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Optimization of cognitive assessment in Parkinsonisms by
applying artificial intelligence to a comprehensive screening
test
Paola Ortelli1,2✉, Davide Ferrazzoli1,2, Viviana Versace1, Veronica Cian2, Marianna Zarucchi2, Anna Gusmeroli2, Margherita Canesi2,
Giuseppe Frazzitta3, Daniele Volpe4, Lucia Ricciardi5,6, Raffaele Nardone7,8, Ingrid Ruffini9, Leopold Saltuari1, Luca Sebastianelli1,
Daniele Baranzini10,11,13 and Roberto Maestri 12,13

The assessment of cognitive deficits is pivotal for diagnosis and management in patients with parkinsonisms. Low levels of
correspondence are observed between evaluations assessed with screening cognitive tests in comparison with those assessed with
in-depth neuropsychological batteries. A new tool, we named CoMDA (Cognition in Movement Disorders Assessment), was
composed by merging Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Frontal Assessment
Battery (FAB). In total, 500 patients (400 with Parkinson’s disease, 41 with vascular parkinsonism, 31 with progressive supranuclear
palsy, and 28 with multiple system atrophy) underwent CoMDA (level 1–L1) and in-depth neuropsychological battery (level 2–L2).
Machine learning was developed to classify the CoMDA score and obtain an accurate prediction of the cognitive profile along three
different classes: normal cognition (NC), mild cognitive impairment (MCI), and impaired cognition (IC). The classification accuracy of
CoMDA, assessed by ROC analysis, was compared with MMSE, MoCA, and FAB. The area under the curve (AUC) of CoMDA was
significantly higher than that of MMSE, MoCA and FAB (p < 0.0001, p= 0.028 and p= 0.0007, respectively). Among 15 different
algorithmic methods, the Quadratic Discriminant Analysis algorithm (CoMDA-ML) showed higher overall-metrics performance
levels in predictive performance. Considering L2 as a 3-level continuous feature, CoMDA-ML produces accurate and generalizable
classifications: micro-average ROC curve, AUC= 0.81; and AUC= 0.85 for NC, 0.67 for MCI, and 0.83 for IC. CoMDA and COMDA-ML
are reliable and time-sparing tools, accurate in classifying cognitive profile in parkinsonisms.

This study has been registered on ClinicalTrials.gov (NCT04858893).

npj Parkinson’s Disease            (2022) 8:42 ; https://doi.org/10.1038/s41531-022-00304-z

INTRODUCTION
Parkinson’s disease (PD) and atypical parkinsonian syndromes
(APS) define the whole group of parkinsonisms, which are the
major subsets of hypokinetic movement disorders. Nowadays,
they represent a challenge for public health worldwide, because
of their growing incidence in the population. The defective
mesostriatal dopaminergic transmission in PD impairs both
movement expression and action performing. The clinical
spectrum includes motor symptoms (rigidity, resting tremor,
bradykinesia, gait disturbances, postural abnormalities, and
balance dysfunctions) and nonmotor symptoms. Nonmotor
symptoms include sleep disorders, autonomic and gastrointestinal
dysfunctions, sensory disturbances, motivational abnormalities,
and cognitive deficits1. These latter may range from mild cognitive
impairment (MCI) to impaired cognition (IC), as far dementia.
Nonmotor symptoms can occur across all stages of PD and are key
determinants of quality of life1–3. Progressive supranuclear palsy

(PSP) and multiple system atrophy (MSA) are the most represen-
tative forms of neurodegenerative APS, whose etiology is different
from that of PD. Vascular parkinsonism (VP) is a form of APS,
whose features are of vascular origin, despite the symptoms are
widely overlapped with those of other APS. As well as in PD,
nonmotor features in APS determine a huge impact on quality of
life and prognosis4.
The characterization of the right neuropsychological profile is

pivotal to define the differential diagnosis with other neurological
diseases and among different kinds of parkinsonisms5–7. Further-
more, it is also crucial to optimize both the pharmacological and
rehabilitation treatments and, more generally, to improve the
disease management5,6. For distinguishing between normal
cognition (NC), MCI and IC in PD, the MDS-task force proposed
two levels of evaluation: an abbreviated assessment (level I—L1)
and/or a comprehensive assessment (level II—L2). The first one
requires the administration of screening tests, while the second
one requires large, in-depth neuropsychological batteries with at
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least two tests in each of the five principal cognitive domains:
attention/working memory, executive function, language, mem-
ory, and visuospatial function8. To reach L1 classification,
numerous screening tests have been proposed. Among them,
the Mini-Mental State Examination (MMSE) and the Montreal
Cognitive Assessment (MoCA) are widely adopted for evaluating
global cognition8–14. Requiring no more than 10–15min for
administration, L1 evaluation provides an undoubtable advantage
in terms of time-sparing in comparison with L2, which includes
time-consuming neuropsychological tests. However, the two-level
evaluation differs from at least two important aspects. First of all,
by referring to the today-available cognitive screening tools, L1
provides clinicians with a classification along only two levels:
scores higher than the cutoff indicate NC, while scores lower than
the cutoff indicate MCI and IC, without distinction among the two
classes8. Conversely, for L2 evaluation, MDS task force indicates
the criteria for distinguishing NC from MCI and the last one from
IC15. The second criticism refers to the low level of correspon-
dence between L1 and L2 classifications16. In fact, several previous
studies observed a discrepancy between the diagnoses obtained
at L1 and those obtained at L2. Marras et al.17 found that the
reliability of MoCA and MMSE is poor, when MDS task-force criteria
were considered to define cognitive profile in PD patients.
Moreover, comparing PD with parkinsonisms, Santangelo et al.6

