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Abstract

We show how to compute inefficiency or performance scores when the distribution of the one-sided error

component in Stochastic Frontier Models (SFMs) is unknown; and we do the same with Data Envelopment

Analysis (DEA). Our procedure, which is based on the Fast Fourier Transform (FFT), utilizes the empirical

characteristic function of the residuals in SFMs or efficiency scores in DEA. The new techniques perform well in

Monte Carlo experiments and deliver reasonable results in an empirical application to large U.S. banks. In both

cases, deconvolution of DEA scores with the FFT brings the results much closer to the inefficiency estimates

from SFM.
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1 Introduction

Stochastic Frontier Models (SFMs; Kumbhakar and Lovell, 2000, also known as Stochastic Frontier Analysis,

SFA) as well as Data Envelopment Analysis (DEA, Charnes et al., 1978; Dyson et al., 2001) are essential in the

measurement of performance and efficiency. However, SFMs rely on distributional assumptions about the two-

sided error term that represents noise, and the one-sided error component that represents technical inefficiency.

Although the normality assumption for the two-sided error is reasonable, specific distributional assumptions for

the one-sided error component are mostly hard to defend. Such assumptions usually involve the half-normal, the

truncated-normal, the exponential, less commonly the gamma distribution, etc. See also Adams and Sickles (2007).

For DEA, it is widely recognized that inefficiency scores incorporate random noise of measurement error and

they are likely to overestimate inefficiency; see Johnson and Kuosmanen (2012), Cordero et al. (2015), Oh and Shin

(2015), Holland and Lee (2002), Wanke et al. (2015), and Tsionas (2003). Since such distributional assumptions for

the one-sided error in SFMs are more or less arbitrary and subject to researcher’s preference, it would be important

to develop a procedure that does not depend on such assumptions about the distribution. In this paper, we use

the convolution of the two-sided (normal) and one-sided components to recover efficiency or performance estimates

without specific assumptions on the one-sided error component. Specifically, we construct the empirical charac-

teristic function of the composed error term, we recover the distribution of the one-sided disturbance through the

Fourier transform, and we compute performance estimates using numerical integration. Essential to the numerical

efficiency of this approach is the use of the Fast Fourier Transform (FFT).

The same method is extended to the case of DEA under the assumption that DEA scores can be decomposed into

noise and pure inefficiency. Therefore, we “adjust” DEA scores for the presence of noise using the FFT deconvolution

of DEA scores into measurement error and (in)efficiency. Other methods that address the problem of measurement

error, include the Bayesian approach of Tsionas (2019), and the smooth monotone concave approximation of Tsionas

and Izzeldin (2018), which is based on Allon, Beenstock, Hackman, Passy, and Shapiro (2007), Keshvari and

Kuosmanen (2013) and Kuosmanen and Kortelainen (2012) and Lee et al. (2013). Of course, the presence of

noise in obtaining performance scores from DEA is an important issue and much of the literature is devoted

to addressing the issues from measurement problems (see, for example, Andor et al., 2019). In SFM, the main

problem is to avoid assuming specific distribution for the one-sided error component; and for DEA the main issue is

to perform deconvolution of (in)efficiency scores from the possible presence of measurement error without explicitly
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specifying the way in which measurement error affects inputs or outputs. This is important because different ways of

introducing measurement error in DEA problems may yield different efficiency scores; and choosing between different

DEA models is an under-explored area. So, to summarize, in DEA our problem is to deconvolve “signal” (efficiency

or inefficiency scores) from noise without specifically assuming how measurement error interacts with inputs and

outputs (which can give rise to a whole constellation of possible models that would have to be considered). In SFM,

our problem is that of obtaining (in)efficiency estimates (under normality, say, of the two-sided error component)

without distributional assumptions about the one-sided error term. The new techniques are investigated using

Monte Carlo simulations as well as in the context of panel data from large U.S. banks.

2 Model

Suppose xit ∈ RK is a vector of explanatory variables (say log input prices and log outputs), yit is the dependent

variable (typically log cost), and the model is

yit = αi + x′
itβ + vit + uit, 1 ≤ i ≤ I, 1 ≤ t ≤ T, (1)

where vit ∼ i.i.dN (0, σ2
v), αi represents firm effects to capture heterogeneity, uit is a non-negative error component

representing technical inefficiency, I is the number of decision-making units or firms, and T is the number of time

periods. Alternative, we can define a production frontier of the form

yit = αi + x′
itβ + vit − uit, 1 ≤ i ≤ I, 1 ≤ t ≤ T, (2)

where xit is the vector of log inputs, yit is log output and the interpretation of vit and uit is the same as in (1).

