the only requirements are: (a) knowing the mathematical class
of distance distributions that can be encountered in PDS mea-
surements; (b) being able to construct a training set that pre-
pares the neural network for dealing with any distribution
from that class.

An attractive feature of a trained neural net is the absence of
user-adjustable parameters. Existing DEER and RIDME data pro-
cessing tools feature sophisticated regularisation [47,48] and
model fitting [49] algorithms with many unobvious settings,
including the choice of background model and uncertainty estima-
tion, each with its own parameters. Inexperienced users picking
unsuitable parameter combinations has long been acknowledged
as a problem. DEERNet does not expose any adjustable parameters
to the user, yet its performance matches existing regularisation-
based tools [29,50]. Unusually for machine learning, the important
question about exactly how the neural network produces the out-
put signal has been answered [30] – DEERNet appears to be a com-
bination of digital filters and regularised integral transforms. It is
not fully transparent, but it is translucent.

The utility of neural networks for solving Fredholm equations
[3] that arise in pulsed dipolar spectroscopy is firmly established
[5,29,30]; the challenges at this point are logistical: network archi-
tecture, training database generation, convergence of the training
process, uncertainty estimation, processing sparsely sampled data,
and enforcing applicability for the approximations and assump-
tions made in the underlying models. These logistical aspects are
the focus of the present paper.

2. DEERNet architecture

DEERNet is a signal processing network trained to solve the fol-
lowing inhomogeneous Fredholm equation of the second kind for
the distance distribution function p rð Þ:



Fig. 2. Architecture of the second generation DEERNet. The blocks on the right
show the mathematical operations performed by the corresponding layers. The
training parameters are weight matrices W in the fully connected layers, as well as
scale and shift vectors s and b in the batch normalisation layers. The strong
performance relative to the state of the art [29] is due to the fact that the
mathematical operations in question are close to those needed in a Fredholm solver
[4,5].
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1� lð Þ þ l
R
p rð Þc r; tð Þdr� �

b tð Þ þ n tð Þ ¼ s tð Þ
bDEER tð Þ ¼ exp �ktð ÞN=3

h i
bRIDME tð Þ ¼ exp �a1t � a2t2

� � ð1Þ

where c r; tð Þ is a known kernel [48,51], s tð Þ is the experimentally
recorded signal [51], n tð Þ is Gaussian white noise with unknown
standard deviation, k is an unknown DEER background decay rate
[11], N is an unknown DEER background dimension [24], a1;2 are
unknown RIDME background decay parameters [52], and l is an
unknown modulation depth [11,51]. The problem is exceedingly
difficult [26], but much progress was made over the last twenty
years [47,48,51]. Neural networks were found to be surprisingly
effective [29] – a recent in-depth inspection revealed digital filters
that isolate the integral in Eq. (1) followed by spectral filtering reg-
ularisation as a means of inverting the convolution operation [30].

The architecture of the original DEERNet [29,30] did not respect
the physical requirement for asymptotic linearity of the DEER data
processing problem – all activation functions were sigmoidal or
logsigmoidal. The first generation network also made no use of
convergence acceleration tools such as batch normalisation [53],
and had no internal provision for normalising the output, which
has a physical meaning of probability density. These matters are
rectified in the second-generation architecture shown in Fig. 2
and implemented in Spinach 2.7 and later [54]. The new DEERNet
is a feed-forward neural network with repeating triads of fully con-
nected (FC), batch normalisation (BN), and softplus activation (SA)
layers, terminated by a probability distribution normalisation
layer. Each FC-BN-SA triad applies the following transformation
to the input vector x:

y ¼ ln exp Wxð Þ � sþ b½ � þ 1f g ð2Þ
where � stands for element-wise multiplication. This equation and
the flowchart in Fig. 2 warrant an extended explanation. The
matrix-vector multiplication Wx is a linear transformation that –
in the absence of instabilities and distortions – the DEER processing
problem should have been. The subsequent scaling by s and shift by
3

b are also a linear transformation – it is called batch normalisation
[53]; it accounts for statistical variations between training data
batches, thereby improving the convergence of the training process
(Fig. 3, top left). The remaining y ¼ ln exp :::½ � þ 1f g transformation,
called softplus [55], is the non-linearity required by the universal
approximator theorem [1,2] – without it, the network could be rear-
ranged into a single linear operation. Softplus function is non-linear
at the origin, but asymptotically linear:

ln exp x½ � þ 1f g ¼ xþ O x�1� �
; x � 1 ð3Þ

At the last FC-BN-SA triad in Fig. 2, the choice of softplus activa-
tion function was dictated by the nature of DEERNet output – prob-
ability density, a non-negative quantity without an upper bound.
At the intermediate triads, softplus appears empirically (not
shown) to be a better choice than the more popular logsigmoidal
function; this is likely because the network as a whole approxi-
mates an unstable but linear transformation. The number of FC-
BN-SA blocks in Fig. 2 is set to six because there is no improvement
beyond that (Fig. 3, bottom row). The final distribution normalisa-
tion (DN) layer enforces the physical requirement for all probabil-
ities to sum up to 1; its presence yields a significant performance
boost (Fig. 3, top right), particularly for narrow distance distribu-
tions. It also makes the output independent of the modulation
depth parameter l in Eq. (1).
3. Infinite training database

The number of training parameters in a typical DEERNet (Fig. 2)
is in the millions – there is not enough real experimental DEER or
RIDME data in existence to train a network of this size. However,
accurate simulations [48,54] are computationally affordable, and
decades of experimental work have yielded practical intervals for
the parameters of those simulations. Second-generation DEERNets
in Spinach 2.7 and later are trained on simulated signal databases
with the parameters listed in Table 1.

