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1 | INTRODUCTION

Spatial biodiversity patterns generated by different evolutionary and
demographic processes can be observed at the ecological or spe-
cies level and at the genetic or molecular level (Fortuna et al., 2009;
Novembre & Stephens, 2008; Stotz et al., 2016; Van Tienderen, 1991;
Wang et al.,, 2011). However, metrics and approaches to describe
these spatial patterns and to infer the underlying processes differ
greatly between these two biodiversity levels. The metrics used to
study ecological variation (species) and genetic variation (alleles) are
mainly dominated by the traditional indices in their own domains, such
as species richness, Shannon index in ecology, and allelic richness,
heterozygosity in population genetics. These indices comprise a spec-
trum of information measures (q profile, 9H; Hill, 1973; Jost, 2006),
including richness (g = 0, S), Shannon entropy (g = 1, H) and heterozy-
gosity (or Gini-Simpson index, q = 2, He). Each index of order g pro-
vides a different type of information, with the index of order g = 0
treating all elements equally regardless of their frequency, the index
of order g = 2 disproportionately favours the most common elements,
while the index of order g = 1 favours common elements in proportion
to their population share (Gaggiotti et al., 2018). However, the g = 1
family have received only sporadic attention in population genetics.
The use of summary statistics has facilitated our understanding of
ecology and evolution in terms of describing spatial biodiversity pat-
terns (e.g., distance-decay; Nekola & White, 1999), and examining likely
processes underlying them. Typically, this is done by decomposing total
diversity (y-diversity) into within-aggregate (a-diversity) and between
aggregate (B-diversity) diversity based on species’ or community spa-
tial aggregation (Jost, 2007). The derived p-diversity is then used to
examine the dissimilarity or differentiation between aggregates. Two
main decomposition methods have been used to do this, multiplicative
(SSY = SSﬁ *S8S,) and additive (SSY = SSﬂ + SS,) decomposition (Ricotta,
2005). The desirable p-diversity should be additive when pooling or
partitioning the aggregates and should represent the actual proportion
of nonshared elements (true dissimilarity or differentiation) due to di-
vergence or differentiation between aggregates (Chao et al., 2014).
For any given value of g, it is possible to obtain a similarity or
differentiation measure. In principle, true measures of differentia-
tion should vary between O (when assemblages are identical) and
1 (when assemblages are fully differentiated). In the case of ¢ = 0
(allelic richness), an appropriate differentiation measure is given by
the Jaccard dissimilarity index (but see Jost et al., 2011 for other
measures), which measures the overall proportion of shared alleles
in the combined assemblage and is a true differentiation measure
(cf. Jost et al., 2011). Differentiation measures of order g = 1, (i.e.,
Shannon differentiation, AD) also measure true differentiation (cf.
Gaggiotti et al., 2018). However, the traditional and most popular
measures of differentiation of order g = 2 used by population genet-
icists, namely Fo; and Gy, are not true differentiation measures as
they can be much lower than 1 for multiallelic markers even in the
case of two assemblages that share no alleles (Jost, 2008). An alter-
native true differentiation measure for q = 2 is Jost’s (2008) D¢y,
which is particularly appropriate for conservation genetic studies.

Note, however, that although not a true differentiation measure, the
fixation index Fg; is a fundamentally important parameter for the
study of evolutionary processes (cf. Whitlock, 2011).

A common difficulty faced when measuring biodiversity with
standard metrics is that, with the exception of richness, they do not
have an intuitive interpretation in terms of the number of effective
elements in the system (Jost, 2006). However, this problem is easily
overcome by using Hill numbers (Hill, 1973), and this is the approach
we used in the present study. Thus, allelic richness is represented by
°D while the effective numbers of alleles based on Shannon entropy
and heterozygosity are given by 1D and 2D respectively.

Diversity at one level of biological organization (community,
species) may sustain the diversity at the other (Lankau & Strauss,
2007). Thus, in addition to describing diversity patterns, researchers
have made substantial efforts to unify the two levels of biodiversity
(species diversity of ecological communities and genetic diversity
of populations) and to reveal ecological and evolutionary processes
underpinning their spatial patterns (Vellend, 2005). However, these
so-called species-genetic-diversity-correlation (SGDC) studies have
rarely measured the two types of diversity consistently (Gaggiotti
et al., 2018). Integrative studies of species and genetic diversity, and
the ecological factors underlying their association or lack thereof
using the same type of index, would contribute to a better under-
standing of eco-evolutionary dynamics. Although not focused on
spatial scenarios, some recent studies (Gaggiotti et al., 2018; Luiselli
et al., 2021; Overcast et al., 2019, 2021) have developed a commu-
nity assembly model that makes predictions of genetic, species and
functional diversity in terms of Hill numbers.