Typical assumptions about uit include the exponential, half-normal, truncated-normal, gamma, etc. distributions.

We make no specific distributional assumption about uit other than that these error components are i.i.d and

independent of the regressors. If the composed error term is denoted εit = vit+uit, then the characteristic function

of εit is

ϕε(τ) = E (eιτε) =

∫ ∞

−∞
eιτεfε(ε) dε,
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where E(·) denotes expectation (with respect to ε in this instance whose density is denoted fε(ε)) and ι =
√
−1.

By standard properties of the characteristic function we have:

ϕε(τ) = ϕv(τ) · ϕu(τ) = e−
(
σ2
v/2

)
τ2

ϕu(τ) ∀τ ∈ R. (3)

In the case of production frontiers where the composed error is ε = v − u the formula is modified to

ϕε(τ) = ϕv(τ) · ϕu(−τ) = e−
(
σ2
v/2

)
τ2

ϕu(−τ) ∀τ ∈ R. (4)

To recover the density from the characteristic function we have

fu(u) =
1
2π

∞∫
−∞

e−ιuτϕu(τ) dτ. (5)

Given residuals1 ε̂it the empirical characteristic function is

ϕε̂it(τ) = (IT )−1
I∑

i=1

T∑
t=1

eιτ ε̂it ∀τ ∈ R. (6)

Therefore, the characteristic function of uit is given by

ϕuit
(τ) = e−

1
2σ

2
vτ

2

ϕε̂it(τ) ∀τ ∈ R. (7)

The characteristic functions corresponding to several one-sided error distributions are presented in (A.6) of Appendix

A. Taking natural logs we have

lnϕε̂it(τ) = −σ2
vτ

2

2 + lnϕuit(τ) ∀τ ∈ R. (8)

Given ϕε̂it(τ), σ2
v can be estimated as the coefficient of −τ2j /2 in the following regression-like equation, see (A.5)

in Appendix A:

lnϕε̂it(τj) = −σ2
vτ

2
j

2 + lnϕuit
(τj) + ξj , j = 1, . . . , J, (9)

1These residuals can be obtained using various estimation techniques for (1) like least-squares-dummy-variables (LSDV), the random-
effects formulation, the first-differencing approach, methods that can deal with endogeneity of the regressors, etc.
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where {τj , j = 1, . . . , J} is a set of J points around zero, and ξj is an error term. Of course, σ2
v must be restricted

to be non-negative. Since the values of the dependent variable and lnϕuit
(τj) can be complex, we consider stacking

the real and imaginary parts in (9) (Feuerverger and McDunnough, 1981a,b; see also Koutrouvelis, 1980, 1981). As

an example, for the half-normal distribution we have

ϕu(τ) = 2e−
1
2σ

2
uτ

2

Φ(ισuτ) , (10)

where Φ(·) is the standard normal distribution function, see equation (A.6) in Appendix A. However, as in prac-

tice, we cannot obtain the empirical characteristic function of the one-sided error terms, we need to find a close

approximation described in what follows. To introduce our procedures, we notice that the density function may be

obtained as

p(z) = 1
2π

∫ ∞

−∞
e−ιτzϕ(τ) dτ, (11)

where p(z) is the density of a random variable Z taking values z, ϕ(τ) is the respective characteristic function. The

FFT-based algorithm is applied to derive the standardized density by applying the Fourier transform to the cdf.

The integral in (11) is evaluated for N equally spaced points with distance h, that is

χk = (k − 1− N
2 )h, k = 1, ..., N. (12)

If we set τ = 2πω we have

p(χk) =

∫ ∞

−∞
ϕ(2πω)e−ι2πωχk dω. (13)

This integral can be approximated by using the rectangle rule for N points with spacing s, i.e.

p(χk) ' s

N∑
n=1

ϕ(2πωn)e
−ι2πωnχk , (14)

where ωn = (n− 1− N
2 )s. Setting s = 1

Nh we obtain the following approximation:

p(χk) ' s(−1)k−1−(N/2)
N∑

n=1

(−1)n−1ϕ(2πωn)e
−

ι2π(n−1)(k−1)
N . (15)
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This summation can be computed efficiently by applying the Fast Fourier Transform (FFT) to the sequence

(−1)n−1ϕ(2πωn), n = 1, ..., N.

Each element (say the kth one) is normalized by s(−1)k−1−(N/2) to obtain the density function at each point of the

grid.