DEER background parameters are well understood [11], but the
choice of RIDME background parameter ranges in Table 1 merits a
discussion, because it is empirical: bRIDME tð Þ in Eq. (1) only applies
rigorously for T1E=T2E > 10 and no distribution of T1E times in the
sample – elsewhere, it merely has the status of something that fits
the data well (here, T1E refers to the pumped spin and T2E refers to
the detected spin [11]). Neural network training databases must be
representative of the experimental data that the network would
later see, but the definition of ‘‘representative” is subjective. From
a recent theoretical treatment [52] and from practical experience
[20], it is reasonable to assume that, if a RIDME background func-
tion is initially steady or growing, that it would have reached a
turning point by t ¼ tmax=5 where tmax is the duration of the RIDME
trace. We therefore seek such a combination of parameters a1;2 as
would guarantee that:

@
@t exp �a1t � a2t2

� �� �
t¼0 P 0

@
@t exp �a1t � a2t2

� �� �
t6tmax=5

¼ 0

(
) a1 6 0

a2 P �5a1=2tmax

�

ð4Þ
Practical experience also indicates that, if a RIDME background
function is initially decreasing, that it must continue decreasing
for the duration of the experiment:

@
@t exp �a1t � a2t2

� �� �
t¼0 < 0

@
@t exp �a1t � a2t2

� �� �
t¼tmax

< 0

(
) a1 > 0

a2 > �a1=2tmax

�
ð5Þ

Physically, a1 is the rate constant associated with the loss of spin
correlation; users may be instructed to truncate the data set to a
time point tmax when the dipolar modulation is no longer visible,



Fig. 3. Performance effects of neural network architecture decisions. Scatter plots and statistics refer to sets of independently trained (different random initial guess,
different databases) DEERNets on a batch of 64,000 datasets generated as described in [29] and Section 3 below. The error is defined as root mean square deviation between
the network output and the ground truth for the 512-element non-negative output vector, normalised (for numerical accuracy reasons in single-precision arithmetic) to have
the mean value of 1. (Top left) Validation error and training time for different choices of activation function (logsigmoidal vs. softplus [55]) in the presence or absence of batch
normalisation (BN) layers [53], and distribution normalisation (DN) layers. (Top right) Effect of the distribution normalisation layer on the mean and maximum (over the test
database) regression error by the networks. (Bottom row) Mean and maximum error (over the test database) as functions of the number of [fully connected]-[batch
normalisation]-[softplus activation] triads in the architecture shown in Fig. 2.

Table 1
Parameters used in the generation of training databases. Where ranges are given, a
value is picked randomly with the specified probabilities (discrete quantities) or from
the specified distributions (continuous quantities) for each input-output data pair in
the database. Variables refer to Eq. (1).

Parameter Values

Network input and output vector dimension 512
Number of distance peaks in the distribution 1–3

(equal probability)
Full width at half-magnitude for distance peaks from 5% of the distance to

50% of the distance range
Background decay rate k, fraction of t�1

max
0.0–1.0
(uniform distribution)

Background dimension N 2.0–3.5
(uniform distribution)

RIDME background parameter a1 normal distribution
a1h i ¼ 0; r a1½ � ¼ 3t�1

max

RIDME background parameter a2 half-normal distribution
a2h i ¼ max �2a1=5;�a1=2f g
r a2½ � ¼ 3t�2

max

Modulation depth l 0.01–1.00
(uniform distribution)

Standard deviation of the noise in n tð Þ [0.00–0.05] l
(uniform distribution)
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corresponding roughly to a1 ¼ 3t�1
max – we therefore chose this to be

the standard deviation of the normal distribution of the a1 parame-
ter in the training database (Table 1). A similar extent of endpoint
4

decay with respect to the a2 parameter is achieved for a2 ¼ 3t�2
max,

but its distribution is also bounded by the inequalities in Eqs (4)
and (5). Accordingly, a half-normal distribution is used for a2, from
those bounds out into the positive direction (Table 1).

This kind of loose reasoning invites criticism; its justification
comes from the nature of the background elimination process in
DEERNet, which is known to be a digital filter [30] that simply
destroys the background. Accordingly, we need only show the net-
work the general class of signal components which it must learn to
destroy without quantification – we need not be rigorous.

Although themaximumnumber of distance peaks in the training
database is set to a sensible value of three, the resulting networks
can apparently handlemore [29]. Asymmetric distance peak shapes
are also reproduced (Supplementary Information, Section S2) even
though the training database only contains Gaussians [29,30]. This
stability to excursions outside the training range is unusual in
machine learning; it may be the consequence of the unique appro-
priateness of deep networks with fully connected layers specifically
for the deconvolution problem – rigorous convergence bounds exist
[5] for approximating solutions of integral equations with neural
nets, and Fredholm equations were among the earliest applications
[4]. Apparently, networks are learning to actually solve Eq. (1) as
opposed to memorising or interpolating solutions [30].

