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Abstract—Intelligent fault diagnosis techniques play an 

important role in improving the abilities of automated 

monitoring, inference, and decision-making for the repair and 

maintenance of machinery and processes. In this paper, a 

modified stacked auto-encoder (MSAE) that uses adaptive Morlet 

wavelet is proposed to automatically diagnose various fault types 

and severities of rotating machinery. Firstly, the Morlet wavelet 

activation function is utilized to construct an MSAE to establish 

an accurate nonlinear mapping between the raw nonstationary 

vibration data and different fault states. Then, the nonnegative 

constraint is applied to enhance the cost function to improve 

sparsity performance and reconstruction quality. Finally, the fruit 

fly optimization algorithm (FOA) is used to determine the 

adjustable parameters of the Morlet wavelet to flexibly match the 

characteristics of the analyzed data. The proposed method is used 

to analyze the raw vibration data collected from a sun gear unit 

and a roller bearing unit. Experimental results show that the 

proposed method is superior to other state-of-the-art methods. 

 
Index Terms—Modified stacked auto-encoder, Intelligent fault 

diagnosis, Adaptive Morlet wavelet, Nonnegative constraint, Fruit 

fly optimization. 

I. INTRODUCTION 

OTATING machinery has been widely applied in 

high-speed trains, wind turbines, helicopters, and many 

other important industrial equipment [1]. During the long-term 

operation under harsh conditions such as severe impacts, high 

speeds, and excessive loading, the key components of rotating 

machinery, such as bearings and gears, usually become 

susceptible to various types of faults [2]. Aiming at 

automatically distinguishing the fault categories and severities, 

intelligent fault diagnosis techniques play an important role in 
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improving the abilities of auto-monitoring, inference, and 

decision-making of rotating machinery [3-5]. 

Vibration analysis is still the most popular approach to the 

health monitoring of rotating machinery [6-11]. Although the 

conventional intelligent diagnosis framework based on shallow 

learning models and vibration analysis has been studied for 

decades, it cannot avoid the tedious feature extraction and 

selection that is relied on rich domain experience and 

knowledge [12-13]. To overcome this inherent limitation, a 

new trend has emerged in the past several years where deep 

learning techniques are applied to the intelligent diagnosis of 

equipment, including stacked auto-encoder (SAE), deep belief 

network (DBN), convolutional neural network (CNN), and 

long short-term memory (LSTM) [14-20]. Compared with 

DBN, CNN, and LSTM, SAE possesses the properties of 

unsupervised learning, high-efficiency training, and easy 

implementation [21, 22], and has wide application in different 

fields, such as fault diagnosis, image classification, data 

denoising, and feature reduction.  

However, the challenges exist when applying the basic SAE 

to the practical fault diagnosis task of rotating machinery. On 

one hand, various fault categories and severities may reduce the 

distinguishable characteristic differences hidden in the raw 

vibration data [23]. On the other hand, for some rotating 

machines such as planetary gearboxes, the coupled vibration of 

multiple components and complicated transmission paths will 

cause stronger non-stationarity and increased interference of 

the collected vibration signals [24]. Neural networks designed 

with general activation functions may have limitations in 

establishing accurate mappings between a nonlinear and 

nonstationary input data and various output patterns [25, 26]. 

Unlike the popular transformation functions, wavelet function 

has a special attribute of time-frequency localization. Inspired 

by the successful application of wavelet neural networks 

(WNNs) in fault diagnosis [27], there exists a strong motivation 

to modify the basic SAE by using a wavelet function. Because 

of the strong similarity to periodic impulse components of 

mechanical vibration signals [28, 29], Morlet wavelet has been 

successfully utilized to modify the basic SAE in recent work 

[25, 30]. However, the two waveform parameters of Morlet 

wavelet activation function are manually selected and fixed, 

which cannot flexibly match the characteristics of the analyzed 

data. Besides, Morlet wavelets with different parameters 

probably show different performance when dealing with the 
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analyzed data [29]. Thus, there exists a strong motivation to 

design an adaptive Morlet wavelet through flexibly adjusting 

the two parameters to achieve the best match with the 

characteristics of the analyzed signals. The fruit fly 

optimization algorithm (FOA) can effectively carry out a global 

optimization with many advantages including faster 

convergence, stronger stability, higher precision, and easier 

implementation than many other optimization algorithms [31]. 