The use of informative diversity metrics is crucial, not only for de-
tecting changes in biodiversity patterns but also for understanding
the demographic and evolutionary history of species (Csilléry et al.,
2010). The performance of population genetics summary statistics
has been thoroughly evaluated in the context of spatial demographic
inference (Alvarado-Serrano & Hickerson, 2016) and similar studies
are needed for equivalent statistics based on Shannon entropy. The
present study represents the first step in this direction by evaluating
the power of the information-based diversity measures (represented
by 'D and Shannon differentiation, AD) and comparing it with that of
traditional measures (represented by allelic richness, heterozygosity
and their g-diversity measures) to discriminate between spatial sce-
narios using recent machine learning approaches.

We simulated microsatellite data under five spatial scenarios that
include panmixia, the finite island model, hierarchical island model,
stepping-stone model and hierarchical stepping-stone model, which
are the typical spatial demographic models that have been used to
describe the spatial structure of natural populations in fragmented
landscapes. We employed three machine learning approaches, ker-
nel local Fisher discriminant analysis (KLFDA), conditional random
forest classification and deep neural networks, to characterize the
behaviour of these diversity metrics for discriminating different spa-
tial scenarios. Our results showed that information-based summary
statistics can provide more power than traditional measures to make
inferences about spatial genetic structure.
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TABLE 1 Parameters used in the simulations. In the case of the panmixia scenario, we simulated a single population but generated 16 samples at random. In the case of the hierarchical

models, we indicate the number of populations per region in parentheses

Number
of loci

Number of

Mutation rate

Migration rate

Sample size

Population size

populations
1(16)*

16

16

16

16

Regions

Scenarios

10
10
10
10
10

5x 107
5x107
5x 107
5% 1074
5x 107

320
20
20
20
20

1600, 16,000)
100, 1000)
100, 1000)
100, 1000)
100, 1000)

U (0.001,0.1)

M, gpin: U (0.001,0.0) my ... - U (5E-5, 5E-3)

U (0.001,0.1)

M, gpint U (0.001,0.0)) m ... - U (5E-5, 5E-3)

V)
U
V)
)
V)

Panmixia

Island model

4(4,4,4,4)

Hierarchical island model

Stepping-stone

2(8,8)

Hierarchical stepping-stone
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2 | METHODS

To evaluate the ability of the three families of summary statistics in
discriminating different spatial scenarios, we simulated five spatial
scenarios that encompass hierarchical and nonhierarchical popula-
tion structures using coalescent simulations. More specifically, we
considered populations without hierarchical structure and popula-
tions structured into three hierarchical levels, ecosystem, aggregate
(e.g., region) and subaggregate (e.g., population) level.

We calculated the three families of summary statistics from
these scenarios and then used the machine learning approaches to
test their power to discriminate among spatial scenarios.

2.1 | Models and model parameters

We considered five spatial scenarios, panmixia, the island model,
hierarchical island model, stepping-stone model and hierarchical
stepping-stone model. Instead of using fixed values for the param-
eters, we sampled them from probability distributions. Table 1 pre-
sents all scenarios and the respective parameter distributions used in
the simulations. For the island model, stepping-stone model, hierar-
chical island model and hierarchical stepping-stone model, each sce-
nario consisted of 16 populations with population size sampled from
U(100, 1000). For the panmixia model, we simulated one panmictic
population, with population size drawn from U(1600, 16,000). The
hierarchical island models consist of four regions with each region
comprising four populations. In terms of the hierarchical stepping-
stone models, we simulated two regions with each region compris-
ing eight populations. We assume a stepwise mutation model with
a constant mutation rate of 5 x 107 for all scenarios. In the case
of the nonhierarchical scenarios (island model and stepping-stone
model), the migration rate, m, was drawn from a uniform distribu-
tion U(0.001, 0.1). In the case of the hierarchical scenarios, migra-
tion rates between pairs of populations within regions were sampled
from U(0.001, 0.1) and migration rates between populations from
different regions were sampled from U(0.00005, 0.005).