Since the data source is artificial (Fig. 1), the size of the training
database is theoretically infinite. This removes the complications
associated with overfitting – it is possible to design a database
(in this case, a Matlab datastore object) that serves previously
unseen data every time a batch is requested by the stochastic
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gradient descent algorithm [56], meaning that each converged net-
work has effectively been trained on an infinite database. This
approach has a useful side effect of reducing random-access mem-
ory and disk storage requirements: by the time the training process
has converged, a each network will have seen a few billion
question-answer pairs – terabytes of data. Storing that in a pre-
computed form would have been impractical. A minor logistical
optimisation is that the calculation of data batches may be done
outside the thread that runs the training. Annotated source code
and API documentation for all of the above is supplied with Spinach
(http://spindynamics.org).

4. Background and modulation depth

Distance distribution is not the only information contained in
the time-domain DEER data: the background function and the
modulation depth are also useful [57–59]. However, because both
are destroyed within the neural network [30], their extraction
must follow a roundabout path: first the probability density is con-
verted back into the form factor, then the form factor is mixed with
an analytical background model, and then the mixture is retro-
fitted to the time-domain data. The stages are:

1. The normalised distance distribution is converted into the form
factor f tð Þ using the standard DEER kernel [26,47]. This is a
stable and therefore unproblematic transformation:Z

f tð Þ ¼ p rð Þc r; tð Þdr () f ¼ Cp ð6Þ

where f and p are a discrete representations of f tð Þ and p rð Þ on
finite grids, and C is the corresponding matrix representation
of c r; tð Þ.

2. The parameters of the background model are extracted from a
least squares fit of the noiseless DEER signal model in Eq. (1)
to the experimental data:

a;l; k;Nf g ¼ argmink sexpt tð Þ � stheo tð Þ k2
stheo tð Þ ¼ a 1� lð Þ þ lf tð Þ½ �b tð Þ ð7Þ

where a is a multiplier reflecting the overall scaling of the input
signal, l is the modulation depth, and b tð Þ is a background model.
First generation DEERNet [29] had a separate network set for back-
ground extraction, but the retrofitting approach advocated here
appears to be superior in our practical testing. It also enables pro-
cessing of batches of signals that share a common background; this
feature is implemented in the new version.

5. Uncertainty quantification

Output uncertainty analysis in DEER spectroscopy has been
extensively researched [48–51,62,63], but neural nets offer two
more methods beyond what is normally considered – the network
ensemble method and the linear uncertainty propagation. The for-
mer is unique to neural networks and the latter proceeds from the
fact that, unlike the formal convolution inversion operation, a neu-
ral network is stable (in the sense of having finite derivatives) with
respect to its inputs.

5.1. Network ensemble method

In the machine learning community a popular way of estimat-
ing the uncertainty in the neural network output is to train an
ensemble of nets on different databases from a different random
initial guess, and to run descriptive statistics on their outputs
[29] – examples (shaded blue intervals) are given in the right hand
panels of Fig. 4 and Supplementary Information figures. Training
5

32 networks appears empirically to be sufficient; it is important
to note that we did not try to ruggedise the networks against delib-
erately crafted adversarial inputs [64].

There are two sources of uncertainty in the distance distribu-
tion data: one associated with the distance distribution extraction
process itself, and the other associated with the modulation depth
obtained in Stage 2. These uncertainties are statistically indepen-
dent because the probability density is normalised, meaning that
the first point of the form factor is always exactly 1. The uncertain-
ties of the outputs are therefore obtained by running statistics over

sets of products l kð Þp kð Þ rð Þ� �
, s kð Þ

theo tð Þ
n o

, and 1� l kð Þ� �
b kð Þ tð Þ

n o
obtained from the network ensemble. The former yields the shaded
confidence intervals in the right panels of Fig. 4, and the latter two
produce the blue (background) and the green (overall signal)
shaded confidence intervals in the left panels.

5.2. Linear uncertainty propagation

A vector-in, vector-out neutral net y ¼ ! xð Þ with continuous
activation functions is easy to differentiate with respect to the
input vector; this may be done by a finite difference approximation
[65] or using the same automatic differentiation methods that
compute the gradient for the training process [66]. The derivative
of the output vector with respect to the input vector is the Jacobian
matrix J:

Jnk ¼ @yn=@xk ð8Þ
The appearance of the network Jacobian (Fig. 5, left panel), rel-

ative to the Jacobian obtained by differentiating Eq. (1) analytically
(Fig. 5, right panel), illustrates of the stability of the neural net with
respect to perturbations of its input. The network is apparently
only sensitive to variations in the input data when those variations
influence significant distance peaks (see the top row of Fig. 4 for
the distance distribution). The values of the derivatives are moder-
ate throughout.

That is emphatically not the case for the Jacobian obtained from
Eq. (1), where the statistical expectation value of the variational
derivative of the distance distribution with respect to the input sig-
nal has entire curves filled with infinities because the kernel c r; tð Þ
is zero on those curves:

dp rð Þ=ds tð Þh i ¼ lc r; tð Þb tð Þ½ ��1 ð9Þ
This is of course the exact reason why conventional processing

of DEER data requires regularisation; it would seem that the neural
network has found a way around the problem. At the moment,
there is only limited understanding of how it does that [30]; on
the bright side, the availability of first derivatives enables linear
variance propagation:

r2
yn

�
X
k

@yn
@xk

	 
2

r2
xk
¼

X
k

J2nkr
2
xk

ð10Þ

in which standard deviations rxk may be estimated from the fitting
residuals in the time domain, or from the difference between the
raw signal and a suitably filtered (for example, by the Savitsky-
Golay procedure) version. This is illustrated for a RIDME dataset in
Fig. 6.