observed very high percentage of impaired performances on L2
evaluation only in PSP patients, despite their MoCA score was
within the normality range (mean score 20.1, when cut-off for
Italian population is 15.5). Because frontal and executive functions
are the most affected in PD and APS, FAB could be considered a
valid alternative. In this concern, Eschlbock et al.14 studying
cognition in MSA noted an impairment in executive functions in
40% of patients (evaluated with FAB), despite their MMSE was
27.6, making questionable the sensitivity of MMSE in detecting
executive dysfunctions. Bezdicec et al.18 observed a specific
relation between FAB scores and gray-matter density in frontal
lobe of PD patients, recommending this test as a valid instrument
for PD–MCI L1 screening.
Actually, while the weakness of MMSE and MoCA is the poor

reliability, the weak point of FAB is to be too specific, thus losing
the global vision in addressing patients’ cognition. In this study,
we aim first at leveraging the screening capacity of MMSE, MoCA,
and FAB by merging them into a single and composite measure,
namely Cognition in Movement Disorders Assessment (CoMDA)
(see Table 1). Further, we aim to overcome the limitations of L1
classification optimizing the screening-tool reliability of cognitive
profile classification and reaching the 3-level class distribution. To
reach these purposes, we referred to machine learning (ML). ML is
a sub-area of artificial intelligence (AI) and excels in generating

Table 1. Items of MMSE, MoCA and FAB.

Cognitive domain Test Item Score

Executive/Frontal functions MoCA 1. Short version of Trail Making B task 0–1

MoCA, FAB 2. Phonemic fluency task 0–1; 0–3

MoCA, FAB 3. Verbal abstraction task 0–2; 0–3

MoCA 4. Sustained Attention 0–1

MoCA 5. Short Memory (backward digit span) 0–1

6. Working Memory:

serial subtraction task; 0–3; 0–5

MoCA backward spelling task 0–3

MMSE 7. Go/no Go task

FAB 8. Interference suppression 0–3

FAB 9. Motor planning 0–3

FAB 10. Clok´c-Drawing (visuo-spatial planning) 0–3

FAB 11. Prehension behavior 0–3

0–3

Visuo-spatial abilities MoCA 1. Clok´c-Drawing 0–3

MoCA 2. Copying of cube 0–1

MMSE 3. Copying of two Pentagon 0–1

MoCA 4. Short version of Trail Making B task 0–1

Memory MMSE 1. Immediate recall 0–3

MoCA 2. Delayed recall 0–5

MMSE 3. Incidental recall 0–3

MoCA 4. Short memory (forward digit span) 0–1

Orientation MMSE, MoCA 1. Temporal Orientation 0–5; 0–4

MMSE, MoCA 2. Spatial Orientation 0–5; 0–2

Language MMSE, MoCA 1. Repetition 0–1; 0–2

MMSE, MoCA 2. Naming (high frequency and low frequency) 0–2; 0–3

MoCA, FAB 3. Fluency 0–1; 0–3

MMSE 4. Oral Comprehension 0–3

MMSE 5. Writing Comprehension 0–1

MMSE Writing Production 0–1

MMSE mini-mental state examination, FAB frontal assessment battery, MoCA montreal cognitive assessment.
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predictive models (both parametric and nonparametric) that learn
effectively linear and nonlinear complex relationships among
multivariate data patterns. ML has shown excellent accuracy and
cross-generalization levels in diagnostic prediction19,20 and, there-
fore, such architectures are becoming increasingly important in
the modern medical decision-making process21. The use of ML in
healthcare has become common to carry out regression,
classification, or unsupervised clustering tasks for various pre-
dictive models applied to a wide range of clinical uses22. Also,
such predictive modeling capacity proved to outperform other
more classical or deterministic solutions22. This is true, especially
when the input variables (aka predictors) have nonlinear relations,
abnormal distributions, or when they change over time. In fact, ML
implementation is based on loss-function minimization methods,
which allow to reduce the expected error in prediction. Another
leveraging factor in referring ML models consists in their intrinsic
capacity to improve the rate of accuracy and precision over time.
Indeed, ML models improve their performances proportionally to
resampling and retraining events. Such methods learn new
patterns in the data and augment accuracy, precision, or
sensitivity as their fine-tune parameters are exposed to learning
based on new samples23.
Resuming, the aims of this study are (1) to define a new tool,

named CoMDA, able to evaluate the global cognition with
particular attention at frontal and executive functions; (2) to
model and deploy ML algorithms, by implementing CoMDA-score
as key predictor feature, to develop a powerful and fast screening
tool with greater sensitivity in comparison with the available tools;
and (3) to differentiate the patients’ performance along three
classes of cognitive profile: “NC”, “MCI”, and “IC”.