2.2 | Simulations

The coalescent-based simulator rastsiMcoal2 (Excoffier et al., 2013;
Excoffier & Foll, 2011) was used to generate microsatellite synthetic data
under the five scenarios described above. For each of these five spatial
scenarios, we simulated 10 independent microsatellite loci sharing the
same mutation rate. One hundred sets of parameters (100 simulations)
were randomly drawn from prior distributions, and each parameter set
was used to generate 1000 replicate data sets. We sampled 20 individu-
als per population under each spatial model (standard and hierarchical
versions of the island and stepping-stone models). In the case of the
panmixia model, we sampled 320 individuals and then randomly parti-
tioned them into 16 samples consisting of 20 individuals each to obtain
a set of samples equivalent to those of the other four scenarios.
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2.3 | Summary statistics

We chose the commonly used genetic diversity indices, allelic rich-
ness (Ar, noted A'SS hereafter) and heterozygosity (He, noted "S$
hereafter) as well as their corresponding differentiation measures
(p-diversity measures), Jaccard dissimilarity (Jaccard, 1912) and fixa-
tion index (Weir & Cockerham, 1984), as the traditional summary
statistics. The allelic richness and expected heterozygosity were
partitioned into three hierarchical levels, population level, regional
level and ecosystem level, with the corresponding measures being,
Af (allelic richness at the population level), Af (allelic richness at the
regional level) and A,T (total allelic richness in the ecosystem), and
HP (expected heterozygosity at the population level), H? (expected
heterozygosity at the regional level) and HZ (total heterozygosity
in the ecosystem). Accordingly, the differentiation measures were
partitioned into Jf (Jaccard dissimilarity among populations within
a region) and Jf (Jaccard dissimilarity among regions within an eco-
system) for allelic richness, and F?T (Fs; among populations within a
region) and F§T (Fsr among regions within an ecosystem) for expected
heterozygosity.

We chose the diversity of order g = 1, the transformed Shannon
“effective number” D, as well as Shannon differentiation (AD) as
the new summary statistics (10SS). 1D was also decomposed into the
population level, regional level and ecosystem level, which were Dy,
Df and Df;, respectively. The equivalent number of regions and the
equivalent number of populations were thus Dg and DZ, respectively.
In the same way, the allelic differentiation AD was decomposed into
differentiation among populations within a region (AD") and dif-
ferentiation among regions within an ecosystem (ADR). Details re-
garding the equations for diversity decomposition can be found in
Gaggiotti et al. (2018).

As Shannon entropy avoids undue emphasis on either rare or
common alleles (Sherwin et al., 2017), it is increasingly being used
in evolutionary biology and molecular ecology as a measure of ge-
netic diversity and evolvability (Day, 2015; Hampe et al., 2003;
Wagner, 2017). Therefore, we also use summary statistics based
on Shannon entropy (*H, HsS hereafter) for comparison with di-
versity measures (105S). Shannon entropy per population (H"), per
region (H®) and total Shannon entropy (H) were calculated in line
with the same hierarchies above. The additive decomposition of
Shannon beta entropy (H[j = HV - H,), was estimated at the popula-
tion level (HZ) and regional level (H;) as well. Here, we also included
Shannon differentiation (AD) to keep the number of statistics in
HSS the same as with 1055,

In addition, we also calculated Mantel's r, the correlation coef-
ficient between genetic distance and geographical distance for dif-
ferentiation measures (p,4 papa P, q) With distance measured in
terms of the number of steps (edges) separating any two populations
(vertices).

Each set of summary statistics includes the mean and stan-
dard deviation (SD). For each measure at the population level,

we calculated the value for each population and the mean across

populations. The total number of summary statistics for A'SS is
44, the same as for ¢SS, The total number of summary statistics
for 1SS is 48, the same as for HSS. The total number of different
summary statistics is 178. The description of summary statistics is
shown in Table S1.

2.4 | Data analysis

The pipelines (R functions) to calculate the summary statistics are
wrapped in the R package HierDpart (Qin, 2019). We built nine
subsets of summary statistics, 'SS, 1SS, Héss, 1bgs, Ar+Hegg H+Dgg,
Ar+HtHe GG Ar+He+!DGG gnd ArtH+He+'DSS for the discriminatory power

test.

2.5 | The power of summary statistics to
discriminate among spatial scenarios

The power assessed by various machine learning methods may dif-
fer. Thus, to ensure that our tests are as comprehensive as possible,
we employed three machine learning approaches to evaluate the
power of the different subsets of summary statistics to discriminate
among spatial structure scenarios: KLFDA (Sugiyama, 2007), condi-
tional random forest classification (CRFC; Strobl et al., 2007) and
deep neural network (Ripley & Hjort, 1996).

