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Highlight 35 

High-throughput phenotyping highlighted the importance of canopy architecture to fine-tune transpiration. 36 
The interplay between sucrolytic and glycolytic pathways is essential to tolerate drought at high temperature 37 
in wheat. 38 

 39 

Abstract 40 

 Interannual and local fluctuations in wheat crop yield are majorly explained by abiotic constraints. 41 

Heatwaves and drought, which are among the top stressors, commonly co-occur, and their frequency is 42 

increasing with global climate change. High-throughput methods were optimised to phenotype wheat plants 43 

under controlled water deficit and high temperature, with the aim to identify phenotypic traits conferring 44 

adaptative stress responses. Wheat plants of 10 genotypes were grown in a fully automated plant facility 45 

under 25/18ºC day/night for 30 days, and then the temperature was increased for seven days (38/31ºC 46 

day/night) while maintaining half of the plants well irrigated and half at 30% field capacity. Thermal and 47 

multispectral images and pot weights were registered twice daily. At the end of the experiment, key 48 

metabolites and enzyme activities from the carbohydrate and antioxidant metabolisms were quantified. 49 

Regression machine learning models were successfully established to predict plant biomass using image-50 

extracted parameters. Evapotranspiration traits expressed significant genotype-environment interactions 51 

(GxE) when acclimatization to stress was continuously monitored. Consequently, transpiration efficiency was 52 

essential to maintain the balance between water-saving strategies and biomass production in wheat under 53 

water deficit and high temperature. Stress tolerance included changes in the carbohydrate metabolism, 54 

particularly in the sucrolytic and glycolytic pathways, and in the antioxidant metabolism. The observed genetic 55 

differences in sensitivity to high temperature and water deficit can be exploited in breeding programs to 56 

improve wheat resilience to climate change. 57 

 58 

Keywords: Carbohydrate metabolism, climate change, drought resilience, food security, high temperature, 59 

high-throughput plant phenotyping, multispectral imaging, Triticum aestivum, water deficit, wheat. 60 

 61 
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Introduction 63 

 Wheat is a major staple food in numerous regions worldwide (FAOSTAT, 2019). Around 40% of the 64 

global wheat yield fluctuations are explained by environmental constraints, being heatwaves and drought 65 

among the top stressors (Deryng et al., 2014; Zampieri et al., 2017). Moreover, several wheat-growing 66 

regions are characterized by hot and dry summers, where drought is likely to coincide with elevated 67 

temperatures more frequently in the future (Araus, 2002; Russo et al., 2018). Understanding the interaction 68 

between drought and high temperature on crop production is challenging, as simultaneous stresses may 69 

have additive, synergistic or antagonistic effects on plants' physiology (Rizhsky et al., 2004; Tricker et al., 70 

2018). Furthermore, such response integrates several phenological and physiological processes under 71 

multigenic controls, and depends on the individual sensitivity to the microenvironment (Parent et al., 2017). 72 

As a result, continuous monitoring of plants response to controlled stress conditions is essential to understand 73 

plant-environment interactions. High-throughput phenotyping methods appeared as the solution to 74 

compensate the otherwise labour-intensive and time-consuming classic methods of systematic plant 75 

phenotyping (Fiorani and Schurr, 2013; Fahlgren et al., 2015; Tardieu et al., 2017; Roitsch et al., 2019). 76 

 Crop production is intimately dependent on carbon uptake by photosynthesis, and stomatal opening is 77 

vital for carbon capture. However, in response to water shortage, higher plants close stomata to limit water 78 

losses by transpiration (Chaves et al., 2003; Nunes et al., 2009; Duque et al., 2013) and when subjected to 79 

high temperatures, plants usually use evaporative cooling to reduce leaf temperature, which could otherwise 80 

be detrimental to several physiological processes (Carmo-Silva et al., 2012; Costa et al., 2013; Lawson et 81 

al., 2018). An optimal balance between risk avoidance and performance is critical to crop production under 82 

water deficit and high-temperature conditions (Tardieu, 2012; Moshelion, 2020). When photosynthetic 83 

performance and plant growth are challenged by water shortage and elevated temperatures, remobilization 84 

of the carbohydrate metabolism through adjustment of source-sink relations is crucial to tolerate stress and 85 

accelerate recovery to reduce yield fluctuations (El Habti et al., 2020; Correia et al., 2021).  86 

Several carbohydrate metabolism enzymes demonstrated fundamental functions in drought stress 87 

tolerance (Albacete et al., 2011, 2015; Pinheiro and Chaves, 2011; Secchi and Zwieniecki, 2016; Antonio 88 

Cuesta-Seijo et al., 2019; Shokat et al., 2020), although little is known about their role in drought at high 89 

temperature. Furthermore, stress exposure usually leads to excessive accumulation of reactive oxygen 90 

species (ROS), causing damage to plasma membranes, proteins and pigments, and if the capacity of 91 

scavenging and repairing mechanisms is exceeded, photosynthesis and crop performance are constrained 92 

(Foyer and Noctor 2005; Tricker et al. 2018). Antioxidant capacity was associated with tolerance to drought 93 

or heat stress in wheat (Sairam et al., 2000; Lascano et al., 2001; Zhang et al., 2017), although the importance 94 

of ROS scavenging, both enzymatically and/or by the production of several antioxidant compounds, in 95 

combined stresses is unknown.   96 

In this study, we continuously monitored biomass allocation, plant-water relations and reflective 97 

properties in ten genotypes with heterogeneous performance under water deficit and high temperature 98 

conditions. Including some of the best available elite advanced lines (check lines), selected based on their 99 

superior performance and verified in multi-year yield trials at the International Maize and Wheat Improvement 100 
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Center (CIMMYT) breeding site (Reynolds et al., 2017). Physiological Trait lines (PT lines), the outline of a 101 

breeding strategy where crosses were designed to complement "source" (biomass) with "sink" traits (harvest-102 

index, kernel weight, grains per spike) (Reynolds et al., 2017) and parental lines used for trait-based crossing 103 

(Reynolds et al., 2007; Manès et al., 2012). The contrasting levels of tolerance to drought and heat of the ten 104 

wheat genotypes were explored to (1) optimize high-throughput methods to phenotype wheat plants under 105 

drought and high temperature; (2) profile the plant-water-environment relationship of each genotype under 106 

these conditions; (3) understand the regulatory mechanisms of the primary carbohydrate and antioxidant 107 

metabolisms associated with plants' response to drought at high temperature. The effects of long-term (7 108 

day) growth under high temperature (WW38) and water deficit at high temperature (WD38) on traits related 109 

to leaf reflectance proprieties, water use, and biomass accumulation were assessed in a high-throughput 110 

phenotyping station and linked to the carbohydrate and antioxidant metabolism regulation. 111 

