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Abstract

This contribution is an overview of the Early Jurassic dinoflagellate cysts of the
Lusitanian Basin in Portugal, with particular emphasis on the effects of the Jenkyns
Event (Toarcian Oceanic Anoxic Event — T-OAE) on the evolution of this planktonic
group. We review and discuss data from 214 samples from six Lower Jurassic
successions (upper Sinemurian—upper Toarcian) in the Lusitanian Basin. The late
Pliensbachian radiation of dinoflagellate cysts was well recognised in this basin. The
pre-Jenkyns Event interval is highly productive, with maximum abundance and species
richness values. However, this palacoenvironmental perturbation severely affected the
evolution of this group for the remainder of the Early Jurassic. The prolonged recovery
of the dinoflagellates in the Toarcian following the Jenkyns Event is not typical of the
northern regions (Arctic and Boreal realms), where new species began to evolve earlier

compared with southern European basins.
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Dinoflagellates, together with coccolithophores and diatoms, comprise the bulk
of the marine eukaryotic phytoplankton and are extremely significant primary
producers. The bioproductivity and distribution of dinoflagellates are influenced by, for
example, light, nutrients, ocean currents, salinity, temperature and water depth. As part
of their life cycle, many dinoflagellates form resting cysts, and these have a rich fossil
record from the Late Triassic onwards (e.g. Dale 1983; Fensome et al. 1996a,b,c;
Falkowski et al. 2004). Dinoflagellate cysts are used as biostratigraphical markers, and
palaeoclimatological and palaeoecological proxies (e.g. Stover et al. 1996; Riding and
Hubbard 1999; Sluijs et al. 2005).

This contribution is a review of how dinoflagellate cysts responded to a major
Early Jurassic global environmental perturbation, the Toarcian Oceanic Anoxic Event
(T-OAE), currently renamed the Jenkyns Event (Miiller et al. 2017; Reolid et al. 2020).
However, the present authors proposed to use "T-OAE" only for marine deposits with
oxygen-depleted conditions and the term "Jenkyns Event" for general Early Toarcian
global palacoenvironmental changes. This event, which occurred at ~183 Ma, was
characterised by marine anoxia—euxinia, global warming and the extensive burial of
organic matter. It was probably caused by greenhouse gas release linked to volcanism
from the Karoo-Ferrar large igneous province, and it was accompanied by major
changes in global geochemical cycles with a rapid negative shift in organic-carbon
isotope records. The rise in palacotemperatures increased the hydrogeological cycle.
Consequently, the concomitant more intense weathering regime contributed elevated

levels of nutrients, thereby promoting higher bioproductivity and hence more carbon
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burial. Studies on this palaecoenvironmental change are extensive, and it has been
documented worldwide (e.g. Jenkyns 1988; Hesselbo et al. 2000, 2007; Kemp et al.
2005, 2019; Them et al. 2017; Xu et al. 2017; Fantasia et al. 2018a,b; Fonseca et al.
2018; Izumi et al., 2018; Rodrigues et al. 2019, 2020a,b,c; Jin et al. 2020; Krencker et
al. 2020; Ruebsam et al. 2020a,b).

Specifically, we herein review regional trends in the Early Jurassic dinoflagellate
cyst record based mostly on the Lower Jurassic (upper Sinemurian to upper Toarcian)
reference sections in the Lusitanian Basin, Portugal, and compared with published data
from elsewhere. The main emphasis is on the characterization of the pre-and-post-
Jenkyns Event dinoflagellate cyst assemblages and the impact of the associated

palacoenvironmental changes on dinoflagellate evolution.

The geological setting of the Lusitanian Basin

The Lusitanian Basin is a critical Mesozoic depocentre, especially for the Jurassic,
located in central-western Portugal, and oriented northeast-southwest (Fig. 1). It is 300
km long and 150 km wide, with a maximum basin fill of 5 km. The origin and evolution
of this significant sedimentary basin are related to the breakup of Pangaea and the
opening of the North Atlantic Ocean. The fill is mainly composed of marine strata,
ranging in age from Middle?—Late Triassic to the latest Early Cretaceous (Kullberg et
al. 2013). Although the ammonite record of the Lower Jurassic succession of the
Lusitanian Basin indicates a strong Atlantic influence (Mouterde et al. 1979), mixed
Boreal and Tethyan faunas in the upper Pliensbachian to Toarcian interval suggest
intermittent communication between the two biotal realms (Elmi et al. 1989; Terrinha et

al. 2002). Marine carbonate ramps formed rapidly in the Lusitanian Basin during the
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Early Jurassic, largely comprising marl-limestone alternations (Azerédo et al. 2003,
2014; Duarte 1997, 2007; Duarte et al. 2010).

Palynological data from the six Lower Jurassic successions (upper Sinemurian—
upper Toarcian) in the Lusitanian Basin discussed in this work were first published by
Correia et al. (2017a,b, 2018). The first is the Sdo Pedro de Moel composite succession,
comprising the Polvoeira Member of the Agua de Madeiros Formation at Polvoeira
(upper Sinemurian). Herein, we refer to this section as ‘Sao Pedro de Moel’, although
the succession studied corresponds to the Polvoeira section of Duarte et al. (2012,
2014). The others are: the Brenha and Fonte Coberta sections, comprising the Vale das
Fontes and Lemede formations (lower to upper Pliensbachian); the Peniche section,
consisting of the Vale das Fontes, Lemede and Cabo Carvoeiro formations (lower
Pliensbachian—lower Toarcian); and the Vale das Fontes and Maria Pares sections,
comprising the Sao Gido and Povoa da Lomba formations (lower to upper Toarcian).
These lithostratigraphical units and the stratigraphical logs for each section were

described and depicted by Correia et al. (2017a,b, 2018).

