
epyc: Computational experiment management in Python
Simon Dobson1

1 School of Computer Science, University of St Andrews, Scotland UK
DOI: 10.21105/joss.03764

Software
• Review
• Repository
• Archive

Editor: Andrew Stewart
Reviewers:

• @zbeekman
• @lorenzo-rovigatti
• @amritagos

Submitted: 06 September 2021
Published: 18 April 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
epyc is a Python module for designing, executing, storing, and analysing the results of large
sets of (possibly long-running) computational experiments, as are often found when writing
simulations of complex networks and other domains. It allows the same experimental code to be
run on single machines, multicore machines, and computational clusters without modification,
and automatically manages the execution of an experiment for different parameter values and
for multiple repetitions.

Statement of need
Computation and simulation have joined theory and experiment as a third component of many
scientific fields. Computational experiments share many features with traditional experiments:
they need to be structured, repeated, repeatable, reproducible, and interpretable (Software
Sustainability Institute, 2020). There is often a need to perform a computation at a number
of points across a multi-dimensional parameter space, aggregating multiple repetitions and
wrangling results for analysis and presentation. Often the experiments being performed are on
such a scale as to require the use of multicore machines and/or computing clusters to perform
multiple experiments simultaneously. The logistics of managing this process can become quite
complicated, and benefits from automation.

epyc defines a conceptual framework for performing series of computational experiments,
and implements this in pure Python. Computational “laboratories” perform a collection of
“experiments” whose parameters and results are recorded in a “lab notebook” for later retrieval.
Laboratories take a parameter space consisting of any number of individual parameters having
either single values or ranges, and use a computational experimental “design” to determine
which combinations are used in running experiments.

Main features
Modern research software has to operate in a range of computational environments and at a
range of scales. epyc is fully portable to any Python environment, and can operate across the
scales. Laboratories can be sequential (a single core on a machine), parallel (multiple cores on
a machine), or clustered (multiple cores on multiple machines). A key design goal of epyc is
to allow the same experimental code to run under all these configurations, to maximise the
re-use of experiments. Cluster-based laboratories can be accessed asynchronously, allowing a
set of experiments to be started and their results retrieved later without remaining connected
to the cluster: useful for laptop users. epyc also integrates fully into the Jupyter ecosystem,
allowing notebook-based experimental protocols to still use compute clusters.

Experimental design is a neglected feature of computational science, despite its strong presence
in traditional settings (Bailey, 2009). The choice of design translates an experiment and a
space of possible parameters into a collection of experimental runs at selected points in that

Dobson. (2022). epyc: Computational experiment management in Python. Journal of Open Source Software, 7(72), 3764. https://doi.org/10.
21105/joss.03764.

1

https://doi.org/10.21105/joss.03764
https://github.com/openjournals/joss-reviews/issues/3764
https://github.com/simoninireland/epyc
https://doi.org/10.5281/zenodo.6460760
https://ajstewartlang.netlify.app/
https://github.com/zbeekman
https://github.com/lorenzo-rovigatti
https://github.com/amritagos
https://creativecommons.org/licenses/by/4.0/
https://jupyter.org/
https://doi.org/10.21105/joss.03764
https://doi.org/10.21105/joss.03764


parameter space. Typically choices are to use every combination of parameters (a factorial
design) or to take corresponding values from each parameter range (a pointwise design): other
designs can easily be added.

epyc defines a lifecycle for experiments through which they are configured to their parameters,
set-up, run, and torn-down, before returning the experimental results alongside the experimental
parameters and some metadata on the execution of the run, to be inserted into a notebook. A
small set of experiment combinators separate the logic of a single experiment from structuring
and other tasks. This means that any experiment can be repeated and statistically summarised
as a single unit, and also encourages the development of re-usable computational analytics
rather than manual handling that can be harder to reproduce.

Lab notebooks can be persistent to store the results of experiments in a non-destructive form,
structured as individual result sets with notes and metadata. Notebooks store all the data and
metadata in a portable format to improve the reproducibility of computational experiments.
Results can be accessed through pandas DataFrames for easy wrangling and visualisation. Lab
notebooks store their data in HDF5, a standard format for large-scale archival storage that
augments raw data with annotations and metadata, as well as making results obtained in epyc

easily portable to other tools.