Any characteristic function satisfies the conditions: (i) ϕ(0) = 1, (ii) |ϕ(τ)| ≤ 1 ∀τ ∈ R, and (iii) ϕ(−τ) =

ϕ(τ) ∀τ ∈ R, where the overbar denotes complex conjugation. Since ϕu(τ) is a univariate function, we can use

standard kernel smoothing techniques to estimate (9) as a semi-parametric linear model, which can be re-normalized

so that properties (i), (ii) and (iii) hold. As this strategy seems prohibitively difficult, a simpler alternative is to

use a mixture-of-normal-distributions model (MNM) for the characteristic function (see (A.5) in Appendix

A as well as the additivity property of any characteristic function in (A.3)):

ϕu(τ) =

G∑
g=1

pge
ιτµg−(σ2

g/2)τ
2

, (16)

where {µg, σg, pg, g = 1, . . . , G} are unknown coefficients,
∑g

g=1 pg = 1, pg ≥ 0, g = 1, . . . , G, and G is the number

of terms in the mixture. From (9) and (16) we obtain:

lnϕε̂it(τj) = −σ2
vτ

2
j

2 + ln

{
G∑

g=1

pge
ιτjµg−(σ2

g/2)τ
2
j

}
+ ξj , 1 ≤ j ≤ J. (17)

In principle, this model approximates well any distribution of the one-sided error component, as long as G is

large enough. The model is nonlinear but can be estimated using the method of nonlinear least squares. The

parameters to be estimated are σ2
v , {pg, µg, σg}Gg=1. The data consist of points {τj , j = 1, . . . , J}.

The selection of points {τj , j = 1, . . . , J} is guided by the consideration that sufficient points are to zero (as

this determines the tail behavior of the corresponding density. We place N0 points in the interval I = [–ε, ε] and

another NB points in the interval [–B,B] excluding the interval I ) after checking that the results are insensitive

to larger values of B. Of course, J = N0 + NB . To select G, we use the standard Bayes Information Criterion

(BIC). In any regression model with sum of squared residuals SSR, n observations and k regressors, the BIC is

BIC = n ln
(
SSR
n

)
+ k lnn.

The exact configuration of parameters, ε, B,N0, NB will be described as we proceed, but within certain bounds
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their exact specification is immaterial.

To obtain the density we use the Fast Fourier Transform (FFT) in (5); see Tsionas (2012). Specifically, let

N = 2N
′
, and define the sequence

uk =
(
k − 1− N

2

)
h, 1 ≤ k ≤ N, (18)

for some h > 0 and integer N ′. The density can be expressed as

fu(uk) =

∫ ∞

−∞
ϕu(2πω)e

−2πιωuk dω, 1 ≤ k ≤ N. (19)

As this is the inverse Fourier transform, it provides the density once we know the characteristic function. This

is based on equations (6) and (7) of Mittnik et al. (1999). An approximation is obtained as follows, by rectangle

integration.

fu(uk) ' s

N∑
n=1

ϕ(2πωn)e
−2πιωnuk , 1 ≤ k ≤ N, (20)

where ωn =
(
n− 1− N

2

)
s and s = 1

Nh . Therefore,

fu(uk) ' s(−1)(k−1−N/2)
N∑

n=1

(−1)n−1ϕ(2πωn)e
−2πι(n−1)(k−1)/N , (21)

see Mittnik et al. (1999). This expression is essentially an application of rectangle integration. Based on the results

of Doganoglu and Mittnik (1998) and Mittnik et al. (1999), the error of approximation is close to 10−7. Therefore,

an efficient way to compute the density is to apply the FFT to the sequence (−1)n−1ϕ(2πωn).2 The transform

needs to be normalized by s(−1)k−1−N/2. In our computations, we use N ′ = 18 (yielding N = 262, 144) and we

set h = 2ε∗

N where ε∗ = max
1≤i≤I,1≤t≤T

ε̂it (Duhamel and Vetterli, 1990). To compute individual inefficiency scores, we

need the distribution of inefficiency conditional on the data which is given by

puit
(uit|D) ∝ e−(rit−uit)

2/(2σ̂2
v)fu(uit), uit ≥ 0, 1 ≤ i ≤ I, 1 ≤ t ≤ T, (22)

where D denotes the data on yit and xit,and rit = yit − α̂i − x′
itβ̂ given estimates σ̂2

v , α̂i and β̂ . The first term,

e−(rit−uit)
2/(2σ̂2

v), corresponds to the normality of vit given uit.The second term, fu(uit) is simply the density of uit.