Material and methods

In this work, we review and discuss dinoflagellate cyst data from 214 samples from
these six Lower Jurassic sections in the Lusitanian Basin (Fig. 1; Correia et al. 2018,
fig. 2). Twelve samples (prefixed PM) were collected from the upper Sinemurian
(Oxynoticeras oxynotum and Echioceras raricostatum biozones) of Sdo Pedro de Moel
(Correia et al. 2018, fig. 3). At Brenha, 22 samples were taken from a Pliensbachian
composite section (Uptonia jamesoni to Emaciaticeras emaciatum biozones). The lower
part of this section comprises the Vale das Fontes Formation (samples prefixed Br), and

the upper part is the Lemede Formation (samples prefixed BrLem; Correia et al. 2018,
4
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fig. 4). A total of 72 samples (P-34 to P38) were collected from the lower Pliensbachian
to lower Toarcian (Tragophylloceras ibex to Hildaites levisoni biozones) succession at
Peniche (Correia et al. 2017b, fig. 3; Correia et al. 2018, fig. 5). At Fonte Coberta, in the
Rabagal area, five samples (prefixed FC) from the upper Pliensbachian (Amaltheus
margaritatus and Emaciaticeras emaciatum biozones) were analysed (Correia et al.
2018, fig. 6). The section at Maria Pares comprises the lower, middle and upper
Toarcian (Dactylioceras polymorphum to Pleydellia aalensis biozones) and 89 samples
(numbered PZ1 to PZ89) were collected (Correia et al. 2017a, fig. 4; Correia et al. 2018,
figs. 7-9). In the Vale das Fontes section, we examined 14 samples (numbered PVF1 to
PVF14) from the lower Toarcian (Dactylioceras polymorphum and Hildaites levisoni
biozones; Correia et al. 2017a, fig. 5). Correia et al. (2017a,b, 2018) presented detailed
palynostratigraphical data on these successions. The different thicknesses of the
ammonite biozones from the Lower Jurassic of the Lusitanian Basin, represented herein
in Figures 2 and 4, are proportional to the number of samples studied within each
biozone.

The samples were processed using traditional demineralisation techniques for
carbonate rocks, with hydrochloric acid followed by hydrofluoric acid (Riding and
Warny 2008; Riding 2021). Because some palynomorphs are relatively light, the
oxidation step was not undertaken. The swirling technique was performed for
palynomorph concentration, and heavy liquids were not used. All residues were sieved
using 15 pm mesh. The final concentrates used for the microscope slides production
were stained with Safranin O, to improve the body colour of the palynomorphs. When
possible, 300 palynomorphs was counted for each sample; if not, the maximum number

of specimens from two microscope slides were assumed. The unused sample material,
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aqueous organic residues and microscope slides are all curated in the collections of

LNEG (Portuguese Geological Survey), Sio Mamede de Infesta, Portugal.

The Early Jurassic dinoflagellate cyst palaeobiology of the Lusitanian Basin

A palynological overview

The upper Sinemurian succession at Sao Pedro de Moel proved entirely barren of
dinoflagellate cysts (Fig. 2). The late Sinemurian marker dinoflagellate cyst Liasidium
variabile, a thermophilic taxon and the index for the Liasidium Event (Riding et al.
2013; Hesselbo et al. 2020), was not recorded in this study. By contrast, the five
Pliensbachian and Toarcian sections from the Lusitanian Basin yielded dinoflagellate
cysts. Fifteen forms were identified, these are: Dapsilidinium? deflandrei; Luehndea
spinosa; Mancodinium semitabulatum; Maturodinium? inornatum; Mendicodinium
microscabratum; Mendicodinium spinosum subsp. spinosum; Mendicodinium sp.;
Nannoceratopsis ambonis; Nannoceratopsis gracilis; Nannoceratopsis senex;
Nannoceratopsis sp.; Scriniocassis priscus; Scriniocassis weberi; Sentusidinium sp.;
and Valvaeodinium sp. (Figs 2, 3; Correia et al. 2017a,b, 2018). These relatively low
diversity dinoflagellate cyst assemblages, and their stratigraphical ranges, are generally
typical of the European Lower Jurassic (e.g. Riding 1984; Riding et al. 1991; Bucefalo
Palliani and Riding 2003; Baranyi et al. 2016; Goryacheva 2017), and are consistent
with previous investigations of the Lower Jurassic palynology in the Lusitanian Basin
(Davies 1985; Oliveira et al. 2007; Barrén et al. 2013).