In the last two years, FOA has been gradually used to optimize 

the intelligent diagnosis model of rotating machinery and has 

shown good performance [32]. Thus, modified SAE (MSAE) 

with adaptive Morlet wavelet using FOA has the potential to 

properly match the characteristics of the analyzed data in 

different diagnosis tasks. 

The other challenge is due to the increase of the width and 

the depth of the SAE model, which would require updating of a 

larger amount of weights, making it harder to train. Even 

though a weight decay term is usually added to the cost function 

of SAE to avoid over-fitting, numerous non-zero connection 

weights will lead to a reduction in sparsity and affect 

reconstruction quality [33, 34]. Thus, more effective weight 

decay strategies are crucial. 

To address these challenges, in the present paper, MSAE that 

uses an adaptive Morlet wavelet and improved training 

algorithm is proposed to automatically diagnose various faults 

of rotating machinery. The developed method is verified by 

analyzing the raw vibration data collected from a sun gear unit 

and a roller bearing unit. Experimental results demonstrate the 

superiority of the proposed method over other state-of-the-art 

deep learning methods. The main contributions of this paper 

are: 

(1) Establishes an accurate nonlinear mapping between the raw 

nonstationary vibration data and various fault states through 

MSAE which is constructed by improving the basic SAE with 

Morlet wavelet activation function. 

(2) Achieves high-quality reconstruction with improved cost 

function by incorporating a nonnegative constraint in the 

algorithm.  

(3) A FOA-based method is developed to adaptively determine 

the adjustable parameters of Morlet wavelet activation function, 

which achieves a flexible matching of the characteristics of the 

analyzed data. 

(4) The developed approach can work directly on raw sensing 

data with noise and achieve more accurate fault diagnosis 

results on rotating machinery than state-of-art deep 

learning-based approaches.  

The rest of the paper is organized as follows. Section II 

briefly reviews the basic auto-encoder. The proposed method is 

introduced in Section III. In Section IV, the effectiveness of the 

proposed method is evaluated by two experiments with 

vibration signals obtained from a sun gear unit and a roller 

bearing unit. The conclusions and future work are presented in 

Section V. 

II. THE PRINCIPLE OF AUTO-ENCODER  

Auto-encoder (AE) belongs to unsupervised deep 

learning-based models, and its architecture is shown in Fig. 1. 

The training goal of AE is to achieve the reconstruction of the 

inputs as accurately as possible by adjusting the model 

parameters. The main formulas of AE are as follows [22]:   

( )gs= +h Wx b                                (1) 

( )fs  = +z W h b                               (2)
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where 
1C  is the cost function of AE,   is a sparse penalty 

coefficient, r  is a sparse constant, 
1 2[ , , , ]mx x x= x  is an 

unlabeled input sample whose feature vector and the 

reconstruction vector are 
1 2

[ , , , ]
p

h h h= h  and 

1 2[ , , ]mz z z= z , respectively, gs  and fs  are the 

activation functions in the hidden layer and the output layer, 

respectively, which are generally selected as Sigmoid (Sigm) 

or rectified linear unit (ReLU) activation functions, W , W  

are weights, and b , b  are biases.  
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Fig. 1. The architecture of the AE model. 

