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Abstract

The complexity classes PPA-k, k ≥ 2, have recently emerged as the main candidates
for capturing the complexity of important problems in fair division, in particular Alon’s
Necklace-Splitting problem with k thieves. Indeed, the problem with two thieves
has been shown complete for PPA = PPA-2. In this work, we present structural results
which provide a solid foundation for the further study of these classes. Namely, we
investigate the classes PPA-k in terms of (i) equivalent definitions, (ii) inner structure,
(iii) relationship to each other and to other TFNP classes, and (iv) closure under
Turing reductions.

1 Introduction

The complexity class TFNP is the class of all search problems such that every instance has
a least one solution and any solution can be checked in polynomial time. It has attracted
a lot of interest, because, in some sense, it lies between P and NP. Moreover, TFNP
contains many natural problems for which no polynomial-time algorithm is known, such
as Factoring (given a integer, find a prime factor) or Nash (given a bimatrix game,
find a Nash equilibrium). However, no problem in TFNP can be NP-hard, unless NP =
co-NP [29]. Furthermore, it is believed that no TFNP-complete problem exists [32, 34].
Thus, the challenge is to find some way to provide evidence that these TFNP problems are
indeed hard.

Papadimitriou [32] proposed the following idea: define subclasses of TFNP and classify
the natural problems of interest with respect to these classes. Proving that many natural
problems are complete for such a class, shows that they are “equally” hard. Then,
investigating how these classes relate to each other, yields a relative classification of all
these problems. In other words, it provides a unified framework that gives a better
understanding of how these problems relate to each other. TFNP subclasses are based on
various non-constructive existence results. Some of these classes and their corresponding
existence principle are:

• PPAD : given a directed graph and an unbalanced vertex (i.e., out-degree 6= in-degree),
there must exist another unbalanced vertex.

∗A preliminary version of this paper appeared in the Proceedings of the 15th Conference on Web and
Internet Economics (WINE 2019).
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• PPA : given an undirected graph and vertex with odd degree, there must exist another
vertex with odd degree (Handshaking Lemma).

• PPP : given a function mapping a finite set to a smaller set, there must exist a
collision (Pigeonhole Principle).

Other TFNP subclasses are PPADS, PLS [26], CLS [10], PTFNP [21], EOPL and UEOPL
[15]. It is known that PPAD ⊆ PPADS ⊆ PPP, PPAD ⊆ PPA and UEOPL ⊆ EOPL ⊆
CLS ⊆ PPAD∩PLS. Very recently it was shown that in fact CLS = PPAD∩PLS [16]. Any
separation between TFNP subclasses would imply P 6= NP, but various oracle separations
exist [3, 31, 4, 5] (see Section 2 for more details).

TFNP subclasses have been very successful in capturing the complexity of natural
problems. The most famous result is that the problem Nash is PPAD-complete [11, 7], but
various other natural problems have also been shown PPAD-complete [9, 6, 8, 27]. Many
local optimisation problems have been proved PLS-complete [26, 33, 28, 14, 13]. Recently,
the first natural complete problems were found for PPA [17, 18] and PPP [35]. The famous
Factoring problem has been partially related to PPA and PPP [23].

Necklace-Splitting. The natural problem recently shown PPA-complete is a problem
in fair division, called the 2-Necklace-Splitting problem [18]. For k ≥ 2, the premise
of the k-Necklace-Splitting problem is as follows. Imagine that k thieves have stolen
a necklace that has beads of different colours. Since the thieves are unsure of the value
of the different beads, they want to divide the necklace into k parts such that each part
contains the same number of beads of each colour. However, the string of the necklace is
made of precious metal, so the thieves don’t want to use too many cuts. Alon’s famous
result [1] says that this can always be achieved with a limited number of cuts.

The corresponding computational problem can be described as follows. We are given
an open necklace (i.e., a segment) with n beads of c different colours, i.e., there are ai
beads of colour i and

∑c
i=1 ai = n. Furthermore, assume that for each i, ai is divisible by

k (the number of thieves). The goal is to cut the necklace in (at most) c(k − 1) places and
allocate the pieces to the k thieves, such that every thief gets exactly ai/k beads of colour
i, for each colour i. By Alon’s result [1], a solution always exists, and thus the problem lies
in TFNP.

The complexity of this problem has been an open problem for almost 30 years [32].
While the 2-thieves version is now resolved, the complexity of the problem with k thieves
(k ≥ 3) remains open. The main motivation of the present paper is to investigate the classes
PPA-k, which are believed to be the most likely candidates to capture the complexity of
k-Necklace-Splitting. Indeed, in the conclusion of the paper where they prove that
2-Necklace-Splitting is PPA-complete, Filos-Ratsikas and Goldberg [18, arXiv version]
mention:

“What is the computational complexity of k-thief Necklace-splitting,
for k not a power of 2? As discussed in [30, 12], the proof that it is a total
search problem, does not seem to boil down to the PPA principle. Right now,
we do not even know if it belongs to PTFNP [21].

Interestingly, Papadimitriou in [32] (implicitly) also defined a number of
computational complexity classes related to PPA, namely PPA-p, for a parame-
ter p ≥ 2. [...] Given the discussion above, it could possibly be the case that
the principle associated with Necklace-Splitting for k-thieves is the PPA-k
principle instead.”
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PPA-p. The TFNP subclasses PPA-p were defined by Papadimitriou almost 30 years
ago in his seminal paper [32]. Recall that the existence of a solution to a PPA problem is
guaranteed by a parity argument, i.e., an argument modulo 2. The classes PPA-p are a
generalisation of this. For every prime p, the existence of a solution to a PPA-p problem is
guaranteed by an argument modulo p. In particular, PPA-2 = PPA. Surprisingly, these
classes have received very little attention. As far as we know, they have only been studied
in the following:

• Papadimitriou [32] defined the classes PPA-p and proved that a problem called
Chevalley-mod-p lies in PPA-p and a problem called Cubic-Subgraph lies in
PPA-3.

• In an online thread on Stack Exchange [24], Jeřábek provided two other equivalent
ways to define PPA-3. The problems and proofs can be generalised to any prime p.

• In his thesis [25], Johnson defined the classes PMODk for any k ≥ 2, which were
intended to capture the complexity of counting arguments modulo k. He proved
various oracle separation results involving his classes and other TFNP classes. While
the PPA-p classes are not mentioned by Johnson, using Jeřábek’s results [24] it is
easy to show that PMODp = PPA-p for any prime p. In Section 6, we characterise
PMODk in terms of the classes PPA-p when k is not prime. In particular, we show
that PMODk only partially captures existence arguments modulo k.

Our contribution. In this paper, we use the natural generalisation of Papadimitriou’s
definition of the classes PPA-p to define PPA-k for any k ≥ 2. We then provide a
characterisation of PPA-k in terms of the classes PPA-p. In particular, we show that
PPA-k is completely determined by the set of prime factors of k. In order to gain a better
understanding of the inner structure of the class PPA-k, we also define new subclasses that
we denote PPA-k[#`] and investigate how they relate to the other classes. We show that
PPA-k[#`] is completely determined by the set of prime factors of k/ gcd(k, `).

Furthermore, we provide various equivalent complete problems that can be used to
define PPA-k and PPA-k[#`] (Section 4). While these problems are not “natural”, we
believe that they provide additional tools that can be very useful when proving that natural
problems are complete for these classes. In Section 7, we provide an additional tool for
showing that problems lie in these classes: we prove that PPA-pr (p prime, r ≥ 1) and
PPA-k[#`] (k ≥ 2) are closed under Turing reductions. On the other hand, we provide
evidence that PPA-k might not be closed under Turing reductions when k is not a prime
power.

Finally, in Section 6 we investigate the classes PMODk defined by Johnson [25] and
provide a full characterisation in terms of the classes PPA-k. In particular, we show that
PMODk = PPA-k if k is a prime power. However, when k is not a prime power, we
provide evidence that PMODk does not capture the full strength of existence arguments
modulo k, unlike PPA-k. This characterisation of PMODk in terms of PPA-k leads to
some oracle separation results involving PPA-k and other TFNP classes (using Johnson’s
oracle separation results).

