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Abstract

Background: The COVID-19 pandemic caused by SARS-CoV-2 is challenging health care systems globally. The disease
disproportionately affects the elderly population, both in terms of disease severity and mortality risk.

Objective: The aim of this study was to evaluate machine learning–based prognostication models for critically ill elderly
COVID-19 patients, which dynamically incorporated multifaceted clinical information on evolution of the disease.

Methods: This multicenter cohort study (COVIP study) obtained patient data from 151 intensive care units (ICUs) from 26
countries. Different models based on the Sequential Organ Failure Assessment (SOFA) score, logistic regression (LR), random
forest (RF), and extreme gradient boosting (XGB) were derived as baseline models that included admission variables only. We
subsequently included clinical events and time-to-event as additional variables to derive the final models using the same algorithms
and compared their performance with that of the baseline group. Furthermore, we derived baseline and final models on a European
patient cohort, which were externally validated on a non-European cohort that included Asian, African, and US patients.

Results: In total, 1432 elderly (≥70 years old) COVID-19–positive patients admitted to an ICU were included for analysis. Of
these, 809 (56.49%) patients survived up to 30 days after admission. The average length of stay was 21.6 (SD 18.2) days. Final
models that incorporated clinical events and time-to-event information provided superior performance (area under the receiver
operating characteristic curve of 0.81; 95% CI 0.804-0.811), with respect to both the baseline models that used admission variables
only and conventional ICU prediction models (SOFA score, P<.001). The average precision increased from 0.65 (95% CI
0.650-0.655) to 0.77 (95% CI 0.759-0.770).

Conclusions: Integrating important clinical events and time-to-event information led to a superior accuracy of 30-day mortality
prediction compared with models based on the admission information and conventional ICU prediction models. This study shows
that machine-learning models provide additional information and may support complex decision-making in critically ill elderly
COVID-19 patients.

Trial Registration: ClinicalTrials.gov NCT04321265; https://clinicaltrials.gov/ct2/show/NCT04321265

(JMIR Med Inform 2022;10(3):e32949) doi: 10.2196/32949

KEYWORDS

machine-based learning; outcome prediction; COVID-19; pandemic; machine learning; prediction models; clinical informatics;
patient data; elderly population

Introduction

The COVID-19 pandemic caused by SARS-CoV-2 is continuing
to challenge health care systems globally [1]. The disease
disproportionately affects the elderly population, both in terms
of disease severity and mortality risk [2]. In many countries,
intensive care unit (ICU) capacity was increased during the
pandemic to meet demand. In addition, novel treatment
modalities were introduced [3]. A key challenge in clinical
outcome prediction in a dynamic disease is that the response to
a given treatment varies considerably from patient to patient,
especially in the elderly population [4]. Baseline data alone are
inadequate to predict prognosis with sufficient accuracy for an
individual patient, as they cannot capture the dynamic nature
of the underlying critical illness [5]. It is well established that
various factors provide prognostic information that should be
taken into consideration [6]. More elaborate methods are thus
urgently needed for both sophisticated and concise risk
stratification of severely affected individual ICU patients [7].
Biomarkers, frailty, and severity scores are validated in elderly
critically ill patients [8-11]. However, all of these have important

limitations as they do not reflect the dynamics of the underlying
disease pathophysiology, and as a result have limited prognostic
power. Ultimately, it remains up to the physician to integrate
all baseline data, the changing course of the disease, and
subjective experience into a clinical decision [12]. However,
physicians do not assess dynamically evolving processes
perfectly, as they are influenced by numerous factors, including
fatigue and other human factors, resulting in less objective and
reproducible decision-making [13]. This aspect is especially
relevant for new diseases such as COVID-19, where physician
experience is lacking.

