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ABSTRACT

Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the
photometric sample of Euclid. Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the
estimation of the best fitting cosmological parameters that we expect if this effect is neglected.
Methods. We follow the prescriptions of the official Euclid Fisher-matrix forecast for the photometric galaxy clustering analysis and the combi-
nation of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the
lensing magnification, as well as the galaxy bias have been estimated from the Euclid Flagship simulation.
Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy
clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1σ errors on Ωm,0,w0,wa at the
level of 20–35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting
magnification in the clustering analysis leads to shifts of up to 1.6σ in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic
shear and galaxy-galaxy lensing, including magnification does not improve precision but it leads to up to 6σ bias if neglected. Therefore, for all
models considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal
(3 × 2pt analysis) for an accurate parameter estimation.

Key words. Cosmology – large-scale structure of Universe – cosmological parameters – Cosmology: theory
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1. Introduction

In the past decades, observational cosmology has undergone
unprecedented advances in terms of experimental techniques.
The anisotropies of the cosmic microwave background (CMB)
have been mapped with stunning accuracy (Planck Collabora-
tion: Aghanim et al. 2020), while the low-redshift window be-
came accessible with observations of the large-scale distribu-
tion of galaxies and the statistics of weak gravitational lensing
(Alam et al. 2017; DES Collaboration: Abbott et al. 2018; Lee
et al. 2021; Sevilla-Noarbe et al. 2021; DES Collaboration: Ab-
bott et al. 2021; Asgari et al. 2021; Heymans et al. 2021), as well
as distance measurements from supernovae (Scolnic et al. 2018).
This progress on the experimental side has led to the affirmation
of ΛCDM as the concordance model for cosmology. Despite the
remarkable success of ΛCDM, there are two ingredients whose
nature is still unknown: dark matter and dark energy. In addition,
the value of the cosmological constant corresponds to a vacuum
energy in the meV regime, which is unsatisfactory from a theo-
retical point of view. Furthermore, the constancy of Λ leads to
the question of why its contribution to the expansion rate of the
Universe should be of the same order of magnitude as the one
from the matter density only at present time. These fine-tuning
and coincidence (‘why now’) problems motivate researchers in
the field to consider alternatives to ΛCDM, such as scalar field
dark energy (quintessence, k-essence) and more general tensor-
scalar gravity theories or other modifications of General Relativ-
ity, see e.g. Amendola et al. (2018) for an extended discussion.
The next generation of large-scale structure probes is expected
to provide crucial information on the dark sector that will allow
us to test many of these different models of dark energy and our
theory of gravity on cosmological scales. Due to the statistical
power of these future surveys, new efforts are needed to reduce
systematic uncertainties to a higher degree than previously re-
quired. Such systematic effects arise not only from observational
aspects, but also from the theoretical predictions that may have
to be improved as well to exploit the full power of the upcoming
observations.

The Euclid survey (Amendola et al. 2018; Laureijs et al.
2011) will contribute to the challenge of constraining the dark
sector with the combination of two complementary probes: a)
a spectroscopic sample of about 30 million galaxies that will
be used to study the growth of structure in the redshift range
z ∈ [0.9, 1.8] (Pozzetti et al. 2016) and b) a photometric cata-
logue of about 1.5 billions galaxy images, which will provide
a direct tomographic map of the distribution of matter through
measurements of cosmic shear in the redshift range z ∈ [0, 2]
(Amendola et al. 2018).

In this paper we focus on the photometric sample. Galaxy
images and positions in this sample will be used both for ex-
tracting the galaxies’ shapes and their weak lensing distortions,
as well as for galaxy clustering measurements in photometric
redshift bins. However, the statistics of galaxy number counts is
not only determined by the local density of sources but it is also
affected by gravitational lensing due to the foreground matter
distribution (Menard & Bartelmann 2002; Menard et al. 2003a,b;
Matsubara 2004; Scranton et al. 2005; LoVerde et al. 2008; Hui
et al. 2008; Hildebrandt et al. 2009; Van Waerbeke et al. 2010;
Heavens & Joachimi 2011; Bonvin & Durrer 2011; Challinor &
Lewis 2011; Duncan et al. 2014; Unruh et al. 2020; Liu et al.
2021). Gravitational lensing affects the observed number count
of galaxies in two ways which have opposite signs: it modifies
the observed size of the solid angle, diluting the number of galax-
? e-mail: francesca.lepori2@uzh.ch

ies per unit of solid angle behind an overdensity, and it magni-
fies the apparent luminosity of galaxies behind an overdensity,
enhancing the number of galaxies above the magnitude thresh-
old of a given survey. The second effect is survey-dependent. To
model it we need to know the luminosity function and the magni-
tude cut of the galaxies in the sample. The combination of these
two effects is known as ‘lensing magnification’.

Lensing magnification has not been taken into account in the
validated Euclid forecast (Euclid Collaboration: Blanchard et al.
2020, EC20 in the following) and the aim of this work is to assess
its impact on the analysis of the Euclid photometric sample.

There is an extensive literature investigating the relevance
of magnification for future cosmological surveys, see for ex-
ample Bruni et al. (2012); Gaztañaga et al. (2012); Duncan
et al. (2014); Montanari & Durrer (2015); Eriksen & Gaztanaga
(2015a); Eriksen & Gaztañaga (2015); Raccanelli et al. (2016);
Cardona et al. (2016); Di Dio et al. (2016); Eriksen & Gaztanaga
(2018); Lorenz et al. (2018); Villa et al. (2018); Thiele et al.
(2020); Tanidis et al. (2020); Bellomo et al. (2020); Jelic-Cizmek
et al. (2021); Viljoen et al. (2021). The general consensus is that
lensing should be taken into account in the analysis of photomet-
ric clustering for the following reasons: i) Including lensing will
significantly improve the cosmological constraints by breaking
the degeneracy between galaxy bias and the amplitude of pri-
mordial perturbations. This is especially relevant for photometric
samples where redshift-space distortions (RSD) are smeared out.
ii) Neglecting this effect can lead to significant shifts in the esti-
mation of some cosmological parameters – especially for mod-
els beyond the minimal ΛCDM (Camera et al. 2015). iii) Lens-
ing magnification provides a tomographic measurement of the
lensing potential that is complementary to cosmic shear analysis
and can be used to test General Relativity (Montanari & Durrer
2015).

In this work, we study the impact of lensing magnification
on the analysis of the photometric sample of Euclid, using for
the first time realistic specifications for the local count slope
based on the Euclid Flagship simulation. Apart from ΛCDM and
massive neutrinos, we shall consider a simple phenomenological
parametrization of dark energy as a function of redshift, z, via an
equation of state of the form

w(z) = w0 + wa
z

1 + z
,

which is the so called CPL or w0wa parametrization (Cheval-
lier & Polarski 2001; Linder 2003). While these simple mod-
els do not fully allow exploring the additional information that
lensing magnification may add to photometric galaxy clustering
as a cosmological probe, they are sufficient to answer the ques-
tion whether we need to include lensing magnification to avoid
systematically biasing our results. An extended analysis that in-
cludes dark energy models with a stronger impact on the growth
of structure is beyond the scope of this paper and is left for future
work.

The paper is structured as follows. In the next section we
introduce the theoretical, linear perturbation theory expressions
for the quantities measured in the survey. In Sect. 3 we present
the Euclid specifics used in this work and we outline how they
have been extracted from the Flagship simulation. In Sect. 4 we
describe the Fisher formalism used in our analysis. In Sect. 5
we present the results and discuss them. In Sect. 6 we show the
outcome of several tests that we have performed to assess the ro-
bustness of our results. We conclude in Sect. 7. In the Appendix
we discuss in more detail some technical aspects of our work.
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2. The photometric sample observables: number
counts and cosmic shear

In this section we define our observables: the galaxy number
counts, the shear, and their cross-correlation. We consider them
as quantities on the sphere at different redshifts. We first give
a brief recap on power spectra and correlation functions on the
sphere for different tensorial quantities. We then discuss our spe-
cific observables in more detail.

2.1. Angular power spectra

Whenever we have a function on the sphere, like the number
counts, ∆(n, z), the lensing potential, ψ(n, z), or the convergence,
κ(n, z), observed in the direction n at fixed redshift, z, or inte-
grated over a redshift bin centered at z, we can expand it in spher-
ical harmonics,

∆(n, z) =
∑
`m

a∆
`m(z)Y`m(n) , (1)

κ(n, z) =
∑
`m

aκ`m(z)Y`m(n) . (2)

Due to statistical isotropy, which we assume here, the a`m
coefficients for different ` and m values are uncorrelated and we
obtain the angular power spectra〈
a∆
`m(z) a∆ ∗

`′m′ (z
′)
〉

= C∆∆
` (z, z′) δK

``′δ
K
mm′ , (3)〈

aκ`m(z) aκ ∗`′m′ (z
′)
〉

= Cκκ
` (z, z′) δK

``′δ
K
mm′ , (4)〈

a∆
`m(z) aκ ∗`′m′ (z

′)
〉

= C∆κ
` (z, z′) δK

``′δ
K
mm′ , (5)

where the symbol δK
ab denotes the Kronecker delta and the super-

scripts ∆ and κ denote the number counts and the convergence
field as example of functions on the sphere for which we can
compute the angular power spectrum. For Gaussian fluctuations
these power spectra contain the full statistical information. In
the presence of non-Gaussianities, reduced higher-order spectra
and other statistics contain additional information. The fact that
the power spectra depend on redshift is what makes clustering
surveys so useful. They contain three-dimensional information
which we exploit in this case by considering several different
redshifts and their cross-correlations.

For functions on the sphere, the link between the power spec-
trum and the correlation function is given by

〈 f (n, z) f (n′, z′)〉 =
1

4π

∑
`

(2` + 1) C f f
`

(z, z′) P`(n · n′) , (6)

where P` denotes the Legendre polynomial of degree ` and f is
the considered function on the sphere.

The shear is not a function, but a helicity-2 object on the
sphere, which has to be expanded in spin-weighted spherical
harmonics (see Bartelmann & Schneider (2001) for an introduc-
tion). Denoting the complex shear by γ = γ1 + iγ2 we can write

γ(n, z) =
∑
`m

aγ
`m(z) 2Y`m(n) . (7)

Here 2Y`m are the spin-2 spherical harmonics, see e.g. Durrer
(2020) for details. The correlators〈
aγ
`m(z) aγ ∗

`′m′ (z
′)
〉

= Cγγ
`

(z, z′) δK
``′δ

K
mm′ (8)

denote the shear power spectrum. In order to compare the shear
spectrum with the convergence κ, we first act on γ with the spin-
lowering operator /∂∗ (again see e.g. Durrer 2020 for details).
This allows us to define the function

β(n, z) = (/∂∗)2γ(n, z) =
∑
`m

√
(` + 2)!
(` − 2)!

aγ
`m(z) Y`m(n) . (9)

For the second equality we made use of the identity

(/∂∗)2
2Y`m(n) =

√
(` + 2)!
(` − 2)!

Y`m(n) .

The scalar quantity β is actually just the Laplacian of κ which
implies

[`(` + 1)]2Cκκ
` =

(` + 2)!
(` − 2)!

Cγγ
`
. (10)

On small angular scales, ` � 1, these spectra therefore agree

Cκκ
` ' Cγγ

`
. (11)

A similar relation can be derived for the cross-correlation of the
shear and a scalar function (see Appendix A for details).

Given the power spectra correlating two quantities A and B,
CAB
` (z, z′), we can compute the corresponding spectra obtained

from two bins i and j with (normalized) galaxy distributions ni(z)
and n j(z). They are simply given by

CAB
` (i, j) =

∫
dz dz′ ni(z) n j(z′) CAB

` (z, z′) . (12)

The observables AB used in this paper are the galaxy number
counts ∆∆, the cosmic shear γγ and their cross-correlation ∆γ
(galaxy-galaxy lensing). Let us now discuss them in more detail.