2.5.1 | Kernellocal fisher discriminant analysis
KLFDA is a supervised dimensionality reduction based on local
Fisher discriminant analysis (LFDA, Sugiyama, 2007). As opposed to
the standard Fisher discriminant analysis (LDA), LFDA can separate
different classes (e.g., genetic clusters) while preserving the within-
class structure (Sugiyama, 2007); in other words, it allows for ge-
netic substructuring within clusters. KLFDA represents an extension
of LFDA that considers nonlinear boundaries between classes (see
Sugiyama, 2007 for a detailed explanation).

We carried out KLFDA on the nine subsets of summary statistics.
The Gaussian kernel was chosen for kernel transformation. Three
key hyperparameters impact the accuracy of KLFDA: d, the num-
ber of reduced features for discriminant analysis, o, the radius (the
standard deviation) of the Gaussian kernel, and knn, the number of
nearest neighbours. We first determined the appropriate number
of reduced features ranging from five to 50 based on classification
accuracy during training. We then performed fine hyperparameter
tuning on ¢ and knn via cross-validation with the best number of
reduced features selected in the first step. The ¢ value was tuned
considering values between 0.001 and 10 (0.001, 0.005, 0.01, 0.05,
0.1, 0.5, 1, 5, 10) and knn was tuned between 5 and 50 (5, 10, 15,
20, 25, 30, 35, 40, 45, 50). Analyses were implemented using the R
packages Ifda and DA (Qin et al., 2021; Tang & Li, 2016, 2017).
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TABLE 2 The overall performance of different sets of summary statistics in discriminating five spatial scenarios using KLFDA

Summary
statistics

Hgg Hegg 1,55 ArtHegg H+'Dgg Ar+HtHegg Ar+He+'Dgg Ar+H+He+'Dgg

Arss

0.936 0.908 0.946 0.926 0.944 0.930 0.944 0.942

0.934

Accuracy (Acc)
Acc 95% CI

(0.918, 0.961)

0.927

(0.920, 0.962)
0.930

(0.904, 0.951)

0.912

(0.920, 0.962)
0.930

(0.899, 0.947)

0.907

(0.922,0.964)

0.932

(0.879, 0.932)

0.885

(0.911, 0.956)

0.920

(0.909, 0.954)

0.917

Kappa

Note: Acc, accuracy; Acc 95% Cl, the 95% interval of accuracy; Kappa, Cohen's kappa coefficient (x). The best performance (highest Acc) is highlighted in bold.
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2.5.2 | Conditional random forest classification

We conducted the unbiased random forest classification based on
conditional inference trees (cforest) that adopt the subsampling vali-
dation process with unbiased variable selection (bootstrap without
replacement; Strobl et al., 2007). To avoid overfitting in random
forest classification, we optimized the key parameter (mtry) that
governs the number of features that are randomly chosen to grow
each tree from the bootstrapped data. We tuned the parameter mtry
[mtry e (1: n), n is the number of variables] via leave-one-out valida-
tion with 1000 trees for each subset of summary statistics. The pa-
rameter with the highest classification accuracy was chosen as the
optimal model for evaluating the performance of the various sets of
summary statistics.

The standardized conditional importance of each variable, mea-
sured by the mean decrease in accuracy (MDA), was estimated from
the optimum model based on bootstrapping without replacement
according to Strobl et al. (2008). Analyses were implemented using
the R package “caret” (Kuhn, 2015) calling the cforest function from
the party package (Hothorn et al., 2010).

2.5.3 | Deep neural network

We conducted neural network (Baum, 1988; Guarnieri et al., 1999) clas-
sification using a Multilayer Perceptron (MLP) with three hidden layers
and a weight decay to test the performance of the above subsets of
summary statistics for spatial structure inference. The deep neural net-
work training was carried out through a backpropagation with weighted
decay optimization (a procedure to repeatedly adjust the weights to
minimize the difference between true values and observed values) and a
nonlinear activation function (logistic) at the output layer. We first made
a grid search on the parameter space via cross-validation to minimize
the parameter range, and then we tuned the parameters through dense
parameter combinations via leave-one-out cross-validation. Finally, we
tuned the number of neurons in each hidden layer using: layerl = (1,
5,10, 15), layer2 = (0, 5, 10, 15), layer3 = (0, 5, 10, 15), and the rate of
decay using: decay = (0, 1le-5, 1le-4, 1e-3, 1le-2, 1e-1). The model with
the highest accuracy was chosen as the optimal model for evaluating
the performance of various sets of summary statistics.

