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Abstract— Recent work has demonstrated real-time map-
ping and reconstruction from dense perception, while motion
planning based on distance fields has been shown to achieve
fast, collision-free motion synthesis with good convergence
properties. However, demonstration of a fully integrated system
that can safely re-plan in unknown environments, in the
presence of static and dynamic obstacles, has remained an open
challenge. In this work, we first study the impact that signed
and unsigned distance fields have on optimisation convergence,
and the resultant error cost in trajectory optimisation problems
in 2D path planning, arm manipulator motion planning, and
whole-body loco-manipulation planning. We further analyse the
performance of three state-of-the-art approaches to generating
distance fields (Voxblox, Fiesta, and GPU-Voxels) for use in real-
time environment reconstruction. Finally, we use our findings to
construct a practical hybrid mapping and motion planning sys-
tem which uses GPU-Voxels and GPMP2 to perform receding-
horizon whole-body motion planning that can smoothly avoid
moving obstacles in 3D space using live sensor data. Our results
are validated in simulation and on a real-world Toyota Human
Support Robot (HSR).

I. INTRODUCTION

In recent years, we have seen tremendous advances across

many fields of robotics, from hardware to vision and plan-

ning. As the capabilities of robots has increased, the question

is now “when will we see large scale integration into

our daily lives?”. A key concern that needs to be solved

before robots become commonplace is that of safety; we

require robots to be reliable and interact safely with their

surroundings. Key hereto is the ability to recognise and

reason about static and dynamic obstacles in real-time to

prevent collision and injury to people, the environment, and

the robots themselves.

There is significant research in motion planning that

focuses on or assumes a static environment, however, this

assumption breaks down in the real-world where our sur-

roundings are often dynamic. For robots to become more

widely used, such as in household environments, they must

be able to perform motion planning and collision avoidance

in the presence of moving obstacles. Considerable research

in the mapping and scene reconstruction communities has

achieved the ability to reconstruct environments in great

detail in real-time based on voxel grids [1], [2], Truncated
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Fig. 1. Real-time re-planning and avoidance of moving obstacles using the
HSR. The robot was tasked with picking up a bottle from a shelf. During
execution, a human demonstrator walked into the planned trajectory of the
robot. Using our integrated motion planning and real-time mapping system,
the robot successfully integrated the dynamic obstacle without any prior in
real-time and re-planned around the newly observed obstacle in a receding-
horizon fashion.

Signed Distance Fields (TSDFs) [3], [4], surfels [5], [6], and

octrees representations [7] using CPU or GPU computation.

For instance, this capability has been used in path planning

for Micro Aerial Vehicles (MAVs) [8]–[11]. At the same

time, work in the motion planning community has proposed

solutions for fast planning with real-world sensed data,

enabling the generation of trajectories that avoid collisions

with static and dynamic obstacles in discrete-time [12]–[15]

and continuous-time [16], [17]. However, there has been little

work in combining the two to provide a usable integrated

framework for real-time re-planning in dynamic environ-

ments, providing motivation for the research presented here.

In this work, we provide the first comparison of the impact

that Signed Distance Fields (SDFs) and Unsigned Distance

Fields (USDFs) have on trajectory optimisation convergence

and the error cost for navigation planning, motion planning,

and whole-body loco-manipulation. We explore a selection

of state-of-the-art mapping and reconstruction packages to

determine the best performing method for integration with a

whole-body motion planner. After discussing our motivation

for motion planner selection, we describe its integration with

the reconstruction pipeline.

Overall, we present a full framework to concurrently

map the environment in 3D and perform fast re-planning

online in a dynamic environment with a whole-body mobile

manipulator (HSR). The key contributions of this paper are:

1) Integration of trajectory optimisation-based whole-body



motion planning with fast GPU-based distance field

reconstruction.

2) The first demonstration of real-time reactive collision

avoidance using whole-body trajectory optimisation and

live sensor data in unknown 3D environments for loco-

manipulation on articulated systems (8 DoF).