Other palynomorph groups such as acritarchs (e.g. Micrhystridium spp.) and
prasinophytes (e.g. Halosphaeropsis liassica, Tasmanites spp.), spores, (e.g. Cyathidites
spp., Kraeuselisporites reissingeri, Leptolepidites spp.) and pollen (e.g. Alisporites spp.,
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Araucariacites australis, Classopollis classoides) were also identified (Correia et al.
2017a,b, 2018). Clumps of small and spherical palynomorphs, questionably assigned to
the prasinophyte Halosphaeropsis liassica (see van de Schootbrugge et al. 2005, 2013)
were significantly more common in the Jenkyns Event interval than in the overlying
successions. Halosphaeropsis liassica is characteristic of the early Toarcian and is used
as a marker for this event (Madler 1968; Bucefalo Palliani and Riding 2000; van de
Schootbrugge et al. 2019; Slater et al. 2019). The gymnosperm pollen species
Classopollis classoides is the most abundant palynomorph throughout the Lower
Jurassic of the Lusitanian Basin. The non-dinoflagellate cyst taxa encountered exhibit

no noticeable or repeatable trends and are not discussed further here.

Dinoflagellate cyst bioevents and evolutionary constraints

Prior to the Jenkyns Event

In the Lusitanian Basin, the lowest dinoflagellate cyst appearance is recorded at the base
of upper Pliensbachian (4Amaltheus margaritatus Biozone), corresponding to the late
Pliensbachian radiation event of this group (Figs 2, 4). We identified the inceptions of
Mancodinium semitabulatum and Luehndea spinosa, both cosmopolitan species (e.g.
Bucefalo Palliani and Riding 2003) and representing the family Mancodiniaceae,
together with Nannoceratopsis ambonis, Nannoceratopsis gracilis and Nannoceratopsis
senex, which belong to the family Nannoceratopsiaceae. This family is confined to the
Jurassic, and the genus Nannoceratopsis is the only representative. Although
cosmopolitan, Nannoceratopsis is more abundant in the Boreal and Arctic realms and
here has diversified into morphologically complex species (Poulsen 1996; Bucefalo

Palliani and Riding 1999a, fig. 6; van de Schootbrugge et al. 2019). Both the

7



173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

Mancodiniaceae and Nannoceratopsiaceae are extinct and exhibit unusual archaeopyle
types (Morgenroth 1970; Piel and Evitt 1980; Fensome et al. 1993). In terms of
abundances, dinoflagellate cysts are moderately rare in the Amaltheus margaritatus
Biozone, but were much more frequent and numerous during the Emaciaticeras
emaciatum and Dactylioceras polymorphum biozones (Fig. 2). Luehndea spinosa
strongly dominates the palynofloras in the uppermost Pliensbachian—lower Toarcian
interval (upper Emaciaticeras emaciatum and Dactylioceras polymorphum biozones) in
the Lusitanian Basin. Nevertheless, Mancodinium semitabulatum and Nannoceratopsis
spp. are relatively common in this basin (Figs. 5a, 6). Both dinoflagellate cyst
abundances and taxonomic richness increased in the earliest Toarcian, except for the
base of this stage (Dactylioceras polymorphum Biozone) where a brief warming event
has been identified. These trends were consistently observed in the Toarcian sections at
Vale das Fontes, Maria Pares and Peniche (Figs 2, 4). These acmes may reflect local
optimal abiotic conditions, such as ideal oxygen concentrations, high seawater levels
and high salinities (van de Schootbrugge et al. 2005), increased nutrient levels
(Pienkowski et al. 2016; Fantasia et al. 2019; Rodrigues et al. 2020b) and, mostly,
relatively cold temperatures (<20°C; Suan et al. 2008; Correia et al. 2017b, fig. 3). The
transgressive event during the early Toarcian in the Lusitanian Basin may have
enhanced the dominance of dinoflagellate cysts during the middle and upper parts of
Dactylioceras polymorphum Biozone (Duarte et al. 2004, 2007; Duarte 2007; Pittet et

al. 2014).

During the Jenkyns Event

Above the Dactylioceras polymorphum Biozone, overall dinoflagellate cyst abundances
and richness became markedly reduced (Figs 2, 4). The negative carbon isotope

excursion (CIE) in the Lusitanian Basin is expressed at the base of Hildaites levisoni
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Biozone (Duarte et al. 2004, 2007; Hesselbo et al. 2007; Pittet et al. 2014; Fantasia et al.
2019) and this level is characterised by the extinction of Luehndea spinosa together
with a general dinoflagellate cyst ‘blackout’ event, especially the disappearance of
Nannoceratopsis (Fig. 2). These bioevents were caused by the palacoenvironmental
changes associated with the Jenkyns Event, particularly the sudden rise of seawater
temperatures (>20°C; Suan et al. 2008; Correia et al. 2017b, fig. 3). The probable
decrease of nutrients and salinity levels (van de Schootbrugge et al. 2005) may also
have contributed to this blackout episode. Although anoxic conditions at the sea bottom
were not documented in the Lusitanian Basin, dysoxic conditions occurred during the
Jenkyns Event (Fantasia et al. 2019; Reolid et al. 2019; Rodrigues et al. 2020b).
Dinoflagellates are planktonic, but during their life cycle, the cyst-producing species
have a benthic phase, i.e. the resting cyst itself (Dale 1983). Because the dinoflagellate
cyst is non-motile, it slowly sinks to the sediment-water interface or close to it. The cell
will be killed immediately during the excystment process if the environment is oxygen-
deficient (Wille and Gocht 1979; Wille 1982). Moreover, Miiller et al. (2020), recently
analysed boron isotopes in brachiopods from the Peniche section, and reported ocean
acidification episodes during the early Toarcian, which likely contributed to the
dinoflagellate crisis. Other research in the Adriatic Platform (Ettinger et al. 2020) also
documented ocean acidification during the Jenkyns Event, as well as anoxia in the
photic zone.

