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ABSTRACT

Many modern histopathology laboratories are in the process of digitising their workflows. Once
images of the tissue exist as digital data, it becomes feasible to research the augmentation or
automation of clinical reporting and diagnosis. The application of modern computer vision techniques,
based on Deep Learning, promise systems that can identify pathologies in slide images with a high
degree of accuracy. Generative modelling is an approach to machine learning and deep learning that
can be used to transform and generate data. It can be applied to a broad range of tasks within digital
pathology including the removal of color and intensity artefacts, the adaption of images in one domain
into those of another, and the generation of synthetic digital tissue samples. This review provides
an introduction to the topic, considers these applications, and discusses some future directions for
generative models within histopathology.

1 Introduction

Clinical histopathology is at an exciting paradigm shift with many laboratories replacing traditional microscopy with
high-resolution scanners and large digital displays. Unlike traditional slides, digital images can be shared electronically,
marked up simultaneously by multiple pathologists, and assessed automatically[1]. It is hoped that the deployment
into clinical practice of systems that automate and augment diagnostic reporting will lead to a significant increase in
assessment capacity alongside quicker reporting times. This article will provide a brief introduction to Deep Generative
Models (DGM), review their current use in digital pathology, and envision future applications for them within the field.
To contextualise this work, DGMs are discussed in relation to the current state of the art deep learning techniques for
pathology and the problems that generative techniques can solve within a conventional pipeline.

Before discussing the place that generative models could take in the field of automated histopathology, it is necessary to
describe the current typical workflow of machine learning in digital pathology and some of the common issues that can
hinder downstream reporting tasks. Mason and Wiggins[2] describe a taxonomy of data science tasks, independent of
pathology, organising them into five categories, undertaken sequentially; obtain, scrub, explore, model, and interpret.
This model can be used to understand the process of applying machine learning in digital pathology. Data is obtained
through the fixing, staining, and scanning of tissue to transform it into a set of whole slide images. These images are
then scrubbed, or pre-processed, to remove artefacts and make them ready to be used in the modelling phase. Tasks such
as stain normalisation, data augmentation and patch generation fall into this category. In the exploration phase, resulting
scrubbed data is analysed, either automatically or by a human, to determine an appropriate modelling technique, such
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as which neural network architecture to use. In digital pathology, there are a large number of different pathologies and
tissue types that may be of interest and it’s therefore impractical to iteratively try every possible modelling technique
and, in the case of ensemble learning, every combination of technique. Modelling is where the machine learning system
is trained and evaluated. In the interpretation phase, human pathologists are presented with the predictions of the model
and can make use of it in the context of clinical or research work.

Figure-1 presents the Mason and Wiggins taxonomy[2] and although it may seem relatively simple, the automation of
Whole Slide Image (WSI) analysis and diagnosis presents several significant challenges[3]. Foremost is the issue of
data size; Whole Slide Images are multi-gigabyte images in the range of approximately 100,000 x 100,000 pixels. This
makes the direct application of modern computer vision algorithms impractical on non-specialist computing hardware.
Typical solutions to overcome this have been applied which include: downsampling the image and breaking the image
up into smaller sub-images called patches.

Secondly, data availability is problematic for most researchers. Supervised machine learning requires labels for
each sample. In WSI analysis, this may mean assigning a category to each slide as a whole, identifying a set of
points-of-interest on the tissue, or drawing around areas to segment tissue types or pathologies. For each of these, a
trained specialist in histopathology is required. The process is time-consuming, expensive, and there is often a lot
of inter-observer and intra-observer variability between the labels provided by pathologists. As a result, data sets
used to train automated digital pathology models tend to be small compared to those available in other computer
vision subfields, such as ImageNet[4], where non-specialists can straight-forwardly provided labels, e.g. labelling a
cat vs a dog. This situation, however, has been improved by the release of tissue annotated open data sets, such as
Camelyon16[5] and 17[6], furthermore initiatives such as iCAIRD[7] and Pathlake[8] are being undertaken to provide
large, well annotated and curated WSI data sets linked to clinicopathological data. These make rich digital pathology
training material widely available, albeit within narrowly defined clinical reporting and specific tissue types.

Thirdly, WSI analysis sufferers from a number of domain-specific image artefacts caused by the process of surgical
removal, fixing, cutting, staining, and scanning the tissue. These can include folds in the tissue, retraction artefact,
variations in the application of chemicals in the staining process, small cracks and imperfections in the glass slide and
coverslip, partial blurring of the image caused by focusing errors, and image resolution and compression differences
between different scanners and file formats.