2.2. Galaxy number counts

The clustering of matter in the Universe is a very promising ob-
servable not only to determine cosmological parameters but also
to test the theory of gravity, General Relativity, on cosmological
scales. While we cannot observe the matter density directly, it is
generally assumed that on large scales the distribution of galax-
ies is a faithful biased tracer of the matter distribution. On large
enough scales, the bias depends on redshift but not on scale. An
important issue is, however, that we do not observe galaxies in
a three-dimensional spatial hypersurface but on our past light
cone. More precisely, we measure angular positions and red-
shifts, which are affected by the perturbed geometry and the pe-
culiar motion of galaxies. While the galaxy velocities have been
taken into account in galaxy number counts since the seminal pa-
per by Kaiser (1987), the fully-relativistic perturbed light-cone
projection has been considered first about a decade ago. In Yoo
et al. (2009); Yoo (2010); Bonvin & Durrer (2011); Challinor
& Lewis (2011) these light-cone or projection effects have been
studied at first order in perturbation theory. A numerical code for
the fast calculation of all relativistic effects is presented in Di Dio
et al. (2013), with vanishing curvature, and Di Dio et al. (2016),
including curvature. These codes are publicly available and in-
cluded in the newer releases of class (Blas et al. 2011). Attempts
to go to second order in the light-cone projection have also been
published (Bertacca et al. 2014; Yoo & Zaldarriaga 2014; Di Dio
et al. 2015).
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On small scales, k � H/c, where k is the comoving wave
number, c is the speed of light, and H denotes the comoving
Hubble parameter, H(z) = 1

a
da
dη , with a the scale factor and

η conformal time, only density, peculiar velocity (which en-
ters through RSD) and lensing magnification are relevant. These
terms lead to the following simple formulae in angular and red-
shift space

∆(n, z) = b(z) δ[r(z)n, z] −
1
H(z)

∂rVr[r(z)n, z]

+[5s(z) − 2] κ(n, z) , (13)

κ(n, z) =

∫ r(z)

0
dr′

[r(z) − r′]
2r(z)r′

∆Ω(Φ + Ψ)[r′n, z(r′)] (14)

=
1
2

∆Ωψ(n, z) , (15)

where the unit vector n denotes the direction of observation, z is
the measured redshift, Vr = −V ·n is the peculiar velocity in lon-
gitudinal gauge V projected along the radial direction, and ∆Ω is
the Laplace operator on the sphere.1 Here, ψ is the lensing poten-
tial2, b(z) is the galaxy bias, r(z) is the comoving distance out to
redshift z and z(r) is its inverse. Φ and Ψ are the Bardeen poten-
tials which in ΛCDM are related to the Newtonian potential by
Ψ ' Φ ' ΦNewton/c2. The function s(z) is the local count slope3

given by the logarithmic derivative of the cumulative number
density of galaxies as a function of their flux F measured at the
flux limit of the survey under consideration, Flim. More precisely

5
2

s(z, Flim) ≡ −
∂ log10 N(z, F > Flim)

∂ log10 Flim
. (16)

Contrary to the bias b(z), which is estimated through the clus-
tering analysis together with the cosmological parameters, the
local count slope s(z) can in principle be measured directly from
the luminosity function of the galaxy sample, which provides a
measurement independent from the cosmological analysis.

The angular power spectrum of galaxy clustering is given by

C∆∆
` (z, z′) = Cgg

`
(z, z′) + [5s(z′) − 2] Cgκ

`
(z, z′) (17)

+ [5s(z) − 2] Cκg
`

(z, z′) + [5s(z) − 2][5s(z′) − 2] Cκκ
` (z, z′)

+ CRSD
` (z, z′) ,

where the term in the last line contains the RSD-RSD correlation
as well as the density-RSD and the magnification-RSD correla-
tions.

In our analysis, we use Limber’s approximation for these
spectra (Limber 1954), which is very good for the lensing poten-
tial and for ` & 30. We also make use of the Einstein constraint
equation in the late Universe, where radiation can be neglected,
so that

PΦ+Ψ(k, z) = 9
(H0

k

)4

Ω2
m,0(1 + z)2 Pδδ(z, k) . (18)

Here Pδδ is the matter power spectrum in comoving gauge,
and PΦ+Ψ is the power spectrum of the two Bardeen potentials

1 The operator ∆Ω is defined in terms of the spin lowering and raising
operators /∂∗ and /∂, that is ∆Ω ≡ (/∂ /∂∗ + /∂∗ /∂)/2 (see Bernardeau et al.
2010, for details).
2 We use the sign convention of Bartelmann & Schneider (2001) for
the lensing potential which is the opposite of the one in Lewis et al.
(2000).
3 In the literature this is often called the ‘magnification bias’.

(which are equal in our regime), that enters into the computa-
tion of the convergence in Eq. (15), and Ωm,0 is the matter den-
sity parameter. Using Limber’s approximation (Limber 1954),
the galaxy-magnification correlation in Eq. (17) can be written
as

Cgκ
`

(z, z′) =


6 b(z)Ωm,0

(H0

c

)2 `(` + 1)
(2` + 1)2

[r(z′) − r(z)]
r(z′)r(z)

× (1 + z) Pδδ

[
` + 1/2

r(z)
, z

]
,

z < z′

0 , z ≥ z′ ,

(19)

and the magnification-magnification correlation becomes

Cκκ
` (z, z′) =

(
2H0

c

)4

(3Ωm,0)2 `
2(` + 1)2

(2` + 1)4 (20)

×

∫ rmin

0
dr

[r(z) − r][r(z′) − r]
r(z)r(z′)

[1 + z(r)]2 Pδδ

(
` + 1/2

r
, z

)
,

where rmin = min{r(z), r(z′)}. For more details on Limber’s ap-
proximation see, e.g. Durrer (2020).

In Fig. 1 we show the main contributions to the galaxy num-
ber counts for the Euclid specifics described in Sect. 3. We show
two representative configurations: the auto-correlation at mean
redshift z̄1 = z̄2 = 0.69, where the density contribution dom-
inates, and the cross-correlation of two far-apart redshift bins,
z̄1 = 0.14 and z̄2 = 1.91, where the entire signal consists of the
cross-correlation of density at z̄1 and magnification at z̄2.

While RSD, the second term on the first line of Eq. (13), are
very important for spectroscopic surveys, they are smeared out in
photometric surveys: their contribution to the auto-correlations
is ∼ 30% at ` ∼ 10 and drops below 1% at ` > 90. For this
reason, they have been neglected in the official forecast pre-
sented in EC20. In this paper we focus on lensing magnification.
Therefore, we neglect RSD in the main analysis presented in this
manuscript and we test the impact of this approximation on our
results in Sect. 6. A detailed study on the impact of RSD on the
Euclid analysis is left to future work, as it has been pointed out
in Tanidis & Camera (2019) that correct modelling of RSD is
crucial so as not to bias cosmological parameter estimation.

Even though Eq. (13) is strictly valid only within linear per-
turbation theory, the density term and the magnification term are
well modelled by replacing the linear power spectrum with a
non-linear prescription (see, e.g., Fosalba et al. 2015b,a; Lep-
ori et al. 2021). This is not at all the case for RSD, but since
we do not include this effect in the analysis, the main results of
this work, namely the relevance of magnification for parameter
estimation, can be trusted when obtained with a non-linear pre-
scription. At equal redshifts, the density fluctuation is usually the
dominant contribution to the number counts, while at unequal
redshifts, the lensing terms δκ and κκ dominate, as can be seen
in Fig. 1.

2.3. Cosmic shear

The paths followed by photons coming from distant galaxies are
deflected due to the large-scale structure of the Universe. These
deflections introduce distortions in the images of these galaxies.
We can decompose these distortions (at the linear level and lo-
cally) into convergence given by κ and complex shear γ. The for-
mer is related to the magnification of the images, while the latter
is linked to the shape distortion of the images. More specifically,
these two effects correspond to the trace and trace-free part of
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Fig. 1: Number counts power spectra for the Euclid photometric
sample (top panels) and percentage contributions of magnifica-
tion and RSD, 100 × CRSD/magn

`
/C∆∆

` (bottom panels). The con-
tribution of magnification includes the κκ contribution as well as
the density-κ contributions, given by the second, third and fourth
terms in Eq. (17). The contribution of RSD, third line in Eq. (17),
comprises the RSD-RSD correlation and the cross-correlation
of RSD with density and magnification. The magnification-RSD
correlation is subdominant. The top subfigure refers to the auto-
correlation at z̄1 = z̄2 = 0.69. While the contribution of RSD is
30% on large scales, that is ` ∼ 10, it drops below 1% at ` > 90.
For this configuration, the contribution of magnification is sub-
percent on all scales (the blue line and the orange line overlay
on all scales). The bottom subfigure shows the cross-correlation
of two bins with large redshift separation, z̄1 = 0.14, z̄2 = 1.91.
The contribution of density alone and RSD is negligible in this
case. Magnification (and its cross-correlation with the density)
constitutes the totality of the spectrum.

the Jacobian of the lens map given by

n 7→ n− α(n, z) , (21)
α(n, z) = ∇Ωψ(n, z) , (22)

where ∇Ω denotes the gradient on the sphere.
Although cosmological information can be extracted from

the convergence (see, e.g. Alsing et al. 2015), we focus here
on the cosmological signal than can be obtained from the shear
field. Under the assumption of homogeneity and isotropy of our
Universe, the mean of the shear field vanishes. However, its an-

gular power spectrum Cγγ
`

contains cosmological information
sensitive to both the expansion and the growth of structures.

Linking the shear field to observations, the ellipticity of a
given galaxy, at linear order, can be expressed as

ε = γ + εI , (23)

where εI stands for the intrinsic ellipticity of the object. Under
the assumption that galaxies are randomly oriented, the elliptic-
ity provides an unbiased estimator of the complex shear. How-
ever, in practice tidal interactions during the formation of galax-
ies or other astrophysical effects may induce an intrinisic align-
ment of galaxies (see, e.g. Joachimi et al. 2015), resulting in one
of the major systematic effects in weak lensing analyses.

Considering the angular power spectra of Eq. (23), we can
express the ellipticity angular power spectrum as

Cεε
` = Cγγ

`
+ CIγ

`
+ CγI

`
+ CII

` , (24)

where the two indexes represent two tomographic redshift bins.
Therefore, the cosmic shear angular power spectra are contam-
inated by the correlations between background shear and fore-
ground intrinsic ellipticity, CIγ

`
, the correlations between back-

ground and foreground intrinsic ellipticity, CII
` , and the corre-

lations between background intrinsic ellipticity and foreground
shear, CγI

`
. We note that the latter should be equal to zero, be-

cause foreground shear should not be correlated with a back-
ground ellipticity except if galaxies are misplaced due to the
photometric redshift uncertainty.

Using Eq. (11) the cosmic shear (without intrinsic align-
ments) angular power spectra, Cγγ

`
, is directly given by Eq. (20)

within Limber’s approximation.
In this work we model the remaining terms in Eq. (24) using

the extended non-linear alignment model for intrinsic alignments
presented in EC20. In this model, the three-dimensional matter-
intrinsic and intrinsic-intrinsic power spectra can be expressed
as

PδI(k, z) = −AIACIAΩm,0
FIA(z)
D(z)

Pδδ(k, z) , (25)

PII(k, z) =

[
AIACIAΩm,0

FIA(z)
D(z)

]2

Pδδ(k, z) , (26)

with

FIA(z) = (1 + z)ηIA

[
〈L〉 (z)
L∗(z)

]βIA

, (27)

where AIA, ηIA, βIA are nuisance parameters controlling the in-
trinsic alignment amplitude, redshift dependence, and luminos-
ity dependence, respectively. Following the standard conven-
tion in the literature to model the intrinsic alignments (see e.g.
Joachimi et al. 2021), the constant CIA is set to a fixed value of
0.0134 as it is fully degenerate withAIA. 〈L〉 (z) and L∗(z) stand
for the redshift-dependent mean and the characteristic luminos-
ity of source galaxies. We refer the reader to EC20 for more
details on this model.

Given these three-dimensional power spectra, again using
Limber’s approximation, we can express the full ellipticity an-
gular power spectra as

Cεε
` = Cγγ

`
+ CIγ

`
+ CII

` , (28)

Article number, page 5 of 26



A&A proofs: manuscript no. Euclid-Photometric-Magnification

where CIγ
`

and CII
` are given by

CII
` (z, z′) = δD(z − z′)

H(z)
c r(z)2 PII

[
` + 1/2

r(z)
, z

]
, (29)

CIγ
`

(z, z′) =


6 Ωm,0

(H0

c

)2 `(` + 1)
(2` + 1)2

[r(z′) − r(z)]
r(z′)r(z)

× (1 + z) PδI

[
` + 1/2

r(z)
, z

]
, z < z′ ,

0 , z ≥ z′ .

(30)

Considering photometric redshift bins i and j, even if the
mean redshift z̄i > z̄ j we have to include not only CIγ

`
( j, i) but

also CIγ
`

(i, j) = CγI
`

( j, i) in Cεε
`

(i, j) due to the significant overlap
of photometric redshift bins.

It is important to mention that relativistic effects are also
present in the source sample and therefore in cosmic shear analy-
ses. For example, magnification effects can also change the num-
ber of sources in a magnitude-limited survey. However, these
effects are of second order and the inclusion of magnification
effects in cosmic shear requires the modelling of the matter bis-
pectrum. Furthermore, its overall impact is significantly smaller
than for galaxy number counts (see, e.g. Duncan et al. 2014;
Deshpande et al. 2020). Because of this, and the fact that the
impact of magnification effects in cosmic shear has already been
studied in Deshpande et al. (2020) in the context of Euclid, we
do not consider this effect (and other relativistic effects which
appear at second order) in the cosmic shear part of our analysis.

2.4. Galaxy – galaxy lensing

In the photometric survey of Euclid, we measure both galaxy
number counts and cosmic shear. We shall also cross correlate
these measurements (see, e.g. Tutusaus et al. 2020). For purely
scalar perturbations, the correlation function between the tan-
gential shear and number counts is given by Eq. (A.5):

〈∆(n, z)γt(n′, z′)〉 = −
1

4π

∑
`

2` + 1
`(` + 1)

P`2(n · n′) C∆κ
` (z, z′) , (31)

where P` 2 is the modified Legendre function, of degree ` and
index m = 2 (see Abramowitz & Stegun (1970)). Here, C∆κ

`
(z, z′)

is the angular correlation spectrum between the number counts
∆ and the convergence κ, see Sect. 2.1.