In the Lusitanian Basin, representatives of other fossil groups became extinct
during the Jenkyns Event, including brachiopods (Comas-Rengifo et al. 2013, 2015)
and metacopinid ostracods (Cabral et al. 2013, 2020). More generally, some microfossil
groups were profoundly reduced in abundance and/or diversity by the hostile

environmental conditions associated with this climatic change, such as calcareous
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nannofossils (Mattioli et al. 2008, 2013; Ferreira et al. 2019) and foraminifera (Rita et
al. 2016; Reolid et al. 2019). There are also recent reports of size reduction of belemnite
rostra (Rita et al. 2019) and bivalves and brachiopod shells (Piazza et al. 2019) before
the T-OAE, suggesting that reductions in body size may be one of the first ecological
responses to the abiotic stressors. By contrast, Ullmann et al. (2020) documented
abundant occurrences of the brachiopod Soaresirhynchia, a genus with low metabolic
rate, at the end of the Jenkyns Event. These findings, together with the palynological
data, suggest that apparently, the rapid palacotemperatures rise is the major factor
causing these bioevents. However, the other aforementioned abiotic factors may also

play a role in this rapid realignment of marine life.

After the Jenkyns Event

The recovery of dinoflagellate cysts after the Jenkyns Event in the Lusitanian Basin was
prolonged and somewhat indistinct; this planktonic group continued to be in crisis
during the remainder of the Toarcian (Figs. 2, 4). The overall abundance of
dinoflagellate cysts is consistently very low. Only Mancodinium semitabulatum is
always relatively common, and the reappearance of Nannoceratopsis occurred only
during the upper Toarcian in the Hammatoceras speciosum Biozone (Fig. 2). Moreover,
only four new taxa were identified, all with sparse occurrences and low proportions.
These are Mendicodinium spp. (uncertain), Scriniocassis priscus (Scriniocassiaceae),
Valvaeodinium sp. (Comparodiniaceae) and Sentusidinium sp. (Gonyaulacaceae) (Figs.
2, 4). Hence, the Jenkyns Event in this basin strongly affected the cyst-forming
dinoflagellate populations and their radiation during the Early Jurassic. However, the
upper Toarcian (Hammatoceras bonarellii Biozone) of the Lusitanian Basin included an
important evolutionary episode, namely the emergence of the first representative of the

Gonyaulacaceae, due to the appearance of Sentusidinium (Fig. 2; see next section),
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which possibly migrated from the Arctic and Boreal provinces (Figs. 5b, 6; van de
Schootbrugge et al. 2019). The family Gonyaulacaceae continued their diversification
and became the most abundant family of cyst-forming dinoflagellates in the fossil
record (Wiggan et al. 2017, 2018). Correia et al. (2019) also recognised a recovery of
dinoflagellate cysts, both in taxonomic richness and abundance, in the early Bajocian in

the Lusitanian Basin.

Global dinoflagellate cyst evolution with emphasis on the Triassic, Early Jurassic
and the Jenkyns Event

Background
The evolutionary trajectory of the dinoflagellates has been the subject of considerable
debate (e.g. Bujak and Williams 1981; Fensome et al. 1996a,b,c; van de Schootbrugge
et al. 2005; Medlin and Fensome 2013). Only around 15% of living dinoflagellate
species, mostly marine forms, produce fossilisable cysts and it is generally assumed that
a similar percentage formed resistant organic-walled cysts in the geological past (Head
1996; Riding and Lucas Clarke 2016).

There is substantial cytological, geochemical and molecular clock evidence that
the dinoflagellates are a relatively ancient lineage, with origins in the Neoproterozoic
(Moldowan et al. 1996; Moldowan and Talyzina 1998; Medlin and Fensome 2013).
However Janouskovec et al. (2017, fig. 2C) contended that triaromatic dinosteranes,
which are macrobiomolecules typical of the dinoflagellates, emerged during the Triassic
and not the late Precambrian as previously supposed. It is possible that any pre-Triassic
dinoflagellates may have been affected by a decline in preservable phytoplankton

during the Carboniferous and Permian, related to factors such as carbon dioxide
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concentrations, oceanic nutrient fluxes, redox and seawater chemistry (Mullins and
Servais 2008; Riegel 2008; Strother 2008, fig. 1).

However, based on the body fossil record, dinoflagellate cysts appeared in the
Middle Triassic, possibly triggered by a much-delayed biotic recovery from the end-
Permian mass extinction and/or by the Carnian Pluvial Event (Simms and Ruffell 1989;
Riding et al. 2010; Dal Corso et al. 2020). They diversified markedly during the Late
Triassic (Bujak and Fisher 1976; Bucefalo Palliani and Buratti 2006; Mangerud et al.
2019; Mantle et al. 2020). The dominant cause of this radiation was probably
endosymbiosis (Fensome et al. 1996a; Delwiche 1999; Falkowski et al. 2004). At this
time, the main dinoflagellate families were the Rhaetogonyaulacaceae (Dapcodinium
and Rhaetogonyaulax) and the Suessiaceae (e.g. Beaumontella, Suessia, Wanneria; see
Mantle et al. 2020). Genera such as Hebecysta, Heibergella and Sverdrupiella were not
assigned to established dinoflagellate families by Fensome et al. (1993).