The (overall) importance of summary statistics is determined
based on Garson's algorithm (Garson, 1991; Gevrey et al., 2003),
which uses combinations of the absolute values of the weights. We
also used neural networks to assess the importance of summary sta-
tistics to identify a specific scenario. Deep neural network models
were built using the caret package (Kuhn, 2008, 2012).

2.6 | Evaluating discriminatory power of different
sets of summary statistics

In terms of KLFDA, random forest classification and neural net-
work, we calculated the confusion matrix as well as overall
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performance statistics for each set of summary statistics. Overall
performance statistics included model accuracy and kappa. The
methods for calculating these performance metrics based on Table
S5 are presented in the Supporting Information. The detailed de-
scription of these statistics can be found in Kuhn and Johnson
(2013).

We compared the performance of different sets of summary
statistics in discriminating the five spatial scenarios using each of
the above-mentioned methods separately to identify the best set of

summary statistics.

3 | RESULTS

3.1 | KLFDA inference

Table 2 presents the overall performance of different sets of
summary statistics in discriminating five spatial scenarios using
KLFDA. The best performing statistics set should have the highest
accuracy and the largest kappa value. The results indicated that
1SS presented the highest discriminatory power at discriminating
among scenarios. Although 1SS performed slightly better than #'SS
and ¢SS, it underperformed 1SS (Table 2). On the other hand, the
set of summary statistics with the lowest discriminatory power
corresponded to the most commonly used €SS in population ge-
netics (Table 2).

Although the 95% confidence intervals (Cis) of different sum-
mary statistics sets overlap, Figure 1 shows that 1055 is the only
set that allows us to clearly distinguish between all different
scenarios. All other summary statistics sets, or the combination
thereof, either failed to clearly distinguish between panmixia and
the island model or failed to clearly distinguish between the stan-
dard stepping-stone model and hierarchical stepping-stone model
(Figure 1a-i). 1SS did a better job at discriminating among all of
them (Figure 1d).

The confusion matrix supported these results (Table S2).
Specifically, 4SS can correctly identify the island model, panmixia
and stepping-stone model (100%). However, it did worse in identi-
fying the hierarchical stepping-stone model (Figure 1b; Table S2).
HsS did better at identifying hierarchical scenarios but performed
less well in the case of the stepping-stone model (Figure 1c; Table
S2).10SS performed very well under all scenarios, with the exception
of the hierarchical stepping-stone (Figure 1d; Table $2). 7SS per-
formed poorly in most scenarios with the exception of panmixia and
hierarchical island scenarios (Figure 1e; Table S2). Combinations of
1SS with other summary statistics showed similar results to those
obtained with 1SS alone except when including Hess, in which case
discriminatory power was decreased (Table 2; Table S2). In fact,
combining €SS with other summary statistics decreased the dis-
criminatory power. Overall, the hierarchical stepping-stone scenario
was the most difficult to identify correctly. 10SS and HsS did better
at discriminating the hierarchical stepping-stone model from other
scenarios (Figure 1; Table S2).

3.2 | Conditional random forest classification

As is the case for KLFDA, among all the sets of summary statis-
tics, "5SS had the lowest classification accuracy (Table 3). Slightly
different from KLFDA results, 2255 and "'SS, having the same dis-
criminatory power, outclassed 'S and eSS in discriminating the
five scenarios (Table 3). Note that conditional random forest did not
show a power difference between 0SS and Hss, as well as between
ArttiHegs ArtHe+'DGG and ArthHet!'DSS (Table 3).

Compared to KLFDA, the discriminatory power of all sets of
summary statistics to discriminate spatial scenarios increased when
using conditional random forest (Table 3). Moreover, as opposed to
KLFDA results, combining different sets of summary statistics led
to an increase in discriminatory power (Table 3). Again, the most
difficult scenario to identify is the stepping-stone model. However,
consistent with KLFDA results, A’SS showed worse performance in
distinguishing the stepping-stone scenario than "'SS, 155 and "¢ss
(Table $3). On the other hand, ¢SS did a worse job at identifying the
hierarchical stepping-stone model compared to *'SS, 1SS and 105§
(Table S3).