Materials and Methods  112 

Germplasm and growth conditions  113 

 Ten spring wheat (Triticum aestivum L.) genotypes were selected based on their heterogeneous 114 

performance under water deficit or high temperature conditions (Table 4.1). BORLAUG, SOKOLL and BAJ 115 

are check lines; PASTOR and SOKWB_1 were included in the Stress Adapted Trait Yield Nurseries trial 116 

(SATYN, CIMMYT) and highly performed in drought-stressed areas (SATYN series with odd numbers); 117 

PUBWB and SOKWB_2 showed outstanding performance in SATYN under heat stress conditions (SATYN 118 

series with even numbers); CMH82 and KSPA are parental lines; PARAGON is a traditional UK spring wheat 119 

elite cultivar (Moore, 2015; Pennacchi et al., 2019), with good tolerance to water deficit and high temperature 120 

when characterized alongside SOKOLL (Correia et al., 2021). 121 

 Plants were grown from seeds for 15 days (DAS 15) in 1 L well-watered pots containing horticultural 122 

substrate (SW Horto AB, Hammenhög) plus 10% perlite in a greenhouse at 25/18℃ (day/night), 50% relative 123 

humidity (RH) and a photoperiod of 16 hours. Plants were then moved to the phenotyping greenhouse 124 

(PhenoLab, PLEN UCPH), automated for plant care and movement, with the same climatic conditions and 125 

well-watered (WW >90% field capacity). After 15 days (30 DAS), the temperature was changed to 38/31ºC 126 

(day/night), and the plants were randomly assigned to two different irrigation treatments: five plants per 127 

cultivar were maintained WW (WW38), and five plants were subject to water deficit (WD38) for seven days. 128 

WD was established by withholding watering and sustaining a minimum of 30% field capacity. The soil water 129 

content was determined gravimetrically by automatically weighing the pots twice a day, and irrigation was 130 

provided to compensate for evapotranspiration and keep the soil water content in the WW and WD pots. Pots 131 

containing only soil were maintained at the same watering regime and weighed to estimate non-132 

transpirational water loss under WW38 and WD38 treatments. Leaf samples for biochemical analyses were 133 

collected at the end of the experiment (DAS 37), 5-7 h after the beginning of the photoperiod, frozen into 134 

liquid nitrogen and stored at -80°C. 135 
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High-throughput data acquisition and extraction 136 

 Multispectral images were automatically acquired by a top-mountedCCD camera (PhenoLab, Videometer) 137 

twice a day from 15 to 37 DAS. A hemisphere setup (PhenoLab, Videometer) was used to assure 138 

homogeneous and diffuse illumination of the plants by high power narrow banded LEDs at ten discrete 139 

spectral bands (365, 460, 525, 570, 645, 670, 700, 780, 890, 970 nm). Thermography was obtained using a 140 

thermal camera (Flir A65, FLIR Systems Inc.). Multispectral images consisting of stacked photos, each with 141 

a specific spectral band, were analysed via a supervised classification method (normalized Canonical 142 

Discriminant Analysis, nCDA) in the software VideometerLab (version 3.0.33, Videometer). Based on this 143 

procedure, crop coverage (plant exposed area) was automatically calculated from segmented transformed 144 

images and pixel reflectance intensities extracted from the same region of interest (ROI). Thermographic 145 

data extraction was automated by using masks from the segmentation of multispectral images. In the 146 

software MATLAB (version r2019a, The MathWorks Inc.) the multispectral image was geometrically 147 

transformed by image registration to the thermal image. The resulting transformation file was used for 148 

automated transformation of all the multispectral masks to fit the geometry of the thermal images, allowing 149 

for segmentation of the thermal signal from each acquisition of the plant parts and calculation of the 150 

temperature statistics. Evapotranspiration was calculated from the gravimetric data obtained at the irrigation 151 

time as the water loss per hour between consecutive measurements (mg H2O h-1). As all the pots in each 152 

treatment were in the same conditions (soil, capacity, and water availability), randomly distributed, 153 

automatically reorganized (four times daily), and measured twice a day, differences in evapotranspiration 154 

between them can be attributed to variations in plant transpiration. 155 

Plant harvesting and biomass prediction  156 

 At the end of the experiment (37 DAS), plants were harvested to measure aboveground and roots fresh 157 

weight (FW) and dry weight (DW). Roots were separated from the soil by manual washing with water, and 158 

shoots were harvested by cutting immediately above ground level. FW was directly measured on an 159 

electronic scale, and DW was measured after oven drying samples at 70°C for 52 h. Architectural traits as 160 

the number of leaves and tillers was also assessed before harvesting. Predictive models were constructed 161 

based on sixteen machine-learning regression methods implemented in the predMod module of the HTPmod 162 

Shiny application (Chen et al., 2018a) and tested to predict plant biomass (FW and DW) from image-extracted 163 

features (37 DAS), as applied in Chen et al. (2018b). A 10-fold cross-validation strategy was adopted to 164 

check the prediction power of each regression model. The dataset was randomly divided into a training set 165 

(70% of plants) and a testing set (30% of plants). The trained model, based on the training data, was then 166 

applied to predict biomass for the testing set of plants. Models were considered for further application if the 167 

following criteria for the prediction performance were satisfied: (1) Pearson correlation coefficient of 168 

determination (R2) between the predicted values and the observed values >0.7; (2) root mean squared 169 

relative error of cross-validation (MRSRE) <0.3; (3) predictive bias between the predicted and observed 170 

values (μ) <0.05. A Linear Support Vector Machine model (svm-linear, caret R package (Kuhn, 2008) was 171 

then used to predict FW and DW from 15 until 37 DAS from image-derived features. 172 
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Growth modelling 173 

 Ten different mechanistic models implemented in the growMod module of the HTPmod Shiny application 174 

(Chen et al., 2018a) were tested to model plant growth and applied as described in Chen et al. (2014). Models 175 

were considered if the following criteria for the fitting quality were satisfied: (1) R2>0.7; (2) P<0.05. The time 176 

point of maximum biomass (Timemax), maximum final vegetative biomass (biomass at Timemax) , were 177 

extracted from the models.  178 

Intrinsic growth rate (GR), which measures the speed of growth, was estimated as: 179 