3) Exploration of incrementally built Euclidean Distance

Transforms (EDTs) for the motion planning of whole-

body and articulated systems.

4) A comparison of the impact that USDFs and SDFs have

on trajectory optimisation convergence and optimality.

II. RELATED WORK

We separate the relevant literature into three categories;

we first explore the state-of-the-art in motion planning in

dynamic 3D environments and make the case for using a

trajectory optimisation approach (GPMP2). We then explore

the options for online mapping and reconstruction of envi-

ronment distance fields. Lastly, we discuss the prior work in

exploring integrated systems to provide collision avoidance

in real-world environments with moving obstacles.

A. Motion Planning

Motion planning is a well-studied problem with many

possible approaches. Sampling-based algorithms and graph

search methods [18]–[20] are among the most common

techniques to apply. They are mathematically appealing

because we can select for desirable characteristics such as

completeness, however they often require post-processing to

address smoothness of the motions. While there are optimal

planners which aim to address this, they suffer from the

curse of dimensionality for robots with many degrees of

freedom [21]. A key consideration in this work was a motion

planner’s ability to plan in dynamic environments, placing

emphasis on fast planning times and ideally the ability to re-

plan smoothly in response to changes in the environment.

Trajectory optimisation-based methods are well suited to

these criteria.

Trajectory optimisation algorithms, such as CHOMP,

STOMP and TrajOpt, operate by minimising an objective

function to solve for a feasible and optimal trajectory

[12], [16], [22]. In the cases of CHOMP and STOMP,

the trajectory is finely discretised to generate trajectories

that avoid obstacles and maintain smoothness; however, fine

discretisation is computationally expensive. TrajOpt and our

prior work [17] represent the trajectory using fewer states

by introducing continuous-time collision checking. Yet, to

achieve smoothness, a fine discretisation may still be required

in practice.

Another approach to reduce computational requirements is

to use kernel embeddings to represent the trajectory. GPMP2

[13], for instance, leverages Gaussian Process Interpolation

to achieve a continuous trajectory representation using a

small number of discrete points. Similar to AICO [23],

GPMP2 treats the motion planning problem as probabilistic

inference on a factor graph. GPMP2 is built upon the

GTSAM framework [24] which uses factor graphs and Bayes

networks as the underlying objects to frame an optimisation

problem for the most probable configuration or plan. Factor

graphs are popular in the Simultaneous Localisation and

Mapping (SLAM) community and working in this paradigm

offers the flexibility to use efficient tools, such as incremental

Smoothing and Mapping (iSAM) to perform fast incremental

inference for re-planning [25], [26]. Mukadam et. al. show

iSAM-based re-planning (iGPMP2) to be an order of mag-

nitude faster than planning from scratch [13]. The superior

planning speed and ability to quickly re-plan makes the

GPMP2 factor graph formulation an appealing candidate for

use in dynamic environments.

B. Collision Avoidance

Some approaches in the literature view obstacles from a

more theoretical viewpoint and assume prior knowledge of

their shape, size and position. Ratliff et. al. model obstacle

constraints as analytical inequality constraints with a margin

in RieMo [15]. Merkt et. al. [27] use primitive shapes

and smooth hinge losses to penalise collisions, whereas

TrajOpt [16] applies approximate convex decomposition to

leverage efficient convex shape distance computations. These

methods are not suitable for real-world planning in unknown

environments as prior knowledge about objects is not always

available.

Sampling-based algorithms such as RRTs and PRMs re-

quire only binary occupancy information to represent the

environment. This information can be stored in a simple

3D voxel grid whereby the environment is discretised into a

regular grid, with each voxel storing the binary occupancy

of that position in space. While this method provides fast

memory access, it can require a large amount of memory

to represent an environment. Octree methods provide a

more memory-efficient representation with Octomap being

a commonly used framework [28].