A particular advantage of random forest classification is that it
allows us to rank individual summary statistics in terms of their dis-
criminatory power. Figure 2 presents the top 30 ranked summary
statistics out of a total number of 178 including *'SS, HsS, "€SS and
1SS, The best performing statistics in discriminating the spatial sce-
narios were the differentiation measures and their Mantel statistics
(p). Among all the summary statistics, the standard deviation of the
correlation between Jaccard dissimilarity and geographical distance,
SD(p, ;) (belonging to Ar5S), and the correlation between Shannon
differentiation and geographical distance, p,p 4 (belonging to 10SS),
were the two most important statistics contributing to the ability
to discriminate among all spatial scenarios (Figure 2). Among the
top 10 most informative statistics, the first (the standard deviation
of the correlation between Jaccard dissimilarity and geographical
distance, SD(p, ), the third (the correlation between Jaccard dis-
similarity and geographical distance, p‘,yd), the fourth (the standard
deviation of Jaccard dissimilarity between regions, SD (Jf)) and the
seventh (Jaccard dissimilarity between regions, Jf) best-performing
statistics belong to A"SS. The correlation between Shannon differen-
tiation and geographical distance (pAD’d), and its standard deviation
(SD(pyp4)), as well as the standard deviation of Shannon differen-
tiation between regions (SD(ADR)), accounting for the second, fifth
and eighth most important statistics, belong to 0SS and HSS. Only
three out of the top 10 summary statistics, the correlation between
F<; and geographical distance (pg.,), Fs; between regions (F§T) and
its standard deviation (SD(F?T)), ranking as the sixth, ninth and tenth
best-performing statistics respectively, belong to Hegg (Figure 2).

3.3 | Deep neural network

The deep neural network analysis produced results similar to those
of the two previous methods. Generally, the summary statistics can
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(a) (b)
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(c)
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(d) Q |

()

(9) (h)

@ Panmixia Island

Hier_Island

@ Stepping_stone @ Hier_stepping_stone

FIGURE 1 Projections of five spatial scenarios into two-dimensional subspaces using KLFDA based on different sets of summary
statistics: (a) 4SS, (b) 1SS, (c) 1SS, (d) 1058, () A7He S, (f) H+'DSS, (g) ArH+Hess, (h) Ar+He+'Dgg (j) Ar+H+He+'DSS Each dot represents a simulated

data set

be categorized into four discriminatory sets based on discriminatory
power. Again, 1SS, the most powerful summary statistics, along with
Ar+He+'DGS performed best among all the sets of summary statistics
(Table 4).77SS, 1SS and A™H+H€SS comprised the second most discrimi-
natory sets of summary statistics, with their discriminatory accuracy
being only slightly lower than that of 1055 (0.988, Table 4). The third
most discriminatory sets of summary statistics were ArtHegg H+Dpp
and Ar+H+He+'DSS Finally, the least discriminatory set of summary
statistics was ¢SS (Table 4). As was the case with KLFDA, neural
network results indicated that combining different sets of summary

statistics (increasing the number of summary statistics) did not in-
crease the discriminatory power (Table 4).

The discriminatory power of all sets of summary statistics using
the neural network was higher than that of KLFDA and CRFC (Tables
2-4). This indicates that the neural network performed better than
the two other machine learning (ML) methods. Unlike KLFDA and
CRFC, the deep neural network did better at discriminating between
the panmixia and island model, with most sets of summary statis-
tics (except €SS) 100% successfully discriminating between these
two scenarios (Table S4). ArtHe+'DsS and A*H+Hess did a better job
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TABLE 3 The performance of different sets of summary statistics in discriminating five spatial scenarios using conditional random forest classification

Summary
statistics

HSS Hess 1, SS Ar+He$s H+1DSS Ar+H+He$s

Arss

0.972 0.970 0.978 0.986

0.958

0.972

0.96

Accuracy (Acc)
Acc 95% ClI

(0.971, 0.994)

0.982

(0.961, 0.989)

0.972

(0.951, 0.983)

0.962

(0.953, 0.985)

0.965

(0.936,0.974)

0.947

(0.953,0.985)

0.965

(0.939,0.975)

0.950

Kappa

Note: Acc, accuracy; Acc 95% Cl, the 95% interval of accuracy; Kappa, Cohen's kappa coefficient (x). The best performance (highest Acc) is highlighted in bold.
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(0.2% error rate) in differentiating the stepping-stone model and hi-
erarchical stepping-stone model compared to other sets of summary
statistics (Table S4).