III. THE PROPOSED METHOD 

A. MSAE construction 

Base on the idea of wavelet transform, wavelet function has 

been a new choice of the activation functions applied in the 

neural network, which can make full use of the time-frequency 

localization characteristics. To establish an accurate nonlinear 

mapping between the collected nonstationary vibration data 

and various working states, this paper uses Morlet wavelet as 

the activation function of the hidden layer of the basic AE due 

to its greater similarity to the fault characteristic components 

hidden in the collected vibration signal than other wavelets [28, 

29]. Morlet wavelet is expressed as 

( ) ( )21
( ) cos 2 exp /c b

b

t f t t f
f

 


= −          (4) 

in which 
bf  is the bandwidth, 

cf  is the central frequency, and 

these two parameters influence the performance of Morlet 

wavelet function. Based on the Morlet wavelet activation 

W W
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function, a new version of AE model called modified AE (MAE) 

is constructed as shown in Fig. 2. 
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Fig. 2. MAE based on Morlet wavelet function.  

 

For the input sample 
1 2[ , , , ]mx x x= x , the expression 

of the hidden layer output is given by 
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where jh  is the output of the hidden node j , jd  and jc  are 

the scale factor and the shift factor, respectively, 
jk

W  is the 

weight between the hidden node j  and the input node k , and 

ij
W  is the weight between the hidden node j  and the output 

node i . Set the nonlinear transformation of the output layer as a 

tanh function. Then the final reconstructed output is 
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To avoid over-fitting, a weight decay term can be added to 

the cost function, as 
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where   is a weight decay factor and 
TC  is the traditional 

cost function. However, a large number of connecting weights 

in this decay strategy will lead to a reduction in sparsity. The 

nonnegative constraint of the connecting weights was first 

proposed in 2016 to further improve sparsity and reconstruction 

quality by reducing the negative weights [33]. In the last two 

years, SAEs integrated with the nonnegative constraint have 

been gradually used for the fault diagnosis of rotating 

machinery [35], and their diagnosis results are better than those 

using a conventional weight decay term in Eq. (7). Here, to 

achieve higher quality reconstruction, the nonnegative 

constraint is introduced into the cost function of the MAE, as  

( )
12

2E ( )

1 1 1 1

1

1
( )

2 2

1
log (1 ) log

ˆ ˆ1

L Ls sm
L

i i JI

i L I J

p

j j j

C z x G W

r r
r r

r r





+

= = = =

=

= − +

 −
+ + −  − 

 



      (8) 

( ) 2 ( )

( )

( )

( )   ,  if  0
( )

0            ,  if  0

L L

JI JIL

JI L

JI

W W
G W

W

 
= 



             (9) 

where the second term represents the nonnegative constraint, 

  represents a penalty coefficient, 
EC  represents the 

enhanced cost function, and 
Ls  represents the node dimension 

in layer L . The training task of the MAE is also to adjust the 

weights 
( )L

JIw  so as to make 
EC  a minimum. Gradient descent 

with back propagation is a simple and fast way to update the 

weights as follows 
M
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where   denotes the learning rate, 
(1)

jkJIW W= , (2)

JI ijW W= . 

MSAE with stacked trained MAEs can further capture the 

valuable features hidden in the input samples, as shown in Fig. 

3. After that, the learned deep features are used as the input of 

the Softmax classifier for fault classification. 
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Fig. 3. Construction of an MSAE. 

B. Adaptive Morlet wavelet design 

According to Eq. (4), the performance of Morlet wavelet 

relies on the parameters fb and fc, as shown in Fig. 4. Different 

time-frequency resolutions can be acquired by adjusting these 

two parameters. Thus, it is important to design an adaptive 

Morlet wavelet through flexibly adjusting the two parameters 

to achieve the best match with the characteristics of the 

analyzed signals. 

Wavelet hidden layer 

Input layer Output layer 

MAEs 
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Fig. 4. Morlet wavelets with different parameters fb and fc: (a) fb = 5 and fc = 0.5; 

(b) fb = 15 and fc = 0.5; (c) fb = 10 and fc = 0.2; (d) fb = 10 and fc = 0.8. 

FOA can effectively search global optimization with many 

advantages, and it is adopted for flexibly determining the 

adjustable parameters of Morlet wavelet in the present paper. 

More details of FOA can be found in [31]. The flowchart of the 

scheme is given in Fig. 5 and summarized as follows (The 

fitness is misclassification rate on validation samples). 

