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Abstract

This thesis aims to develop a sub-elliptic pseudo-differential calculus on any
compact Lie group G. We build an operator class ¥ which forms an algebra of
operators.

We consider a Hormander system on G and its associated sub-Laplacian L.
The Sobolev spaces that arise naturally from the sub-elliptic operator £ are well
known, and we check some important properties.

Our symbolic calculus is then developed, we define our symbol classes S™ on
G and their associated operator classes U™, for m € R. A particular example
of these symbol classes, S™(Qy), is considered and we show that S™(Qy) is
contained in any S™.

The core results of this thesis are then proved. We show that if 773 € U™ (Q))
and Ty € ¥™2(Q)y), then the composition operator T; o Ty satisfies

T1 OTQ € \I/m1+m2<Q0).
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Chapter 1
Introduction

The research presented in this thesis aims to provide an in-depth study of a
sub-elliptic pseudo-differential calculus on compact Lie groups. Our objective is
to define a class of operators which forms a symbolic calculus, and to establish
results analogous to the already well-understood Euclidean setting. We do not
provide an overview of these well-known results in this thesis, but the reader is
referred to Stein [47] for an introduction in this subject.

One of the main tools used in our research is Fourier multipliers. These
have been extensively studied throughout the history of mathematics, with the
first important results appearing in Marcinkiewicz [32], where conditions for L
Fourier multipliers on the torus were given. In 1956, this result was extended to
R™ in Mihlin [34]. It was proved that if the bounded function ¢ : R* — C

satisfies

8o (€)] < Calé]T, € € RY, (1.0.1)

for all multi-indices |a| < [n/2] + 1, then o is an LP Fourier multiplier for
1 < p < +oo. In 1960, this result was expanded further in Hérmander [27].
The condition given by has a natural connection to the definition of the
Euclidean symbol class S7j(R") (m € R), which is given by all functions o on
R™ x R™ such that

105080 (2,€)] < Cap(1+ [¢]2)2m 1o,

for all multi-indices «, . In the setting of Lie groups, the reader is referred, for
example, to Coifman and Weiss [§], which serves as an introduction to Fourier
multipliers on the compact Lie groups SU(2).

Some recent results related to the research presented in this thesis include



Ruzhansky, Turunen and Wirth [44], which proposes a global characterisation
of a Hormander class of pseudo-differential operators on compact Lie groups.
Furthermore, Fischer [I7] expanded on the results by Ruzhansky et al., providing
a complete intrinsic description of a pseudo-differential calculus of compact Lie
groups. In the literature, one can also find results concerning a pseudo-differential
calculus on non-compact Lie groups. See, for example, Taylor [52] or Hajer
Bahouri, Fermanian-Kammerer and Gallagher [3], which focus on the Heisenberg
group H, and also the monograph Fischer and Ruzhansky [18], which provides a
pseudo-differential calculus for nilpotent Lie groups.

A common theme among the results in the compact case is the use of el-
liptic operators in the calculus, such as the Laplace operator. However, in our
analysis we explore a sub-elliptic setting instead, choosing an appropriate sub-
Laplacian to suit our objectives. This change has some important implications
in the functional analysis. For instance, in this case the Carnot-Carathéodory
metric is a more appropriate tool than a Riemannian metric, which is often useful
in the elliptic case. A study of sub-Riemannian metrics in the Euclidean case can
be found, for example, in Nagel, Stein and Wainger [36], Fefferman and Phong
[15], or Parmeggiani [37]. Another consequence of this choice is reflected on the
Sobolev spaces we work with. As we shall see in Section [3.2], our Sobolev spaces
L? will be defined in terms of the sub-Laplacian we chose, and we will need to
check that the fundamental properties of Sobolev spaces are satisfied; such as the
interpolation theorem (see Theorem [3.3.1)) or a Sobolev inequality (see Theorem
. In this context, sub-elliptic operators are usually a natural consideration
in the case of stratified nilpotent Lie groups, and a study of Sobolev spaces in
this setting can be found, for example, in Folland [19] or Fisher and Ruzhansky
[18].

One of the most important tools we use in our symbol classes S™ (m € R)
are difference operators. These are defined in order to replace differentiation in
the frequency variable. In the literature, they were used with the purpose of
studying a pseudo-differential calculus of compact Lie groups in Fischer [I7] and
Ruzhansky et al. [44], and of nilpotent Lie groups in [I8]. A first fundamental
example of difference operators can be found in Ruzhansky and Turunen [43] for
the case of the torus. If x is a function on T¢, for some d € N, then for any

Jj € {1,2,...,d} the difference operator A; acts on k by

AR(E) = R(E+ey) —R(E), €€ 7, (1.02)

where e; denotes the unit vector in the j-th direction. It can then be shown



that

AjR(S) = GR(E), €€z,

where ¢; : T* — C is the function given by

gj(z) = e —1, z € T

The concept of difference operators discussed in this thesis generalises this to the
setting of any compact Lie group. Suppose ¢ is a smooth, real-valued function
on G. If k is a distribution on G, we define the difference operator associated

to ¢, A4, by the relation

AR = GR.

Higher order derivatives applications of difference operators can be explained in
the following way. Suppose Q = {q1,q2, ..., ¢} is a family of smooth, real-valued
functions on G, for £ € N. Then, for any a € Nj, we let A% be the difference

operator given by

for a distribution k, where

Gal(2) == q(z7 ™M q(z7 )2 ... q(z=1), z € (.

A difficulty found in difference operators is that they do not satisfy Leibniz’s
rule, in general, which is usually an exploitable property of differential operators.
However, we are able to prove an analogous result (see Theorem for a
particular family of difference operators, associated to a class of smooth, real-
valued functions Qo (see (4.2.12))). In practice, this result plays a similar role to
Leibniz’s rule, and allows us to prove our main theorems. This choice of () is,
in fact, not aleatory, with one of its main properties being that the functions in
(o appear in the Taylor expansion of any smooth function (see Theorem .
Additionally, we are also able to show kernel estimates of Calderén-Zygmund type
(in the sense of Coifman and Weiss [7]) for the symbols belonging to S™(Qy),
the family of symbols of class m, associated to Q).

This thesis is organised as follows. The preliminary chapter (Chapter
focuses on introducing the fundamental tools needed throughout, including Lie

groups and Lie algebras, Plancherel’s Theorem, the Schwartz kernel Theorem,



Haar integration and the exponential map, just to name a few. Chapter [3| then
focuses on establishing a foundation for our work, introducing our Sobolev spaces
and confirming some expected results. In this chapter we also study the Fourier
multipliers of our sub-Laplacian, and we show our first important result in Lemma
Although this chapter does not have any groundbreaking mathematics, we
include it in the thesis to keep this exposition self-contained. Chapter [4] is the
main chapter of this thesis and is dedicated to developing our sub-elliptic pseudo-
differential calculus for any compact Lie group.

Summarising our results presented in Chapter [} we begin with the introduc-
tion of our difference operators. In Section is where we first discuss the
classes of symbols S™ and their associated operator classes ¥™. We then show
that S™(Qo) C S™(Q), for any family @) of smooth, real-valued functions, which
satisfies a condition we call ‘comparability to the Carnot-Carathéodory metric’.

In particular, this shows that our calculus will be valid for

) S™(Q),

where the intersection is taken over all m € R and any () comparable to the
C-C metric. Our next major result appears in Section 4.10, where we prove the
analogous result to Leibniz’s rule for difference operators. We end the chapter
with the analysis of the composition of two pseudo-differential operators T o Ty,
where T} € S™(Qp) and Ty € S™*(Qy), proving that Ty o Ty € S™™2((Qy).

We end this thesis with a conclusion, where we give a technical summary
of the main results. Furthermore, we will provide a discussion about potential
future work, indicating some of the directions that could be taken to expand on

the results presented here.



Chapter 2
Preliminaries

The aim of this chapter is to introduce the fundamental definitions and techniques
that we shall be using throughout the thesis. These preliminaries are based on
introductory material appearing on several textbooks in the subject. Some of
the material used in this chapter include Faraut [14], Folland [21] and Stein [46],
which serve as an introduction to compact Lie groups, their representation theory
and the Peter-Weyl Theorem. Moreover, the textbooks Lee [31] and Helgason
[26] provide an extensive study of smooth manifolds. Furthermore, for a study
of the representation theory of the Heisenberg group, the reader is referred to
Folland [20]. Other references used throughout this chapter include Fischer and
Ruzhansky [18], Folland [19], Folland and Stein [22], Hall [25], Knapp [30], Ricci
[39], Stein [47], and Treves [53]. We shall state without proof a number of well
known results, and redirect the reader to the relevant source when necessary.
First we discuss the theory in a general setting, for any Lie group G, but
when necessary, we shall provide results for the case in which G is compact.
Furthermore, we will also give an overview of the 3-dimensional Heisenberg group

H and the compact Lie group SU(2), including their representation theory.

2.1 Lie groups and representation theory

We begin this section with some fundamental definitions.

Definition 2.1.1 (Topological group). A topological group is a space G, which

is also a group, endowed with the continuous mappings

GxG —d G —d

(z,y) l—>xy, v ol



Definition 2.1.2 (Lie group). A Lie group is a smooth manifold G, which when

endowed with the smooth mappings

GxG —G@G G —G@
(x,y) +—— ay, xr —a

forms a group.

If for every point z, in a topological space G, there exists a neighbourhood
V C G of x which is compact, then we say that G is locally compact. It is
important to remark that every Lie group is locally compact. Moreover, a Lie
group G is said to be compact if it is compact as a topological space.

For two Hilbert spaces 77, 74, we let £ (4, 7) denote the space of lin-
ear bounded operators mapping 4 into . We equip Z (74, 7#5) with the
topology given by the norm

T zoam) = suwp  |[Tullw, T € ZL(H4,5).

v1 €01
[lv1]]5¢ <1

If =4 =56, we write L(H) = L(H, ).
For the remainder of this section, we assume G is any Lie group, unless stated

otherwise.