We note that a significant fraction of our results were also obtained by Göös, Kamath,
Sotiraki and Zampetakis in concurrent and independent work [22]. In their work, they
have also provided the first “natural” complete problem for the classes PPA-p (a variant
of Chevalley-mod-p), namely the first complete problem that does not involve circuits
or other computational devices in its description. The present work, and in particular
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the equivalent characterisations of the classes PPA-k, have been pivotal in subsequent
work [19] showing that the k-Necklace-Splitting problem lies in PPA-k under Turing
reductions. However, the question of whether k-Necklace-Splitting is also PPA-k-hard
remains open.

2 Preliminaries

TFNP. Let {0, 1}∗ denote the set of all finite length bit-strings and for w ∈ {0, 1}∗
let |w| be its length. A computational search problem is given by a binary relation
R ⊆ {0, 1}∗×{0, 1}∗. The problem is: given an instance I ∈ {0, 1}∗, find an s ∈ {0, 1}∗ such
that (I, s) ∈ R, or return that no such s exists. The search problem R is in FNP (Functions
in NP), if R is polynomial-time computable (i.e., (I, s) ∈ R can be decided in polynomial
time in |I|+ |s|) and there exists some polynomial p such that (I, s) ∈ R =⇒ |s| ≤ p(|I|).
Thus, FNP is the search problem version of NP (and FNP-complete problems are equivalent
to NP-complete problems under Turing reductions).

The class TFNP (Total Functions in NP [29]) contains all FNP search problems R
that are total : for every I ∈ {0, 1}∗ there exists s ∈ {0, 1}∗ such that (I, s) ∈ R. With a
slight abuse of notation, we can say that P lies in TFNP. Indeed, if a decision problem
is solvable in polynomial time, then both the “yes” and “no” answers can be verified in
polynomial time. In this sense, TFNP lies between P and NP.

Note that TFNP problems are not promise problems, i.e., we are not allowed to restrict
the instance space {0, 1}∗. This means that for any instance in {0, 1}∗, there must always
exist at least one solution. Nevertheless, TFNP can indirectly capture various settings
where the instance space is restricted. For example, if a problem R in FNP is total only on
a subset L of the instances and L ∈ P , then we can transform it into an equivalent TFNP
problem by adding (I, 0) to R for all instances I /∈ L.

Reductions. Let R and S be total search problems in TFNP. We say that R (many-one)
reduces to S, denoted R ≤ S, if there exist polynomial-time computable functions f, g such
that

(f(I), s) ∈ S =⇒ (I, g(I, s)) ∈ R.
Note that if S is polynomial-time solvable, then so is R. We say that two problems R and
S are (polynomial-time) equivalent, if R ≤ S and S ≤ R.

There is also a more general type of reduction. A Turing reduction from R to S is a
polynomial-time oracle Turing machine that solves problem R with the help of queries
to an oracle for S. Note that a Turing reduction that only makes a single oracle query
immediately yields a many-one reduction.

Encoding of Sets. Many of the computational problems we consider in this paper
involve Boolean circuits whose output is interpreted as a set. For example, it will often be
the case that a circuit C takes as input a bit-string in {0, 1}n and outputs a set of at most
m bit-strings in {0, 1}n. We will denote this by C : {0, 1}n → Set≤m({0, 1}n). Of course, a
Boolean circuit has a fixed number of output bits and so the circuit will in fact be of the
form C : {0, 1}n → {0, 1}t, for some t that is sufficiently large so that there are enough bits
to encode any set of size at most m. It is easy to see that taking t = mn+ 1 is enough.
Indeed, we can for example use the following encoding: the set {x1, . . . , x`} ⊆ {0, 1}n,
` ≤ m, is represented by the bit-string x1 · · ·x`10(m−`)n ∈ {0, 1}mn+1. Clearly, we can
efficiently check whether a bit-string in {0, 1}mn+1 is a valid representation of a set, and if
not, we can just interpret it as the empty set ∅ ⊂ {0, 1}n.
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PPA. The class PPA (Polynomial Parity Argument) [32] is defined as the set of all
TFNP problems that many-one reduce to the problem Leaf [32, 3]: given an undirected
graph with maximum degree 2 and a leaf (i.e., a vertex of degree 1), find another leaf. The
important thing to note is that the graph is not given explicitly (in which case the problem
would be very easy), but it is provided implicitly through a succinct representation.

The vertex set is {0, 1}n and the undirected graph is represented by a Boolean circuit
C : {0, 1}n → Set≤2({0, 1}n). By this we mean that for any x ∈ {0, 1}n, we interpret C(x)
as the set of potential neighbours of x, where we syntactically enforce that x /∈ C(x). We
say that there is an edge between x and y if x ∈ C(y) and y ∈ C(x). Thus, every vertex
has at most two neighbours. Note that the size of the graph can be exponential with
respect to its description size.

The full formal definition of the problem Leaf is: given a Boolean circuit C :
{0, 1}n → Set≤2({0, 1}n) representing an undirected graph on the vertex set {0, 1}n such
that |C(0n)| = 1 (i.e., 0n is a leaf), find

• x 6= 0n such that |C(x)| = 1 (another leaf)

• or x, y such that x ∈ C(y) but y /∈ C(x) (an inconsistent edge)

Type 2 Problems and Oracle Separations. We work in the standard Turing machine
model, but TFNP subclasses have also been studied in the black-box model. In this model,
one considers the type 2 versions of the problems, namely, the circuits in the input are
replaced by black-boxes. In that case, it is possible to prove unconditional separations
between type 2 TFNP subclasses (in the standard model this would imply P 6= NP). The
interesting point here is that separations between type 2 classes yield separations of the
corresponding classes in the standard model with respect to any generic oracle (see [3] for
more details on this). This technique has been used to prove various oracle separations
between TFNP subclasses [3, 31, 4, 5]. In Section 6 we provide some oracle separations
involving PPA-k and other TFNP subclasses.

On the other hand, any reduction that works in the type 2 setting, also works in
the standard setting. Indeed, it suffices to replace the calls to the black boxes by the
corresponding circuits that compute them. In this paper, our reductions are stated in the
standard model, but they also work in the type 2 setting, because they don’t examine the
inner workings of the circuits.

3 Definition of the Classes

3.1 PPA-k : Polynomial Argument modulo k

For any prime p, Papadimitriou [32] defined the class PPA-p as the set of all TFNP
problems that many-one reduce to the following problem, that we call Bipartite-mod-p:
We are given an undirected bipartite graph (implicitly represented by a circuit) and a
vertex with degree 6= 0 mod p (which we call the trivial solution). The goal is to find
another such vertex. This problem lies in TFNP: if all other vertices had degree = 0
mod p, then the sum of the degrees of all vertices on each side would have a different value
modulo p, which is impossible.

The problem remains well-defined and total if p is not a prime, and so we will instead
define it for any k ≥ 2. Let us now provide a formal definition of the problem. A vertex
of the bipartite graph is represented as a bit-string in {0, 1} × {0, 1}n, where the first bit
indicates whether the vertex lies on the “left” or “right” side of the bipartite graph. The
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graph will be represented by a Boolean circuit that outputs a set of potential neighbours,
just as we did for Leaf. Instead of at most two neighbours, here we allow at most k
neighbours (see Remark 1 for why this is enough). Note that we can syntactically enforce
that the graph is bipartite, i.e., that a vertex 0x can only have neighbours of the type 1y
and vice versa.

Definition 1 (Bipartite-mod-k [32]). Let k ≥ 2. The problem Bipartite-mod-k is
defined as: given a Boolean circuit C : {0, 1}×{0, 1}n → Set≤k({0, 1}×{0, 1}n) representing
a bipartite graph on the vertex set ({0}×{0, 1}n, {1}×{0, 1}n) with |C(00n)| ∈ {1, . . . , k−1},
find

• x 6= 00n such that |C(x)| /∈ {0, k}

• or x, y such that y ∈ C(x) but x /∈ C(y).

Here the trivial solution is the vertex 00n. The first type of solution corresponds to
a vertex with degree 6= 0 mod k. The second type of solution corresponds to an edge
that is not well-defined. We can always ensure that all edges are well-defined by doing
some pre-processing. Indeed, in polynomial time we can construct a circuit C ′ such that
all solutions are of the first type and yield a solution for C. On input 0x the circuit C ′

first computes C(0x) = {1y1, . . . , 1ym} and then for each i removes 1yi from this set, if
0x /∈ C(1yi).

