
The EXPRES Stellar Signals Project II. State of the Field in Disentangling Photospheric
Velocities

Lily L. Zhao1,2,36 , Debra A. Fischer1 , Eric B. Ford3,4,5,6,37 , Alex Wise3,37 , Michaël Cretignier7,38 ,
Suzanne Aigrain8,39 , Oscar Barragan8,39 , Megan Bedell2,36 , Lars A. Buchhave9,39 , João D. Camacho10,11,40 ,

Heather M. Cegla12,13,41 , Jessi Cisewski-Kehe14 , Andrew Collier Cameron15,42 , Zoe L. de Beurs16,17,43 ,
Sally Dodson-Robinson18,19,44 , Xavier Dumusque7,38 , João P. Faria10,11,40 , Christian Gilbertson3,4,5,37 ,

Charlotte Haley20,44 , Justin Harrell18,44 , David W. Hogg2,21,22,23,36 , Parker Holzer24 , Ancy Anna John15,42 ,
Baptiste Klein8,39 , Marina Lafarga12,41 , Florian Lienhard25 , Vinesh Maguire-Rajpaul25,39 , Annelies Mortier25,26 ,

Belinda Nicholson8,39 , Michael L. Palumbo, III3,37 , Victor Ramirez Delgado18,44 , Christopher J. Shallue27,43 ,
Andrew Vanderburg28,29,43 , Pedro T. P. Viana10,40,30 , Jinglin Zhao3,37 , Norbert Zicher8,39 , Samuel H. C. Cabot1 ,
Gregory W. Henry31 , Rachael M. Roettenbacher1,32 , John M. Brewer33 , Joe Llama34 , Ryan R. Petersburg35 , and

Andrew E. Szymkowiak1
1 Department of Astronomy, Yale University, 52 Hillhouse Avenue, New Haven, CT 06511, USA; lzhao@flatironinstitute.org

2 Center for Computational Astrophysics, Flatiron Institute, Simons Foundation, 162 Fifth Avenue, New York, NY 10010, USA
3 Department of Astronomy & Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
4 Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA

5 Institute for Computational & Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
6 Institute for Advanced Sciences, 1 Einstein Drive, Princeton, NJ 08540, USA

7 Astronomy Department of the University of Geneva, 51 Chemin de Pegasi 51, 1290 Versoix, Switzerland
8 Sub-department of Astrophysics, Department of Physics, University of Oxford, Oxford OX1 3RH, UK

9 DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 328, DK-2800 Kgs. Lyngby, Denmark
10 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762, Porto, Portugal

11 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
12 Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
13 Centre for Exoplanets and Habitability, University of Warwick, Coventry CV4 7AL, UK

14 Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
15 University of St Andrews, Centre for Exoplanet Science, SUPA, School of Physics & Astronomy, North Haugh, St Andrews KY16 9SS, UK

16 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 54-918, Cambridge, MA
02139, USA

17 Department of Astronomy, University of Texas at Austin, 2515 Speedway, Austin, Texas 78712, USA
18 Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716, USA

19 Bartol Research Institute, Sharp Lab, 104 The Green, Newark, DE, 19716, USA
20 Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA

21 Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY 10003, USA
22 Center for Data Science, New York University, 60 Fifth Avenue, New York, NY 10011, USA

23 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
24 Department of Statistics and Data Science, Yale University, 24 Hillhouse Avenue, New Haven, CT 06511, USA

25 Astrophysics Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
26 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
27 Center for Astrophysics—Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

28 Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA
02139, USA

29 Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
30 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

31 Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209, USA
32 Yale Center for Astronomy and Astrophysics, Yale University, 46 Hillhouse Avenue, New Haven, CT 06511, USA

33 San Francisco State University University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
34 Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001, USA

35 Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
Received 2021 October 26; revised 2022 January 19; accepted 2022 January 25; published 2022 March 15

The Astronomical Journal, 163:171 (34pp), 2022 April https://doi.org/10.3847/1538-3881/ac5176
© 2022. The Author(s). Published by the American Astronomical Society.

36 CCA Team
37 PennState Team
38 Geneva Team
39 OxBridGen Team
40 Porto Team
41 Warwick Team
42 St. Andrews Team
43 ML_EPRVs Team
44 Sidera Team

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-3852-3590
https://orcid.org/0000-0002-3852-3590
https://orcid.org/0000-0002-3852-3590
https://orcid.org/0000-0003-2221-0861
https://orcid.org/0000-0003-2221-0861
https://orcid.org/0000-0003-2221-0861
https://orcid.org/0000-0001-6545-639X
https://orcid.org/0000-0001-6545-639X
https://orcid.org/0000-0001-6545-639X
https://orcid.org/0000-0002-5013-5769
https://orcid.org/0000-0002-5013-5769
https://orcid.org/0000-0002-5013-5769
https://orcid.org/0000-0002-2207-0750
https://orcid.org/0000-0002-2207-0750
https://orcid.org/0000-0002-2207-0750
https://orcid.org/0000-0003-1453-0574
https://orcid.org/0000-0003-1453-0574
https://orcid.org/0000-0003-1453-0574
https://orcid.org/0000-0003-0563-0493
https://orcid.org/0000-0003-0563-0493
https://orcid.org/0000-0003-0563-0493
https://orcid.org/0000-0001-9907-7742
https://orcid.org/0000-0001-9907-7742
https://orcid.org/0000-0001-9907-7742
https://orcid.org/0000-0003-1605-5666
https://orcid.org/0000-0003-1605-5666
https://orcid.org/0000-0003-1605-5666
https://orcid.org/0000-0001-5121-5560
https://orcid.org/0000-0001-5121-5560
https://orcid.org/0000-0001-5121-5560
https://orcid.org/0000-0001-8934-7315
https://orcid.org/0000-0001-8934-7315
https://orcid.org/0000-0001-8934-7315
https://orcid.org/0000-0002-9656-2272
https://orcid.org/0000-0002-9656-2272
https://orcid.org/0000-0002-9656-2272
https://orcid.org/0000-0002-8863-7828
https://orcid.org/0000-0002-8863-7828
https://orcid.org/0000-0002-8863-7828
https://orcid.org/0000-0002-7564-6047
https://orcid.org/0000-0002-7564-6047
https://orcid.org/0000-0002-7564-6047
https://orcid.org/0000-0002-8796-4974
https://orcid.org/0000-0002-8796-4974
https://orcid.org/0000-0002-8796-4974
https://orcid.org/0000-0002-9332-2011
https://orcid.org/0000-0002-9332-2011
https://orcid.org/0000-0002-9332-2011
https://orcid.org/0000-0002-6728-244X
https://orcid.org/0000-0002-6728-244X
https://orcid.org/0000-0002-6728-244X
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0003-3996-773X
https://orcid.org/0000-0003-3996-773X
https://orcid.org/0000-0003-3996-773X
https://orcid.org/0000-0001-8936-6276
https://orcid.org/0000-0001-8936-6276
https://orcid.org/0000-0001-8936-6276
https://orcid.org/0000-0003-2866-9403
https://orcid.org/0000-0003-2866-9403
https://orcid.org/0000-0003-2866-9403
https://orcid.org/0000-0001-8936-6276
https://orcid.org/0000-0001-8936-6276
https://orcid.org/0000-0001-8936-6276
https://orcid.org/0000-0002-1715-6939
https://orcid.org/0000-0002-1715-6939
https://orcid.org/0000-0002-1715-6939
https://orcid.org/0000-0003-0637-5236
https://orcid.org/0000-0003-0637-5236
https://orcid.org/0000-0003-0637-5236
https://orcid.org/0000-0002-8815-9416
https://orcid.org/0000-0002-8815-9416
https://orcid.org/0000-0002-8815-9416
https://orcid.org/0000-0003-4047-0771
https://orcid.org/0000-0003-4047-0771
https://orcid.org/0000-0003-4047-0771
https://orcid.org/0000-0001-7576-6703
https://orcid.org/0000-0001-7576-6703
https://orcid.org/0000-0001-7576-6703
https://orcid.org/0000-0001-7254-4363
https://orcid.org/0000-0001-7254-4363
https://orcid.org/0000-0001-7254-4363
https://orcid.org/0000-0003-1360-4404
https://orcid.org/0000-0003-1360-4404
https://orcid.org/0000-0003-1360-4404
https://orcid.org/0000-0002-4677-8796
https://orcid.org/0000-0002-4677-8796
https://orcid.org/0000-0002-4677-8796
https://orcid.org/0000-0001-8183-459X
https://orcid.org/0000-0001-8183-459X
https://orcid.org/0000-0001-8183-459X
https://orcid.org/0000-0002-7585-9974
https://orcid.org/0000-0002-7585-9974
https://orcid.org/0000-0002-7585-9974
https://orcid.org/0000-0001-7246-5438
https://orcid.org/0000-0001-7246-5438
https://orcid.org/0000-0001-7246-5438
https://orcid.org/0000-0003-1572-8531
https://orcid.org/0000-0003-1572-8531
https://orcid.org/0000-0003-1572-8531
https://orcid.org/0000-0001-5290-2952
https://orcid.org/0000-0001-5290-2952
https://orcid.org/0000-0001-5290-2952
https://orcid.org/0000-0001-6143-2905
https://orcid.org/0000-0001-6143-2905
https://orcid.org/0000-0001-6143-2905
https://orcid.org/0000-0001-9749-6150
https://orcid.org/0000-0001-9749-6150
https://orcid.org/0000-0001-9749-6150
https://orcid.org/0000-0003-4155-8513
https://orcid.org/0000-0003-4155-8513
https://orcid.org/0000-0003-4155-8513
https://orcid.org/0000-0002-9288-3482
https://orcid.org/0000-0002-9288-3482
https://orcid.org/0000-0002-9288-3482
https://orcid.org/0000-0002-9873-1471
https://orcid.org/0000-0002-9873-1471
https://orcid.org/0000-0002-9873-1471
https://orcid.org/0000-0003-4450-0368
https://orcid.org/0000-0003-4450-0368
https://orcid.org/0000-0003-4450-0368
https://orcid.org/0000-0003-2168-0191
https://orcid.org/0000-0003-2168-0191
https://orcid.org/0000-0003-2168-0191
https://orcid.org/0000-0002-4974-687X
https://orcid.org/0000-0002-4974-687X
https://orcid.org/0000-0002-4974-687X
mailto:lzhao@flatironinstitute.org
https://doi.org/10.3847/1538-3881/ac5176
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ac5176&domain=pdf&date_stamp=2022-03-15
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ac5176&domain=pdf&date_stamp=2022-03-15
http://creativecommons.org/licenses/by/4.0/


Abstract

Measured spectral shifts due to intrinsic stellar variability (e.g., pulsations, granulation) and activity (e.g., spots,
plages) are the largest source of error for extreme-precision radial-velocity (EPRV) exoplanet detection. Several
methods are designed to disentangle stellar signals from true center-of-mass shifts due to planets. The Extreme-
precision Spectrograph (EXPRES) Stellar Signals Project (ESSP) presents a self-consistent comparison of 22
different methods tested on the same extreme-precision spectroscopic data from EXPRES. Methods derived new
activity indicators, constructed models for mapping an indicator to the needed radial-velocity (RV) correction, or
separated out shape- and shift-driven RV components. Since no ground truth is known when using real data,
relative method performance is assessed using the total and nightly scatter of returned RVs and agreement between
the results of different methods. Nearly all submitted methods return a lower RV rms than classic linear
decorrelation, but no method is yet consistently reducing the RV rms to sub-meter-per-second levels. There is a
concerning lack of agreement between the RVs returned by different methods. These results suggest that continued
progress in this field necessitates increased interpretability of methods, high-cadence data to capture stellar signals
at all timescales, and continued tests like the ESSP using consistent data sets with more advanced metrics for
method performance. Future comparisons should make use of various well-characterized data sets—such as solar
data or data with known injected planetary and/or stellar signals—to better understand method performance and
whether planetary signals are preserved.

Unified Astronomy Thesaurus concepts: Radial velocity (1332); Exoplanet detection methods (489); Planet hosting
stars (1242); Stellar activity (1580); Spectrometers (1554)

Supporting material: machine-readable tables

1. Introduction

With the new generation of extreme-precision spectrographs,
sub-meter-per-second radial-velocity (RV) measurement preci-
sion has become achievable (Pepe et al. 2013; Jurgenson et al.
2016; Schwab et al. 2016; Blackman et al. 2020; Brewer et al.
2020; Petersburg et al. 2020; Suárez Mascareño et al. 2020;
Pepe et al. 2021). Photospheric velocities from stellar
variability and activity features are now the dominant source
of RV scatter.

A star’s radial velocity is measured by modeling Doppler
shifts in the absorption lines of stellar spectra. Different forms
of stellar variability will change spectra such that lines will
appear shifted, deeper/shallower, or asymmetric. These line-
shape changes can be mistaken for true center-of-mass shifts in
the RV analysis. In this way, stellar signals add errors to the
resultant RV measurements and can even masquerade as
periodic, false planet signals (e.g., Rajpaul et al. 2016).

With instrumental RV precision better than one meter per
second, we must contend with obscuring photospheric
velocities that arise from stellar p-mode oscillations (Mayor
et al. 2003; Bouchy et al. 2005; Kjeldsen et al. 2005; Arentoft
et al. 2008; Chaplin et al. 2019), granulation (Dravins 1982;
Kjeldsen & Bedding 1995; Lindegren & Dravins 2003;
Dumusque et al. 2011b; Meunier et al. 2015; Cegla et al.
2018; Lanza et al. 2019), supergranulation (Rieutord &
Rincon 2010; Rincon & Rieutord 2018; Meunier &
Lagrange 2019), and large-amplitude magnetic activity features
such as spots, faculae, or plages (Saar & Donahue 1997;
Hatzes 2002; Saar 2003; Desort et al. 2007; Huélamo et al.
2008; Boisse et al. 2011; Lovis et al. 2011; Dumusque et al.
2011a; Jeffers et al. 2013; Cabot et al. 2021; Roettenbacher
et al. 2022). These various types of photospheric velocities
imprint on a star’s spectrum in different, potentially quasiper-
iodic ways and evolve on a range of timescales.45

Pressure gradients moving through the convective zones of
stars result in p-mode oscillations with a timescale of a few
minutes, where the frequency and amplitude of these oscilla-
tions increases with Teff and as stars evolve off the main
sequence (Mayor et al. 2003; Bouchy et al. 2005; Kjeldsen
et al. 2005; Arentoft et al. 2008). This movement can cause RV
variations from 10 cm s−1 up to approximately 1 m s−1 for
main-sequence stars (Dumusque et al. 2011c; Chaplin et al.
2019).
Solar-type stars will also exhibit granulation patterns, which

arise from convection in the outer layers of the star
(Dravins 1982; Lanza et al. 2019; Kjeldsen & Bedding 1995;
Lindegren & Dravins 2003; Nordlund et al. 2009; Dumusque
et al. 2011b; Cegla et al. 2018; Cegla 2019). Upflows in the
middle of granulation cells appear blueshifted while the
downflows in the narrow, dimmer edge regions appear
redshifted. This uneven balance between the upflow and
downflow regions creates a net RV blueshift, known as
convective blueshift, which can lead to asymmetries in spectral
lines.
The granulation pattern changes on the timescale of a few

minutes to hours, which integrates to different net RV shifts
across the surface of the star. These changes result in varying
magnitudes of the convective blueshift and therefore likewise
vary the resultant spectral line-shape changes. This effect can
introduce random RV variations of 0.4–0.8 m s−1, an effect
that increases with the Teff of the star (Meunier et al. 2015).
Supergranulation describes large cells outlined by the

magnetic network; it has only been measured on the Sun
where cells can persist for hours to up to two days (Rieutord &
Rincon 2010; Rincon & Rieutord 2018; Meunier &
Lagrange 2019). Changes in supergranulation cells give rise
to similar issues as granulation and can introduce RV variations
of 0.3–0.7 m s−1 (Meunier et al. 2015).
Strong magnetic fields can also generate activity features, i.e.,

darker starspots or brighter faculae in the photosphere and bright
plages in the chromosphere (Saar & Donahue 1997; Hatzes 2002;
Saar 2003; Desort et al. 2007; Huélamo et al. 2008; Boisse et al.
2011; Lovis et al. 2011; Dumusque et al. 2011a; Jeffers et al. 2013).

45 Note that there exist other potential sources of photospheric velocities we do
not discuss in as much detail (e.g., evershed flows, moat flows, plage inflows,
meridional flows, flares, variable gravitational redshift), some of which arise
from the sources detailed above.
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This magnetic activity will suppress convection in a star and
change the magnitude of the convective blueshift relative to a quiet
photosphere. With solar data, the effect of this magnetic activity was
measured to result in a net redshifted RV change of 0.4–1.4 m s−1

integrated over the surface of the Sun (Meunier et al. 2010). The
expected RV variation due to magnetic activity features will change
for each star depending on the type of star and the nature of the
activity feature.

Activity features rotate in and out of view as the star rotates.
Spots, which have a lower temperature than the rest of the star,
suppress flux while faculae and plages, which instead have a
higher temperature, increase the flux in that region. The
presence of activity features therefore changes the integrated
flux distribution of the star. As a star rotates, the side of the star
rotating toward the observatory appears blueshifted, while the
side rotating away appears redshifted. If the same amount of
flux is coming from both sides (i.e., the star is featureless),
these effects cancel each other out. Changes in flux due to
activity features can break that balance and introduce up to
10–100 m s−1 variations depending on the specific properties
of the star, such as its v isin , and the properties of the activity
features, such as their size, number, and contrast (Saar &
Donahue 1997; Meunier et al. 2010). The different tempera-
tures of activity features locally modify absorption and
emission processes and produce asymmetry in the integrated
spectral line profiles that vary with stellar rotation.