Despite these challenges, computer vision techniques based on supervised and weakly-supervised learning have
been used to successfully automate some common assessment tasks in histopathology. For example, cell nucleus
identification, pathology classification, and cancer segmentation[9]. Unsurprisingly, state of the art results on slide
classification tasks, such as the work by Campanella, Hanna, Geneslaw, Miraflor, Werneck, Silva, Busam, Brogi, Reuter,
Klimstra, and Fuchs[10] on prostate cancer, basal cell carcinoma and breast cancer nodal metastases, rely on large data
sets.

2 Deep Generative Models

This section briefly introduces required terminology from computer vision, deep learning, and generative modelling
before describing their uses in a digital pathology workflow. Firstly, an image filter or kernel is a rectangular matrix that
can be applied to parts of a digital image to extract information, called features, from it. To apply a filter, a dot-product
is performed (component-wise multiplication followed by a sum) between the filter and a section of the image with the
same dimensions. In computer vision, this operation is referred to as a convolution. By sliding the filter across the
image and performing the convolution at each point, this operation can produce a new matrix, known as a feature map.
Filters that recognise primitive features, such as horizontal or vertical lines, can be hand-crafted, however more complex
ones must be learned by the model. Neural networks are the most commonly used of machine-learning approaches[11].
A convolutional neural network[12] is a machine learning approach that enables image filters to be learned from data
rather than programmed explicitly.

Generative models are an approach to machine learning in which systems attempt to estimate the probability of a
specific sample being picked at random based on some training data[13]. Once there is an estimate for the probability
density function over the training set, the model can be used to generate new examples. For example, a model can be
trained that generates new images of cats by training it on a large number of images of cats. Generative models are
contrasted with discriminative models, which estimate the probability of an output value given an input value (this
includes classification and regression problems). Recently, generative models based on deep learning have shown to be
good at generating novel data across a range of domains and tasks.

The most effective techniques, such as Generative Adversarial Networks (GANs)[13] and Variational Autoencoders
(VAEs)[14], come from a class of models know as latent variable generative models. In such systems, a model is trained

2



A PREPRINT - MAY 9, 2022

that takes the lower-dimensional representation of data, called the latent space vector, and generates high-dimensional
data from it. GANs and VAEs differ in the way they are trained, but both conceptualise generation as decoding.
By changing what data is passed in, as the latent space vector, model parameters can be learned that enable the
model to perform data translation tasks. In their recent review of GANs in Pathology[15], Tschuchnig, Oostingh, and
Gadermayr[16] split the GANs up based on what kind of translation task the model is training for. This put the emphasis
on task, for example image-to-image translation verses label-to-image translation. The rest of this review will describe
how different generative models have been trained to perform different translation tasks and how these could be usefully
applied to the automated reporting of a clinical task within a digital pathology pipeline.

Generative Adversarial Networks[13] are a class of generative model in which a network, known as the generator, is
trained by having it attempt to trick a second model, known as the discriminator. The discriminator and the generator
are trained simultaneously. During training, the generator is sampled from by having to translate noise into fake data.
The discriminator is then trained on a combination of the fake data, labelled as fake, and the real data, labelled as real.
The generator is then trained by having it generate fake data and asking the discriminator to predict labels for it. The
training loss for the generator is based on how well the discriminator can tell them apart, i.e. how well the generator
can fool it (generating fake data that the discriminator classes as real). This simultaneous training procedure can cause
GANs to both be computationally expensive and suffer from difficulty in converging to an accurate solution.

3 Generative Models in the Digital Pathology Pipeline

Generative models have the potential to overcome a number of the issues that researchers are confronted with when
developing computer vision systems for digital diagnosis and reporting. For example, when data sets stained at different
institutions are used there can often be a lot of variation in color and intensity. It can be expensive and time-consuming
to acquire high-quality labelled training data and generative models are being applied to the creation of synthetic
datasets to overcome this. Generative models can also be used to stain tissue virtually, reducing the tissue preparation
overhead.

3.1 Color and Intensity Normalisation

During tissue preparation, particularly staining, variations in color and intensity can be introduced between different
whole slide images. These artefacts can complicate the interpretation of the slide by pathologists and computers. When
this occurs, similar tissue features can present differently or different ones similarly. Such artefacts are introduced from
several sources such as: differences between scanners, the thickness of the cut tissue samples, and the amounts and
concentrations of chemicals used in varying staining protocols. These issues can be mitigated in three ways: color
information can be ignored, models can be trained that learn features that are insensitive to the artefacts[17] or, images
can be normalised to account for differences.