Remark 1. Note that in this problem statement we require that all degrees lie in {0, 1, . . . , k}.
This is easily seen to be equivalent to the more general formulation where vertices can
have more than k neighbours. Indeed, any vertex that has more than k edges can be split
into multiple copies such that all the copies have 0 or k edges, except for one copy which is
allowed to have any number of edges in {0, 1, . . . , k}. A solution of the original instance
is then easily recovered from a solution of this modified instance. Note that since the
set of neighbours is given as the output of a circuit, it will have length bounded by some
polynomial in the input size and so this argument can indeed be applied.

Definition 2 (PPA-k [32]). For any k ≥ 2, the class PPA-k is defined as the set of all
TFNP problems that many-one reduce to Bipartite-mod-k.

As a warm-up let us show the following:

Proposition 1 ([32]). PPA-2 = PPA

Proof. Recall that PPA can be defined using the canonical complete problem Leaf [32, 3]:
given an undirected graph where every vertex has degree at most 2, and a leaf (i.e., degree
= 1), find another leaf. This immediately yields PPA-2 ⊆ PPA, since Bipartite-mod-2 is
just a special case of Leaf where the graph is bipartite.

Given an instance of Leaf with graph G = ({0, 1}n, E) we construct an instance of
Bipartite-mod-2 on the vertex set {0, 1} × {0, 1}2n as follows. For any u ∈ {0, 1}n we
have a vertex xu := 0u0n on the left side of the bipartite graph. For any edge {u, v} ∈ E
(u, v ordered lexicographically) we have a vertex yuv := 1uv on the right side of the bipartite
graph and we create the edges {xu, yuv} and {xv, yuv}. All other vertices in {0, 1}×{0, 1}2n
are isolated. In polynomial time we can construct a circuit that computes the neighbours
of any vertex. Furthermore, w ∈ {0, 1}n is a leaf, if and only if xw has degree 1. Finally,
all vertices on the right-hand side have degree 0 or 2.
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3.2 PPA-k[#`] : Fixing the degree of the trivial solution

In the definition of the PPA-k-complete problem Bipartite-mod-k (Definition 1) the
degree of the trivial solution 00n can be any number in {1, . . . , k − 1}. In this section we
define more refined classes where the degree of the trivial solution is fixed. In Section 5,
these classes will be very useful to describe how the PPA-k classes relate to each other.
These definitions are inspired by the corresponding “counting principles” studied in Beame
et al. [2] that were also defined in a refined form in order to describe how they relate to each
other. We believe that these refined classes will also be useful to capture the complexity of
natural problems. Note that for k = 2, the degree of the trivial solution will always be 1
and thus the question does not even appear in the study of PPA.

Definition 3. Let k ≥ 2 and 1 ≤ ` ≤ k−1. The problem Bipartite-mod-k[#`] is defined
as Bipartite-mod-k (Definition 1) but with the additional condition |C(00n)| = `.

Note that this problem remains in TFNP, since the condition can be checked efficiently.

Definition 4 (PPA-k[#`]). Let k ≥ 2 and 1 ≤ ` ≤ k − 1. The class PPA-k[#`] is defined
as the set of all TFNP problems that many-one reduce to Bipartite-mod-k[#`].

If k is some prime p, then these classes are not interesting. Indeed, it holds that
PPA-p[#`] = PPA-p for all 1 ≤ ` ≤ p− 1. This can be shown using the following technique:
take multiple copies of the instance and “glue” the trivial solutions together. If p is prime,
then any other degree of the glued trivial solution can be obtained (by taking the right
number of copies). In fact this technique yields the stronger result:

Lemma 1. If gcd(k, `1) divides `2, then PPA-k[#`1] ⊆ PPA-k[#`2].

Proof. Since gcd(k, `1) divides `2, there exists m < k such that m× `1 = `2 mod k. Given
an instance of Bipartite-mod-k[#`1], take the union of m copies of the instance, i.e.,
m2n vertices on each side (and any additional isolated vertices needed to reach a power of
2). Then, merge the m different copies of the trivial solution into one (by redirecting edges
to a single one). This vertex will have degree m`1 = `2 mod k. Finally, apply the usual
trick to ensure all degrees are in {0, 1, . . . , k} (Remark 1).

In particular, we also get the nice result PPA-k[#`] = PPA-k[# gcd(k, `)]. Applying
the result to the case k = 6, we get that PPA-6[#1] = PPA-6[#5], PPA-6[#2] = PPA-
6[#4], as well as PPA-6[#1] ⊆ PPA-6[#2] and PPA-6[#1] ⊆ PPA-6[#2]. Thus, we have
three “equivalence classes” {1, 5}, {2, 4} and {3} and the relationships {1, 5} ≤ {2, 4} and
{1, 5} ≤ {3}. In Section 5, we will show that {2, 4} corresponds to PPA-3, {3} to PPA-2
and {1, 5} to PPA-2 ∩ PPA-3.

Now let us introduce some notation that will allow us to precisely describe the relation-
ship between PPA-k and the PPA-k[#`].

Definition 5 (& operation [5]). Let R0 and R1 be two TFNP problems. Then the problem
R0 &R1 is defined as: given an instance I0 of R0, an instance I1 of R1 and a bit b ∈ {0, 1},
find a solution to Ib.

This operation is commutative and associative (up to many-one equivalence). Indeed,
R0 &R1 is many-one equivalent to R1 &R0, and (R0 &R1) &R2 is many-one equivalent to
R0 &(R1 &R2). Since the & operation is associative, the problem &k

`=1R` is well-defined
up to many-one equivalence. It is also equivalent to the following problem: given instances
I1, . . . , Ik of R1, . . . , Rk and an integer j ∈ {1, . . . , k}, find a solution to Ij .
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We extend the & operation to TFNP subclasses in the natural way. Let C0 and C1 be
TFNP subclasses with complete problems R0 and R1 respectively. Then C0 &C1 is the
class of all TFNP problems that many-one reduce to R0 &R1. Note that the choice of
complete problems does not matter. Intuitively, this class contains all problems that can
be solved in polynomial time by a Turing machine with a single oracle query to either C0

or C1.
Using this definition we obtain:

Lemma 2. For all k ≥ 2 we have PPA-k =
k−1
&
`=1

PPA-k[#`].

Proof. One containment immediately follows from the fact that PPA-k[#`] ⊆ PPA-k
for all ` ∈ {1, . . . , k − 1}. For the other containment, note that for any instance I of
Bipartite-mod-k we can easily compute ` ∈ {1, . . . , k− 1} such that I is also an instance
of Bipartite-mod-k[#`].

Together with Lemma 1, Lemma 2 yields, e.g., PPA-6 = PPA-6[#2] & PPA-6[#3].

4 Equivalent Definitions

In this section we show that PPA-k can be defined by using other problems instead of
Bipartite-mod-k. The totality of these problems is again based on arguments modulo k.
By showing that these problems are indeed PPA-k-complete, we provide additional support
for the claim that PPA-k captures the complexity of “polynomial arguments modulo k”.
While these problems are not “natural” and thus not interesting in their own right, they
provide equivalent ways of defining PPA-k, which can be very useful when working with
these classes. In particular, we make extensive use of these equivalences in this work.

The TFNP problems we consider are the following:

• Imbalance-mod-k : given a directed graph and a vertex that is unbalanced-mod-k,
i.e., out-degree − in-degree 6= 0 mod k, find another such vertex.

• Hypergraph-mod-k : given a hypergraph and a vertex that has degree 6= 0 mod k,
find another such vertex or a hyperedge that has size 6= k.

• Partition-mod-k : given a set of size 6= 0 mod k and a partition into subsets, find
a subset that has size 6= k.

As usual, the size of the graph (respectively hypergraph, set) can be exponential in the
input size, and the edges (resp. hyperedges, subsets) can be computed efficiently locally. We
also define the corresponding problems Imbalance-mod-k[#`], Hypergraph-mod-k[#`]
and Partition-mod-k[#`] analogously. The formal definitions of all these problems are
provided in Section 4.1.

Theorem 1. Let k ≥ 2 and 1 ≤ ` ≤ k − 1.