Traditionally, stellar signals have been decorrelated from
RV measurements with the use of “activity indicators.” These
indicators aim to gauge the level of magnetic activity on the
target star and/or specifically the presence of activity features
for each exposure so that their effects can be removed from
RV time series (e.g., Boisse et al. 2009; Dumusque et al.
2011c; Figueira 2013; Holzer et al. 2021). Magnetic activity
on the star has been shown to correlate with localized spectral
features including emission in the core of Ca II H&K lines
(396.96 nm and 393.47 nm respectively; Saar et al. 1998;
Meunier & Lagrange 2013), the Ca infrared triplet (849.8,
854.2, and 866,2 nm; Saar & Fischer 2000), and the Hα line
(656.28 nm; Skelly et al. 2008; Robertson et al. 2014;
Giguere et al. 2016).

Other popular indicators include properties of the cross-
correlation function (CCF) commonly used to derive RVs.
These include various CCF bisector asymmetry measurements
(e.g., Queloz et al. 2001; Povich et al. 2001) or the FWHM of
the CCF (e.g., Queloz et al. 2009). The CCF can be thought of
as an average of all line shapes in the spectrum and is therefore
only sensitive to line-shape changes that appear in most lines.
This averaging means RVs derived from the CCF can only be
swayed by line asymmetries that persist in the derived CCF.
Methods that disentangle stellar signals by modeling asymme-
tries in the CCF will likewise only know about the most
common line-shape changes as smaller or more unique changes
are likely to be averaged out.

Linearly decorrelating RVs against classic activity indicators
has not been successful at disentangling stellar signals to sub-
meter-per-second precision (Fischer et al. 2016). Recently,
more advanced methods have been proposed for deriving
activity indicators (e.g., Haywood et al. 2020) and for
disentangling stellar signals from true center-of-mass RV
shifts. Gaussian process (GP) models have been used to more
flexibly model stellar signals (Haywood et al. 2014; Rajpaul
et al. 2015; Faria et al. 2016; Rajpaul et al. 2017; Angus et al.

2018; Gilbertson et al. 2020a; Jones et al. 2017; Gilbertson
et al 2020a). Methods using different activity indicators and a
Bayesian framework were found to more efficiently recover
planets in the face of red noise from stellar signals (Dumusque
et al. 2017).
There has also been a move toward capturing the effects of

stellar activity at the level of the one-dimensional spectrum,
i.e., before calculating the CCF and extracting RVs (e.g., Davis
et al. 2017; Thompson et al. 2017; Meunier et al. 2017a;
Dumusque 2018; Wise et al. 2018; Holzer et al. 2021; Jones
et al. 2017). The use of pixel-level statistical techniques has
revealed that different lines show different behaviors and levels
of sensitivity to stellar activity.
With many promising methods being developed to address

the issue of stellar signals, we present here a head-to-head
comparison of many of these methods on real data. For four
stars—HD 101501, HD 26865, HD 10700, and HD 34411—the
Extreme-precision Spectrograph (EXPRES) Stellar Signals
Project (ESSP) released high-fidelity data taken with EXPRES,
which is representative of next-generation spectrographs, as
well as differential photometry from the Fairborn Automatic
Photoelectric Telescopes (APTs; Zhao et al. 2020). Eleven
teams tested 22 different methods46 on the data provided. All
methods use the data products provided (i.e., spectra, CCFs,
RVs, and/or derived activity indicators), which allows us to
compare the performance of methods on exactly the same data.
Because the comparison is done using real data, we do not
know exactly the nature of the stellar signals nor what planetary
signals may exist within each data set. Comparison of method
results are therefore done relative to other methods.
The data and targets are described in Section 2. Section 3

gives an overview of all methods tested and highlights
commonalities between methods (with longer method descrip-
tions included in the Appendix). The resulting RVs from the
different methods are compared in Section 4. Section 5 gives a
summary of all methods and the pertinent results. Section 6
discusses the different assumptions made by methods that
define the current state of the field. From there, we make
suggestions for future method development and data chal-
lenges. We conclude in Section 7.

2. Data

The data sets for the ESSP include spectroscopic data from
EXPRES and ground-based photometric measurements from
the APTs for four targets—HD 101501 (61 UMa), HD 26965
(40 Eri), HD 10700 (τCeti), and HD 34411 (λ Aur). Here, we
describe the EXPRES and APTs instruments, as well as the
four targets. We provide benchmarks for the amount of RV
scatter that is expected for the EXPRES instrument and
pipeline in the case where there are minimal contributions from
stellar signals. Stellar parameters for each target are tabulated in
Table 1.

2.1. Spectroscopic Data From EXPRES

EXPRES is an optical (390–780 nm), fiber-fed
spectrograph with a median resolution of R∼ 137,000
(Jurgenson et al. 2016). The instrument was fully commis-
sioned at the 4.3 m Lowell Discovery Telescope (LDT; Levine
et al. 2012) near Flagstaff, AZ in 2019 January and is being

46 This includes 15 unique methods and their variations.
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used for an RV planet survey on about 125 (partial) nights per
year. The spectrograph is housed in a vacuum enclosure to
achieve temperature and pressure stabilization. A Menlo
Systems laser frequency comb (LFC; Wilken et al. 2012;
Molaro et al. 2013; Probst et al. 2014, 2020; Milaković et al.
2020) ranging from ∼490–730 nm is used for precise
wavelength calibration.

The instrument calibration stability for EXPRES ranges
between 3–7 cm s−1, as measured by consecutive LFC spectra
taken over 30 minutes to an hour (Blackman et al. 2020).
Figure 1 shows the RV scatter over an hour of consecutive LFC
exposures. The rms is 3.21 cm s−1 after a linear trend is
removed. The linear trend is thought to be due to changing
instrument temperature and is accounted for in precision RV
work via the wavelength calibration. The instrument calibration
stability can be thought of as the minimum rms achievable by
the EXPRES hardware as it measures the degree of scatter that
cannot be calibrated out.

An exposure meter picks off 2% of the light from behind the
fiber entrance to the spectrograph to monitor the photon flux for

chromatic barycentric corrections. This exposure meter system
also terminates exposures when the target signal-to-noise ratio
(S/N) of 250 per pixel at a wavelength of about 550 nm is
reached.
Two or three consecutive exposures, separated only by read-

out time, are obtained for each target star per night to improve
the nightly binned precision (Brewer et al. 2020). The on-sky,
analytical single-measurement precision for exposures with a
S/N of 250 (per pixel at λ= 550 nm) is about 0.3 m s−1

(Petersburg et al. 2020). This matches the typical intranight rms
scatter for consecutive observations.
One-dimensional spectra are extracted using a flat-relative,

optimal extraction pipeline (Zechmeister et al. 2014; Petersburg
et al. 2020). Extracted spectra were made available to the ESSP
participants along with chromatic barycentric-corrected wave-
lengths (Blackman et al. 2017). Two sets of wavelengths are
provided: one set with a classic polynomial wavelength
solution, and one set generated using excalibur, a hierarchical,
nonparametric wavelength solution (Zhao et al. 2021). The
provided spectra also include a model of telluric lines generated

Table 1
Stellar Parameters

HD 101501 HD 26965 HD 10700 HD 34411

Spectral Type G8V K1V G8V G0V
V 5.34 (d) 4.43 (d) 3.50 (d) 4.71 (d)
B-V 0.74 (d) 0.82 (d) 0.72 (d) 0.62 (d)

¢Rlog HK −4.483 ± −0.002 (f) −4.928 ± −0.002 (f) −4.976 ± −0.002 (f) −5.085 ± −0.002 (f)
Dist. [pc] 9.541 ± 0.012 (e) 4.98 ± 0.006 (e) 3.65 ± 0.002 (i) 12.484 ± 0.034 (e)
RV [km s−1] −5.6 ± 0.08 (e) −42.269 ± 0.0002 (e) −16.597 ± 0.0002 (e) 66.57 ± 0.08 (g)
Lstar [Le] 0.609 ± 0.009 (b) 0.457 ± 0.002 (e) 0.52 ± 0.03 (h) 1.732 ± 0.022 (b)
Rstar [Re] 0.86 ± 0.02 (c) 0.83 ± 0.02 (c) 0.82 ± 0.02 (c) 1.28 ± 0.04 (c)
Mstar [Me] 0.9 ± 0.12 (c) 0.8 ± 0.11 (c) 0.99 ± 0.13 (c) 1.08 ± 0.14 (c)
Teff [K] 5502 ± 25 (c) 5092 ± 25 (c) 5333 ± 25 (c) 5873 ± 25 (c)
log g 4.52 ± 0.028 (c) 4.51 ± 0.028 (c) 4.6 ± 0.028 (c) 4.26 ± 0.028 (c)
[Fe/H] −0.04 ± 0.01 (c) −0.3 ± 0.01 (c) −0.53 ± 0.01 (c) 0.1 ± 0.01 (c)
Age [Gyr] -

+3.5 2.2
2.8 (c) -

+12.8 2.9
1.6 (c) -

+12.4 3.1
1.8 (c) -

+4.8 0.8
1.0 (c)

v isin [km s−1] 2.2 ± 0.7 (c) 0.5 ± 0.7 (c) 1.6 ± 0.7 (c) 0.1 ± 0.7 (c)
Prot [days] 17.1 (a) 40 (a) 34 (a)

Note.(a) Baliunas et al. (1996); (b) Boyajian et al. (2012); (c) Brewer et al. (2016); (d) Ducati (2002); (e) Gaia Collaboration (2018); (f) Isaacson & Fischer (2010); (g)
Nidever et al. (2002); (h) Pijpers (2003); (i) van Leeuwen (2007)

Figure 1. Perceived shift in LFC spectra in units of m s−1 across an hour of consecutive LFC exposures with a linear trend removed. These perceived shifts are
attributed to variations in the instrument and therefore give a measure of how stable the instrument itself is. The rms of shifts across this hour is given in the top-left
corner.
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using the Self-calibrating, Empirical, Light-weight Linear
Regression Telluric (SELENITE; Leet et al. 2019) continuum
model and the associated combined flat image that can be used
to recover photon counts.47

In addition to the extracted spectra, forward-modeled RVs,
cross-correlation functions (CCF), and classic activity indica-
tors were provided for each observation. These are described in
more detail in the following subsections. All teams used the
provided spectra, CCFs, RVs, and activity indicators as inputs
to their methods, thereby ensuring a consistent comparison
between the different method results. Table 2 gives the number
of RV measurements, the number of nights on which spectra
were acquired, and the time baseline for each data set.

2.1.1. Default RVs

The standard EXPRES pipeline derives RV measurements
using a forward-modeling, chunk-by-chunk (CBC) technique
(Petersburg et al. 2020). We found the chunk-by-chunk RVs to
have consistently lower RV scatter than the CCF RVs, and so
methods were asked to use the CBC RVs as the default RVs. A
template spectrum is constructed using three consecutive
observations of a given target star taken on one night. Each
observed spectra is then broken into two-angstrom chunks that
are shifted and scaled to match this template spectrum. The
more chunks there are, the more independent measurements
can be derived for the RV; two-angstrom chunks optimize
having many chunks while still ensuring each chunk has at
least one spectral line.

CBC RVs are derived for each exposure by finding the
weighted average of all chunks in a spectra. The weights for
this average are empirically generated based on the stability of
each chunk across all observations. Chunks that are more stable
over time are weighted higher while chunks that return higher
RV scatter are down weighted. This reduces the contribution
from chunks swayed by, for example, telluric lines and stellar
variability, and chunks with no spectral lines or containing little
RV shift information. CBC RVs for all four targets are given in
Table 3.

CBC RVs derived from on-sky EXPRES data of chromo-
spherically quiet stars return sub-meter-per-second rms and
intranight scatter (INS) that matches the analytical 0.3 m s−1

errors. Figure 2 depicts RVs from six photospherically quiet
stars, which are not part of this study, observed with EXPRES.
The nightly binned RV rms of these pipeline CBC RV
measurements range from 0.5 to 0.8 m s−1. The average INS
over nights (using only nights with more than one observation)
ranges from 0.1 to 0.4 m s−1. These stars demonstrate the RV
precision achievable by EXPRES data in the absence of strong
photospheric velocities adding scatter. Complete mitigation of
RV contribution from stellar signals should result in a similar
final rms value.

2.1.2. Default CCFs

The ESSP provided CCFs as well as the resultant CCF RVs
for each spectra. These CCFs were generated using the code
described in Ford et al. (2021). They make use of CCF masks
based on the publicly available Echelle Spectrograph for Rocky
Exoplanet and Stable Spectroscopic Observations (ESPRESSO)
masks of the closest matching spectral type with a rectangular
window function. RVs are derived from the CCFs by fitting each
CCF to an inverted Gaussian and taking the mean of this
Gaussian to be the CCF RV. Due to differences in the weighting
schemes between the CBC pipeline and construction of a CCF, it
is expected that the two methods carry different sensitivities to
changes in the spectra.
Since the EXPRES pipeline returns flat-relative extractions,

it was important to account for the varying S/N of each line.
Lines for the CCF were weighted using the product of the
ESPRESSO-mask-provided weight and a constructed weight
factor based on the median S/N ratio (assuming only photon
noise). For lines that show up in multiple orders, the S/N
weight factor was computed separately for the line in each
order.
Lines that overlap with a telluric feature (as identified by

SELENITE) during any observation were rejected for all
observations. Lines that were shifted beyond the edge of a
given order during any observation were excluded from use
within that order for all observations. Only pixels with a
wavelength calibration from the LFC (∼490-730 nm) were
used to construct the CCFs.

2.1.3. Default Activity Indicators

Each observation was accompanied by several common
activity indicators and their empirically determined errors.
The spectroscopic activity indicators provided were the S-
value—a measure of the emission in the core of the Ca II
H&K lines (Meunier & Lagrange 2013; Saar et al. 1998)—
and measures of changes in the Hα line core emission (Skelly
et al. 2008; Robertson et al. 2014; Giguere et al. 2016). Both

Table 2
Spectroscopic Observations

Target No. Obs. Nights Date Range

HD 101501 45 22 , 2019 Feb 10–2020 Nov 26
HD 26965 114 37 2019 Aug 20–2020 Nov 27
HD 10700 174 34 2019 Aug 15–2020 Nov 27
HD 34411 188 58 2019 Oct 8–2020 Nov 27

Table 3
Chunk-by-Chunk RVs

Target Time (MJD) RV (m s−1) Err. (m s−1)

HD 101501 58524.466 −0.338 0.322
HD 101501 58524.491 2.38 0.325
HD 101501 58524.497 2.66 0.308

M M M
HD 26965 58715.487 −0.101 0.435
HD 26965 58719.469 −1.85 0.368
HD 26965 58719.472 −1.44 0.408

M M M
HD 10700 58710.457 0.075 0.388
HD 10700 58710.458 −2.25 0.377
HD 10700 58710.46 −3.03 0.387

M M M
HD 34411 58764.475 3.47 0.324
HD 34411 58764.477 1.98 0.34
HD 34411 58764.479 4.8 0.314

M M M

Note. A stub of this table is provided here for reference; the full RV data sets
are published online.

(This table is available in its entirety in machine-readable form.)

47 This is needed since the spectra are extracted relative to this flat image.
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the Hα emission—a measure of the depth of the normalized
Hα line—and the equivalent width of the Hα line were
provided.

The provided activity indicators also include a number of
indicators derived from the CCF. The difference in the center of
the CCF (whether measured as the bisector of the CCF or the
mean of a Gaussian fit) at the top of the CCF as compared to
the bottom of the CCF is given as the skew in the CCF bisector
(i.e., the CCF bisector inverse span or CCF BIS; Queloz et al.
2001) or the velocity span indicator (i.e., Vspan; Boisse et al.
2011) respectively. The top/bottom of the CCF is determined
as either a percentage of the total depth of the CCF or defined
as a certain sigma away, where sigma is the spread of a
Gaussian fit to the CCF (for the CCF BIS and Vspan,
respectively). Varying spectral line profiles will widen the
CCF and result in changes to the CCF FWHM, which is often
used as an activity indicator (e.g., Queloz et al. 2009). We also
provide the results of fitting the CCF to various, asymmetric
profiles, such as a bi-Gaussian (Figueira 2013) or a skew
normal probability density function (Simola et al. 2019), where
the asymmetry parameter of these profiles can serve as an
activity indicator.

Analytical errors are provided where possible; otherwise,
empirical errors were determined by finding the spread in
calculated indicators for nine chromospherically quiet stars.48

Using a total of approximately 400 observations of these seven
stars, a histogram of indicator values was plotted to reveal a
Gaussian shape. The standard deviation of a Gaussian fit to this
histogram is taken to be the empirical error for the given
activity indicator.49

2.2. Photometry from the APTs

Ground-based photometry for all four ESSP target stars was
obtained with either the T4 0.75 m or T12 0.8 m APT at
Fairborn Observatory in southern Arizona. T4 observed
HD 101501, HD 26965, and HD 10700, while T12 observed
HD 34411. Table 4 describes the number of photometric
observations for each target.
The T4 APT is equipped with a single channel photometer

that uses an EMI 9124QB bi-alkali photomultiplier tube to
measure the difference in brightness between the program star
and three nearby comparison stars in the Strömgren b and y
passbands. The T12 APT has a two-channel photometer that
uses a dichroic filter to separate the Strömgren b and y
passbands allowing separate EMI 9124QB photomultiplier
tubes to measure the two colors simultaneously. To improve
the photometric precision, we combine the differential b and y
magnitudes into a single (b+ y)/2 “passband”. The right-hand
column of Figure 3 shows the light curves of each star,
spanning between 13 and 28 observing seasons.
The precision of a single observation taken with the APTs, as

measured from pairs of constant comparison stars, is around
0.0010–0.0015 mag on good nights. The T4 and T8 (a twin of
T12) APTs are described in Henry (1999), where further details
of the telescope, precision photometers, observing, and data
reduction procedures can be found.