Definition 2.1.3 (Representations). A representation 7 of G on a Hilbert space

F; is a mapping

m:G— ZL(),

such that

(i) 7(g192) = m(g1)7(g2), for all g1,90 € G,

(ii) for every g € G, the mapping

7(g) : S — 7,
is continuous and has a bounded inverse.

Usually we will write 7 instead of (7,74 ) whenever the context is clear. More-
over, for a representation (7w, ;) of G, we let d, denote the dimension of T,
which is defined to be the dimension of 7.



Suppose that (7,.74;) is a representation of G and consider an inner product
(;) o on J;. For each x € G, m(x) is a bounded linear map 5 — J;, so

we may consider its formal adjoint 7(z)*, which is given by the relation

<7T(x)f7g>,}f7r = <f77r(x)*g>jf;ra
for every f,g € 9.

Definition 2.1.4 (Unitary representation). A representation (w,.7%;) of G is
said to be unitary if, for every = € @G, the linear mapping = (x) : H;, — J, is

unitary; that is,

m(x)™t = 7(x)*, Vz e G.

If G is a compact Lie group, it is a routine argument to show that, for each
representation (7,.¢7) of G, there exists an inner product (:,-) . such that =
is unitary with respect to (-, ), .

We let ||| denote the norm associated to the inner product (:,-) . Then,

if (m,.7¢;) is unitary, we have

7w (@)vlle = [lolle, Vo € G, ve A

Thus, it follows that

\|m(x)|| 2wy =1, Yo e d. (2.1.1)

If (my,74), (w2, 76) are two finite dimensional representations of G, we say
that m; and my are equivalent if there exists an isomorphism A : 4 — 5%
such that

Ami(g) = m(9)A, Vg e G

In such case, we call A an intertwining operator between m; and my. Moreover,
equivalence between representations of G forms an equivalence relation, which

we shall denote by ~.

Definition 2.1.5 (Irreducible representation). A representation (m,.7) of G
is said to be irreducible if whenever W is a closed subspace of 77, we have
w(z)W C W for every x € G if and only if W = {0} or W = 7.

Definition 2.1.6. Let G' be a Lie group. We define G to be the set of equiva-

lence classes of irreducible, unitary representations of a Lie group G.

7



Throughout the thesis, each equivalence class [r]. € G shall be identified
by a representation m equivalent to all other representations in [r].. If G is
compact, then by the theory of compact Lie groups, we know that the set G is

discrete.

Example 2.1.7. If G = T™ is the torus, then it is well known that all the ir-
reducible representations of GG are one-dimensional. Moreover, they are given
by

iz r— e*T e T ke Z"

Thus,

G={x:kez}.

2.2 Integration over a group

In this section we shall introduce the concept of integration over a locally compact
group. We present the Peter-Weyl Theorem, and discuss Plancherel’s Theorem
for compact Lie groups. For a detailed discussion on these topics, see for instance
Faraut [14], Folland [21], or Stein [46].

2.2.1 Haar measure

The following theorem is a fundamental fact of Lie theory.
Theorem 2.2.1. Let G be a locally compact group. Then, there exists a non-zero
Radon measure p on G satisfying the following property:

u(zB) = u(B), Yx € G, and every Borel set B C G. (2.2.1)

This measure is unique up to a positive constant.

A measure p satisfying Theorem [2.2.1], for a locally compact group G, is called
a Haar measure. Moreover, a measure j satisfying is said to be a left-
invariant measure. Throughout this text we shall write |B| for the measure of
the Borel set B C G, and we will denote this measure dx, dy or dz, depending
on the variable of integration. Observe that statement is equivalent to

/Gf(xz) dz = /Gf(z) dz, Vaz € G,



and all integrable functions f.

If G is a compact or nilpotent Lie group, then it can be shown that the
Haar measure on G is also right-invariant. A group that is both left-invariant
and right-invariant is called unimodular. In this thesis we shall only consider

unimodular groups.

2.2.2 P spaces

Suppose G is a locally compact group. For p € [1,400], we let LP(G) be the
usual Lebesgue space with respect to the Haar measure on G, with the norm

|| - ||r(c)- For p € [1,+00), the norm || - ||rr(c) is defined by

1/p
il = ( [ dz) VfeG),

and moreover, for p = 400, we let

1fllz=(c) = esssup|f] = inf{a € R : [|f|"(a,+00)| =0}, f € L*(G).

In general, when we write sup, . it shall be assumed that this refers to the

essential supremum.

Example 2.2.2. For a locally compact group G, we let w7, denote the left regular
representation of G' on L*(G); for each g € G, w(g9) : L*(G) — L*(G) is
defined by

(me(9)f)(2) = flg'x), [ € L*G), v € G. (2.2.2)

Similarly, we let 7z denote the right regular representation of G on L*(G); for
each g € G, mr(g) : L*(G) — L*(G) is defined by

(mr(9)f)(x) = f(zg), [ € L*G), x € G. (2.2.3)

The representations 7, and mp are unitary and continuous on L?*(G).

2.2.3 Peter-Weyl Theorem

Now, for a representation (m, .7 ) of G (of possibly infinite dimension), we let

the entry functions of © be the mappings of the form

r— (M (), ), = € G, 0,0 €



Furthermore, suppose that the set

B, = {cpgw),gpgw),...,cpé:)} C

forms an orthonormal basis of 7, where it is understood that if 7 is an infinite
dimensional representation, then B, consists of infinitely many elements. We

then define the matrix entries of 7 to be the entry functions

z— w(z)0P = <7T(x)<p,g”),<p§-ﬂ)>yf , v E€G, j k=1,2,...,d,. (224)

We now suppose G is a compact group. For [n]. € G, we let M, be the
subspace of L?(G) spanned by the entry functions of the representations in the

equivalence class [r].; that is

M, = Span{(m()gp,w)%,rl C o, € o, T E [W]N}. (2.2.5)

The space M, is independent of the choice of representative 7, and is of di-

mension d2. Moreover, let M be the space spanned by all entry functions of

~

representations in G;

M = Span{(wl(-)%gb)(%l L € Ay, M € [T, T E @} (2.2.6)

We are now in a position to state the Peter-Weyl Theorem, whose proof can

be found, for example, in Faraut [14] or Stein [46].

Theorem 2.2.3 (Peter-Weyl Theorem). Let G be a compact Lie group. Then,

the following assertions hold:

(1) Every irreducible unitary representation of G is finite dimensional.

(II) The left reqular representations m, can be decomposed into an orthogonal
direct sum of finite dimensional irreducible representations. In particular,
when restricted to the space My, for m € @, the representations my is

equivalent to the decomposition

THETD--- D =d,m.

The right reqular representation mgr satisfies the same property.

10



(IIT) The space M is dense in L*(G).

(IV) For each (m, ;) € @, pick an orthonormal basis of H;:

{sOYr), o, ,wé?} : (2.2.7)

Consider the matriz entries of 7, with respect to the basis given by (2.2.7)),

z — m(x)0P = <7r(:c) gpiﬂ),gp§”)>%ﬁ , 1<j,k<d, forxed.

Then, the set

{\/d—ﬂﬂ()ﬂ“ 1<4,j<d;, 7€ @}

forms an orthonormal basis of L*(G).

2.2.4 Fourier transform

Suppose G is a locally compact group. If f is an integrable function on G, with
respect to the Haar measure, and (w, ;) is a representation of G, we define

the Fourier transform of f at « by

f(x) = Faf(n) = /Gf(x)w(:):)* dz.

-~

Observe that f(m) defines a bounded linear operator on the Hilbert space 7.
The Fourier transform J/c\(ﬂ') depends on the choice of representative from the
equivalence class [r].. In particular, if (m,5%,,) € [r]., then there exists an

isomorphism A : J#,, — 7, such that

m(z) = A 'n(x)A, Va2 € G.

~

By the linearity of f(m), we then have

f(m) = A7 f(m)A.

This means that we must consider the Fourier transforms at = modulo conjuga-
tions. Throughout the thesis, it will be assumed that this is understood.
We now have the following result, which follows from the definition of unitarity

of representations (see (2.1.1)).
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Lemma 2.2.4. Let f be an integrable function on a compact Lie group G and

suppose that (m, 7)) is a unitary representation of G. Then

1F (Dl z0m < Ifllve

_ /Gf(x)ﬂx

Proof. Recall that

So,

17 om /||f )|z de

< /G @) 7@ 2 da

Since 7 is unitary, then, by (2.1.1), we have

1Tz < /G @)z = || il

as claimed. 0

2.2.5 Plancherel’s Theorem on compact Lie groups

We now discuss Plancherel’s Theorem in the case that G is a compact Lie group.
Let ¢ be a Hilbert space. For an operator A € Z(J), we define the
Hilbert-Schmidt norm of A by

|Al[}g = Tr(AAY), (2.2.8)

where Tr denotes the trace on the Hilbert space 7.
Furthermore, we let L2(@) denote the space of sequences of operators 1" =
(Ty) with T, € £(;,), which satisfy

W€é7

ITI226 = D da| |Tx][ s < +00.

req

The space L2(G) is a Hilbert space with the inner product

(T,8) 2y = D daTr(T,55)
reC

12



o~

S = (Sﬂ)ﬂeé € LQ(G).

Example 2.2.5. If G = T" is the torus, then G = {xx : k € Z"}, as we saw in
Example [2.1.7, and hence L2(G) is the space given by

LQ(G) = {(ak>keZ” : Z |ag? < +OO}7

kezn

for sequences of operators T' = (Tx),. c &,

which is the usual sequence space (?(Z").

We can also define the following space of operators.