RESULTS
Baseline statistics and comparison substudy
The study population consisted in 400 PD, 41 VP, 31 PSP, and 28
MSA patients: Table 2 reports demographic variables of patients,
grouped by disease.
The results of the method-comparison substudy are reported in

e-Table 1 (Supplementary material) and confirmed that the
CoMDA-derived MMSE, MoCA, and FAB scores are in excellent
agreement with the values of the original source measures. The
bias (i.e., systematic error) was nonsignificant for all scores and
ranged from 1.2% (MoCA) to 0.4% (MMSE). According to the limits
of agreement, one can be 95% confident that the error is less than
7% and 12% in the best case (MMSE) and in the worst case (FAB),
respectively.
The CoMDA evaluation took 14.1 ± 1.1 min. This time was

considerably longer than the time for assessing FAB and MMSE
(4.1 ± 0.2 and 4.2 ± 0.4 min, respectively), but only about 44%
more than MoCA (9.8 ± 0.6 minutes) and 28% less than the time
needed for administering all three tests (18.0 ± 1.0 minutes).

Statistics between disease groups
In e-Table 2 (Supplementary material), the percentage of normal
performances to screening tests and in-depth neuropsychological

tests according to normative data for Italian population are
reported, stratified by disease.
Table 3 reports the results of nonparametric analysis of variance

for screening and in-depth neuropsychological test scores for all
groups of patients. Global group effect was significant for all
screening tests (p= 0.032 for MMSE, p < 0.0001 for FAB, MoCA,
and CoMDA). Post hoc analysis revealed only borderline significant
differences in MMSE and CoMDA between PD and MSA, and in
MoCA between PD and VP. At variance, largely significant
differences in FAB, MoCA, and CoMDA were found between PD
and PSP.
Regarding in-depth evaluation, global group effect was not

statistically significant for WCST and ROCF-C (p= 0.10 and p=
0.17, respectively), while it was significant for all remaining tests.
Post hoc analysis revealed several differences between groups of
patients (see Table 3). On the other hand, as e-Table 2 describes,
WCST and ROC-C stand out for being the most frequently
impaired, in all groups, confirming that the executive and
visuospatial ones are the most impaired cognitive functions in
PD and APS.

Predictive discrimination analysis
Cross-tabulations of L1 cognitive impairment by patients’ groups
(‘1’ ≥ cutoff, ‘0’= < cutoff) intercepted by MMSE, MoCA, and FAB
are reported in e-Table 3 (Supplementary material), while L2
cognitive impairment cross-tabulation by patients’ groups is
reported in e-Table 4 (Supplementary material). There is a highly
significant association between L2 and disease-group distribution
(Chi-Square p < 0.0001).
The comparison of MMSE, MoCA, FAB and CoMDA scores in NC

and MCI+ IC as assessed by L2 is reported in e-Table 5
(Supplementary material). It can be seen that MMSE, MoCA, FAB,
and CoMDA scores are significantly worse in MCI and IC than NC
as assessed by L2.
ROC analysis was used to quantify how accurately CoMDA,

MMSE, MoCA, and FAB scores can discriminate between NC, MCI,
and IC as assessed by L2. Figure 1 shows the ROC curves obtained
for the four cognitive-screening tools. The AUC ranged from 0.708
for MMSE, to 0.789 for MoCA, to 0.759 for FAB, and 0.814 for
CoMDA. Notably, contrast analysis for ROC curves revealed that
AUC for CoMDA was significantly higher than those for MMSE,
MoCA, and FAB (p < 0.0001, p= 0.028, and p= 0.0007) (see Fig. 1).

Machine learning model: CoMDA-ML
A total of 15 different models were engineered and tested. They
underwent a standard “10-fold cross validation technique” and
e-table 6 reports the averaged metric performances for each
estimator respectively. Cross-validation performance was based
on a training set of 349 samples (~70% of total 500 patient-sample
data) implementing a k-fold cross-validation procedure, k= 10.
The trained algorithms were then scored on a final test/holdout
set of 151 samples (remaining ~30% of sample data) to verify
cross-generalization performance and the presence of undesirable
model overfitting on unseen data (test/holdout set).

Table 2. Demographic variables for all patients, grouped according to the disease.