Figure 2. EXPRES RVs for six quiet stars. Shown RVs are derived using a CBC forward-modeling scheme and binned by night. The rms of these nightly binned RVs
are given in the top-right corner along with the average INS.

Table 4
Photometric Observations

Target No. Obs. Nights Date Range

HD 101501 3290 2113 1993 Apr 18–2020 Jun 22
HD 26965 1631 1500 1993 Sep 9–2020 Feb 20
HD 10700 1369 1007 1996 Nov 5–2020 Jan 24
HD 34411 1214 816 2005 Nov 25–2018 Apr 3

48 HD 32923, HD 34411, HD 84737, HD 86728, HD 158633, HD 166620,
HD 182488, HD 186427, HD 217014.
49 More specifics about how indicators were derived and each indicator’s
associated empirical errors can be found at http://exoplanets.astro.yale.edu/
science/activity.php.
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In each photometric data set, we identify a long-term trend
that is modeled by applying Gaussian smoothing to the light
curve with a 100 days window. A window of 100 days was
chosen to find trends on the order of observing seasons while
preserving signals that occur on the timescale of individual
stellar rotations. Using a long, 100 day window returns a coarse
trend that is insensitive to short-term variations as they will be
averaged over within the window. Given that the rotation rates
of the target stars, which range from 17–34 days where known,
are all well under 100 days, the coarse trend preserves signals
on the timescale of the stellar rotation period. Figure 3 plots the
photometry as black points without any detrending. The 100
day window, coarse trend is overplotted as a red curve. The
structure that can be seen in the red trend curve is best
understood as variations from different observing seasons,
potentially due to overall brightness changes of the star (e.g.,
activity cycles). Table 5 summarizes the photometric measure-
ments and this smooth trend for all four targets.

The photometric data were interpolated to the time stamps of
the given spectroscopic data and associated RVs using a GP

model with a quasiperiodic kernel (Rasmussen & Williams
2006) and implemented with the george package (Ambikasaran
et al. 2015). This kernel depends on four hyperparameters,
f= {a2, λe, λp, PGP}, corresponding to the covariance
amplitude, a decay timescale (which is related to the typical
spot evolution timescale), a smoothing parameter for the
periodic term, and a periodic timescale (which is related to
the stellar rotation period), respectively. This kernel is used
frequently for photometric modeling and stellar activity
characterization in the literature (e.g., Haywood et al. 2014;
Angus et al. 2018).
A GP was trained on the most recent six years of APT data

for each star after first determining the best-fit hyperparameters
via nested sampling. While the GP regression returned
reasonable interpolated median values and 1σ uncertainties, it
failed to estimate well-principled extrapolated photometric
values for RV time stamps falling after the last photometric
measurement. This behavior is expected past a few times the
typical spot lifetimes on stars, where the lifetime of a spot is

Figure 3. (Left column) EXPRES radial velocities obtained in 2019 and 2020. (right column) Several years of APT ground-based differential photometry obtained for
the four ESSP stars. Both RVs and photometry time series are plotted with the median value subtracted. The photometric smoothing model constructed using a 100
day window for each time series is overplotted as a red curve over the photometry (where the photometry is shown before any detrending). The time stamps of the
EXPRES RVs are marked in the right column by gray, vertical lines. The RVs were not taken simultaneously with the photometry with most of the RVs taken after the
last photometric observation for all targets but HD 101501. The GP interpolation/extrapolation of the photometric data to the RV time stamps are overplotted as green
points.
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typically of the order of tens of days but may be longer for
young stars (Bradshaw & Hartigan 2014; Giles et al. 2017).

2.3. Targets

The four ESSP stars, as described in Table 1, are being
observed as part of the EXPRES 100 Earths survey (Brewer
et al. 2020). The targets range in activity level, as predicted by

¢Rlog HK values. Figure 3 shows the measured CBC RVs and
photometry.

HD 101501 is a G8V star and is the most chromospherically
active ( ¢Rlog HK =−4.483; Isaacson & Fischer 2010) of the
four ESSP targets. The EXPRES RVs exhibit an rms scatter of
4.89 m s−1. A GP model of these data preconditioned on
photometry found a statistical preference for an activity-only
model (Cabot et al. 2021). The provided HD 101501 data set
has the fewest number of observations of the four, though a
longer time baseline.

HD 26965 is a K1V star with ¢Rlog HK =−4.928 (Isaacson
& Fischer 2010) and exhibits an RV rms scatter of 3.19 m s−1.
Previous RV analysis of HD 26965 using High Resolution
Echelle Spectrometer (HIRES; Vogt et al. 1994), Planet Finder
Spectrograph (PFS; Crane et al. 2006), CHIRON (Tokovinin
et al. 2013), and High-accuracy Radial Velocity Planet
Searcher (HARPS; Mayor et al. 2003) RV data from 2001 to
2016 revealed a periodic signal of about 42.364 days (Díaz
et al. 2018). Additional data from the Dharma Planet Survey,
which added RVs collected from 2014 to 2015, concluded that
there exists a 42.38 day periodic signal from a K= 1.8 m s−1

planet, and that the stellar rotation rate of the star measured
from stellar activity indicators is between 39–44.5 days (Ma
et al. 2018). Analysis using the complete set of RV data from
the California Legacy Survey (CLS), taken from 1987 through
2020, attributes the periodicity to stellar signals (Rosenthal
et al. 2021).

HD 10700 (i.e., τCeti) is an older (12.4 Gyr; Brewer et al.
2016), G8V star that is chromospherically quiet ( ¢Rlog HK =
−4.976; Isaacson & Fischer 2010). The EXPRES RVs exhibit
an rms scatter of 1.8 m s−1 dominated by a five-minute periodic

variation that matches what we would expect from p-mode
oscillations. Seven planet candidates have been published,
though three of these signals (planet candidates b, e, and d)
were later retracted (Tuomi et al. 2013; Feng et al. 2017).
Typically, three to five consecutive EXPRES observations are
taken of τCeti per night. On 2019 August 25 and 2019 October
8, more than 20 back-to-back observations were taken within
each night (covering a span of approximately 40 minutes) to
achieve a sampling that could resolve p-mode oscillations.
HD 34411 is most similar to the Sun of all four targets; it is a

4.8 Gyr, G0V star (Brewer et al. 2016; Gaia Collabora-
tion 2018). The star has low chromospheric activity, with

¢Rlog HK =− 5.085 (Isaacson & Fischer 2010). The EXPRES
RVs show an rms scatter of 1.78 m s−1.

3. Methods

The ESSP received submissions from 22 different methods
all with the goal of isolating true center-of-mass shifts. Table 6
lists all methods along with variations on each method. The
“Input” column specifies the primary type of provided data that
were input into the method (i.e., the extracted spectra, the CCF,
or the CBC RVs along with activity indicators). The “Run
Time” column gives an estimate of the computational expense
of the method by specifying what the method was run on and
the order of magnitude of time it took to run. This, of course, is
merely an estimate as the run time of most methods scale with
the number of observations.50 Related publications for each
method are given where available; otherwise, the name of the
most pertinent author to contact for each method is listed.
A short description of each method is given below along

with any specifics to the implementation represented here and
relevant data requirements. Similar methods are compared and
contrasted. Longer descriptions of each individual method can
be found in the Appendix and provided references.
Methods are grouped into subsections according to the type

of input data used: RVs with global indicators (Section 3.1),
CCFs (Section 3.2), or extracted (pixel-level) spectra
(Section 3.3 and Section 3.4).

3.1. Methods that Use RVs and Classic Activity Indicators as
Input

Activity indicators aim to gauge the magnetic field strength
on the target star, presence of activity features, or otherwise the
expected amplitude of stellar signals. These indicators are
global parameters—one value is determined for each spectrum.
One can fit a model relating the activity indicators and apparent
RVs in an attempt to remove or mitigate the effect of stellar
signals on measured RVs. Classically, this was done using a
simple linear fit.
We present the results of a classic linear decorrelation with

the provided activity indicators to serve as a baseline result.
RVs are plotted against the different indicators independently
and fit to a line as a function of the indicator value. The fitted
line is evaluated at the value of the different indicators, which
is then subtracted from the RV measurements. There is
evidence of a phase shift existing between some indicator
variation and corresponding RV variation (e.g., Santos et al.
2014; Collier Cameron et al. 2019; A. Mortier 2022, in
preparation), which adds scatter to direct comparisons between

Table 5
Photometry and Long-term Trend

Target Time (MJD) (b + y)/2 (mag) Trend (mag)

HD 101501 49095.696 −0.00145 −0.653
HD 101501 49095.782 −0.0023 −0.653
HD 101501 49096.783 0.00425 −0.653

M M M
HD 26965 49239.941 −0.00231 −2.29
HD 26965 49245.933 0.00084 −2.29
HD 26965 49246.93 0.00139 −2.29

M M M
HD 10700 50392.762 −0.00435 −2.63
HD 10700 50396.743 0.00115 −2.63
HD 10700 50397.735 0.00325 −2.63

M M M
HD 34411 53699.829 0.00075 −1.11
HD 34411 53700.842 0.00265 −1.11
HD 34411 53702.821 −0.00085 −1.11

M M M

Note. A stub of this table is provided here for reference; the full photometric
data sets are published online.

(This table is available in its entirety in machine-readable form.)

50 Here, most data sets have a number of observations of the order of 150.

8

The Astronomical Journal, 163:171 (34pp), 2022 April Zhao et al.



indicator and RV and limits the efficacy of this linear
decorrelation method.

More recent work has developed novel ways of linking
indicators to RV measurements and modeling out the chromo-
spheric velocity component of RV measurements (Rajpaul
et al. 2015; Barragán et al. 2019; Gilbertson et al. 2020b;
Dodson-Robinson 2022; J. D. Camacho 2022). Indicator-
dependent methods will only be sensitive to signals that are
reflected in the provided indicators; for example, if the used
indicators do not track the effects of oscillation or granulation,
then these methods will not return models sensitive to these
effects. Teams who used RVs and indicators as input were
asked to use the provided forward-modeled CBC RVs and the
given indicators.

The Gaussian Process Linear Ordinary Differential Equation
(ODE) Maker (GLOM), developed by the PennState team, is a
Julia package that uses a shared, latent GP to model both RV
and indicator time series concurrently. This makes use of the
flexibility of a GP model while also constraining the model
with indicator time series to capture only stellar signal related
variations. GLOM can be thought of as a generalization of the
multidimensional GP method implemented in pyaneti (Rajpaul
et al. 2015; Barragán et al. 2019, 2022). This method requires
dense sampling throughout the characteristic timescale of the
signal being modeled (e.g., the stellar rotation period for spots).
It is utilized as a part of many of the other submitted methods to
the ESSP that generate an indicator for the presence of stellar
signals. More information can be found in Gilbertson et al.
(2020b) or Appendix A.1.

Fourier Domain Principal Component Analysis (FDPCA),
developed by the Sidera team, Fourier transforms RV and
indicator time series using nonuniform methods to identify
coherent oscillations between multiple series regardless of their

relative phases. The Fourier-transformed series are decomposed
using principal component analysis (PCA) to derive orthogonal
axes of variation in the activity indicators and their associated
weights. The results presented here were trained on the RV, Hα
emission, and CCF FWHM time series. The model incorpo-
rated increasing numbers of principal components until 95% of
the total variation was captured. This method requires
observations to cover the entire phase range of the signal
being modeled. Observations should be dense in phase space,
not just time. A more in-depth description can be found in
Appendix A.2.
The Gaussian Process Regression Network (GPRN) method,

developed by the Porto team, models RVs and indicators
through a neural net framework where each node is an
independent GP model, and the weights of each node are also
determined by a GP model. While each node and weight can be
represented by an independent GP, hyperparameters and priors
may be shared between models to reduce the number of free
parameters. For the results presented here, one node was
defined by a GP with a quasiperiodic kernel, while GPs with
squared-exponential kernels were used for the weights with no
shared hyperparameters. The models were trained on the RV
and CCF FWHM time series. The GPRN method is still being
developed; preliminary results are included here. A more in-
depth description can be found in Appendix A.3.

3.2. Methods that Use the Cross-correlation Function as Input

The CCF has long been used in endeavors to mitigate the
effects of stellar signals. CCFs are computed by cross
correlating a given spectra with a mask tuned to where spectral
line centers are expected to appear. The mask can either be
binary (i.e., 1 where there is a line, 0 where not) or incorporate
different line widths and window functions.

Table 6
Teams and Methods

Team Method Input Run Time Reference/Contact

PennState GLOM RVs/Indicators laptop, minutes Gilbertson et al. (2020b)
Sidera FDPCA RVs/Indicators laptop, seconds Ramirez Delgado et al. 2022, in preparation

Dodson-Robinson et al., submitted
Porto GPRN RVs/Indicators cluster, hour Camacho et al. 2022, in preparation
St. Andrews/PennState SCALPELS CCFs laptop, seconds Collier Cameron et al. (2021)
PennState SCALPELS+GLOM CCFs laptop, minutes Gilbertson et al. (2020b)
OxBridGen CCF Prime CCF desktop, minutes Baptiste Klein
PennState FIESTA+GLOM CCFs laptop, minutes Zhao & Ford (2022)
ML_EPRVs CCF Linear Regression (LR) CCFs laptop, seconds de Beurs et al. (2020)
ML_EPRVs CCF LR + Hα CCFs/Indicators laptop, seconds de Beurs et al. (2020)
ML_EPRVs CCF LR + Keplerian CCFs laptop, seconds de Beurs et al. (2020)
PennState CCF Mask-VALD Spectra laptop, minutes Alex Wise
Warwick CCF Mask-BIS Spectra laptop, minutes Lafarga et al. (2020)
Warwick CCF Mask-RV Spectra laptop, minutes Lafarga et al. (2020)
Geneva LBL+PCASpec. Spectra laptop, hours Dumusque (2018)

Cretignier et al., submitted
Geneva LBL+PCARV Spectra laptop, hours Cretignier et al. (2021)

Cretignier et al., submitted
Geneva LBL+PCASpec./RV Spectra laptop, hours Cretignier et al. (2021)

Cretignier et al., submitted
OxBridGen PWGP Spectra desktop, day Rajpaul et al. (2020)
PennState DCPCA Spectra laptop, seconds Jones et al. (2017)
PennState DCPCA+GLOM Spectra laptop, minutes Gilbertson et al. (2020b)
CCA Generative RR Self Spectra laptop, hour Lily Zhao
CCA Generative RR Spectra laptop, hour Lily Zhao
CCA Discriminative RR Spectra laptop, minutes Lily Zhao
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As this mask is shifted relative to a stellar spectrum, the
convolution of the two will give larger or smaller values
depending on how well the mask lines up with the spectral
absorption lines. A perfect alignment of the mask with the
bottom of every spectral line will result in the lowest cross-
correlation value. The shift that results in the lowest CCF point
can then be taken as the RV shift of the spectrum.

In shifting, the CCF will sample the shape of all the spectral
lines in the mask, including the wings of these lines. Lines can
be weighted differently according to their depth or their S/N.
The CCF therefore provides a sort of weighted average of all
the line shapes in the spectrum. This makes the CCF a powerful
tool when there exists line-shape distortions. On the one hand,
averaging over all lines in a mask can blur out different line-
shape changes seen in individual lines; on the other, this
averaging will also strengthen the signal of any line-shape
changes that are common to many lines and cause the resultant
CCF to be asymmetric.

Four methods used the CCF as input. All four of these
methods focus on modeling asymmetries within the CCF,
which are attributed to the spectral level line-shape changes
known to be caused by stellar signals. The methods differ in
their approach to modeling the CCF shape changes and how
these changes are separated from translational shifts.

The Self-correlation Analysis of Line Profiles for Extraction
of Low-amplitude Shifts (SCALPELS)method, submitted by the
St. Andrews and PennState teams, uses PCA to model the
variations in a CCF’s autocorrelation function. Because the
autocorrelation function is intrinsically insensitive to transla-
tional differences, SCALPELS is not sensitive to true shifts in
the CCFs. The measured RV time series can then be projected
onto the identified principal components to derive and subtract
out the shape-driven component of the measured RV while
preserving the shift-driven component. The results presented
here use only the first two principal components to guard against
incorporating noise into the model. SCALPELS operates in the
velocity domain and as such does not require any additional
information about the star or dense time sampling. Using PCA
means the model benefits from wider ranges of stellar activity
states producing a large range of variation within the CCFs.

SCALPELS uses PCA in a similar way to FDPCA, where
the principal components are used as a new basis with which to
construct a denoised measurement of RV shifts due to stellar
signals. SCALPELS uses PCA on the autocorrelation function
of the CCFs while the FDPCA method implements PCA on the
Fourier series of the RV and indicator time series. Note that,
while there is a description of a leave-one-out-framework with
SCALPELS in Collier Cameron et al. (2021), no cross-
validation framework is implemented for the results sub-
mitted here.

The SCALPELS+GLOM method is another use of PCA.
The amplitudes of the first two principal components for each
observation, which describe the magnitude of the two largest
axes of variation in the CCF autocorrelation function, are
treated like activity indicators and input into GLOM to be co-
modeled with the RV measurements. For the results presented
here, the latent GP model used the sum of two Matérn 5

2
kernels. This introduction of a GP model introduces relevant
data requirements to the method, such as dense sampling in
time. More information about both implementations of
SCALPELS can be found in Collier Cameron et al. (2021) as
well as Appendix B.1.