As before, for a photometric survey, we can neglect RSD and
large-scale relativistic contributions, so that

C∆κ
` (z, z′) ' Cgκ

`
(z, z′) + [5s(z) − 2] Cκκ

` (z, z′) . (32)

Using Limber’s approximation, the two contributions in
Eq. (32) are given by Eqs. (19) and (20), respectively. For z′ > z
the dominant term is Cgκ

`
(z, z′) since the foreground density fluc-

tuations contribute to the integral κ, see Eq. (14). This correlation
has been measured, e.g. by the Dark Energy Survey (DES, DES
Collaboration: Abbott et al. 2018). For z > z′ this term (nearly)
vanishes and the correlation is dominated by the Cκκ

`
(z, z′) term.

This term has also been recently measured (Liu et al. 2021). Con-
sidering distributions ni(z) for galaxy number counts and n j(z)
for the shear measurements in bins i and j, respectively, one ob-
tains in Limber’s approximation (see, e.g. Ghosh et al. 2018):〈

∆(i)γ
( j)
t

〉
(θ) =∫ ∞

0
dz ni(z)

∫ ∞

0
dz′ n j(z′)

∫ ∞

0

`d`
2π

J2(`θ)C∆κ
` (z, z′) . (33)
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Fig. 2: Angular power spectra of the galaxy – galaxy lensing
cross-correlation for the Euclid photometric sample (top pan-
els) and percentage contributions of magnification and RSD,
100 × C∆κ,RSD/magn

`
/C∆κ

`
(bottom panels). The contribution of

magnification is the second term in Eq. (32). The contribution
of RSD, which is neglected in Eq. (32), is given by the cross-
correlation RSD-κ. The top subfigure refers to the configuration
z̄1 < z̄2, that is we correlate galaxies at low redshift with the
background lensing. The contribution of RSD is 3% on large
scales and drops below the percent level at ` ≈ 30, while the
contribution of magnification is sub-percent on all scales. The
bottom subfigure shows the configuration z̄1 > z̄2, that is we cor-
relate number counts at high redshift with foreground lensing.
The contribution of density alone and RSD is negligible in this
case: we observe the correlation of magnification with the fore-
ground cosmic shear. The small contribution of density alone,
the blue curve in the top panel, changes sign at ` ∼ 50: it is
negative on small scales, and positive on large scales.

In Fig. 2 we show two representative configurations of these
spectra for the Euclid specifics. For z̄1 < z̄2 the density term
in the number counts is the largest contribution to the cross-
correlation; vice versa the configuration with z̄1 > z̄2 is domi-
nated by the cross-correlation of magnification and lensing. Note
that RSD has an effect < 3% on both configurations.

3. Euclid specifics from the Flagship simulation

In this section we briefly describe the Flagship galaxy catalogue
and the ingredients extracted from this simulation to obtain real-
istic input for our forecasts.
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We use the Flagship galaxy mock catalogue of the Euclid
Consortium adapted the photometric sample (Euclid Collabora-
tion, in preparation). The catalogue uses the Flagship N-body
dark matter simulation (Potter et al. 2017). The cosmological
model assumed in the simulation is a flat ΛCDM model with
fiducial values Ωm,0 = 0.319, Ωb,0 = 0.049, ΩΛ = 0.681,
σ8 = 0.83, ns = 0.96, h = 0.67. The N-body simulation ran in a
3.78 h−1 Gpc box with particle mass mp = 2.398 × 109 h−1 M�.
Dark matter halos are identified using ROCKSTAR (Behroozi
et al. 2013) and are retained down to a mass of 2.4×1010 h−1 M�,
which corresponds to ten particles. Galaxies are assigned to dark
matter halos using the Halo Abundance Matching (HAM) and
Halo Occupation Distribution (HOD) techniques, closely fol-
lowing Carretero et al. (2015). The galaxy mock generated has
been calibrated using local observational constraints, such as
the luminosity function from Blanton et al. (2003) and Blan-
ton et al. (2005a) for the faintest galaxies, the galaxy cluster-
ing measurements as a function of luminosity and colour from
Zehavi et al. (2011), and the colour-magnitude diagram as ob-
served in the New York University Value Added Galaxy Catalog
(Blanton et al. 2005b). The mock calibration is automated and
reproducible thanks to a novel and efficient minimization tech-
nique that works in presence of stochastic noise inherent to the
galaxy mock construction (Tutusaus et al, in preparation). The
catalogue contains about 3.4 billion galaxies over 5000 deg2 and
extends up to redshift z = 2.3.

Given this galaxy catalogue we extract three different quan-
tities to adapt our forecasts to Euclid specifications: the galaxy
distributions as a function of redshift, n(z), the galaxy bias, and
the local count slope. The Flagship mock galaxy catalogue is
complete for magnitude limits below 25.5−26 in the Euclid VIS
band. The specifics for the Euclid photometric sample used in
this work have been extracted applying a magnitude cut of 24.5
in the VIS band, which is well within the completeness limit.

Number density distributions: The different galaxy distributions
used in this analysis correspond to the fiducial selection pre-
sented in Euclid Collaboration: Pocino et al. (2021). In this ref-
erence the authors generated photometric redshift estimates for
all objects in an area of 400 square degrees of the Flagship
catalogue. Using the Directional Neighbourhood Fitting (DNF;
De Vicente et al. 2016) training-based algorithm, two different
redshift estimates were provided for each object. DNF estimates
the photometric redshifts based on the closeness in colour and
magnitude space of the galaxies with unknown redshift to refer-
ence galaxies with known redshifts (training sample). The aver-
age of the redshifts from the neighbourhood in colour and mag-
nitude space is one of the estimates, denoted zmean. But DNF
can also provide a second estimate consisting of a Monte Carlo
draw from the nearest neighbour, denoted as zmc. This estimate
can be understood as a one-point sampling of the photometric
redshift probability density function. In this work we consider
the fiducial settings from Euclid Collaboration: Pocino et al.
(2021), which were selected to optimise the constraining power
of galaxy clustering and galaxy-galaxy lensing with the Euclid
photometric sample. Such settings imply that DNF was trained
with an incomplete spectroscopic training sample to mimic the
expected lack of spectroscopic information at very faint magni-
tudes. We consider the optimistic magnitude limits for all photo-
metric bands shown in Table 1 of Euclid Collaboration: Pocino
et al. (2021). Given these two photometric redshifts estimates per
galaxy, and following Euclid Collaboration: Pocino et al. (2021),
we select all Flagship galaxies with zmean between 0 and 2, and

split the sample into 13 bins with equal redshift width. We then
obtain the final n(z) used in our predictions by computing the his-
togram of zmc of all the galaxies within each one of these bins.
For these photometric bins, the fraction of outliers is 2.2%, see
Table 3 in Euclid Collaboration: Pocino et al. (2021). In Fig. 3
we represent the 13 normalized n(z) distributions obtained by
binning in zmean and computing the histogram of zmc, while the
vertical grey lines show the mean redshift for each sample, z̄. We
note that it should not be confused with the zmean estimate pro-
vided by DNF for each object. Moreover, although the bins were
selected with equal width in zmean, given the non-Gaussianity of
the zmc distributions, their mean redshift z̄ is not equi-spaced, as
can be seen in Table 1. The number density for each of the bins
is also provided in the same table.

Galaxy bias: The linear galaxy bias is calculated as the square-
root ratio between the angular galaxy-galaxy power spectrum,
Cgg
`

, from the different n(z) samples and the angular matter-
matter power spectrum, Cδδ

`
. The Cgg

`
is obtained from the maps

of the fractional overdensity of galaxies, generated using the
HEALPix framework (Gorski et al. 2005). The maps have a res-
olution of Nside = 4096 (that is 0.85 arcmin/pixel). We estimated
the angular power spectra using Polspice 4 (Szapudi et al. 2000;
Chon et al. 2004). Mask effects for the 400 square degrees photo-
z region are also accounted for in this harmonic space analy-
sis. The resulting C` values are corrected for shot noise using
Ccorr
`

= C` − 4π fsky/ngal, where fsky is the fraction of the sky
covered by the photo-z sample and ngal is the number of galaxies
in the sample. The Cδδ

`
is modelled with the public code Core

Cosmology Library 5 (CCL, Chisari et al. 2019) using the fidu-
cial cosmology of the Flagship simulation. We use Limber’s ap-
proximation for every multipole since CCL does not allow using
a non-Limber framework yet. We note that the (linear) galaxy
bias is calculated as the mean value across the multipole range
` ∈ [50, 500] to avoid non-linear (or higher order) bias effects.

Local count slope: As described in Sect. 2.2, the local count
slope can be calculated from Eq. (16). We use the observed mag-
nitude in the Euclid VIS band with error realization assuming a
10σ magnitude limit of 24.6. For our analysis we use a mag-
nitude cut of 24.5. A binned magnitude cumulative function is
calculated for the photo-z sample at the different redshifts, and
the corresponding slope is calculated at the magnitude cut using
bins centered at 24.45 and 24.55.

The results for n(z), b(z), and s(z) are shown in Table 1 and
Fig. 4.

4. Method

4.1. The Fisher matrix formalism

In this work we follow EC20 in estimating the uncertainties on
the cosmological parameters using a Fisher matrix formalism.
We used the Fisher matrix code FisherCLASS, based on a ver-
sion of the class code (Blas et al. 2011; Di Dio et al. 2013)
adapted to the prescription described in the previous section. The
code has been validated against EC20. More details on the code
and its validations are presented in Appendix B.

Let us recall that the Fisher matrix is defined as the expec-
tation value of the second derivative with respect to the model

4 www2.iap.fr/users/hivon/software/PolSpice
5 ccl.readthedocs.io/en/latest
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Fig. 3: The normalised number of galaxies in the photometric
redshift bins of Euclid, as inferred from the Flagship simula-
tion, are shown. The sample is split in 13 equally-spaced bins in
redshift defined by zmean. The redshift distribution of the galax-
ies inside the bins is estimated computing the histogram of the
redshift defined by zmc. The vertical lines indicate the mean red-
shifts of the bins z̄. Note that this is the fiducial setting from
Euclid Collaboration: Pocino et al. (2021), selected to optimise
the constraining power of galaxy clustering and galaxy-galaxy
lensing with the Euclid photometric sample.

0

2

4

n
ga

l(
z)

1

2

b(
z)

0.0 0.5 1.0 1.5 2.0
z

0.0

0.5

1.0

s(
z)

Fig. 4: The galaxy number density in units of gal/bin/arcmin2

(top panel), galaxy bias (middle panel), and local count slope
(bottom panel) as a function of redshift are shown. These results
are obtained from the Flagship simulation. Note that at z = 1 we
have s ' 0.4 so that 2 − 5s(z = 1) ' 0. Hence the lensing term
exactly cancels at this redshift. A simple fit for b(z) and s(z) is
found in Appendix C.

Table 1: Number density (in units of gal/bin/arcmin2), galaxy
bias and local count slope used in each photometric bin. Values
extracted from the Flagship simulation. A simple fit for b(z) and
s(z) can be found in Appendix C.

z̄ ngal(z̄)[gal/bin/arcmin2] b(z̄) s(z̄)

0.14 0.758 0.624 0.023
0.26 2.607 0.921 0.135
0.39 4.117 1.116 0.248
0.53 3.837 1.350 0.253
0.69 3.861 1.539 0.227
0.84 3.730 1.597 0.280
1.0 3.000 1.836 0.392

1.14 2.827 1.854 0.481
1.3 1.800 2.096 0.603

1.44 1.078 2.270 0.787
1.62 0.522 2.481 1.057
1.78 0.360 2.193 1.138
1.91 0.251 2.160 1.094

parameters of the logarithm of the likelihood function of the
data (Tegmark 1997)

Fαβ =

〈
−
∂2lnL
∂θα∂θβ

〉
, (34)

where α and β label the parameters of interest θα and θβ.
Under the assumption of a Gaussian likelihood for the data,

the Fisher matrix can be written as

Fαβ =
1
2

tr
[
∂C
∂θα

C−1 ∂C
∂θβ

C−1
]

+
∑
pq

∂µp

∂θα

(
C−1

)
pq

∂µq

∂θβ
, (35)

where µ is the mean of the data vector and C is the covariance
matrix of the data. The trace and sum over p or q stand for sum-
mations over the components of the data vector. It is important
to note that, in practice, we consider the angular power spectra
as observables, which follow a Wishart distribution if the fluctu-
ations are Gaussian. As shown for example in Carron, J. (2013);
Bellomo et al. (2020), the Fisher matrix for such distributions
is given by Eq. (35) but without the first term. Therefore, in the
following we only consider the second term when computing the
Fisher matrix.

Once the Fisher matrix is constructed, we estimate the ex-
pected covariance matrix of the cosmological parameters as the
inverse of the Fisher matrix:

Cαβ =
(
F−1

)
αβ
. (36)

The Fisher matrix formalism is a powerful tool to quickly
forecast the constraining power of future surveys. However, one
of its main limitations is that it only provides the uncertainties
for a fiducial model. Therefore, it cannot quantify the bias in the
posterior distributions if a wrong model is used to forecast the
data vector and its covariance. This can be fixed using extensions
of the Fisher matrix formalism, as explained at the end of this
section.