Variable All patients PD MSA PSP VP

Age 67.94 ± 9.26 67.48 ± 9.09 60.5 ± 8.77 70.97 ± 5.58 75.27 ± 8.19

Gender, n. and % of males 290 (58.0%) 239 (59.7%) 14 (50%) 19 (61.3%) 18 (54%)

Education (years) 10.63 ± 4.22 10.85 ± 4.19 10.61 ± 4.36 10.55 ± 4.06 8.54 ± 3.99

Disease Duration (years) 9.23 ± 5.33 9.99 ± 5.438 5.61 ± 2.51 6.03 ± 3.42 6.76 ± 4.08

PD Parkinson’s disease, MSA multiple system atrophy, PSP progressive supranuclear palsy, VP vascular parkinsonism.
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The predictive performance of the Quadratic Discriminant
Analysis (QDA) algorithm showed higher overall-metrics perfor-
mance levels across all algorithmic methods. Indeed, as shown in
e-Table 6 (Supplementary material), the QDA algorithm resulted in
the best-performing one across several competing estimators
considered during the training validation process, outperforming
other algorithms on the majority of the metrics.
This model maximized the bias-variance trade-offs, as it

expresses optimal L2-prediction accuracy while maintaining
appropriate cross-generalization performance.
Out of the 7 candidate predictors (see the statistics section—

Machine learning), only 4 were selected by the QDA algorithm to
predict 3-level L2 classification: “CoMDA score”, “age”, “disease

duration”, and “years of education”. The resulting ML model was
named “CoMDA-ML”.
The final model implemented a weighting on “CoMDA score”

separately with “age” and “education”. These additional weight-
ings defined two new predictor variables in the algorithm:
“age*CoMDA score” and “education*CoMDA score”.
Among all candidate and new predictors, CoMDA score is the

more informative one. In fact, as it can be seen in e-table 7 and
e-table 8, the Information Gain tests revealed that CoMDA score
provides the highest Information Gain, or the best-information
entropy reduction, both in the original data sample and in the
training set, where age*CoMDA and education*CoMDA features
have been defined in the algorithm.
These variables, used to train the QDA, improved sensibly the

predictive power. The final hyperparameters configurations of the
finalized CoMDA-ML model are the exposed algorithm of the QDA:
a classifier with a quadratic decision boundary, generated by
fitting class-conditional densities to the data and using Bayes’
rule24.
QDA is derived by a target-class conditional distribution of the

form

PðXjy ¼ kÞ;
and instantiation of Bayes’ rule for any given training sample

Pðy ¼ kjxÞ ¼ Pðxjy ¼ kÞPðy ¼ kÞ
PðxÞ ¼ Pðxjy ¼ kÞPðy ¼ kÞ

P
l Pðxjy ¼ lÞ � Pðy ¼ lÞ ;

where a targeted class k maximizes the posterior distribution with
the log of the posterior

log P y ¼ kjxð Þ ¼ � 1
2 logjΣk j � 1

2 ðx � μkÞtΣ�1
k ðx � μkÞ þ logPðy ¼ kÞ

þ Cst;

with Cst ¼ P xð Þ.
(Source: Scikit Learn API, 2021—https://scikit-learn.org/stable/

modules/lda_qda.html#lda-qda). The QDA predicted class is the

Table 3. Post hoc analysis of scores of screening tests and in-depth neuropsychological evaluations reported for all groups of patients.

Variable PD MSA PSP VP p-value PD
versus MSA

p-value PD
versus PSP

p-value
PD
versus VP

p-value
MSA
versus PSP

p-value
MSA
versus VP

p-value
PSP
versus VP

MMSE 27.2 ± 2.3 26.2 ± 2.1 26.2 ± 3.5 26.8 ± 2.9 0.052 0.54 0.99 0.95 0.43 0.96

FAB 14.4 ± 2.7 13.8 ± 2.2 11.6 ± 3.9 13.5 ± 3.0 0.60 <0.0001 0.21 0.25 1.00 0.27

MoCA 23.4 ± 3.6 21.9 ± 3.7 20.5 ± 4.9 21.8 ± 3.7 0.13 0.003 0.057 0.97 1.00 0.92

CoMDA 65.1 ± 7.2 61.9 ± 6.4 58.1 ± 10.6 62.1 ± 8.2 0.060 0.0005 0.10 0.94 1.00 0.62

WCST 73.2 ± 36.7 68.9 ± 34.2 90.0 ± 22.1 77.5 ± 35.5

Stroop test E 5.2 ± 7.6 3.2 ± 4.6 11.3 ± 8.4 11.3 ± 9.1 0.98 0.00031 <0.0001 0.003 0.001 1.00