Prepare a trained MSAE

Parameter initialization:
 maxgen, sizepop, (x0, y0)

Set gen = 0

Give the random disturbance for each individual 

fruit fly (xi, yi) 

Calculate the smell concentration 

judgement value Si

Calculate the fitness function value smelli  

based on Si

Find out the minimum smell concentration 

and update (x0, y0) 

gen < maxgen ?

Obtain the optimal parameters fb and fc in 

Morlet wavelet function

Fly toward the best 

location and save the 

best smell 

concentration 
 

gen = gen+1

No

Yes

Validation samples 

 
Fig. 5. Adaptive Morlet wavelet design of the MSAE using FOA. 

1) Prepare an MSAE model with an initial Morlet wavelet that 

has already been trained by using the training samples. 

2) Input the validation samples. Determine the maximum epoch 

number, population size, and initial location of the fruit fly 

swarm. 

3) Give each fruit fly a random search direction and distance for 

foraging the food, based on the smell. 

4) Calculate the smell concentration judgment value using the 

distance between each fruit fly and the origin. 

5) Search the smell concentration of each location of the fruit 

fly through substituting the smell concentration judgment 

value into the fitness function, and then look for the 

minimum smell concentration among the fruit fly swarm. 

6) The fruit fly swarm saves the best smell concentration value 

and will fly toward the best location using vision. Repeat step 

3 to step 5, and continue the optimization until reaching the 

maximum epoch number. 

7) The designed MSAE with adaptive Morlet wavelet is used to 

analyze the testing samples. 

C. The overall framework of the proposed method 

Fig. 6 gives the overall framework of the proposed method. 

The followings are its main steps: 

Step 1: Collect the raw vibration data of the key parts of the 

rotating machine, which are divided into training, validation, 

and testing samples. 

Step 2: Design MSAE with an adaptive Morlet wavelet. 

2.1: Morlet wavelet is employed as the activation function to 

design MSAE based on Eqs. (4) - (6). 

2.2: Nonnegative constraint is adopted to modify the cost 

function based on Eqs. (8) and (9). 

2.3: Update the weights of the MSAE using Eqs. (10) - (12). 

2.4: FOA is adopted for the adaptive Morlet wavelet design 

of the MSAE to minimize the misclassification rate of the 

validation samples. 

Step 3: Varify the effectiveness of the developed fault 

diagnosis model by the testing samples. 

IV. EXPERIMENTAL VALIDATION 

CASE 1 Fault diagnosis of a sun gear unit 

A. Fault data description of the sun gear 

In Case 1, the effectiveness of the proposed approach is 

tested using the measured vibration data of sun gears from the 

Drivetrain Dynamics Simulator (DDS), University of 

Connecticut [36]. As shown in Fig. 7, the DDS mainly includes 

motor, motor controller, brake, parallel gearbox, and planetary 

gearbox. An accelerometer (model: PCB608A11) is installed to 

collect vibration signals at a sampling frequency of 20 kHz 

under the stable running of the monitored components. The 

specifications of the accelerometer including frequency range, 

measure range, and sensitivity are 0.5 Hz-10 kHz, ± 50 g, and 

100 mV/g, respectively. A total of nine working conditions of 

sun gears in a planetary gearbox are employed as shown in Fig. 

8. Specifically, the fault types include missing tooth, root crack, 

spalling, and chipping tip, which are common fault modes of 

gear. For chipping tip, there are five damage degrees. 

 

Fig. 7. The experimental setup of the planetary gearbox. 
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Fig. 6. The overall framework of the proposed method. 

 

 

Fig. 8. Pictures of the nine types of sun gears. 

 

Detailed sample distributions of the nine states of sun gears 

are listed in Table I. Every state has 360 data samples, and each 

sample is a vibration signal segment with 1024 data points. 

Randomly selected 200 out of 360 samples are employed for 

training, while the rest 60 and 100 samples are used for 

validation and testing, respectively. Time-domain waveforms 

of the nine working states of sun gears are plotted in Fig. 9. 