In contrast, trajectory optimisation-based motion plan-

ners require gradients. While stochastic algorithms, such

as STOMP, obtain gradients using binary occupancy infor-

mation, non-stochastic approaches require a continuously

varying environment representation from which gradients can

be obtained. CHOMP, TrajOpt, and GPMP2 use Euclidean

Signed Distance Fields (ESDFs) to represent the environment

[12], [13], [16]. ESDFs have been shown as an effective

method for use in static environments however their CPU

compute times generally prohibit real-time performance in

a dynamic environment and are thus typically pre-computed

and assumed to be static [14]. Further, they commonly re-

quire the integration of an occupancy grid prior to computing

an ESDF. GPMP2 [13] assumes this to be given, while

other approaches can compute an ESDF from alternative

representations such as an Octomap.

To improve the computation time for ESDF updates,

Lau et al. presented an efficient method for incrementally

updating an ESDF from occupancy maps [29]. Oleynikova

et al. extended this approach with Voxblox to build and

update ESDFs incrementally out of TSDFs [9]. Usenko et.

al. introduced ‘ewok’ which uses a fixed-size sliding window

around the position of a MAV to incrementally build ESDFs



from occupancy [11]. Han et. al. use doubly-linked lists

to present a time-efficient method of incrementally building

USDFs [8]. The aforementioned incremental methods have

been demonstrated in 3D path planning environments for

MAVs, however to our knowledge, they have not been

demonstrated for use in whole-body motion planning for

articulated systems or mobile manipulation platforms.

As the computations required for computing occupancy

information and ESDF are inherently SIMD-parallelisable,

significant research has also been conducted into optimising

signed distance field calculations on GPUs. Jülg et. al.

present a comprehensive comparison of fast exact 3D EDT

implementations [10]. In particular, they show the Parallel

Banding Algorithm (PBA), developed by Cao et. al. [30],

to be “well suited for fast online GPU-based distance field

computation”.

C. Real-World Systems for Dynamic Obstacle Avoidance

The vast majority of fully integrated systems have focused

on mobile aerial robots. Voxblox integrated a local trajectory

optimisation planner in static environments, while FIESTA

uses kinodynamic path searching.

Alwala and Mukadam built upon the GPMP2 framework

to present Joint Sampling and Trajectory Optimisation (JIST)

and demonstrate effective collision avoidance in 2D naviga-

tion tasks as well as on a 7-DoF Sawyer robot arm [31]

in simulation. However, JIST still uses pre-computed signed

distance field calculations and was not verified on a real-

world system with live sensor data.

Kaldestad et. al. [32] provide the first demonstration of

collision avoidance in real-time on a real robot using parallel

GPU processing. They calculate virtual forces to send to

the robot impedance controller on a 7-DoF KUKA Arm.

However, they use a restricted 2.5D environment model that

is reset every time new depth sensor data is processed.

Hermann et. al. demonstrate mobile manipulation planning

and re-planning on a GPU to operate in unknown environ-

ments by using grid-based planning techniques [2], [33]. The

planning times reported are an order of magnitude greater

than those achieved in similar tasks using optimisation-based

methods [13]. The authors also observed that their method

resulted in re-planning times that vary depending on how

far along the current trajectory a new obstacle is observed.

Jülg et al. [10] built upon the GPU-Voxels framework [2] to

introduce highly optimised GPU calculations for EDTs. Due

to the high speed of performing EDTs, they demonstrate real-

time potential-field based motion planning of mobile aerial

robot platforms in a fully 3D environment. Exploring the

possibility of planning manipulator motions was beyond the

scope of their work, motivating the work presented here.

To our knowledge, real-time receding-horizon trajectory

optimisation has not been performed online in an unknown

environment for a mobile manipulator.