~

Definition 2.2.6. Let L*(G) denote the space of operators

o= {o(x):me G}

satisfying

sup Nlo(m)llwry < +oo.
re@

~

We endow L>(G) with the essential supremum norm

ol @ = sup [|lo(m)]| 2.
TeG

We can now state Plancherel’s Theorem, which is a consequence of the Peter-

Weyl Theorem, and its proof can be found, for example in [14].

Theorem 2.2.7 (Plancherel’s Theorem). Suppose G is a compact Lie group and
let f € L*(G). Then, the following assertions hold:

(i) The function f is equal to its Fourier series

fla) = 37 de Tr (Flm) m(a)).

in the L? sense. This is also known as the Fourier inversion formula.

(11) We have

1F1Bea) = 1ARag = D dal[Fm)]| 3.

req

and if fi, f» € L*(G),
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(fis fa) o) = /Gfl(az)m de =Y d,.Tr (ﬁmﬁm*).

WG@

(i1i) The map f — s a unitary isomorphism from LX(G) onto L2(G).

2.3 Lie algebras and vector fields

In this section we summarise the relevant aspects of the theory of Lie algebras.

For a detailed discussion on the subject, see Lee [31] or Helgason [20], for example.

2.3.1 Vector fields

Suppose M is an n-dimensional smooth manifold. Recall that the space C*>°(M)
consists of functions f : M — R which are smooth, in the sense that for every
smooth chart (p,U) on M, the composite function f o p~! is smooth on the
open subset p(U) C R™. A function belonging to C*(M) is said to be smooth.
For d € N, the space C%(M) is similarly defined, requiring instead that f oo™
belongs to C4(R™).

The tangent space at a point x € M, T,(M), is the n-dimensional vector
space consisting of all linear functionals V : C*°(M) — R which satisfy

V(fg) =V(glx) + f(x)V(g), V f,g € CZ(M).

An element of T, (M) is called a tangent vector at x. Recall also that the tangent
bundle of M is the disjoint union of the tangent spaces at all points of M:

T(M) = | | T.(M).

reM
Now, if N is another smooth manifold and F : M — N is a smooth map,
then for each x € M, the push-forward associated with F' is the mapping
F, : T,(M) = Tp)(N) given by

(EV)(f) = V(foF), for V € T,(M), f € C®N).

Definition 2.3.1 (Vector field). A vector field on M is a continuous map

XM — T(M)

r — X,

14



where for each z € M, X, € T,(M). Throughout this thesis, a vector field on

M will always be assumed to be smooth, unless stated otherwise.

If X is a vector field on M, not necessarily smooth, and f € C*>(M), then the

action of X on f is given by

(Xf)(@) = Xo(f), = e M.

If X,Y are smooth vector fields, then define Lie bracket of X and Y to be

the operator

X,Y]: M — T(M)
v — [X,Y],

with

(X, Y]o(f) = Xo(VS) = Ya(X[), for z € M, f e C¥(M).

It is well-known that the map [X,Y] is a smooth vector field (see, for example,
[311).

We shall now also define the push-forward of a vector field by a function F.
Let F': M — N be a smooth map between the smooth manifolds M and
N, and suppose X is a vector field on M. Tentatively we might define the
push-forward of X to be the mapping given by

FX :x2— F.X,,

since F.X, € Tp)(N). However, F,X might not necessarily be a vector field
on N, so we need to impose some additional conditions on F. Namely, it is
sufficient to have the following condition: if X is a smooth vector field on M,

then there exists a unique smooth vector field Z on N such that

Ve e M F.X, = ZF(x); (231)

that is, for any smooth function f defined on an open subset of A/ we have

Xo(foF) = (Zf)(F(x)), Yz e M. (2.3.2)

One can then show that if F' is a diffeomorphism, then this condition is satisfied.
A proof of this can be found in [31] (see Chapter 8 therein). Hence, we can define
the push-forward of the smooth vector field X by F to be the unique smooth

15



vector field Z on N satisfying (2.3.1)) (or equivalently (2.3.2))).

2.3.2 Basis of vector fields on a smooth manifold

Suppose M is a smooth manifold of dimension n. In this section we aim to
define what it means for a family of vector fields to form a basis on M.

In Lee [31] it is shown that the space of all vector fields on M is a module
over the ring C*°(M). This means that, if f € C*°(M) and X is a vector field
on M, then the mapping

(fX): M — T(M)
r — f(2)X,

defines a smooth vector field. We can now define a basis of vector fields on M.

Definition 2.3.2. A family of vector fields

Vit
on M is said to be a basis of vector fields on M if, for each x € M, the set of

tangent vectors

{Vie :j=12,...,n} CT(M)
forms a basis of the tangent space T,(M).

Remark 2.3.3. A basis of vector on M is also known as a (smooth global) frame
for M (see Chapter 8 in Lee [31]).

By definition, if {V; : j =1,2...,n} is basis of vector fields on M and W is
any vector field on M, then there exists a family of functions {c;}}_; C C*(M)
such that, for any x € M we have

n

We =3 (Vi

7j=1
This observation can be summarised as follows.
Lemma 2.3.4. Suppose {V; : j=1,2...,n} is basis of vector fields on M. If

W is any vector field on M, then there exists a family of functions {c;}7_; C
C>®(M) such that

16



W = zn: Cj‘/j-
j=1

Now, for ¢ € N, let Z(¢) denote the set of multi-indices taking values in
{1,2,...,¢}, of arbitrary length. That is, Z(¢) is the disjoint union

() == | |{1,2,....00" (2.3.3)

aeN

Suppose that V' = {V;}{_, is a family of vector fields on M, for some ¢ € N.
For 8 = (i1,42,...,1) € Z({), we let V denote the differential operator

Vs = Vi,Vi,...Vi,.

Corollary 2.3.5. Suppose V. = {V;}7_, and W = {W;}_, are two bases of
vector fields on M, and let B € I(n). Then, for any ' € I(n), with |5'| < ||,
there exists a function c‘ﬁ//,W € C>®(M), which depends on (5 and the bases of
vector fields V' and W, such that,

Vi= > cowWs. (2.3.4)
B’ €Z(n)
18/1<I8]

Remark 2.3.6. Assume M is compact and suppose we have the same hypothesis
as in Corollary 2.3.5l Then, for any 3 € Z(n), with || < |8, the functions
cf,,’w € C*®(M) which appear in have compact support. Thus, there
exists a constant C® > 0, depending on /3, such that

(Vs ||peong < C% sup ey wllze o [[War 1l o (a)-
71<I8]

In particular, the quantity

Therefore,

B
HvﬁfHLoo(M) < Cyw B’Seuzlzn) W | Lo ()
181181
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2.3.3 Lie algebras

Definition 2.3.7 (Lie algebra). A Lie algebra is a real vector space g endowed
with a bilinear operation [-,-] : g X g — g, called the Lie bracket of g, satisfying

(i) [X,X]=0 for all X € g, and

(i) Jacobi’s identity: [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]] =0 for all X,Y,Z €
g.

Now suppose that G is a Lie group. It is well known that each ¢ € G defines
the diffeomorphism L, given by left multiplication by g:

Ly:G — G

xr > gz

and similarly, each g € G also gives rise to the diffeomorphism R, given by

right multiplication by g¢:

R,:G — G
r > xg .
We say that a smooth vector field X is left-invariant if
X(folLy) = (Xf)oL, ¥feC™G) geG.

This can be written as

X(flg-N(x) = (X[f)(gz), VCZ(G) z,9 € G.
Similarly, we say that X is right-invariant if

X(foRy) = (Xf)oRy, V[fe€C*G),ygc¢€q,

which can also be expressed as

X(f(-9)(x) = (Xf)(zg), V[ eC*G) zge€q

Definition 2.3.8 (Lie algebra of a Lie group). Let G be a Lie group. The set
g of all left-invariant vector fields on G is called the Lie algebra of G.

Now let G be a Lie group and g be its Lie algebra. If XY € g, consider the
Lie bracket of X and Y:

18



X, Y]:G — T(G)
r — [X,Y], .
One checks easily that this mapping defines a smooth left-invariant vector field

[X,Y] on G. Indeed, suppose that f € C>®(G) and g € G. Then, for every

x € G, we have

(X YT(f(g-)(@) = [X,Y](f(g-) = Xa(Yf(g-)) = Ya(X[f(g-))
Yf(g-)(x) = Y(X[f(g-))(x)
)(g)

by the left-invariance of X and Y. Since

XY f)lgr) =Y (X[f)(g2) = Xgu(Y [) = Yyu (X )
= [X, Y]ga:f

= (X, Y1)(g2),

then we conclude that

(X, Y](f(g-)(@) = (X, Y]f)(gz),

which means that [X,Y] is a left-invariant vector field, as claimed. This means
that g is closed under the bracket operation [, -], and in particular, one can show
that g, equipped with the Lie bracket [-,], forms a Lie algebra in the sense of
Definition [2.3.7] (see [31]).

It is a fundamental result that g is of the same dimension as . Furthermore,

the evaluation map

erg — T..,(G)
X — X

is a vector space isomorphism (see [31]). More precisely, we have the following
relation. If X is a left-invariant vector field, then it is uniquely determined
at e¢ € G. On the other hand, if V is a tangent vector at eg (that is,
V € T..(GQ)), then, as proved, for instance, in Hall [25] or Lee [31], there exists

a unique left-invariant vector field XV, with X (YG = V', which can be constructed
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XV = (L,).V, ge€@G.

Or equivalently,

(XY 1)(9) = (Lg):V flea) = V(f(g)(ec), ¥ [ € C¥(G), g€ G (235)

Observe that

Xeof =V(flea))(ec) = VI, V[ € Cx(G),
and so X e‘g = V. In fact, one can show that the mapping

TeG (G) — 9

’ . (2.3.6)
—

is the inverse of the evaluation map ¢ (see [31]). Hence, g can be identified with
the tangent space at the identity element eq of G.