The CCF Prime method, submitted by the OxBridGen team,
uses higher-order derivatives of a GP modeled reference CCF
(here a mean combined CCF) to fit shape changes. While the
first GP derivative is sensitive to translational differences, the
second derivative and above are instead sensitive to shape
changes. These higher-derivatives are used to recreate the
shape-driven component of the measured RVs, which can then
be subtracted out. The CCF Prime method is still being
developed; preliminary results are included here. A more in-
depth description of the CCF Prime method can be found in
Appendix B.2.
The Fourier Phase Spectrum Analysis (FIESTA) method,

submitted by the PennState team, isolates line-shape changes
using a Fourier basis with respect to velocity. Horizontal,
translational differences manifest as a constant shift at all
frequencies in this basis. Shape-driven shifts can therefore be
isolated as frequency-dependent shifts. The results presented
here run a PCA on the derived shifts for each frequency and
uses the amplitudes from this PCA as input into GLOM. This is
similar to how PCA is used within the SCALPELS+GLOM
framework (which is distinct from the use of PCA in the
SCALPELS or FDPCA methods). FIESTA requires careful
normalization of the CCFs for each observation, as vertical
translational differences could be mistaken for a shape change.
More information can be found in Zhao & Tinney (2020), Zhao
& Ford (2022), and Appendix B.3.
The SCALPELS, CCF Prime, and FIESTA methods all

implement a change of basis to separate out the shape- and
shift-driven components of the measured RVs. While these
methods are conceptually similar, they make different assump-
tions of the appropriate basis and dimensionality of the
variations being modeled. High S/N observations are more
necessary with CCF Prime (for more accurate GP derivatives)
and FIESTA (to allow for incorporating higher frequencies)
than with SCALPELS. SCALPELS, on the other hand, is more
dependent on the assumption that the dominant source of
variation that gets captured by the PCA are shape-driven
changes from stellar variation.
The CCF Linear Regression method, submitted by the

ML_EPRVs team, uses machine learning to model variations
in the residuals of each CCF as compared to a reference CCF
(here a median combined CCF). Differential CCFs are normal-
ized (in terms of amplitude and overall variance) and then
sampled at a small number of locations across the velocity range
of the CCFs. A larger number of observations per target allows
for more sampling locations. For the results presented here, the
CCFs were sampled at four to six locations. For each target star,
a linear regression model was used to fit an associated weight
parameter for each of the sampled CCF locations. In this way,
the changes in CCF shape are captured to predict the chromo-
spheric contribution to the RV signal. This method does not use
timing information and so does not care about the sampling of
observations but does benefit from more observations.
For all four targets, a slightly more complicated CCF Linear

Regression model was also implemented, that included the Hα
emission value for each observation with its own fitted weight
parameter to help predict variations due to stellar signals. For
HD 26965, which hosts a proposed planet, a third model that
incorporates a weighted Keplerian was also implemented.51

These methods are still being actively developed; the results

51 The same was not done for the τCeti data set.
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included here are preliminary. More information can be found
in Appendix B.4. The work that inspired this method and was
implemented on the solar data is described in de Beurs et al.
(2020).
All four methods focus on the shape changes caused by

stellar signals. Shape changes captured by the CCF are either
separated out from translational shifts (i.e., SCALPELS) or the
amplitude of the shape change is measured. This measured
amplitude is either unitless and used as an activity indicator (
i.e., SCALPELS+GLOM, FIESTA) or used to derive the
resultant RV shift due to shape changes (i.e., CCF Prime, CCF
Linear Regression). The separated out translation-driven shifts
or the residual RVs from subtracting out shape-driven RV
measurements are returned as RVs cleaned of stellar signals.
This separation will not be sensitive to the effects of stellar
signals that may manifest as translational shifts within the CCF
rather than as a shape change. Should there exist a
manifestation of stellar signals that produces only a strict
translation shift to the CCF, this effect will be wholly
degenerate with measurements of true center-of-mass move-
ment at the level of the CCF.

All methods attempting to model line-shape changes, such as
the four described here, will be helped by data with high
resolution. Higher-resolution spectra contain more information
about the shape of each spectral line and will therefore more
faithfully capture the shape deformations being modeled. This
is true whether the shape changes are being modeled as
averaged in the CCF or in the spectra itself.

3.3. Line-by-line Methods

The remaining methods take the full, extracted spectra as
input. Several methods, described in this section, use the
spectra to determine preferred lines or regions of spectra to use
when deriving RV measurements. Methods that model
variation throughout the complete spectra are described in the
following section (Section 3.4).

Three methods focused on carefully picking which lines to
include when constructing a CCF. It has recently become clear
that spectral lines will respond in different ways to stellar
variation, both in terms of behavior and magnitude of response
(Davis et al. 2017; Thompson et al. 2017; Meunier et al. 2017b;
Dumusque 2018; Wise et al. 2018; Cretignier et al. 2020a;
Jones et al. 2017). Isolating lines that are less swayed by stellar
signals or other occluding effects will help in calculating CCFs
and RVs that are resilient to these variations and ultimately
more representative of true, center-of-mass shifts in the spectra.

The CCF Mask-VALD method, submitted by the PennState
team, used line center information from the Vienna Atomic
Line Database (VALD) to vet lines included in the CCF mask
and remove line blends that may otherwise introduce
asymmetries to the derived CCF unrelated to stellar signals.
Additionally, for most lines the dominant effect of stellar
variability is to alter the depth of the line. In the case of blended
lines, a depth change in either line will affect the velocity
measured from that line (Dumusque 2018) or from a CCF
computed using either of the lines. Designing a CCF mask that
uses only well-isolated lines therefore provides a path to
measuring RVs that are less sensitive to stellar signals. The
method also optimizes across a range of CCF mask window
widths, which tunes how much of a line’s profile is averaged
into each CCF point–i.e., a narrower CCF mask window width
samples each spectral line’s shape at higher resolution but will

be noisier. A truncated Gaussian window function was used for
all lines. The optimal cutoffs for distance between line centers
and width of mask window were found empirically by
minimizing the rms of the resultant CCF RVs. More details
can be found in Appendix C.1.
The CCF Mask-BIS and CCF Mask-RV methods, both

submitted by the Warwick team, use correlations with the BIS
activity indicator or the provided CCF RVs to vet lines. RVs
for individual lines were found by measuring the shift in each
line center for each line across all exposures. Each line is fit to a
Gaussian, and the mean of this fit is taken to be the line center.
Lines were excluded if their RVs were found to scatter greater
than 10–15 m s−1 or their RVs were found to be strongly
correlated with the BIS or CCF RV (i.e., the Pearson
correlation coefficient is greater than some cutoff, where the
cutoff depends on the specific indicator used and target). The
RVs of the remaining lines are averaged to compute a
combined RV for each observation. More details can be found
in Lafarga et al. (2020) and Appendix C.2.
Note that CCF Mask-RV is not the only method to use the

RV as an activity indicator (see, for example, the discussion of
the Generative RR and Discriminative RR methods below).
This use case assumes that all variation in the measured RVs is
dominated by stellar signals. We know that instrument
systematics are not the dominant source of error in these data
sets, as seen from EXPRES data of quiet stars (see Figure 2).
While there are no obvious planetary signals, this does not
preclude planet signals on the order of or smaller than the
stellar signal amplitude adding variation to the RVs.
All three of the above methods fit lines to a Gaussian profile

to determine line parameters—such as line center, width—or
change in line parameters. The provided SELENITE telluric
model was also used in all three cases to remove lines within
∼30 km s−1 of a telluric feature.
The Geneva team also implemented a line-by-line (LBL) RV

analysis. The LBL RVs were derived relative to a master
spectrum using post-processed spectra (Dumusque et al.
2011b). The provided EXPRES spectra were (1) merged (i.e.,
all echelle orders were combined), (2) continuum normalized
using rolling alpha shape for a spectrally improved normal-
ization estimation (RASSINE; Cretignier et al. 2020b), and
then (3) further cleaned of tellurics and first-order morpholo-
gical variations using YARARA (Cretignier et al. 2021). Lines
returning a poor fit to the master spectrum or exhibiting larger
scatter than expected from the median RV error were not
included in the final combined RV calculation.
PCA was used to denoise the results at either the spectral

level, denoted here as LBL+PCASpec., or produce a metric of
variation at the LBL RV level, LBL+PCARV. At the spectral
level, the first three components of a weighted PCA are used to
recreate a denoised representation of the spectra. These
denoised spectra are then used to construct a master spectrum
and derive LBL RVs.
PCA was also run on the LBL RVs themselves to identify

variations across all lines and across all observations. Rather
than denoising, here PCA is instead used to determine the
magnitude of variation that is then treated like an activity
indicator against which the combined LBL RVs are decorre-
lated with a multilinear regression. LBL RVs that are derived
and decorrelated using RV-level PCA are described as the
LBL+PCARV method.
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Both methods can also be combined, which is here
represented by the LBL+PCASpec./RV method. Though both
LBL+PCASpec. and LBL+PCARV use PCA, it is important to
note that PCA is used on different data products for the two
methods and to different ends. The difference is similar to the
difference between how PCA is utilized in the SCALPELS
method versus the SCALPELS+GLOM method. More details
about deriving LBL RVs and the RASSINE and YARARA
methods can be found in Dumusque (2018), Cretignier et al.
(2020b, 2021). More information about the LBL+PCASpec.,
LBL+PCARV, and LBL+PCASpec./RV implementations repre-
sented in this report can be found in Appendix C.3.

The Pairwise GP (PWGP) RV extraction method, submitted
by the OxBridGen team, breaks the spectrum into chunks and
uses GPs to model and align pairs of chunks. Like was
described for the EXPRES pipeline (Section 2.1.1), the
behavior of each chunk across all observations is used to
determine which areas of the spectrum are more or less
sensitive to variation from telluric contamination or stellar
signals. In the limit where each chunk contains one line, which
the implementation presented here approaches, the PWGP
method can be thought of as an approximate LBL approach. A
Matérn 5

2
kernel is used in the GP that models and aligns each

chunk. Chunks exhibiting unusually high scatter or strong
correlation with activity indicators are excluded. The RV for
each observation is then calculated as a weighted average of the
remaining chunks, where the RV error for each chunk is
determined via Markov chain Monte Carlo (MCMC) analysis.
More information can be found in Rajpaul et al. (2020) and
Appendix C.4.

For all these methods, there exists a trade-off. Increasing the
selectivity of lines or chunks to include will better mitigate the
effects of stellar signals and other possible causes of line-shape
variation. Using less data, however, will increase the photon
noise. These methods would all benefit from high S/N
observations, which decrease the photon noise that must be
contended with. This allows for confident RV estimates from
relatively few, very stable lines.

3.4. Full-spectrum Methods

While the methods described in the previous section treated
each line/chunk as independent, the below methods model the
entire spectra as a whole. Of course, in some ways the methods
of the previous section do take into account information across
the whole spectra, for example when setting cutoffs using all
lines or running PCA on all lines. Unlike previously presented
methods, though, these “full-spectrum” methods generally
operate on all spectral pixels.

The Doppler-constrained PCA (DCPCA) method, submitted
by the PennState team, runs PCA on spectra shifted by the
maximum-likelihood RV and uses the resultant PCA ampli-
tudes, a measure of the amount of primary variation present in
each exposure, as activity indicators. Though the PCA is run on
the spectra, this use case of PCA is more similar to the
LBL+PCARV method (or SCALPELS+GLOM): the ampl-
itude of the variation, not the axes of variation (i.e., the
principal components), are the result of interest. To cut down
on the noise that gets input into the PCA, only the spectral
regions surrounding lines included in the default ESPRESSO
masks used are fed into the PCA. These indicators are then
either linearly decorrelated against RVs (DCPCA) or co-
modeled with RVs using GLOM (DCPCA+GLOM). More

information can be found in Jones et al. (2017) or
Appendix D.1.
Generative residual regression and discriminative residual

regression (Generative RR and Discriminative RR, respec-
tively), both submitted by the CCA team, use the pixel-level
residuals of observed spectra from a template spectrum to
regress against different housekeeping data—such as activity
indicators—and derive the contribution from the stellar to the
measured RV shifts. Under a generative framework, Generative
RR uses the Hα equivalent width and CBC RVs as labels to
derive the activity component of the measured RVs. Dis-
criminative RR moves in the other direction—the full residuals
of each observation are used to inform the appropriate
correction to the measured RVs. The discriminative framework
is slightly more agnostic to the labels used, meaning
Discriminative RR is less tied to the information available in
the used activity indicators than Generative RR is. Both
methods use a linear, first-order model and residuals to a
reference template constructed using wobble (Bedell et al.
2019).
Both Generative RR and Discriminative RR implement a

“cross-validation” (CV) framework. This guards against over-
fitting as the model is constructed without information from the
subset of data that the model is then evaluated at. For
Discriminative RR, each observation is left out one at a time to
construct an independent model. For Generative RR, one
eighth of the data is left out at a time to speed up the
computation time.
For reference, the “self” test variant for Generative RR

(Generative RR Self) is included, wherein all data are used to
construct the model. The only difference, then, between
Generative RR and Generative RR Self is removing the
cross-validation framework that is used to prevent overfitting.
Because seven eights of the data are still used to construct the
model for the cross-validation version of Generative RR and
the validation data are chosen at random across the time
baseline, we do not expect the Generative RR method to be less
informed than the Generative RR Self method that uses all data
points; the cross-validation step only ensures the resultant
model is general. The Generative RR Self method is presented
as a more direct comparison to the rms metrics reported by
other methods that did not employ cross validation when
deriving their reported results.
The Generative RR and Discriminative RR methods are still

being developed; preliminary results are included here. More
information about Generative RR and Discriminative RR can
be found in Appendixes D.2 and D.3, respectively.

4. Results

For each method, teams submitted “clean RVs” representing
the measured RV shift of the star cleaned of stellar signals and
other modeled variations leaving only true center-of-mass
shifts. Where directly modeled, the RVs due to the modeled out
variations, which we will refer to as “activity RVs,” were also
submitted along with any indicators that the method derived.
We acknowledge that this chosen name of “activity RVs” is

imperfect. The variations being traced by different methods
may source from stellar activity features, such as spots and
faculae, but could also be due to inherent stellar variation, such
as pulsations or granulation, or trace other sources of variation
in the spectra from, for example, uncorrected tellurics and
instrumental changes.
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For some methods, the clean and activity RVs represent
different components of the model and so do not sum to the
original RVs provided. The clean RVs and provided activity
RVs from all methods are plotted in Appendix E along with
their Lomb–Scargle periodograms (Lomb 1976; Scargle 1982;
VanderPlas & Ivezić 2015).

4.1. RV rms of Method Results

Table 7 gives the change in overall and nightly rms for each
method as compared to the rms of the provided, uncorrected
CBC RVs. The nightly rms, or INS, represents the average
scatter over all nights with more than one observation. Positive
Δrms values indicate that the method returned a lower rms than
the original. Negative Δrms values means there was more
spread in the returned RVs than in the original provided RVs.
Methods are ordered in the same order as described in the
Methods section above (Section 3).

The final rms values of the clean RVs for all methods are
plotted in Figure 4. The height of each bar as well as its
position along the x-axis scales with the overall rms of the
returned clean RVs. Each bar is mapped to its corresponding
method across the x-axis, along which the methods are ordered
by decreasing rms from left to right. The bars are arranged in
this way to emphasize the relative rms values of the cleaned
RVs returned by each method.