III. SIGNED VS UNSIGNED DISTANCE FIELDS

Despite distance transforms being prominent in the litera-

ture for motion planning and MAV path planning, we could

not find any justification for whether distance fields should be

signed or unsigned in motion planning. For implementations

such as wavefront planners, one would expect a signed

distance field to have no impact in a static environment as

long as the initial starting state is not in collision. In contrast,

initial trajectories for a trajectory-optimisation based mo-

tion planner may start in collision (particularly when using

the common “straight-line” initialisation); these approaches

require gradients to perform updates and it would seem

intuitive to require a signed distance field and continuous

gradients throughout an obstacle to provide gradients that

‘push’ the trajectory out of collision. To verify this, we

performed a series of experiments to analyse and compare

trajectories generated using signed and unsigned distance

fields.

A. Methods

Experiments were carried out in simulation for 2D path

planning, 7-DoF arm manipulation (Franka Panda), and

whole-body motion planning with a 5-DoF manipulator on a

holonomic base (HSR, 8-DoF). For each of the three cases,

we generated 18 different robot states to produce a set of

153 pairs of start and goal configurations. We generated

an obstacle set comprising of 100 cuboids of randomly

generated size in the range of 0.0m to 1.0m for each

dimension; each obstacle was associated with a randomly

generated position in the workspace. With both USDFs and

SDFs, we used GPMP2 with consistent parameter settings

as a motion planner for each of the 15 300 motion planning

problems. We used the Levenberg-Marquardt method of

optimisation with the initial damping parameter set as 0.01.

The optimisation stopped if there was a relative decrease in

error smaller than 10−5 or if it reached 100 iterations.

B. Results

To calculate the ‘failure rate’, we exclude cases in which

the planner failed to find a collision-free trajectory using ei-

ther the SDF or USDF. Similarly, we only compare trajectory

costs across collision-free trajectories since trajectories that

result in a collision would not be executed.

A summary of our findings is presented in Table I. In

the 2D Navigation experiments, we find that our intuition

of SDF gradients ‘pushing’ the trajectory out of collision is

confirmed, with plans that use USDFs having a failure rate

that is 18.3 times greater. For a 2D planning example, this

can be explained by entire query states being inside obstacles

with no distance or distance-gradient information and the

only gradients to ‘pull’ out obstacles come from the Gaussian

Process smoothness factors. However, in higher dimensions

we found that SDFs provide no practical advantage over

USDFs for motion planning tasks in absolute terms, with al-

most all planning problems being solved successfully in both

cases. We further validated this finding in complex narrow

passage examples on a 7-DoF Panda arm manipulator where

SDFs and USDFs performed equally well from infeasible

straight line initialisations through the obstacle. This can be

explained in articulated systems, such as in the Arm and

Whole-Body tasks, by gradients being available at multiple



other locations that are not in collision; these gradients will

assist in ‘pulling’ states out of collision.

Considering that a SDF calculation typically takes around

twice as long to compute as a USDF, we conclude that

USDFs are preferable to use on articulated and whole-

body systems, particularly when operating in dynamic en-

vironments since the faster re-planning speed enables better

adaption to changing environments.

IV. REAL-TIME SCENE RECONSTRUCTION

We used the state-of-the-art mapping packages Voxblox

[9] (CPU), FIESTA [8] (CPU), and GPU-Voxels [2] (GPU)

to generate distance fields from live sensor data and provide

direct query access to the obstacle factors used in GPMP2.

Voxblox generates SDFs whereas GPU-Voxels and FIESTA

produce USDFs. To provide a more thorough comparison,

we adapted GPU-Voxels and FIESTA to optionally produce

SDFs using their native methodology. We achieve this by

calculating distance fields for both the occupancy map and

the inverse occupancy map; the values are then subtracted to

produce a SDF. In the case of GPU-Voxels, this was done

such that the inverse distance field could be calculated in

parallel. In practice, however, GPUs are still limited by the

number of threads available and so for large environments,

the two distance transforms will still be performed sequen-

tially. For FIESTA, we implemented the inverse distance

transform in a similar manner to how the original distance

transform is calculated but reversed the roles of unoccupied

and occupied cells found in ray-casting.