In particular, we have shown that if V is a tangent vector at the identity
eq, then left-translation by g € G yields a uniquely determined tangent vector
at the point ¢g. This implies that there is a one-to-one correspondence between
T,

eo(G) and T,(G), given by this relation. Hence, via the evaluation map, we

obtain a one-to-one correspondence between g, the space of all left-invariant
vector fields on G, and the tangent space T,(G), for any g € G.

Throughout the thesis we will assume the following convention; for any tan-
gent vector V' € T,.(G), we shall identify the unique left-invariant vector field
XV, associated to V' via the map , with V. Similarly, if a left-invariant
vector field X is given, we shall identify X with its evaluation at the identity
X

eqg

2.3.4 Exponential map

In this section we provide an introduction to the exponential map in the context
of Lie groups and Lie algebras. For a deeper study of this subject, the reader
is redirected to Lee [31] (Chapter 20) or Helgason [26] (Chapter 1, Section 6).

We shall also state some fundamental results linking Lie groups and Lie algebras,
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which can be found in Hall [25] (see Chapter 3) or Helgason [26] (see Chapter
II).

Let G be a Lie group and suppose that g denotes its Lie algebra. Now,
assume that v is a one-parameter subgroup of G; that is, suppose v: R — G

is a Lie group homomorphism, and let

d

Viewing R as a Lie group equipped with addition, we see that X is a left-
invariant vector field on G. Then, as shown in [31] (see Theorem 20.1 therein),

one can prove that

’}/(to) = X,Y(t()), Vto e R.

On the other hand, if X is any vector field on G, it can be shown (see [31],
Chapter 9) that there exists a unique mapping v : R — G satisfying

V() = Xy, YVteR (2.3.7)

In fact, as demonstrated in [31] (see Theorem 20.1), we have that ~ is a one-
parameter subgroup. In particular, we see that there is a one-to-one correspon-
dence between g, the set of all left-invariant vector fields on G, and the one-
parameter subgroups of G.

Hence, we now define the exponential map exp : g — G as follows: for each

left-invariant vector field X let

e = exp(X) = (1),

where v is the unique one-parameter subgroup of G satisfying (2.3.7)).
The exponential map has the following fundamental properties, the proof of

which can be found in [31] (see Proposition 20.8):

Proposition 2.3.9. Let G be a Lie group and suppose that g denotes its Lie
algebra. Then, the following assertions hold:

(1) The exponential map exp: g — G is smooth.

(1)) If X € g, then

e(ert)X esX 6tX

, Vs, t €R.
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(i) If X € g, then

(w) If X € g, then

(eX)n =X, VnelZ

(v) There exist a neighbourhood U of 0 in g and a neighbourhood V of eq
in G, such that exp maps U diffeomorphically into V.

(vi) If X € g, then the action of X, viewed as a left-invariant vector field, on
a function f € C*®(G) is given by

d

- (ze)

Xf(x) = (2.3.8)

t=0

(vii) Any left-invariant vector field X € g defines a right-invariant differential

operator, which we denote by X and is given by

X f(z) = —f (e2) (2.3.9)

Part (vi) of this result tells us that we can view g as the vector space of first
order left-invariant differential operators on G.

Now recall that if n € N, the general linear group, which we denote by
GL(n,C), is defined to be the space consisting of all n x n invertible matrices
with complex entries. We say that a Lie group G is a matrix Lie group if it is a
closed subgroup of GL(n,C), for some n € N.

If G is a matrix Lie group, then its Lie algebra g is a matrix Lie algebra,
in the sense that it is a subalgebra of gl(n,C), the Lie algebra consisting of all
n X n matrices with complex entries. In this case, we can consider the elements
of g to be matrices, instead of left-invariant vector fields. As it turns out, the
exponential map of a matrix is easy to compute. We have the following result, a

proof of which can be found, for example, in [25] or [31].

Proposition 2.3.10. Suppose G is a matriz Lie group and g is its Lie algebra.
Then, for every X € g, we have

et = exp(X ikl
k=0

22



where X 1s considered as a matrix.

Furthermore, we can use this result to compute the Lie algebra of a matrix
Lie group explicitly. We have the following fundamental result, a proof of which

can be found in [26] (see Proposition 2.7 in Chapter II, Section 2).
Proposition 2.3.11. Suppose G is a matriz Lie group. Then its Lie algebra g
15 given by

= {X € gI(n,C) : ¥ € G,Vt € R} (2.3.10)

2.3.5 Hormander system

Suppose G is a connected Lie group and let g be its Lie algebra. Further suppose
g denotes the Lie algebra of all smooth real vector fields on G and consider a
family of smooth real vector fields X = {X;, Xs,..., X)}. Let gx be the vector
subspace of g, generated by the vectors

(X, [ Xy [Xiwon Xaa] - ]]s 1 <linying. o ig < K

One checks easily that gx is a Lie subalgebra of g.,. Furthermore, for each

r € G let gx(z) denote the linear subspace of T,(G) given by

gx(iﬁ) = {Xx X € gx}

Definition 2.3.12 (Hérmander system of vector fields). Let G' be a connected

Lie group of dimension n and consider a family of vector fields

X - {Xl,XQ,...7Xk}.

Suppose further that g denotes the Lie algebra of G. We say that X forms a

Hormander system of vector fields if, for every = € G,

Suppose G is a connected Lie group and let X be a Hormander system of
left-invariant vector fields on . Then, the sub-Laplacian associated with X is
denoted by

L= —(X7+X;+ - +X7).
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Now, recall that Z(k) denote the set of multi-indices taking valuesin {1,2,...,k},
of arbitrary length (see (2.3.3)). For o = (i1,42,...,1,) € Z(k), we write

a?

and if )?il, X; . )A(:ia denote the right-invariant vector fields associated to

X, X

119

27 °

.y -5 Xi,, respectively (see (2.3.9)), then we denote

(2.3.12)
Definition 2.3.13. Suppose T is a differential operator on G of the form

T = Z CaXa-

acZ(k)

We define the transpose operator T to be the differential operator given by

= " (—DFle, X, X, X, (2.3.13)

aeZ(k)

2.4 Comparability of the Carnot-Carathéodory

metric to the Euclidean distance

Suppose G is a compact Lie group of dimension n and let g be the Lie algebra
of G. Further suppose that, for some k& € N, the set X = {X1,X,..., Xi}
forms a Hormander system of left-invariant vector fields on (. The objective of
this section is to show that the Carnot-Carathéodory metric is comparable to the
Euclidean distance. In the case that G = R", this result is well known; see, for

example, Chapter 1 in Nagel et al [30].

2.4.1 An adapted basis of g

Let us first construct a basis of the Lie algebra g of . For a multi-index
I = (iy,12,...,1,) € I(k), we define the vector field X5 by

Xy = [Xi, Xy [Xin Xa] - 1)

Let V; be the subspace of g consisting of linear combinations of the vector fields
X17X27 e ,Xk, that iS,

Vi == Span{X, : j=1,2,...,k}.
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We now recursively define

‘/s = ‘/S—l—i_ [‘/17‘/:9—1}7 for s € N7

where we use the convention V := {0}. Observe that Vj is spanned by the set

of vector fields

{Xm . I(kﬁ) |I| S S}.

Since X = {X1, Xs,..., X}} is a Hormander system, then there exists an integer
r > 0 such that

V, = g.

In fact, we have the increasing sequence of subspaces

{0} =WwcWcCc---CV, =g

We then denote

ns = dim(Vy), s=0,1,2,...,7.

We have

O0=ng < ni <ng < ---<np = n.

We now construct a basis of g. Choose vector fields Y;,Ys,...,Y,,, from our
Hormander system {X;, Xo, ..., Xi}, such that the set {Y7,Y5,...,Y,,} formsa
basis of V. Then, for s =2,3,...,r and foreach j =n, 1+ 1,n,1+2,...,n,

we let

Y}' = X[IJ<.S)] = [Xilv [X2'27 SRR I:Xi5717XZ'si| - }}7 (241)

for some multi-index 1 J(s) € Z(k), such that |I J(»S)‘ = s and the set of vector fields

{}/17}/27 s 7Yns_1aYnS_1+17 .- Yns}

forms a basis of Vi. Hence, we have constructed a set of vector fields

Y = {)/171/27"'7Y7’Lr} - {}/17}/27'”7}/11}; (242)

which forms a basis of g. Observe that this basis of g may not be orthonormal.
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Furthermore, for each j =1,2,...,n, we let

dj = |Ij’, (243)

and define

0 =max{d; : j=1,2,...,n}. (2.4.4)

Ezample 2.4.1. Suppose G = SU(2). In this case, we consider the Hérmander
system of left-invariant vector fields on SU(2) given by

X = {Xb X2}7

where

Observe that

2i 0
X, Xo| = ,
X1, Xo) ( 0 —2¢>
and recall that the set

(70) (50) G2}

forms a (orthonormal) basis of su(2) (see Section [2.8.2). Thus, the set

{ X0, Xy, [ Xy, Xo]}

is a basis of su(2). Letting Y; (j = 1,2,3) be the basis elements of g given by
(2.4.1]), one readily checks that we can take

Yi - X17 YQ - X27 }/3 - [XlaXQ]‘

Hence, we see that di = dy =1 and d3 = 2 in this case.
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2.4.2 An important neighbourhood of z in G and the

ball-box theorem

We continue with the setting of Section Let z € G. We know that there
exist a neighbourhood V' of z in G and a neighbourhood N of 0 in R" such
that the mapping ¢ : N — V| which is given by

D((21, 22, ..., 20)) 1= M e2¥2 e ¥n(g) (2.4.5)

is a diffeomorphism (see Proposition [2.3.9 (v)). For z € V we then let

(z1,22,...,2n) € NCR"

denote the coordinates of z given by the coordinate chart (¢~! V); that is, z

and (zy,29,...,2,) satisfy (2.4.5).