 1. GR = ln(Biomass at Timemax − Biomass at T1) /( Timemax − T1),  180 

where T1 is the time point of stress imposition (30 DAS). 181 

The water use efficiency (WUE) from 30 to 37 DAS of each plant, corresponding to the biomass produced 182 

per water transpirated, was calculated as:  183 

2. WUE = (Biomass at Timemax − Biomass at T1)/(Timemax H2O − T1H2O), 184 

where T1H2O is the total water supplied at the time point of stress imposition, Timemax H2O is the total 185 

water supplied at Timemax, excluding the non-transpirational water loss (water loss in pots only with soil 186 

under the same irrigation regime). Comparison of plant growth between WW38 and WD38 conditions was 187 

assessed through a number of specific stress tolerance indices (Fischer and Maurer, 1978; Bouslama and 188 

Schapaugh, 1984; Grzesiak et al., 2012) calculated with the parameters extracted from the growth models: 189 

3. Mean productivity = (Biomass at TimemaxWW38 +  Biomass at TimemaxWD38)/2;  190 

4. Biomass reduction =  Biomass at TimemaxWD38 / Biomass at TimemaxWW38; 191 

5. Inflection point stability = TimemaxWW38 − TimemaxWD38. 192 

6. GR ratio = GRWD38 / GRWW38; 193 

7. WUE ratio = WUEWD38 /WUEWW38; 194 

Enzymes extraction 195 

 Frozen wheat leaf samples were homogenized in liquid nitrogen with 1% (w/v) insoluble 196 

polyvinylpyrrolidone (PVP). Total protein was extracted from samples (0.5 g FW) in ice-cold extraction 197 

medium containing 40 mM TRIS-HCl pH 7.6, 3 mM MgCl2, 1 mM ethylenediaminetetraacetic acid (EDTA), 198 

0.1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM benzamidine, 14 mM β-mercaptoethanol, 24 μM 199 

nicotinamide adenine dinucleotide phosphate (NADP+), following the protocol described in Jammer et al. 200 

(2015). Total soluble protein (TSP) content was determined according to the Bradford method (Bradford, 201 

1976) using BSA Fraction V as standard protein. Extracts were aliquoted, frozen in liquid nitrogen and stored 202 

at -20°C.  203 

Activity of carbohydrate metabolism enzymes  204 

 The activity of nine enzymes from the carbohydrate metabolism was measured in thawed leaf extracts 205 

using a semi-high-throughput protocol in 96-well microtiter plates as described in Jammer et al. (2015) with 206 

variable extract volume (1-5 µL), and monitoring absorbance at 30°C (ELx808, BioTek Instruments, Inc.). 207 
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Briefly, Aldolase (Ald, EC 4.1.2.13) and Phosphofructokinase (PFK, EC 2.7.1.11) activities were measured 208 

by coupling the reactions with a Glycerol-3-phosphate dehydrogenase (GPDH) NADH-dependent reaction 209 

and recording the decrease in absorbance at 340 nm due to conversion of NADH to NAD+. ADP-glucose 210 

pyrophosphorylase (AGPase, EC 2.7.7.27), Glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49), 211 

Hexokinase (HXK, EC 2.7.1.1), Phosphoglucoisomerase (PGI, EC 5.3.1.9) and Phosphoglucomutase (PGM, 212 

EC 5.4.2.2) activities were assayed by linking the reactions with a G6PDH NADP-dependent reaction and 213 

recording the increase in absorbance at 340 nm due to conversion of NADP+ to NADPH. Cytoplasmic 214 

invertase (cytINV, EC 3.2.1.26) and vacuolar invertase (vacINV, EC 3.2.1.26) activities were measured in an 215 

end-point assay, and the amount of liberated glucose was determined by measurements of absorbance at 216 

405 nm. All reactions were carried out in triplicates alongside control reactions (in the absence of substrate), 217 

and enzyme activity was expressed relative to the amount of TSP in each sample. 218 

Quantification of carbohydrates 219 

 Carbohydrates were extracted from frozen leaf samples homogenized in liquid nitrogen (0.1 g FW) by 220 

homogenization in ethanol (80% v/v) for 5 minutes at 80ºC and then centrifuged at 20,000 g for 5 min. The 221 

supernatant was collected, allowed to evaporate overnight at 60ºC, diluted in dH2O and used to quantify 222 

sucrose, glucose, and fructose by an enzymatic method (kit AK00201, NZYTech) in a miniaturized protocol 223 

in 96-well microtiter plates following the manufacturer recommendations. The pellet was used to quantify 224 

starch by the same method after acidic hydrolysis in 30% HCl (v/v) at 90℃ for 15min.  225 

Activity of antioxidant enzymes  226 

 The activity of four enzymes from the antioxidant metabolism was measured in thawed samples using a 227 

semi-high-throughput protocol in 96-well microtiter plates as described in Fimognari et al. (2020), with 228 

variable extract volume (1-5 µL), by monitoring absorbance at 30°C (ELx808, BioTek Instruments, Inc.). 229 

Briefly, ascorbate peroxidase (APX, EC 1.11.1.11) activity was measured by recording oxidation of ascorbate 230 

at 290 nm. Catalase (CAT, EC 1.11.1.6) activity was assayed by recording the decomposition of H2O2 at 240 231 

nm. Peroxidase (POX, EC 1.11.1.7) activity was measured by recording the formation of tetraguaiacol at 450 232 

nm. Superoxide dismutase (SOD, EC 1.15.1.1) activity was measured by recording the inhibition of the 233 

oxidation of cytochrome c at 550 nm. All reactions were carried out in triplicates alongside control reactions 234 

(in the absence of substrate), and enzyme activity was expressed relative to the amount of TSP. 235 

Quantification of antioxidant capacity and metabolites 236 

 Antioxidant metabolites were extracted from frozen leaf samples homogenized in liquid nitrogen (0.4 g 237 