We consider analyses of photometric galaxy clustering, weak
lensing, and their cross-correlation terms. In the case of a joint
analysis, a joint covariance matrix is required. In this work, since
we consider the angular power spectra as observables (see, e.g.
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EC20, for the equations when using the spherical harmonic co-
efficients as observables), we use the fourth-order Gaussian co-
variance given by

C
[
CAB
` (i, j),CA′B′

`′ (k, l)
]

=
δK
``′

(2` + 1) fsky∆`

×

{ [
CAA′
` (i, k) + NAA′

` (i, k)
] [

CBB′
`′ ( j, l) + NBB′

`′ ( j, l)
]

+
[
CAB′
` (i, l) + NAB′

` (i, l)
] [

CBA′
`′ ( j, k) + NBA′

`′ ( j, k)
] }
,

(37)

where A, B, A′, B′ run over weak lensing and galaxy clustering,
and i, j, k, l run over all tomographic bins. The noise terms NXY ′

`

are given by σ2
ε/n̄iδ

K
i j, δ

K
i j/n̄i, and 0 for weak lensing, galaxy clus-

tering, and the cross-correlation terms, respectively. σ2
ε is the

variance on the ellipticity measurement (equal to 0.32 in EC20
and in this work), and n̄i is the number density in the correspond-
ing tomographic bin.

With this covariance matrix we can compute the final joint
Fisher matrix as

Fαβ =

`max∑
`=`min

∑
ABCD
i j,mn

∂CAB
` (i, j)
∂θα

C−1
[
CAB
` (i, j),CCD

` (m, n)
] ∂CCD

`
(m, n)

∂θβ
,

(38)

where A, B,C,D run over the different probes. The indices i j and
mn run over all unique pairs of tomographic bins (i ≤ j,m ≤ n)
for weak lensing and galaxy clustering, while they run over all
pairs of tomographic bins for the cross-correlation terms.

Throughout this study we consider the pessimistic scenario
presented in EC20 as a conservative choice for the lensing ef-
fects. We include all multipoles from ` = 10 up to ` = 1500 for
weak lensing and all multipoles from ` = 10 up to ` = 750 for
galaxy clustering and the cross-correlation terms. These maxi-
mum ` values have been determined in EC20 by mapping the
signal-to-noise ratio between an analysis with and without the
super-sample covariance contribution. In more detail, such ` val-
ues correspond to the values providing the same signal-to-noise
ratio in an analysis considering a Gaussian covariance and in
an analysis going to very non-linear scales (`max = 5000 for
weak lensing and `max = 3000 for galaxy clustering and the
cross-correlation terms) but accounting for the super-sample co-
variance. We note that the maximum multipole considered for
galaxy clustering and the cross-correlation terms is significantly
smaller than the maximum multipole considered for weak lens-
ing. The main reason behind this choice is that galaxy cluster-
ing (and cross-correlations) is more sensitive to non-linearities
and their relevance appears sooner than in the weak lensing case
when including small scales. Given the fact that we consider
a linear galaxy bias model, we prefer to be more conservative
when selecting the scale cuts for galaxy clustering and the cross-
correlation terms.

4.2. Beyond the Fisher matrix formalism

In this analysis, beyond providing the expected constraints on
the cosmological parameters, we want to quantify the amount
of information that is misinterpreted in an analysis that neglects
magnification and how this affects the estimation of cosmologi-
cal parameters. This is a model comparison problem, where the
two models have a common set of cosmological parameters and
they differ by an extra model parameter, which is fixed in both

models, but to a different value (see for example, Taylor et al.
2007). We can generically express our theoretical model for the
angular power spectra as

C∆∆
` (i, j) = Cgg

`
(i, j) + εLC∆∆,magn

`
(i, j) , (39)

C∆κ
` (i, j) = Cgκ

`
(i, j) + εLC∆κ,magn

`
(i, j) , (40)

where εL is the extra model parameter, fixed to εL = 1 in
the correct model and to εL = 0 in the wrong model. Note
that in Eq. (39) the magnification contribution C∆∆,magn

`
(i, j) in-

cludes both the density-magnification cross-correlation and the
magnification-magnification auto-correlation, while in Eq. (40)
C∆κ,magn
`

(i, j) is the cross-correlation between magnification and
κ.

The shift in the fixed parameter in the wrong model leads to a
shift in the maximum of the likelihood and, therefore, to a bias in
the estimation of the common set of cosmological parameters. A
first-order Taylor expansion of the likelihood around the wrong
model leads to the following expression for the shift in the best-
fit of common parameters {θα}:

∆θα =
∑
β

(
F−1

)
αβ

Bβ , (41)

where

Bβ =

`max∑
`=`min

∑
ABCD
i j,mn

∂CAB
` (i, j)
∂θβ

C−1
[
CAB
` (i, j),CCD

` (m, n)
] ∂CCD

`
(m, n)

∂εL
.

(42)

Note that, since we are expanding the likelihood around the
wrong model, the Fisher matrix in Eq. (41) must be computed
neglecting magnification. This difference is of course of second
order, but since we neglect other second order terms, this is the
more consistent approach. This formalism provides a fast and
straightforward method to test the accuracy of our analysis if a
known systematic effect is neglected. However, it is important
to keep in mind the implicit assumptions behind the formula:
since we are Taylor-expanding our likelihood around the incor-
rect model, we are assuming that the neglected systematic ef-
fect is small and, therefore, this formula can be quantitatively
trusted only for small values of the shifts. If this assumption is
violated, the computation of the shifts with this formalism gives
a clear indication that the systematic effect is important for a pre-
cise parameter estimation, but for a quantitative determination of
the parameter shifts one would need to run a full Markov chain
Monte Carlo (MCMC) analysis.

5. Results

We investigate the impact of magnification for the primary cos-
mological probes in the photometric sample of Euclid: the pho-
tometric galaxy clustering (GCph) and the probe combination
of galaxy clustering, weak lensing and galaxy – galaxy lensing
(GCph + WL + GGL).

The fiducial cosmology adopted in our analysis is a flat
ΛCDM model with one massive neutrino species. The set of pa-
rameters considered in the analysis comprises: the present mat-
ter and baryon critical density parameters, respectively Ωm,0 and
Ωb,0; the dimensionless Hubble parameter h; the amplitude of the
linear density fluctuations within a sphere of radius 8 h−1 Mpc,
σ8; the spectral index of the primordial matter power spectrum
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ns; the equation of state for the dark energy component {w0,wa};
and the sum of the neutrino masses

∑
mν.

The fiducial values of the cosmological parameters are re-
ported in Table 2. They correspond to the ΛCDM best-fit param-
eters from the 2015 Planck release (Planck Collaboration: Ade
et al. 2016). This choice is consistent with the baseline cosmol-
ogy adopted in (EC20).

Table 2: Fiducial values of the cosmological parameters.

Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν [eV]

0.32 0.05 −1.0 0.0 0.67 0.96 0.8156 0.06

In addition to these cosmological parameters, we introduce
nuisance parameters and marginalise over them. For galaxy clus-
tering the bias in each redshift bin, {bi}, i = 1, ...,Nbins, are
included as nuisance parameters. We model them as constant
within each redshift bin and we have estimated their fiducial
values in the Flagship simulation, as described in Sect. 3 (see
values in Table 1). For weak lensing, the nuisance parameters
are the ones used to model the intrinsic alignment contamina-
tion to cosmic shear as defined in Sect. 2.3: {AIA, ηIA, βIA}. Note
that since CIA is fully degenerate withAIA, it is kept fixed in the
Fisher analysis. Their fiducial values are given by: AIA = 1.72,
ηIA = −0.41, βIA = 2.17, and CIA = 0.0134. We note that these
fiducial values correspond to the values considered in EC20.
However, the amplitude AIA might be smaller in practice (see
Fortuna et al. 2021, for a discussion on the IA amplitude for dif-
ferent types of galaxies).

The impact of magnification on the cosmological parameters
may depend on the model chosen to describe our Universe. We
therefore run our analysis for four different cosmological models
and comment on the difference between the results when rele-
vant. We consider:

1. Minimal ΛCDM model, with five free parameters
{Ωm,0,Ωb,0, h, ns, σ8} + nuisance parameters.

2. ΛCDM model + the sum of the neutrino
masses as an additional free parameter:
{Ωm,0,Ωb,0, h, ns, σ8,

∑
mν} + nuisance parame-

ters.

3. Dynamical dark energy with seven free parameters
{Ωm,0,Ωb,0,w0,wa, h, ns, σ8} + nuisance parameters.

4. Dynamical dark energy, + the sum of the neu-
trino masses as an additional free parameter:
{Ωm,0,Ωb,0,w0,wa, h, ns, σ8,

∑
mν} + nuisance param-

eters.

Although we run our analysis for the four models described
above, some results and tests that we perform will be reported
only for model 3 that we consider as our baseline analysis. In
the baseline model, we do not vary the sum of the neutrino
masses because its likelihood is highly non-Gaussian due to
a physically-forbidden region: it cannot be negative. Since the
Fisher approach assumes Gaussian statistics, it is not accurate
for computing constraints on the neutrino mass. The results re-
ported for models 2 and 4 are therefore less accurate than the
ones for models 1 and 3. An MCMC analysis which does not
rely on Gaussianity for the effect of lensing magnification in the
estimated neutrino mass is presented in Cardona et al. (2016).

5.1. Magnification information in the photometric sample

As discussed in the introduction, neglecting magnification in the
modelling of the clustering signal will have two effects on the
results of the Euclid analysis: first, it will lead to incorrect esti-
mations of the error bars on cosmological parameters, and sec-
ond, it will lead to wrong estimations of the best-fit values of the
cosmological parameters. The importance of these two effects is
directly related to the signal-to-noise ratio (SNR) of the observ-
ables, compared to the SNR of magnification. We therefore start
by computing these various SNR. Since we are interested in the
redshift-dependence of the SNR, we do not sum over all redshift
bins, but rather compute the SNR for each pair of redshift bins
(zi, z j) separately. The SNR for our observables is given by

( S
N

)AB

i j
=

√√√ `max∑
`=`min

CAB
`

(i, j) C−1
[
CAB
`

(i, j),CAB
`

(i, j)
]

CAB
`

(i, j) ,

(43)

where {AB} = {∆∆}, {∆κ}, {κκ} for GCph, GGL, and WL, respec-
tively, and (i, j) refers to the pair of redshift bins. The SNR for
the magnification contribution in GCph and GGL is given by

( S
N

)κAB

i j
=

√√√ `max∑
`=`min

∆CAB
`

(i, j)C−1
[
CAB
`

(i, j),CAB
`

(i, j)
]
∆CAB

`
(i, j) ,

(44)

where ∆CAB
` (i, j) denotes the contribution of magnification to the

angular power spectrum AB. Note that in Eq. (44) only the mag-
nification is included in the signal, but the covariance is that of
the full observable.

In Fig. 5 we show the SNR for GCph, GGL, and WL (with-
out magnification) for each pair of redshift bins (the index i
refers to the ith redshift bin defined in Table 1). We see that the
GCph signal is most significant in the auto-correlations and in
the cross-correlation of nearby bins. The SNR is slightly larger
at low redshift (it peaks for bins 2 and 3). Interestingly, the SNR
of the GCph signal in the cross-correlations of bins 12 and 13 is
larger than the one in the corresponding auto-correlations. There
are two reasons for this: on the one hand, these bins have a very
significant overlap, as can be seen from Fig. 3; and on the other
hand, correlations of different bins have no shot noise, which
is the dominant source of noise in high-redshift bins. The GGL
SNR is prominent in the cross-correlations of cosmic shear at
intermediate redshift (z ∼ 0.7–1.3) and the galaxy density at low
z (z ∼ 0.25–0.55). Finally, the SNR of WL is found to be promi-
nent in the cross-correlation of nearby bins in the redshift range
z ∼ 0.7–1.5, reaching a maximum for the configuration i = 7
(z̄ = 1), j = 8 (z̄ = 1.14). The peak of the WL SNR per bin is
comparable to the peak of the GCph SNR and to the peak of the
GGL SNR.

The SNR of magnification is shown in Fig. 6 for the GCph
alone analysis and for the GGL alone analysis (the WL analysis
is not affected by magnification). In the GCph analysis, we find
that the SNR of magnification is largest for the cross-correlation
of widely-separated redshift bins, reaching a maximum in the
cross-correlation of i = 3 and j = 12. For these pairs the con-
tribution of magnification is dominated by the cross-correlation
of density at low z and magnification at high z. Note also that
the minimum SNR is found for the auto-correlation of the bin
i = 7 and its cross-correlations with other bins. This is due to the
value of the local count slope, close to the critical value s = 0.4
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Fig. 5: SNR per bin neglecting lensing magnification for the observables: GCph (top left), GGL (top right), and WL (bottom). The
index i refers to the ith redshift bin defined in Table 1. The SNR is computed from Eq. (43).
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ith redshift bin defined in Table 1. The SNR is computed from Eq. (44).
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for these configurations. In fact, for s = 0.4 the effect of mag-
nification on the apparent luminosity of the observed galaxies
compensates exactly the change in the observed solid angle due
to lensing and, therefore, the magnification contribution to the
number counts is exactly zero for this critical value, see Eq. (13).
Comparing with Fig. 5, we see that the maximum SNR for mag-
nification is roughly four times smaller than the maximum SNR
for GCph (due to density).