Stroop test T 20.6 ± 13.0 25.6 ± 13.5 29.7 ± 26.4 22.8 ± 20.5

TMT-A 44.3 ± 46.6 61.7 ± 35.6 70.0 ± 65.5 79.8 ± 88.7 0.016 0.17 0.010 0.99 1.00 1.00

TMT-B 126.3 ± 100.2 172.2 ± 79.8 161.6 ± 107.3 186.1 ± 123.6 0.014 0.42 0.024 0.96 1.00 1.00

TMT B-A 89.1 ± 81.8 112.3 ± 64.5 123.3 ± 87.1 132.1 ± 99.3 0.12 0.20 0.09 1.00 1.00 1.00

RAVLT-e 43.1 ± 10.2 44.6 ± 9.8 38.8 ± 8.3 40.9 ± 8.3 0.96 0.08 0.54 0.10 0.43 0.93

RAVLT-
delayed recall

8.7 ± 3.2 9.3 ± 3.1 7.5 ± 2.9 7.8 ± 2.8 0.80 0.16 0.28 0.08 0.14 1.00

ROCF-c 29.3 ± 6.5 26.2 ± 6.1 19.3 ± 9.3 26.5 ± 8.1 0.022 <0.0001 0.11 0.28 0.95 0.014

ROCF-dr 14.9 ± 5.7 14.8 ± 6.3 11.8 ± 6.9 13.8 ± 4.5

CF 43.5 ± 9.5 38.9 ± 9.7 30.9 ± 6.7 37.5 ± 8.6 0.18 <0.0001 0.003 0.023 1.00 0.044

PF 32.5 ± 10.5 25.2 ± 9.8 19.3 ± 7.6 25.8 ± 9.4 0.006 <0.0001 0.002 0.33 1.00 0.10

PD Parkinson’s disease, MSA multi system atrophy, PSP progressive supranuclear palsy, VP vascular parkinsonism, MMSE mini-mental state examination, FAB
frontal assessment battery, MoCAmontreal cognitive assessment, CoMDA cognitive screening in movement disorders assessment,WCSTWisconsin card sorting
test, Stroop Test E stroop test errors score, Stroop Test T Stroop test time-in-seconds score, TMT trial making test, RAVLT Ray auditory verbal learning test, ROCF
Rey–Osterrieth complex figure test, CF categorical fluency, PF phonemic fluency, PD Parkinson’s disease, MSA multi system atrophy, PSP progressive
supranuclear palsy, VP vascular parkinsonism.

Fig. 1 ROC curves. ROC curves obtained for the scores of the four
cognitive-screening tools considered (see the text).
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one that maximizes this log-posterior (see also e-Table 9—
Supplementary materials).
The L2 multilevel-classification results are given by standard

micro- and macro-average ROC curves, as well as individual class
(one-vs-others) ROC curve values shown in Fig. 2. There is
favorable convergence between micro- and macro-average AUC
and ROC curve values at 0.81 and 0.79, respectively. Likewise,
adequate single L2-class (one-vs-others) AUC ROC values have
been achieved. Such findings replicate the ROC curve profiles
obtained by the preceding baseline statistical tests. It is to note
that micro-averaging combines all true/false-positive instances
(across classes) to compute a single global ROC curve. Instead,
macro-averaging pools together multiple ROC curve statistics as
computed by each L2 class separately. Micro-averaging weights
according to class dimension and macro-averaging equally
weights across classes. Both are relevant to a complete multilevel
assessment.
At the final test/holdout set CoMDA-ML resulted to provide

accurately the 3-level multilevel classifications, having accuracy=
0.682, AUC= 0.81, sensitivity/recall= 0.682, precision= 0.681,
F1 score= 0.676, Kappa= 0.508, and MCC= 0.513.
The model confusion matrix at test/holdout set is given in Fig. 3

and it shows positive distribution rate of true positives in the main
diagonal with respect to false-positive and false-negative rates.
Finally, e-Table 10 (Supplementary material) shows 10 random

samples in the test/holdout set where the last two columns report
the predicted L2 class (Label) besides the actual L2 class (L2):
model-prediction results effective at this test-deployment outset:
it can be seen that CoMDA-ML provides a reliable prediction of L2
classification.

DISCUSSION
The present study was aimed at creating CoMDA, a useful and
time-sparing cognitive-screening tool thought to specifically
evaluate the cognitive profile of PD and APS patients, and at
developing CoMDA-ML to ameliorate the reliability of evaluation
and to classify the patients’ performance along three classes of
cognitive profile (“NC”, “MCI”, and “IC”), thus reducing the
discrepancies between the classifications obtained with screening
tests in comparison with in-depth neuropsychological batteries.

To the best of our knowledge, this is the first study in which AI is
applied in cognitive-screening assessments to generate a predic-
tion of the cognitive profile.
CoMDA has been built based on preexisting, frequently

adopted screening tests, whose utilization is widely accepted,
both in clinical and research settings. By merging the MMSE,
MoCA, and FAB items, CoMDA guarantees a global evaluation,
with particular attention on executive and frontal functions,
specifically impaired in PD and APS patients. Furthermore,
CoMDA-ML allows to improve the reliability of L1 evaluation
and, finally, to classify the cognitive profile of PD and APS patients
along three different classes: “NC”, “MCI”, and “IC”.
PD and APS share many signs and symptoms and present

different rates of incidence in the population. These assumptions
explain why our sample was not balanced among diseases, age,
gender, and age at onset. As patients were continuously
enrolled, the rate of PD and APS in our sample reflects the
distribution of these pathological conditions in the general
population25.