To obtain our desired aim, we shall make use of a result known as the ball-box
theorem. The statement of this theorem can be found, for example, in Section 2.4
in Montgomery [35] or in Section 0.5.A in Gromov [24]. In our case, the ball-box

theorem implies that there exist constants g, C', C' > 0 such that

"¢ (Box(¢)) € B.(x) C O (Box(e)), (2.4.6)

for all € < gg, where for each € > 0, we let

Box(e) := {z € R : |z;| <%, Vi=1,2,...,n}. (2.4.7)

It is important to note here that we can apply the ball-box theorem due to the
construction of the basis of g given in Section A proof of this result can be
found in several references; see, for example, Sections 2.4 and 2.6 in Montgomery
[35] or Section 4 in Nagel et al [36].

Now, let N be a neighbourhood of 0 in R™ and V' be a neighbourhood of

x in G small enough such that the following properties are satisfied:

(a) V C B, (z); that is, V satisfies ([2.4.6)).
(b) The mapping ¢ : N — V given by (2.4.5) is a diffeomorphism.

(¢) Any (z1,29,...,2,) € N satisfies

H(ZluZ?""aZn)HIRn < 1
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For any z € V we can then re-write (2.4.6) as

C' (|| 4 |z 4 2|V ™) < (2, 2)
< C (o™ + |z 4 [z ) L (2.4.8)

2.4.3 Comparing the Carnot-Carathéodory metric to the

Euclidean distance

We continue with the setting of Sections [2.4.1] and [2.4.2l We then have the

following result.

Proposition 2.4.2. There exist constants C1,Cy > 0 such that

Crdg(x,2) < d(z,2) < Codp(z,2)Y?, Yz eV, (2.4.9)
where dg(-,+) denotes the Buclidean distance on R™ induced by the chart (¢p~1, V).

Proof. Recall that the neighbourhood V' of e in G and the neighbourhood N
of 0 in R™ satisfy properties (a), (b) and (c) from Section [2.4.2] By property (c),
for every (z1,29,...,2,) € N we have |z;| <1 forall j =1,2,...,n. Moreover,

d;j > 1 forall j=1,2,...,n. So, for every (z1,22,...,%,) € N, we have

|z;] < |zj|1/dj < |zj|1/‘37 Vi=12,...,n,

where § is the integer given by (2.4.4)). Hence, by (2.4.8)), for every z € V we
have

C (lza] + 22| + -+ + |z]) < d(z,2)
C(|aa|" + |2+ +]2V) . (2.4.10)

IN

Furthermore, the equivalence of norms in R™ implies that there exist constants
c1, 2, > 0 such that

1
a (| + |z 4+ [2)? < (la] + |22+ + 2]), (2.4.11)

and

28



1
(Iz1)? + [zl + o 2] ) < o (|t + 2o 4+ 4 |2P) P, (24.12)

for all (z1,22,...,2,) € N. Hence, applying (2.4.11)) and (2.4.12)) to (2.4.10)), we
obtain that there exist constants C7,Cy > 0 such that for all z € V we have

(NI
g~

Ci(laa) + 2l + -+ [zl?)? < d(z,2) < Cy (|21l + 12l + -+ [zf*) .

This is equivalent to ([2.4.9).
O

FExample 2.4.3. Consider the 3-dimensional, connected and compact Lie group
SU(2), and let {Xi, Xs, X3} be the basis of su(2) given by (2.8.8). We further
consider the Hérmander system of vector fields X = {X;, Xo}. Let x = I be
the identity element of SU(2).

In this case, let Iy =1, I =2 and I3 = (1,2). Then, the set

{X[11}7X[12]7X[I3]} - {X17X27[X17X2]}

forms a basis of su(2). We have d; =1, dy =1 and d3 =2 (see (2.4.3)).
By the ball-box theorem, in particular (2.4.8]), there exists a neighbourhood
V of I in SU(2) and constants C,Cy > 0 such that

Cl(|21|+|22‘+|23‘1/2) < |Z| < 02<‘21’+|22’+’23’1/2), VzelV. (2413)

2.5 Schwartz kernel theorem

Suppose M is a smooth manifold. The objective of this section is to introduce
the Schwartz kernel theorem. Its purpose is to describe certain operators acting
on D(M), the space of compactly supported smooth functions on M, in terms
of an integral kernel. For a detailed exposition of the subject, see Treves [53].
We now assume M = G. Throughout the thesis we use a particular charac-
terisation of the space of compactly supported smooth functions, D(G), which is
relevant to our purposes. Let K; be an increasing family of compact sets, such

that |J; K; = G. We have the countable increasing union
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D(G) = U D(K;).

We then define the topology on D(G) via the family of semi-norms which are
given by

fllpacy == sup [Xaf(z)l, [ € D(K), (2.5.1)

aeZ(k)

|| <N

e K;
for each N € Ny and each i. This topology is independent of the choice of the

K.

We let D'(G) be the space of distributions on D(G); that is, the space of
continuous linear functionals on D(G). For v € D'(G) and ¢ € D(G), we
denote the action of u on ¢ by (u,¢). For a given u € LP(G), for 1 < p < +o0,

we can define a corresponding distribution, T, € D'(G), by

(T, 6) = /G u(@) $lx) dz, & € D(G).

We will usually abuse the notation and identify 7, with u. The topology on
D'(G) is then defined to be given by the family of semi-norms {|| - ||p/c)n :
N € Ny}, where for each N € N,

ullpyn = sup  [(u,¢)|, u € D(G). (2.5.2)
$€D(G)
llollpay,n<1

If X is a left-invariant vector field, we then define Xu to be the distribution
given by
(Xu,6) = —(u,X¢), Yo € D(G) (2.5.3)

This readily implies that, for any collection {Xi, Xs,..., Xy} of left-invariant
vector fields, if 8 = (iy,42,...,1,) € Z(k), then the differential operator

b

satisfies

(Xpu,¢) = (u, X40), V¢ e D(G), (2.5.4)

where Xf_} is the differential operator defined by ([2.3.13)). That is,
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(X Xy - Xpu,0) = (- u, X3, X, ... X 0), Vo€ DG), (2.5.5)

Let us also introduce the following useful notation.

Definition 2.5.1. We let .Z(L*(G))¢ denote the space of continuous linear

operators

T:D(G) — D'(G),

which are left-invariant and bounded in the L? norm; that is,

T fll2e) < Cllfllz2e), vV f e D(G),

for some C > 0.

We now state the Schwartz kernel theorem on manifolds. The reader is re-

ferred to [53] for a proof of this result.

Theorem 2.5.2 (Schwartz kernel Theorem). Let M be a smooth connected
manifold and suppose T : D(M) — D' (M) is a continuous linear operator.
Then there ezists a unique distribution x € D' (M x M) such that

/f k(x,z)dz, Y f € DM), x e M,

in the sense of distributions; that is

(Tt 6) = </f dz¢> 1,6 € DIM).

The converse also holds. Furthermore, the map

T +— kK
s an isomorphism of topological vector spaces from the space of continuous linear
operators T : D(M) — D'(M) onto D'(M x M).
2.5.1 Convolution on groups

Suppose G is a locally compact group. For two functions f,¢g € L(G), the
convolution f x g is defined by
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(f % g)(z) = /G £(2) (=) d.

This is well-defined and moreover, f * g € L'(G). The following properties of

convolution can be readily checked.

Proposition 2.5.3. Suppose f,g,h € LYQ), for a Lie group G. Then, the

following assertions hold:

(i) We have

1f* gl < [Iflleve llglloie)-

(11) Convolution is associative; that is,

[ (gxh)=(f*g)*h.
(i1i) Now, suppose that f,g € D(G), and X is a left-invariant vector field on
G. Then, we have
X(fxg) = f+(Xg) and X(fxg) = (Xf)*g,
and additionally,

(Xf)xg = f=*(Xg),
whenever these expressions make sense.

The following result about convolutions of L? functions is also well-known.

Proposition 2.5.4. (1) If f1, f» € L*(Q), then fi * fo is continuous on G,
with
1f1 % folle(@) < |fillze) || f2llr2e)- (2.5.6)
(2) Consequently, the map

NG x [HG) —  C(G)
(f1, f2) > fix fa

1s bilinear and continuous.
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Proof. Observe that for any fi, fo € L*(G),

fix folz) = (fr.mo(2) f3) 12c) » Vo e G,

where 7, denotes the left regular representation on G (see (2.2.2))), and where
for any f € L*(G) we denote

ff(x) = f(z71), Ve G.
As the complex-conjugate linear map
L}(G) — L*G)

f —

is an isometry on L?*(G), then the continuity of f; * fo on G follows from the
continuity of 7, (see Example [2.2.2)). Furthermore, by the Cauchy-Schwarz
inequality, as well as the unitarity of 77, we have (2.5.6). ]

Convolution with distributions

Suppose G is a Lie group. For a function f on G, we denote

fl@) = f@™), = €G.
Observe that, if f,g € L*(G), then we have

frgle) = /G f(2) gz 1) dz
- / £(2) mo(@)(2) d,
G

where 77, denotes the left regular representation on G (see (2.2.2)). Hence, the

convolution of f and g can be written as

frgla) = (fm(x)g).

Since G is assumed to be unimodular, we also obtain
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fgla) = / £(2) (=) dz
= /f(:ry‘l)g(y)dy.
G

Hence, we can also write the convolution of f and ¢ as

fg@) = (g.7n(z )],

where mg denotes the right regular representation on G (see (2.2.3))). This
suggests the following definition:

Definition 2.5.5. Suppose G is a Lie group. Let v € D'(G) and f € D(G).
We then define

fru(x) = <u,7rR(a:_1)f>, x € G,

and

ux f(x) = <u,7rL(x)f>, r € G.