In the GGL observable, the magnification signal is given
by the cross-correlation of the magnification contribution to the
number count and cosmic shear. The largest SNR is found cross-
correlating the magnification at high redshift (z > 1.7) and cos-
mic shear at intermediate/high redshift (z ∈ [0.8, 1.5]). For these
configurations the contributions of density to the galaxy counts
is very small: the background density field is (almost) uncor-
related with the lensing signal in the foreground and the small
correlations that we estimate are due to the overlap between the
redshift distribution of the sources in the bins. Comparing with
Fig. 5, we see that the maximum SNR for magnification in the
GGL observable (which is due to the magnification-shear corre-
lation) is roughly 2.5 times smaller than the maximum SNR for
GGL (which comes from the density-shear correlation).

In general, comparing Fig. 5 with Fig. 6 we see that the con-
tamination due to magnification is maximal for the bins in which
the SNR of the corresponding observable is minimal. This will
somewhat mitigate the impact of magnification on the analysis,
but as we will see in Sects. 5.2.2 and 5.3.2 it is not enough to
make magnification negligible.

5.2. Impact of magnification on the galaxy clustering analysis

We now compute the impact of magnification on the constraints
and on the best-fit values of the cosmological parameters. We
first consider an analysis based on galaxy clustering alone.

5.2.1. Cosmological constraints

In order to quantify the amount of cosmological information en-
coded in the magnification signal, for each cosmological model
we run two Fisher matrix analyses: a) one that includes only the
density contribution to the galaxy clustering observable and co-
variance, and b) one that also takes into account lensing magni-
fication, both in the theoretical signal and in the covariance. We
then compare the constraints in both cases.

The impact of magnification strongly depends on the value of
the local count slope s(z). As we see from Eq. (13), if s(z) = 0.4,
magnification has no effect in the corresponding bin. For Eu-
clid’s photometric survey this is nearly the case for the redshift
bin 7 around z = 1, see Table 1. As a first step, we assume that we
know the value of the local count slope s(z) exactly in each red-
shift bin. This local count slope can indeed be measured directly
from the distribution of galaxies as a function of luminosity. In
Table 3 we report the constraints obtained for the two analyses.
In Table 4 we show the relative difference between the 1σ con-
straints obtained in the two cases.

Including magnification significantly improves the con-
straints on cosmological parameters. For a ΛCDM model, mag-
nification provides additional information on Ωm,0 and σ8, im-
proving their constraints at the level of 21% and 28%. This can
be understood by the fact that the density contribution is pro-
portional to the bias, which is a free parameter (over which we
marginalise). In the linear regime, there is therefore a strong de-
generacy between the amplitude of perturbationsσ8 and the bias,

that both control the amplitude of the density term. The non-
linear evolution of the density field breaks this degeneracy. How-
ever, since we restrict the analysis to mildly non-linear scales,
the degeneracy is only partially broken. Including magnifica-
tion then significantly improves the constraints on σ8 since it
helps breaking the degeneracy further. Looking at the magnifi-
cation contribution to GCph we see that it contains two terms:
one which depends linearly on the bias (from the correlation be-
tween density and lensing) and one that is independent of bias
(from the lensing-lensing correlation). These two terms break
the degeneracy between σ8 and the bias, leading to a significant
improvement in the constraints. We have checked that this im-
provement is even stronger when we use a smaller `max since in
this case non-linearities are less relevant and are therefore not
able to break the degeneracy: for example, for `max = 300, the
constraint on σ8 is improved by 50%. Adding magnification also
improves the constraints on Ωm,0 which is not surprising since
Ωm,0 is itself also degenerate with σ8: it determines the redshift
of matter-radiation equality where density perturbations start to
grow. This degeneracy is evident in Fig. 7. Breaking the degen-
eracy between the bias and σ8 therefore automatically leads to
better constraints on Ωm,0.

For our baseline model with dynamical dark energy we have
a large improvement for all the parameters, up to roughly 35%
for Ωm,0 and {w0,wa}. From Table 3, we see that adding {w0,wa}

as free parameters strongly degrades the constraints on Ωm,0.
This is due to the fact that these quantities are degenerate, as
can be seen from Fig. 7: changing Ωm,0 means changing ΩDE,0,
which can be partially counterbalanced by a change of the equa-
tion of state. When only density is included in the analysis, this
degeneracy is worsened by the fact that the bias is free and can
be adjusted at each redshift. However, when magnification is in-
cluded, it tightens the constraints since the lensing-lensing con-
tribution is independent of bias. This leads to a significant im-
provement in the constraints on Ωm,0 and {w0,wa}.

Finally, adding the sum of the neutrino mass as a free param-
eter degrades the constraints with respect to the ΛCDM case,
especially for Ωm,0 and σ8. Adding magnification mitigates this
degradation, again due to the fact that magnification has a con-
tribution which is bias-independent.

As already mentioned, all these results were obtained assum-
ing perfect knowledge of the local count slope, s(z). However,
in a realistic scenario, the local count slope will not be exactly
known: it will be measured with some uncertainty. In order to
take this into account, we compare the optimistic analysis previ-
ously discussed to a pessimistic case and a realistic case. In the
pessimistic case we assume no prior knowledge of local count
slope and we treat it in the same way as the galaxy bias: we
marginalise over the local count slope parameters in each red-
shift bin. In the realistic case, we still marginalise over the local
count slope, but we include a uniform 10% prior on the Nbins
extra parameters.

The prior information σsi = 0.1 × si on the local count slope
in the i = 1, ...,Nbins bins is included adding to our Fisher matrix
a diagonal prior information matrix, whose entries are:

Fprior
αβ = δK

αβ ×

{
0 for α , si ,

σ−2
si

for α = si .
(45)

In Table 5 we report the per-cent improvement due to mag-
nification for the optimistic (2nd column), pessimistic (3rd col-
umn), and realistic (4th column) scenario, for our baseline model
of dynamical dark energy. In the pessimistic scenario, that is as-
suming no prior knowledge of the local count slopes, we par-
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Table 3: GCph alone. The 1σ constraints on cosmological parameters relative to their corresponding fiducial values (in %), without
and with magnification. For the parameter wa we report the absolute error × 100. We have marginalised over the galaxy bias
parameters, while the values of the local count slope is kept fixed in the computation of the constraints with magnification. We
report the results for 4 cosmological models: minimal ΛCDM model with one massive neutrino species and fixed neutrino mass, an
analogue model which includes dynamical dark energy, denoted as w0 waCDM, and two extensions of these models where the sum
of the neutrino masses is a free parameter.

model Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν

ΛCDM only density 1.4 4.2 – – 2.8 1.2 0.80 –
+ magnification 1.1 4.2 – – 2.8 1.1 0.57 –

ΛCDM +
∑

mν
only density 1.9 4.2 – – 2.9 1.4 1.2 140

+ magnification 1.6 4.2 – – 2.9 1.2 1.0 130

w0 waCDM only density 7.3 9.1 25 84 3.7 1.8 1.9 –
+ magnification 4.7 6.9 16 54 3.2 1.2 1.6 –

w0 waCDM +
∑

mν
only density 7.4 9.6 25 84 3.7 1.9 1.9 160

+ magnification 4.7 7.2 16.5 54 3.2 1.3 1.6 150

Table 4: GCph alone. Improvement in the constraints (given by 1−σmagn/σdens, in %), including magnification. We report the results
for the same models as in Table 3 and, in the same way, we marginalise over the galaxy bias parameters. The values of the local
count slope are fixed, thus we assume a perfect knowledge of s(z) in each redshift bin.

model Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν

ΛCDM 21% 0.3% – – 1% 12% 28% –
ΛCDM +

∑
mν 11% 0.5% – – 1.65% 13% 16% 3%

w0 waCDM 36% 24% 34% 35% 14% 32% 18% –
w0 waCDM +

∑
mν 37% 25% 35% 35% 15% 30% 15% 4%

Table 5: GCph alone. Relative difference, 1 − σmagn/σdens, in
percentage, for 3 cases: a) an optimistic scenario, when the local
count slope is measured with high accuracy and thus s(z) is kept
fixed in the analysis (column 2), b) a pessimistic scenario where
the local count slope cannot be constrained by an independent
measurement and therefore we marginalise over its values (col-
umn 3) and c) a realistic scenario such that the local count slope
is assumed to be measured independently with a 10% precision
(column 4). The results reported here refer to our baseline cos-
mology, the w0 waCDM model.

parameter s(zi) fixed s(zi) marg + 10% prior on s(zi)

Ωm,0 36% 17% 23%
Ωb,0 24% 13% 16%
w0 34% 14% 21%
wa 35% 17% 20%
h 14% −8% 13%
ns 32% −22% 9%
σ8 18% −21% 18%

tially lose the information encoded in the magnification sig-
nal when constraining Ωm,0,Ωb,0,w0, and wa. More worryingly,
h, ns, and σ8 will be measured with larger errors compared to an
analysis including only density. Let us emphasise that this does
not imply that an analysis without magnification is preferable for
measuring these parameters: as we will show in the next section,

neglecting magnification generates a shift in the best-fit values of
the parameters. Such an analysis would therefore be more pre-
cise, but less accurate which is not a viable option.

Finally, in the realistic scenario where we assume that we
can measure s(z) with a 10% precision, we see from Table 5
that magnification improves the constraints on all cosmological
parameters. The improvement is smaller than in the optimistic
scenario, but it still reaches ∼ 20% for Ωm,0 and the dark en-
ergy equation of state. This test suggests that an independent
precise measurement of the local count slope is crucial for an op-
timal analysis of the photometric galaxy number counts. There
are several difficulties associated with this measurement. In par-
ticular, systematic effects such as noise, colour selection, and
dust extinction can have a significant impact, see e.g. Hilde-
brandt (2016). Furthermore, galaxy samples are in general not
purely flux-limited. A novel method to estimate the local count
slope for a complex selection function has been developed for
the Kilo-Degree Survey (KiDS), see von Wietersheim-Kramsta
et al. (2021). Assessing whether this method will be accurate
enough for Euclid, that is, whether it can be used to estimate
the local count slope within a 10% uncertainty, requires further
investigation.

5.2.2. Shift in the best-fit

In an optimal cosmological analysis, we aim to estimate the pa-
rameters of our models in a precise and accurate way. In this
section, we study the impact of magnification on the accuracy of
the analysis, that is we calculate the shift induced on the best-fit
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Fig. 7: Cosmological constraints from the GCph analysis neglecting magnification (blue contours), including magnification and
assuming a perfect knowledge of the local count slope (red contours), and marginalising over the local count slope parameters with
a 10% prior (yellow contours). The results reported here refer to our baseline cosmology, that is the w0 waCDM model. The contour
plot was generated using the Python library CosmicFish (Raveri et al. 2016). Dark and light contours refer to 1σ and 2σ confidence
level, respectively.

values of the parameters due to neglecting magnification in the
theoretical modelling of the clustering signal.

As discussed in Sect. 4.1, the estimation of the shift is based
on a Taylor expansion of the likelihood around the correct model
and, therefore, it can be trusted quantitatively only when the
shifts ∆θ are much smaller than the 1σ error. The results of our
analysis should therefore be regarded as a diagnostic to deter-
mine whether magnification can be neglected or not: if we find
small values for the shifts ∆θ � σ, the Taylor expansion is valid
and we can confidently conclude that it is safe to neglect magni-
fication in the theoretical modelling. On the other hand, if large
values ∆θ & σ are found, we cannot quantitatively trust the value
of the shift, but we can conclude that the shifts are large and that,

consequently, magnification cannot be neglected in the theoreti-
cal modelling.

In Table 6 we report the shift in the best-fit estimation of
our parameters for the four models under consideration. For a
five-parameter ΛCDM model, all parameter shifts in the best-fit
estimation are below 1σ. The measurement of σ8 is the most
affected by magnification (∆σ8 ∼ 0.6σ). The shifts are nega-
tive for Ωm,0 and σ8, which means that the magnification con-
tamination decreases the clustering signal. The sign of the mag-
nification contamination depends on the sign of 5s − 2 and on
the relative importance of the density-magnification correlation
(which is proportional to 5s − 2 and therefore changes sign at
z ' 1), and the magnification-magnification correlation (which
is proportional to (5s − 2)2 and is therefore always positive). To
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Table 6: GCph alone. Shift in best-fit parameters, in units of 1σ. We report the results for the same models as in Tables 3 and 4. The
shifts are estimated with the formalism described in Sect. 4.2. The values of shifts which are larger than 1σ cannot be trusted, but
indicate that the shift is large. We marginalise over the galaxy bias parameters, while the values of the local count slope are fixed to
their fiducial values.

model Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν

ΛCDM −0.18 0.004 – – −0.02 0.33 −0.57 –
ΛCDM +

∑
mν 0.96 −0.15 – – −0.42 0.98 −1.62 1.64

w0 waCDM −0.65 −0.64 −1.02 1.20 0.05 1.04 0.17 –
w0 waCDM +

∑
mν −0.90 −1.12 −1.27 1.21 0.22 1.59 −0.13 1.62

understand the sign of the shifts, we perform the following test:
we run an analysis where we remove the magnification from the
signal for z > 1, that is we pretend that magnification contam-
inates only the redshifts z ≤ 1. We find that the shifts on all
parameters remain almost the same in this case 6. This shows
that the shifts are not due to the high magnification contamina-
tion (SNR ∼ 80) at high redshift (z ≥ 1.62 in Fig. 6) but rather to
the (relatively) small contamination (SNR ∼ 10−20) at z ≤ 1. At
those redshifts the factor 5s − 2 is negative. From Fig. 5 we see
that the GCph signal peaks for the auto-correlations of redshift
bins. We expect therefore the constraints, and consequently the
shifts, to come mainly from these auto-correlations. Since the
bins are relatively wide, both the density-magnification and the
magnification-magnification contribute to the auto-correlations,
and we have checked that the density-magnification always dom-
inates at z ≤ 1. As a consequence the magnification contami-
nation is negative for the bins that contribute most to the con-
straints, leading to a decrease of Ωm,0 and σ8.