By converting the image to greyscale, much of the information that is provided by the staining process is lost. Analysis
techniques for greyscale pathology images have to rely on other features, for example texture and morphology[18, 19],
leading to lower performance on downstream tasks. In other situations, artefacts can be compensated for by applying
a large number of color perturbations to the training data so that a wide range of variations were presented to the
model during training[17]. This technique requires the perturbations to be statistically similar to the color and intensity
variations across the data to be assessed, information that is not always available, and requires increased computational
and memory overheads due to the large amount of data augmentation.

Ruifrok and Johnston[20] proposed a novel method based on color-deconvolution that depended on user-determined
color information to reconstruct images for each stain. This method provided state of the art results for stain-
normalisation but proved limited in its applicability to extensive studies due to the user needing to estimate the values
used in the deconvolution manually. Whereas Magee, Treanor, Crellin, Shires, Smith, Mohee, and Quirke[21] presented
a method for estimating the required color deconvolution parameters from the image data, eliminating the need for
user input. This work was extended by Khan, Rajpoot, Treanor, and Magee[22] to account for image specific color
variations and to improve the training data used to separate the different stains.

A limitation of color-deconvolution techniques is their failure to take into account information outside of the image
color, for example tissue structure or texture. Generative models are able to address this limitation. Stain normalisation
can be thought of as an image generation problem. Generative models have proved useful for image generation and
recently have been applied to generate normalised pathology slides. Three different approaches have been applied to
this task; stain-style tranfer[23], CycleGAN[24] based image-to-image translation, and Pix2Pix-based translation[25].

3



A PREPRINT - MAY 9, 2022

3.1.1 Stain-Style Transfer

Neural style transfer[26] is an image translation technique that transfers the style of one source image onto the content
of another to generate a target image. The terms style and content can be a little misleading at first; content refers to
aspects of the image, like the shape and arrangement of nuclei and cells and the tissue architecture that they comprise,
and style refers to aspects such as color, like the haematoxylin and eosin shades, and texture, for example the nuclear
chromatin. Style representations are derived from correlations in between the same location in different activation maps
of the same layer of a neural network. For example, there might be a filter that recognises blue pixels and another that
recognises a curve. If they consistently activate together, then this would represent that curves are generally blue. Stain
normalisation can be thought of as a kind of style transfer from the source to the target, however it’s important that only
the color distribution is transformed, not other histopathological features.

Stain-style Transfer[23] uses a modification on GANs to perform color normalisation and its use was demonstrated in
histopathology by its application on patches extracted from the Camelyon16 dataset[5]. The normalised patches were
shown to improve tumor classification. In this technique, this input into the GANs generator is changed from noise
to the unnormalised image. A Conditional GAN[27] is then used in which both the generator and discriminator are
trained to generate and discriminate class labels for each patch, in this case tumor or non-tumor, in addition to the fake
or real labels. On its own, this was shown to produce distortion in the patches’ non-color histopathological features. In
order to address these issues, two other loss functions were added to the system; reconstruction-loss, to minimise the
difference between the source and generated images, and feature-preserving loss which derives a loss by comparing
the activations of the final layer of the discriminator when the source and generated images are passed though the
network. This approach was shown to improve the classification accuracy of a CNN-based model trained on image
patches extracted from the Camelyon16 dataset. Bentaieb and Hamerneh[28] propose a similar approach in which
the generator architecture is replaced with a U-Net encoder-decoder style network, called the Stain Transfer Network,
and the discriminator is given an additional classification task. This approach was assessed on both classification and
segmentation tasks, across three separate data-sets, showing it can be used to improve the identification of a wide range
of tissue and pathology types.