The first problem is to compute the density fu(uit) at points that are different from the uks (1 ≤ k ≤ N) used
2We use the fortran subroutine ZFFT1I in package FFTPACK5, by Paul Swarztrauber and Dick Valent.
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in the FFT. The values of the density can be computed easily using interpolation (Tsionas, 2012). The second

problem is to compute the normalizing constants using standard quadrature techniques:

Cit =

∫ ∞

0

e−(rit−u)2/(2σ̂2
v)fu(u)du, (23)

In turn, inefficiency scores can be computed as

ûit = E(uit|D) = C−1
it

∫ ∞

0

u · e−(rit−u)2/(2σ̂2
v)fu(u) du, (24)

again, using quadrature techniques. The expression in (24) is simply the expected value of u from its posterior

conditional distribution.

3 Deconvolution in DEA

Suppose {Uit, 1 ≤ i ≤ I, 1 ≤ t ≤ T} is a set of inefficiency scores from (one from the several versions of) DEA.

Clearly, a certain amount of noise (denoted vit) is present, with the implication that the true inefficiency scores are

{uit, 1 ≤ i ≤ I, 1 ≤ t ≤ T}. Therefore, we can write the DEA scores as

Uit = vit + uit, 1 ≤ i ≤ I, 1 ≤ t ≤ T. (25)

We assume that vit
iid∼ N (0, σ2

v). The distribution of actual inefficiency scores, under this assumption, has

density

fu(u) =

∫ ∞

−∞
fU (v + u)(2πσ2

v)
−1/2e−v2/(2σ2

v) dv. (26)

If σ were known, this integral would be computed using draws from a normal distribution, and the empirical

density f̂U (U) would be computed by standard kernel density techniques. To estimate σ we consider the log

characteristic function

log ϕ̂U (τ) = −σ2
v

2 τ2 + logϕu(τ) + ξ(τ), (27)
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for some error term ξ(τ), where ϕ̂U (τ) is the empirical characteristic function of {Uit} :

ϕU (τ) = (IT )−1
I∑

i=1

T∑
t=1

eιτUit ∀τ ∈ R. (28)

We can approximate logϕu(τ) using the same methods as in (9) and (16). As this, in turn, provides an estimate

of σ, we can recover the density of uit using (5) together with the FFT transform as implemented in (18)-(21), in

a flexible way.

4 Monte Carlo evidence

To assess our new techniques we consider a production function of the form

yi = β0

K∏
k=1

xβk

i evi−ui , 1 ≤ i ≤ I, (29)

where the xis are generated from a lognormal distribution with location parameter 1 and standard deviation 2. We

set β0 = 1, β1 = · · ·βK = 1
K , vi

iid∼ N (0, σ2
v), ui

iid∼ N+(0, σ
2
u), defining the variance parameter σ2 = σ2

v+σ2
u and the

signal-to-noise ratio λ = σu

σv
.3 We examine various values of I,λ and σ with K = 10 which give five input prices and

five outputs. Since we have a production frontier we must take into account (4). In Table 1, Monte Carlo results

for correlation coefficients between actual and predicted inefficiency are reported from SFM and output-oriented,

variable-returns-to-scale DEA. We use 5,000 Monte Carlo replications. SFMs are estimated using the method of

maximum likelihood for the MNM model, when the actual generating mechanism is a half-normal distribution,

allowing for 500 maximum iterations. In case of non-convergence we draw another data set.4

3The original parameters may be recovered as σ2
v = σ2

1+λ2 and σ2
u = λ2σ2

1+λ2 .
4The half-normal is an obvious and popular case to consider. Monte Carlo results for other distributions are reported below.

Moreover, when the distribution of the one-sided error component is known, application of the FFT to recover the density function is
closely approximated by the MNM with an error 10−7.
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Table 1: Monte Carlo results for FFT-SFM and FFT-DEA

I=100 λ = 0.5 λ = 1 λ = 3 λ = 5
σ = 0.3 0.516 0.510 0.589 0.580 0.912 0.895 0.980 0.970
σ = 0.5 0.518 0.505 0.588 0.578 0.913 0.897 0.982 0.973
σ = 1 0.519 0.507 0.589 0.579 0.912 0.905 0.983 0.982
I=500
σ = 0.3 0.521 0.519 0.605 0.604 0.935 0.934 0.950 0.949
σ = 0.5 0.520 0.518 0.607 0.607 0.937 0.934 0.962 0.963
σ = 1 0.519 0.517 0.615 0.613 0.939 0.935 0.965 0.965

I=1,000
σ = 0.3 0.525 0.529 0.625 0.624 0.955 0.954 0.960 0.969
σ = 0.5 0.530 0.531 0.626 0.625 0.944 0.944 0.982 0.983
σ = 1 0.533 0.532 0.635 0.633 0.959 0.955 0.975 0.975

Notes: Results for FFT-SFM are reported in regular font and FFT-DEA in italics. The actual generating mechanism is a half-normal distribution
for the one-sided error and we use the MNM model in (16) with G = 3. This selection is based on the BIC criterion.