For all the models beyond ΛCDM, we find shifts above 1σ.
The parameters that are mostly affected are the parameters be-
yond the ΛCDM minimal model: the neutrino mass and the
dynamical dark energy parameters {w0,wa}. This can be under-
stood by looking at Fig. 5, where we see that the SNR for GCph
peaks at low redshift: z ∈ [0.26, 0.39], which corresponds to bins
i = 2, 3. For ΛCDM we expect the constraints to be driven by
these bins. For models beyond ΛCDM however, the evolution
with redshift becomes relevant: the sum of the neutrino mass
and the dark energy equation of state modify indeed the redshift
evolution of perturbations. More redshift bins contribute there-
fore to the constraints, which increases proportionally the impact
of magnification and leads to a larger shift. Since the impact of
dark energy and neutrino mass decreases with redshift, we ex-
pect however the highest redshift bins to be irrelevant for the
constraints. As before, to check this, we ran an analysis with-
out the magnification contamination at z > 1 and we found that
the shifts on all parameters remain almost the same. This again
means that the shifts do not come from the high-redshift bins
where the magnification contamination is the largest, but rather
from the low-redshift bins. A direct consequence of this is that
any alternative model that would be constrained by the highest-
redshift bins of Euclid, would be significantly more biased when
neglecting magnification. Note that these results are in agree-
ment with previous analyses on this subject (see, e.g. Cardona
et al. 2016; Lorenz et al. 2018; Villa et al. 2018).

Looking at the sign of the shifts of Ωm,0 and σ8 for models
beyond ΛCDM, we see from Table 6 that when the neutrino mass
is included the shift in Ωm,0 becomes positive, whereas in the

6 The only parameters for which the shift decreases are the bias pa-
rameters governing the bias evolution at high redshift.

dynamical dark energy model the shift in σ8 becomes positive.
However the overall amplitude is still decreased by magnifica-
tion, since the negative shifts are always larger than the positive
ones.

For our calculation of the shifts, we used the fiducial values
of the local count slope measured in the Flagship simulation.
We did not consider the local count slope as a free parameter
in this part of the analysis since our goal was to determine the
shifts induced on the other cosmological parameters by a mag-
nification signal of a given fixed amplitude. However, we tested
the stability of our results by repeating the analysis with differ-
ent fiducial values of the local count slope. We found that in the
range si = (1 ± 0.1)sfid

i the values of the shifts do not change
significantly. Therefore, our results are robust with respect to the
fiducial si used in the analysis.

5.3. Impact of magnification on the probe combination
analysis

In this section we present the same analysis described in
Sect. 5.2, but this time for the joint data GCph+WL+GGL. Note
that magnification contributes to the galaxy clustering observ-
able and to the cross-correlation galaxy-galaxy lensing, while in
our analysis it does not affect cosmic shear.

5.3.1. Constraints on cosmological parameters

Similar to the discussion in the previous section, we study the
impact of magnification on the constraints on cosmological pa-
rameters by comparing a Fisher matrix analysis for the probe
combination which neglects this effect, and an analysis that con-
sistently includes it. As before, we consider an optimistic case
where we assume that the local count slope is exactly known,
a pessimistic case, where the local count slope is considered as
a free parameter, and a realistic case, where we include a 10%
prior on the local count slope.

In the optimistic case, that is assuming a perfect knowl-
edge of the local counts slope, we find that the improvement on
the constraints due to magnification is negligibly small, that is
smaller than 3% for all cosmological parameters and all mod-
els under consideration. This is due to the fact that the infor-
mation encoded in magnification is the same as the one in the
cosmic shear. As a consequence, adding magnification does not
help breaking degeneracies between parameters anymore, since
these degeneracies are already broken by the inclusion of cosmic
shear. This can be seen by looking at Table 7, where we report
the 1σ constraints for the joint analysis. Comparing with Table 3,
we see for example that the constraints on Ωm,0 for our baseline
dynamical dark energy model are four times better in the joint
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Fig. 8: Marginalised 1σ errors on cosmological parameters, rela-
tive to their corresponding fiducial values for the baseline model
of dynamical dark energy. The error bars for wa represent the
absolute error σ for this parameter, since a relative error can-
not be computed for a fiducial value of 0. Each histogram refers
to a different cosmological analysis or observational probe. We
show in blue a GCph analysis which neglects magnification, in
orange a GCph analysis which includes magnification and as-
sumes a 10% prior on the measurement of the local count slope
(realistic scenario) and in green a GCph analysis which models
magnification assuming a perfect knowledge of the local count
slope (optimistic scenario). For comparison, we show in pink the
constraints from the WL analysis and in violet the one obtained
from the probe combination GCph + WL + GGL.

analysis, and the constraints on σ8 are three times better. This re-
flects the fact that cosmic shear breaks the degeneracy between
the amplitude of perturbations and the bias, and since its SNR
is significantly higher than that of magnification (as can be seen
from Figs. 5 and 6), adding magnification does not help any-
more. This also becomes clear by looking at Fig. 8, which com-
pares the constraints from galaxy clustering alone, with the ones
from the joint analysis for our baseline dynamical dark energy
model: we see that adding cosmic shear brings a much larger

−4 −2 0 2 4
∆θ/σ

Ωm,0

Ωb,0

w0

wa

h

ns

σ8

GCph

GCph + WL + XC

Fig. 9: Shift in the best-fit estimation of cosmological parameters
induced by neglecting magnification in our theoretical model.
The values of the shift are expressed in units of the marginalised
1σ constraints. The blue histogram refers to the parameters esti-
mated from the GCph alone analysis, while the orange histogram
represent the shifts for the 3× 2pt analysis GCph + WL + GGL.
The red regions highlight shifts above 1σ in absolute value. The
values of the shifts computed with the Fisher formalism cannot
be trusted quantitatively in this region.

improvement in the constraints than including magnification in
the clustering signal.

These constraints refer to the optimistic scenario. In Table 8
we compare this with the pessimistic scenario (second column)
and the realistic scenario (last column). In the pessimistic sce-
nario the constraints are degraded at the level of 10–20%. This
degradation, especially in σ8 and Ωm,0 is due to the fact that we
no longer have a precise measure of the density fluctuation am-
plitude if the amplitude of lensing magnification is completely
unknown. In a realistic scenario we are able to recover the same
information as in the optimistic case.

To conclude, including magnification has a negligible impact
on the constraints for the joint analysis, provided that the local
count slope will be measured independently with a 10% uncer-
tainty. If we do not have independent measurements of the local
count slope, an analysis with no magnification will provide con-
straints that are up to 10–20% too optimistic.

5.3.2. Shift in the best-fit

The fact that magnification has little impact on the constraints on
cosmological parameters extracted from the joint analysis does
not mean that an analysis that neglects this effect is accurate in
terms of parameter estimation. Applying the Fisher formalism to
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Table 7: GCph + WL + GGL. 1σ constraints relative to their corresponding fiducial values, including magnification (in %). For the
parameter wa we report the absolute error ×100. We have marginalised over the galaxy bias and the intrinsic alignment parameters,
while the values of the local count slope are kept fixed. We report the results for 4 cosmological models: a minimal ΛCDM with one
massive neutrino species and fixed neutrino mass, an analogue model which includes dynamical dark energy, denoted as w0 waCDM,
and their extensions where also the sum of the neutrino masses is a free parameter. The constraints obtained when neglecting
magnification differ from the values reported here by less than 3% for all cosmological parameters and all models considered.

model Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν

ΛCDM 0.75 3.4 – – 2.2 0.76 0.37 –
ΛCDM +

∑
mν 0.91 4.0 – – 2.3 0.76 0.60 100

w0 waCDM 1.1 4.4 4.0 15 2.4 0.89 0.46 –
w0 waCDM +

∑
mν 1.2 4.5 4.0 16 2.4 1 0.83 140

Table 8: GCph + WL + GGL, w0 waCDM model. Relative differ-
ence 1−σmagn/σdens, in percentage. Like in Table 5, we report the
results for 3 scenarios: a) an optimistic scenario, when the local
count slope is measured with high accuracy and thus s(z) is kept
fixed in the analysis (column 2), b) a pessimistic scenario where
the local count slope cannot be constrained by an independent
measurement and therefore we marginalise over its values (col-
umn 3) and c) a realistic scenario such that the local count slope
is assumed to be measured independently with a 10% precision
(column 4).

parameter s(zi) fixed s(zi) marg + 10% prior on s(zi)

Ωm,0 1% −23% −3%
Ωb,0 < 1% −3% < 1%
w0 2% −16% < 1%
wa 2% −11% 2%
h < 1% < 1% < 1%
ns < 1% −4% −2%
σ8 1% −14% < 1%

our model comparison problem, we compute the shift in the best-
fit estimation for an analysis that assumes the incorrect model
with no magnification.

The values of the shifts are reported in Table 9. For all four
cosmological models under consideration we find large devia-
tions, that is above 1σ. Although the Fisher formalism that we
use cannot be trusted quantitatively in this case, we can conclude
that an analysis that neglects magnification does not provide an
accurate estimation of cosmological parameters. This important
result agrees with previous studies, see Duncan et al. (2014): al-
though magnification has little impact on the precision of the
cosmological constraints in the 3 × 2pt analysis, inferred cos-
mological parameter values are highly biased when the effect is
neglected. Comparing the above with the shifts obtained from
galaxy clustering alone (see Table 6), we see that the shifts (in
units of σ) are significantly larger in the joint analysis, espe-
cially for Ωm,0 where it lies between 5 and 7σ, depending on
the model, and for σ8 where it is between 3 and 4.5σ. This is
only partially due to the fact that now the 1σ errors are smaller
as is seen in Fig. 8. More importantly, the shear measurements
provide a precise estimation of the gravitational potential so that
number counts are no longer well fitted without lensing magni-
fication.

Looking at the sign of the shifts in Table 9, we see that the
shifts inσ8 are negative for all models, whereas the shifts in Ωm,0
are always positive. Moreover, we have checked the shifts of the
best-fit galaxy bias parameters and found that most of them are
negative. In Fig. 9, we directly compare the shifts for our base-
line dynamical dark energy model in the GCph analysis and in
the combined analysis. The shifts are systematically of opposite
sign. We already know that in the GCph signal, the magnifica-
tion contamination is negative in the pairs of redshift bins that
contribute most to the constraints. In the GGL signal, the magni-
fication contamination is proportional to 5s−2, which is negative
at z < 1 and positive at z > 1. The sign of the shifts will there-
fore depend on which range of redshift contributes most to the
constraints. As before we ran an analysis removing the magnifi-
cation contamination in GCph and in GGL at z > 1. We found
that the shifts decrease slightly in amplitude but remain of the
same sign: for example the shift in σ8 decreases from −4.6σ to
−2.3σ, whereas the shift in Ωm,0 decreases from 6.9σ to 4.4σ.
This means that the constraints are mainly driven by z < 1, where
the magnification contamination is negative in both GCph and
GGL. Indeed, if the magnification contamination at z > 1 were
to be the main driver of the shifts, we would expect the shifts to
change sign when we remove the z > 1 contamination, since at
z = 1 the contamination in GGL changes sign. This test shows
that removing from the analysis the bin configurations at high
redshift, that are dominated by magnification, does not reduce
the bias in the best-fit estimation due to neglecting magnifica-
tion, as already pointed out in Thiele et al. (2020).

We then performed another test, where we fixed the value
of Ωm,0 and computed the shifts in the other parameters for our
baseline dynamical dark energy model. We found that in this
case the shift in σ8 becomes positive, whereas the shifts in the
bias parameters become significantly more negative. This shows
that there is a strong interplay between the impact of σ8,Ωm,0,
and the bias on the amplitude of the GCph signal and the GGL
signal, and that there are therefore various ways of decreasing
the overall amplitude of these signals. When only GCph is in-
cluded one can decrease the amplitude of the density signal by
decreasing σ8,Ωm,0, or the bias. Depending on the model, differ-
ent solutions might mimic better the magnification contamina-
tion. In the joint analysis on the other hand, the problem is much
more constrained: since the WL (shear-shear correlation) is not
contaminated, this part of the signal has to remain unchanged.
Any negative shift in σ8 needs therefore to be compensated by a
positive shift in Ωm,0 to keep S 8 = σ8(Ωm,0/0.3)0.5 almost con-
stant. This explains why in all models the shift in σ8 and the
shift in Ωm,0 have opposite sign (see Table 9). In particular, for
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Table 9: GCph + WL + GGL. We report the shift in the values of the best-fitting parameters, in unit of 1σ for the same models as in
Table 7. The shifts are computed with the formalism described in Sect. 4.2 and, therefore, the values of shifts which are larger than
1σ cannot be quantitatively trusted, but indicate that the shift is large. We marginalise over the galaxy bias and intrinsic alignment
parameters, while the values of the local count slope are fixed to their fiducial values.

model Ωm,0 Ωb,0 w0 wa h ns σ8
∑

mν

ΛCDM 4.73 0.41 – – −0.56 −1.76 −2.88 –
ΛCDM +

∑
mν 5.64 0.65 – – 0.07 −1.51 −4.21 3.08

w0 waCDM 6.90 2.89 4.58 −2.82 1.16 −4.39 −4.56 –
w0 waCDM +

∑
mν 6.21 2.71 4.57 −2.82 1.09 −3.60 −2.91 0.51

the dynamical dark energy model we have that the positive shift
∆Ωm,0/Ωm,0 = 7% and the negative shift ∆σ8/σ8 = −2% par-
tially compensate to give a small positive shift ∆S 8/S 8 = 1%.
Moreover the shifts must be adjusted to decrease at the same
time the GCph signal, which is proportional to b2〈δδ〉, and the
GGL signal, which is proportional to b〈δκ〉. From Table 9 and
Fig. 9 we see that all this leads to shifts that are systematically
larger in the joint analysis than in the GCph analysis. This shows
that including magnification in the theoretical model is abso-
lutely crucial for the joint analysis of the photometric sample.