Figure 3 presents the variable importance of the top 30 ranked
summary statistics among the total 178 summary statistics according
to their discriminatory power estimated from the deep neural net-
work. 155, 1055, A7$S and HeSS accounted for 11/30 (five overlapped
statistics with 10SS), 10/30, 8/30 and 6/30 of the top 30 ranked
summary statistics respectively (Figure 3). The first three most in-
formative summary statistics were the correlation between Jaccard
dissimilarity and geographical distance (pm), the standard deviation
of Jaccard dissimilarity between regions (SD (Jf)) and the correlation
between Shannon differentiation and geographical distance (pAD,d)'
They contributed equally toward the ability to discriminate among
all spatial scenarios (importance values are all 100, Figure 3; Figure
S1). Similar to CRFC results, among the top 10 most informative sta-
tistics, the first (correlation between Jaccard dissimilarity and geo-
graphical distance, pJ'd), second (the standard deviation of Jaccard
dissimilarity between regions, SD (Jf)) and the seventh (the standard
deviation of the correlation between Jaccard dissimilarity and geo-
graphical distance, SD(pJ,d)) most important statistics belong to 'SS.
The correlation between Shannon differentiation and geographical
distance, p,, ,» and its standard deviation, SD(p,, ;), the standard de-
viation of the Shannon differentiation between regions, SD(ADR) and
the equivalent number of regions, DR, which were the third, fourth,
sixth and tenth best-performing summary statistics respectively,
belong to SS. Only two out of the 10 best-performing statistics,
the correlation between F; and geographical distance, Prstd and the
standard deviation of Fy; between regions, SD(F?T), ranking as the
fifth and the eighth most important summary statistic respectively,
belong to eSS (Figure 3).

Figure S1 presents the scenario-specific variable importance
ranked in accordance with their overall importance (cf. Figure 3).
The 16 top summary statistics contributed almost equally to the
panmixia model, stepping-stone model, hierarchical stepping-stone
model and hierarchical island model (Figure S1). On the other hand,
only the top five statistics, the correlation between Jaccard dis-
similarity and geographical distance, Prar the standard deviation of
Jaccard dissimilarity between regions, SD (Jf), the correlation be-
tween Shannon differentiation and geographical distance, Papdr and
its standard deviation, SD(pAD‘d), as well as the correlation between
F¢r and geographical distance, Pstar contributed most to the power
of discriminating the island model from other models (Figure S1).
Besides the top 16 most important statistics, Jaccard dissimilarity
between regions (Jf) and F¢; between populations (FgT) also contrib-
uted substantially to the power of discriminating the stepping-stone
and hierarchical stepping-stone models (Figure S1).

4 | DISCUSSION

In this study, we performed a comprehensive assessment of the
discriminatory power of nine sets of summary statistics, comprising
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FIGURE 2 Ranked conditional variable
importance for individual summary
statistics estimated by conditional random
forest classification. Results are shown
only for the top 30 most important SD(pap.)
summary statistics (out of a total of 178). ’
Statistical abbreviations are given in Table F}?t'd
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Args, Hss, Hess and 10SS. Since different methods to estimate discrimi-
natory power may lead to different results, we employed three pow-
erful machine learning methods to compare the power of different
sets of summary statistics. All results led to the same conclusion that
1SS performed the best among four sets of summary statistics in
the discrimination of spatial scenarios. Although 10SS was overall the
best set of diversity measures, *’SS and M¢SS also provided comple-
mentary information that s did not capture.

Jaccard dissimilarity (J) and its Mantel's r ranked as the top sum-
mary statistics among all the summary statistics for differentiat-
ing spatial scenarios, followed by AD and then F¢; as well as their
Mantel's r. In addition, we found that combining sets of summary
statistics did not necessarily increase the discriminatory power (e.g.,
KLFDA and neural network models in Tables 2 and 4). Therefore, a
more efficient strategy would be combining the most informative
summary statistics in each set depending on the alternative spa-
tial scenarios that could apply to each data set based on existing
information.

During the past 20 years, evolutionary biologists and population
geneticists have been using diversity metrics as the summary sta-
tistics to make inference on the evolutionary and demographic his-
tories of populations via approximate Bayesian computation (ABC).

T | T T T
20 40 60 80 100

Importance

Information theory offers a spectrum of summary statistics that
can be used with ABC. However, the choice of summary statistics
in population genetics has focused on the ¢5S family (i.e., hetero-
zygosity, He, and fixation, Fg;). The use of Hegg up-weights the signal
provided by common alleles while down-weighting rare alleles, and
thus it may miss important information under scenarios that involve
bottlenecks or founder events. To avoid this problem, it is common
to combine *'SS and HeSS, but our results indicate that the same or
greater discriminatory power could be obtained using only the 1SS
set. These results provide further support for the idea that simply
increasing the number of summary statistics without considering
their individual discriminatory power may decrease the inference
accuracy.