However the dinoflagellates, based on the cyst record, were exceptionally badly
affected by the end-Triassic mass extinction at ~201 Ma (van de Schootbrugge et al.
2013), but slowly recovered. There is an enigmatic occurrence of a single species,
Liasidium variabile, in the late Sinemurian (~193 Ma) as described by Hesselbo et al.
(2020 and references therein). Notwithstanding the brief appearance of Liasidium
variabile, the main dinoflagellate re-diversification occurred ~14 million years after the
end-Triassic mass extinction during the late Pliensbachian (Early Jurassic) when the
families Mancodiniaceae (e.g. Mancodinium semitabulatum, Luehndea) and
Nannoceratopsiaceae (Nannoceratopsis) emerged (Morgenroth 1970; Woollam and
Riding 1983; Riding and Thomas 1992). The Jenkyns Event occurred at ~182 Ma,
around 50 million years after the inception of unequivocal dinoflagellate cyst body

fossils during the Triassic. This significant palacoenvironmental perturbation appears to
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have disrupted dinoflagellates and their evolution because recovery from this event was
again relatively slow (Bucefalo Palliani et al. 2002; Baranyi et al. 2016). The families
Scriniocassiaceae (Scriniocassis) and Heterocapsaceae (e.g. Moesiodinium, Parvocysta,
Susadinium) diversified in the middle and late Toarcian after the Jenkyns Event (Riding
1984; Poulsen and Riding 2003; van de Schootbrugge et al. 2019). The next
evolutionary radiation episode was ~14 million years after the Jenkyns Event, during
the Bajocian (Middle Jurassic) with the occurrence of around 40 new species, largely
members of the family Gonyaulacaceae (e.g. Acanthaulax crispa,
Batiacasphaera/Sentusidinium spp., Ctenidodinium spp., Dissiliodinium spp.,
Durotrigia spp., Korystocysta spp., Meiourogonyaulax spp.; Feist-Burkhardt and Gotz

2016; Wiggan et al. 2017; 2018).

The emergence of the dinoflagellate family Gonyaulacaceae
Despite the relatively low absolute numbers involved, inarguably the most significant
dinoflagellate cyst event during the latest Pliensbachian and Toarcian is that of the
emergence of the family Gonyaulacaceae. This is one of the two dominant
dinoflagellate families, the other being the family Peridiniaceae (Fensome et al. 1999).
We report a specimen confidently assignable to the Gonyaulacaceae (Sentusidinium sp.)
from the upper Toarcian of Portugal herein (Fig. 3.12).

A recent major regional study, van de Schootbrugge et al. (2019), proposed that
the family Gonyaulacaceae emerged during the latest Pliensbachian in the high
northerly latitudes. Furthermore these authors commented that this phenomenon was
much later, during the mid Toarcian, in northwest Europe (van de Schootbrugge et al.
2019, fig. 12). Additionally, the inception of the Parvocysta-Phallocysta complex (i.e.

Dodekovia, Moesiodinium raileanui, Parvocysta, Phallocysta and Susadinium; all
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characterised by simple intercalary archaeopyles and originally described by Bjaerke
1980) occurs in the Arctic during the early Toarcian, coincident with the onset of the
negative CIE (Harpoceras falciferum Biozone). This is earlier than in Europe, where
the first representatives of this group occurred in the middle Toarcian (Hildoceras
bifrons Biozone; Poulsen 1992; Riding and Thomas 1992; Poulsen and Riding 2003;
van de Schootbrugge et al. 2019). Based on these records, and other occurrences (herein
synthesised in Fig. 6), van de Schootbrugge et al. (2019) concluded that the Jenkyns
Event was not so severe in the high northerly latitudes (‘Arctic Realm’ column of Fig.
6), and that this region was the evolutionary cradle of the early dinoflagellates. This
contention is supported by Mantle et al. (2020), who identified Arctic North America as
a major evolutionary hotspot for dinoflagellates during the Triassic.

The genera Batiacasphaeral/Sentusidinium and Dissiliodinium were collectively
termed ‘proto-gonyaulacoids’ by van de Schootbrugge et al. (2019). The preservation of
the proto-gonyaulacoid material figured by these authors is not consistently optimal, for
example the specimen of Batiacasphaera in their fig. 8g has a smooth principal
archaeopyle suture. This important feature should be distinctly angular, reflecting the
angularity of the anteriormost side of the precingular plates, even if accessory
archaeopyle sutures are not developed (Wood et al. 2016). The other specimen of
Batiacasphaera, from the lower Toarcian of the Kelimyar River section S16 in northern
Siberia, is substantially more convincing, with precingular plates with definite angular
tops (van de Schootbrugge et al. 2019, fig. 8h). The single specimen of Dissiliodinium
sp., again from the lower Toarcian of northern Siberia, appears to be a reliable
identification (van de Schootbrugge et al. 2019, fig. 81).