The resultant RV rms gives information about the magnitude
of the signal being removed by each model but does not
contain any information about the nature of the signal being
removed. While rms alone cannot establish the success of a
method in mitigating stellar signals, this initial look at the
relative final RV rms of the different methods gives a sense of
the amplitude of the signal being removed by each method,
which methods are removing a comparable amplitude of signal,
and whether any methods are increasing the RV scatter.
Each bar is colored by the type of data the method takes in as

input, corresponding to the break down of methods in
Section 3. Note that here, all methods that use a sort of activity
indicator, classic or newly derived (e.g., amplitudes from
PCA), are grouped together regardless of the input data needed
to derive the indicator used. Other than the methods that
decorrelate against a classic activity indicator, methods that
take in the same input do not necessarily return similar final
rms values.
The baseline method of decorrelating RVs against classic

activity indicators, shown in Figure 4 as brown bars, does not
produce a significant decrease in rms. The decrease is modestly
significant for HD 101501, the most active of the targets given.
The relative returned rms of each method differs across the

four stars. Methods that return low rms for one or some of the
targets do not necessarily return low rms for all of the targets.
The relative rms of different methods is most different for

Table 7
rms and INS of Cleaned RVs from each Method in Units of m s−1

HD 101501 HD 26965 HD 10700 HD 34411

INS rmsall INS rmsall INS rmsall INS rmsall
Original EXPRES CBC RVs 0.62 4.887 0.65 3.195 1.071 1.864 0.944 1.78
Method Δ INS ΔRMSall Δ INS ΔRMSall Δ INS ΔRMSall Δ INS ΔRMSall

S-Value 0.02 0.26 0.021 0.526 0.195 0.186 −0.005 0.072
Hα Emission −0.317 0.564 −0.051 0.209 0.005 0.003 0.0 0.0
Hα Equiv. Wid 0.027 0.031 −0.001 0.001 −0.001 0.072 −0.005 0.049
CCF BIS 0.09 1.118 −0.011 0.048 −0.006 0.005 −0.034 0.058
CCF FWHM −0.005 0.534 0.001 0.022 0.002 0.001 −0.008 0.118
Vspan −0.076 0.567 −0.007 0.009 0.016 0.018 −0.007 0.006
Bi-Gaussian Fit 0.082 1.498 −0.005 0.015 −0.006 0.038 −0.008 0.154
Skew Normal Fit −0.483 0.206 −0.025 0.014 0.001 0.006 0.0 0.0
FDPCA −0.001 2.418 0.0 0.775 0.0 −0.017 0.0 0.255
GPRN 0.0 0.054 0.0 0.362
SCALPELS −0.42 2.079 −0.473 0.859 0.122 0.458 0.245 0.547
SCALPELS+GLOM −0.206 2.31 −0.202 1.217 0.143 0.496 0.271 0.571
CCF Prime 0.182 1.76 0.0 0.222 −0.01 0.032 0.124 0.18
FIESTA+GLOM 0.234 2.355 0.1 0.713 0.13 0.24 0.129 0.088
CCF Linear Regression 0.001 2.607 −0.176 0.56 0.196 0.297 0.065 0.196
CCF LR + Hα −0.13 2.863 −0.193 0.679 0.168 0.352 0.065 0.196
CCF LR + Keplerian −0.015 0.484
CCF Mask-VALD 0.202 1.336 −0.01 −0.001 −0.142 0.021 −0.002 −0.029
CCF Mask-BIS −0.231 1.421 −0.289 0.505 −0.292 −0.134
CCF Mask-RV −0.232 2.292 −0.605 0.905 −0.285 −0.136
LBL+PCASpec. −0.182 2.36 −0.226 0.85 −0.027 −0.098 0.088 0.261
LBL+PCARV −0.421 2.46 −0.354 0.51 0.122 0.286 0.101 0.33
LBL+PCASpec./RV −0.238 3.159 −0.032 1.549 0.066 0.205 0.115 0.394
PWGP −0.022 2.132 0.179 0.857 0.232 0.374 0.251 0.376
DCPCA 0.012 1.942 0.109 0.998 0.146 0.235 0.144 0.145
DCPCA+GLOM 0.027 2.368 0.108 1.125 0.147 0.241 0.144 0.111
Generative RR Self 0.123 2.86 0.117 2.01 0.629 1.041 0.496 0.644
Generative RR −0.165 0.374 −0.172 0.251 −0.1 0.076 −0.041 0.053
Discriminative RR −0.104 1.957 −0.263 1.785 −0.21 0.123 −0.243 0.271

Note. All rms values given in units of m s−1.
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HD 26965, for which a few methods (GPRN, Discriminative
RR, and LBL+PCASpec./RV) return much lower relative rms
values than for the other three targets. For HD 101501,
LBL+PCASpec./RV and GPRN also return among the lowest
rms, as with HD 26965, but for HD 101501, CCF LR and CCF
LR+Hα return much lower relative rms than they do with any
other target. The relative orders of the methods are fairly
consistent between HD 10700 and HD 34411. Recall that the
four targets differ in expected activity level, total number of
observations, sampling of observations, and number of
proposed planet candidates.

For each of the four targets, there are one or more clusters of
methods returning a similar RV rms, which can be seen as
overlapping bars in Figure 4. For HD 101501, there is a cluster

of methods returning a final rms of approximately 2.5 m s−1,
i.e., a 48% decrease in rms. The HD 26965 results exhibits a
cluster at 2.7 m s−1 (16% decrease) and 2.3 m s−1 (28%
decrease). Note that these rms values are slightly greater than
the 1.8 m s−1 semiamplitude of the proposed planet (Ma et al.
2018). The HD 10700 (τCeti) results cluster around 1.6 m s−1

(13% decrease). The HD 34411 results cluster at 1.5 m s−1

(15% decrease) and 1.4 m s−1 (22% decrease). The methods
that are returning similar rms values and forming these clusters
differ in their approach to disentangling stellar signals, and in
fact the methods that are clustered together even differ from
target to target.
The self-test version of Generative RR, Generative RR Self,

always returns a lower rms than the cross-validation

Figure 4. Final overall rms of the clean RVs submitted for each of the four targets. The height and x-position of each bar scales with the final rms. Bars are colored by
the type of input data used. For each target, the rms of the original, uncorrected EXPRES CBC RVs is shown as a black bar with its height emphasized by a horizontal
dashed line across the full plot. The average intranight scatter of the EXPRES CBC RVs is also marked with a horizontal dashed–dotted line. Methods returning
similar rms values to each other are emphasized via green shading.
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implementation of Generative RR. Furthermore, Generative
RR Self is often among the methods returning the lowest rms
value. Generative RR and Generative RR Self only differ in
whether there is a safe guard built into the method against
overfitting the model. The difference in their resultant rms
therefore highlights the difference between an appropriately
general model with Generative RR and a likely overfitted
model with Generative RR Self. We note that while the
Generative RR class of methods has many free parameters and
is therefore particularly vulnerable to overfitting, some degree
of overfitting may be in play for other methods presented in this
paper that did not implement a cross-validation step. Most
methods returned results of a model trained on the same data
that they reported results for with no data held out, as was done
in Generative RR Self.

Similarly, the use of GLOM to co-model RVs and indicators
almost always results in a lower RV rms than the alternative
(i.e., SCALPELS+GLOM returns a lower rms as compared
to SCALPELS results and similarly with DCPCA+GLOM
as compared to DCPCA results). In some cases, the use
of GLOM across methods returns RVs with a similar rms
(see SCALPELS+GLOM, FIESTA+GLOM, and DCPCA
+GLOM for HD 101501 and likewise FIESTA+GLOM and
DCPCA+GLOM for HD 10700). This suggests that GLOM is
modeling out a similar degree of variation in a time series
regardless of the indicator(s) it is given.

Methods that operate along very similar principles often
return very different RV rms results. For instance, the different
LBL methods (shown as light blue bars in Figure 4), return
RV rms values that range from 77% to 102% the rms of
the originally provided RVs for HD 34411 and 35%–73%
the original rms for HD 101501. For most groupings, the
HD 34411 results have the lowest spread, while the HD 101501
results have the highest. On the other hand, all methods that use
GLOM (i.e., SCALPELS+GLOM, FIESTA+GLOM, and
DCPCA+GLOM) return similar resultant rms values. For
HD 101501, all three methods return an RV rms approximately
52% of the original RV rms; the results of the other three
targets have a percentage range of 10%–20% between the
lowest and highest rms for each target.

We see here that the different methods do have a notable
impact on the resultant rms of the clean RVs, yet it is
impossible to say from this one-dimensional metric what
exactly is being modeled out by each method. Just because a
method is returning a lower RV rms does not necessarily mean
it is doing better at mitigating stellar signals specifically or is
successfully preserving planet signals; this cannot be estab-
lished from the rms alone.

4.2. Comparing Methods

Through the ESSP, all teams were given the same set of
EXPRES data to use with their respective methods and to
model out stellar signals. When working with real data, we do
not know what stellar signals are present for each target.
Because the data are consistent among all methods, we would
expect the stellar signal being removed to be consistent
between methods successfully modeling photospheric velo-
cities. Hence, the activity RVs for each method should be
correlated with one another.

We perform a pairwise comparison of the activity RVs
returned by each method. For methods that do not naturally
derive the RVs due to stellar signals, we approximate these

activity RVs as the RV shift removed—i.e., we take the
difference between the provided, CBC RVs and the submitted
clean RVs to be the activity RVs. For each pair of activity RV
time series, which we expect to have a direct one-to-one
correspondence, we use the Pearson correlation coefficient
(PCC) to gauge the strength of correlation between the activity
RVs derived by two different methods.
Figure 5 shows markers for each pair of methods colored by

the PCC between the activity RVs each pair of methods
returned.52 The first column of each plot shows the PCC of
each set of activity RVs against the provided CBC RVs. A PCC
of >0.4 with an associated p-value of <0.05 (square markers in
Figure 5) is considered statistically significant. This signifi-
cance level was established with respect to the spread of PCCs
returned from comparing series of randomly generated
numbers of the same length as the RV data sets.
Comparisons between two methods that both submitted

activity RVs are shown as filled in markers. Comparisons
involving activity RVs that were recreated as the difference
between the provided RVs and submitted clean RVs are not
filled in. Only submitted methods are included; the results from
classic linear decorrelation with standard activity indicators are
not shown.
The top of each plot recreates a scaled bar graph of the final

rms of the clean RVs for each method. These insets are meant
to help associate each method with their final returned clean
RV rms. Methods that returned similar final rms values, as well
as the relevant correlation markers, are highlighted in shades of
green that mirror the shading in Figure 4.
As expected, most PCCs are positive, but there is limited

strong (>0.4) correlation. Even methods returning similar rms
values to one another (i.e., markers close to the diagonal) are
often not returning activity RVs that are significantly correlated
with one another. The methods returning the most similar RVs
(as highlighted via green shading) are correlated for HD 10700
and HD 34411, but not for HD 26965. HD 101501, the most
chromospherically active of the four stars, has the most
correlation among the activity RVs returned.
Methods returning lower clean RV rms (i.e., methods closer

to the bottom or further to the right of each subplot) are more
likely to have activity RVs significantly correlated with those
of other methods. These methods are even more likely to be
significantly correlated with the provided EXPRES CBC RVs
(see the first column of each plot). If the derived activity RVs
of these lower-rms methods are subsuming much of the signal
in the provided EXPRES RVs, then we would expect to see
them show greater correlation with the provided RVs and all
other methods that use the provided RVs as a starting point.
Variations on a method are nearly always significantly

correlated with one another. For example, the activity RVs
returned by SCALPELS and SCALPELS+GLOM are
significantly correlated for all four targets. The same is true
for the three CCF Linear Regression variations (i.e., CCF LR,
CCF LR+ Hα, and CCF LR+ Keplerian) and the three residual-
regression-based methods (i.e., Generative RR, Generative RR
Self, and Discriminative RR).

52 Note, we also generated an equivalent plot comparing the cleaned RVs with
one another. As all cleaned RVs are derived from the same provided RVs,
nearly all clean RVs are significantly correlated with one another. We felt this
comparison provided less information than the comparison among the activity
RVs and so chose not to include this figure.
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Variations on LBL methods also agree with each other. The
results of CCF Mask-BIS and CCF Mask-RV are always
correlated as are the results of LBL+PCASpec., LBL+PCARV,
and LBL+PCASpec./RV. However, the activity RVs returned by
these similar methods do not correlate strongly with each other.
Correlation with the PWGP activity RVs is particularly lacking
in the case of HD 26965 and HD 10700, where they are not
correlated with the activity RVs returned from any other
method.

The results of the DCPCA+GLOM method are only
correlated with the results of the DCPCA method for
HD 10700 despite both methods being informed by the same
indicator. The DCPCA+GLOM activity RVs are not correlated
with the activity RVs of any other method for HD 101501 and
HD 34411. They are at most correlated with three other
methods for the other two targets.

4.3. HD 26965 Results

One of the hopes of including the HD 26965 data as an ESSP
target was to gain a deeper understanding of the ∼40 day
periodic signal. This period had previously been associated
with both the stellar rotation rate of the star and with a potential
orbiting planet with an RV semiamplitude of 1.8 m s−1 (Díaz
et al. 2018; Ma et al. 2018; Rosenthal et al. 2021).
For each of the submitted methods, we compare the

periodogram of the clean RVs and the activity RVs, as shown
in Figure 6, in blue and orange, respectively. We also include
periodograms of the provided EXPRES RVs and all RVs from
the CLS (Rosenthal et al. 2021) in the top row for reference.
We focus on the power associated with periodicities between
39 and 44.5 days, the proposed stellar rotation rates for
HD 26965, which bookend the proposed 42.38 day planet
period (Ma et al. 2018). The maximum power in this period

Figure 5. Pairwise comparisons between the activity RVs of all submitted methods. Each marker represents a pairing; the color of the marker gives the PCC between
the activity RVs of two methods. Methods that did not submit activity RVs (for which the difference between the original and clean RVs was used instead) are shown
as marker outlines. Significant PCC values (i.e., PCC > 0.4) are shown as squares, while a PCC < 0.4 is depicted with a circle. The first column of each plot gives the
PCCs of activity RVs with the provided CBC RVs. The following rows/columns have methods ordered from top to bottom and left to right by decreasing total rms,
the same as how methods are ordered in Figure 4. At the top of each subplot in green is a scaled bar graph of the resultant rms for each method. As recreated from
Figure 4, methods that returned similar final rms values are highlighted in shades of green along with their associated correlation coefficients.

16

The Astronomical Journal, 163:171 (34pp), 2022 April Zhao et al.



range along with the corresponding p-value is given in the top-
left corner of each subplot. Note that the EXPRES data peaks at
42.67 days, close to the proposed planet period. The CLS data,
on the other hand, peak at 41.52 days, slightly lower than the
proposed planet period, and feature a much higher peak at
52.13 days.

Methods with more power (within the highlighted period
range) in the clean RV periodogram are shown in blue
subplots, while methods with more power in the activity RV
periodogram are shown in orange. Four methods either have no
significant peaks for those periods or return similar power in
both the clean and activity periodograms (black axes).

Six out of 21 methods subsume the ∼40 day period in their
stellar signal model, while 11 of the methods produced clean
RVs that still contain the ∼40 day period. Five of the six
methods that attribute the signal to stellar variations returned
the five lowest rms values for their clean RVs. In these cases,
almost all the variation in the provided RVs was modeled out
as being due to stellar signals. As we saw with the lack of
correlation between activity RVs from different methods in

Figure 5, here we see again that the different methods do not
agree on what signal is due to stellar variation and what can be
attributed to an orbiting planet even for a prospective signal
that is as large as 1.8 m s−1.

5. Summary

By using EXPRES data as a test bed for several different
methods, the ESSP is able to make a direct comparison
between the results of 22 methods (including method variants)
for disentangling stellar signals from true center-of-mass shifts.
Methods returned clean RVs, with stellar signals removed, and
where appropriate activity RVs, which capture the variation
that was removed.
The different methods varied in the type of data read in,

metric for the presence of photospheric velocities, and
mitigation of these signals once detected. We compared
method results based on the total and nightly rms of the
returned clean RVs, agreement between returned activity RVs,
and conclusions with regards to the HD 26965 prospective
planet.

Figure 6. Periodograms of RVs for HD 26965. The leftmost two plots in the top row show the periodogram for the provided EXPRES CBC RVs (left) and over 30
years of RVs from the CLS on the right (Rosenthal et al. 2021). Periodograms of the clean (blue) and activity (orange) RVs are given for all 21 of the methods that
submitted ESSP results for HD 26965. Horizontal dashed and solid black lines denote p-values of 0.1 and 0.01, respectively. The proposed period for HD 26965 b,
42.38 days, is marked by a vertical, dashed blue line while the range given for the stellar rotation rate, 39–44.5 days, is shaded orange (Ma et al. 2018). The maximum
power in this shaded region for both the clean (C) and activity (A) RV periodogram is given in the top-left corner of each subplot along with the corresponding p-value
of the peak. Methods are ordered left-to-right and top-to-bottom by the difference between the clean and activity periodogram peaks. Subplots for methods resulting in
a stronger peak with their clean RVs have blue axes; orange axes indicate a stronger periodicity in the activity RVs. Methods with comparable peaks in their clean and
activity RVs are shown with black axes.
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5.1. Categories of Methods

Submitted methods for disentangling stellar signals operate
along three broad lines. Some methods innovate on the idea of
activity indicators and use different models to derive a metric
for the amplitude of the stellar signal present in an observation.
Other methods instead use such indicators and construct
models for mapping this stellar signal amplitude measurement
to the appropriate RV correction.

The last category of method separates the data into
components that inform the true bulk shift of the star and
components that add variability. For instance, LBL methods
separate variable lines from more stable lines that are assumed
to be a better tracer of the true bulk shift of a star. Many of the
methods that model the CCF determine the shape-driven
component of the measured RVs as opposed to the shift-driven
component.

Table 8 summarizes all submitted methods along these three
lines. Variations on the same method idea are not included.
Some methods naturally produce a metric as well and so
operate along more than one of the three lines.

5.2. Method Results

The historical standard where RVs were linearly decorrelated
against activity indicators rarely changes the resultant RV rms
significantly. This method of mitigating stellar signals is not
sufficient in an EPRV context.

Most of the submitted methods reduce the RV rms for all
targets. However, no method is able to completely model out
the contribution from stellar signals. EXPRES data of quiet
stars exhibit an rms of 0.5–0.8 m s−1; no method was able to
reduce the RV rms to less than 1.2 m s−1 except for the GPRN
method for HD 26965 only.53

The reduction in RV rms for method results relative to other
methods changed from target to target. HD 101501 and
HD 26965 saw the most variation in relative method perfor-
mance; a few methods returned much lower relative rms values
for HD 101501 and HD 26965 than they did for other targets.