6. Robustness tests

The results presented in the previous sections are a natural exten-
sion of the Euclid forecast presented in EC20 to include mag-
nification in the analysis of the photometric sample. There are
several underlying simplifications that we adopt:

– Non-linearities are modelled with the Halofit prescription
(Smith et al. 2003), including the Bird and Takahashi correc-
tions (Bird et al. 2012; Takahashi et al. 2012).

– The RSD contribution to the galaxy count is neglected in the
analysis.

– Both signal and covariance are computed using Limber’s ap-
proximation.

In what follows, we test the robustness of our results with
respect to these three assumptions.

6.1. Non-linear prescription

Martinelli et al. (2021) investigate in detail the impact of dif-
ferent non-linear prescriptions on parameter estimation for the
weak lensing analysis of Euclid. In this work we do not aim
to compare the parameter estimation analysis itself for different
non-linear models. Instead, we want to verify whether the im-
pact of magnification on the analysis strongly depends on our
non-linear recipe.

With this objective in mind, we compare the analysis pre-
sented in Sect. 5 for three non-linear prescriptions:

– Halofit (Smith et al. 2003; Bird et al. 2012; Takahashi et al.
2012), a model for the non-linear matter power spectrum in-
spired by the halo model (Cooray & Sheth 2002). This is our
reference recipe and it is the implementation adopted in the
forecast validation project for Euclid (EC20).

– Halofit+Pk-equal (Casarini et al. 2016), which is an
extension to the Halofit fitting formula to models with
redshift-dependent equation of state for the dark energy com-
ponent.

– HMCODE (Mead et al. 2016), an alternative parametrisation
for the total matter power spectrum which is based on the
halo model, but with physically motivated free parameters.
Although this model can account for baryonic feedback, in
this test we used the model fitted to the Cosmic Emulator
dark-matter-only simulation (Heitmann et al. 2014).

The three models considered here are all implemented in the
latest version of class (Blas et al. 2011) and, therefore, applying
our analysis to different recipes is straightforward.

We perform this test on our baseline cosmology and we as-
sume the optimistic scenario for the local count slope, that is we
assume that s(z) is exactly known. Therefore, its value is fixed in
the analysis.

Table 10: GCph alone. We compare the relative difference 1 −
σdens+magn/σdens, expressed as a percentage, obtained when us-
ing three different non-linear prescriptions, as described in the
text. The results reported here refer to our baseline cosmology,
that is the w0 waCDM model.

parameter Halofit Halofit + Pk-equal HMCODE

Ωm,0 36% 24% 31%
Ωb,0 24% 15% 27%
w0 34% 22% 20%
wa 35% 25% 23%
h 14% 13% 6%
ns 32% 18% 42%
σ8 18% 14% 11%

Table 11: GCph alone. We compare the shift in the best-fit pa-
rameters, in unit of 1σ obtained using three different non-linear
prescriptions, as described in the text. The results reported here
refer to our baseline cosmology, the w0 waCDM model.

parameter Halofit Halofit + Pk-equal HMCODE

Ωm,0 −0.65 −1.08 −1.34
Ωb,0 −0.64 −1.00 −1.42
w0 −1.02 −1.62 −1.82
wa 1.20 −1.84 2.06
h 0.05 0.53 −0.26
ns 1.04 1.03 1.33
σ8 0.17 0.72 0.67
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In Table 10 we compare the improvement in terms of con-
straining power for the non-linear models considered here, for
a GCph alone analysis. The maximum percentage improvement
of the 1σ errors between an analysis with magnification and an
analysis that neglects this effect varies between 25% (Pk-equal)
and 42% (HMCODE).

Table 11 shows a comparison of the shifts in the best-fit pa-
rameters for GCph alone analysis. For all the non-linear prescrip-
tions considered here, neglecting magnification can introduce a
shift larger than 1σ for several model parameters.

Therefore, we find that magnification should not be ne-
glected in the galaxy clustering analysis of the photometric sam-
ple of Euclid, independently of the non-linear modelling.

Table 12: GCph + WL + GGL. We compare the shift in the best-
fit parameters, in units of 1σ, obtained using three different non-
linear prescriptions, as described in the text. The results reported
here refer to our baseline cosmology, the w0 waCDM model.

parameter Halofit Halofit + Pk-equal HMCODE

Ωm,0 6.90 6.4 6.35
Ωb,0 2.89 2.99 2.83
w0 4.58 4.58 4.37
wa −2.82 −3.07 −3.31
h 1.16 0.71 0.72
ns −4.39 −4.17 −2.79
σ8 −4.56 −4.73 −4.49

We repeated the same analysis for the probe combination
GCph + WL + GGL. We find that the impact of magnification
on the constraints is negligible (< 3%) for all non-linear pre-
scriptions considered here.

In Table 12 we report the shifts in the best-fit estimation due
to neglecting magnification in the joint analysis. The shifts do
not strongly depend on the way we model non-linearities and
they show that magnification should not be neglected in the anal-
ysis.

In conclusion, we have shown that the results that we present
in the main body of this manuscript are valid independent of the
non-linear modelling.

6.2. Redshift-space distortions

Redshift-space distortions are currently neglected in the Euclid
forecast for the photometric sample. The reason is twofold. First,
in photometric redshift bins radial correlations are washed out
due to poor redshift resolution and, therefore, the information
encoded in the RSD contribution is highly suppressed. Second,
the non-linear modelling of RSD is a challenging task: the sev-
eral prescriptions proposed to include the finger-of-god effects
into our theoretical model have been proven to be inaccurate
for modelling RSD contribution to the angular power spectrum
(Jalilvand et al. 2020) and it has also been shown that finger-
of-god effects change the RSD harmonic-space spectrum on all
scales (Grasshorn Gebhardt & Jeong 2020). Although a compre-
hensive study on the impact of RSD in the analysis of the Eu-
clid photometric sample would require an accurate modelling of
RSD, which is beyond the scope of this work, we are interested
in studying whether including the RSD signal could significantly
affect our conclusions on the impact of magnification for the Eu-
clid photometric sample.

For this purpose, we repeat the analysis presented in Sect. 5,
including RSD contributions to galaxy clustering. The non-
linear RSD is naively modelled using the Kaiser formula, that is
finger-of-god effects are neglected. This approximation overes-
timates the contribution from RSD to the galaxy clustering anal-
ysis, and should therefore give a first indication of whether the
effect is important or not.

In Table 13 we compare the impact of lensing on the con-
straints and the shift in the best-fit induced by neglecting magni-
fication, with and without RSD. We stress that the lines denoted
with RSD include the RSD signal both in the Fisher analysis that
includes magnification and the one that neglects it. Moreover, in
the shift analysis, we are comparing a wrong model which in-
cludes density and RSD to a correct model which accounts for
density, RSD, and magnification. For both the GCph alone anal-
ysis and the joint analysis, including RSD does not significantly
change the improvement in the constraints driven by magnifica-
tion and the shift in the best-fit estimation induced by neglecting
this effect. Therefore, our conclusions on the impact of magni-
fication do not depend on the RSD contribution. However, we
stress that this result does not imply that RSD can be neglected in
the analysis. In fact, an analysis without RSD could still provide
an inaccurate estimate of cosmological parameters. This aspect
will be addressed in a future work.

6.3. Limber’s approximation

An exact computation of the angular power spectra for the
galaxy clustering and weak lensing analysis requires the esti-
mation of double integrals in redshift (or comoving distance) of
spherical Bessel functions and their derivatives, which is a nu-
merical challenge for data-analysis pipelines due to the oscilla-
tory behaviour of the Bessel functions. The computational time
can be drastically reduced when making use of Limber’s approx-
imation (Limber 1953, 1954; LoVerde & Afshordi 2008), which
assume small angular scales and that the other function that ap-
pears in the radial integral varies much more slowly than the
spherical Bessel functions. Effectively this implies that we can
approximate the spherical Bessel functions with a Dirac-delta
function,

j`(x) '
√

π

2` + 1
δD

(
` +

1
2
− x

)
.

The accuracy of Limber’s approximation depends on the se-
lection functions of the tracers and the scales that we are probing,
see for example Simon (2007); Eriksen & Gaztanaga (2015b);
Kitching et al. (2017); Kilbinger et al. (2017); Lemos et al.
(2017); Fang et al. (2020); Matthewson & Durrer (2021). For
tracers with a broad kernel, such as cosmic shear, Limber’s pre-
scription has a relatively small impact on the estimation of cos-
mological parameters (Kilbinger et al. 2017; Lemos et al. 2017).
On the other hand, the approximation is inaccurate for the den-
sity and RSD contributions to the number count, especially for
selection functions with a narrow radial width (Eriksen & Gaz-
tanaga 2015b; Fang et al. 2020; Matthewson & Durrer 2021).

Since a brute-force computation of the angular power spectra
is not doable for a full MCMC analysis, Limber’s approximation
has been widely adopted in the literature (EC20), and we adopted
the same approximation in the analysis presented in the previous
sections of this paper.

In this section, we study the impact of the approximation on
the analysis. For this purpose, we run the Fisher analysis pre-
sented in Sect. 5 using a brute-force integration for estimating
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Table 13: Impact of magnification in the GCph and GCph + WL + GGL analysis, including or neglecting RSD, for our baseline
cosmology. In the results labelled as ’with RSD’, we add the contribution of RSD both in the Fisher analysis that includes magnifi-
cation and the one that neglects it. Viceversa, the results denoted as ’no RSD’ completely neglect RSD and they correspond to the
analysis presented in Sect. 5.

Ωm,0 Ωb,0 w0 wa h ns σ8

1 − σmagn

σdens
[%] (GCph) no RSD 36% 24% 34% 35% 14% 32% 18%

with RSD 32% 20% 29% 29% 13% 27% 17%

∆θ/σθ (GCph) no RSD −0.65 −0.64 −1.02 1.20 0.05 1.04 0.17
with RSD −0.75 −0.63 −0.83 0.86 0.25 1.05 0.09

1 − σmagn

σdens
[%] (GCph + WL + GGL) no RSD 1% < 1% 2% 2% < 1% < 1% 1%

with RSD 1% < 1% 2% 2% < 1% < 1% 1%

∆θ/σθ (GCph + WL + GGL) no RSD 6.90 2.89 4.58 −2.82 1.16 −4.39 −4.56
with RSD 6.95 2.82 4.62 −2.98 1.07 −4.22 −4.73

Table 14: Impact of magnification in the GCph and GCph+WL+GGL analysis, for our baseline cosmology. We compare the results
obtained within Limber’s approximation to an analysis which does not use Limber at low `, as described in the text.

Ωm,0 Ωb,0 w0 wa h ns σ8

1 − σmagn

σdens
[%] (GCph) Limber 36% 24% 34% 35% 14% 32% 18%

no Limber 47% 36% 47% 48% 18% 43% 27%

∆θ/σθ (GCph) Limber −0.65 −0.64 −1.02 1.20 0.05 1.04 0.17
no Limber −1.77 −1.77 −2.30 2.53 0.47 2.18 1.20

1 − σmagn

σdens
[%] (GCph + WL + GGL) Limber 1% < 1% 2% 2% < 1% < 1% 1%

no Limber 1% < 1% 2% 2% < 1% < 1% 1%

∆θ/σθ (GCph + WL + GGL) Limber 6.90 2.89 4.58 −2.82 1.16 −4.39 −4.56
no Limber 6.82 2.87 4.45 −2.65 1.13 −4.37 −4.46

the angular spectra on large scales, that is for ` < `Limb, and
turning on Limber’s scheme only for sufficiently large multi-
poles, where the approximated spectra are accurate enough. In
order to perform this test, we use the recipe implemented in the
class code (Di Dio et al. 2013), where two parameters regulate
the multipoles threshold at which Limber’s approximation is ac-
tive:

– l_switch_limber_for_nc_local_over_z, which
regulates the threshold at which the density con-
tributions to the galaxy clustering power spec-
tra are computed using Limber, that is `Limb =
l_switch_limber_for_nc_local_over_z × zm for
the density selection function, where zm is the mean redshift
of the bin.

– l_switch_limber_for_nc_los_over_z , which simi-
larly defines the multipoles threshold at which the lensing
and magnification contributions to the power spectra are
computed using Limber.