The two specimens of Sentusidinium figured by Riding (1984, figs 4J, 4K) from

the mid Toarcian (Haugia variabilis Biozone) of Yorkshire, as the junior synonym
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Escharisphaeridia, are assuredly assignable to the former genus and hence the family
Gonyaulacaceae. These specimens with apical archaeopyle are relatively smooth and
broad, and the principal archaeopyle sutures indicate the presence of six precingular
plates, with the 1°’, 3°’, 5”” and 6’’plates having angular anterior margins (Evitt 1985).
Independent researchers have re-examined these specimens and concur that they are
indeed unequivocally referable to Sentusidinium (e.g. Wolfgang Wille, personal
communication 1983). The Sentusidinium specimen in this study has the same
morphological features described above, also with prominent accessory archaeopyle
sutures, characteristic of this genus (Wood et al., 2016), but this form is more granulate
(Fig. 3.12). Sentusidinium continued to be a rare component, and difficult to determine
the species, among assemblages dominated by Nannoceratopsis during the Aalenian
and earliest Bajocian (Riding 1983, plate 18.6). This is, of course, prior to the explosive
radiation of the family Gonyaulacaceae during the middle Bajocian (Wiggan et al. 2017;
2018).

The specimens of late Pliensbachian and Toarcian age referable to the family
Gonyaulacaceae therefore represent the true inception of this very important
dinoflagellate lineage. They are not diverse, or indeed common; reports such as Riding
et al. (1999) and Goryacheva (2017) did not record them for example. However, these
specimens cannot be explained away as aberrant specimens, contamination or
misidentifications. This situation where the evolution of lineages may begin
sporadically, prior to major radiations, is a familiar one in evolutionary biology (e.g.

Darlington 1976).

The regional perspective

15



371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

In summary, it appears that the palacoenvironmental changes associated with the
Jenkyns Event were substantially more extensive in the Lusitanian Basin, compared
with coeval depocentres further north for example in the Arctic, Germany and the UK
(Fig. 6). In northern Europe the genus Nannoceratopsis was affected slightly and the
inception of the Parvocysta-Phallocysta complex and Scriniocassis priscus occurred
after the Jenkyns Event, in the Hildoceras bifrons Biozone. Even in southern France,
late Toarcian dinoflagellate cyst floras became relatively diverse following the Jenykns
Event (Bucefalo Palliani and Riding 1997b, fig. 3). In stark contrast, the dinoflagellate
cyst associations of the high northerly latitudes (i.e. the Arctic Realm) were apparently
relatively unaffected and the inceptions of representatives of the Gonyaulacaceae and
the Parvocysta-Phallocysta complex occurred earlier (Fig. 6; van de Schootbrugge et al.
2019). This complex is typical of the Arctic and Boreal realms and is very rare in
southern Europe. However, in the early Toarcian of central Italy, the occurrence of
Susadinium scrofoides was reported within the Dactylioceras tenuicostatum
(=Eodactylites mirabilis) Biozone (Fig. 6; Bucefalo Palliani and Riding 1997a;
Bucefalo Palliani and Mattioli 1998), which suggests that this species is relatively
cosmopolitan, compared with the other taxa in the Parvocysta-Phallocysta complex. In
this study, no form belonging to this complex was identified. These bioevents from the
Arctic and northern Europe markedly diverge from the southern Europe, with a
dinoflagellate cyst blackout and a very prolonged recovery from the Jenkyns Event. The
best examples of the latter are Portugal (Correia et al. 2017a,b, 2018) and Italy
(Bucefalo Palliani and Riding 1997a, 1999b; Bucefalo Palliani and Mattioli 1998), and
this phenomenon appears to be a coherent trend (Fig. 6).

The Lusitanian Basin is located in an intermediate region (the Sub-Boreal

Realm), between the Tethyan and Boreal realms (Fig. 5). The Early Jurassic
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dinoflagellate cyst floras of this basin combine cosmopolitan species (Luehndea
spinosa, Mancodinium semitabulatum and Nannoceratopsis spp.) with taxa typical of
the Tethyan area (Mendicodinium spp., after the Hildaites levisoni Biozone) and
northern regions (Scriniocassis spp. and Sentusidinium sp. as an early representative of
the Gonyaulacaceae, after the Hildoceras bifrons Biozone). This may suggest that the
Lusitanian Basin received marine influences from both Boreal and Tethyan provinces,
at least in intermittent marine water currents during the Toarcian (Fig. 5). Nevertheless,
the southwards moving, cold, low-salinity water current from the Arctic established
during the mid Toarcian (Hildoceras bifrons Biozone), suggested by van de
Schootbrugge et al., 2019, apparently, was not reflected in the Lusitanian Basin in terms
of a significant re-colonisation of the dinoflagellate populations after the Jenkyns Event.
During the Toarcian, the palacogeographical position of the Lusitanian Basin was
relatively enclosed (Fig. 5). This may have prevented the large-scale re-establishment of
marine circulation patterns after this global climatic perturbation and, consequently, the
local dinoflagellate recovery and associated evolutionary ‘triggers’ were substantially

delayed.