To compare the performance of the mapping frameworks,

we used the Cow and Lady dataset, as first presented by

Oleynikova et. al. [9]. We chose this dataset because it uses

a small, indoor scene with multiple objects and accessories

in the room; similar to a typical environment in which

a mobile service robot might be deployed. The dataset

features a rosbag file in which real RGB pointcloud data

was collected using a Kinect v1 depth camera, along with

published ground-truth pose transforms of the camera frame

using a vicon sensor.

We evaluated each package across a range of resolutions,

while retaining full spatial coverage, on the 142 s dataset.

For each evaluation, the log file was played in real-time

to simulate live operation and the update rate was recorded

using an 8-core Intel Core i7-9700 CPU @ 4.50GHz and

2133MHz DDR4 RAM. We found that FIESTA did not

operate successfully using multiple threads and so ran this

package with a single thread; Voxblox was run in multi-

threaded mode with 8 threads. GPU-Voxels was run on a

Nvidia RTX 2060 GPU (1920 CUDA cores).

A. Results

Results of our mapping framework comparison are shown

in Table II. For Voxblox, we present the results for a

propagation distance of 0.8m; we require a propagation

distance at least as large as the sum of the maximum distance

penalised in trajectory optimisation and the maximum radius

of the spheres used to represent a robot’s collision model.

The maximum sphere radius used in our collision model of

Fig. 2. A breakdown of the time spent in our GPU-Voxels-based update
loop. Synchronisation – the time spent finding camera pose transforms
within a time tolerance of pointcloud timestamps in the update queue. PCL

Processing – time taken to resize and apply reference frame transformations
to the incoming pointclouds prior to integration. EDT and PCL Integration

– pointclouds are integrated into a probabilistic voxelmap via raycasting and
a EDT is then calculated using the PBA algorithm. Host Transfer – time
spent copying the full EDT from the GPU to memory on the host computer.

the HSR is 0.3m and the maximum penalty distance used in

our later experiments is 0.5m. We note that at the smallest

propagation distance for which we measured performance,

0.1m, FIESTA and GPU-Voxels still outperformed Voxblox.

Our results show that despite the additional time required

by GPU-Voxels to transfer the distance field from the GPU,

it is the fastest mapping framework in all cases. Figure 2

illustrates a breakdown of the time spent in our GPU-Voxels

update loop. While the time spent in Synchronisation and

PCL Processing is essentially constant, we see that as we

increase the voxel resolution and grid size, the time taken

to transfer data from the GPU to the host becomes more

significant.

V. INTEGRATING MAPPING AND MOTION PLANNING

As previously discussed, we elected to use GPMP2 as

our motion planner of choice. Using the GPMP2 framework,

collision avoidance is implemented via the use of regularly

spaced, time-indexed obstacle factors in a factor graph.

Obstacle factors query the distance field to allocate a hinge-

loss obstacle cost and an associated gradient for optimisation.

In this work, all obstacle factors were linked to use the real-

time updated distance field as maintained by the package

used. Based on the results shown in the previous section,

GPU-Voxels was used as the mapping framework for the

rest of this work.

We run the mapping concurrently on a separate thread

from the motion planning framework. Fast distance query

access is provided to the obstacle factors by running GPU-

Voxels within the same ROS node and providing them with

pointers to the EDT memory address.

While we experimented with different methods of main-

taining and updating a factor graph, we found the most

effective way of planning to be that shown in Algorithm



TABLE I

COMPARISON BETWEEN USING SDFS AND USDFS FOR COLLISION AVOIDANCE

USDF SDF Relative Difference
(USDF/SDF)

Failure Rate (%)
Navigation 2.9 0.16 18.3

Arm 0.00028 0.00037 0.75

Whole-Body 0.00092 0.00018 5.0

Iterations (µ± σ)
Navigation 7.57± 5.90 8.24± 6.66 0.9

Arm 7.03± 7.34 7.12± 7.71 1.0

Whole-Body 5.84± 4.96 5.81± 4.91 1.0

Valid Trajectory Cost (µ± σ)
Navigation 68.6± 504 61.5± 379 1.1

Arm 7.82± 60.7 7.83± 60.73 1.0

Whole-Body 2.81± 14.7 2.74± 11.5 1.0

TABLE II

COMPARISON OF TIME TAKEN (ms) TO COMPUTE DISTANCE FIELDS FROM POINT CLOUD DATA IN STATE-OF-THE-ART MAPPING FRAMEWORKS

Resolution (m)