The important conclusion from the Monte Carlo simulations is that the performance of both SFM and DEA

perform rises with the value of as λ. This is also true for sample size (I) and for values of λ ≥ 3 where the results in

terms of efficiency scores are accurate. For a direct comparison with the performance of standard DEA, we report

results graphically in Figure 1; when λ = 2 and σ = 0.3 for I=500 (in panels (a) and (b)) and I=1500 (in panels

(c) and (d)). These effects become noticeable when the sample size increases to I =5,000 (panels (e) and (f)) where

the performance of standard DEA is inferior to that of DEA with smaller sample sizes.5

5To implement the deconvolution, we use G = 3 as, after experimentation, this was the most frequent value that performed well in
simulations. Using G = 4 and G = 5, did not change our results in a substantive way.
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Figure 1: Further Monte Carlo results corresponding to different values of λ and I.
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The deterioration of the performance of DEA as the sample size increases is caused by additional noise as

observations are added. Compared to earlier studies, Banker et al. (1993) find that DEA performs relatively well

when the amount of measurement error is low but not when noise is relatively large. From the same study corrected
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ordinary least squares (COLS) is shown to be more sensitive to data noise, so that the results are inferior to those

of DEA (see, however, Ruggiero, 1999, on this point). For this reason we give no further consideration to COLS.

In Table 2 we report mean absolute errors (MAE) between actual and estimated inefficiency.

Table 2: Monte Carlo results (MAE) for FFT-SFM and FFT-DEA.

I=100 λ = 0.5 λ = 1 λ = 3 λ = 5
σ = 0.3 0.093 0.091 0.077 0.074 0.051 0.047 0.030 0.029
σ = 0.5 0.090 0.092 0.075 0.077 0.050 0.052 0.029 0.031
σ = 1 0.088 0.086 0.074 0.072 0.048 0.047 0.027 0.025
I=500
σ = 0.3 0.088 0.090 0.071 0.075 0.047 0.050 0.026 0.029
σ = 0.5 0.087 0.089 0.070 0.074 0.047 0.049 0.025 0.028
σ = 1 0.086 0.087 0.070 0.072 0.046 0.047 0.024 0.025

I=1,000
σ = 0.3 0.075 0.079 0.062 0.071 0.041 0.045 0.020 0.022
σ = 0.5 0.074 0.075 0.060 0.063 0.040 0.042 0.020 0.021
σ = 1 0.073 0.072 0.059 0.057 0.040 0.041 0.020 0.020

Notes: Results for FFT-SFM are reported in regular font and FFT-DEA in italics. The actual generating mechanism is a half-normal distribution
for the one-sided error and we use the MNM model in (16) with G = 3. This selection is based on the BIC criterion.

From Table 2 and Figure 2, the FFT-DEA and SFM results in terms of MAEs are similar. Their decline with

the square root of the sample size suggests that asymptotic normality of the estimators is possible. For a more

realistic view of the relationship between DEA, FFT-DEA and FFT-SFM we use as our regressors the observations

from the empirical application of the next section (2,397 observations, ten regressors, production SFM). The true

coefficients are set to those estimated by least squares (LS). More specifically, we consider samples of size 100, 250,

500, 750, 1000, 1250, 1500, 1750, and 2000 for various values of λ fixing σ = 0.3. The results are reported in Figure

2.
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Figure 2: Monte Carlo results using as regressors the actual data
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The important conclusion from Figure 2, is the similar behavior of mean absolute errors for SFM, FFT-SFM

and FFT-DEA which decrease approximately at a rate proportional to
√
I. The rate of convergence of DEA is, of

course, quite different and its MAE is distinctly larger compared to the other techniques. Moreover, the FFT-based

techniques were found to be robust not only to the number of points J but also to their placement around zero.

This evidence is corroborates results reported previously in Tsionas (2012).