Conclusions

In the Lusitanian Basin, the late Pliensbachian radiation of dinoflagellate cysts is very
well documented. The pre-Jenkyns Event interval at the base of Toarcian is highly
productive, with maximum abundance and richness values. This group thrived before
the Jenkyns Event, probably due to optimal ecological conditions, remarkably relatively
low palaeotemperatures. The environmental perturbations associated to the Jenkyns
Event drastically affected the morphological experimentation period of this group for

the remainder of the Early Jurassic. This is an unusually protracted recovery interval,
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especially given the abundant floras in this area during the late Pliensbachian and
earliest Toarcian. It seems that the severity of the Jenkyns Event in the Lusitanian
Basin, coupled with the increase in palacotemperatures and the enclosed nature of the
Lusitanian Basin may have prevented the re-colonisation of this depocentre by the
dinoflagellates until the Middle Jurassic (Bajocian).

This prolonged recovery of the dinoflagellates in the Toarcian following the
Jenkyns Event is not typical of further north in Europe. It is the case that late Toarcian
dinoflagellate cysts are not as well studied as to their early Toarcian counterparts;
however, it is clear that the re-establishment of this group in the Lusitanian Basin
following the Jenkyns Event was extremely slow. Given the recent work of van de
Schootbrugge et al. (2019), it seems probable that the elevated palacotemperatures
around Iberia at this time were the leading cause of this phenomenon, even given the

lowered thermal gradients typical of greenhouse conditions.
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Appendix A

This is a list of all the dinoflagellate cyst species which were recovered from the
Lusitanian Basin, or mentioned in the text, with full author citations. The species listed
which were not found in the material from the Lusitanian Basin are asterisked. The taxa
are listed alphabetically, and the author citations can be found in Fensome et al. (2019).
The recommendations of Correia et al. (2017a, appendix 2) regarding the taxonomy of

Nannoceratopsis senex are followed herein.

Dinoflagellate cysts:

*Acanthaulax crispa (Wetzel 1967) Woollam and Riding 1983

Dapsilidinium? deflandrei (Valensi 1947) Lentin and Williams 1981

*Liasidium variabile Drugg 1978

Luehndea spinosa Morgenroth 1970
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Mancodinium semitabulatum Morgenroth 1970

Maturodinium? inornatum Morgenroth 1970

Mendicodinium microscabratum Bucefalo Palliani et al. 1997

Mendicodinium spinosum Bucefalo Palliani et al. 1997 subsp. spinosum (autonym)

Nannoceratopsis ambonis Drugg 1978

Nannoceratopsis gracilis Alberti 1961

Nannoceratopsis senex van Helden 1977

Scriniocassis priscus (Gocht 1979) Below 1990

Scriniocassis weberi Gocht 1964

*Susadinium scrofoides Dorhofer and Davies 1980
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Display material captions:

Fig. 1. The location and geological setting of the Lusitanian Basin of western Portugal
adapted from Duarte et al. (2010). The six sections studied herein are indicated thus: P
= Peniche, the Toarcian GSSP, 39°22'15"N, 9°23'07"W; PM = Sao Pedro de Moel
composite section, 39° 43' 18"N; 9° 02' 56"W; VF = Vale das Fontes, 40°12'10"N,
8°51'31"W; Br = Brenha, 40° 11' 49"N; 8° 49' 55"W; FC = Fonte Coberta, 40° 3' 44"N;

8°27' 31"W; and MP = Maria Pares, 40°3'10"N, 8°27"25"W.

Fig. 2. A composite dinoflagellate cyst range chart for the Lower Jurassic of the
Lusitanian Basin based on selected bioevents and phases. The relative abundance of
dinoflagellate cyst is also pictured. The database supporting this chart are those in
Correia et al. (2017a,b, 2018). The different thicknesses of the ammonite biozones is
proportional to the number of samples studied for each zone, and does not represent the
actual rock thickness. Note that the extremities of ranges with horizontal bars represent
true range bases and tops (i.e. inceptions and apparent extinctions respectively) as

appropriate. The range extremities which lack horizontal bars represent interruptions to
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1073 known stratigraphical ranges. The yellow shaded denotes the Jenkyns event interval

1074  (negative CIE).

1075

1076  Fig. 3. Selected dinoflagellate cysts from the upper Pliensbachian and Toarcian strata of
1077  the Lusitanian Basin. The sample numbers, slide numbers and the England Finder

1078  coordinates are quoted. All the scale bars represent 20 pm.

1079 1. Luehndea spinosa Morgenroth 1970. Vale das Fontes section, lower Toarcian
1080 (Dactylioceras polymorphum Biozone), sample PVFS, slide 1, O24. Mid-ventral
1081 view, high focus. Note the prominent cingulum, interrupted by the sulcus.

1082 2. Mancodinium semitabulatum Morgenroth 1970. Vale das Fontes section, lower
1083 Toarcian (Dactylioceras polymorphum Biozone), sample PVF1, slide 1, H56/2.
1084 Oblique right lateral, ventral view.

1085 3. Valvaeodinium sp. Maria Pares section, middle Toarcian (Hildoceras bifrons
1086 Biozone), sample PZ57, slide 1, Q27/3. Note the relatively sparse cover of short,
1087 capitate processes and the combination (apical/intercalary) archaeopyle.

1088 4. Nannoceratopsis ambonis Drugg 1978. Peniche section, lower Toarcian

1089 (Dactylioceras polymorphum Biozone), sample P10, slide 1, T25/3. Left lateral
1090 view. Note the prominent dark sagittal rim.

1091 5. Nannoceratopsis gracilis Alberti 1961. Peniche section, lower Toarcian

1092 (Dactylioceras polymorphum Biozone), sample P6, slide 1, G28/3. Right lateral
1093 view. Note the dorsal antapical horn.