Therefore, a supportive prognostication model that can integrate
baseline data with complex, dynamic processes in an objective
manner is necessary. Machine learning (ML) algorithms could
be used to address this need, as some have successfully been
evaluated in clinical settings such as in cardiovascular intensive
care [14]. Wernly et al [9] retrospectively analyzed arterial blood
gas data from septic intensive care patients from a multicenter
electronic ICU database as well as from a single-center
MIMIC-III (Medical Information Mart for Intensive Care) data
set to predict 96-hour mortality.
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Izquierdo et al [15] combined classical epidemiological methods,
natural language processing, and ML to examine the electronic
health records of 10,504 patients with COVID-19. According
to their analysis, the combination of easily obtainable clinical
variables such as age, fever, and tachypnea predicted which
patients would require ICU admission [15]. The observational
study by Bolourani et al [16] had a similar aim. They used
clinical and laboratory data commonly collected in the
emergency department to train and validate three predictive
models (two based on extreme gradient boosting [XGB] and
one that used logistic regression [LR]) with cross-hospital
validation. The XGB model had the highest mean accuracy to
predict 48-hour respiratory failure [16]. Aktar et al [17] used
ML to distinguish between healthy people and those with
COVID-19 and subsequently to predict COVID-19 severity.
They used decision tree, random forest (RF), variants of gradient
boosting machine, support vector machine, k-nearest neighbor,
and deep learning methods for blood samples. The developed
analytical methods evidenced accuracy and precision scores
>90% for disease severity prediction. To avoid locally
aggregating raw clinical data across multiple institutions, Vaid
et al [18] evaluated a federated learning ML technique using
electronic health records from 5 hospitals. In brief, they used
LR with L1 regularization/least absolute shrinkage and selection
operator, and multilayer perceptron models that were trained
using local data at each study site. The federated models
outperformed the local models with regard to their accuracy in
predicting the mortality in hospitalized patients with COVID-19
within 7 days. In a smaller study, Domínguez-Olmedo et al [19]
selected 32 predictor laboratory features in 1823 patients with
confirmed COVID-19 for an XGB algorithm. Similar to the
other studies, using laboratory parameters resulted in excellent
outcome prediction. Subudhi et al [20] used ensemble-based
ML models to identify C-reactive protein, lactate dehydrogenase,
and oxygen saturation as the most important factors for
predicting ICU admission, with estimated glomerular filtration

rate <60 mL/min/1.73 m2, and neutrophil and lymphocyte
percentages as the important factors for predicting mortality.

A recent systematic review by Syeda et al [21] identified more
than 400 articles that investigated the role of ML in the field of
COVID-19. For example, Pan et al [22] studied 123 ICU patients
and identified eight important risk factors with high recognition
ability using an XGB model. A similar approach was used by
Kim et al [23], who established an XGB model in 4787 patients
admitted to a hospital due to COVID-19. Furthermore, Burian
et al [24] estimated the need for intensive care treatment in 65
patients with confirmed COVID-19, and Shahsikumar et al [25]
investigated the performance of an algorithm to predict the need
for mechanical ventilation on 402 patients with COVID-19,
using cohorts with a wide age range (48 to 74 years).

Patients who are very old represent the most vulnerable intensive
care subgroup [26]. However, to date, there are no studies
investigating the role of ML models in this specific subgroup
exclusively. To address this lack of evidence, the aim of this
study was to evaluate whether ML models can reliably improve
mortality prognostication in critically ill elderly patients with
COVID-19 based on clinical baseline information, biomarkers,

accumulating events, and time-to-event information during the
disease course.

Methods

Study Design
This was a retrospective analysis that included data from 1432
patients in a prospective multicenter study. The primary outcome
was 30-day mortality. We also used the 3-month outcome to
ensure consistency of the primary outcome and allay concerns
of censoring bias [27]. We derived two groups of models:
baseline and final models. Baseline models were derived using
admission variables only, whereas the final model group
incorporated clinical events such as catecholamine therapy,
renal replacement therapy, noninvasive ventilation, invasive
ventilation, prone position, and tracheostomy, in addition to the
baseline variables. We evaluated both model groups using
stratified 3-fold cross-validation to mitigate the variability of a
single derivation–validation random split. Furthermore, we
derived baseline and final models on an EU patient cohort and
externally validated them on a non-EU cohort that included
Asian, African, and US patients.

Clinical Data Sources and Study Population
Patient data were obtained from 151 ICUs across 26 independent
countries, including European ICUs, and from ICUs in Asia,
Africa, and the United States as part of the multinational COVIP
trial (NCT04321265). This study was conducted in line with
the European Union General Data Privacy Regulation directive.
As in previous successful studies [6,26,28], national coordinators
recruited the ICUs, coordinated national and local ethical
permissions, and supervised patient recruitment at the national
level. In the COVIP studies, ethical approval was obligatory
for study participation. The electronic case report form (eCRF)
and database were hosted on a secure server in Aarhus
University, Denmark. Data from 1432 elderly (aged 70 years
and above) COVID-19–positive patients admitted to a
participating ICU between February 4 and May 26, 2020, were
recorded. The study protocol is available from the COVIP study
website [29]. Patients were followed up until hospital discharge
and survival at 3 months using telephone interviews.