FW) by homogenization in pure methanol overnight in the dark at 4ºC and then centrifuged at 20,000 g for 5 238 

min. The supernatant was aliquoted and stored at -20°C. Antioxidant metabolites and capacities were 239 

quantified in thawed samples using a miniaturized protocol in 96-well microtiter plates and monitoring 240 

absorbance (Synergy HTX, BioTek Instruments Inc.). Trolox equivalents antioxidant capacity (TEAC) and 241 

ferric reducing antioxidant power (FRAP) were quantified as described in Correia et al. (2020). Total phenolic 242 
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content was determined by the Folin-Ciocalteu method (Singleton et al., 1999) by recording the absorbance 243 

at 765 nm. Galic acid standards in ddH2O were measured alongside the samples and used to prepare the 244 

respective calibration curves. The total phenolic content of the extract was expressed as mg Galic acid 245 

equivalents per gram of leaf (mg g-1 FW). The total flavonoids content was determined by the AlCl3 method 246 

(Zhishen et al., 1999) by recording the absorbance at 510 nm. Catechin was used as a standard for the 247 

calibration curve. The total flavonoids content of the extract was expressed as mg catechin equivalents per 248 

gram of sample (mg g-1 FW). Anthocyanins content was assessed by the pH-differential method (Giusti and 249 

Wrolstad, 2001) and expressed as cyanidin-3-glucoside equivalents (mg g-1 FW). 250 

Data pre-processing and analysis 251 

 Traits extracted from the images and gravimetrical measurements were pre-processed for outlier 252 

detection, trait reproducibility and collinearity assessment using the same approach as Chen et al. (2014). 253 

Briefly, Grubbs' test (Grubbs, 1950) was used to detect outliers in replicated plants in each genotype at the 254 

same condition and data point, outliers were deleted and missing values were imputed (missForest R 255 

package, Stekhoven & Bühlmann, 2012). Traits were considered as highly reproducible if the following criteria 256 

were satisfied in at least one treatment condition: (1) the median correlation coefficient over genotypes was 257 

larger than 0.7; (2) the coefficients were significantly higher in replicates than in random plant pairs (Welch's 258 

t-test P < 0.05). To reduce the excessive correlation among explanatory variables (multicollinearity), a 259 

stepwise variable selection using variance inflation factors (VIFs) was applied, traits were considered if VIF 260 

< 5. The observed variance in phenotypic traits, enzymatic activities and metabolites amounts was partitioned 261 

into components attributable to different sources of variation, the variation of genotype (G), environment (E), 262 

and their interaction (GxE), using the same approach as Chen et al. (2014). Briefly, a linear model was 263 

applied to determine the likelihood of genotype-to-phenotypes linkage for each trait measured in each day, 264 

P-values were corrected for multiple comparisons with the Benjamini-Hochberg false discovery rate method 265 

(fdr), the LOD scores (log of odds) were calculated, as the -log probability (corrected P-value, fdr) (Joosen et 266 

al. 2013). A heat map representation and hierarchical clustering were applied to the matrix of LOD scores or 267 

tolerance indices. ANOVA and post-hoc comparison (Duncan test, P < 0.05) were also used to dissect the 268 

statistical significance of individual trait variation between genotypes. A t-test (P < 0.05) was used for 269 

comparison between two treatments (WD38 and WW38) within the same genotype. A partial least squares-270 

discriminant analysis (PLS-DA) was performed to classify and discriminate plants into treatments (WW38, 271 

WD38) and genotypes for each treatment and to identify the key variables that drive such discrimination 272 

(MixOmics R package, Rohart et al., 2017).  273 

Results 274 

Phenotypic descriptors reflecting the response to water deficit and high temperature 275 

 Traits with low reproducibility and high collinearity were filtered and extracted from the data set to avoid 276 

redundant or low-quality descriptors of the ten wheat genotypes (Table 1). A total of 15 traits reflecting the 277 
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three trait classes were maintained (Fig. 1), two traits reflecting leaf temperature (LeafT), three traits 278 

associated with the evapotranspiration processes (Evap.), and ten traits reflecting the multispectral signature. 279 

The statistical significance on phenotypic variance (LOD score) was determined to identify the traits that 280 

could reflect an effect of the genotype (G), treatment (E, environment) and their interaction (GxE) for each 281 

measurement day. All traits, excepting LeafT, increased LOD scores for G effect when stress was imposed 282 

(30-32 DAS, Fig.1A and Table S1), but a gradual decrease of differences in multispectral traits was observed 283 

until the end of the experiment (37 DAS). Interestingly, at 30 DAS, it was possible to discriminate between 284 

different groups: check lines (BAJ, BORLAUG), PT lines (PASTOR, PUBWB, SOKWB_1, SOKWB_2) and 285 

the other genotypes (Fig. S1A-B). At 37 DAS, the genotypes' distribution was more uniform and centralised 286 

horizontally under WD38 (Fig. S1C) and vertically under WW38 (Fig. S1D). At this stage, most of the traits 287 

exhibited similar LOD scores (Fig.1A and Table S1). The Environment effect (E) altered thermal, 288 

evapotranspiration progressively after stress imposition (Fig. 1B and and Table S2). Although, a slower 289 

reaction was observed for LeafT that only changed after 31 DAS (Fig. 1B and Table S2). Multispectral traits 290 

showed a distinct dynamic after stress imposition (Fig. 1B and Table S2). No change was observed for UVA 291 

and Blue (365-460nm). On the other hand, green, yellow and reds (525-700 nm) decreased LOD sores, 292 

showing a similar behaviour in G effect, and NIR (700-970) LOD scores slightly increased after 35 DAS (Fig 293 

1B and and Table S2). All traits were observed to have significant GxE effects when the temperature 294 

increased from 25 to 38ºC (30 DAS; Fig. 1C and Table S3). On the other hand, only the traits related to 295 

evapotranspiration expressed significant GxE differences until the end of the experiment (37 DAS), indicating 296 

a strong influence of high temperature and extended drought on genetic factors related to these traits. 297 

Indicators of water status  298 

 Genotype-environment effects changed significantly the phenotypic variance of traits related to 299 

evapotranspiration over the period when plants were exposed to high temperature and water deficit. Daily 300 

evapotranspiration (Evap.daily) was explored in more detail to understand the relevance of these 301 

adjustments, generally related to the water status and transpiration efficiency. Evapotranspiration increased 302 

with temperature, although when plants were exposed to water deficit (WD38), water availability rapidly 303 

decreased and under these conditions evapotranspiration decreased after stress imposition in all genotypes 304 

(Fig. 2A-J). Only CMH82 (Fig. 2C), PARAGON (Fig. 2E) and SOKWB_1 (Fig. 2I) did not show a significant 305 

difference between treatments at 30 DAS. Under WD38 conditions (Fig. 2K), KSPA, PASTOR and SOKWB_2 306 

showed low evapotranspiration, while BORLAUG100, CMH82, PARAGON and SOKOLL displayed high 307 

values. When only exposed to high temperatures (WW38, Fig. 2L), BAJ, BORLAUG, SOKOLL showed the 308 

highest values and CMH82, KSPA and SOKWB_1 the lowest. At the end of stress exposition (37 DAS, Fig. 309 