1094 6. Nannoceratopsis senex van Helden 1977. Peniche section, upper Pliensbachian
1095 (Amaltheus margaritatus Biozone), sample P-25, slide 1, O48/4. Right lateral
1096 view. Note the single antapical horn and the "tear-shaped".
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10.

11.

12.

. Mendicodinium microscabratum Bucefalo Palliani et al. 1997. Maria Pares

section, lower Toarcian (Hildaites levisoni Biozone), sample PZ16, slide 1,
T36/1. Right lateral view. Note the epicystal archaeopyle and the microscabrate

autophragm.

. Mendicodinium spinosum Bucefalo Palliani et al. 1997 subsp. spinosum

(autonym). Maria Pares section, lower Toarcian (Hildaites levisoni Biozone),
sample PZ26, slide 1, F49/1. Oblique dorsal view. Note the spines and the

smooth autophragm.

. Mendicodinium sp. Maria Pares section, upper Toarcian (Hammatoceras

speciosum Biozone), sample PZ80, slide 1, H47/2. Oblique left lateral view. The
width is 42 pm.

Scriniocassis priscus (Gocht 1979) Below 1990 Maria Pares section, upper
Toarcian (Hammatoceras speciosum Biozone), sample PZ77, slide 1, C32.
Ventral view, low focus. The distinctive strongly curved sutures surrounding the
sulcus are evident.

Scriniocassis weberi Gocht 1964. Peniche section, lower Toarcian
(Dactylioceras polymorphum Biozone), sample P9, slide 1, R36/1. Dorsal view,
high focus. Note the coarse reticulum and the 2P archaeopyle.

Sentusidinium sp. Maria Pares section, upper Toarcian (Hammatoceras
bonarellii Biozone), sample PZ71, slide 1, M52/2. Note the apical archaecopyle
with deep accessory archaeopyle sutures and six precingular plates, indicating

the typical gonyaulacoid tabulation.

Fig. 4. The relative abundances of the dinoflagellate cyst families, expressed as

percentages of the entire palynoflora, and the overall species richness of the Lower
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Jurassic in the Lusitanian Basin. The different thicknesses of the ammonite biozones is
proportional to the number of samples studied for each zone, and does not represent the
actual rock thickness. The yellow shading denotes the Jenkyns Event interval. The
evolutionary phases of the dinoflagellate cysts during the Early Jurassic in the
Lusitanian Basin are also pictured. Note the earliest Toarcian (Dactylioceras
polymorphum Biozone) dinoflagellate cyst acme, with maximum abundance and species
richness, and the prolonged dinoflagellate cyst crisis, during and after the Jenkyns

Event, with relatively low abundances and species richness.

Fig. 5. The Toarcian palacogeography of the western Tethys region with the Boreal,
Sub-Boreal and Tethyan Realms indicated (adapted from Correia et al. 2017b, after
Thierry and Barrier 2000). In (a) the most significant dinoflagellate cyst taxa from the
Lusitanian Basin during the uppermost Pliensbachian to lowermost Toarcian
(Dactylioceras polymorphum Biozone; before the Jenkyns Event) and equivalent
occurrences in the Boreal and Tethyan realms are depicted. In (b) the re-colonisation of
the dinoflagellates in the Lusitanian Basin during the remaining Toarcian, after the
Jenkyns Event, with hypothetical migration routes from the Boreal and Tethyan areas
are illustrated. Migrations of the genus Mendicodinium from the Tethyan region during
the early Toarcian (1) and Scriniocassis priscus and earliest representatives of
Gonyaulacaceae (Sentusidinium sp.) from the north-western Europe during the middle
and late Toarcian (2) are depicted. Note that, apparently, the origin of the early

Gonyaulacaceae was in the northern regions (Arctic and Boreal realms).
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Fig. 6. A comparison of the stratigraphical ranges of selected dinoflagellate cysts from
the upper Pliensbachian to upper Toarcian (Amalthues margaritatus to Pleydellia
aalensis biozones and their equivalents, adapted from Page 2003; Nikitenko et al. 2008)
of the major European and Arctic basins. In the Tethyan Realm, the ranges are based on
data from central Italy (Bucefalo Palliani and Riding 1997a; Bucefalo Palliani and
Mattioli 1998). Note that the interval below and above the Jenkyns Event in central Italy
are devoid of ammonites (i.e. are not dated) and the biozone Eodactylites mirabilis is
equivalent to Dactylioceras tenuicostatum, according with Bilotta et al. 2009. Data from
Germany (Prauss et al. 1991; Feist-Burkhardt and Wille 1992; Bucefalo Palliani and
Riding 1998) and UK (Riding 1984; Bucefalo Palliani and Riding 2000; Bucefalo
Palliani et al. 2002; van de Schootbrugge et al. 2019) are depicted for the Boreal Realm.
The dinoflagellate floras from the Lusitanian Basin recorded in Correia et al. (2017a,b,
2018) may indicate an intermediate region between these two realms, Sub-Boreal
Realm. The Arctic Realm is also represented with data from the Viking Corridor and
Siberia (Riding et al. 1999; Goryacheva 2017; van de Schootbrugge et al. 2019). Note
that the dashed lines represent probable occurrences based on known stratigraphical

ranges.
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