Ezample 2.5.6. Suppose G is a Lie group and let f € D(G). We shall consider

the convolution of f with the Dirac distribution o... For every z € G, we have

f #0ig(@) = (begsmrla™)f) = Tala™)flec) = f(a)

The following properties can be readily checked.

Proposition 2.5.7. Suppose G is a Lie group. If u € D'(G) and f € D(G),
then ux f, fxu € D(QG).

Observe that, using Definition [2.5.5] we can readily check the following prop-
erty:

YV u,v,0 € D(G), (uxv, ) = (u,*70). (2.5.7)

If u € D'(G), we define the distribution u by

<av (10> = <u795>7 V€ D(G)

In particular, the following property holds
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Vu e D(G), ¢ € D(G), p*xu € D(G). (2.5.8)

Expression (2.5.7)) naturally leads to the definition of convolution of two distri-

butions.

Definition 2.5.8. Let u € £'(G) and v € D'(G). Then, we define u*v by

the relation

(uxv,p) == (u,p*0). (2.5.9)

The definition of the convolution of two distributions given by (2.5.9) is well-
defined by ([2.5.8]).

2.5.2 Schwartz kernel theorem on Lie groups

We can also state a consequence of Theorem [2.5.2] in the case that M = G is
a Lie group, for left-invariant operators. More precisely, we have the following

result.
Corollary 2.5.9. Let G be a connected Lie group. Let T : D(G) — D'(G) be a
continuous linear operator, which is left-invariant; that is,

(Tf)(zzx) = T(f(2x)), YV f € DEG), v,z € G.

Then, there exists unique v € D'(G) such that T is a convolution operator,

with right convolution kernel k; that is,

Tf = f*r, [ €DG),
in the sense of distributions.
The converse also holds. Furthermore, the map
T +— K

15 an isomorphism of topological vector spaces from the space of continuous linear
operators T : D(G) — D'(G), which are left-invariant, onto D'(G).

The proof of the converse in Corollary is, in fact, a routine exercise, which
we now show. If G is a connected Lie group and x« € D'(G), then the right-

convolution operator
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T.:D(G) — D'(G)
f — fx K

is left-invariant. Indeed, for any z,z € G, we have

(Tof)(zx) = (f *K)(2x) /f k(y 'zz)da
— [ fepnty oo
G
= T.(f(z2)),

as claimed.

Definition 2.5.10. Let G be a connected Lie group. Let T : D(G) — D'(G)
be a continuous linear operator, which is left-invariant. Then, there exists unique

k € D'(G) such that

Tf = fxk, f € D).

In this case, we shall call s the right-convolution kernel associated to the operator

T. Moreover, we denote

T(So = K.

Now, we suppose G is a connected Lie group. If X is a left-invariant vector
field on G, we claim that the right convolution kernel associated to X is the
distribution X0... Suppose f € D(G), then we consider the convolution of f
with the distribution X.,. For every z € G we have

[ (X.)(@) = (Xbu mrl@™)]).
By the definition of Xé., (see (2.5.3)), we then obtain

fr (X0e)(@) = = (g X{mala™) }) = =X {mrle™)] Hea)

= —815:0{77'1%(567 )f}<€tx)
= — 0o f(etxx_l)
= _)?f(x_l)’
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where we recall that for a function f on G, we denote

f(z) = f(z™h), Vo e G.

Now we compute

—Xf@™h) = o flea") = Do ] ((2e™) )
= 0o f(xetx)
- Xf().

So, we have shown that

Xf(z) = f*(Xbep)(z), Vzeaga,

which proves the claim.
Since f = f * 6., (see Example 2.5.6)), then we have also shown that

Fo(X6e) = X(f*6.). (2.5.10)

By applying this operation recursively, we obtain the following result, which
follows from ([2.5.4]).

Proposition 2.5.11. Let G' be a connected Lie group. Suppose { X1, Xa, ..., Xz}
is any collection of left-invariant vector fields on G. For B = (iy,ia,...,1) €

Z(k), consider the differential operator

ip -

Then, the right-convolution kernel of Xz is the distribution

X4

e
where the operator Xé 1s defined by (2.3.13)). Additionally, the distribution
X 0. satisfies

<Xé 5ea7¢> = <6egaXﬁ¢> = XB qb(eG)v v¢ S D(G)

Furthermore, consider the right-invariant differential operator
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5(:5 - Xi1Xi2 PN Xib’
where X denotes the unique right-invariant vector field associated to X (see
Proposition (vii)). Then, the right-convolution kernel associated to Xs is
given by
(_1)gjzé 66(; (x_l)v

where the distribution )?é satisfies

<)?g 56G,¢>> - <56G,555¢> — Xsé(ec), Yo e D(G)

Example 2.5.12. Suppose G is a connected Lie group and let the set

{X1, Xo, ..., X}

be a Hormander system of left-invariant vector fields on G, for some k € N.

Furthermore, let

L:=—(X7+X;+ X}

denote its associated sub-Laplacian. Then, by Proposition [2.5.11] the right con-

volution kernel associated to £ is the distribution Lo.,,.

2.6 Infinitesimal representations

Let G be a Lie group and suppose that g denotes its Lie algebra. For a repre-
sentation (7, %) of G, we aim to introduce the infinitesimal representation dm
of g. For a discussion on the subject, one can see, for example, Knapp [30] or
Fischer and Ruzhansky [18].

In order to do this, we need to consider the subset of 7, consisting of smooth

vectors.
Definition 2.6.1. Let (m,.5%;) be a representation of a Lie group G. We say
that a vector v € 4 is smooth if the mapping
r— m(x)v, z= € G,
is smooth. We let JZ>° denote the space of all smooth vectors in .7Z;.

A sketch proof of the following result can be found in [18].
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Proposition 2.6.2. Let G be a Lie group and suppose that g denotes its Lie
algebra. Let (w,.7) be a strongly continuous representation of G. Then, for

any X € g and v € J>°, we have that the limit

tX)v—v

dr(X)v = lim ™ (e

t—0 t

(2.6.1)

exists and is finite. Moreover, dr is a representation of g on J£>°, satisfying

dr ([X,Y]) = dn(X)dr(Y) — dn(Y)dr(X), VX,Y € g.

Definition 2.6.3. Let G be a Lie group and suppose g denotes its Lie algebra.
If (m,.74;) is a strongly continuous representation of G, then the representation
dr of g defined by ([2.6.1)) is called the infinitesimal representation associated to

TT.
Moreover, we also have the following definition.

Definition 2.6.4. Let G be a Lie group and g denote its Lie algebra. Suppose
that X = {Xy, Xs,..., X} is a Hormander system of left-invariant vector fields
on G. If T be a differential operator of the form

T= Y caXo,

aeZ(k)
lal<a

for some a € N, then we define

n(T) = dn(T).

If the representation (7, #;) of G is finite dimensional, then all of the vectors

in %, are smooth; that is,

A = A

Moreover, on a compact Lie group G, every irreducible representation is finite
dimensional, by the Peter-Weyl Theorem. Hence, every representation (w, ;) €
G consists of smooth vectors.

A proof of the following property of infinitesimal representations can be found
in [18].

Proposition 2.6.5. Suppose G is a Lie group and let g denote its Lie algebra.
If (w,52;) is a strongly continuous unitary representation of G and ¢ € D(G),
then for any left-invariant vector field X € g we have
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T(Xe)v = 7(X)m(p)v, Vo e ;.

If X isa right-invariant vector field, then

(X = 7le)r(X)v, Vv e A

2.7 The Lie group H and its representations

We now summarise the relevant theory related to the Heisenberg group and its
Lie algebra. For a detailed exposition of the work presented here, see for example
Stein [47], Folland [20], or Folland and Stein [22].

We shall explain two different ways of characterising the Heisenberg group.
First we may consider H to be the manifold R?, with the following group oper-

ation:

(z,y,t) - (2", ¢, ) =(@+2", y+ v, t+t — (v —2'y)).

We also let b denote the Lie algebra of H, which by the definition, is the vector
space of all left-invariant vector fields on H. We equip h with the Lie bracket
[-,+] given by

[X,Y]=XY -YX, for XY € b,

which, as we discussed in Section [2.3.3] defines a smooth left-invariant vector
field on H. By identifying h with the tangent space at the identity of H, one

can show that its basis is given by

o 0 I )
X=gotys, Y=g oo, T'=-2.

This calculation is done in great detail in [47] (Chapter XII, Section 2.6). Now,

observe that
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o o\ /0 o  oN[o 0
x = (g ova) (5 o)~ (5 ar) (o o)
2 a 82 82
:(axay_a_{ 6t}+y8t8 Iy@)
ayor oy Vot otor Y o
o 0
= {}at a—y{y}a
B

= —2—
ot

Hence,

X,Y]="T.

Now, we can also identify the Heisenberg group H with the manifold C x R,
equipped with the group operation

G- () =+ t+t+Im (¢ ).

Consider the space

= {2z =(z1,22) € C° : Im(22) > |21|* + | 22|},

and its boundary

ou = {Z = (21,22) € c? . Im(2y) = ’Zl‘Q + ’Z2’2}'

It is shown in Stein [47] (see Chapter XII) that the Heisenberg group may be
identified with the boundary oU via the mapping

H — ou
(G, 1) — (G t+ilC)

We now consider differential operators

o _1(o 0N o _1(o o
o 2\ 0x oy )’ o 2\ 0z oy )’

for ( = x + iy, and the left-invariant complex vector fields
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= 9 (0 ~ 9 C0
ac 2o ¢ 20
Moreover, set
0
T=—.
ot
We have
[Z,7Z] = iT

Observe further that

_ 1 1
7= 5(X+i), 7= g(X—iY)

Thus, we may identify the complexification of § with Ty (0U), the space of tan-
gent vectors to OU at 0. In [47] it is further proved (Section 2.6.3) that the vector
fields Z, Z, T form a basis of the tangent space Ty(0U). Thus, we can assume
that the left-invariant vector fields Z, Z, T' form a basis of the complexification
of b.