Our systematic assessment of the power of these summary sta-
tistics showed that eSS, the most commonly used set of summary
statistics in population genetics, performed worst in the discrimi-
nation of typical spatial scenarios tested by three different classi-
fication approaches. The differentiation measures, J, AD and Fg,
evaluate the extent of genetic differentiation between populations,
with AD and Fg¢; being estimated based on allele frequency, and J
being estimated based on allele presence/absence data. Usually,
genetic differentiation is estimated using F¢; (Wright, 1949) and its
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variants (G¢; Nei, 1973) calculated from heterozygosity (He) while
J and AD, which are more informative according to our results, are
rarely used as statistics to measure population genetic inference.

Our results indicate that A’SS was very good at differentiating be-
tween panmixia and the other scenarios. 2SS on the other hand, ex-
hibits high accuracy in differentiating all scenarios, being especially
good at discriminating between stepping-stone and hierarchical
stepping-stone models. Therefore, #’SS seems useful for detecting
the scenarios that depart from panmixia, and 1SS may be helpful to
differentiate between more complex spatial scenarios. On the other
hand, we did not observe advantageous properties for Hess in de-
tecting the spatial structuring signals under the five spatial scenarios
considered. Nevertheless, these results do not necessarily suggest
that all differentiation measures of order g = 2 are problematic as we
did not consider Jost’s (2008) D¢ in this study because we wanted
to focus on the most widely used measures of genetic differentia-
tion, namely F¢;. More detailed studies would be needed to further
explore the behaviour of the three families (g = 0, 1, 2) under more
complex nonequilibrium scenarios, including population and range
expansions as well as divergence and admixture events. Recent
population genetic simulators such as SIliM3 (Haller & Messer, 2019)
would prove very useful in this context.

For a long time, important guidelines for species and genetic di-
versity conservation have been made using richness and Simpson's
index for species diversity (Jost et al., 2010; Scott et al., 1987), and
heterozygosity (derived from F-statistics framework) for genetic di-
versity (Aitken et al., 2012). The results of this study suggest that
summary statistics based on Hill numbers are promising tools for
detecting diversity changes in biological conservation studies.

In this study, we considered microsatellite markers instead of sin-
gle nucleotide polymorphisms (SNPs) because they are multi-allelic
and, therefore, the information content of a single microsatellite locus
is much higher than that of a single SNP locus. The fact that SNPs are
bi-allelic markers limits the range of values expected when using Hill
numbers and makes them less sensitive to capture genetic signatures
left by evolutionary processes. We note, however, that it is possible
to generate multi-allelic markers from SNPs by focusing on chromo-
some windows containing two or more SNPs. Moreover, RADSeq loci
containing more than one SNP with different patterns of segregation
represents a readily available multi-allelic marker which is being used
mainly by researchers working with nonmodel species, many of which
are of conservation concern. We think this would be the best ap-
proach when using Hill numbers to study spatial genetic structure and
the results of our study would be relevant in this type of application.

In summary, diversity of orderq =1 (*D) and Shannon differen-
tiation offer a unified approach integrating diversity across all levels
of biological organizations. Our results suggest that 10SS would per-
form well for the purpose of inference of population structure using
inferential frameworks such as ABC. It is clear that no single set of
diversity measures can capture all the information contained in raw
population genetics data sets, and our study suggests that the type
of summary statistics we may want to use depends on the specific
question being asked.
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FIGURE 3 Variable importance

estimated by the deep neural network. (]
Results are shown only for the top 30 SD (JF)
ranked summary statistics out of a total of Pap,a
178. Statistical abbreviations are given in SD(pap.a)

Table S1 Prstd
SD(ADR)

SD(p,q)
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Finally, we found different machine learning methods showed
different performance in distinguishing spatial structure scenarios.
KLFDA gave the lowest discriminatory accuracy while the deep neural
network gave the highest discriminant accuracy among the three clas-
sification methods (Tables 2-4). In contrast, conditional random forest
did not show the difference between the power of "'SS and 1055 as well
as other combinations of summary statistics (Table 3). The deep neural
network showed more advantages than KLFDA and conditional ran-
dom forest in this study, which provides additional support to recent
assertions that machine learning methods represent promising tools to
carry out inference in ecology and evolution (Schrider & Kern, 2018).
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