Ethical Considerations
The primary competent ethics committee was the Ethics
Committee of the University of Duesseldorf, Germany.
Institutional research ethics board approval was obtained from
each study site. This was a prerequisite for participation in the
study. All methods were carried out in accordance with relevant
guidelines and regulations. All experimental protocols were
approved by the local institutional and/or licensing committees.
Informed consent was obtained from all subjects if not omitted
by the ethics vote. The studies were all observational; no
examinations (eg, blood sampling) or tissue sampling took place.

Study Data
Demographic data included age, gender, weight, height, and
BMI. Furthermore, information on admission characteristics
prior to ICU hospitalization, duration of hospital stay, day of
symptom onset, and comorbidities were available. Preexisting
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comorbidities were recorded in the eCRF: diabetes, ischemic
heart disease, renal insufficiency, arterial hypertension,
pulmonary comorbidity, and chronic heart failure.

During the ICU stay, data on bacterial coinfection were noted,
in addition to Sequential Organ Failure Assessment (SOFA)
subscores (respiratory, cardiovascular, hepatic, coagulation,
renal, and neurological systems). Laboratory values included
partial oxygen pressure and the fraction of inspired oxygen
(FiO2), and their ratio. Six clinical events of interest
(catecholamine therapy, renal replacement therapy, noninvasive
and invasive ventilation, prone position, and tracheostomy)
were recorded along with the time the event occurred.

Model Derivation and Validation
We derived models based on XGB [30], RF [31], and LR [32].
As the best-performing model, the XGB algorithm provides
robust prediction results using a method where new models are
added to correct the errors made by existing models. Models
are added sequentially and the combination of many models in
the XGB model accommodates nonlinearity between input
variables [30]. Hyperparameter tuning was performed by an
exhaustive grid search directed toward maximizing the F1-score
metric. Three-fold cross-validation was performed inside each
grid option, and the optimal hyperparameter set was chosen
based on the model in the grid search with the highest F1 score.
Hyperparameters of the final model of the XGB are listed in

Multimedia Appendix 1. To generate confidence intervals for
the baseline and the final models, 3-fold cross-validation was
performed with 20-times repetition with a randomly generated
seed. To compare the performance of the XGB model, we also
derived and validated two more predictive models based on LR
and RF. This decision was driven by the fact that LR is typically
considered a baseline algorithm, and RF has been previously
used in other research with COVID-19 data [33]. Both LR and
RF were optimized by an exhaustive grid search, similar to the
XGB method.

To address noise and outliers in the data, we defined a clinically
valid interval for each variable, and the values out of the valid
scope were considered as missing values. For all models, the
issue of missing values was addressed by removing variables
with >90% missing values. We then used the median and zero
to impute the missing data in the remaining continuous and
categorical variables, respectively. All analyses were carried
out using open-source software based on Python 3.6.8 with
scikit-learn version 0.23.2.

Experimental Evaluation
Performance evaluation of the models was based on 3-fold,
stratified cross-validation with 20 repetitions using the area
under the receiver operating characteristic curve (AUC; see step
3 in Figure 1) as well as area under the precision-recall curve
(PRC), also known as average precision [34].

Figure 1. Graphical methods. (1) Study design, from admission to derivation and validation of baseline setup. (2) Derivation and validation of six
models incorporating clinical events individually.Performance of individual models is shown in Multimedia Appendix 2-5. (3) Derivation of the final
model, including baseline variables as well as clinical events. (4) Evaluation of the final model in predicting 30-day outcomes. SOFA: Sequential Organ
Failure Assessment; ICU: intensive care unit.

The PRC shows the relationship between the positive predictive
value (precision) and sensitivity (recall), measuring the
performance of the model in correctly predicting mortality in
patients with a high probability of dying. The area under the
PRC is typically more informative than the AUC in the presence

of imbalanced outcomes [34]. Additional performance metrics
are detailed in Multimedia Appendix 2-5, including the positive
predictive value (PPV), negative predictive value, F1 score (the
balance between PPV and sensitivity), Matthews correlation
coefficient (used to measure the quality of classification between
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algorithms), and Brier score. Calibration quality was evaluated
using Brier scores, where a lower score indicates a higher
calibration quality, and we also present calibration plots (also
known as reliability curves). The models were compared based
on their AUC and PRC performance metrics for both the
baseline data as well as the final models incorporating clinical
events.