Haar measure

On the Heisenberg group, we consider the Haar measure given by

+o0o 27 +o00o ) p
/ £(g) dg = / / Flpe', 1) L dpdpat.
H 0 0 —c0 27

2.7.1 Representations of H

In this section we aim to describe the infinite dimensional irreducible unitary
representations of H. For A > 0 we define .#* to be the Fock space consisting of

the entire functions F': C — C satisfying

A
1P =2 [ PP ds < +oo,

where dz represents the Lebesgue measure on C. We consider the inner product

on .Z* given by
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(F,G) gx = é/F(z) G(z) e dz, for F,.G € F* (2.7.1)
C

7

We now define, for each A > 0, the representations oy, o_, of H acting on .#* by

6_)\<it+22+%‘4|2) F(Z + C)?
[0 A(C 1) F] (2) = e MC=H31P) pz ),

q
>
—~
I
~
~—
=
—~
N
~—
Il

An orthonormal basis of .#* with respect to the inner product (-,-) is given by

Ny — ﬁ 1/2Zj -
{77]- (2) = (j!) D> O} : (2.7.2)

Since .#* is an infinite dimensional space, then so are the representations oy, o_j.
Moreover, the representations oy, o_, are unitary with respect to the inner prod-
uct on .Z* given by . It can then be shown that the representations
ox,0-x (A >0) are the only non-equivalent infinite dimensional irreducible uni-
tary representations of H on .#* (see, for instance, Folland [20]).

We can calculate the infinitesimal representations of o).
Proposition 2.7.1. For A >0 and F € .F*:
(i) dox (Z) F(z) = ~Az F(2),
(it) dox(Z) F(z) = 0. F(z2),
(111) doy (T) F(z) = AF(z).

Proof. The proofs are all similar, so we only exhibit the proof of (iii). Let A > 0,
then for F € F?,

doy(T) F(z) = i0, e MitHC=+3lP) py 4 g)‘
(¢,t)=(0,0)

— i(—i)) e Mat+Cz+5(¢1%) F(z + O’
(¢:£)=(0,0)
= AF(z).
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Similarly, we compute the infinitesimal representation of o_j:

Proposition 2.7.2. For A > 0 and F € .7,
(i) do_» (Z) F(z) = =0, F(2),
(i) do_\(Z) F(z) = Az F(z),

(iii) do_y (T) F(z) = —\F(z).

2.7.2 The Plancherel formula on H

Observe that, for A > 0, the matrix entries of o) and o_, are given by

GO = (o omnV) L Gk=0, (G € H,

and

e ACHI = (oo ) L k=0, (1) € B

For an integrable function f on H and for A > 0, the Fourier transform of

f at the representation o, is given by

R +oo 27 +oo ]
fiow = [ f@a@rar = [ [ [ e o L e,

and a similar formula is obtained by taking the Fourier transform of f at o_j.
Since f(oy) € Z(.F>), then the Fourier transform fA(o,\) can be thought of as

the countably infinite matrix with entries

R ) +00 2 +00 ] )
Flon = [ [ [ s, ) a7 2 dpdpdt, k0
0 0 —00

Now, for an integrable function f on H, the Plancherel formula of f is given
by

Lis@ra = [ e (fonfion) Mar= [ 5 [Flos [ ax

3,k=0

For a detailed presentation on the Plancherel formula on the Heisenberg group,

see for example [1§].
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2.8 The compact Lie group SU(2) and its rep-

resentations

This section is aimed at introducing the compact Lie group SU(2). For a deep
study in the subject, the reader is referred to Faraut [14], Hall [25], or Folland
[20].
The compact Lie group SU(2) is defined by:
SU(2) ={g € GL:(C) : g" =g, det(g) = 1}.

It is not difficult to show that

SU(2):{<_C“B 2) c o, B € C, \a\2+|ﬁ|2=1}.

Alternatively, one can parametrise the Lie group SU(2) to obtain an equivalent

definition in terms of Euler angles. Fix an element of SU(2)

with |a|? + |B|?> = 1. Then, writing the complex numbers a, 3 in polar coordi-

nates, we see that there exist unique r, >0 and t* € (—mn, ], such that

a = reet
and 73 >0 and ¢* € (—37/2, 7/2], satisfying

B = rge¥.

We have,

o + 18 =1l +rf = 1. (2.8.1)

We write ¢t = —t* and we let ¢ € (0,27 be given by ¢ = ¢* + 37/2. Since

cos(p*) = —sin(p" —7m/2) = —sin(yp)

and
sin(p") = cos(p” —m/2) = cos(p),
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then we have

B = Tﬁ(—Sin(QO) + iCOS((p)) = irge.

Hence, we can write

B=irge?, for some 135>0, ¢ € (0,27,

and

a=r,e " for some r, >0, t € [-m 7).

Moreover, by (2.8.1)), there exists unique 0 < p < 7/2 such that

o = cos(p), rg = sin(p).
So every element x € SU(2) can be written uniquely in the form
e~ cos(p) 1€ sin(p)
ie % sin(p) e cos(p)
Haar measure on SU(2)

For the compact Lie group SU(2) we may consider the Haar measure given by

w/2 p2m pw sin(2
/ f(g) dg = / / / fp, ¢, 1) 4( QP) dpdedt,
SU(2) 0 0 -7 U

where (p, ¢, t) is the SU(2) element given by

ie % sin(p) e cos(p)

2.8.1 Representations of SU(2)

For each integer n > 0 we let &, determine the space consisting of polyno-
mials in one complex variable, of degree at most n. We define the irreducible

representation of SU(2), m,, which acts on &, by

ra(9)¢] (2) = (=B 2 +0)" o (_%—‘f(l) | (282)

for
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g:( “ f) € SU(2), ¢ € Z,.
-5 @

An inner product on the space &2, is given by

" ™

n+1 o
(6, V), = /(jso(zww (1+[2*)" 2 dz, (2.8.3)
and its induced norm is

n+1
T

lell%, =

/C ()P + [2) "2 d.

An orthonormal basis of &7, is given by

{soﬁ”)(Z) = (?) sz 1 0<j < n} (2.8.4)

The matrix entries of m, associated to the basis (2.8.4]) (see (2.2.4])) are then
given by

m(9) = ()" ") . 0<ij<n g€ SUE@).  (285)

It is clear that, for each n € Ny, 7, is an n + 1 dimensional representation.

Moreover, one can also show that m, is unitary with respect to the inner product

given by (2:83).

We now have the following result, whose fundamental proof can be found in
[14].

Proposition 2.8.1. For each n € Ny, the representation (m,, Z,) of SU(2)
is irreducible. Moreover, if m is an irreducible finite dimensional representation
of SU(2), then there exists n € Ny such that m ~ 7.

This implies that

—

SU(2) ~ {[mu]~ : n € Ng}.

Let M, := M,  denote the finite dimensional complex vector space spanned

by the matrix entries of m,; that is,

M, := Span {m,(g)" : 0 <i,j <n}. (2.8.6)
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We then define Mg, to be the space consisting of finite linear combinations of

vectors in some M, for some n € Ny; that is,

Mﬁnite = @ Mn (287)

The Peter-Weyl Theorem (see Theorem [2.2.3)) tells us that Mgy is a dense
subset of L?(SU(2)).
We also introduce the conjugate representation 7,, which acts on &, as

follows:

)61 = @l () = (i 4" o (50,

for

«

gz(_‘% é) € SU(2), ¢ € P,

For each n > 0, the representation 7, is equivalent to m,, and an intertwining

operator is given in [39] (p. 222).

2.8.2 Lie algebra su(2)

One can show that the Lie algebra of SU(2), which we denote by su(2), consists

of the 2 x 2 skew-Hermitian matrices, with complex entries, which have trace 0;

that is
5u(2):{<za_ Z.)ICLGR,ZEC}.
-z —ia

For a proof of this result, see Hall [25] (see Section 3.4 therein).
We now consider linearly independent vectors X, Xo, X3 € su(2) given by

Xlz((? ) XF(O 1), X3:<Z‘ 0,). 2.55)
1 0 -1 0 0 —

One easily checks that the set {X7, X, X35} forms an orthonormal basis of su(2)
with respect to the inner product defined by

1 1
(XY )a = gT(XY) = —STH(XY), XY € su(2).
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Indeed,

2
1 1 0 1 -1 0

Also,
() ()00
()]l )
<X2’X3>5u<2>__%Tr <—O1 0> ((z) é)] __%Tr(o _02)_0

Further, observe that
0 0 1 0 1 0 7
[Xla XQ] == . - .
1 0 -1 0 -1 0 ¢ 0

so [Xi, X3] = —2X;. By identifying the vector X, for each j = 1,2,3, with
the unique left-invariant vector field associated to it, we then see that the set

{Xj, X5} forms a Hérmander system on SU(2), and thus, the operator
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L=—(X7+X3)

is a sub-Laplacian on SU(2).
We now compute the infinitesimal representations of 7, and 7, on the basis
elements of su(2), X;, Xs, X3.

Proposition 2.8.2. Let n > 0 and p € P,. Then,
(i) T (X1) (2) = (2(—n + 20.) + 0.) »(2),
(1i) mn(X2) p(2) = i (2(=n+ 20:) — 0:) ¢(2),

(iii) 7(X3) 0(2) = i(n — 220,) p(2).