6. Sparsely sampled data

Because DEER and RIDME signals are detected as indirectly
incremented dimensions of two-dimensional ESR experiments,
there is much scope for instrument time savings using the same
sparse sampling methods that are popular in NMR spectroscopy
[68–70]. However, an attempt to train a neural net by feeding spar-

http://spindynamics.org


Fig. 4. Distance distribution and background extraction performance. The illustrations match those of the previous generation DEERNet reported in Figures 11 and 15 of
[29]; note the improved distance range. (Top row) V96C/I143C site pair in the lumenal loop of a double mutant of light harvesting complex II, using iodocateamido-PROXYL
spin labels attached to the indicated cysteines [60]. Residue 96 is located in the lumenal loop, and residue 143 is a structurally rigid ‘‘anchor” position in the protein core. In
agreement with the results reported in the original paper [60], a bimodal distance distribution is obtained, indicating flexibility in the lumenal loop. The low-confidence peak
around 57 Angstrom likely results from protein aggregation. (Bottom row) Pairs of nitroxide radicals tethered to the surface of gold nanoparticles, with the thiol tether
attachment points diffusing on the surface of the nanoparticle (sample Au 3 after solvolysis and heating in [61]). The broad pedestal is real, it matches the analytical model
reported in [61]; existing regularisation methods cannot process this dataset without either broadening the peak or introducing clumping artefacts into the pedestal.
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sely sampled data as index-value pairs predictably fails. We also
abstain from existing solutions that work well [71], but without
– hopefully not for long – an explanation of how.

The key to obtaining interpretable and effectual networks in
this case is what we call the ‘‘no magic” assumption – based on
current evidence [30], we expect digital signal processing networks
to invent efficient implementations of known mathematics. Given
a sparsely sampled input, we could expect a fitting or an interpo-
lation procedure to emerge inside; the input should therefore be
adjusted to make it easier for the network to do that.

Polynomial interpolation and fitting share the same mathemat-
ical structure – a low-order polynomial is assumed to describe the
data well in a sufficiently small interval:

f tð Þ ¼ a0 þ a1t þ a2t2 þ ::: ð11Þ
and its coefficients are obtained by solving, exactly or approxi-
mately, the system of equations requiring the polynomial to return
values f nf g at locations tnf g:
6

1 t1 t21 . . .

1 t2 t22 � � �
1 t3 t23 � � �
..
. ..

. ..
. . .

.

0
BBBBB@

1
CCCCCA

a0
a1
a2

..

.

0
BBBB@

1
CCCCA ¼

f 1
f 2
f 3

..

.

0
BBBB@

1
CCCCA ð12Þ

This system may be overdetermined, in which case it is solved
for the coefficients anf g in the least squares sense. Those coeffi-
cients are linear functions of the known values f nf g and rational
functions of the time grid locations tnf g.

The internal mechanics of feed-forward neural networks makes
it easy for them to learn unary and additive binary functions of the
input (sum, inverse, square, etc.), but hard to learn multiplicative
binary functions – therefore, sets of products like tn f nf g and
t2n f n

� �
must be supplied as inputs alongside tnf g and f nf g. When

this is done, network performance approaches the fully sampled
case (Fig. 7). We found it unnecessary to pick any specific class
of sampling schedules [70] at the training stage, but some perfor-



Fig. 5. (Left) A colour map representation of the Jacobian matrix of DEERNet (an average over 32 networks trained on different databases from a different random initial
guess) for the input-output pair appearing in the top row of Fig. 4. The horizontal dimension corresponds to the input vector and the vertical dimension to the output vector.
(Right) A clipped (to the same range as the left panel) colour map representation Jacobian matrix obtained by computing the point-by-point inverse of the DEER kernel in Eq.
(9).

Fig. 6. An example of linear uncertainty propagation in the distance distribution. The sample is a protein homodimer of copper amine oxidase from Arthrobacter
globiformis (AGAO) containing a Cu2+ ion bound to a surface site on each monomer and one MTSL spin label per monomer. RIDME data was collected with a mixing time of
5 ms. Two dominant Cu2+ to MTSL distances are expected: one intra-monomer (26 Å) and one intra-dimer (52 Å). Two-stage regularised processing methods that require
background elimination report zero confidence for the biologically certain 52 Å distance (Section S4 in the SI) – single-stage processing with neural networks is clearly
superior in this case. Sample preparation procedures and details of data collection may be found in Fig. 3a of [67].
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mance improvements would likely result if sampling schedules are
matched between the experimental data and the training database,
at the cost of loss of generality.

The only constraint on sparse sampling DEERNets is related to
the fixed element count in the input and output vectors of the
feed-forward architecture shown in Fig. 2: each network ensemble
is trained for a specific number of non-empty samples. 128/512
and 64/512 networks are included with DEERNet in Spinach 2.7,
as are scripts to train network sets for other time grid sizes and
sample counts. Although individual data samples may be missing,
the underlying time grid must be uniform to enable the calculation
of the distance window in the output.