Note that in the class implementation Limber’s threshold is
redshift-dependent, as the approximation is more accurate at low
z.

For the purpose of our analysis, this test is de facto
equivalent to a brute-force analysis that does not employ
Limber at all. We compared this setting to the less con-
servative l_switch_limber_for_nc_local_over_z = 300,

l_switch_limber_for_nc_local_over_z = 40 and we ver-
ified that the constraints differ by a few per cent at most in the
two cases.

In Table 14 we quantify the impact of Limber’s approxima-
tion on our results.

For a galaxy clustering analysis alone, Limber’s approxima-
tion has a non-negligible effect, and in the most accurate analy-
sis, which does not rely on Limber at low-`, we find that mag-
nification has a larger impact, both in terms of constraints on
cosmological parameters, and the accuracy of the best-fit esti-
mation. The improvement in constraining power when magnifi-
cation is included reaches 48% for Ωm,0,w0,wa, while the shifts
are roughly twice as large, in absolute value. The large impact
of Limber on this analysis can be understood as follows: Lim-
ber mostly affects the analysis without magnification, degrading
the constraints at the 30–40% level. The effect of Limber on an
analysis that includes magnification is smaller, that is constraints
are affected by Limber at the 10% level. The overall effect on the
constraints is that the impact of magnification is underestimated
when Limber is employed on all scales.

On the other hand, we find that the impact of Limber’s ap-
proximation is marginal for the probe combination analysis.

Our results show that not using Limber’s approximation does
not substantially modify the take-home message of our work,
that is that magnification needs to be taken into account in the
analysis of the photometric sample of Euclid. However, they also
point out that Limber’s approximation may not be sufficiently
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accurate for modeling the two-point angular statistics of galaxy
clustering. Finding a scheme that accommodates both the re-
quired accuracy and speed of the cosmological analysis would
certainly be welcome and would require a specific investigation.
Recent developments in this direction can be found, e.g. in Fang
et al. (2020); Matthewson & Durrer (2021).

7. Conclusions

In this work we have studied the effect of lensing magnification
on galaxy number counts in the photometric survey of Euclid.
We have investigated the pure photometric number counts and
the correlation of number counts with the tangential shear. While
magnification also affects the shear power spectrum, we have
neglected this effect in our analysis as it is of second order and
we expect it to have a smaller impact on the probe combination
analysis than the first-order magnification term in the number
counts. The effect of this correction on the weak lensing analysis
has been investigated in Deshpande et al. (2020).

In previous forecasts of the capabilities of Euclid’s photo-
metric survey, lensing magnification has been neglected. We
have studied its effect for ΛCDM and a dynamical dark energy
model, with and without varying neutrino masses. We have de-
termined the change in error bars that are obtained by including
lensing magnification in the analysis; and the shift of the best-fit
cosmological parameters due to neglecting magnification in the
theoretical modelling of the signal.

When considering the galaxy clustering signal alone, lensing
magnification significantly reduces the error bars on cosmolog-
ical parameters (especially σ8, ns, and Ωm,0) assuming a perfect
knowledge of the local count slope and neglecting it leads to
significant shifts in the best-fit parameters. The reduction of er-
rors comes mainly from the fact that magnification information
breaks the degeneracy between the amplitude of density fluctua-
tions, σ8, and galaxy bias.

Once we also include shear and cross-correlation data, in-
cluding magnification no longer has a significant effect on the
error bars, that is on the precision of the analysis. However, ne-
glecting magnification leads to very significant shifts in the best-
fit parameters of up to six standard deviations. In fact, all the pa-
rameters of the dynamical dark energy model are shifted by more
than one standard deviation. Hence the accuracy of modelling is
drastically improved by including lensing magnification.

Even though shifts of more than 1σ cannot be taken at face
value in our Fisher matrix approach (since the shifts are deter-
mined at first order in ∆θ/σ), a shift of order one or more stan-
dard deviation robustly indicates that the analysis is significantly
biased. To obtain a good estimate for the value of the shift, we
would have to perform an MCMC analysis as e.g. in Cardona
et al. (2016).

We have also tested the robustness of our predictions with
respect to the most relevant approximations used in the anal-
ysis. We have compared three prescriptions for including non-
linearities in the matter power spectrum and found that their im-
pact on the shifts is not substantial. Moreover, we have found
that we obtain similar results whether or not we include RSD in
our analysis. The use of Limber’s approximation however has an
impact on our results in the analysis of galaxy clustering alone.
Using Limber actually leads us to under-estimate both the im-
provements brought by magnification on the cosmological con-
straints, and the shifts induced on the best-fit values. However,
in the combined analysis, which includes the shear and cross-
correlations, this difference disappears. This finding confirms

similar results by Fang et al. (2020) for the Vera C. Rubin Ob-
servatory’s Legacy Survey of Space and Time (LSST) and DES
surveys, where it is also found that, while Limber’s approxima-
tion is quite inaccurate in a clustering-only analysis, it performs
significantly better in a combined analysis.

This work presents the minimal extension of the Euclid fore-
cast in EC20 to include lensing magnification in galaxy number
counts. The effect is included at leading order in the magnifica-
tion expansion. Second order effects, discussed for example in
Menard et al. (2003b), are neglected. Moreover, as pointed out
in Monaco et al. (2019), galaxy bias depends on luminosity, so
a modulation of survey depth on the sky (due to systematics in
that paper, while here it is due to lensing) couples with galaxy
density to give a contribution that is of opposite sign of magnifi-
cation bias (higher magnification will give observational access
to less luminous galaxies, that are less biased). This contribu-
tion could be significant for bright galaxies, whose bias is more
strongly dependent on luminosity.

We have not considered the direct estimation of magnifica-
tion via flux measurements. Therefore systematic effects such as
blending and obscuration are not included in the analysis. Their
correct modelling will be needed in order to optimise direct mag-
nification measurements (Ménard et al. 2010; Hildebrandt 2016;
Gaztanaga et al. 2021). The final main conclusion is simply that
for an accurate estimation of cosmological parameters, lensing
magnification needs to be included in the analysis of the photo-
metric survey of Euclid. Failing to do so would lead to a wrong
interpretation of the results of the photometric survey. In partic-
ular, using a theoretical modelling without lensing magnification
could mistakenly lead us to believe that we have detected devia-
tions from ΛCDM or even a modification of General Relativity.
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Appendix A: Shear correlation function

Since it is not commonly discussed in the literature, we summa-
rize here the expression for the shear and number count tangen-
tial shear correlation functions which can be expressed in terms
of the corresponding power spectra. As the shear is a helicity-2
quantity this relation is not simply given by the Legendre poly-
nomials, but it is (Stebbins 1996):

〈γ(n, z)γ(n′, z′)〉 =
∑
`

(2` + 1)(` − 2)!
π(` + 2)!

Cγγ
`

(z, z′) G` 2(n · n′) .

(A.1)

Here the function G` 2 is given by

G` 2(µ) =

(
4−`

1−µ2 −
1
2
`(` − 1)

)
P` 2(µ) + (` + 2)

µ

1 − µ2 P`−1, 2(µ) ,

(A.2)

and P` 2 is the modified Legendre function, of degree ` and index
m = 2, see Abramowitz & Stegun (1970).

Furthermore, the correlation spectrum between some scalar
function, f , and a helicity-2 tensor, γab, is determined by the
‘tangential’ component, γt = γabeaeb, where e = (e1, e2) is the
vector pointing from the point n to n′ on the sphere. A function
is only correlated to the scalar part of the traceless tensor γab,
which is the traceless second (angular) derivative of a potential
ψ,

γab(n′, z′) =

(
∇a∇b −

1
2
δab∆Ω

)
ψ , (A.3)

where ∆Ω denotes the Laplacian on the sphere. In the case of
interest to us, ψ is the lensing potential. For the correlation func-
tion of a scalar quantity f and the tangential part of a helicity-2
field derived from a potential ψ one obtains the following ex-
pression (see, e.g. Ghosh et al. 2018)

〈 f (n, z)γt(n′, z′)〉 = −
1

8π

∑
`

(2` + 1) C fψ
`

(z, z′) P` 2(n · n′) (A.4)

=
1

4π

∑
`

C f κ
`

(z, z′)
2` + 1
`(` + 1)

P` 2(n · n′) , (A.5)

where κ = ∆ψ/2. The angular dependence via P` 2 is a conse-
quence of the fact that γt(n′) behaves as a helicity-2 quantity
under rotations around n′. Setting

〈 f (n, z)γt(n′, z′)〉 =
1

4π

∑
`

C fγt
`

(z, z′)
2` + 1
`(` + 1)

P` 2(n · n′) , (A.6)

implies that the correlation spectra of f with γt and κ agree,

C fγt
`

(z, z′) = C f κ
`

(z, z′) . (A.7)

Appendix B: Code validation

The analysis presented in this work has been carried out with the
Fisher matrix code FisherCLASS. This code runs in two steps:

1) Computation of the angular power spectra. A Python
script repeatedly calls a customised version of the code class
(Blas et al. 2011; Di Dio et al. 2013) and computes all the angu-
lar power spectra needed for the analysis. The spectra are ideally
computed in parallel (the script submits a job to a cluster queue

for each setting required). The angular power spectra are com-
puted using the number count feature (Di Dio et al. 2013) and
the lensing potential feature in class. A few modifications to the
public version of the class code have been implemented for the
purpose of this paper:

– Generic/non-Gaussian redshift bins: the redshift distribution
of the lenses and sources can be read for each redshift bin
individually;

– Galaxy bias can be redshift dependent within each bin;

– If the lensing potential feature is turned on, the output spectra
are the shear angular power spectra and they can include an
intrinsic alignment systematic effect, modelled through the
extended non-linear alignment model (eNLA, EC20).

2) Fisher matrix analysis. A Jupyter Notebook reads the
angular power spectra output from step 1) and estimates the full
covariance, the derivative with respect to a chosen set of param-
eters, and the full Fisher matrix. The notebook computes in ad-
dition the Fisher matrices for individual probes: GCph, WL, and
the GGL terms.

The advantage of this code is that it relies on the well-
maintained and tested number count feature in class, which
allows to include the relativistic effects in the clustering ob-
servables. The code has been validated against the results in
EC20. For this purpose, we compared the cosmological fore-
cast obtained with FisherCLASS to the forecast computed with
CosmoSIS 7(Zuntz et al. 2015).

The baseline setting used for this code comparison is the
same as the one adopted in EC20 for the GCph + WL +
GGL(GCph, WL) joint analysis. In summary:

– The cosmological parameter space is θ = {Ωm,0, Ωb,0, w0,
wa, h, ns, σ8}, that is, a flat cosmology with dynamical dark
energy.

– The galaxy sample is split in 10 equi-populated redshift bins,
with galaxy number density ngal = 30 galaxies/arcmin2.

– We include as nuisance parameters ten galaxy bias parame-
ters and three parameters for the intrinsic alignment contri-
bution to the WL observable.

– The `-modes included in the analysis range from `min = 10
to `max, GCph = 750 and `max, WL = 1500 for GCph and WL,
respectively.

However, we note that the specifications used in the analysis
presented in this work are the ones summarized in Sect. 3. This
includes using the redshift distributions shown in Fig. 3.

In Fig. B.1 we present the code comparison for the joint
analysis. We show the percentage difference between the con-
straints obtained with the two codes and the mean values of
the two results. The top panel refers to 1σ marginalised con-
straints, while the bottom panel shows the comparison for the
unmarginalised constraints. The largest discrepancies between
the two codes are ∼ 4% for the 1σ errors and ∼ 2% for the un-
marginalised constraints. We note that the outcome of the two
codes has been compared for several intermediate steps, differ-
ent settings, and different probe combinations, always leading to
an excellent agreement.

7 https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Fig. B.1: Percentage difference in the 1σ uncertainties (top
panel) and unmarginalised constraints (bottom panel) for the
probe combination GCph + WL + GGL. This analysis includes
10+3 nuisance parameters for the galaxy bias and intrinsic align-
ment contributions, respectively, that are marginalised over in
the 1σ constraints.

Appendix C: Fitting functions for b(z) and s(z)
We have also fitted the galaxy bias and the local count slope
found in the Flagship simulation with simple third-order poly-
nomials. We found the following coefficients for the best fit:

s(z) = s0 + s1z + s2z2 + s3z3 , (C.1)
b(z) = b0 + b1z + b2z2 + b3z3 , (C.2)

with

s0 = 0.0842 , s1 = 0.0532 , s2 = 0.298 , s3 = −0.0113 ,
b0 = 0.5125 , b1 = 1.377 , b2 = 0.222 , b3 = −0.249 .

(C.3)

In Fig. C.1 we compare our best fit with the Flagship simu-
lation measurements. In our calculations we did not use these
fits, but we present them here for convenience. The Flagship
specifics have been estimated for the survey binning described
in Sect. 3 and therefore the fitting functions are adapted to this
specific configuration.

1

2

b(
z)

Flagship

fit

0.0 0.5 1.0 1.5 2.0
z

0.0

0.5

1.0

s(
z)

Montanari&Durrer (2015)

Flagship

fit

Fig. C.1: We show the fit (continuous lines) to the galaxy bias
(top panel) and the local count slope (lower panel) together with
the simulations results. For the local count slope we also plot
the theoretical function for s(z) derived in Montanari & Durrer
(2015) for comparison (black dashed line).
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