• Imbalance-mod-k[#`], Hypergraph-mod-k[#`], Partition-mod-k[#`] are PPA-
k[#`]-complete,

• Imbalance-mod-k, Hypergraph-mod-k, Partition-mod-k are PPA-k-complete.
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In his online post [24], Jeřábek proves that Bipartite-mod-3, Imbalance-mod-3
and Partition-mod-3 are equivalent and (correctly) claims that the proof generalises to
any other prime. Thus, our contribution is the definition of the problems for any k ≥ 2
(and the `-parameter versions) and the generalisation of the result to any k ≥ 2 (not only
primes) and to the `-parameter versions of the problems, as well as to the new problem
Hypergraph-mod-k. The proof of Theorem 1 can be found in Section 4.2.

The problem Imbalance-mod-k is a generalisation of the PPAD-complete problem
Imbalance [3, 20] : given a directed graph and a vertex that is unbalanced (i.e., out-degree
− in-degree 6= 0), find another unbalanced vertex. It is known [20] that in Imbalance we
can assume without loss of generality that the given vertex has imbalance exactly 1. As
a result, Imbalance trivially reduces to Imbalance-mod-k, and thus Theorem 1 also
yields1:

Corollary 1. For all k ≥ 2, we have PPAD ⊆ PPA-k.

Furthermore, if we use the convention that a = b mod 0 if and only if a = b, then
Imbalance-mod-0 actually corresponds to Imbalance. Thus, in a certain sense we could
define PPA-0 = PPAD. On the other hand, Imbalance-mod-1 is a trivial problem.

4.1 Formal definitions

Imbalance. A directed graph on the vertex set {0, 1}n is represented by Boolean circuits
S, P : {0, 1}n → Set≤k({0, 1}n) that output the successor and predecessor set of a given
vertex, respectively. As before, it is enough to consider the case where the in- and out-degree
of any vertex is at most k, since the general case reduces to this (analogously to Remark 1).
We syntactically enforce that x /∈ S(x) ∪ P (x) and we interpret S(x) (respectively, P (x))
as the set of potential successors (respectively, predecessors) of x. There is a directed edge
from x to y if y ∈ S(x) and x ∈ P (y). The following problem was defined by Jeřábek [24],
but only for prime k and without the `-parameter version.

Definition 6. Let k ≥ 2. The problem Imbalance-mod-k is defined as: given Boolean
circuits S, P : {0, 1}n → Set≤k({0, 1}n) representing a directed graph on the vertex set
{0, 1}n with |S(0n)| − |P (0n)| /∈ {−k, 0, k}, find

• x 6= 0n such that |S(x)| − |P (x)| /∈ {−k, 0, k}

• or x, y such that y ∈ S(x) but x /∈ P (y), or y ∈ P (x) but x /∈ S(y).

For 1 ≤ ` ≤ k − 1, Imbalance-mod-k[#`] is defined with the additional condition
|S(0n)| − |P (0n)| = `.

Hypergraph. A hypergraph on the vertex set {0, 1}n is represented as follows. For every
vertex x ∈ {0, 1}n, a circuit C : {0, 1}n → Set≤k(Set≤k({0, 1}n)) outputs the set C(x) of all
hyperedges containing x, where each hyperedge is a set of vertices in {0, 1}n. As usual, we
only need to consider the case where every vertex is contained in at most k hyperedges and
every hyperedge has size at most k. A hyperedge {x1, . . . , xm} exists in the hypergraph, if
all the vertices involved indeed agree that it is present, i.e., if {x1, . . . , xm} ∈ C(xi) for all
i ∈ {1, . . . ,m}.

Definition 7. Let k ≥ 2. The problem Hypergraph-mod-k is defined as: given a Boolean
circuit C : {0, 1}n → Set≤k(Set≤k({0, 1}n)) representing a hypergraph on the vertex set
{0, 1}n with |C(0n)| /∈ {0, k}, find

1This observation was also made by Jeřábek for the classes PPA-p (p prime).
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• x 6= 0n such that |C(x)| /∈ {0, k}

• or x such that C(x) contains a hyperedge of size 6= k

• or x, y such that C(x) and C(y) are not consistent with one another.

For 1 ≤ ` ≤ k − 1, Hypergraph-mod-k[#`] is defined with the additional condition
|C(0n)| = `.

Note that for k = 2 this problem essentially corresponds to the PPA-complete problem
Leaf and its (equivalent) generalisation Odd [32, 3]: given an undirected graph and a
vertex with odd degree, find another one.

Partition. A partition of {0, 1}n is represented by a Boolean circuit C : {0, 1}n → {0, 1}n
as follows: x ∈ {0, 1}n lies in the subset given by the orbit of x with respect to C, i.e.,
{Ci(x) : i ≥ 0}, where Ci(x) = C(C(. . . C(x)) . . . ) (i times). The problem we define below
is based on the simple observation that a base set of size 6= 0 mod k cannot be partitioned
into sets of size k. The base set consists of all elements in {0, 1}n except for m elements that
have been removed, for some m < 2n such that 2n −m 6= 0 mod k. Here it is convenient
to identify {0, 1}n with {0, 1, . . . , 2n − 1} in the natural way. Thus, we can think of the
base set as simply being {m,m+ 1, . . . , 2n − 1}.

Definition 8 (Partition-mod-k). Let k ≥ 2. The problem Partition-mod-k is defined
as: given m < 2n with 2n −m 6= 0 mod k and a Boolean circuit C : {0, 1}n → {0, 1}n,
such that C(x) = x for all x < m, find

• x ≥ m and d ∈ N such that Cd(x) = x and d|k, d 6= k

• or x ∈ {0, 1}n such that Ck(x) 6= x

where d|k means that d divides k.
For 1 ≤ ` ≤ k − 1, Partition-mod-k[#`] is defined with the additional condition

2n −m = ` mod k.

The condition “C(x) = x for all x < m” corresponds to excluding elements that do not
lie in the base set and it can be enforced syntactically. The first solution type corresponds
to finding a set in the partition such that its size divides k (but is 6= k), while the second
solution type corresponds to finding a set such that its size does not divide k. Note that a
solution is guaranteed to exist since 2n −m 6= 0 mod k.

The definition of this problem is inspired by the MODk problems defined by Buss and
Johnson [5] (for prime k > 2) and by Johnson [25] (for any k ≥ 2). In Section 6 we argue
that, unlike the problem defined above, the MODk problems only partially capture the
complexity of arguments modulo k (when k is not a prime power). The problem was
also defined by Jeřábek [24], but only for k prime and without the `-parameter version.
Finally, note that Partition-mod-2 essentially corresponds to the PPA-complete problem
Lonely [3].

The definition of this problem can be modified in various ways without changing its
complexity. For instance, the first solution type can be changed to simply ask for x ≥ m
such that Cd(x) = x for some d < k. We have defined the problem in a slightly more
complicated way to make the connection with the MODk problems more immediate (see
Section 6). Yet another equivalent way of defining the problem would be to consider a
Boolean circuit C : {0, 1}n → Set≤k({0, 1}n) where C(x) ⊆ {0, 1}n is interpreted as the set
containing x in the partition. A solution would then be any x ≥ m with |C(x)| < k or any
x, y witnessing an inconsistency in the partition given by C.
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4.2 Proof of Theorem 1

We omit some details that are easy to fill in. For example, when given an instance of
Imbalance-mod-k[#`], we assume that all the edges are well-defined, i.e., solutions of the
second type never occur. Indeed, given a generic instance of the problem, it can be reduced
to an instance where this holds by modifying the circuits so that they check and correct the
successor/predecessor list before outputting it. Note that in the new instance only solutions
of the first type can occur, but they can yield a solution of the second type of the original
problem. The same observation also holds for Bipartite-mod-k[#`] (edges well-defined),
Hypergraph-mod-k[#`] (hyperedges well-defined) and Partition-mod-k[#`] (size of
any subset divides k).

Bipartite-mod-k[#`] ≤ Hypergraph-mod-k[#`] : We construct a hypergraph on
the vertex set {0, 1}n. We identify every vertex u of the hypergraph with the vertex 0u on
the left-hand side of the bipartite graph. The hyperedges are given by the vertices on the
right-hand side of the bipartite graph. More precisely, if for every right-hand side vertex 1v
we let N(1v) be the set of neighbours (on the left-hand side), then the set of hyperedges is
exactly {N(1v) : v ∈ {0, 1}n}. Note that given u ∈ {0, 1}n, we can find all the hyperedges
containing u in polynomial time. Furthermore, since the vertex 00n has degree ` in the
bipartite graph, the corresponding vertex 0n in the hypergraph will also have degree `. It is
easy to check that any solution of the Hypergraph-mod-k[#`] instance (in particular also
any hyperedge that does not have size k) yields a solution to the Bipartite-mod-k[#`]
instance.