TABLE I 
THE NINE WORKING STATES OF SUN GEARS  

Working states of sun 

gears 

Number of the 

training/validation/testing samples 

Labels of 

the states 

Healthy 200 / 60 / 100 1 

Missing tooth  200 / 60 / 100 2 
Root crack  200 / 60 / 100 3 

Spalling  200 / 60 / 100 4 

Chipping tip (Severe 1) 200 / 60 / 100 5 
Chipping tip (Severe 2) 200 / 60 / 100 6 

Chipping tip (Severe 3) 200 / 60 / 100 7 

Chipping tip (Severe 4) 200 / 60 / 100 8 
Chipping tip (Severe 5) 200 / 60 / 100 9 

     

     

     

Fig. 9. Time-domain waveforms of the nine working states of sun gears  

B. Comparison with state-of-the-art deep learning 
methods 

The proposed method is compared to popular methods that 

use deep learning, including four kinds of SAEs, two kinds of 

DBNs, and a classical CNN model called LeNet-5. Their inputs 

are all selected as the 1024-dimensional raw vibration data. 

To reduce the impact of contingency on the diagnosis results, 

ten trials for each method are run and the detailed results are 

shown in Fig. 10. For each run, the overall classification 

accuracy is the ratio of the total number of correctly classified 

samples to the total number of the testing samples whose true 

labels are known. As listed in Table II, the average value of the 

overall testing accuracy of the proposed method (fb = 0.621 and 

fc = 3.114) reaches 98.86% (8897/9000, 8897 is the total 

number of correctly classified samples during the ten runs and 

9000=10*9*100 is the total number of testing samples during 

the ten runs), and it is higher than for the eight contrastive 

methods, which are 96.20%, 94.90%, 91.18%, 89.02%, 94.07%, 

91.98%, 92.27%, and 90.22%. For the first run, the testing 

accuracy of the proposed method is 98.89% (890/900), and 

F-measure is used to evaluate its diagnosis performance for 

each working state, as shown in Fig. 11.  
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Fig. 10.  The repeated diagnosis results based on the nine methods in Case 1. (fb 
= 0.621 and fc = 3.114) 

TABLE II 

STATISTICAL DIAGNOSIS RESULTS OF THE NINE METHODS IN CASE 1 

Diagnosis methods Average testing accuracies 

Method 1 (Proposed method) 98.86% (8897/9000) 

Method 2 (SAE: Morlet with CT) 96.20% (8658/9000) 
Method 3 (CNN: LeNet-5) 94.90% (8541/9000) 

Method 4 (Gaussian DBN) 91.18% (8206/9000) 

Method 5 (Basic DBN) 89.02% (8012/9000) 
Method 6 (SAE: ReLU with CE) 94.07% (8466/9000) 

Method 7 (SAE: ReLU with CT) 91.98% (8278/9000) 

Method 8 (SAE: Sigm with CE) 92.27% (8304/9000) 
Method 9 (SAE: Sigm with CT) 90.22% (8120/9000) 

Notes: CT means the traditional cost function in Eq. (7) and CE means the 

enhanced cost function in Eq. (8). 

 
 

Fig. 11. F-measures of the proposed method for different gear sun states. 

Based on the contrastive results, it can be concluded that the 

proposed method exhibits better diagnosis performance than 

other existing deep learning methods for fault diagnosis of a 

sun gear. Specifically, the superiority of the nonnegative 

constraint is demonstrated by the comparison results provided 

by Method 1 and Method 2. Also, the comparisons between the 

enhanced cost function and the traditional cost function of the 

first MAE are given in Fig. 12, which also shows the 

effectiveness of the former.  

Many related studies have shown that SAEs with three 

hidden layers are often deep enough to perform high fault 

diagnosis accuracies. The model structure of the proposed 

MSAE is constructed as “1024-450-250-100-9” by setting the 

number of neurons in the hidden layers in descending order and 

about half of the neuron number of the previous layer. In this 

case study, the other hyper-parameters are given in Table III, 

and most of them are determined by experimental experience. 