Another important issue is the sensitivity of results when the inputs and the two-sided error are correlated, i.e.,

there is an endogeneity problem (this comment was provided by an anonymous reviewer). The xis are generated as

previously, but they depend on the two-sided error term. Each regressor is then generated using xi = x̃i+ εi, where

the x̃is are generated from a lognormal distribution with location parameter 1 and standard deviation 2, as before.

The error term εi is normally distributed with zero mean and variance σ2
ε , where σ2

ε depends on the correlation
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coefficient % based on x̃i and the two-sided error term. Our results are reported in Table 3, when λ = 0.5 and for

different values of σ and %. FFT-SFM and FFT-DEA are based on the MNM model defined in (16). The BIC

criterion favored G = 3 normal components. Based on the results in Table 3, MAEs increase with % and with σ but

decrease with higher values of λ (Table 2). Even with % = 0.25, the results are acceptable but as % increases to 0.5

or 0.75 the MAEs are increasing and, therefore, the results are not to be trusted. This is reasonable as endogeneity

that is ignored has material impact on coefficient estimates and functions of interest when % exceeds 0.25 or so.

Table 3: Monte Carlo results (MAE) for FFT-SFM and FFT-DEA under endogeneity (correlation coefficients
between actual and estimated.)

I=100 % = 0.1 % = 0.25 % = 0.50 % = 0.75
σ = 0.3 0.012 0.017 0.021 0.022 0.035 0.037 0.040 0.044
σ = 0.5 0.015 0.016 0.025 0.027 0.030 0.035 0.042 0.040
σ = 1 0.022 0.027 0.029 0.032 0.045 0.048 0.052 0.057
I=500
σ = 0.3 0.017 0.019 0.022 0.025 0.045 0.049 0.051 0.055
σ = 0.5 0.021 0.025 0.025 0.029 0.049 0.052 0.062 0.065
σ = 1 0.025 0.29 0.033 0.037 0.054 0.057 0.079 0.081

I=1,000
σ = 0.3 0.019 0.099 0.097 0.0991 0.101 0.105 0.067 0.075
σ = 0.5 0.021 0.025 0.105 0.109 0.112 0.118 0.075 0.088
σ = 1 0.025 0.029 0.105 0.115 0.122 0.129 0.092 0.094

Notes: Results for FFT-SFM are reported in regular font and FFT-DEA in italics. MNM model is implemented with a half-normal
distribution for the one-sided error term and G = 3 in (16).

Another issue (pointed out by an anonymous reviewer) is the performance of efficiency estimates when the wrong

distribution is adopted for technical inefficiency. Again, we use the MNM model in (16) with G = 3. This selection

is based on the BIC criterion. The Figures below, present results for different generating processes in comparison

to all others. Our generating processes are the same as previously with the exception that technical inefficiencies

are generated by different distributions. We choose λ = 0.5 and σ = 0.3. Moreover, we use sample sizes I=100,

250, 500, 750, 1000, 2000, and 5000. The results are reported in Figure 3.

5 Empirical application

We have an unbalanced panel with 2,397 bank-year observations for 285 large U.S. commercial banks operating in

2001-2010, whose total assets were more than one billion 2005 U.S. dollars over the first three years of observation.

The data come from Call Reports available from the Federal Reserve Bank of Chicago as used in Malikov et al.
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Figure 3: Correlation coefficients when the data generating process of technical inefficiency is misspecified
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exponential
truncated-normal
MNM

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

I

0.7

0.75

0.8

0.85

0.9

0.95

co
rr

el
at

io
n 

co
ef

fic
ie

nt
s 

w
ith

 a
ct

ua
l e

ffi
ci

en
cy

 e
st

im
at

es

(b) actual generating process is truncated-normal

exponential
half-normal
MNM

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

I

0.7

0.75

0.8

0.85

0.9

0.95

co
rr

el
at

io
n 

co
ef

fic
ie

nt
s 

w
ith

 a
ct

ua
l e

ffi
ci

en
cy

 e
st

im
at

es

(c) actual generating process is exponential

half-normal
truncated-normal
MNM

15



(2016). For detailed description of the data construction, see Section 5 of Malikov et al. (2016). The list of

included variables is as follows: y1 Consumer Loans, y2 Real Estate Loans, y3 Commercial & Industrial Loans, y4

Securities, y5 Off-Balance Sheet Activities Income, x1 Labor, number of full-time employees, x2 Physical Capital

(Fixed Assets), x3 Purchased Funds, x4 Interest-Bearing Transaction Accounts, x5 Non-Transaction Accounts.