Fig. 2 ROC curves for QDA. CoMDA-ML: ROC curves of multilevel classification.

Fig. 3 Confusion matrix. Accuracy-prediction levels for L2 classes as
0= IC, 1=MCI, and 2=NC. Observed values (True Class) are
reported in row-wise, while the predicted values (Predicted Class)
are reported in column-wise.
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The results from the neuropsychological evaluation confirm the
impairment of cognition in patients with PD and APS26,27. Fifty-
nine percent of them get defective performances in one or more
neuropsychological tests. We found that visuospatial deficits are
the most common among PD and APS patients, followed by
impairments in attention (specifically in interference-suppression
capability), and executive functions, (mainly in mental flexibility).
PSP patients manifest greater cognitive impairments than those
suffering from other parkinsonisms. More than 50% of PSP
patients showed pathological performances in WCST, TMT B–A,
ROCF-c, ROCF-dr, and ST-E. Performances in ST-E and ROCF-c were
defective in about 80% of PSP patients6,28. ROCF copy was the
most impaired test among patients with MSA (67.9% of defective
performances)29. The WCST test was defective in 42.7% of patients
with PD30, thus confirming the executive dysfunction31. Therefore,
deficits in executive functions remain the common neuropsycho-
logical denominator in all these pathological conditions. This
finding may be prognostically valuable for identifying PD and APS
patients at risk of dementia7,27,32–34. CoMDA is powerful in
bringing together the intrinsic value of each single item belonging
to the most used screening tests into a single instrument
equipped with an effective elaboration processing, able to depict
simultaneously both executive and visuospatial functions.
The results of the method-comparison substudy confirmed

that the CoMDA-derived MMSE, MoCA, and FAB scores are in
excellent agreement with the values of the original source
measures. This is a point of strength of CoMDA, which can
automatically provide the score of three well-known and widely
adopted tests. By referring at nowadays-available normative data
for these scores, we can observe that MMSE and FAB differ
between patients and healthy controls and among the disease
groups. Conversely, MoCA score did not differ between patients
and healthy controls. This finding could be related to the low
MoCA cutoff score identified in the normative data for the Italian
population35.
MMSE, MoCA, and FAB scores showed a strong relation with L2,

which is considered as the gold standard to diagnose cognitive
impairment in patients with PD7,8,15. Comparing the classifications
obtained with CoMDA with those of the other three screening
tests, we objectivated a significant greater reliability of the first
one. This result is really worth of attention, as misleading cognitive
data could hinder or delay the right diagnosis in patients suffering
from PD or APS. Reaching a good classification of cognitive profile
is fundamental not only for diagnostic concerns, but also for
several clinical and management-related aspects: (i) to select the
best pharmacological treatments36, (ii) to direct the neurorehabil-
itation approaches2,3, and (iii) to optimize the home-based
patient’s management37.
The present study highlights how combining psychometric

tests and AI can be effective for defining the cognitive profile in
PD and APS and for identifying patients at risk of dementia.
The application of predictive analytics through CoMDA-ML for

3-level cognitive-profile classification allowed to reach a reliable
level to distinguish among NC, MCI, and IC.
Notably, the crucial condition to reach these two aims is the

application of the AI methods. The use of ML in healthcare has
become common to carry out regression, classification, or
unsupervised clustering tasks for various predictive models. ML
implementation is based on loss-function minimization meth-
ods, which allow to reduce the expected error in prediction.
Notably, the finalized 6-predictor set (i.e., CoMDA, age,
education, disease duration, age*CoMDA and education*-
CoMDA) was not directly anticipated or given by specific
hypotheses. The deep-learning process promoted the exclusion
of 3 candidate predictors (“gender”, “years of education”, and
“L1 score”) and the setting of two additional ones. These last
have been obtained by running ML experimentations, with
feature-engineering processes, based on the available

information, which were the baseline predictors. Interestingly,
the two new-built features, used to train the QDA, improved the
predictive power, but only together with the other original
features.
The present study presents such limitations. Despite the studied

population came from all over Italy, this is a single-center study, so
that the generalizability of the results is reduced. Further, it could
be very interesting to build the same tool by adopting different
psychometrics batteries.
Since the rising number of people suffering from PD and APS

represents a critical challenge for the public health worldwide, the
effort of engaging applicative AI research in this field is really
actual. Diagnostic approaches like CoMDA, designed to be equally
time-saving and markedly reliable, could maximize our diagnostic
capacity and the disease management, thus representing one of
the most important steps to follow in the upcoming future.