Model Interpretation
We evaluated the ranking of variables that contributed toward
the model description using shapely additive explanation
(SHAP) scores. SHAP scores are a game-theoretic approach to
model interpretability; they provide explanations of global model
structures based on combinations of several local explanations
for each prediction [35]. To interpret and rank the significance
of input variables toward the final prediction of the model, mean
absolute SHAP values were calculated for each variable across
all observations in both the baseline model and the final model
based on XGB. We also plotted SHAP interaction values that
capture the contribution of pairwise interactions between unique

features to model prediction. To improve interpretability,
especially in terms of the impact of clinical events, we defined
a clinically meaningful day interval (0-3, 3-5, 5-10, and 10-30
days), and added a variable for each clinical event based on
when the clinical event occurred; for example,
“Tracheostomy-10-30” indicates that a tracheostomy was
performed within the 10-30–day period. This allowed us to
evaluate not only the importance of clinical events but also the
time-to-event information. Naturally, these variables were only
available in the final model.

Results

Study Population
Out of the total 1432 patients in the COVIP cohort, 809
(56.49%) patients survived up to 30 days after admission, with
an average length of stay of 21.6 (SD 18.2) days. Patient
baseline characteristics are given in Table 1, with distribution
of mortality and length of stay detailed in Multimedia Appendix
6.

JMIR Med Inform 2022 | vol. 10 | iss. 3 | e32949 | p. 5https://medinform.jmir.org/2022/3/e32949
(page number not for citation purposes)

Jung et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Demographic characteristics, vital signs, and clinical events of patient cohorts (N=1432).

P valueDead at 30 days (n=623)Alive at 30 days (n=809)Variables

.18463 (74.6%)587 (72.6%)Sex (male), n (%)

<.00176.5 (4.8)75.0 (4.2)Age (years), mean (SD)

.4281.0 (14.8)81.3 (14.7)Weight (kg), mean (SD)

.06169.8 (10.5)169.7 (10.7)Height (cm), mean (SD)

.0228.4 (5.7)28.5 (6.5)BMI (kg/m²), mean (SD)

.0023.5 (6.3)3.8 (5.7)Hospital stay prior to ICUa admission (days), mean (SD)

.106.6 (4.5)7.2 (5.2)Symptoms prior to hospital admission (days), mean (SD)

.00384.3 (57.5)87.3 (44.2)PaO2b (mmHg), mean (SD)

<.00173.0 (24.0)62.3 (31.0)FiO2c (%), mean (SD)

<.0016.7 (3.4)5.2 (3.0)SOFAd score (points), mean (SD)

ICU treatment and outcome

<.001510 (81.9)561 (69.3)Mechanical ventilation, n (%)

<.001515 (82.7)525 (64.9)Vasopressors, n (%)

.10279 (44.8)309 (38.2)Prone positioning, n (%)

<.00164 (10.3)227 (28.1)Tracheostomy, n (%)

.32119 (19.1)169 (20.9)Noninvasive ventilation, n (%)

.01119 (19.1)121 (15.0)Renal replacement therapy, n (%)

<.00110.6 (7.6)21.6 (18.2)Length of ICU stay (days), mean (SD)

Preexisting comorbidities, n (%)

.01240 (38.5)268 (33.1)Diabetes mellitus

.007152 (24.4)151 (18.7)Ischemic heart disease

<.001130 (20.9)91 (11.2)Chronic renal insufficiency

.03431 (69.2)527 (65.1)Arterial hypertension

.07145 (23.3)175 (21.6)Pulmonary disease

.01103 (16.5)98 (12.1)Chronic heart failure

aICU: intensive care unit.
bPaO2: partial oxygen pressure.
cFiO2: fraction of inspired oxygen.
dSOFA: Sequential Organ Failure Assessment.

Model Derivation and Validation
We evaluated the performance of baseline setup risk
prognostication that included baseline variables only (see step
1 in Figure 1) and the final setup, which—in addition to baseline
variables—included six key clinical events that occurred during
the disease course and their time-to-event information:
catecholamine therapy, renal replacement therapy, noninvasive
ventilation, invasive ventilation, prone positioning, and
tracheostomy (step 2 in Figure 1). The final set of selected
variables is shown in Table 1. Furthermore, the baseline and
the final setup were used to derive models on the EU cohort of

patients that were then externally evaluated using a non-EU
cohort composed of Asian, African, and US patients.