Distance Field 0.025 0.05 0.10

Voxblox (CPU)
Signed 1232.5± 677.6 210.1± 124.1 41.4± 29.4

Unsigned - - -

Fiesta (CPU)
Signed 1652.0± 526.1 176.8± 26.9 178.1± 25.6

Unsigned 176.4± 206.5 31.4± 17.7 11.6± 2.7

GPU-Voxels (GPU)
Signed 36.2± 8.3 17.5± 0.4 6.9± 1.6

Unsigned 25.3± 5.6 13.4± 2.9 5.6± 1.4

1. After providing the algorithm with a goal pose, consisting

of a base pose (x, y, θ) and joint configuration for the arm,

we estimate the time needed to achieve the goal state and

construct a factor graph accordingly with a fixed δt between

variable nodes. Prior factors are imposed on the current robot

state and the goal state. We use a straight-line trajectory

initialisation and optimise until convergence criteria are

met (relative error decrease of 0.01 or 50 iterations). The

trajectory is then interpolated to a finer discretisation and

executed on the robot.

After the initial trajectory execution, we use timer call-

backs to regularly check whether the current trajectory is

collision-free and within an error tolerance of the cost when

it was first calculated; this is achieved using the real-time

updated EDT. If either of these criteria are not met, we

obtain our current pose, re-estimate how long it will take to

achieve the goal position, re-build the graph and re-optimise.

To re-optimise, we use the previous trajectory and re-fit it

to the new graph discretisation. This enables us to retain

information from previous optimisations and we found it to

provide ≈ 30% speed-up in optimising when compared to

using a straight-line initialisation each re-planning iteration.

While re-building the graph each iteration may seem un-

necessary, it provides multiple benefits. Firstly, this method

avoids book-keeping and pruning of factors in the past.

Secondly, it affords us the freedom to easily re-parametrise

and change the planning horizon as new information is

acquired.

A. Simulation Experiments

We conducted simulation experiments using an 8-core

Intel Core i7-9700 CPU @ 4.50GHz and 2133MHz RAM.

GPU calculations were performed on a NVIDIA GeForce

RTX 2060 graphics card (1920 CUDA cores).

Algorithm 1 Motion Planning Pipeline

Input: Goal state xg

Usage: Re-planning and execution

Initial optimisation :

1: xc = getCurrentPose()
2: P = estimateParameters(xc,xg)
3: G = buildGraph(xc,P)
4: τstraight = initialiseTrajectory(xc,xg,P)
5: τ = optimise(τstraight,G)
6: τint = interpolateTrajectory(τ)
7: executeTrajectory(τint)

Re-planning :

8: while !isGoalReached() do

9: if stillValid(τ ) then

10: Continue

11: end if

12: xc = getCurrentPose()
13: P = estimateParameters(xc,xg)
14: G = buildGraph(xc,P)
15: τinit = refitTrajectory(xc,P)
16: τ = optimise(τinit,G)
17: τint = interpolateTrajectory(τ)
18: executeTrajectory(τint)

19: end while

The implementation described in the previous section was

tested on a range of whole-body motion tasks in the presence

of moving obstacles, from general navigation tasks within a

room to reaching in shelves and picking objects up from the

floor. Figure 3 illustrates a scenario in which the robot was

tasked with achieving a goal state from which it can pick up

an object from the floor. During execution, a large object (red

cylinder) moves into the planned path of the robot, forcing



(a) (b)

Fig. 3. Simulated task in which the robot is required to achieved a ‘pickup’ goal state. During execution, a large (red) obstacle traverses across the
planned robot trajectory, forcing it to re-plan online and adapt to a collision-free trajectory. Green lines illustrate the planned end-effector trajectory while
red lines show the planned path of the base.

it to re-plan smoothly around the obstacle.