Sparse sampling raises the delicate question of the minimum
and maximum distance that can be reliably expected from the dis-
tribution reconstruction process. DEER traces are not sinusoidal,
but the frequency spectrum of the oscillatory part of the kernel
[29]:
7

c r; tð Þ ¼
ffiffiffiffiffiffiffiffi
p

6xDt

q
cos xDtð ÞFrC

ffiffiffiffiffiffiffiffi
6xDt
p

q	 

þ sin xDtð ÞFrS

ffiffiffiffiffiffiffiffi
6xDt
p

q	 
� 

xD ¼ l0

4p
c1c2�h
r3

; FrC xð Þ ¼
Z x

0
cos pt2=2

� �
dt;

FrS xð Þ ¼
Z x

0
sin pt2=2

� �
dt

ð13Þ

is inside �2xD;2xD½ �, and therefore – by Whittaker’s interpolation
formula [72] – the minimum distance captured by a uniformly sam-
pled DEER trace with time grid spacing Dt is:
Dt ¼ p
2xmax

D
) rDEERmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1c2l0�h
2p2 Dt

3

r
ð14Þ

In the uniformly sampled DEERNet, the grid spacing is either
that of the original input data, or that of the resampled signal that
is supplied to the network, whichever is larger. When individual



Fig. 7. A sparsely sampled DEER dataset and the result of its neural network processing. Experimental data come from an X-band DEER measurement of model biradical 3
from Ref [26] diluted into o-terphenyl. The dataset contains 512 time grid points, with the probability of a sample being recorded at each point set uniformly to 1/4.
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samples may be missing, no perfect reconstruction conditions are
available, but an optimistic choice for Dt is the smallest interval
seen between the samples that are present.

The maximum distance is set by the requirement to sample at
least half a period of xmin

D . For a uniformly sampled DEER trace
with the last sample at tmax:

tmax ¼ p
xmin

D

) rDEERmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1c2l0�h
4p2 tmax

3

r
ð15Þ

Here too, when individual samples may be missing, no perfect
reconstruction conditions are available, but an optimistic choice
for tmax is the time of the last sample that is recorded. All of this
arithmetic is performed internally by DEERNet; it is not visible to
the user. Note the sliding multiplicative relationship between
c1;2, r3, and t in the xDt product in Eq. (13) – variations in experi-
ment duration and magnetogyric ratios are accommodated by dis-
tance axis rescaling; this is handled outside the neural nets which
internally use scaled and normalised dimensionless units.

The safety margins must be tighter for RIDME data because
RIDME background in Eq. (1) is not necessarily monotonic and
the assumption of single electron T1 time does not necessarily hold
– thus, a full period of the sinusoidal wave is now required for reli-
ably telling dipolar oscillations from the background. Likewise, the
short-distance limit of RIDME may contain overtone frequencies in
high-spin systems, with the resulting need to sample (and there-
fore prevent reflections of) frequencies about a factor of two higher
than 2xD. The resulting safety margins are:

rRIDME
min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1c2l0�h
p2 Dt

3

r
; rRIDME

max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1c2l0�h
8p2 tmax

3

r
ð16Þ

The intervals in Eqs. (14)–(16) are used for training database
generation and for deciding output distance extents in second-
generation DEERNet.
7. Practical flowchart

This section provides practical advice on the use of second-
generation DEERNet. The package is distributed with Spinach 2.7
[54] and later (http://spindynamics.org). It is open-source, but
8

requires Matlab R2021a or later, with Optimisation Toolbox, Parallel
Computing Toolbox, Deep Learning Toolbox, and Reinforcement Learn-
ing Toolbox installed.

7.1. Data preprocessing

The responsibility for supplying valid data rests with the user –
internal validation only catches glaring errors (array dimension
and type mismatch, unphysical values, etc.). The input must be:

(a) Sampled, sparsely or fully, on a uniform time grid. This is
dictated by the distance edge mathematics in Eqs. (14)–
(16), which is only unambiguous for uniform time grids.
Data array dimension must be the same as that of the time
grid array. Data values corresponding to the missing samples
must be set to NaN (not-a-number).

(b) Phased as near to zero imaginary part as the signal-to-noise
ratio permits. This may be done manually, by picking such u
as to minimise a norm of Im eius tð Þ� �

, or automatically – for
example by numerical minimisation of its norm-square:

iu� � 2
u ¼ argmink Im e s tð Þ k ð17Þ
Data that cannot be phased in this way is corrupted; it must
not be used.

(c) Cropped and shifted so as to make the echo modulation
maximum correspond to the t ¼ 0 point of the time grid.
DEERNet assumes time grid units to be seconds.

Further processing may be required for DEER and RIDME data
recoded with non-standard pulse sequences. DEERNet assumes
that the data came from (or has been transformed to correspond
to) the standard 4-pulse DEER [73] or a 5-pulse RIDME [16] exper-
iment. An input filter for the popular BES3T format is provided.

7.2. Input and output data structures

The first argument of the DEERNet function call is a real-valued
column vector (or a matrix made of multiple column vectors)
containing PDS data; the second argument is a real-valued column

http://spindynamics.org


Table 2
Second-generation DEERNet output. The program returns a Matlab data structure
with the indicated fields.