2M-N) under WD38 conditions (Fig. 2M), KSPA, SOKOLL and SOKWB_1 showed low values of 310 

evapotranspiration, contrasting PUBWB and BORLAUG100 with high values. Under WW38 (Fig. 2N), KSPA 311 

showed low levels of evapotranspiration and PARAGON high levels (Fig. 2N).  312 
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 Under WD38, a positive correlation between the ratio of evapotranspiration to aboveground biomass 313 

(Evap/AerialDW) and evapotranspiration was observed (Fig. 3A). Under WW38, aboveground biomass 314 

correlated positively with evapotranspiration (Fig. 3B). 315 

Biomass prediction from images and plant growth modelling 316 

 Regression models were developed to quantify the ability of geometrical traits to predict the aboveground 317 

biomass (DW, FW), measured at 37 DAS, in order to investigate the relationship between the image-318 

extracted parameters and plant biomass. From the sixteen tested machine-learning regression models 319 

implemented in predMod (Chen et al., 2018a), nine passed the defined criteria for model selection: R2 >0.7; 320 

MRSRE <0.3; μ <0.05 (Fig. 4). Linear Support Vector Machine (SVM-linear, in red) was selected as the best 321 

model due to the low predictive bias (μ) and similar results for the other parameters (Fig. 4).  322 

 The geometrical traits area exposed (area.low) and pyramidical plant volume (volumepyr, calculated from 323 

the area and plant height) showed high predictive power. Moreover, the model constructed with the two 324 

parameters showed slightly higher accuracy to predict DW and FW, under WD38 and WW38 conditions, 325 

compared to the best single trait model, only with area.low (Fig. 5). FW predicted with the SVM-linear 326 

regression model built with the data extracted from images taken over plant growth (area.low and volumepy) 327 

showed the best correlation to FW measured and concomitant correlation to DW (Fig. 5). As the predicted 328 

fresh biomass (FW_sv) showed a better correlation to the measured biomass (FW and DW) compared to the 329 

predicted dry biomass (DW_sv), FW_sv was used as a proxy of plant aboveground biomass to model plant 330 

growth from 15 DAS until the forecasted 41 DAS (Fig. 6). 331 

 To determine the best model for biomass accumulation in wheat plants subjected to WW38 and WD38, 332 

ten different mechanistic models implemented in growMod (Chen et al., 2018a) were tested. A Bell shape 333 

model satisfied the previously established criteria (R2>0.7, P<0.05) for all genotypes in WW38 and WD38 334 

conditions, with the best fit (R2) for all the genotypes under WD38 and comparable results to the logistic 335 

model in WW38, and was thus selected to represent plant growth (Fig. 6). Different dynamics were observed 336 

between genotypes and stress conditions. The maximum biomass prediction (Biomass at Timemax) under 337 

WW38 was extracted from the growth model of Sokoll at 37 DAS (23.5 g, Fig. 6H) and the lowest for CMH82 338 

at 36 DAS (12.9 g, Fig. 6C). Under WD38, the highest value was observed in SOKWB_2 at 36 DAS (16.5 g, 339 

Fig. 6E) and the smallest in CMH82 at 35 DAS (12.7 g, Fig. 6C). 340 

Tolerance indices revealing stress symptoms 341 

 To characterise and classify the genotypes according to their growth dynamics under WW38 and WD38, 342 

stress tolerance indices were calculated with the parameters extracted from the growth models and the 343 

genotypes clustered accordingly (Fig. 7). CMH82 showed a distinct behaviour with high biomass stability, low 344 

productivity, minor changes in GR between conditions and elevated WUE under WD38 (Fig. 6C and Fig. 7). 345 

KSPA and SOKWB_1 showed a premature inflection point (Timemax) under WD38 relative to WW38, the 346 

highest reduction in the GR and WUE ratio (Fig. 6D, I and Fig. 7). However, SOKWB_1 showed higher 347 
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productivity and biomass reduction, whereas KSPA was the only genotype with a higher WUE under WW38 348 

than WD38 (Fig. 6D, I and Fig. 7). PARAGON and SOKOLL revealed the highest mean productivity (MP) 349 

and high biomass reduction (BRR), although PARAGON showed a less accentuated reduction of GR and 350 

higher WUE under WD38 (Fig. 6E and H and Fig. 7). BAJ, BORLAUG100, PASTOR and PUBWB 351 

demonstrated a similar behaviour with average values (Fig. 6 A,B,F,G and Fig. 7), the only emphasis was on 352 

the higher value of WUE in BORLAUG100, due to the elevated productivity and inflection point stability (Fig. 353 

6B and Fig. 7). SOKWB_2 showed high MP, more akin to SOKWB_1 (Fig. 7). However, similarly to BAJ and 354 

BORLAUG100, it exhibited a high inflection point stability (Fig. 6H, A, B and Fig. 7). 355 

Impact of WD38 and WW38 on phenotypic traits and adjustment of carbohydrate and 356 

antioxidant metabolism 357 

 Significance of variance associated with genotype (G), treatment (E) and their interaction was evaluated 358 

for phenotypic traits including the activity of key enzymes and metabolites from the carbohydrate and 359 

antioxidant metabolism to dissect the components relevant to the response to water deficit under high 360 

temperature. CAT, POX, cytINV, AGPase, vacINV activities, antioxidant capacities (TEAC and FRAP), 361 

phenols and starch content revealed the strongest G effects (Fig. 8A). On the other hand, anthocyanins, 362 

flavonoids, phenols, fructose content, vacINV, PFK activities, FRAP and the number of leaves displayed the 363 

highest environmental effects (Fig. 8A). CytINV, vacINV, HXK, PFK, Aldolase, AGPase, POX activities, 364 

TEAC, FRAP and phenols content expressed significant genotype-environment interactions (GxE) (Fig. 8A). 365 