We found that the robot robustly avoids moving obstacles,

however this is still dependent on whether the robot perceives

the object—if the head camera cannot see an obstacle then

inevitably it will not be registered in the distance field used

for motion planning.

While we can evaluate whether our current trajectory is

collision-free and within error tolerances at 250Hz, when a

new trajectory is requested, our re-plan loop runs at 10Hz.

B. Hardware Experiments

We implemented our system for execution on a HSR.

The robot has an onboard 4th Gen Intel Core i7 (16GB
RAM) processor on which joint controllers and sensing

operates. The RGB-D sensor is an Xtion PRO LIVE deliv-

ering pointclouds at VGA resolution similar to the sensor

in the benchmark dataset. Motion planning and mapping

were performed on an external laptop with an Intel Core

i7-10875H CPU, 32GB 2666MHz RAM, and a NVIDIA

GeForce RTX 2070 SUPER GPU (2560 CUDA cores). To

increase throughput of point-cloud processing and retain

30Hz pointcloud updates, we streamed depth images to

the laptop via a wired connection and performed point-

cloud conversion locally. To provide a good resolution for

manipulation tasks in confined environments such as shelves,

we used a voxel resolution of 2.5 cm and a grid size of

320× 320× 128. We tested our implementation in a variety

of environments with moving obstacles:
1) Shelf Pickup: The robot is required to reach deep into

a shelf to pick up an object; during execution a human

demonstrator walks into the planned robot trajectory. Later

on in the same task, a wooden plank is placed across the

end-effector path.
2) Floor Pickup: The robot is required to travel to a loca-

tion and pick up a bottle from the floor. During execution, a

human demonstrator walks into the planned robot trajectory.
3) Table Pickup: The robot is tasked with picking up an

object from a table. During execution, a human demonstrator

moves an object across the planned trajectory.

In all three cases, the robot re-planned and successfully

achieved the desired goal state without collisions. Figure

1 shows the shelf pickup and how the robot’s resultant

trajectory takes a different path to its initial plan in order

to avoid an obstacle that moves into the scene during

execution. Figure 4 shows the environment perception and

re-planning during the floor pickup task. In particular, Figure

4d emphasises the clarity of the distance field reconstruction

obtained in real-time. The real-time update of the SDF can

also be seen in the accompanying video.

VI. DISCUSSION AND FUTURE WORK

For mapping, in contrast to the incremental methods dis-

cussed, a limitation of GPU-Voxels is its fixed-size memory

allocation on the GPU. In the current release of GPU-Voxels,

the maximum number of blocks is limited to 65 535. With

1024 threads per block, this corresponds to a maximum envi-

ronment grid of 67 107 840 voxels that can be computed in a

single invocation. The maximum grid size is thus restricted to

approximately 704×704×128, or 17.6m×17.6m×3.2m at

a 2.5 cm resolution. While this may be prohibitive for large

scale, multi-room operation at high resolution, for robots

operating within a single workspace however, this is likely

sufficient to provide high resolution mapping at a superior

compute speed. In practice, one is not likely to need a

high resolution for planning across large distances and a

coarse representation could be used while maintaining a finer

resolution in the vicinity of the robot. Current CUDA devices

can support much larger number of blocks than the GPU-

Voxels limit and so we believe that with further work, this

package could support larger environment grid sizes.

As mentioned previously, iSAM-based re-planning can

be used to provide re-planned trajectories much faster than

planning from scratch — prior work [13] cites a possible

one order of magnitude speed-up depending on task. The

effectiveness of this method is particularly applicable when

tail factors are changed, such as the goal state prior. This

is relevant when tracking a moving object to grasp and is a
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Fig. 4. Demonstration of re-planning in an unknown, dynamic environment on a physical HSR. The robot was tasked with picking up a bottle from the
floor. During execution, a human demonstrator walked towards the planned robot trajectory, requiring a re-planned trajectory to be calculated and executed
to avoid collision. Green lines illustrate the planned end-effector trajectory while red lines show the planned path of the base. The bottom row illustrates the
distance field generated at the corresponding times; we show both a plane through the distance field and a pointcloud after thresholding at zero distance.
The interactive re-planning can more readily be appreciated in the accompanying video.

promising feature which we hope to include in future work

with the integration of object detection.