Three risk prognostication models were derived from ML-based
algorithms: LR and, for comparison, RF and XGB algorithms,
as outlined in the Methods section [30,31].

The XGB algorithm achieved the numerically highest increase
in discrimination performance from the baseline setup (AUC
0.70, 95% CI 0.692-0.701) to the final setup (AUC 0.81, 95%
CI 0.804-0.811); average precision increased from 0.65 (95%
CI 0.650-0.655) to 0.77 (95% CI 0.759-0.770) (Figure 2).
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Figure 2. Performance of the baseline model (top) and improved performance in the final model (bottom) in response to clinical events with respect
to the area under the receiver operating characteristic (ROC) curve (AUC) and area under the precision-recall curve (PRC). The PRC shows the
relationship between the positive predictive value (precision) and sensitivity (recall) at all thresholds. XGB: extreme gradient boosting; RF: random
forest; LR: logistic regression; SOFA: Sequential Organ Failure Assessment.

The LR (AUC 0.79, 95% CI 0.788-0.796) and RF (AUC 0.80,
95% CI 0.798-0.805) algorithms showed similar performance
in the baseline model and improvement in the final model,
comparable to XGB performance (see step 4 in Figure 1). The
final XGB model provided superior performance compared to
both the baseline model and SOFA score (both P<.001).

Experimental Evaluation
In the external validation of the EU patient cohort, all three
models achieved similar performance in the baseline and the
final setup with an AUC of 0.82 and 0.86, respectively, when

evaluated on predicting the mortality of non-EU patients (Figure
3). One explanation for this performance on the external
validation cohort might be that the patients in the non-EU cohort
tended to gravitate toward two opposing health states of either
being quite stable or very sick, making it easier for the model
to discriminate between the two outcomes. To investigate this
further, we plotted the distribution of the variable that had the
highest impact on outcome prediction (FiO2) based on SHAP
analysis (see Figure 4). As shown in Multimedia Appendix 7,
the distribution for both outcomes was significantly skewed
toward 21% for survivors and toward 100% for nonsurvivors.
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Figure 3. Performance of the final model derived using the EU patient cohort and externally validated on a non-EU patient cohort, comprising Asian,
African, and US patients. Model performance is measured using area under the receiver operating characteristic (ROC) curve (AUC) and area under
the precision-recall curve (PRC). XGB: extreme gradient boosting; RF: random forest; LR: logistic regression.

We also assessed the calibration of each model to ensure that
the distribution of predicted outcomes matches the distribution
of observed outcomes in our patient cohort. Baseline and final
models were, in general, well calibrated (Figure 5), matching
the estimated risk of outcome with observed risk. The final

setup for each algorithm was better calibrated (Brier score of
0.17) with respect to the baseline setup (Brier score 0.22). Full
details of Brier scores for each algorithm are detailed in
Multimedia Appendix 1.

Figure 4. Ranking of input variables of the final setup derived from the extreme gradient boost algorithm, using the shapely additive explanation
(SHAP) method.
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Figure 5. Calibration curves for each model and individual algorithms used to derive the model. XGB, extreme gradient boosting; RF: random forest;
LR: logistic regression.

Model Interpretation
The SHAP method was used to perform interpretability analysis,
which explains model output by computing the contribution of
each variable to the prediction. Among others, the SHAP method
was applied on the best-performing model (XGB), where the
FiO2, age, and tracheostomy had the highest impact on outcome
prediction (Figure 4 and Multimedia Appendix 7).

We also report the model interpretability analysis for the RF-
and LR-based models in Multimedia Appendix 8 and 9,
respectively. The top three variables remained common between
XGB and RF, whereas for LR, only tracheostomy appeared in
the top three, with the other two high-ranking variables being
weight and BMI.

Discussion

Principal Findings and Comparison With Related
Studies
This study demonstrates that individual prognostication accuracy
based on patient baseline characteristics can be considerably
improved with ML algorithms that incorporate occurrence and
time-to-event information of clinical events along the course
of a disease such as COVID-19 in elderly, critically ill patients.
These results align with many previous studies that investigated
ML approaches in patients suffering from COVID-19. The major
difference between this COVIP study and others published
previously lies in its focus on the especially vulnerable subgroup
of very old intensive care patients [21]. The second important
difference is that the current approach includes the risk for
clinical events such as tracheostomy.