Hypergraph-mod-k[#`] ≤ Imbalance-mod-k[#`] : We construct a directed graph
on the vertex set {0, 1}kn+2. For each vertex u of the hypergraph there is a vertex vu in the
directed graph (e.g., vu = 0u0(k−1)n+1) and for each hyperedge e of the hypergraph there
is a vertex ve in the directed graph (e.g., ve = 1u1 . . . um10(k−m)n where e = {u1, . . . , um}
is ordered lexicographically). We put a directed edge from vu to ve iff u ∈ e (i.e., iff e
appears in the hyperedge list of u). All other vertices are isolated. Note that 0kn+2 = v0n

has imbalance ` and for any vertex in {0, 1}kn+2 we can compute the predecessors and
successors in polynomial time. If there is an imbalance modulo k in a vertex ve, then the
corresponding hyperedge e does not have size k. If there is an imbalance modulo k in a
vertex vu, then u has degree 6= 0 mod k in the hypergraph.

Imbalance-mod-k[#`] ≤ Partition-mod-k[#`] : Consider an instance of the prob-
lem Imbalance-mod-k[#`]. Split every vertex v into two vertices vin and vout, such that
vin gets all the incoming edges and vout gets all the outgoing edges. If v was balanced, i.e.,
in-deg(v) = out-deg(v) = d, then we add k− d edges from vout to vin. We can assume that
out-deg(0n) = ` and in-deg(0n) = 0 (just create a copy of 0n that takes in-deg(0n) incoming
and outgoing edges), and thus out-deg(0nout) = ` and in-deg(0nin) = 0. Note that we are
using multi-edges, which are not allowed in the definition of the problem. However, this is
not an issue, since this is just an intermediate step of the reduction. This new instance
has the property that no vertex has both incoming and outgoing edges. Furthermore, any
solution (i.e., a vertex with in- or out-degree not in {0, k}, except 0nout) yields a solution of
the original instance.

Thus, we can assume wlog that the Imbalance-mod-k[#`] instance (with multi-edges)
is such that no vertex has both incoming and outgoing edges. We construct an instance
of Partition-mod-k[#`] on the set {0, 1}k+n. Every vertex u of the directed graph has
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k corresponding elements in the set {0, 1}k+n, namely u1 = 10k−1u, . . . , uk = 0k−11u.
If u does not have any outgoing edges, then u1, . . . , uk form a subset of the partition,
i.e., C(ui) = ui+1 mod k. If u has outgoing edges to v(1), v(2), . . . , v(j) (j ≤ k, ordered
lexicographically), then for every i = 1, . . . , j we put ui in a subset that we denote Sv(i) .
uj+1, . . . , uk are put into isolated subsets, i.e., C(ui) = ui for all i = j + 1, . . . ,m. Note
that if v has k incoming edges, then Sv will contain k elements. Given any element ui, we
can compute all the elements in its subset in polynomial time (and thus efficiently construct
C that cycles through them in lexicographic order). Furthermore, since out-deg(0n)
= `, the vertices 0n`+1, . . . , 0

n
k will be in singleton sets. Consider the subset of {0, 1}k+n

X = {ui : u ∈ {0, 1}n, i ∈ {1, . . . , k}} \ {0n`+1, . . . , 0
n
k}. Then |X| = k2n − (k − `) = `

mod k. It is easy to check that any element in X that is not contained in a subset of
size k (according to C), must yield a solution to the Imbalance-mod-k[#`] instance.
Finally, the last step is to construct an efficient bijection between X and the set of all
integers {j : 2n+k − |X| ≤ j < 2n+k}, which is easy to do. Thus, we have reduced the
original instance to an instance of Partition-mod-k[#`] with inputs m = 2n+k − |X| and
C (modified according to the bijection).

Partition-mod-k[#`] ≤ Bipartite-mod-k[#`] : Let us consider any instance (C,m)
of Partition-mod-k[#`] with parameter n. In particular, it holds that m < 2n and
2n −m = ` mod k. We construct a bipartite graph as follows. The vertex sets on the left
and right side are A = {0, 1}n and B = {0, 1}n respectively. We can define a canonical
partition of the numbers m,m + 1, . . . , 2n − 1 into sets of size k (and one set of size `).
For example, {m,m+ 1, . . . ,m+ `− 1}, {m+ `,m+ `+ 1, . . . ,m+ `+ k − 1}, etc. Each
set of the canonical partition corresponds to a vertex in A as follows: a set containing k
numbers x1 < x2 < · · · < xk is represented by the vertex x1 ∈ A. For the set of size ` in
the canonical partition, we introduce a special case: it is represented by 0n ∈ A. Note that
many vertices in A will not correspond to any set of the canonical partition. For a number
x ≥ m, we let L(x) ∈ A denote the vertex in A representing the set containing x in the
canonical partition.

Another partition of the numbers m,m + 1, . . . , 2n − 1 into sets of size at most k is
given by the instance (C,m) of Partition-mod-k[#`]. Similarly to what we did above,
we can associate each set in the partition given by C with a vertex in B. We let R(x) ∈ B
denote the vertex of B representing the set containing x in the partition given by C. Note
that for any vertex in A or B we can efficiently determine whether it represents a set of
one of the two partitions and if so, which set exactly it represents.

For every x ≥ m we add an edge between L(x) ∈ A and R(x) ∈ B, i.e., between the
sets that contain x in the two different partitions. This construction might introduce
multi-edges (if some x and y lie in the same set in both partitions) but this can easily be
resolved by using the Mitosis gadgets described below. It is easy to see that for any vertex
of the bipartite graph we can efficiently compute the set of all its neighbours. Finally,
note that the vertex 0n ∈ A has degree `, and any other vertex with degree 6= 0 mod k
must necessarily lie in B and correspond to a set in the partition given by C that contains
strictly less than k elements. Thus any such vertex immediately yields a solution to the
original Partition-mod-k[#`] instance.

Mitosis gadgets. Let k ≥ 2. We now show how to construct a small bipartite graph
such that exactly one vertex on each side has degree 1 and all other vertices have degree k
(or 0). This “gadget” can then be used to increase the degree of two vertices (one on each
side of the bipartite graph) without adding any solutions, i.e., vertices with degree 6= 0
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mod k.
The gadget is a bipartite graph with k + 1 vertices on each side: a1, . . . , ak+1 and

b1, . . . , bk+1. It contains all the edges {ai, bj} for i, j ≤ k, except the edge {ak, bk}. It also
contains the edges {ak, bk+1} and {ak+1, bk}. Thus, all vertices have degree k, except for
ak+1 and bk+1 which have degree 1.

We call this the “Mitosis” gadget, because it allows us to duplicate edges that already
exist. Let u and v be two vertices in a bipartite graph, one on each side. Furthermore,
consider the case where there is an edge {u, v}. We would like to increase the degree of u
and v by 1, but without introducing any new solutions, in particular without introducing
any vertex with degree 6= 0 mod k. Using the Mitosis gadget, we can just add new
vertices a1, . . . , ak and b1, . . . , bk, and identify ak+1 with u and bk+1 with v. Adding the
corresponding vertices of the gadget yields a bipartite graph where the degree of u and v
has increased by 1, but no new solutions have been introduced. Note that this gadget can,
in particular, be used to turn a bipartite graph with multi-edges into one without them,
without changing the degree of existing vertices and without adding any new solutions.

5 Relationship Between the Classes

In this section, we present some results that provide deeper insights into how the classes
relate to each other. For any k ≥ 2, PF(k) denotes the set of all prime factors of k. The
main conceptual result is that PPA-k is entirely determined by the set of prime factors of
k:

Theorem 2. For any k ≥ 2 we have PPA-k = &
p∈PF(k)

PPA-p.

This equation can be understood as saying the following:

• Given a single query to an oracle for PPA-k, we can solve any problem in PPA-p for
any p ∈ PF(k)

• Given a single query to an oracle that solves any PPA-p problem for any p ∈ PF(k),
we can solve any problem in PPA-k.