3.1.2 Pix2Pix-base Image-to-Image Translation

Pix2Pix[25] is an extension of conditional GANs which, like other image-to-image translation models, learns the
mapping from one image domain to another. The difference with Pix2Pix is that it also learns a loss function in
order to train the translation model. This means that models based on Pix2Pix can be trained to translate between
different domains without the need to specify a specific loss function for that translation, something that is hard to
do. Like Conditional GANs for image-to-image translation, Pix2Pix requires image pairs, one from each domain, as
example translations. Salehi and Chalechale[29] apply this approach successfully to the stain normalisation using five
different H&E datasets. The method involves de-staining the patches by reducing them to greyscale, before synthetically
re-staining them in a way that ensures that the color is consistent. This is similar to the artificial staining proposed
by Rana, Yauney, Lowe, and Shah[30], discussed under data adaptation, and has been shown to perform well across
a range of statistical measurements comparing ground-truth stained images against those re-stained using the GAN.
This indicates that they will improve downstream assessment tasks, such as tumor classification and segmentation, in a
similar way to the Stain-style Transfer techniques[23, 28].

3.1.3 CycleGAN-based Image-to-Image Translation

One of the key disadvantages of Pix2Pix is the need for paired images from the source and target domain, for example
co-registered images before and after staining. CycleGAN [24] removes this requirement, allowing models to be trained
to translate from a source to a target domain without the need for paired examples. This is done by training an inverse
mapping from the source to target domain, at the same time as training the translation. By comparing the original image
to one that has had the forward and inverse transformation applied to it, a loss called cycle-consistency loss is derived.
When the Generator is trained, cycle-consistency loss is minimised, as is the conventional adversarial loss derived from
trying to fool the discriminator.

Within digital patholgy, de Bel, Hermsen, Kers, van der Laak, and Litjens[31] showed that by modifying the original
cycleGAN[24] to use a U-Net[32] style architecture, it made it more suitable for use with pathology images. They were
able to use the system to artificially stain images to a high quality. The technique was applied to two datasets of renal
tissue sections stained with Periodic Acid-Schiff from different staining centers. Models trained using the normalised
data was shown to have increase accuracy when segmenting various objects of interest within the renal slides such as,
arteries, tubuli, and glomeruli. However, the system was shown to be able to generate changes in texture, something that
breaks the constraint that the transform should preserve non-color tissue features and potentially introduces unwanted
bias into the generated datasets.
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3.2 Data Adaptation

Data adaptation is the task of taking the data in one domain, say H&E WSIs, and translating them into images that
resemble those in a different domain, say immunofluorescence WSIs. This can be useful as a data augmentation
technique, allowing for images labelled in one domain to be used effectively for learning in another domain. Doing
this relies on the image translation process retaining the correct labels. For example, if something is labelled as a cell
nucleus, it has to still look like a cell nucleus once it has been translated.

One possible use of this data adaptation is to enrich patches with additional channels showing different fluorescence
labels that highlight different kinds of information. This is called multiplexing and has traditionally been achieved
though re-labelling the same tissue multiple times and scanning in each fluorophore separately. There are two issues
with this; after multiple re-labelling the tissue quality begins to degrade, and scanning requires the slides to be precisely
aligned in order to allow the tissue to be co-registered. By doing virtual staining, the tissue is not degraded and, because
a single scan is used, there are no issues related to alignment.

A histopathological-to-immunofluorescence translation model that uses Pix2Pix[25] has been introduced by Burlingame,
Margolin, Gray, and Chang[33]. They adapt Pix2Pix by adding an adaptive regularisation term during training that
changes based on the prevalence of stained tissue in the patch. Patches with a low amount of stained tissue are penalised.
This composites for the relative ease of translating patches with low amounts of tissue. The systems ability to generate
realistic immunofluorescence stains from hematoxylin and eosin stains, opens up the possibility of quickly providing
information about cellular complexity when only a standard H&E stain is available.

Another possible application of image translation is artificial staining, in which the source domain is an unstained image
and the target is stained ones. If it’s possible to do this in a consistent way, it can remove the need for lab based staining
with its associated variations, requiring stain normalisation, and for the potential of human error. Rana, Yauney, Lowe,
and Shah[30] apply a modified Pix2Pix[25] model in which the generator made use of a U-Net architecture[32] in order
to translate between an unstained WSI taken from a prostrate core biopsy and virtual H&E stains of the same image.
Examination of the virtually stained images by pathologists showed that the system correctly stained many different
histological structures, including glands, stroma, nerve, and vascular spaces.

Data adaptation can also be used as a form of data augmentation. In DASGAN[34], Kapil, Wiestler, Lanzmich, Silva,
Steele, Rebelatto, Schmidt, and Brieu use a cycleGAN[24] to generate virtual PD-L1 stains from existing cytokeratin
stain that has been marked up with a costly segmentation label. This data was then used to train an image segmentation
model for the tumor epithelium that outperformed the same model without the additional data.