Field of the output
structure

Content

.input_axis time grid (seconds), as received

.input_traces DEER or RIDME data, as received

.n_networks number of neural nets in the ensemble

.train_params neural network training parameters, described in [29]

.resamp_axis

.resamp_traces
time grid and data, resampled to 512 time points to
match the input dimension of the neural networks

.dist_ax distance grid (Angstrom) of the output

.dist_av

.dist_lb

.dist_ub

mean, 95% lower bound, and 95% upper bound on the
distance distribution(s); this corresponds to p rð Þ in Eq.
(1)

.backgs_av

.backgs_lb

.backgs_ub

mean, 95% lower bound, and 95% upper bound on the
background signals; this corresponds to 1� lð Þb rð Þ in
Eq. (1)

.retros_av

.retros_lb

.retros_ub

mean, 95% lower bound, and 95% upper bound on the
back-calculated fit to the experimental data; this
corresponds to s tð Þ � n tð Þ in Eq. (1)

.mdpths_av

.mdpths_st
mean and standard deviation of the modulation
depths; this corresponds to l in Eq. (1)

Fig. 8. Example of an artefact peak at the long distance edge. The artefact peak at 65
when a longer DEER trace (bottom row) for the same sample is recorded and processed.
panels. Experimental data from Figure S11b of the recent community white paper on PD
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vector containing the time grid, and the third argument specifies
the experiment (‘deer’ or ‘ridme’):

dataset ¼ deernetðinput traces;input axis;exptÞ;
Because feed-forward neural networks have a fixed input

dimension and normalisation expectations, appropriate transfor-
mations are applied internally; those are automatic and not visible
to the user. The output is a graph with the appearance and content
of Figs. 4, 6, 7, and a data structure with the fields specified in
Table 2. As a matter of policy, DEERNet has no user-adjustable
parameters.

8. Practical applicability considerations

This section deals with the practicalities of running a regu-
larised version of an unstable mathematical operation; these mat-
ters are the same for neural networks and conventional DEER/
RIDME data processing methods. The absence of user-adjustable
parameters in DEERNet is a significant advantage, but the principle
of ‘‘garbage in, garbage out” does of course still apply.
Å in the top right panel disappears and the true distances become better resolved
Note the incorrect background and therefore incorrect modulation depth in the top
S data processing [74].
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8.1. Distances at the long edge

The maximum distance bound in Eqs. (15) and (16) ignores the
presence of the damping multiplier on the left of the square
bracket in Eq. (13), of the modulation depth transformation in
the square bracket of Eq. (7), and of the decaying functions in the
baseline term. For this reason, all DEER and RIDME processing
methods struggle to tell apart slow dipolar modulations and base-
line decays. As a result, distance distributions with significant den-
sity at the long edge are unreliable (Fig. 8). Because baseline decay
is usually significant, the ghost peaks at the long edge of the dis-
tance distribution may be reported with high confidence (Fig. 8,
top right). Those long-distance peaks may sometimes be real (there
are examples in the Supplementary Information), but may just as
well be artefacts – not a comfortable situation in the data process-
ing context.

In such cases, second generation DEERNet prints a warning mes-
sage encouraging the user to record a longer trace, and turns off the
output of background signal and modulation depth. This is also
done when unreasonable standard deviations are detected in the
uncertainty quantification described in Section 5. An appealing fea-
ture of DEERNet is that background signal retrofitting is optional.
This is because backgrounds – with whatever parameters – are
eliminated by the notch filter in the first layer of the distance dis-
tribution extraction networks [30].

Because RIDME backgrounds are less well understood than
DEER backgrounds, two-stage (background elimination followed
by deconvolution) Tikhonov-regularised processing methods
struggle with longer distances in RIDME data (see the note in the
caption of Fig. 6). Thus, even in DEERAnalysis2021, the recom-
mended data processing option for such RIDME data is ‘‘DEER-
Net/RIDME”. This is further illustrated in Section S4 of the
Supplementary Information.
8.2. Low modulation depth

A conceptually difficult scenario for any DEER/RIDME process-
ing method is quantifying distances that do not exist – a sample
need not contain any radical pairs. Modulation depth quantifica-
tion described in Section 5 acts as a safeguard here; it is imple-
mented as two criteria: if the modulation depth returned by any
of the networks in the ensemble is negative, or if the ensemble
Fig. 9. An illustration of the built-in sanity control in the second-generation DEER
networks to not constrain it sufficiently well. The left panel shows a Q-band DEER measu
the binding partner and therefore a priori absence of spin echo envelope modulation. The
suppressed by phase cycling.

10
averaged modulation depth is below 0.5%, second generation
DEERNet refuses to output the distance distribution and prints
a deliberately forceful error message (Fig. 9, right panel). The
message is essential: open source software technically allows
users to turn safeguards off; it is important to discourage that
practice.

8.3. Running echoes and artefacts

The low modulation depth of Gd(III)-Gd(III) data makes it sus-
ceptible to microwave pulse interference artefacts that manifest
as running echoes that cross the integration window and may sur-
vive phase cycling if observer and pump channel are phase-locked
[75]. These running echoes are a common sight in RIDME data;
they can appear even in Q-band DEER using Gaussian pulses on
nitroxides. Another type of distortion arises at ends DEER time
traces due to the residual ‘‘2 + 1” pulse train electron spin echoes
[76]; those may sometimes be suppressed using Gaussian pulses
with non-overlapping excitation profiles, but may also be unavoid-
able [77].

A surprising observation is that neural networks are – for want
of a better term – ignoring these artefacts (Fig. 10). This appears to
be a beneficial side effect of the digital filter that they evolve in the
input layer [30] – running echoes do not pass through that filter.
Should the need arise, running echoes may be introduced as proce-
durally generated artefacts into the training database.

Zero-field splitting makes quantum mechanics of high-spin
pairs exceedingly difficult [42,43] – at the moment, there are no
computationally affordable ways to process Gd(III) DEER data
unless pulse frequencies are positioned so that the system stays
in the weak coupling regime where Eq. (13) is applicable. That
approximation creates artefacts in the distance distribution. At
the time of writing, they cannot be eliminated, but can be identi-
fied because their position and relative intensity fluctuate as a
function of pump and probe pulse frequency separation (Fig. 10,
right panels).