We use an input distance function (IDF; Kumbhakar and Lovell, 2000, pp. 28–30) defined as

D(x, y) = max
{
λ :

(
λ−1x, y

)
is technically feasible

}
. (30)

The IDF is homogeneous of degree one in inputs, increasing in inputs, decreasing in outputs, concave in inputs,

and D(x, y) ≤ 1. These constraints are enforced at ten randomly selected observed points and the geometrical

means of the data and then we check whether they hold at the majority of observations. Suppose xit ∈ RK
+ and

yit ∈ RM
+ are, respectively, logs of inputs and outputs, a translog ODF is given as follows:

xit,1 = ai + β′
1zit +

1
2z

′
itBzit + εit, εit ≡ vit + uit, (31)

where β1 and B are a vector and a symmetric matrix of parameters, respectively, and ai denotes bank effects. Let

us define

zit = [xit,2 − xit,1, . . . , xit,K − xit,1, yit,1, yit,2, . . . , yit,M ,Tit]
′, (32)

where Tit denotes an approximation to temporal effects:

Tit =

T∑
τ=1

αiτ I(TRit = τ), (33)

where I(·) denotes the indicator function, and TRit = t (for all i and t). The coefficients in (33) are firm specific

and we assume the following parameterization:

αiτ = z̃′iτ%, ∀i, τ (34)

where z̃iτ = [xiτ,2 − xiτ,1, . . . , xiτ,K − xiτ,1, yiτ,1, yiτ,2, . . . , yiτ,M ]′, and % is a conformable vector. The specification

in (33) resembles the Baltagi and Griffin (1988) general index of technological change. The difference is that the
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coefficients are firm-specific due to the Baltagi in (34). This makes it possible to estimate firm-specific as well as

time-varying technical change (TCit) given as

TCit = αit − αi,t−1. (35)

The differencing of inputs in (32) is due to homogeneity of degree one of (31). The model in (31) is estimated

using the maximum likelihood approach with the difference that the theoretical properties of the IDF are enforced

at the means of the data and ten other randomly selected points. At the remaining points, the IDF performs

extremely well in terms of satisfying theoretical properties. Indeed, the sample distributions of input and output

elasticities, reported in panels (a) and (b) of Figure 4 satisfy the monotonicity properties. This means that an IDF

should be increasing in other inputs and decreasing in outputs (Kumbhakar and Lovell, 2000, p. 30).

Figure 4: Sample distributions of input and output elasticities.
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In this application the value B = 5 was found adequate and using the BIC criterion we choose G = 3. Moreover,

we set ε = 0.1, N0 = 20 and NB = 50 as our benchmark case, and we examine sensitivity with respect to other

values of these parameters. These values were used in order to reduce the approximation errors close to 10−7. In

panel (a) of Figure 5, we report the densities of estimated inefficiencies under four different assumptions based on a

translog functional form for the IDF: The exponential, half-normal, truncated-normal and FFT-based inefficiencies.

In panels (b), (c) and (d) we report sensitivity to other values of the benchmark parameters ε, B, and NB . The

results from panel (a) show that the distributions of inefficiency are in broad agreement except for the exponential
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distribution. From panels (b), (c) and (d) it turns out that the FFT-based densities are more or less the same

except when B is too small (viz. B=3).

Figure 5: Sampling distributions of inefficiency scores for SFM.
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From (5) it is evident that the results are not sensitive to the exact specification of the parameters presented in

panels (b), (c), and (d). The corresponding results for FFT-DEA and DEA are reported in Figure 6.
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Figure 6: Sampling distributions of inefficiency scores for DEA and FFT-DEA
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That FFT-DEA does not deliver inefficiency results drastically different to those from the SFM might be

explained by the use of a flexible functional form. On the other hand, the results from standard output-oriented

variable-returns-to-scale DEA are quite different predicting a substantial proportion of zero inefficiency scores as

it is commonly the case with DEA. Deconvolution of DEA scores with the FFT brings the results much closer

to the inefficiency estimates from SFM, as we see in Figure 6. Further aspects of the SFM model like technical

change (TC), efficiency change (EC), and productivity growth (PG) are reported in Figure 7. TC is defined as the

derivative of IDF with respect to time, EC is ECit =
e−uit−e−ui,t−1

1
2

(
e−uit+e−ui,t−1

) and PGit = TCit + ECit.