TABLE III 

PARAMETERS OF THE PROPOSED METHOD IN CASE 1 

Description Value 

Maximum epoch number of the MSAE 60   
Sparsity constant / Sparse penalty coefficient 0.08 / 5 

Weight decay factor / Learning rate 0.003 / 0.01 

The optimal parameter fb of Morlet wavelet  0.621 (Given by FOA) 

The optimal parameter fc of Morlet wavelet  3.114 (Given by FOA) 

The maximum generation number of FOA 20 

The population size of FOA 25 

The importance of adaptive Morlet wavelet design is shown 

by the validation accuracies based on different combinations of 

parameters fb and fc, as shown in Fig. 13. From Fig. 13, it is 

seen that the validation accuracies are seriously affected by the 

parameters fb and fc. To show the superiority of FOA, two other 

algorithms are used for comparisons, which are genetic 

algorithm (GA) and particle swarm optimization (PSO). Fig. 14 

shows the misclassification rates on the validation samples 

using different algorithms. The misclassification rates using 

FOA converge after about only 20 epoch times, while GA and 

PSO need more while starting from the same initial conditions. 

Besides, the minimum misclassification rate using FOA is 

smaller than the other three methods. 

  

Fig. 12. Comparisons between the enhanced cost function and the traditional 

cost function in Case 1.  

 

  
 

Fig. 13. The effect of parameters fb and fc on the validation accuracies in Case 1. 

 

 

Fig. 14. Misclassification rate of the validation samples using three types of 

optimization algorithms in Case 1.  

 

In addition to those methods listed in Table II, the proposed 

method is also compared with state-of-the-art deep learning 

methods published in recent years [37-41]. The influence of 

noise and comparisons between the other four types of popular 

wavelets [42] holding explicit expressions are discussed here at 

the same time. The average testing accuracies of the ten runs 

given under different white noise levels are shown in Table IV. 

Here, all the SAEs are designed with the enhanced cost 

functions, and in order to make fair comparisons, the input of 

each method is raw time-domain vibration data with no signal 
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pre-processing or feature extraction. Some conclusions can be 

drawn from Table IV as follows. (1) The proposed method 

based on Morlet wavelet shows higher diagnosis accuracies 

than Gaussian wavelet and Mexican Hat wavelet, while the 

results of Haar wavelet and Shannon wavelet are much worse. 

(2) The proposed method is more effective compared with the 

five state-of-the-art methods in analyzing the raw 

non-stationary vibration data under the influence of noise. (3) 

With the increase of noise, although the accuracies of all the 

methods decrease (from 96.30% to 88.16%), the proposed 

method shows the best anti-noise capability. This paper mainly 

focuses on diagnosing faults based on the raw vibration data, 

however, it is believed that using specialized signal processing 

techniques for de-noising can improve accuracy. 

TABLE IV 

COMPARISONS BETWEEN OTHER WAVELETS AND STATE-OF-THE-ART 

METHODS UNDER DIFFERENT WHITE NOISE LEVELS IN CASE 1 

Diagnosis methods Signal-Noise Ratio (SNR) 

24 dB 20 dB 16 dB 12 dB 

Method 1 (Proposed method) 96.30% 94.48% 92.01% 88.16% 

Method 10 (SAE: Gaussian) 94.52% 93.64% 89.34% 85.86% 

Method 11 (SAE: Haar) 81.88% 75.92% 71.50% 64.09% 

Method 12 (SAE: Mexican Hat) 95.06% 93.97% 91.00% 86.42% 

Method 13 (SAE: Shannon) 88.62% 85.07% 79.98% 72.06% 

Method 14 proposed in [37] 88.29% 85.83% 81.38% 75.93% 

Method 15 proposed in [38] 94.00% 91.94% 88.26% 84.03% 

Method 16 proposed in [39] 93.38% 90.86% 87.90% 84.86% 

Method 17 proposed in [40] 88.94% 86.50% 83.00% 78.34% 

Method 18 proposed in [41] 87.14% 84.94% 81.06% 76.86% 

 

CASE 2 Fault diagnosis of a roller bearing unit 

C. Fault data description of roller bearing 

In Case 2, the proposed method is used to analyze the 

vibration data collected from a bearing fault diagnosis test rig, 

Anhui University of Technology, China, as shown in Fig. 15. 