METHODS
This study is part of a larger prospective, observational, analytical, single-
center, cohort study, devised to create a database of clinical, functional,
motor, neuropsychological and neurophysiological variables in patients
affected by PD and APS coming from all over Italy. The whole study aims at
optimally characterizing the profile of these patients in order to better
define their treatment into the neurorehabilitative setting.
The protocol was conducted at the Department of Parkinson’s Disease

and Movement Disorders Rehabilitation of the “Moriggia-Pelascini”
Hospital (Gravedona ed Uniti, Italy) between January 2017 and December
2019. The study design and protocol were approved by the local Ethics
Committee (“Comitato Etico Interaziendale delle Province di Lecco, Como e
Sondrio”) and were in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki, 1967). The study was also
registered on ClinicalTrials.gov (NCT04858893).

Subjects
Six-hundred sixty-one patients were consecutively enrolled by neurologists
with experience in movement disorders.
Patients were included in the present study if they met one of the

following criteria: (a) diagnosis of idiopathic PD according to the MDS
clinical diagnostic criteria38; (b) diagnosis of PSP according to the MDS
clinical diagnostic criteria39; (c) diagnosis of MSA according to the second
diagnostic consensus statement40 and (d) diagnosis of VP according to
Zijlmans et al.41.
Exclusion criteria were (a) any focal brain lesion detected with brain-

imaging studies; (b) psychiatric disorders, psychosis (evaluated with
Neuropsychiatric Inventory), and/or delirium; (c) previous diagnosis of
dementia; (d) neurological diseases other than PD or APS; (e) other medical
conditions negatively affecting the cognitive status; (f) disturbing resting
and/or action tremor, corresponding to scores 2–4 in the specific items of
MDS Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) III, such as to
affect the psychometric evaluation; (g) disturbing dyskinesia, correspond-
ing to scores 2–4 in the specific items of MDS-UPDRS IV, such as to affect
the psychometric evaluation; (h) auditory and/or visual dysfunctions
impairing the patient’s ability to perform cognitive tests.
Accordingly, 161 patients were excluded from the study: 76 had

previous diagnosis of dementia, 13 presented sensorial deficits (2 with
visual impairment, 11 with hearing impairment), 51 suffered from
psychiatric disorders and 21 presented disturbing tremor and/or dyskine-
sia. This led to a final study population of 500 patients. According to the
clinical diagnostic criteria38–41, patients were classified as follows: 400 with
PD, 41 with VP, 31 with PSP, and 28 with MSA.
A complete explanation of the study protocol was provided, and written

informed consent was obtained from all participants before their
participation in the study.

Neuropsychological evaluation
The in-depth neuropsychological evaluation was administered by expert
neuropsychologists, blinded to patients’ diagnosis. All patients were tested
during the morning, in two consecutive days, in a laboratory setting, with
constant artificial lighting condition and in the absence of auditory
interferences. PD patients were evaluated in medication “on” state.
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1. First evaluation: CoMDA
“CoMDA” stands for “Cognition in Movement Disorders Assess-

ment” and combines MMSE, MoCA and FAB individual measures
into a single tool. More specifically, CoMDA consists of all items of
the three tests, without repetition for items that appear in more
than one of them (e.g., this occurs for the 6 items evaluating
orientation, which are both in MMSE and MoCA). CoMDA is thought
to maximize the diagnostic-capacity power to screen patients with
PD and APS. In our assumption, CoMDA was adopted to define and
categorize these patients into three classes: NC, MCI, and IC.
CoMDA scores result by linear non-weighted combination

(additive model) of the non-redundant MMSE, MoCA and FAB items
(see Table 1).
CoMDA allows four different scores in L1: the first three ones are

“partial” scores, which are obtained by scoring and summarizing all
items of each single test (MMSE: 0–30, MoCA: 0–30, and FAB: 0–18)
adjusted (weighted) on the Italian population data as by previous
research42–44. The fourth one is the “total” score (CoMDA score),
which is obtained by summarizing the first three “partial” scores.
CoMDA score ranges from 0 (worst performance) to 78 (best
performance).

2. Psychometric test battery

Furthermore, patients underwent a large battery of neuropsychological
tests for evaluating several cognitive domains (see Table 4), according to
the indications provided by Goldman et al.15. The majority of studies for
obtaining normative values conducted on the Italian population45–50

adopted a statistical procedure, which provides regression-based norms
and a system of scores on an ordinal scale, named Equivalent Scores (ES). It
ranges from class 0 (scores equal or higher than the outer tolerance limit of
5%) to class 4 (scores lower than the median value of the whole sample); 1,
2, and 3 classes were obtained by dividing into three equal parts the area
of distribution between 0 and 4. This method makes it possible to judge
the scores obtained by the person under examination with respect to
those of normal subjects, taking into account of the influence of variables
related to age, education, and gender.
Hence, the whole patient’s performance was classified based on the

termed L2, by adapting the indications provided by Litvan et al.8 to the
described system of scores, along three consecutive classes: 2= NC (all ES
> 0 or one ES= 0); 1=MCI (two ES= 0, in tests evaluating the same
cognitive domain or two ES= 0, in tests evaluating two different cognitive
domains); 0= IC (more than two ES= 0).