The traits that expressed significant GxE differences at the end of the experiment were linked to the 366 

carbohydrate and antioxidant metabolism and were explored in more detail to understand the regulatory 367 

mechanisms linked to WD38 and WW38. Except for KSPA, PASTOR and SOKOLL, all the genotypes 368 

experienced changes in cytINV or vacINV activities. From those, only CMH82 demonstrated an increase of 369 

cytINV activity under WD38. PUBWB only showed significant differences in vacINV and SOKWB_2 in cytINV, 370 

despite the high activity under both conditions in cytINV and vacINV (Fig. 8B). CMH82 showed the strongest 371 

activity of HXK under WD38 concomitantly with significant changes in PARAGON and PUBWB. Excluding 372 

KSPA and BORLAUG100, all the other genotypes exhibited significantly higher activity under WW38. 373 

BORLAUG100, CMH82, KSPA, PASTOR, PUBWB, SOKOLL and SOKWB_2 demonstrated a significantly 374 

elevated activity of PFK under WD38. SOKOLL showed a robust activity of Aldolase under WD38, CMH82 375 

exhibited differences in a minor scale, and KSPA revealed high intrinsic activity despite no differences 376 

between conditions. CMH82 showed elevated activity of AGPase under WD38, and to a lesser extent, BAJ, 377 

PARAGON and PUBWB showed a significantly higher activity under the same condition. On the other hand, 378 

significant increases in the antioxidant capacity and activity occur only under WD38 (Fig. 8C-D). BAJ, KSPA, 379 

PARAGON, SOKOLL and SOKWB_2 exhibited changes in all the traits. BORLAUG only showed differences 380 

in POX activity and SOKWB_1 in phenols amount (Fig. 8C-D). 381 

Discussion  382 

 The impact of water deficit at high temperature on phenotypic traits related to reflectance proprieties, water 383 

use and biomass accumulation was assessed in ten spring wheat lines. The pool of genotypes with 384 
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heterogeneous performance to drought stress or high temperature conditions was used to investigate genetic 385 

and environmental interaction (GxE) of trait response in a phenotyping platform with a controlled high 386 

temperature and water regime. Additionally, to understand the regulatory mechanisms of the primary 387 

carbohydrate and antioxidant metabolisms associated with wheat response to drought at high temperature, 388 

the activities of key enzymes and metabolism associated with those pathways were analysed. 389 

 We identified an overall strong genotype reflectance signature throughout the experiment, which was 390 

intensified when temperature increased (30 DAS, Fig. 1A). This indicates constitutive differences in 391 

pigments/secondary metabolites and leaf structure between genotypes (Merzlyak et al., 2003; Blackburn, 392 

2007). On the other hand, only NIR intensities (700-970nm) were related to the response to water deficit 393 

(LOD scores increased after 35 DAS, Fig. 1B), consistently with the decrease of water content, as reported 394 

in previous drought experiments (Seelig et al., 2008; Chen et al., 2014; Junker et al., 2015). Together, these 395 

results showed that spectrometric measurements are important tools to detect the early response to the 396 

increase of temperature and to sense the response to drought stress. However, in our experimental setup, it 397 

was not possible to discriminate the genotype response to the combination of high temperature and water 398 

deficit using only multispectral reflectance. 399 

 Moreover, genotype-environment effects significantly changed evapotranspiration throughout the 400 

response to high temperature and water deficit (Fig. 1C, 2, 3). At the end of the experiment under WD38, all 401 

the genotypes decreased evapotranspiration to 40% relative to WW38, however we could identify three 402 

distinct transpiration behaviours in face of water deficit at high temperature. While CMH82, PARAGON and 403 

SOKWB_1 maintained the same evapotranspiration rate throughout the WD38 treatment; BAJ, BORLAUG 404 

and SOKOL (check lines) decreased transpiration gradually upon stress imposition; and KSPA, PASTOR, 405 

PUBWB and SOKWB_2 decreased transpiration on the first day under WD38 (70% relatively to WW38), then 406 

maintained it stable for the following two days prior to a subsequent continuous decrease (Fig. 2). 407 

Additionally, the data establish a correlation under WD38 between evapotranspiration and transpiration 408 

efficiency (ratio between biomass and evapotranspiration) (Fig. 3A). On the other hand, evapotranspiration 409 

under WW38 was more related to aboveground biomass (Fig. 3B). Schoppach et al. (2016) also identified a 410 

trade-off between night and day transpiration and biomass in wheat response to high vapour pressure deficit 411 

(VPD). Other studies associated transpiration efficiency and increased yield potential in well-watered and 412 

water-limited environments to high stomatal densities and conductance (Roche 2015; Shahinnia et al. 2016). 413 

As water use is essential for either drought or heat tolerance, these results highlight the importance of the 414 

balance between evaporative cooling, water-saving and photosynthesis in wheat genotypes growing under 415 

water deficit and high temperature. Additionally, the results obtained in our experimental setup evidence that 416 

gravimetrical measurements are more accurate than thermal measurements in detecting differences in the 417 

water status of genotypes in response to water deficit at high temperatures. 418 

 Biomass accumulation is a major indicator of plant performance and a key trait in plant breeding, however, 419 

conventional approaches are labour and time consuming and plants need to be harvested and destroyed to 420 

measure biomass (Catchpole and Wheeler, 1992; Cobb et al., 2013). Using imaging data and a Linear 421 

Support Vector Machine algorithm (SVM-linear) we could accurately estimate biomass accumulation under 422 

high temperature and the combination of high temperature and water deficit (Fig. 4-5). Furthermore, 423 
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mechanistic models to estimate plant biomass are systematically and accurately used to estimate plant 424 

growth dynamics (Woodward and Hunt, 1983; Meade et al., 2013; Tessmer et al., 2013; Chen et al., 2014). 425 

Our results indicate that a Bell shape model is the best model to characterise wheat's growth dynamic under 426 

single heat stress and when combined with water deficit (Fig. 6). Chen et al., (2014) also identified the bell-427 

shaped model as the best model to describe the growth pattern of 18 barley genotypes in response to water 428 

deficit. The more accurate fit of this model, in contrast to a sigmoid model usually followed by plant growth 429 

under non-stressful conditions (Paine et al., 2012; Tessmer et al., 2013), can be explained by the more 430 

complex behaviour of those. Notably, plants under stressful conditions can undergo wilting, resulting in a 431 

decrease in volume. Accordingly, there was a higher correlation between FW and plant volume, as DW does 432 

not take into account changes in plant architecture due to water loss in the tissues. The decrease in FW and 433 

plant volume also increases the challenge of precise biomass prediction under water deficit. Future 434 

experiments including a greater number of destructive measurements of biomass will enable validation and 435 