The rotating speed is set at 900 rpm and the load is 2kN.m. 

Vibration signals during the stable run are collected with a 

sampling frequency of 10 kHz using ICP INV9822 

accelerometer. The specifications of the accelerometer 

including frequency range, measure range, and sensitivity are 

0.5 Hz-8 kHz, ± 50 g, and 100 mV/g. The model number of the 

tested bearing is 6205-2RS.  

 

 

Fig. 15. Fault diagnosis test rig of roller bearings.  
 

Nine working states of the roller bearing are collected and 

their samples are listed in Table V, including different fault 

types and different damage degrees. Each sample consists of 

600 sampling data points, and the time-domain waveforms of 

the nine working states are plotted in Fig. 16. 

TABLE V 

THE NINE WORKING CONDITIONS OF ROLLER BEARINGS  

Working states of roller 

bearings 

Number of the 

training/validation/testing samples 

Labels of 

the states 

Normal 150 / 50 / 125 1 
Ball (0.2 mm) 150 / 50 / 125 2 

Ball (0.3 mm) 150 / 50 / 125 3 

Inner race (0.2 mm) 150 / 50 / 125 4 
Inner race (0.3 mm) 150 / 50 / 125 5 

Inner race (0.4 mm) 150 / 50 / 125 6 

Inner race (0.5 mm) 150 / 50 / 125 7 
Outer race (0.2 mm) 150 / 50 / 125 8 

Outer race (0.4 mm) 150 / 50 / 125 9 

 

     

     

     

Fig. 16. Time-domain waveforms of the nine working states of roller bearings  

D. Comparison with state-of-the-art deep learning 
methods 

In this case study, LSTM, another two types of SAEs based 

on Leaky ReLU (LReLU) and exponential linear unit (ELU) 
[23], and the five state-of-the-art deep learning methods listed 

in Table IV are used for comparison. 
As before, each method runs ten trials. The detailed testing 

diagnosis accuracies of the proposed method, LSTM, and two 

SAEs (LReLU, ELU) are given in Fig. 17, and their statistical 

results are listed in Table VI. The average testing accuracy 

provided by the proposed method (fb = 0.835 and fc = 2.421) is 

97.16% (10930/11250, 11250=9*125*10), and it is higher than 

those of the six contrastive methods, which are 94.99%, 

87.84%, 93.09%, 91.43%, 93.43%, and 91.54%, respectively. 

For the first run, the specific testing accuracy provided by the 

proposed method is 97.33% (1095/1125). 

 

   

Fig. 17.  The repeated diagnosis results based on the nine methods in Case 2. (fb 

= 0.835 and fc = 2.421) 

TABLE VI 
STATISTICAL DIAGNOSIS RESULTS OF THE SEVEN METHODS IN CASE 2 

Diagnosis methods Average testing accuracies 

Method 1 (Proposed method) 97.16% (10930/11250) 

Method 2 (SAE: Morlet with CT) 94.99% (10686/11250) 

Method 3 (Deep LSTM) 87.84% (9882/11250) 

Method 4 (SAE: LReLU with CE) 93.09% (10473/11250) 
Method 5 (SAE: LReLU with CT) 91.43% (10286/11250) 

Method 6 (SAE: ELU with CE) 93.43% (10511/11250) 

Method 7 (SAE: ELU with CT) 91.54% (10298/11250) 

Notes: CT means the traditional cost function in Eq. (7) and CE means the 
enhanced cost function in Eq. (8). 
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The confusion matrix is shown in Fig. 18 (two decimal 

places), in which the horizontal and vertical axes are the 

predicted and true state labels, respectively. These values 

located in the diagonal represent the correct classification rate 

of each state, and the others represent the misclassification rates. 