Corollary 2. In particular, we have:

• For k1, k2 ≥ 2, if PF(k1) ⊆ PF(k2), then PPA-k1 ⊆ PPA-k2.

• For all k1, k2 ≥ 2, PPA-k1k2 = PPA-k1 & PPA-k2.

• For all k ≥ 2 and all r ≥ 1 we have PPA-kr = PPA-k.

Using the PPA-k[#`] classes, we can formulate an even stronger and more detailed
result. For any k ≥ 2, 1 ≤ ` ≤ k− 1, we define PF(k, `) = PF(k/ gcd(k, `)). In this case the
conceptual result says that PPA-k[#`] is entirely determined by the set of prime factors of
k/ gcd(k, `).

Theorem 3. For any integer constants k and ` with k ≥ 2 and 0 < ` < k, it holds that

PPA-k[#`] = PPA-

 ∏
p∈PF(k,`)

p

 [#1] =
⋂

p∈PF(k,`)

PPA-p.

The proof of Theorem 3 can be found in the next section. Before we move on to that,
let us briefly show that Theorem 2 follows from Theorem 3.
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Proof of Theorem 2. Using Lemma 2 and Theorem 3 we can write

PPA-k =
k−1
&
`=1

PPA-k[#`] =
k−1
&
`=1

 ⋂
p∈PF(k,`)

PPA-p

 = &
p∈PF(k)

PPA-p

where the last equality follows by noting that PF(k, `) ⊆ PF(k) for all `, and PF(k, k/p) =
{p} for all p ∈ PF(k).

5.1 Proof overview

Proof of Theorem 3. All containment results follow from Theorem 4 below, except

PPA-

 ∏
p∈PF(k,`)

p

 [#1] ⊇
⋂

p∈PF(k,`)

PPA-p.

Let PF(k, `) = {p1, . . . , pd}. We will show how to combine a set of instances (C1,m1),
. . . , (Cd,md), where (Ci,mi) is an instance of Partition-mod-pi[#1], into a single instance
of Partition-mod-s[#1], where s = p1p2 · · · pd, such that any solution to this instance
yields a solution to one of the (Ci,mi) instances. Without loss of generality, we can
assume that the parameter n is the same for all (Ci,mi) instances. Without loss of
generality, we can assume that 2n −mi = 1 mod s for all i, because we can add at most∏
j 6=i pi sets of size pi to achieve this (see the proof of Lemma 5). Note that we then have

(2n−m1)(2n−m2) · · · (2n−md) = 1 mod s. Furthermore, for (x1, . . . , xd) and (y1, . . . , yd)
with xi, yi ≥ mi we can define x ≡ y if and only if xi ≡i yi for all i, where xi ≡i yi means
that xi and yi lie in the same set in instance (Ci,mi). If for all i, xi lies in a set of size pi
in (Ci,mi), then x will lie in a set of size s. Thus any solution yields a solution to one of
the original instances. The details to fully formalise this are very similar to the proof of
Lemma 6.

In [2] Beame et al. investigated the relative proof complexity of so-called “counting
principles”. These counting principles are formulas that represent the fact that a set of size
6= 0 mod k cannot be partitioned into sets of size k. They investigated the relationship
between these principles in terms of whether one can be proved from the other by using a
constant-depth, polynomial-size Frege proof. Their main result is a full characterisation of
when this is possible or not. As noted by Johnson [25], these counting formulas do not
yield NP search problems, but they can be related to corresponding NP search problems
(TFNP, in fact). Indeed, Johnson uses this connection to obtain some separation results
between his PMODk classes (see Section 6) from Beame et al.’s negative results. Our
contribution is using Beame et al.’s positive results in order to prove inclusion results about
the PPA-k[#`] classes. More precisely, we modify their proofs to obtain polynomial-time
reductions between our Partition-mod-k[#`] problems. Thus, we obtain the following
analogous result:

Theorem 4. Let k1, k2 ≥ 2 and 0 < `i < ki for i = 1, 2. If PF(k2, `2) ⊆ PF(k1, `1), then
PPA-k1[#`1] ⊆ PPA-k2[#`2].

Proof. From Lemma 1 we know that PPA-ki[#`i] = PPA-ki[# gcd(ki, `i)] for i = 1, 2. The
result then follows from a few technical lemmas proved in Appendix A:
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PPA-k1[# gcd(k1, `1)] ⊆
L 5

PPA-
k1

gcd(k1, `1)
[#1] ⊆

L 6
PPA-

k2
gcd(k2, `2)

[#1]

⊆
L 4

PPA-k2[# gcd(k2, `2)]

6 Johnson’s PMODk Classes and Oracle Separations

Inspired by the definition of the PPA-complete problem Lonely [3], Buss and Johnson [5]
defined TFNP problems called MODp to represent arguments modulo some prime p. Their
main motivation was to use these problems to show separations (in the type 2 setting)
between Turing reductions with m oracle queries and Turing reductions with m+ 1 oracle
queries. In his thesis [25], Johnson generalised the definition of MODk to any k ≥ 2 and
defined corresponding classes PMODk. He also proved some separations between these
classes and other TFNP classes in the type 2 setting (which yield oracle separations in the
standard setting). It seems that Johnson was not aware of Papadimitriou’s [32] PPA-p
classes.

In this section, we study the classes PMODk and prove a characterisation in terms of
the classes PPA-p. In particular, we show that PMODk does not capture the full strength
of arguments modulo k, when k is not a prime power. This characterisation also allows us
to use Johnson’s separations to obtain some oracle separations involving PPA-k and other
TFNP classes.

Informally, the problem MODk can be defined as follows. We are given a partition of
{0, 1}n into subsets and the goal is to find one of these subsets that has size 6= k. If k
is not a power of 2, then such a subset must exist. If k is a power of 2, then we instead
consider {0, 1}n \ {0n} and the problem remains total.

Definition 9 (MODk [5, 25]). Let k ≥ 2. The problem MODk is defined as: given a
Boolean circuit C with n inputs and outputs,

• If k is not a power of 2: Find

– x ∈ {0, 1}n and d ∈ N such that Cd(x) = x and d|k, d 6= k

– or x ∈ {0, 1}n such that Ck(x) 6= x

• If k is a power of 2: Let additionally C(0n) = 0n and find

– x ∈ {0, 1}n \ {0n} and d ∈ N such that Cd(x) = x and d|k, d 6= k

– or x ∈ {0, 1}n such that Ck(x) 6= x

where C`(x) = C(C(. . . C(x)) . . . ) (` times) and d|k means that d divides k.

Definition 10 (PMODk [25]). For any k ≥ 2, the class PMODk is defined as the set of
all TFNP problems that many-one reduce to MODk.

Note that the problem MODk is a special case of our problem Partition-mod-k
(which was indeed inspired by this definition). As a result, we immediately get that
PMODk ⊆ PPA-k. Unless k is a prime power, we don’t expect this to hold with equality.
The intuition is that restricting the size of the base set to always be a power 2 has the
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effect of only achieving a subset of the possible `-parameter values of PPA-k[#`]. Namely,
only ` ∈ {2n mod k : n ∈ N} are achieved (for k not a power of 2).

Johnson proves a lemma [25, Lemma 7.4.5] that gives some idea of how the PMODk

classes relate to each other. It can be stated as follows: if k = p1p2 . . . pr, where the pi are
distinct primes, then PMODk = ∩iPMODpi . He proves this if all pi 6= 2 and claims that
the proof also works if some pi = 2. However, if some pi = 2 then the proof does not work.
This is easy to see, since our results below prove that PMOD6 = PMOD3 which is not
equal to PMOD2 ∩ PMOD3, unless PMOD2 ⊆ PMOD3. However, Johnson proves that
PMOD2 6⊆ PMOD3 in the type 2 setting.

The following result provides a full characterisation of PMODk in terms of the classes
PPA-p.

Theorem 5. Let k ≥ 2.

• If k is not a power of 2, then PMODk = PPA-k̃[#1] = ∩
p∈PF(k̃)PPA-p where k̃ is the

largest odd divisor of k.

• If k is a power of 2, then PMODk = PPA-2.

The proof of Theorem 5 is given below in Section 6.1.