improvement of plant growth prediction. 436 

 In this study, by the complementation of automatic non-invasive phenotypic measurements with robust 437 

methods for data extraction and analysis, we could characterize the complex and dynamic processes of 438 

wheat growth and water use (Fig. 7). Dissecting the growth dynamics and water use of the poll of wheat 439 

genotypes with divergent performance, we identified CMH82 as highly tolerant to WD38, however, this 440 

genotype also decreases the potential to biomass accumulation under WW38, showing the lowest WUE and 441 

the worst mean productivity in both conditions. This behaviour would be advantageous under prolonged high 442 

temperatures associated with very dry conditions, but most likely would have a negative effect under the 443 

more common agricultural conditions (Tardieu, 2012; Parent et al., 2017). This tolerance mechanism was 444 

associated with a large modulation in the carbohydrate metabolism, with higher activity in most enzymes 445 

related to sucrolytic and glycolytic pathways (Fig. 8). If carbohydrates are used for glycolysis in the leaves, 446 

sink strength is lost in other organs, and it is most likely that assimilates will be less available for reproductive 447 

organs and grain filling, causing yield penalties (Shokat et al. 2020; Roitsch and González 2004). 448 

Nevertheless, CMH82 showed higher activity of cytINV under WD38, which was previously associated with 449 

a faster recovery from water deficit and high temperature (Correia et al., 2021). On the other hand, KSPA 450 

showed high WUE under WW38 but high susceptibility to WD38, without major changes in the carbohydrate 451 

metabolism. These results suggest that modulation of the carbohydrate metabolism upon water deficit at high 452 

temperature can be regarded as an essential protective mechanism. Paragon showed the best trade-off 453 

between WUE efficiency under WD38/WW38 and biomass production, demonstrating tolerance to growth 454 

under high temperature and mid-water deficit generally experienced in field conditions. Most of the genotypes 455 

with high WUE under WD38 showed higher activity of HXK under this condition. HXK is responsible for the 456 

phosphorylation of hexoses, acting as a glucose sensor to interconnect nutrient, light, and hormone signalling 457 

networks for controlling growth in response to environmental variations (Moore et al., 2003) and is associated 458 

with the acquisition of desiccation tolerance (Whittaker et al., 2001). Almost all the genotypes demonstrated 459 

high activity of PFK related to the increase of glycolysis and reallocation of carbohydrates to respiration under 460 

WD38. The increase of cytINV and vacINV activities was also observed in leaves of barley exposed to high 461 

temperature (Antonio Cuesta-Seijo et al., 2019), while tomato leaves exposed to water deficit demonstrated 462 
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lower activity of cytINV and vacINV (Albacete et al., 2015). Likewise, hexoses accumulation was only 463 

observed in leaves under WD38 (Fig. S3), showing that besides the increase of the sucrolytic activity under 464 

WW38, carbohydrates are being remobilized to other tissues. 465 

  Concerning the antioxidant enzymes evaluated, POX showed the highest genotype-environment effect, 466 

and although the different genotypes demonstrated different levels of activity, all of them increased POX 467 

activity under WD38. These results highlight the importance of POX activity in oxygen peroxide (H2O2) 468 

scavenging under water deficit and high temperature, resulting in better control of ROS levels and protection 469 

against oxidative damage. Other studies also highlighted the importance of the modulation of peroxidases 470 

activities to ROS scavenging under drought and high temperature (Koussevitzky et al., 2008; Zandalinas et 471 

al., 2017). ROS detoxification under WD38 was also associated with a non-enzymatic antioxidant defence, 472 

demonstrated by the increase of antioxidant capacity (FRAP and TEAC) and  production of phenolic 473 

compounds.  474 

 In summary, this study illustrates the importance of canopy architecture to fine-tune transpiration required 475 

to achieve an equilibrium between water-saving, leaf evaporative cooling and biomass production when water 476 

deficit occurs at high temperature. Furthermore, it highlights the importance of transpiration efficiency to the 477 

maintenance of water uptake and transpiration/photosynthesis under these circumstances. The application 478 

of this methodology in further experiments connecting anatomical (number/size of stomata), phenological 479 

(number, shape, and angle of leaves), and functional traits (stomatal conductance and transpiration rate) to 480 

stress tolerance will help to elucidate the role of each component in the adaptation to fluctuations in water 481 

deficit associated to high temperature. Furthermore, our results highlighted the importance of adjustments in 482 

the carbohydrate and antioxidant metabolism to tolerate these stressful conditions, more specifically in the 483 

sucrolytic (cytINV), glycolytic pathways (HXK, PFK), and the ROS scavenging by POX and phenolic 484 

compounds. The integration of cell physiological phenotyping, via the semi-high-throughput determination of 485 

enzyme activity signatures and metabolites, with high-throughput phenotyping methods, proved to be an 486 

efficient approach to quantitatively characterize genotype-environment interaction of these complex traits. 487 

Further experiments with higher replication and collection of samples to quantify enzyme activity 488 

signatures/metabolites and biomass in a different phenological stage can further help to prove the robustness 489 

of the provided approach and results. The application of this methodology into breeding programs will 490 

facilitate the selection of promising candidates for wheat production in environments subjected to high 491 

temperatures and drought. 492 
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Figures and tables 

Table 1 – List of the ten wheat genotypes used in this study. 

GenotypeID* Cross Name Information 
GID 

CIMMYT 
Source 
(tested) 

PASTOR W15.92/4/PASTOR//HXL7573/2*BAU/3/WBLL1 PT Line 5865676 
CIMMYT 

(7th SATYN) 

SOKWB_1 SOKOLL/WBLL1 PT Line 6056139 
CIMMYT 

(7th SATYN) 

BORLAUG100 BORLAUG100 F2014 Check 7806808 
CIMMYT 

(7th, 8th SATYN) 

CMH82 CMH82.575/CMH82.801 Parental 1187021 
CIMMYT 

(Reynolds et al., 2007) 

PUBWB PUB94.15.1.12/WBLL1 PT Line 6056064 
CIMMYT 

(8th SATYN) 

SOKWB_2 SOKOLL/WBLL1 PT Line 6056140 
CIMMYT 

(8th SATYN) 

SOKOLL SOKOLL 
Check 

Parental 
3825355 

CIMMYT 
(7th, 8th SATYN) 

KSPA KS940935.7.1.2/2*PASTOR Parental 5865910 
CIMMYT 

(Manès et al., 2012) 

BAJ BAJ #1 Check 5106304 
CIMMYT 

(7th, 8th SATYN) 