3.3 Data Synthesis

Data synthesis is perhaps the most exciting prospect for generative models, especially in the field of AI-based reporting
of histopathology. In digital pathology, creating a ground truth is expensive and time consuming. If accurately labelled
synthetic samples could be generated, then this problem would be alleviated. The amount of data would only be
limited by the resources available to run the generative model. However a conundrum exists here and data synthesis is
challenging. If there is enough data to train a generative model to generate new labelled data, then it’s likely there is
enough data to train an accurate classifier. Useful data synthesis requires one or both of two things; that the generative
model is able to learn different representations, more useful in generation, than a possible classifier, or that extra
information is somehow added to the generative process (for example, using a guide image).

PathologyGAN[35] is a study that undertakes the first of these approaches. It uses BigGAN[36], a version of GANs that
applies orthogonal regularisation to the generator allowing for more control over the generator’s output. PathologyGAN
uses a relativistic average discriminator[37], a modification to the discriminator which estimates the probability that a
real sample is more realistic than a randomly sampled fake data point. This addition was shown to improve the quality
of the generated images and converge faster. This system enables the creation of large datasets suitable for training.

The generation of new images can also be achieved by reformulating the problem as image translation, as shown by
Wei, Suriawinata, Vaickus, Ren, Liu, Wei, and Hassanpour[38]. They take normal colonic mucosa images and generate
synthetic colorectal polyp images on them. As with many other image-to-image translation models, their system is
a variation on cycleGAN[24]. They train the system on a data set that is filtered to only include patches that can be
unambiguously classified using a ResNet[39] classifier. Using this approach enabled them to augment their existing
colorectal histology a classifier with a 10% improvement in AUC. The field of data synthesis is still wide open for
follow-on work, as noted in both of these papers.
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4 Future Directions

As has been shown, within specific pathology domains, high-quality synthetic data-sets with labels can be generated
using GANs[35, 40] and these have been shown to improve the performance of discriminative models trained on
their data. Currently these techniques have been applied to the synthesis of patches, rather than complete whole slide
images. When diagnosing, a human pathologist will mostly work at a low magnification, for example 10x, and rely
on architectural features that are lost when the image is broken down into patches. There is potential to train on
similar low magnification images in order to exploit these features. A single WSI can be split into many thousands of
patches, meaning that the training sets for patch classifiers are many times larger when the image is patched at high
magnifications. At a lower magnification, the number of images available for training reduces dramatically, making
such approaches less feasible. This is where generative approaches, such as those above, could be used to generate
a large number of low magnification synthetic images, containing architectural features. Using other kinds of image
synthesis, such as traditional computer graphics techniques, in combination with generative models [41], may provide a
useful method in this domain and is an exciting future direction.

Generative models have the potential to enable medical data of all kinds, including pathology slides, to be used to train
machine learning models without them needing access to the original patient-identifiable data-set. Training a model on
non-anonymized data and then using the model to generate a new artificial anonymous data-set, may provide a way
to overcome the clinical firewalls that, due to patient confidentiality, prohibit many researchers accessing the original
data. This topic is the subject a large amount of research within the deep learning community[42, 43, 44]. Sufficiently
deep generative models are capable of memorising their training data in a way that can cause potentially confidential
information to leak into any synthetic data. This has important implications for data governance going forward. In
order to make generative models public it’s critical to ensure they are trained in such a way that removes the possibility
of confidential data being leaked into any synthetic data-set and therefore guidelines for doing this while maintaining
privacy are required and will need to be adhered to.

5 Conclusion

This paper has reviewed recent advances in the application of generative models to digital pathology. Work in this
domain seeks to address issues of color and intensity artefacts, data adaptation, and data synthesis, and how generative
models can address these. However, there remain a number of open challenges in the digital pathology workflow that
generative models can assist with. Multi-resolution WSI synthesis may provide a way to train deep models that exploit
architectural tissue features in a way that is currently unpractical due to a lack of data. Secondly, differential privacy for
WSI datasets may allow for a much large amount of useful data to be released publicly. The application of generative
models has proven useful in improving digital pathology workflows and this fast-developing technology holds much
promise in this field.
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Figure 1: A taxonomy of data science tasks applied to automated Whole Slide Image Analysis
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Figure 2: In latent space models, a low-dimensional vector is used to generate data. In this example a series of
convolutions are used to achieve this transformation. The example output of the network shows 64 images, each 64
pixels wide and 64 pixels high.
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