The diagnosis accuracies for most of the classes are higher than 

0.97. The result on the fifth condition is slightly lower where 

some testing samples are misclassified to conditions 2, 4, and 6. 

Table VII shows the comparison results of the proposed 

method with the five state-of-the-art deep learning methods 

under different levels of white noise, which further confirms 

the superiority of the proposed method in the direct analysis of 

raw nonstationary vibration data under the influence of noise. 

 

Fig. 18. Confusion matrix of the proposed method for the first run in Case 2. 

TABLE VII 

COMPARISONS BETWEEN OTHER WAVELETS AND STATE-OF-THE-ART 

METHODS UNDER DIFFERENT WHITE NOISE IN CASE 2 

Diagnosis methods Signal-Noise Ratio (SNR) 

24 dB 20 dB 16 dB 12 dB 

Method 1 (Proposed method) 95.04% 93.85% 90.37% 85.25% 

Method 8 (SAE: Gaussian) 93.69% 91.28% 87.20% 82.08% 

Method 9 (SAE: Haar) 80.29% 74.40% 68.67% 61.81% 

Method 10 (SAE: Mexican Hat) 93.96% 91.52% 88.15% 83.25% 

Method 11 (SAE: Shannon) 86.95% 84.75% 78.30% 70.38% 

Method 12 proposed in [37] 88.01% 84.90% 80.08% 75.16% 

Method 13 proposed in [38] 93.85% 91.00% 87.44% 82.68% 

Method 14 proposed in [39] 92.79% 90.10% 86.95% 82.04% 

Method 15 proposed in [40] 88.56% 85.48% 81.99% 76.95% 

Method 16 proposed in [41] 86.48% 84.36% 80.20% 76.08% 

TABLE VIII 
PARAMETERS OF THE PROPOSED METHOD IN CASE 2 

Description Value 

Maximum epoch number of the MSAE 70 

Sparsity constant / Sparse penalty coefficient 0.10 / 5 

Weight decay factor / Learning rate 0.003 / 0.01 
The optimal parameter fb of Morlet wavelet  0.835 (Given by FOA) 

The optimal parameter fc of Morlet wavelet  2.421 (Given by FOA) 

The maximum generation number of FOA 20 
The population size of FOA 25 

 

The hyper-parameters of the MSAE are given in Table VIII. 

According to Table III in Case 1 and Table VIII in Case 2, the 

optimal parameters fb and fc have changed. Therefore, it is 

meaningful to adaptively determine these two adjustable 

parameters to achieve the best match with the analyzed data. 

The comparison results in Case 1 and Case 2 show that the 

proposed method is more effective than other state-of-the-art 

deep learning methods for fault diagnosis of rotating machinery 

key parts. Adaptive Morlet wavelet activation function enables 

the MSAE to establish an accurate nonlinear mapping between 

various working states and the raw nonstationary vibration data. 

Besides, the nonnegative constraint of connection weights 

helps to achieve the high-quality reconstruction of the MSAE. 

V. CONCLUSIONS 

To boost the diagnosis performance of intelligent fault 

diagnosis methods for various fault categories and severities of 

rotating machinery, this paper presented a new method that 

used MSAE and incorporated adaptive Morlet wavelet. In this 

method, Morlet wavelet was used to construct the MSAE to 

establish an accurate mapping between the raw nonstationary 

vibration data and various fault states. The nonnegative 

constraint was used to enhance the cost function to achieve 

high-quality reconstruction. FOA was used to determine the 

adjustable parameters of Morlet wavelet to flexibly match the 

characteristics of the analyzed data. 

The effectiveness of the proposed method was validated by 

the experimental raw vibration signals collected from a sun 

gear unit and a roller bearing unit. The analysis of the results 

demonstrated that the proposed method was superior to other 

state-of-the-art intelligent diagnosis methods. Future work 

includes how to systematically design the deep neural network; 

how to solve the issue of limited fault condition data; and how 

to transfer the learned knowledge in diagnosing machinery with 

different specifications and working environment.   
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