TC averages –0.0091 (standard deviation, s.d. 0.0106), EC averages 0.0050 (s.d. 0.0106) and PG averages

–0.0040 (s.d. 0.015) so, no performance improvements seem to take place on the average. Nevertheless, certain

banks experienced TC as high as 8.5%, and EC as high as 4%. For other banks, TC and EC were as low as –4%.
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All models yield different results for TC, and PC, and, therefore, for PG as well. We report sample distributions of

Efficiency Change (EC) in panel (a) of Figure 7. In panel (b) we report sampling distributions of technical change

(TC) using different distributional assumptions. The implication is that different specifications yield different results

and, if we need to accept one model out of many, then we need to use the BIC or other techniques like, for example,

Bayes factors. This is not attempted here as our main interest is in comparing different models rather than in

selecting the “best” model.

Figure 7: Sample distributions of EC from SFM.
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The MNM and truncated-normal for EC sample distributions are quite close, while the half-normal and ex-

ponential model are close but different compared to MNM and truncated-normal specifications. The intuition of

this result is as follows. Given a flexible specification like the translog, deconvolution of the noise arising from the

inefficiency in using the empirical characteristic function is reasonably accurate; and all remaining differences in

functions of interest arise from different distributional assumptions relating to the one-sided error term. Clearly,

this paves a way to combine DEA and SFMs in a manner not previously possible that have not been possible before;

for example, using DEA from a certain sub-sample as an empirical Bayes prior of inefficiency distribution in SFMs

(e.g., Tsionas, 2003).
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6 Concluding remarks

The purpose of the paper is twofold. First, in the context of SFMs, we show how to compute inefficiency estimates

when the distribution of the one-sided error component representing inefficiency is unknown. Second, in the context

of DEA we show how to perform deconvolution of noise from inefficiency given the DEA efficiency scores. Our con-

tributions are based on empirical characteristic functions and deconvolution, using the Fast Fourier Transform, and

a generic new model of approximating any distribution of the one-sided error term via a mixture-of-normals model.

The new techniques are shown to perform well in Monte Carlo experiments as well as in an application to large U.S.

banks. The success of the new techniques suggests the usefulness of FFT, and empirical characteristic functions

in future empirical work. In terms of limitations and future research, one can investigate different distributions of

the two-sided error. For example, the Student-t would be an obvious candidate if there are outliers in the data.

Second, adding environmental or contextual variables in inefficiency is an interesting avenue for further research

that is not consider in this paper due to its complexity. Third, new challenges for the FFT are likely to arise if

inefficiency is dynamic in both DEA and SFA. Finally, Bayesian inference procedures are likely to be important

in the class of models considered in this paper. The major obstacle is that Bayesian analysis using characteristic

functions instead of densities, is quite difficult. In this field, it would be useful to have results related to Bayesian

updating of characteristic functions corresponding to the similar updating of densities.

Appendix A. Mathematical Appendix

For any random variable X, the characteristic function is defined as

ϕX(τ) = E(eιτX) =

∫
eιτxfX(x) dx, (A.1)

where ι =
√
−1, τ ∈ R, and fX(x) is the probability density function of X evaluated at a point x. The characteristic

function completely characterizes the distribution of X. If the characteristic function of a random variable X is

integrable, then its distribution function is absolutely continuous, and therefore X has a probability density function,
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which is given by inverting (A.1):

fX(x) = 1
2π

∫ ∞

−∞
eιτxϕX(τ) dτ, ∀x ∈ R, (A.2)

For a complete treatment, see Lukacs (1970). Some of the properties of the characteristic function are listed below.

ϕX(0) = 1,

|ϕX(τ)| ≤ 1, ∀τ ∈ R,

for all random variables X and Y we have :

ϕX+Y (τ) = ϕX(τ)ϕY (τ), ∀τ ∈ R,

ϕ(−τ) = ϕX(τ), ∀τ ∈ R,

ϕX(τ) is always uniformly continuous,

(A.3)

where ϕX(τ) denotes the complex conjugate. Any characteristic function admits the following expansion:

logϕX(τ) =

∞∑
n=0

κn
(ιτ)n

n! , (A.4)

and the κns are knows as cumulants. The characteristic function of a normal distribution, N (µ, σ2), is given by

ϕX(τ) = e−ιµτ−(1/2)σ2τ2

, ∀τ ∈ R. (A.5)

Finally, we provide some characteristics functions corresponding to well-known distributions below:

gamma(k, a) : ϕ(τ) = (1− ιτa)−k,

exponential(λ) : ϕ(τ) = (1− ιτλ−1)−1

half-normal : ϕ(τ) = 2e−
1
2σ

2τ2

Φ(ιστ) ,

truncated normal: See p. 7 of Abadir and Magdalinos (2002).

(A.6)

Here, Φ(·) is the standard normal distribution function.
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