HD 101501 is the most chromospherically active of the four
targets. HD 26965 was complicated by a proposed planet signal
very close to the measured rotation rate of the star. Relative
method rms was much more consistent between HD 10700 and
HD 34411. The change in behavior between the different stars
hintst that methods may perform differently depending on the
amplitude of the stellar signal or dominant type of variation
exhibited by different stars. This may also contribute to the lack
of correlation seen between method results for the same star.
The average intranight scatter changes very little but does

increase for some methods. Whether the INS increases or
decreases can also change for different targets with the same
method. We do not expect the magnetic field of a star to change
on the timescale of a single night and even less so for
consecutive observations taken on the same night. This means
that any signal from magnetically driven stellar variability
should be nearly the same for all observations taken within a
night. Methods that increase the INS may benefit from
incorporating this constraint.
The activity RVs returned by the different methods often do

not agree with one another. All methods were used on the same
data set and so should be capturing the same stellar signal. Of
course, different methods may have varying levels of success in
modeling the observed stellar signal or be more/less sensitive
to different types of photospheric velocities. For methods that
did not provide activity RVs, we instead compared constructed
activity RVs from taking the difference of the originally
provided CBC RVs and the submitted cleaned RVs. These
constructed activity RVs may be less correlated with methods
that directly generated activity RVs as there is no guarantee
such a construction will contain only stellar signals. If the
method modeled out more variation than just due to stellar
signals, those variations will persist in the constructed
activity RVs.
Some of the methods, most notably DCPCA+GLOM for all

targets and PWGP for HD 26965 and HD 10700, are not
correlated with the activity RVs of any of the other methods. In
the case of DCPCA+GLOM, it is interesting to note that the
DCPCA method results do not have the same issue, suggesting
the GLOM implementation for this method resulted in the lack
of correlation. It would be interesting to investigate why the
PWGP results exhibit no correlation for only two of the four

Table 8
Method Philosophies

Method Metric Mitigation Separation

GLOM Multidimensional GP Modeling
FDPCA Commonalities in Fourier Space
GPRN GP Neural Net Modeling

SCALPELS PCA Amplitudes (CCF) Shape/Shift-driven RVs
CCF Prime GP Model Coefficients Shape/Shift-driven RVs
FIESTA+GLOM Fourier Model Coefficients
CCF Linear Regression Shape/Shift-driven RVs

CCF Masks Variable/Stable Lines
LBL+PCASpec. Variable/Stable Lines
LBL+PCARV PCA Amplitudes (LBL RVs)
PWGP Variable/Stable Lines

DCPCA PCA Amplitudes (Spectra)
Generative RR Regression w/ Spectral Residuals
Discriminative RR Regression w/ Spectral Residuals

53 We do not consider the results of the Generative RR Self method here as it
is not considered to be statistically rigorous. This result was mainly included as
a test of the importance of incorporating cross validation into model
construction.
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stars. This split behavior could be due to a systematic
difference between the activity RVs being compared that are
emphasized for some targets over others. For example, methods
may differ in what exactly was returned for the activity RVs,
whether instrumental or telluric variation was also fit for, and
many other implementation specifics.

The lack of agreement between methods makes it difficult to
confidently state what signal is being modeled and removed by
each method to result in the observed rms reduction. It is also a
demonstration of why RV rms alone is an incomplete metric for
method performance, as it fails to establish the nature of the
signal that a method is capturing. Many methods invoke
tunable parameters to control how much variability is fitted out
as due to stellar signals. In optimizing these parameters, the
resultant RV rms should be used as a goodness metric with
caution and other metrics should be considered (see Section 6.2
for some discussion).

The disagreement among methods is further highlighted with
the HD 26965 results. Whether or not HD 26965 hosts a planet
changes depending on the method used. Some methods model
out the ∼40 day period as due to photospheric velocities while
others attribute that periodicity to true center-of-mass shifts.
Many methods found it difficult to account for the planet signal
as well as the close-by stellar rotation rate. A test with an
injected Keplerian signal of known period would give clearer
results.

Results for HD 101501 were most correlated with other
method results. This suggests that the inferred corrections are
more similar for stars with a larger amplitude of magnetic
activity. The difference in performance could also be due to
other stellar parameter specifics. With more test cases, it may
become clear whether methods tend to perform better
depending on the spectral type of the star, expected activity,
or other stellar properties.

6. Discussion

An increasing number of EPRV instruments are coming
online and returning sub-meter-per-second single-measurement
precision (e.g., Pepe et al. 2013; Jurgenson et al. 2016; Schwab
et al. 2016; Carmona et al. 2018; Gilbert et al. 2018; Seifahrt
et al. 2018; Blackman et al. 2020; Petersburg et al. 2020;
Suárez Mascareño et al. 2020; Pepe et al. 2021) with many
more optical and infrared spectrographs being commissioned,
built, or planned (e.g., Szentgyorgyi et al. 2014; Thompson
et al. 2016; Bouchy et al. 2017; Gibson et al. 2018). The
impressive engineering feat of these different instruments is
opening up a new regime of extremely stable and precise
spectroscopic data. However, each of these instruments and the
data they take will have to contend with added RV scatter due
to chromospheric velocities unless we can mitigate these effects
to below 50 cm s−1 levels. None of the methods presented in
this paper were able to consistently achieve that across the data
sets provided.

Though there is no one single method clearly performing the
best, this collection of methods and results brings clarity to the
approaches and assumptions that define the current state of the
field. Here, we will highlight some of the commonalities
between methods. From this, we derive suggested future
directions both for method development and continued
coordinated data releases like the ESSP.

6.1. Common Approaches and Assumptions Between Methods

The choice of input data changes the information made
available to each method. For instance, indicator-driven
methods will only be able to pick up on stellar signals that
are tracked by the indicators used. Similarly, CCF-based
methods will only be able to account for variations that are
present in the CCF. None of the methods made use of the
provided photometry. Some methods were not able to use the
photometry because it was not simultaneous with the RVs.
Both CCF-based methods and methods that use the full spectra
can only account for line-shape variations at the level of the
resolution of the spectrograph. Higher-resolution data will
contain more information about line-shape changes.
Currently, methods are tracing stellar signals using either

global activity indicators, spectral line-shape variations, or
increased scatter. It is worth considering and perhaps attempt-
ing to simulate whether stellar signals may manifest in a way
that is not captured by current metrics and therefore are not
being modeled by existing methods. We know that indicators
are imperfect. Stellar signals may manifest as a shift in addition
to line-shape changes. Taking increased scatter to be synon-
ymous with stellar variation/activity is a dangerous parallel as
we have seen that a reduction in rms does not necessarily
equate with mitigating a stellar RV component.
Methods that measure only shape-driven changes will miss

stellar signals that manifest as a shift. Indeed, no method will
be able to mitigate shifts caused by stellar signals unless they
can be disentangled from center-of-mass shifts. As just one
example, stellar oscillations may cause all spectral lines to shift
like they would in the case of bulk motion of the star. This shift
could maybe be disentangled from center-of-mass shifts by a
method that links the shifts due to oscillations with the
expected associated changes in stellar parameters (e.g.,
temperature, luminosity, log g), which would exhibit different
or no changes due to an orbiting planet. Future work needs to
be done to investigate how stellar signals may manifest as shifts
and what metrics exist to distinguish such a shift from bulk,
center-of-mass shifts due to planets.
Many methods assume a diversity of activity states or, more

specifically, that the effects of stellar signals captured in a data
set span a large range of amplitudes. Methods that model the
effects of stellar signals using PCA assume that stellar signals
are the primary source of variation and are therefore traced by
the first few/several principal components. Using correlations
with indicators or increased scatter to determine the presence of
stellar signals is also helped by having a large range of activity
states sampled.
Template CCFs and spectra are used as a point of reference

for many methods. Methods varied in whether they used the
mean, median, or optimization (e.g., wobble) to construct this
template. These templates are used to highlight variations away
from the template, which are then attributed to the presence of
stellar signals. The ideal template will not carry any significant
variations due to stellar signals so that it can be used as a
reference to isolate those variations in each individual
observation. Constructing a mean or median template CCF/
spectrum and using it to highlight changes due to chromo-
spheric velocities therefore assumes an even sampling of
activity states that will average out. It would be worthwhile to
investigate how dependent method results are on the template
used. Methods could be run using different subsets of the data
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to construct the needed template and see how much the
results vary.

On a similar note, methods that ascribe deviations from a
Gaussian fit as an indication of stellar signals inherently assume
that the line shape and CCF shape is well-described by a
Gaussian fit. We see no evidence otherwise with the EXPRES
data, for which great pains were taken to stabilize the
instrument LSF across the detector. Were this not the case,
however, any instrumental deviations from a Gaussian profile
could be mistaken for shape changes due to stellar signals.

Many methods make the assumption that Gaussian processes
and principal component analysis are good models for stellar
signals. Different methods, however, implement GPs and/or
PCA in distinct ways. For instance, GLOM uses a GP to model
a time series while the GPRN model uses GPs to define a
neural net framework. CCF Prime forms a basis out of the
derivatives of a GP model. In each case, a GP is implemented
toward different ends and requires different assumptions of the
appropriate kernel, hyperparameter priors, etc.

PCA can be used to construct a variation specific basis or as a
measure of the amplitude of variation. Roughly speaking, the
distinction can be made based on what aspect of the PCA is
used. Some methods (e.g., FIESTA, DCPCA, LBL+PCARV,
SCALPELS+GLOM) use just the amplitudes for each comp-
onent derived from PCA as a measure of variation and therefore
of photospheric velocities. Other methods (e.g., FDPCA,
SCALPELS, LBL+PCASpec.) make use of the principal
components themselves to denoise spectra or model the RV
shift tied to the variation being modeled by the PCA. As PCA is
agnostic to the source of the variation and cares only about the
amplitude, implementations of PCA may also be picking up on
variations from the instrument, the extraction, tellurics, etc.,
which are not stellar in nature (though important to correct for
nonetheless). This may also be a cause of the lack of agreement
we see in the activity RVs returned by different methods.

Derived RVs are often used to align CCFs/spectra (for
example for template construction), thereby implicitly assum-
ing that true center-of-mass shifts from orbiting planets have
been or can be removed leaving only stellar signals. We know,
however, that these measured RVs are swayed by stellar
signals. Methods should consider iterating with clean RVs
produced by methods given different results, provided we are
confident the corrections are truly removing only stellar signals
(e.g., Cretignier et al. 2021).

Methods mostly operate under the self-test framework,
meaning all data are used to construct the model with no built-
in cross-validation framework, unless otherwise stated. From
comparing the results between Generative RR and Generative
RR Self, we saw that the Generative RR Self method always
returned a lower rms, but the returned activity RVs were not
even linearly correlated with the activity indicator used to guide
the model. This suggests that the Generative RR Self model
was overfitted, and the absorbed signals were not informed by
the indicator, something the cross-validation aspect of
Generative RR guarded against. Implementing leave-one-out,
such as is done here by Discriminative RRand described for
SCALPELS in Collier Cameron et al. (2021), or other cross-
validation tests, such as the framework for Generative RR,
should be a default of methods disentangling stellar signals
when applicable in order to ensure the stability of the model
being used. Cross-validation tests are more effectively run on
larger data sets.

6.2. Future Directions for Methods

The reduction in rms with the cleaned RVs of the different
methods is encouraging, but with a one-dimensional metric of
method performance, it is not clear what exactly is resulting in
this reduced scatter. This is especially worrisome given the lack
of agreement between method results. To progress, methods
should be held to a higher level of interpretability. Under-
standing what exactly methods are tracing will be helpful in
developing them further and build confidence that potential
planetary signals are preserved.
The new types of activity indicators being generated should

be tried with the different methods that take indicators as input
(i.e., as outlined in columns one and two of Table 8,
respectively). For example, GLOM is used with different
generated indicators from SCALPELS, FIESTA, and DCPCA
here. Rather than trying to find one, “best” method as they are
currently named, we should instead be testing all combinations
of metrics and mitigation strategies. This will more fully
explore the parameter space and help establish whether it is a
metric or mitigation method that is the main driver of a
method’s performance. Ultimately, this will allow for a better
informed downselection of methods and frameworks worth
further investigation.
Methods modeling shape changes may benefit from

implementing low-pass filtering tuned to the resolution of the
spectrograph. The information content in a spectra is limited by
the resolution of the spectrograph. Filtering out effects above
this level would prevent methods from being swayed by
higher-frequency variations than is allowable by the
spectrograph resolution, which therefore must be due to noise.
Results of the different separation methods (i.e., methods

outlined in column three of Table 8) should be compared with
one another to see if any ground truth can be established. For
instance, all LBL methods work to identify lines that are more
or less variable. It would be informative to understand which
lines the methods agree on and for which lines they differ.
Using physical information about the different lines, e.g., the
line’s element, transition specifics, formation level in the stellar
photosphere, can lend interpretability to these LBL methods
and other methods that identify variation in the spectra. It may
also be useful to consider what commonalities are shared
between methods that use the same input data (e.g., CCF,
spectra) and whether there is a benefit to using one type of
input over others.
LBL methods have thus far primarily used scatter in returned

RV, correlation with different activity indicators (classic or
otherwise), and error of resultant RV to vet lines or chunks.
More advanced methods for vetting may be interesting to
explore. For instance, a periodogram of the RVs returned by
individual lines or chunks could be used to vet for ones that
show power at troubling periods, e.g., the stellar rotation rate,
p-mode oscillation timescale. Clustering analysis may also be
useful in identifying lines or chunks with similar properties and
help link problematic regions with one another.
The axes of variation revealed by the different PCA methods

could be picking up on the same variations. Commonalities
between methods lends significance to the variations captured,
which could be traced back to effects we would expect from an
understanding of stellar physics. Different methods decompos-
ing the CCF should have some commonalities even if the basis
used varies greatly.
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None of the methods analyzed here made use of the provided
photometry, though such efforts exist and have shown success
(e.g., Aigrain et al. 2012; Cabot et al. 2021; Roettenbacher
et al. 2022). As an independent probe of activity on the stellar
surface, photometry has proved useful for linking the signal
being modeled with changes on a star’s surface (Kosiarek &
Crossfield 2020). Incorporating photometric information into
more methods would help with method interpretability by tying
the modeled RV signals to a separate measure of activity.
Simultaneous photometry, which was not provided, is most
immediately useful for current methods. Teams also expressed
a preference for space-based photometry, but a full invest-
igation of the requisite photometric data quality is beyond the
scope of this paper.

Currently, we do not have a good understanding of the
precision or cadence of photometry needed to inform EPRV
work. Future research should work to understand the quantity/
quality of the photometry needed to guide methods for
disentangling stellar signals. Current implementations of meth-
ods suggest that simultaneous photometry should be prioritized.

6.3. Future Directions for Data Challenges

Comparing methods with consistent, realistic data sets will
grow increasingly important as EXPRES and other next-
generation spectrographs continue collecting high-fidelity data.
Such comparisons will be more informative with better metrics
for method performance.

For this report, we carried out only a few fairly simplistic
tests using the relative rms of the submitted RVs and
correlation between the submitted RVs of different methods.
We have seen that rms is not sufficient to capture exactly what
a method is modeling out. We tried comparing the returned
activity RVs to different activity indicators (both classic and
those derived by the submitted methods) using Spearman’s
rank correlation coefficient (SCC), but it was unclear what a
lack of correlation meant. No significant correlation could
indicate overfitting in the activity RVs, a fault in the activity
indicators, and/or the existence of a more complicated relation
between the activity indicators and activity RVs that is not
captured by SCC (for example the two may be out of phase).

The field would greatly benefit from the development of
more representative comparison metrics. Such metrics should
focus on diagnosing the extent to which various methods are
specifically capturing the effects of stellar signals. Ground truth
is not known with real data, so more advanced metrics should
leverage the fact that all methods are probing the same
underlying stellar signal, although to various levels of
precision. For instance, invoking a periodicity dependence or
expectation for the effects of stellar signals beyond increasing
scatter would be a good start. Establishing a standard suite of
assessments for all methods will help place old and new
methods in context.

Interpretability is easier to establish when there is a known
ground truth—i.e., what the stellar signal is expected to be, and
what is a true center-of-mass shift. One such test would be to
inject simulated, center-of-mass shifts into real data at the
spectral level from which all CCFs, RVs, and activity
indicators are derived.54 Methods that are truly only picking

up on stellar signals will preserve these injected center-of-mass
shifts. The most informative simulations will be shifts of the
magnitude similar to the rms of the data and at periods near the
stellar rotation rate or its harmonics, as these signals will be the
hardest to disentangle.
A kind of ground truth is also known for well-characterized

systems, the prime example of which is our Sun. The Sun
remains one of the few stars for which we can definitively
remove all planet shifts.55 Any remaining variation in the solar
spectra will be from stellar signals or instrumental variation.
We are also able to trivially image the surface of the Sun and
directly see changes. With several solar telescopes expected to
accompany next-generations instruments coming on line,
simultaneous observations using different instruments along
with photometry and surface maps will help isolate stellar
signals from unique instrumental variation. Dense sampling
and high cadence will additionally be immensely more
achievable for the Sun than with other stars.
At the same time, the field should be careful not to become

overly reliant on solar data or simulations constructed with
exclusively solar data. Stellar signals and their spectral
manifestations differ for different types of stars. Additionally,
stellar data are free from the±20 km s−1 barycentric
corrections that affect other stars, which will shift stellar lines
across different telluric lines and across different detector
locations. It is necessary to build up the ability to convincingly
simulate or thoroughly characterize stellar signals that arise
from a range of spectral types to ensure that method
performance is universal.
Future data can serve as the truest validation set for methods

trained on the already provided data and be used to uniformly
diagnose the generality of the models constructed by each
method. Carrying out this useful test will require data sets that
can be separated into a large enough training set to inform all
different types of methods and, correspondingly, a large
enough validation set to confirm the model results. More data
will also likely sample a greater range of activity states,
resulting in additional variation in the observed spectra that will
improve the performance of all methods.
The existing data along with any future data can be used to

empirically determine data requirement limits for methods. We
can synthetically degrade the data to establish how method
performance depends on different aspects of the data quality.
For example, in addition to total number of data points, the
cadence of the data (e.g., n observations in a month versus n
observations over a year) or nightly sampling (e.g., three
observations per night or only one) can be adjusted. The S/N
or the resolution of the observations can also easily be
degraded.
There are currently several data pipelines and methods for

extracting spectra and removing instrumental signals (Peters-
burg et al. 2020; Cretignier et al. 2021; Zhao et al. 2021). It is
worth considering the effect different extraction pipelines may
have on the ability to remove stellar signals. Method
performance could change depending on the degree to which
instrument variations are addressed, the wavelength calibration,

54 See Collier Cameron et al. (2021) for an example of injected shifts at the
level of the CCFs. See Dumusque (2016) for a discussion of injecting planet,
stellar, and instrumental variations at the level of the RVs.