Corollary 3. In particular, we have:

• for all primes p and r ≥ 1, PMODpr = PPA-pr = PPA-p

• for all k ≥ 2, PMOD2k = PMODk

• for all odd k ≥ 3, PMODk = PPA-k[#1] = ∩p∈PF(k)PPA-p

If k is a prime power, then PMODk is the same as PPA-k. However, for other values of k,
we argue that PMODk fails to capture the full strength of arguments modulo k. For example,
PMOD15 = PPA-15[#1] = PPA-3 ∩ PPA-5, whereas PPA-15 = PPA-3 & PPA-5. This
means that PPA-15 can solve any problem that lies in PPA-3 or PPA-5, while PMOD15 can
only solve problems that lie both in PPA-3 and PPA-5. In particular, if PMOD15 = PPA-15,
then it would follow that PPA-3 = PPA-5, which is not believed to hold (see oracle
separations below). Even worse perhaps, is the fact that PMOD2k = PMODk for any
k ≥ 2. In particular, this means that PMOD6 = PMOD3, which indicates that PMOD6

does not really capture arguments modulo 6.
Nevertheless, Johnson’s oracle separation results (obtained from the corresponding

type 2 separations as in [3]) also yield corresponding results for the PPA-k classes (using
Theorem 5). We briefly mention a few of the results obtained this way. See Johnson [25,
Chapter 8] for additional results. Relative to any generic oracle (see [3]):

• PPA-p 6⊆ PPA-q for any distinct primes p, q

• PPA-k 6⊆ PPP, PPA-k 6⊆ PLS, PPA-k 6⊆ PPADS for any k ≥ 2

• PPP 6⊆ PPA-p, PLS 6⊆ PPA-p for any prime p

6.1 Proof of Theorem 5

For k = 2, MOD2 corresponds to the PPA-complete problem Lonely [3], and thus
PMOD2 = PPA = PPA-2. Let r ≥ 2. Consider an instance (C,m) of Partition-mod-
2r[#(2r − 1)] on the set {0, 1}n. Without loss of generality, assume n ≥ r. Then 2n = 0
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mod 2r and thus m = 2n − (2n − m) = −(2r − 1) mod 2r = 1 mod 2r. This means
that we can (efficiently) partition {0, 1, . . . ,m − 1} into subsets of size 2r, leaving only
0 = 0n out. Thus, we have reduced Partition-mod-2r[#(2r − 1)] to MOD2r . Since
PPA-2r[#(2r − 1)] = PPA-2 (Theorem 3), we obtain PPA-2 ⊆ PMOD2r . On the other
hand we also have PMOD2r ⊆ PPA-2r = PPA-2 by Corollary 2.

Consider some k ≥ 3 that is not a power of 2. First, let us show that PMOD2k =
PMODk. MOD2k reduces to MODk by splitting every subset into two subsets of size k (or
less, if the subset has size < 2k). Conversely, consider an instance of MODk on the set
{0, 1}n. Make a copy of the instance, thus obtaining an instance on the set {0, 1}n+1. For
every subset of the original instance, take the union with its copy. If the subset had size k,
the new subset has size 2k. Thus, we have reduced to MOD2k.

Let k ≥ 3 be coprime with 2. We will show PMODk = PPA-k[#1]. Consider an instance
of MODk on the set {0, 1}n. Since k and 2 are coprime, there exists i ∈ {0, . . . , k − 1}
such that 2n+i = 1 mod k (e.g., by using Euler’s theorem). Thus, we take 2i copies of the
instance and obtain an instance on the set {0, 1}n+i, which is an instance of Partition-
mod-k[#1] (with m = 0), since 2n+i = 1 mod k. Conversely, consider an instance (C,m)
of Partition-mod-k[#1] on the set {0, 1}n. As before, there exists i ∈ {0, . . . , k− 1} such
that 2n+i = 1 mod k. We construct an instance C ′ of MODk on {0, 1}n+i as follows. The
element x ∈ {0, 1}n of the original instance corresponds to the element 1ix ∈ {0, 1}n of the
new instance. If x ≥ m, set C ′(1ix) = 1iC(x). The number of elements that have not yet
been assigned to a subset is m+ (2i − 1)2n = (m− 2n) + 2n+i = 0 mod k. Thus, we can
efficiently partition them into subsets of size k without introducing any solution. We have
obtained an instance of MODk.

7 Many-one vs Turing Reductions

Theorem 6. For any prime p ≥ 2, PPA-p is closed under Turing reductions.

In particular, PPA-pr = PPA-p is also closed under Turing reductions. The proof of
Theorem 6 can be found in Section 7.1. Furthermore, we also obtain:

Corollary 4. For all k ≥ 2 and 0 < ` < k, PPA-k[#`] is closed under Turing reductions.

Proof of Corollary 4. Using Theorem 3, we have PPA-k[#`] =
⋂d
p=1 PPA-pi, where we let

{p1, . . . , pd} = PF(k, `). Consider a Turing reduction from some problem to PPA-k[#`].
Since PPA-k[#`] ⊆ PPA-pi, this yields a Turing reduction to PPA-pi, in particular. By
Theorem 6, it follows that there exists a many-one reduction to PPA-pi, i.e., the problem
lies in PPA-pi. Since this holds for all pi, the result follows.

If k is not a prime power, then it is not known whether PPA-k is closed under Turing
reductions. Using our results from Section 6, we can actually provide an oracle separation
between PPA-k and the Turing-closure of PPA-k, i.e., an oracle under which PPA-k is not
closed under Turing reductions. Let R1, . . . , Rk be TFNP problems. Following Johnson [25]
we define

⊗k
j=1Rj as the problem: given instances (I1, . . . , Ik), where Ij is an instance of

Rj , solve Ij for all j. As we did with the & operation, with a slight abuse of notation,
we can also use the operation ⊗ with the PPA-k classes. In [25, Theorem 7.6.1], Johnson
proved that for m ≥ 2 and distinct primes p1, . . . , pm,

⊗m
i=1 MODpi does not many-one

reduce to &m
i=1 MODpi in the type 2 setting. Together with our Theorems 2 and 5 this

yields:

17



Theorem 7. Let k ≥ 2 not a power of a prime. Relative to any generic oracle, it holds
that

⊗
p∈PF(k) PPA-p 6⊆ PPA-k. In particular, relative to any generic oracle, PPA-k is not

closed under Turing reductions.

S =
⊗

p∈PF(k) PPA-p corresponds to solving PPA-p for all prime factors p of k simulta-
neously. In particular, this can be done by using |PF(k)| queries to PPA-k, i.e., a Turing
reduction to PPA-k. Thus, S lies in the Turing closure of PPA-k, but not in PPA-k
(relative to any generic oracle).

7.1 Proof of Theorem 6

We essentially apply the same technique that was used by Buss and Johnson [5] to show
that PPA, PPAD, PPADS and PLS are closed under Turing reductions.

Let Π be a problem that Turing-reduces to some problem in PPA-p. This means that
there exists a Turing machine M with access to a PPA-p-oracle that solves Π in polynomial
time. Since Imbalance-mod-p is PPA-p-complete (Theorem 1), we assume that the oracle
provides solutions to Imbalance-mod-p instances. Our goal is to show that all the oracle
queries can be combined into a single one. Indeed, a Turing reduction that always uses a
single oracle query immediately yields a many-one reduction. Thus, by the definition of
PPA-p, this would yield Π ∈ PPA-p.

We begin by showing that any Imbalance-mod-p-instance can be efficiently trans-
formed into an instance that has a particular form, namely: the starting node has imbalance
+1 (in-degree 0 and out-degree 1), and any solution has imbalance −1 (in-degree 1 and
out-degree 0). This can be achieved by the following steps:

1. Ensure that all vertices have in- and out-degree at most p (by splitting vertices into
multiple copies).

2. Ensure that any unbalanced vertex has in- or out-degree 0 (by creating a copy that
will take all the edges that yield the imbalance).

3. Since p is prime, we can ensure that the starting vertex has imbalance +1.

4. Ensure that all vertices that have imbalance 6= 0 mod p, actually have imbalance +1
or −1 (by splitting every such vertex into p vertices, each getting at most one edge).

5. Transform every solution that has imbalance +1 into p− 1 solutions with imbalance
−1 instead (by pointing to p− 1 new vertices).