8.4. Orientation selection

Microwave pulse widths in DEER and RIDME sequences are typ-
ically tens of nanoseconds long, corresponding to the excitation
bandwidth in the tens of MHz. This is much less than the width
Net. Distance distribution output is turned off when data is judged by the neural
rement of a singly Gd(III) DOTA maleimide labelled protein ligand in the absence of
artefact seen in the left panel is due to microwave pulse interference that is not fully



Fig. 10. An illustration of neural network resilience to running echo artefacts. The time traces are DEER data for a bis-Gd(III)-DOTA model compound, measured with a
large frequency separation (top row: 0.363 GHz, bottom row: 1.090 GHz) between the pump pulse and the observe pulse to reduce the effects of non-secular dipolar terms
and zero-field splitting [44]. A running echo, ignored by the neural network, is visible at 1.1 ms (top left panel) and 0.8 ms (bottom left panel). The distance peaks at 30 Å and
below 20 Å in the right panels are artefacts that depend on the frequency separation between pump and probe pulse; they arise because the kernel in Eq. (13) had been
derived for spin-1/2 particles, which Gd(III) is not.

Fig. 11. An example of orientation selection in a 4-pulse DEER experiment. The sample is an ERp29 protein [79] dimer mutant (S114C) spin-labelled with Gd C1 and MTSL
tags [80]. The orientation selection effect appears because the width of MTSL powder pattern at W-band is around 500 MHz, but the excitation bandwidth of the pump pulse
is only �10 MHz. The three red traces in the left panel have been recorded at three different pump frequencies inside the MTSL powder pattern; the grey trace with the
background signal (blue line) is the average of the three red traces; the distance distribution on the right hand side was computed for that average. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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of the g-tensor powder patterns of common spin labels (�500 MHz
for nitroxides at W-band); the result is called orientation selection
– some orientations of the spin system see the microwave pulse,
others do not [78]. Because the kernel in Eq. (13) is a full powder
average, sending orientationally selected data into DEERNet is
equivalent to sending corrupted data: dipolar modulation frequen-
cies and depths strongly depend (Fig. 11, left panel) on where the
user decides to apply the pulse.

In situations where the powder pattern width is significantly
larger than the pulse excitation width, DEER data must be acquired
with pulse position averaging – several data sets with different
pump and probe pulse frequencies must be acquired and averaged
(Fig. 11, grey trace on the left) to make sure that the isotropic pow-
der average kernel in Eq. (13) is applicable. It is not possible to
train a neural network that would process arbitrary orientationally
selected DEER/RIDME data because the one-to-one correspondence
between the distance distribution and the modulation is broken.
9. Conclusions and outlook

In the practical testing (Sections S2-S4 in the Supplementary
Information) performed by the groups involved in this study, deep
neural network processing of DEER and RIDME data matches or
exceeds the performance of the existing tools, insofar as ‘‘perfor-
mance” may be defined for experimental datasets with uncertain
ground truth; the same conclusion was reached for DEER in the
recent community white paper [74]. The unique advantage of hav-
ing no user-adjustable parameters, and thus no subjective bias, is
pertinent because it removes the element of user discretion and
error from the fiddly and subjective process of selecting regularisa-
tion parameters.

So far, common use scenarios for neural networks in DEER data
processing have been: (a) in difficult cases where user bias in the
choice of baseline and regularisation parameters must be elimi-
nated; (b) as a second opinion alongside Tikhonov or model fitting
tools; (c) as a source of initial guesses for Tikhonov or model fitting
tools; (d) in situations when the users of DEER spectroscopy have
no mathematical physics background and no interest in methodol-
ogy, and only seek a reliable data processing tool. An appealing fea-
ture of DEERNet is that background signal retrofitting is optional:
during distance distribution extraction, neural networks simply
eliminate the background with a notch filter [30]; it may be retro-
fitted, if necessary, as described in Section 4.

The unexpectedly strong performance of neural network based
Fredholm solvers merits a special mention – a recurring theme in
the user feedback is the resilience of DEERNet to dismal experimen-
tal realities like low signal-to-noise ratios and incompletely sam-
pled datasets. We would note here that many experimental data
processing problems across natural (and unnatural) sciences
reduce to solving a Fredholm equation; in this context, neural net-
works have a bright future.
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[5] V. Kůrková, Surrogate modelling of solutions of integral equations by neural
networks, in: IFIP International Conference on Artificial Intelligence
Applications and Innovations, Springer, 2012, pp. 88–96.

[6] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Adv. Neural Inform. Process. Syst. 25 (2012)
1097–1105.

[7] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio, Attention-based
models for speech recognition, arXiv preprint arXiv:1506.07503, (2015).

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9.

[9] T. Pu, J.-Y. Ou, N. Papasimakis, N. Zheludev, Label-free deeply subwavelength
optical microscopy, Appl. Phys. Lett. 116 (2020) 131105.

[10] A. Pashaei, H. Sajedi, N. Jazayeri, Brain tumor classification via convolutional
neural network and extreme learning machines, in: 2018 8th International
conference on computer and knowledge engineering (ICCKE), IEEE, 2018, pp.
314-319.

[11] A. Milov, A. Ponomarev, Y.D. Tsvetkov, Electron-electron double resonance in
electron spin echo: model biradical systems and the sensitized photolysis of
decalin, Chem. Phys. Lett. 110 (1984) 67–72.