55 Here we are assuming the RV signal from the proposed Planet 9 would be
below the white noise level; most constraints on Planet 9ʼs orbit correspond to
an RV semiamplitude of ∼4 cm s−1 with a period of ∼7500 yr (Batygin &
Brown 2016; Millholland & Laughlin 2017; Batygin et al. 2019; Brown &
Batygin 2021).
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whether the echelle orders are merged, the continuum normal-
ization, etc.

Similarly, adjusting CCF masks and construction methods is
an area of ongoing research, as we saw with the various CCF
Mask methods. The best CCF line list, mask window, and
pipeline differs for different stars but may also change for
different use cases. For instance, the method results given here
chose quiet lines to return quiet RVs, but there may be a use case
for choosing the identified variable lines to construct a CCF
mask meant to highlight the signatures of stellar variability.
Though we requested that all CCF methods use the provided
CCFs for this report, exploration is warranted as to how different
CCFs may change the results of these methods.

Currently, the focus of many methods and indicators lie in
tracing activity features or magnetic field strength; less
emphasis is placed on inherent stellar variability, such as
p-mode oscillations or (super)granulation. Pulsations and
changes in granulation pattern persist on the timescale of
minutes while supergranulation has a timescale of hours to
days. Pulsations may cause lines to shift rather than change in
shape. These types of variation will have a different diagnostic
than activity features.

Before we can disentangle the effect from granulation, we
must understand it. This will require very densely sampled
observations at high resolution. Given the timescale of
pulsations and (super)granulation, the ideal data set will have
very dense sampling over the course of a night for four to five
consecutive nights in order to capture both short-term
pulsations and granulation variations and potentially day-long
supergranulation effects.

7. Conclusions

Twenty-two different methods (including variations) were
tried on EXPRES data to produce a consistent comparison of
method results on data that are representative of extreme-
precision instruments. Since the ground truth is not known with
real data, method performance must be established relatively.
The methods tested return lower rms values than the classic
linear decorrelation methods in nearly all cases. Though
EXPRES data of quiet stars regularly return rms values of
0.5–0.8 m s−1, no method is yet consistently reducing the rms
of more chromospherically active stars to sub-meter-per-second
levels across all four stars (Section 4.1). Lack of agreement
between the signals being modeled out by different methods
makes it difficult to determine exactly what variation is being
modeled and whether it truly is stellar in origin (Section 4.2).

Current and future methods should consider:

1. increasing method interpretability in order to establish the
source of the signals being picked out by the method,

2. ensuring models are appropriately general by implement-
ing cross-validation tests,

3. iterating when aligning CCF/spectra with derived
RVs, and

4. making methods robust to the assumption that a large
range or equal distribution of activity states is covered
within the data set.

Methods currently work at identifying the presence of stellar
signals by using either a derived activity indicator, changes in
line shape, or increased scatter. Future investigation is warranted
as to whether those diagnostics are comprehensive and what
manifestations of stellar signals are currently being missed.

None of the methods made use of the provided photometry,
which is nonsimultaneous and ground-based (Section 2.2).
Previous work establishes photometry as a useful, independent
measure of stellar surface changes for mitigate stellar signals,
but the exact quantity/quality of the photometry needed
remains an open question. Space-based, simultaneous photo-
metry would be easiest to incorporate into the current
implementation of methods.
Next steps for establishing method performance include:

1. developing more holistic metrics for how well a method
disentangles stellar signals,

2. cross-pollinating methods that generate activity indicators
with methods that are informed by indicators,

3. comparing and contrasting results of similar methods,
e.g., LBL methods, derived PCA components, GP
hyperparameters,

4. testing methods on well-characterized systems, e.g., solar
data, dynamically packed planetary systems, data with
injected Keplerian or stellar signals, and

5. testing methods on data sets from EXPRES and other
state-of-the-art RV instruments (e.g., ESPRESSO, NEID)
degraded in terms of S/N, resolution, observing cadence,
etc.

Note that care must be taken when injecting a Keplerian signal
to ensure telluric lines are not also shifted. Injecting stellar
signals will require developing simulations capable of faithfully
reproducing all flavors of stellar variability and activity across
different stellar types.
The design of RV surveys should consider whether to

prioritize phase coverage of potential planets or to prioritize
fully characterizing the effects of stellar signals. An EPRV data
set that fully resolves all timescales of stellar signals, including
the shortest, minute-long timescales, is needed to completely
understand the effects of chromospheric velocities on spectra.
Such a data set for a Sun-like star would likely need to span
4–5 consecutive nights with at least 2–3 hr of continuous,
densely sampled observations per night.
While progress is being made in mitigating stellar signals,

more work remains to be done. We will not be able to
successfully detect Earth-like planets until photospheric
velocities from inherent stellar variability and activity features
can be disentangled to below the 50 cm s−1 level.
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Appendix A
In-depth Descriptions of Methods that Use RVs and Classic

Activity Indicators as Input

A.1. GLOM

GLOM, developed by members of the PennState Team, is a
software package for joint GP modeling of several parameters,

such as Doppler shifts along with one or more activity indicator
time series (Gilbertson et al. 2020b). The model is based on the
assumption that all time series can be modeled using a latent
variable G(t), which is described by a Gaussian process and a
covariance function γ. The GLOM implementation can also
incorporate a nonzero mean function, mn(t) for each set of
variables being modeled.
RVs and activity indicators are modeled together using the

latent GP G(t), its derivatives, and this mean function. For N
total number of parameter time series, the framework is as
follows:
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Each qn(t) is the time series of the variables being modeled.
Variables an,0 and an,1, where n=1,K,N, are free parameters
and òn(t) represents measurement uncertainties.
GP models are a powerful tool for modeling stochastic

behavior and therefore very apt for modeling photospheric
velocities. However, they are liable to vacuum up all signals in
a data set including, for instance, planet signals. By modeling
several time series simultaneously, this method places
constraints on the GP model by incorporating the information
from activity indicators into the GP modeling. This guides the
model to only pick up on signals that can be tied to the
provided indicators. Introducing indicators into the modeling
increases the size of the correlation matrix, making the method
more computationally expensive.
The method requires RVs and corresponding indicator time

series for each observation. Photometry can be used to establish
a constraint on the stellar rotation period of the target. GLOM
is incorporated as a part of many submitted methods that
generate different indicators of activity.
The success of the method is dependent on the sampling of

the data, which should be relatively close in time, and the
appropriateness of the chosen GP kernel. It would be better to
have less observations but a denser sampling throughout the
characteristic timescale of the signal being modeled (i.e., the
stellar rotation rate). The GP model adopts a quasiperiodic
kernel along with constant offset and jitter terms for each time
series. Some care must be taken in choosing the priors for the
GP hyperparameters, which will change for different data sets.

A.2. Fourier Domain Principal Component Analysis

Fourier Domain Principal Component Analysis (FDPCA),
submitted by the Sidera team, detects common patterns in the
Fourier coefficients of RV and activity-indicator time series and
uses this to predict the stellar signal component of the RV.
Moving to the Fourier domain allows the method to identify
and remove correlated signals even if they are out of phase. The
power of this method comes from identifying coherences
between the provided indicators and the RV measurements.
First, the nonuniform Fourier transforms of all activity-

indicator time series and RVs are computed. Next, the activity-
indicator Fourier series are scaled so that they have unit
variance in the time domain. The Fourier series for each
activity indicator are then stacked into a matrix to form a set of
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explanatory variables for the RV Fourier series:

R I R

I

a a
´

[ ( { }) ( { })
( { }) ( { }) ] ( )
 
 

H EW H EW
CCF FWHM CCF FWHM , A2

where R( ) and I( ) are the real and imaginary parts of the
Fourier transform, respectively. The matrix is then run through
PCA.56

With activity principal components in hand, the real and
imaginary parts of the RV Fourier series can be regressed onto
these principal components. The regression coefficients are
used to determine the proportion of the RV Fourier series that
is related to the activity indicators. This measures the
chromospheric contribution to the RV Fourier series and can
then be inverse transformed back into the time domain to find
the stellar signal correction needed for each RV. Parseval’s
theorem is used to recover the correct variance of the RV
activity contribution.

Implementing this method requires RVs and indicators taken
at the same time stamps. In order to use this method to measure
a signal, the observations must completely cover the phase of
the signal. For example, to capture the effects of a rotating
activity feature, the observations must completely sample the
star’s rotation. It is not just a question of dense sampling of
observations, the observations must cover the entire phase
range.

As with all methods that invoke PCA, there is always the
question of how many principal components to incorporate. For
the results presented here, principal components were included
until 95% of the total variance was captured.

A.3. Gaussian Process Regression Network

The Gaussian Process Regression Network (GPRN) method,
submitted by the Porto team, adaptively combines GP models
to jointly describe variations in the RVs and activity indicators.
The structure of a GPRN share some similarities to an artificial
neural network, with independent GPs acting as both nodes and
weights. Following the work of Wilson et al. 2011, a GPRN
can model a function y(x) as

s= +( ) ( ) ( ) ( ) ( )y x W x f x z x . A3y

On this network f(x) and W(x) are independent GPs,

~ =

~ = =

( ) ( )
( ) ( ) ( )




f x k j q

W x k i p j q

0, for 1 ,..., ,

0, for 1 ,..., and 1 ,..., . A4
j f

ij w

This framework is capable of accommodating noise correla-
tions between multiple output variables as well as input-
dependent signals, length scales, and amplitudes. It leads to
heavy tailed predictive distributions.

The method requires RVs and activity indicators as inputs,
where each RV measurement must have a corresponding
activity indicator taken at the same time stamp. For instance,
nonsimultaneous photometry could not be used as an indicator.
The number of nodes and weights, as well as the associated
covariance functions, can be decided a priori or a posteriori
based on marginal likelihood comparison.

In principle, each one of the GPs that form a node or weight
of the regression network has its own set of associated
hyperparameters and respective priors. However, it is possible
to share hyperparameters to reduce the number of free
parameters, for example between the GPs acting as weights.
For the results presented here, only one node was defined by a
GP with a quasiperiodic covariance function. GPs with
squared-exponential kernels were used for the weights with
no shared hyperparameters.

Appendix B
In-depth Descriptions of Methods that Use the CCF as

Input

B.1. SCALPELS and SCALPELS+GLOM

SCALPELS, submitted by the St. Andrews and PennState
teams, makes use of autocorrelation functions to separate out
Doppler shifts from shape changes that are attributed to stellar
signals (Collier Cameron et al. 2021). The autocorrelation
function of either the spectra itself or its CCF can be used. In
the velocity domain, the autocorrelation function is invariant to
translation. Projecting the measured velocity time series onto
the principal components of the autocorrelation function
isolates shape-driven shifts. Because they are translationally
invariant, these projected perturbations can be subtracted from
the original velocities with the dynamical shifts preserved.
Applying the method requires either the spectra or the CCF

to derive the autocorrelation function as well as the barycentric-
corrected time stamps, RVs, and RV errors for each
observation. From this, SCALPELS will output velocity
variations that are driven by shape changes. Subtracting out
these shape-driven velocities leaves the true dynamical shifts
preserved.
Since SCALPELS operates in the wavelength-domain, it

does not require any information about the star’s behavior (i.e.,
rotation rate, pulsation timescale, etc.) nor does it need very
dense sampling of the stellar rotation cycle. Ideally, there
should be at least 40 observations of a target over a full range
of stellar activity states. Observations taken at different activity
states help the PCA of the autocorrelation function identify
variations due to shape changes.
All SCALPELS results presented here use the autocorrela-

tion function of the provided EXPRES CCFs. Results can vary
with number of principal components incorporated. The
submissions given here used two principal components to
minimize the risk of overfitting.
The PCA results from SCALPELS were also input into

GLOM, where the amplitudes of the principal components, i.e.,
the magnitude of the shape variation modeled in the CCF
autocorrelation function, were used as activity indicators and
modeled along with the RV shifts. This process was run using
the sum of two Matérn 5

2
kernels for the latent GP model.

B.2. CCF Prime

The CCF Prime method, submitted by the OxBridGen team,
is an exploratory approach to decomposing the CCF by linearly
modeling variations in each spectra’s CCF using derivatives of
a GP model. A reference CCF is constructed by modeling the
mean CCF of all observations using a GP with a square-
exponential kernel. Let this reference CCF be denoted by C(v)
where v are the velocities at which the CCF is sampled. The

56 FDPCA was implemented with the following python packages: Flatiron
Institute’s finufft for nonuniform FFTs, sklearn.preprocessing.
StandardScaler for scaling Fourier series to have unit variance,
sklearn.decomposition.PCA for the PCA, and sklearn.linear_-
model.LinearRegression for the linear regression.
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quotient of each CCF against this reference CCF is then
linearly modeled.

Let ci(v) denote the quotients of each CCF against the
reference CCF, i.e., =( ) ( )

( )
c vi

C v

C v
i , where i indexes over all

exposures, and Ci(v) is the CCF for exposure i. The linear
model is then defined by the following equation

= + S =( ) ( ) ( )( )c v a b C v , B5i i k ik
k

0
3

where k corresponds to the different derivatives of C(v) with
respect to velocity. In this case, C(0)(v)= C(v). Parameters ai
and bik are the linear parameters of the model.

The first derivative term in Equation (B5) is sensitive to
shift-induced variations on the CCF. The second derivative and
higher picks up on only shape distortions instead. In this way,
decomposing the CCF variations into different terms separates
out changes due to dynamic shifts versus changes due to
differences in shape. Recreating the time series using only
derivatives of two or higher will give CCFs with only shape-
driven variations. The effects of these shape changes can then
be removed from the time series. The coefficients of the shape-
driven derivative terms (i.e., k� 2) can also be used as activity
indicators, as they reflect the magnitude of CCF variations due
to changes in shape.

This method is conceptually similar to the SCALPELS
method described in Section B.1. In this framework, the
quotients (ci(v)) of each observation’s CCF over a reference
CCF is modeled, whereas in SCALPELS the autocorrelation
function of the CCF or spectrum is used. For SCALPELS, the
autocorrelation function is intrinsically insensitive to transi-
tional shifts. For CCF Prime, the higher-order (k� 2)
derivatives are insensitive to transitional shifts. These higher-
order derivatives and their coefficients in the linear model
capture the variation in the CCF and the magnitude of the
variation, much as PCA does for SCALPELS. The coefficients
of the linear model can also act as an activity indicator (much
as the amplitudes from the PCA are used for SCALPELS
+GLOM). As the CCF Prime method remains exploratory,
more work needs to be done to establish whether the different
derivatives create an orthonormal basis as is the case with PCA.

The CCF Prime method requires only normalized CCFs and
is straightforward to implement. Higher-resolution data will
contain more information on the line profile distortions being
modeled. Higher S/N observations will give more accurate
derivatives. The observations should sample a broad range of
activity states. This ensures that changes in the CCF due to
stellar signals are not reflected in the combined, reference CCF.
With many different manifestations of stellar signals in the
range of CCFs, the specific features of any given activity state
will be blurred out.

B.3. FIESTA+GLOM

The FIESTA method, submitted by the PennState team,
decomposes the CCF of a spectrum into Fourier basis functions
(Zhao & Tinney 2020; Zhao & Ford 2022). The shifts of each
of these basis functions are then calculated for a range of
Fourier frequencies. A pure CCF shift will manifest as a
constant shift in all Fourier frequencies and can be easily
subtracted. Shape deformations, on the other hand, will be
frequency-dependent. This decomposition therefore parame-
terizes the effects of stellar signals as a series of shifts at each

frequency for each CCF. These frequency-dependent shifts can
be used together as a multidimensional activity indicator.
The FIESTA method reads in CCFs for each observation.

These CCFs must be properly normalized as a vertical offset
could also produce a frequency-dependent shift that would be
mistaken for a shape deformation. Observations with greater S/
N allow for more frequencies to be incorporated.
The activity indicators produced by FIESTA were post-

processed using principal component analysis (Zhao &
Ford 2022) and modeled jointly with dynamical RV shifts
using GLOM (as described in Section A.1).

B.4. CCF Linear Regression

The CCF Linear Regression method, submitted by the
ML_EPRVs team, makes use of machine learning to model
variations in the CCF that are expected to be due to stellar
signals (de Beurs et al. 2020). Specifically, the machine-
learning model predicts the difference between a Gaussian fit to
the CCF and the true velocity shift. This prediction can then be
subtracted from the input RVs to give corrected RVs.
This method requires CCFs for each exposure and best-fit

RVs. The CCFs are first shifted by the best-fit RVs so there are
no translational difference between the different CCFs. This
allows the model to instead focus on shape variations. The
model is fed differential CCFs, i.e., the residuals from
subtracting a reference CCF (made by taking the median of
all CCFs) from each CCF. These differential CCFs are
normalized by the median and standard deviation of each
point in the CCF across all observations such that the variations
are roughly equal in magnitude.
In order to reduce the complexity of the model, only about

four to six locations across the residual CCFs are modeled
using a linear regression model. The more observations there
are, the more locations can be used without the risk of
overfitting. The base model for a single CCF and associated
RV is given by:

= + + +· · · ( )w w wRV CCF CCF CCF , B6v v1 1 2 2

where CCFv is the value of the differential CCF at velocity v,
and wv is the associated weight parameter that is fit for.
Two slightly more complicated models were also tested. For

all targets, Hα information was added to the model to give:

a
= +

+ + +
· ·

· · ( )
w w

w b
RV CCF CCF

CCF H , B7v v

1 1 2 2

where Hα is the derived Hα emission for the given exposure,
and b is the associated weight that is fit for, like the wv weights
are. For HD 26965, a fitted Keplerian was also added with a
fitted weight parameter d as follows:

a
= + +

+ + +
· ·

· · · ( )
w w

w b d Keplerian
RV CCF CCF

CCF H . B8v v

1 1 2 2

Each of the CCF Linear Regression model versions included
several measures to prevent overfitting. Specifically, the
method results can be very sensitive to the choice in location
across the differential CCFs. To address this concern, the
implementation (1) used significantly less free parameters than
observations (i.e., four to free parameters for 25 to 58
observations). (2) The magnitude of the weights for each
CCF location was limited given that large weights are a
common sign of overfitting. (3) CCF locations were checked to
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ensure they are capturing the general behavior in shape changes
around that location rather than overfitting. This was done by
shifting all CCF locations in x and seeing whether the results
were comparable to shifting one CCF location at a time. In the
future, implementing a cross-validation approach would further
address overfitting concerns.