PARAGON CSW1724-19-5-68//Axona/Tonic 
UK 

elite line 
NA 

LEC, UK 
(Correia et al., 2021) 

* ID adopted for this study based on the cross name simplification   
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Figure 1 – Phenotypic variation over-time of wheat plants exposed to high temperature (WW38) or 

water deficit at high temperature (WD38). (A) Statistical significance of genotype effect, (B) treatment 

effect (WW38 vs WD38), and (C) their interaction effect (GxE) for each phenotype trait measured in each 

day. The shading plot indicates the significance level (Bonferroni corrected P values) in LOD scores (-log 

probability). There is no difference between the groups' means in white cells, and different shades of red 

indicate the strength of the significant difference between groups.  
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Figure 2 – Evapotranspiration over-time of wheat plants exposed to high temperature (WW38) or 

water deficit at high temperature (WD38). (A-J) Measurements were taken continuously throughout the 

experiment for each genotype in plants under WW38 and WD38. (K,L) Comparison of genotypes at the start 

of the stress imposition (30 DAS). (M,N) Comparison of genotypes at the end of the experiment (37 DAS). 

Blue lines and bars represent WW38 plants; yellow solid lines and bars represent WD38 plants. Shaded 

areas represent 95% confidence intervals. Yellow dashed lines denote stress imposition (30 DAS) and red 

dashed lines the end of the experiment (37 DAS). Asterisks denote significant differences between treatments 

in each genotype (t-test, P<0.05, A-J). Bar charts show mean values ± SEM (n = 5 biological replicates). 

Different letters denote significant differences between genotypes (Duncan analysis, P<0.05). 
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Figure 3 – Relative importance of biomass and architecture traits to evapotranspiration at DAS 37 of 

wheat plants exposed to water deficit at high temperature (WD38, A) or high temperature (WW38, B). 

Heatmap represents a correlation between evapotranspiration and traits related to biomass and plants 

architecture. Evap: evapotranspiration; Evap/RootDW: evapotranspiration normalized to root dry biomass; 

Evap/AerialDW: evapotranspiration normalized to aboveground dry biomass; Shoot/Root: shoot to root mass 

fraction (Fig. S2); Leaves: number of leaves per plant (Fig. S2), Root DW: roots dry biomass; Aerial DW: 

aboveground dry biomass. (C) Representative images of architectural differences between genotypes, 

segmented images of SOKOLL and PARAGON. The leaves are shown in red.  
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Figure 4 – Performance of nine machine-learning regression models considered for predicting plant 

biomass (FW, A-D, and DW, E-H) by image-extracted parameters (37 DAS). Models: (1) BGLM: Bayesian 

Generalized Linear Model; (2) BLASSO: Bayesian Lasso; (3) GLM: Generalized Linear Model; (4) GLMNET: 

Lasso and Elastic-Net Regularized Generalized Linear Models; (5) GP-Poly: Gaussian Process with 

Polynomial Kernel; (6) LASSO: Lasso Model; (7) MLR: Multivariate Linear Regression; (8) RIDGE: Ridge 

Regression; (9) SVM-Linear: Support Vector Machines with Linear Kernel. (A, E) R2: Pearson correlation 

coefficient of determination between the predicted values and the observed values ; (B,F) PCC: Pearson 

correlation coefficient; (C,G) MRSR: root mean squared relative error of cross-validation; (D,H) μ: predictive 

bias between the predicted and observed values. 
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Figure 5 – Pearson correlation matrix between manual measurements, image-derived features, and 

model-predicted data from plants growing at WD38 (A) and WW38 (B). Values are correlation coefficients 

(r). FW: aboveground fresh biomass; DW: aboveground dry biomass; FW_sv: predicted fresh biomass (SVM-

linear); DW_sv: predicted dry biomass (SVM-linear); AREA.low: exposed leaf area extracted from images; 

volumepyr: plant pyramidal volume calculated based on image-derived features. Different coloured dots 

represent genotypes. 
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Figure 6 – Modelling plant growth in ten wheat genotypes exposed to high temperature (WW38) or 

water deficit at high temperature (WD38). Growth models are based on fitting predicted biomass values 

from 24 to 41 DAS using a bell shape model. Blue lines represent WW38 plants and yellow lines represent 

WD38 plants. Quality of fit (R2) of each model, the time point of maximum biomass (Timemax, vertical dashed 

lines) and maximum growth capacity (Biomass at Timemax, horizontal dashed lines) are indicated.  
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Figure 7 – Stress tolerance indices of ten wheat genotypes when exposed to high temperature 

(WW38) or water deficit at high temperature (WD38). (A) Heat map representation of rescaled values (0-

1) of Mean productivity, Biomass reduction, Inflection point stability, growth rate (GR) and water use efficiency 

(WUE) ratios of WD38 to WW38. Blue cells represent low values and red cells high values. Hierarchical 

clustering was applied to the matrix rows. (B) Water use efficiency, as biomass produced per water 

transpiration. Different letters denote statistically significant differences between genotypes (Duncan 

analysis, P<0.05. Mean productivity = (Biomass at TimemaxWW38 + Biomass at TimemaxWD38)/2; Biomass 

reduction = Biomass at TimemaxWD38 / Biomass at TimemaxWW38; Inflection point stability =  

TimemaxWW38−TimemaxWD38; GR ratio=GRWD38 / GRWW38; WUE ratio=WUEWD38 /WUEWW38. 
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Figure 8 – Adjustments of the carbohydrate and antioxidant metabolisms of wheat when exposed to 

high temperature (WW38) or water deficit at high temperature (WD38). (A) Statistical significance of 

genotype effect, treatment effect (WW38 vs WD38), and their interaction (GxE) for each trait measured at 

the end of the experiment (37 DAS). The shading plot indicates the significance level (Bonferroni corrected 

P values) in LOD scores (-log probability). Blue cells represent low LOD values and red cells high values. (B-

C) Top 10 traits with highest GxE LOD scores. (B) Carbohydrate metabolism enzymes activity expressed 

relative to the amount of TSP. (C) Peroxidase activity expressed relative to the amount of TSP. (D) 

Antioxidant capacities and total phenols (mg/g of equivalents). Asterisks denote significant differences 

between treatments in each genotype (t-test, P<0.05). Bars show mean values ± SEM (n = 4-5 biological 

replicates), and different letters denote statistically significant differences between genotypes (Duncan 

analysis, P<0.05). 

 