[12] A.L. Mbkod, R.M. Cakbxod, M. Obpod, Gpbveyeybe venola ldoqyouo pepoyayca d
'kernpoyyov cgbyodov 'xo lkz bpyxeybz gpocnpaycndeyyouo pacgpelekeybz
gapavauybnysx weynpod d ndeplsx nekax, Ubpbra Tdeplouo Teka 23 (1981)
975–982.

[13] R.E. Martin, M. Pannier, F. Diederich, V. Gramlich, M. Hubrich, H.W. Spiess,
Determination of end-to-end distances in a series of TEMPO diradicals of up to
2.8 nm length with a new four-pulse double electron electron resonance
experiment, Angew. Chem. Int. Ed. 37 (1998) 2833–2837.

[14] M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, Dead-Time Free
Measurement of Dipole-Dipole Interactions between Electron Spins, J. Magn.
Reson. 142 (2000) 331–340.

[15] L. Kulik, S. Dzuba, I. Grigoryev, Y.D. Tsvetkov, Electron dipole–dipole
interaction in ESEEM of nitroxide biradicals, Chem. Phys. Lett. 343 (2001)
315–324.

[16] S. Milikisyants, F. Scarpelli, M.G. Finiguerra, M. Ubbink, M. Huber, A pulsed EPR
method to determine distances between paramagnetic centers with strong
spectral anisotropy and radicals: The dead-time free RIDME sequence, J. Magn.
Reson. 201 (2009) 48–56.

[17] G. Jeschke, DEER Distance Measurements on Proteins, Annu. Rev. Phys. Chem.
63 (2012) 419–446.

https://doi.org/10.1016/j.jmr.2022.107186
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0005
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0005
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0010
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0010
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0015
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0015
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0020
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0020
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0025
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0025
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0025
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0025
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0030
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0030
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0030
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0045
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0045
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0055
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0055
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0055
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0060
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0065
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0065
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0065
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0065
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0070
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0070
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0070
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0075
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0075
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0075
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0080
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0080
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0080
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0080
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0085
http://refhub.elsevier.com/S1090-7807(22)00044-1/h0085


J. Keeley, T. Choudhury, L. Galazzo et al. Journal of Magnetic Resonance 338 (2022) 107186
[18] G. Jeschke, The contribution of modern EPR to structural biology, Emerging
Topics in Life Sciences 2 (2018) 9–18.

[19] F.D. Breitgoff, K. Keller, M. Qi, D. Klose, M. Yulikov, A. Godt, G. Jeschke, UWB
DEER and RIDME distance measurements in Cu (II)–Cu (II) spin pairs, J. Magn.
Reson. 308 (2019) 106560.

[20] I. Ritsch, H. Hintz, G. Jeschke, A. Godt, M. Yulikov, Improving the accuracy of Cu
(II)–nitroxide RIDME in the presence of orientation correlation in water-
soluble Cu (II)–nitroxide rulers, PCCP 21 (2019) 9810–9830.

[21] J.P. Klare, Site-directed spin labeling EPR spectroscopy in protein research, Biol.
Chem. 394 (2013) 1281–1300.

[22] L.J. Berliner, J. Grunwald, H.O. Hankovszky, K. Hideg, A novel reversible thiol-
specific spin label: Papain active site labeling and inhibition, Anal. Biochem.
119 (1982) 450–455.

[23] S. Santabarbara, I. Kuprov, W.V. Fairclough, S. Purton, P.J. Hore, P. Heathcote,
M.C. Evans, Bidirectional electron transfer in photosystem I: determination of
two distances between P700+ and A1-in spin-correlated radical pairs,
Biochemistry 44 (2005) 2119–2128.

[24] A. Milov, Y.D. Tsvetkov, Double electron-electron resonance in electron spin
echo: Conformations of spin-labeled poly-4-vinilpyridine in glassy solutions,
Appl. Magn. Reson. 12 (1997) 495–504.

[25] J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification
physique, Princeton university bulletin (1902) 49–52.

[26] G. Jeschke, A. Koch, U. Jonas, A. Godt, Direct conversion of EPR dipolar time
evolution data to distance distributions, J. Magn. Reson. 155 (2002) 72–82.

[27] J.-B.-J. Fourier, Théorie analytique de la chaleur, Firmin Didot (1822).
[28] P.S. Laplace, Théorie analytique des probabilités, Courcier (1820).
[29] S.G. Worswick, J.A. Spencer, G. Jeschke, I. Kuprov, Deep neural network

processing of DEER data, Sci. Adv. 4 (2018) eaat5218.
[30] J.L. Amey, J. Keeley, T. Choudhury, I. Kuprov, Neural network interpretation

using descrambler groups, Proceedings of the National Academy of Sciences,
118 (2021).

[31] R. Igarashi, T. Sakai, H. Hara, T. Tenno, T. Tanaka, H. Tochio, M. Shirakawa,
Distance determination in proteins inside Xenopus laevis oocytes by double
electron� electron resonance experiments, J. Am. Chem. Soc. 132 (2010)
8228–8229.

[32] M. Azarkh, O. Okle, V. Singh, I.T. Seemann, J.S. Hartig, D.R. Dietrich, M.
Drescher, Long-Range Distance Determination in a DNA Model System inside
Xenopus laevis Oocytes by In-Cell Spin-Label EPR, ChemBioChem 12 (2011)
1992–1995.
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