This CCF Linear Regression method does not use timing
information. Though it benefits from more observations, the
cadence of these observations does not matter. More observa-
tions allow for more locations in the differential CCFs to be
included in the model, allowing it to potentially pick up on
more shape variations. The method can be sensitive to choice
of locations across the differential CCFs, which require some
fine-tuning.

Appendix C
In-depth Descriptions of Line-by-Line Methods

C.1. CCF Mask-VALD

The CCF Mask-VALD method, submitted by the PennState
team, aims to generate cleaner CCFs by mitigating the effects
of variable lines, blended lines, telluric contamination, and
lines strongly affected by stellar variability and activity. First,
an automatic line-fitting code finds all spectral lines and fits
them to a Gaussian with a linear offset. Fitted line depths are
used as mask weights for each line. Any spectral line with a
line center falling within 30 km s−1 of features in the provided
SELENITE telluric model were removed.

A line list from the VALD is used to vet lines too near each
other in order to avoid line blends. For each target, an optimal
definition of “too near” was empirically determined, where any
lines with centers closer than a given line blend cutoff were
removed. Cutoffs ranging between 0 and 27 km s−1 in intervals
of 3 km s−1 were tested. Masks used a Gaussian window
function. Different mask widths were tried where the sigma of
the Gaussian window function ranged from one to eight pixels.
The optimal mask window width and line blend cutoff was
decided by the combination that gave the lowest resultant
RV rms.

Generating these masks requires the spectra along with a
telluric model. The approximate RV shift of each spectra as
well as the expected line velocity width makes line fitting
easier. The target star’s stellar temperature and glog are needed
for the VALD line list.

C.2. CCF Mask-BIS and CCF Mask-RV

The CCF Mask-BIS and CCF Mask-RV methods, submitted
by the Warwick team, constructs weighted, binary masks to
remove the contributions from blended lines or lines particu-
larly sensitive to stellar signals (Lafarga et al. 2020). Spectral
lines are found by identifying relative minima in a high S/N
stellar template built by coadding observations. Each line is
then parameterized by fitting a Gaussian function. This gives an
initial line list with rest wavelengths for all lines. Only lines
with widths, depths, and asymmetry that fall between a
specified range (as specified in Lafarga et al. 2020) are kept.
This ensures that the included lines are clear, sharp lines with
no obvious blends. The provided SELENITE telluric model is
used to vet for any lines too near a telluric feature.

RVs are then computed for each individual line in each of
the observations. Each line is fit to a Gaussian. The mean of
this Gaussian is taken to be the line center, which is then

compared to the initial line list to calculate the RV shift of the
line. Lines are determined to be either sensitive or insensitive to
photospheric velocities based on how correlated they are with a
given activity indicator. The Pearson correlation coefficient is
used to gauge the degree of correlation. Lines were established
as inactive if they had a coefficient less than 0.2–0.4 and spread
in RVs less than 10–15 m s−1 (with the specific cutoff
depending on the target). Active lines had correlation
coefficients greater than 0.3–0.5 with RVs or a correlation
coefficient less than or equal to −0.3 in the case of the BIS-
guided mask.
Very correlated lines are likely to be strongly affected by

stellar signals. If a line’s RVs exhibit a lot of scatter, it becomes
difficult to tell whether a line is truly uncorrelated with an
activity indicator, or if the correlation is merely lost among the
scatter. Therefore, lines that exhibit a large RV scatter are also
discarded. The remaining lines that exhibit little to no
correlation with activity indicators are averaged to compute a
final RV for each exposure.
The results presented in this report used either the CCF BIS

(CCF Mask-BIS) or the CCF RV (CCF Mask-RV) as an
indicator to establish what lines are strongly correlated with
stellar signals. Note, the CCF RV and individual line RV are
not fully independent, which could bias the correlations
measured. Other than choice of indicator, there is no specific
tuning required for this method.
For this method, the data must be high enough resolution to

resolve line blends. The data should also be stable enough that
the dominate variations in lines are due to stellar signals and
not instrumental or other nonastrophysical effects. More
observations, especially over a greater range of activity states,
will result in a better measure of correlation.

C.3. LBL+PCASpec., LBL+PCARV, and LBL+PCASpec./RV

The Geneva team used a combination of spectral cleaning
techniques and LBL RVs. The provided spectra were first
continuum normalized using RASSINE, an open source python
package that makes use of convex hulls to determine
continuum points (Xu et al. 2019; Cretignier et al. 2020b).
YARARA was then used to clean the spectra of tellurics and
first-order morphological variations away from a median
spectra (Cretignier et al. 2021). Using this post-processed
spectra, a master spectrum and tailored stellar mask (to avoid
line blends) was developed for each star.
LBL RVs were extracted, where RVs for each spectral line

are derived relative to the star-specific master spectrum
(Dumusque 2018). With LBL+PCASpec., a weighted PCA is
run on the spectral level and the first three components are used
to reconstruct a denoised, master spectrum. The degree to
which lines are affected by stellar signals or observational
systematics varies from line to line, as reflected in the spread of
each line-specific RV across all observations.
For LBL+PCARV, PCA is used to identify variations across

all lines in all observations, where each observation has been
corrected by its average RV. The first three principal
components are used to decorrelate the average RV signal for
each observation using multilinear regression.
This method is run using merged spectra, where all echelle

orders of a spectrum have been merged to form one, long
spectrum. The basic method described here requires little
tweaking to run, but implementing YARARA can get
increasingly more complex if it is used to do a more tailored
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job of removing instrumental systematics. Because each line
now stands alone, this analysis does require higher S/N spectra
in comparison with a classic CCF. In order to use YARARA to
disentangle telluric features, the input set of observations must
have a good coverage of different barycentric shifts in order to
separate the stellar lines from the telluric lines. For best
performance from the PCA, it is ideal if the observations also
cover a wide range of stellar activity states.

This method outputs RVs for every line as well as the
principal variation in the centered RVs from the RV-level PCA.
The PCA here is run directly on the line RVs or the spectra
itself rather than chromospheric proxies, such as more classic
activity indicators. The PCA step might be swayed by outliers
or the presence of large variation, e.g., hardware changes,
abnormal observing conditions. By using the whole spectrum
and treating each line independently, LBL RVs reveal how
individual lines are affected by variations from either stellar
signals or instrument systematics. This gives a better picture of
how these affects are manifesting in the spectra.

There are three flavors of LBL results presented here. The
LBL+PCASpec. results uses PCA at the spectral level to create
the master template while the LBL+PCARV method imple-
ments PCA on the recovered RVs for each line. Both methods
can also be combined by first applying the PCA decomposition
to the spectra, extracting LBL RVs using that master template,
and then decomposing the resultant LBL RVs with another
PCA. Those results are included as LBL+PCASpec./RV.

C.4. Pairwise Gaussian Process

The Pairwise Gaussian Process (PWGP) RV Extraction
method, submitted by the OxBridGen team, uses GPs to model
and then align all pairs of spectra with each other (Rajpaul et al.
2020). These pairwise RVs can then be combined to establish
differential RVs without having to construct a master template.
The pairwise matching is done on a highly localized basis—
i.e., each spectra is broken up into many different “chunks”
with each chunk containing one to a few spectral features.

These smaller chunks can be treated as independent
measures of the spectral shift, where some chunks will contain
more RV information or be more affected by stellar variability
than others. More sophisticated implementations are possible,
for example modifying the GP modeling of spectral chunks to
model stellar variability in addition to Doppler shifts. For the
results presented here, spectral chunks that appeared “con-
taminated” by stellar variability were simply not used when
computing final RVs.

The PWGP method reads in spectra. A Matérn 5

2
kernel is

used to model and align each spectral chunk, with different
hyperparameters returned for each chunk. This can get quite
computationally expensive, but is helped by the pairwise
framework. Though the method requires little tuning to run,
some thought must go into deciding which chunks are
considered “contaminated” and what to do with them.

There are many possible metrics to use in determining which
chunks appear to be contaminated. The chunk itself may
exhibit unusually large variation from one exposure to another,
suggesting there are stellar signals or tellurics present in the
chunk that is causing it to return such a large range of RV
measurements. Similarly, the RV error of a chunk may be
higher than typical. The RVs of a chunk may also show
statistically significant correlation with an activity indicator,

suggesting the RV from that chunk is mostly due to stellar
signals rather than true dynamical shifts.
Tuning the cutoffs for which chunks to include requires

balancing between the rms of the final RVs and the error bars
on these measurements. Removing too many chunks will
exclude too much data from the process, thereby increasing the
error bars for each RV measurement. Not removing enough
chunks means noise will continue to be incorporated into the
final RV measurements, thereby resulting in greater RV scatter.
After cutting contaminated chunks, the RV measurements of

the remaining chunks are combined to recover final RVs. The
RV from each chunk is inversely weighted by the scatter in
returned RVs for that chunk as determined via MCMC
analysis. By using MCMC, the resultant weight incorporates
both the photon noise and uncertainty from the GP fit.
Using GP modeling to align spectra should perform better

(as compared to non-GP models) with lower-resolution and
lower-S/N spectra. However, having higher S/N/resolution
spectra is needed when identifying contamination.
This method benefits from using a principled, GP modeling

framework for spectral interpolation and alignment. This
precludes the need to generate a master template and indeed
does not require any information about where lines are, what
they may look line (i.e., depth, width, etc.), or how they might
change with stellar signals. On the other hand, the model also
cannot incorporate any prior knowledge of stellar or telluric
contamination and does not distinguish between different forms
of contamination whether stellar, terrestrial, or instrumental.

Appendix D
In-depth Descriptions of Methods that Model the Spectra

D.1. DCPCA and DCPCA+GLOM

The DCPCA method, submitted by the PennState team,
identifies the largest variations in RV shifted spectral data using
PCA (Jones et al. 2017). The resultant principal components
highlight where the spectra is changing the most, while the
corresponding amplitudes of each principal component capture
the magnitude of this change for each observation. By feeding
the PCA the full spectral format, the PCA is able to pick up on
changes at the pixel level. The principal component amplitudes
can be used as an activity indicator.
The DCPCA method requires spectra and initial guess RVs

for each observation. The spectra are first shifted by the best-fit
RV for each observation and then interpolated onto a common
wavelength grid using a GP with a Matérn 5

2
kernel. Some

tuning of what parts of the spectra to include in the PCA will
help ensure the PCA is not picking up on variations from the
instrument or tellurics. While the method can be run on the full
spectrum, the results reported here used the areas of spectra
near lines specified by a CCF mask. This helps to avoid telluric
contamination and blended lines.
The number of principal components to incorporate into the

analysis can be chosen in a number of ways. As always, only
principal components with significant features (i.e., are not
purely noise) should be used. With enough exposures, a classic
cross-validation test can be used to gauge the performance of
incorporating different numbers of components. More observa-
tions will likely result in more significant components. A
component can also be tied to photospheric velocities if the
amplitudes of the component are correlated with activity
indicators. Data with a high S/N and high resolution makes
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variations in the spectra clearer. A broad wavelength coverage
would also help, as it would encompass more changes.

For the results presented in this report, the amplitudes of the
first two principal components were used as indicators. The
publicly available ESPRESSO masks (also used to generate the
provided CCFS) were used to determine which segments of the
spectra were fed into the PCA. The RVs were decorrelated
against the resultant principal component amplitudes via both a
simple linear regression and using the GLOM framework with
the sum of two Matérn 5

2
kernels.

D.2. Generative RR and Generative RR Self

Generative RR, submitted by the CCA team, takes the
residuals of each observed spectrum against a Doppler-shifted
template spectrum and regresses these residuals against house-
keeping data, such as provided RVs, activity indicators, or
instrumental measurements. Generative RR is so named as it
operates under a generative framework—it constructs a model
using a finite number of housekeeping data sets, or labels, to
predict what the residuals will look like. In doing so,
Generative RR establishes what properties of the residuals
can be tied to the different effects being traced by the
housekeeping data, be it stellar signals, instrument systematics,
or whatever else it is given. These effects that are not due to an
orbiting planet can then be removed.

For N observations, let F represent all residuals from a model
for each pixel of each spectrum, while Q represents all
housekeeping data being used including the RVs. We use Δfn
to denote the residuals of a given observation n and q̂n to
represent the predicted RV correction for that observation. For
a statistically rigorous model, for each observation n or
validation set, the Δfn residuals should be left out of F. RV
corrections can then be calculated as follows:

= D
-

⎡
⎣⎢

⎤
⎦⎥

ˆ · · ( )q f
dF

dQ

dF

dQ

dF

dQ
, D9n n

1

where dF

dQ
represents the spectral residuals being regressed

against the housekeeping data. This is a first-order regression
model. The housekeeping data can vary depending on what is
needed to give a complete, orthogonal representation of the
variations being modeled.

Implementing this method requires spectra of each observa-
tion and housekeeping data associated with each spectra. The
template spectrum can be generated in any number of ways.
Higher-resolution spectra will preserve more evidence of stellar
variability in the residuals. The regression itself is computa-
tionally simple to implement.

For the results presented in this report, a model spectrum was
generated using wobble, a data-driven method for extracting
RVs and inferring the underlying spectral components (Bedell
et al. 2019). The CBC RVs and Hα equivalent width are the
housekeeping data used. Expected RV offsets are calculated
using a cross-validation framework where an eighth of the data
at a time is left out of the model construction. For reference, the
results where all data are used is given as Generative RR Self
results. For both the cross-validation and self frameworks, all
observations are used to construct the model spectrum with
wobble.

By incorporating all the spectral residuals, Generative RR is
able to incorporate information from every pixel of the spectral
data. The housekeeping data are then used to try and predict the

behavior of different pixels and the magnitude of change to the
RVs expected from these variations. Incorporating more data
that traces different effects makes the method more sensitive to
different causes of spectral variations. On the flip side, the
method is also incapable of tracing any variation not associated
with the provided housekeeping data. The regression will be
poorly constrained if the housekeeping data sets used are not all
independent and do not all trace a real change on the residuals
being modeled.

D.3. Discriminative RR

Discriminative RR, submitted by the CCA team, is similar to
Generative RR and also regresses spectral residuals to a shifted
template against housekeeping data. Discriminative RR, the
discriminative counter part to Generative RR, is discriminative
in that it uses the residuals to predict the housekeeping data.
The result is a prediction of the magnitude of RV shift due to
observation-specific spectral variations as captured in the
residuals to a spectral model.
As with Generative RR, let F represent the array of all

spectral residuals, Δfn the residuals for a given observation n,
and Q be the array of RVs acting a labels. The predicted RV
correction for each observation, q̂n, can then be calculated

a= D + -ˆ · ( ) ( )q f F F I F Q, D10n n
T T1

where α represents an opportunity to introduce expected
information content, for example, uncertainties on the spectral
residuals or spectral resolution.
The inputs, implementation, and output for the Discrimina-

tive RR method is the same as for the Generative RR method
described above. After acquiring the residuals to a template
spectra and associated RVs for each spectra, the method takes
seconds to run. The only housekeeping data used for
Discriminative RR are the CBC RVs for each exposure.
The discriminative framework is more agnostic about

precisely what housekeeping data are included. The regression
itself works to construct an orthogonal transformation that can
be mapped onto the derived RVs. This framework is more
appropriate in the regime where the spectra is varying in more
ways than can be captured by the provided housekeeping data.
Since it is not clear whether known activity indicators trace all
possible spectral variations due to stellar signals, the dis-
criminative framework may be more appropriate than the
generative framework for disentangling photospheric velocities
from true center-of-mass shifts.
In truth, there is a latent model that produces both the

housekeeping data and the spectral variations, namely, the
activity and intrinsic variability of the target stars. Both the
generative and discriminative frameworks move between the
products of this latent model, just in different directions. Both
the Generative RR and Discriminative RR methods are
ongoing work; the results presented here are an initial
implementation of the two methods.

Appendix E
Submitted RVs of All Methods

The following section show the submitted RVs, both clean
and activity RVs where available, as well as their periodograms
for each of the four targets (see Figures 7–10). Methods are
presented (top to bottom, left to right) in the order in which
they are presented in the Methods Section and Appendix.
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Figure 7. Submitted results for HD 101501. For each periodogram, p-values of 0.01 and 0.01 are shown as horizontal solid and dashed black lines, respectively.
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Figure 8. Submitted results for HD 26965. Otherwise the same as Figure 7.
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Figure 9. Submitted results for HD 10700. Otherwise the same as Figure 7.
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Figure 10. Submitted results for HD 34411. Otherwise the same as Figure 7.
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Given the large format of the figures, their content is described
here in the text.

The top-left plot shows the originally provided EXPRES
RVs (first column) along with the periodogram (second
column) in black and the periodogram of the time sampling,
or the window function, in green. The rest of the rows show the
submitted clean RVs in blue. Each figure is labeled by the team
and method name.

The periodogram subplots for each method shows a
periodogram of the clean RV in blue. If provided, the
periodogram of submitted activity RVs are also shown in
orange. A significance level of p-value= 0.01 is shown as a
horizontal, black line across the periodograms. A p-value of 0.1
is shown as a dashed black line. Axes with the words “No
Submission” are shown for methods that did not submit results
for that target.
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