In building a practical system which performed both

motion planning and real-time mapping of the environment,

we make two notable observations which require further

work. Firstly, the positioning of the head camera quickly

became the primary limitation for the system. As the robot

is executing and re-planning a trajectory, determining where

to aim the head camera—i.e. Next Best View planning for

receding-horizon trajectory optimisation—is an interesting

problem in itself which is more commonly explored in the

context of building 3D models of objects or structures [34],

[35], rather than for use in motion planning. Naı̈ve heuristics,

such as always looking in the direction of motion or looking

a specified distance along the planned trajectory, are prone to

failure cases, in particular on curved trajectories. We mention

this problem as an interesting observation for the community

and as a project for further work. The second limitation is

that inherent with performing trajectory optimisation which

assumes a static environment. In previous work, we high-

lighted that using trajectory optimisation for re-planning in

the presence of moving obstacles can result in trajectories

that repeatedly plan to go into the path of the moving

obstacle. In practice, this leads to sub-optimal trajectories.

In future work, we will integrate the work presented here

with methods such as predicted composite signed distance

fields to account for the predicted future motion of moving

obstacles as in time-configuration space planning [36].

Due to the common use of factor graphs in state estima-

tion, another avenue for future work is to interleave planning

using GPMP2 with state estimation. To this end, Mukadam

et. al. demonstrated simultaneous trajectory estimation and

planning (STEAP) of a PR2 robot operating within a known

3D workspace [37]. In their work, they repeatedly perform

inference on a factor graph spanning from the start state to

the goal state, while adding measurement factors, to incor-

porate new sensor measurements and observations, during

execution. The resultant trajectory after each optimisation

provides a solution to both the motion planning and state

estimation problems. The primary limitation they cite is that

it can only operate in “known, static environments” because

the SDF computation provides a “major, computational bot-

tleneck”. We believe that by leveraging the contributions

presented in our work, STEAP could be extended to provide

simultaneous mapping, localisation and planning in dynamic

environments.

A key implementation note is that point cloud observations

are useful not only for the occupied space but also for

clearing space via ray-casting. In our work, we did not wish

to classify the floor as a collision object in order to provide

stronger gradients around real obstacles. Points registered

within 3 cm of the ground were used in the ray-casting for

clearing, however the occupied point at the end of the ray

was not inserted into the voxelmap.

Finally, transferring information between CPU and GPU

(device-to-host) became a more dominating factor in com-



puting EDTs for finer resolutions. To avoid this requirement,

motion planning directly on the GPU could be explored.

Previous work based on GPU-Voxels performed grid-based

motion planning and environment mapping directly on the

GPU to eliminate the transfer costs [2], [10], [33]. Hence, a

possible avenue for future work could look into implement-

ing optimisation-based motion planning on the GPU.

VII. CONCLUSION

This paper presents a fully integrated system to update

the environment representation in real-time and perform re-

planning in dynamic environments. We show experimentally

that signed distance fields provide no significant benefit to

motion planning on articulated systems when compared to

their cheaper-to-compute unsigned counterparts. We analyse

a selection of state-of-the-art mapping libraries and show

GPU-Voxels to be a superior candidate for using in whole-

body trajectory optimisation problems. We integrate GPMP2

with GPU-Voxels to produce a hybrid mapping and motion

planning system which can provide real-time mapping and

whole-body motion planning to smoothly avoid moving

obstacles. Our findings are verified both in simulation and

on a physical HSR across a range of tasks and successfully

re-plan safely in response to dynamic obstacles.
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