Differences with other tools
epyc is designed to manage experiments rather than provide sophisticated workflows, since for
many application such workflows are largely unnecessary. Instead, epyc defines a conceptual
model of computational experiments (laboratories, designs, experiments, and notebooks) and
supports each component as flexibly and orthogonally as possible.

Unlike Dask, epyc works independently of libraries such as numpy or scikit-learn (although
it can run experiments using these tools). It also adopts a control- rather than data-driven
approach (also unlike Dask, and unlike more traditional workflow engines such as Taverna or
SnakeMake) which leads to more predictable computational requirements and fits better with
the approaches of certain disciplines.

epyc is perhaps closest in spirit to Sacred, which also emphasises the management of experi-
mental configurations for reproducibility. epyc provides more support for executing experiments
uniformly across entire spaces of parameters, with integrated use of parallelism, and under
different experimental designs where required.

Main applications
epyc arose as part of an on-going research programme in network science and complex systems,
as a way to manage the thousands of repeated simulations needing to be performed across large
parameter spaces. It provides experiment management for the epydemic simulation framework
for complex networks, from which it has contributed to a series of papers exploring networks
and their processes (for example Mann et al. (2021a), and a book on network-based disease
modelling (Dobson, 2020). While originally closely integrated into this system, epyc is now a
stand-alone domain-independent experimental management framework.

Compatibility and availability
epyc works with versions of Python from Python 3.6, and can be installed directly from PyPy
using pip. API and tutorial documentation can be found on ReadTheDocs. Source code is
available on GitHub, where issues can also be reported.

Dobson. (2022). epyc: Computational experiment management in Python. Journal of Open Source Software, 7(72), 3764. https://doi.org/10.
21105/joss.03764.

2

https://pandas.pydata.org/index.html
https://www.hdfgroup.org/
https://dask.org/
https://numpy.org/
https://scikit-learn.org/stable/index.html
https://incubator.apache.org/projects/taverna.html
https://snakemake.readthedocs.io/en/stable/
https://sacred.readthedocs.io/en/stable/index.html
https://pyepydemic.readthedocs.io/en/latest/
https://pypi.org/project/epyc/
https://epyc.readthedocs.io/en/latest/
https://github.com/simoninireland/epyc
https://doi.org/10.21105/joss.03764
https://doi.org/10.21105/joss.03764


References
Bailey, R. A. (2009). Design of comparative experiments. Cambridge University Press. https:

//doi.org/10.1017/CBO9780511611483

Dobson, S. (2020). Epidemic modelling – some notes, maths, and code. Independent Publish-
ing Network. ISBN: 978-183853-565-0

Mann, P., Smith, V. A., Mitchell, J., & Dobson, S. (2021a). Symbiotic and antagonistic
disease dynamics on clustered networks using bond percolation. Physical Review E, 104(2).
https://doi.org/10.1103/PhysRevE.104.024303

Mann, P., Smith, V. A., Mitchell, J., & Dobson, S. (2021b). Two-pathogen model with
competition on clustered networks. Physical Review E, 103(6). https://doi.org/10.1103/
PhysRevE.103.062308

Pitcher, M., Bowness, R., Dobson, S., Eftimie, R., & Gillespie, S. (2020). Modelling the effects
of environmental heterogeneity within the lung on the tuberculosis lifecycle. Journal of
Theoretical Biology, 506. https://doi.org/10.1101/2019.12.12.871269

Software Sustainability Institute. (2020). Guides for researchers. https://www.software.ac.
uk/resources/guides/guides-researchers

Dobson. (2022). epyc: Computational experiment management in Python. Journal of Open Source Software, 7(72), 3764. https://doi.org/10.
21105/joss.03764.

3

https://doi.org/10.1017/CBO9780511611483
https://doi.org/10.1017/CBO9780511611483
https://simoninireland.github.io/introduction-to-epidemics/
https://doi.org/10.1103/PhysRevE.104.024303
https://doi.org/10.1103/PhysRevE.103.062308
https://doi.org/10.1103/PhysRevE.103.062308
https://doi.org/10.1101/2019.12.12.871269
https://www.software.ac.uk/resources/guides/guides-researchers
https://www.software.ac.uk/resources/guides/guides-researchers
https://doi.org/10.21105/joss.03764
https://doi.org/10.21105/joss.03764

	Summary
	Statement of need
	Main features
	Differences with other tools
	Main applications
	Compatibility and availability
	References