Subudhi et al [20] compared the ability of 18 different ML
algorithms to predict the rate of admission and mortality of
patients suffering from COVID-19. In their analysis,
ensemble-based models were superior to other algorithms
(including LR and XGB). Specific laboratory values and oxygen
saturation were the most important factors for ICU admission,
whereas impaired kidney function and differential blood count
best predicted mortality [20]. However, this previous study
primarily used data from patients, of all ages, presenting to the
emergency room.

Domínguez-Olmedo et al [19] used data from 1823 patients
with confirmed COVID-19 and established an XGB model.
Their model found lactate dehydrogenase activity, C-reactive
protein level, neutrophil count, and urea level to be the most
important variables, reaching an AUC of 0.93 (95% CI
0.89-0.98) for sensitivity and 0.91 (95% CI 0.86-0.96) for
specificity.

Pan et al [22] used data from 123 patients with COVID-19
admitted to an ICU to construct an XGB model, and identified
eight factors (albumin level, creatinine, eosinophil percentage,
lactate dehydrogenase, lymphocyte percentage, neutrophil
percentage, prothrombin time, and total bilirubin) that were
predictive for ICU mortality.

Vaid et al [18] utilized a different approach based on federated
learning of electronic health records from five different
hospitals, providing robust predictive models without
compromising patient privacy.

Other studies focused primarily on peripheral blood samples.
Aktar et al [17] developed ML and deep learning algorithms to
predict the disease severity. Similarly, Kim et al [23] established
an XGB model in 4787 hospital-admitted patients to predict
their intensive care treatment requirements. Their model was
significantly superior to the established CURB-65 (confusion,
urea, respiratory rate, blood pressure) score.

Applications
Immediate clinical applications are conceivable, especially given
the limited number of ICU beds available. Our models may be
used in several ways: ML could be used before ICU admission
to offer objective support for complex allocation decisions.
However, ML algorithms would mainly access data at
presentation and few dynamic parameters, limiting the predictive
power. ML algorithms could also be used in the context of
time-limited trials (TLTs), which are common clinical practice
in ICUs in some countries. This may be particularly helpful in
patients for whom realistic therapeutic goals/outcomes are
unclear at presentation. These patients could be admitted to the
ICU under the premise of gaining more information about the
patient and the initial response to treatment. This additional
information could then be evaluated using ML algorithms [36]
as already shown in patients with sepsis [9]. The ideal temporal
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combination of a TLT and ML should be the subject of future,
prospective studies [36,37].

In terms of practical applications, ML algorithms provide a
potential strategy to improve decision confidence and predictive
power over time. They are applicable at various time points
during the disease course, predicting outcomes in a continuous
manner. This approach is especially applicable when considering
that the model was well calibrated in estimating outcomes.
However, evaluation of the model with a diverse patient
population would provide further evidence of its clinical
applicability.

Clinical evaluations such as assessment of wakefulness,
mobility, responsiveness, and independence are subjective and
subject to interrater variability. Therefore, advances in digital
technologies may support but not replace physicians’ skills. ML
can support physicians, especially in estimations on prognosis
and achievement of therapy goals. Importantly, ethical problems
become evident when ML is involved in matters of life and
death [38], and it must be emphasized that ML should only
support and aid medical decision-making. Our data show that
dedicated modern algorithms can incrementally improve
certainty during TLTs in elderly patients with COVID-19, and
generalize well in an external patient cohort. These tools can
enhance our ability to improve guidance of treatment and
optimally allocate ICU resources. However, such a strategy can

only be viewed as complementary to clinical judgment and
individual treatment goals, and form part of a holistic patient
assessment.

Limitations
This study has some methodological limitations in common
with the other COVIP studies [11,26,39-42]. COVIP did not
contain a control group of younger COVID-19 patients for
comparison or a comparable age cohort of patients who were
not or could not be admitted to the ICU. In addition, the COVIP
database does not include information on pre-ICU care and
triage decisions. These treatment limitations might also affect
the care of older ICU patients [43]. Furthermore, COVIP
recruited patients in 26 countries, and thus the participating
countries varied widely in their care structure, resulting in
considerable heterogeneity in treatments given.

Conclusion
This study demonstrates that, in the particularly vulnerable
subgroup of very old intensive care patients suffering from
COVID-19, individual prognostication accuracy based on patient
baseline characteristics can be improved with ML algorithms.
These algorithms capture the dynamic course of the disease by
including the occurrence and time-to-event information of
clinical events, and thus reflect both disease severity and the
need for intensive care treatment.
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