Baseline statistics and machine learning
Descriptive statistics and method-comparison substudy. Basic descriptive
statistics for continuous variables were reported as mean ± SD. Descriptive
statistics for categorical variables were reported as N (percent frequency).
To assess whether MMSE, MoCA, and FAB scores, derived from CoMDA

values, fit the scores computed in the standard way, we set up a method-
comparison substudy. A group of 20 patients underwent two assessment
sessions, in random order: one session included the administration of
MMSE, MoCA, and FAB; the other one included the administration of the
CoMDA. The agreement among “standard MMSE, MoCA and FAB scores”
and “CoMDA-derived MMSE, MoCA and FAB scores” was assessed by
Bland–Altman analysis, computing the bias (systematic difference) and the
95% limits of agreement (the range within which 95% of the differences
are expected to lie). The Pearson correlation coefficient was also
computed.
The time needed to administer CoMDA was also registered and

compared both to the time needed for each standard test and the sum
of the times required for the three single tests.

Inferential statistics. Non parametric Kruskal–Wallis test and the Chi-
square test were carried out for between-group comparisons for
continuous and categorical variables respectively. Non parametric
Mann–Whitney U-test was applied for single pairwise between-group
comparisons. Post hoc comparisons with Dunn–Sidak adjustments were
applied for paired multiple-comparison tests.

Predictive discrimination analysis. The area under the curve (AUC) of
receiver operating characteristic (ROC) curves was computed to assess the
ability of all available cognitive screening tools to discriminate between
two classes: NC versus MCI or IC, as assessed by the L2 classification (L2= 0
vs. L2= 1+ L2= 2). A value of 0.5 indicates no predictive discrimination,
while a value of 1 indicates perfect separation of patients with and without

cognitive impairment. The AUC for the CoMDA, MMSE, MoCA, and FAB
tools was compared by the Hanley–McNeil test.
A p-value < 0.05 was considered statistically significant. All analyses were

carried out using the SAS/STAT statistical package, release 9.4 (SAS
Institute Inc., Cary, NC, U.S.A.).

Machine learning. The ML solutions were engineered to finalize L2
classification on the total sample of 500 patients. All ML models availed of
a baseline pool of 7 prescreening candidate predictors: “CoMDA score”,
“gender”, “age”, “disease”, “disease duration”, “years of education”, and
“L1 score”. A large set of ML architectures (i.e., algorithms, parameters and
hyperparameter combinations) were concurrently tested to obtain the final
model, which is the best in fitting algorithmic configuration to correctly
predict L2 classification from the available data.
Models were validated via k-fold cross-validation operated on a training

partition set out of the 500 available samples. This procedure implies to
split the available dataset into k non-overlapping folds. Each of the k folds
could be used as a held-back test set, while all other folds collectively are
used as a training dataset. A test/holdout set was used to measure
unbiased cross-generalization performance level of the ML solution on
unseen data. A random-shuffling train-test split was carried out to avoid
any potential selection bias. This procedure was performed on the original
data sample before any model-training operation.
To know the most important predictor among the 7 available, the value

of Information Gain, obtained in prediction, has been quantified. This value
reflects a measure of “entropy reduction” or “information relevance” of
predictors in the dataset of reference51,52.
Finally, cross-algorithm performances were assessed by widely adopted

standard prediction metrics: accuracy, AUC, recall, precision, F1, kappa
and MCC.
All machine-learning experiments were carried out by coding in Python

3.8 (Python Software Foundation, 9450 SW Gemini Dr., ECM# 90772,
Beaverton, OR 97008, USA) with full use of PyCaret 2.3.3 library (PyCaret.
org. PyCaret) and Jupiter Notebook (Python editors). The finalized version
of ML algorithm had hyperparameters fine-tuned via “Optuna” mathema-
tical method53.
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Table 4. Level 2 neuropsychological evaluation (see the text).

Explored cognitive domain Administered tests

Executive/frontal functions 1. Wisconsing Card Sorting Test (WCST)

2. Trail Making Test A & B (TMT A and B)

3. Stroop Test Error Number (ST-E) and
Time (ST-T)

4. Phonemic fluency (PF)

Visuo-spatial abilities 1. Rey-Osterrieth Complex Figure Test
copy (ROCF-C)

2. Rey-Osterrieth Complex Figure Delayed
Recall (ROCF-DR)

Memory 1. Rey-Auditory Verbal Learning Test
(RAVLT)

2. Rey-Auditory Verbal Delayed Recall Test
(RAVLT)

3. Rey-Osterrieth Complex Figure Delayed
Recall (ROCF-DR)

Language 1. Categorical Fluency (CF)

2. Phonemic Fluency (PF)
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