From now on we assume that all Imbalance-mod-p-instances have this form. Given
an instance I of problem Π, let (GI1, s

I
1) denote the first oracle query made by M on input

I, where GI1 is the Imbalance-mod-p graph (represented implicitly by circuits) and sI1 is
the starting vertex. From now on we omit the superscript I for better readability. For any
solution t1 to (G1, s1), let (G2(t1), s2(t1)) be the second oracle query made by M , if the
first query returned t1. We construct a big graph G that contains a copy of G1 and a copy
of G2(t1) for each solution t1 of (G1, s1). A vertex u in G2(t1) is represented as (t1, u) in
G. For each such t1, we add an edge from t1 to (t1, s2(t1)). Note that these two vertices
are now balanced. Thus, the instance (G, s1) has the following property: all solutions are
of the form (t1, t2), where t1 is a solution to (G, s1), and t2 is a solution to (G2(t1), s2(t1)).
The straightforward generalisation of this construction for a polynomial number of queries
(instead of 2), yields a graph G such that any solution yields consistent query answers for
a complete run of M on input I. Thus, we obtain a Turing reduction that only needs to
make one oracle query and then simulates M with these query answers.
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It remains to show that this graph G can be constructed in polynomial time from I,
i.e., we can efficiently construct circuits that compute the edges incident on any given node.
This is easy to see, because any node contains enough information to simulate a run of M
up to the point that is needed to determine the neighbours in G. We omit the full details,
since the formal arguments are analogous to the ones in the corresponding proofs in [5, 25].
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0 or k. In the new graph, any vertex that has degree not in {0, k} (apart from this one
version of the starting vertex) will immediately yield a solution of the original instance.
Thus, we have reduced to an instance of Bipartite-mod-k[#(` mod k)].

Lemma 4. Let k ≥ 2 and r ≥ 1. For any 0 < ` < k it holds that PPA-k[#`] ⊆
PPA-kr[#`r].

Proof. Consider any instance of Bipartite-mod-k[#`]. Assign weight r to every edge.
Clearly, the starting vertex now has degree `r and any other vertex with degree not in
{0, kr} yields a solution to the original instance. Finally, note that we can remove the
weights without changing the degrees and adding any new solutions by using the “mitosis”
gadgets.

Lemma 5. Let k ≥ 2 and ` ≥ 1. Then PPA-k`[#`] ⊆ PPA-k[#1].

Proof. We reduce Partition-mod-k`[#`] to Partition-mod-k[#1] by adapting the proof
in [2, Lemma 2.3] to obtain a reduction. Consider an instance of Partition-mod-k`[#`],
i.e., a partition of the set of integers [m, 2n − 1] given by a circuit C for some m such
that 2n −m = ` mod k`. This means that there exists some integer α ∈ [0, 2n−1] such
that 2n −m = ` + αk`. Clearly, there exists some integer β ∈ [0, (` − 1)! − 1] such that
α+ β = 0 mod (`− 1)!, which implies 2n −m+ βk` = ` mod (k · `!) (if ` ≤ 2, then this
holds with β = 0). Thus, if we add β sets of size k`, the size of the ground set will be
= ` mod (k · `!). Assuming that n is large enough such that 2n ≥ k · `! ≥ βk`, we can
achieve this by letting n′ = n + 1, m′ = m + 2n − βk` and extending C to also include
the additional β sets of size k`. It is easy to see that this can be done efficiently and will
yield a partition of [m′, 2n+1 − 1] such that any mistake immediately yields a mistake in
the original partition. Thus, we can assume without loss of generality that 2n −m = `
mod (k · `!).

Let S denote the set of all subsets of {m,m+ 1, . . . , 2n− 1} of size exactly `. Note that
|S| =

(
2n−m
`

)
=
∏`−1
i=0

2n−m−i
`−i = 1 mod k, since 2n −m− i = `− i mod k(`− i). We will

now describe how to construct a partition of S into sets of size k such that any mistake
yields a solution of the original instance.

Recall that we can assume that Ck`(x) = x for all x. Thus, every x yields an orbit
O(x) = {x,C(x), C2(x), . . . , Ck`−1(x)} of size at most k`. In particular, we can pick the
lexicographically smallest element of every orbit to be its representative. Denote by R(x)
the representative of the orbit containing x. We then have that R(x) = R(y), if and only if
x and y lie in the same orbit, i.e., in the same set in the original partition. For a, b ∈ S we
write a ≡ b if a and b contain exactly the same number of elements from each set of the
original partition. This can be checked efficiently by computing the representative of each
element in a, ordering these lexicographically (with repetitions), doing the same for b and
checking if the two lists are identical. This is an equivalence relation and we denote the
equivalence class of a ∈ S under ≡ by [a].

For any a ∈ S there exist distinct representatives x1, . . . , xs, s ≤ `, and α1, . . . , αs ≥ 1
with

∑s
i=1 αi = ` such that a contains exactly αi elements from the orbit represented by xi,

for all i. Thus, the size of [a] is exactly
∏s
i=1

(
k`
αi

)
, assuming that the orbits of x1, . . . , xs all

have size k`, i.e., do not yield a solution to the original problem. It was shown in the proof
of [2, Lemma 2.3] that this quantity is a multiple of k. Thus, the equivalence class of a can
be perfectly partitioned into sets of size k. We now describe a way to do this explicitly
and efficiently. Assume that the representatives x1, . . . , xs are in increasing lexicographic
order. Find the smallest index i such that k divides

(
k`
αi

)
. Let F denote an arbitrary fixed

22



efficient bijection between {0, . . . ,
(
k`
αi

)
− 1} and

(
O(xi)
αi

)
, where this denotes the set of all

subsets of O(xi) of size exactly αi.
The circuit C ′ determines the image of a ∈ S by first computing x1, . . . , xs and

α1, . . . , αs as described above, and determining the smallest index i as explained above.
Let ai = a ∩O(xi). The circuit outputs

(a \ ai) ∪ F (bF−1(ai)/kc · k + (F−1(ai) + 1 mod k)).

It is easy to check that as long as |O(xj)| = k` for all j, this procedure partitions [a] into
sets of size k. The last step is to set m′ = 2n` − |S| and construct an efficient bijection
between S and {2n` − |S|, . . . , 2n` − 1}, which is easy to do.

Lemma 6. Let k1, k2 ≥ 2. If all prime factors of k2 also divide k1, then PPA-k1[#1] ⊆
PPA-k2[#1].

Proof. Similarly to our proof of Lemma 5, we adapt the proof of the corresponding
statement for the counting formulas from Beame et al. [2, Lemma 2.5] in order to obtain a
polynomial-time reduction.

Since all prime factors of k2 divide k1, there exists some ` (bounded by a constant,
e.g., k2) such that k2 divides k`1. From Lemma 3 we know that PPA-k`1[#1] ⊆ PPA-k2[#1].
Thus, it suffices to show that PPA-k1[#1] ⊆ PPA-k`1[#1]. We write k = k1 from now on.

Consider an instance (C,m) of Partition-mod-k[#1]. Since 2n −m = 1 mod k, it
follows that there exists some r such that (2n−m)r = 1 mod k` by Euler’s totient theorem.
Pick such an r ≥ ` – any large enough multiple of the totient φ(k`) will do – and note that
r is bounded by some constant, since both ` and φ(k`) are.

Assume without loss of generality that Ck(x) = x for all x. We construct a partition
of {m, . . . , 2n − 1}r explicitly as follows. For any (x1, . . . , xr) ∈ {m, . . . , 2n − 1}r, let
i ∈ {1, . . . `} denote the largest index such that xj is the lexicographically smallest element
in the orbit of xj under C (i.e., xj is the representative of O(xj)), for all j < i. If there
is no such xj , set i = 1. If i > `, set i = `. The circuit C ′ computes C ′(x1, . . . , xr) =
(C(x1), C(x2), . . . , C(xi), xi+1, . . . xr). It is easy to see that if the orbits O(xj) under C all
have size k, then this yields an orbit of size k`. Thus, any orbit in the new instance that
has size different from k` immediately yields some orbit of the original instance that does
not have size k.

The final step is to set m′ = 2nr− (2n−m)r and construct an efficient bijection between
{m′, . . . , 2nr − 1} and {m, . . . , 2n − 1}r, which is easy to do.
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