Proof. First observe that

. . . Zt
X1 ‘co's t isint | Xa _ cqs t sint | oXs _ e 0. .
i18int  cost —sint cost 0 e

We shall calculate m,(X3) only, since all of the calculations are similar. Suppose
first that p(z) = 27, for some 0 < j < n. It is not difficult to calculate that

m(Xs) plz) = % [ (%) ] (2
=0
d int —2it
= — [e™p(e™2)
dt [ ] =0
_ i [ei(n 2])1‘/2]}
dt t=0
= Z( - 2j)ZJJ
by (2.6.1]). In particular, we have
, 0
mX0) () = i (= 2550 ) (2. (259)

and hence, by the linearity of the operator i(n — 220z), we deduce that (2.8.9))
holds for any ¢ € &,. Hence,

Tn(X3) = i(n — 220,),

as claimed. N
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Similarly, we obtain:

Proposition 2.8.3. Let n >0 and p € ™. Then,
(i) Tn(X1) 0(2) = = (2(=n + 20:) + 92) ¥(2),
(i1) Tn(X2) (2) = =i (2(—n + 20:) — 02) ¢(2),

(i) Tn(X3) p(2) = —i(n — 220;) ¢(2).
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Chapter 3

Analysis of the sub-Laplacian
and Sobolev spaces on compact

Lie groups

In this chapter we study the sub-Laplacian associated to a Hormander system of a
compact Lie group G. We shall first study its spectral theory closely, and use the
spectral theorem to write down the action of its self-adjoint extension on L?(G).
We shall consider the compact Lie group SU(2) as an example, providing some
calculations to put the theory into practice. The heat semigroup is also discussed
in this chapter, and we explain some relevant properties.

Furthermore, we shall also consider the Sobolev spaces arising naturally from
the sub-Laplacian for the case p = 2. We state some important properties of
these, and prove the interpolation theorem and a Sobolev inequality for these
spaces. A local version of Taylor’s theorem is also proved in this chapter.

Lastly, we shall prove some important inequalities regarding the Fourier mul-
tipliers of a sub-Laplacian, using Littlewood-Paley decompositions. We base
these on the results obtained in Alexopoulos [2] in the setting of Lie groups of

polynomial growth, which were later adapted by Furioli et al [23].

3.1 Sub-Laplacians on compact Lie groups

This section is dedicated to providing an overview of the spectral analysis of
a sub-Laplacian on a compact Lie group. The references Varopoulos [54] and
[55] provide an extensive study of a sub-Laplacian on a Lie group of polynomial
growth. For further results in this setting, see Alexopoulos [2] and Furioli et al

[23]. For a comprehensive study of spectral theory, see Akhiezer and Glazman
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[1], Conway [9], Davies [11], Reed and Simon [38], or Rudin [42]. One can also
find in Fischer and Ruzhansky [I§] the spectral theory for Rockland operators on
homogeneous groups, which is a generalisation of sub-Laplacians. Additionally,
further results in the case of stratified nilpotent Lie groups can be found in Folland
[19].

In this section we shall also discuss the heat semigroup and its associated
heat kernels (see Section [3.1.5). In Hunt [29] one can find important results on
this topic, wherein the heat kernels are interpreted as positive measures. For
results in the setting of Riemannian and sub-Riemannian geometry, the reader is
redirected to Strichartz [49] and [50].

Throughout this section, we let G be a compact Lie group, and suppose
g denotes its Lie algebra, unless stated otherwise. Furthermore, we consider a
set {Xy,Xo,...,Xg}, for some k& € N, which forms a Hormander system of

left-invariant vector fields on G, and let £ be its associated sub-Laplacian:
L=—-(XT+X5+ - +X7).

3.1.1 Definitions and the self-adjoint extension of L

We recall the following definitions.

Definition 3.1.1. Suppose T is a densely defined linear operator (not necessarily

bounded) on a Hilbert space .7, with domain Dom(7"). Let also Dom(7*) be

the set of elements v € J such that there exists w € ¢ which satisfies
(Tu,v),, = (u,w),, Yue Dom(T).

(a) We then define T, the adjoint of T, to be the operator satisfying

(Tw,v),, = (u,T*v), VYwu € Dom(T), v € Dom(T™).

(b) We say T is a symmetric operator if Dom(7") C Dom(7™) and

Tu=T"u VYu € Dom(T).

Or equivalently,
(T'u,v) ,, = (u,Tv), Vu,v e Dom(T).
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(c) Wesay T is self-adjoint if it is symmetric and Dom(7") = Dom(T™).

By definition, £ is a differential operator acting on C*(G). So L is an
unbounded operator which is densely defined on L?*(G). Observe that, if X is a
left-invariant vector field and f,g € C*(G), then

(X5.0) 2y = [ (O Fe™)) 50

_ /G 1) (B glwe) ) da

= — ([, X9>L2(G) :

Therefore,

k k
<£f7g>L2(G) = _Z<X12f’g>L2(G’) - Z<Xjf7ng>L2(G)
j=1

j=1

k

= _Z<f’ngg>L2(G)
j=1

= (/, £g>L2(G)7

which means that £ is a symmetric operator. Moreover, we check that

k

(Lf, f>L2(G) = Z <Xjf’ Xjf>L2(G)

j=1

k
= > IIXiflliae)
j=1

> 0,

and so L is a non-negative operator. Therefore, £ admits a self-adjoint ex-
tension to L?(G) (see, for example, Section 85 in Akhiezer and Glazman [I]).
Furthermore, one can show that this extension is unique (see, for instance, Section
12 in Strichartz [50]). Throughout this thesis, we will keep the same notation for
the differential operator £ and its unique self-adjoint extension to L*(G). We

let Dom(L) denote the domain of the self-adjoint operator L.
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3.1.2 Fourier analysis of L

In this section we aim to write down the spectrum of the self-adjoint operator
L, which we denote by Spec(L). For each (m, ) € G we consider an inner
product (-,-) . on %, and we let d. be the dimension of 7. Suppose further
that || - || denotes the norm associated to (-,-) , . Observe that for each
7 € G and each j=1,2,...k, 7(Xj) is a skew-adjoint operator on % that

is,
(m(Xj)u,v) . = (u, —7(X;)v) , , Vu,v € A

In particular, this implies that

n(X3) = (X3, Vji=12... k

Hence,

j=1
is a self-adjoint operator acting on the finite dimensional inner product space

;. Therefore it is diagonalisable and there exists an orthonormal basis

{7 j=1,2,...,d} (3.1.1)
of 7 which consists of eigenvectors of 7(L). Thus, whenever 1 < j < d, we
have

T(L)e” = A, (3.1.2)
where /\gw) € C denotes the eigenvalues of m(L) associated to the eigenfunction

gp§7r) , and hence

g A=,
(L)) = <7T(£)90(»”),<p§”)> =" - (3.1.3)
’ # o, if i # j

Moreover, since for any ¢ € 3,
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(w1 (0)e,P)r, = = D_(T(XD)0r0) . = D (7 (X)0,w(X))0) 1,

™

j=1

k
= Y Im(X5)el%, >0,
j=1

then the eigenvalues )\§7r) (1 <j<d;) of (L) are non-negative real numbers.
Now, for each m € G, we consider the matrix entries of 7 (see (2.2.4)) with
respect to the orthonormal basis of 7, given by ({3.1.1)):

n(@) ) = (w@)e” o) . 1<ij<d,w e

By the Peter-Weyl Theorem (see Theorem [2.2.3]), we have that the set

{\/d_ﬂﬂ(.)(ivj) 7 e @, 1<id,j <d}

forms an orthonormal basis of L?(G). Now, if X is a left-invariant vector field
on G, then whenever 1 < i,j < d,, using Proposition 2.3.9] (vi), we calculate
that

Hence, we obtain

k
La@) = =3 (X)o7 el7)
=1 o

k
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By (3.1.2)), we then have

L)) = (w(a)n(L) 6"

= <7r(:17) A§ﬂ)¢§ﬂ)a¢gﬂ)>%

_ 1\ (i,5)
= N\ m(x)".
Therefore, we have the spectral decomposition

Spec(£) = (N7 17 e G, 1< <d, ). (3.1.4)

Remark 3.1.2. One can show that the spectrum of L is discrete. Consider the
operator e *. As we shall see in a later section, this operator is compact (see
Remark [3.1.7). Now, by spectral theory, the spectrum of e~* is given by

Spec(e ®) = {e™* : X € Spec(L)}.

This implies that we can write the spectrum of £ as

Spec(L) = {—1In(u) : p € Spec(e )} .

In fact, this relation yields a one-to-one correspondence between Spec(L) and
Spec(e™£). Additionally, eigenvalues associated via this relation have the same
geometric multiplicity.

By the theory of compact operators (see, for example, Section VIL.7.1 in
Conway [9]), we know that Spec(e™*) has at most one accumulation point and
that it can only be 0, and moreover all non-zero eigenvalues of e~* have finite

multiplicity. By functional analysis, this implies that Spec(L) is discrete.
We also make the following observation.

Remark 3.1.3. (1) Suppose that L is the Laplace-Beltrami operator of G. By

~

the theory of compact Lie groups, we know that for every m € G, there

exists a unique scalar \; > 0 such that

7T(L) = /\wld,)?’;r

In the case of a sub-Laplacian £ this statement does not hold. We shall
provide an example for the case G = SU(2) in Section |3.1.4}
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(2) Now, as we will also demonstrate in the example of SU(2) in Section
3.1.4] there exists A € Spec(L) for which there exist m,7" € G, ij €
{1,2,...,d;} and 7, j" € {1,2,...,d~}, where 7 and 7’ are non-equivalent,
such that

Ew(x)(i’j) = Aﬂ(x)(i’j)

and

£W’(I)(i/’j/) = )m'(a:)(i/’j/).

In this case the geometric multiplicity of A is greater than 1 and the
eigenspace associated to A is not a subspace of either M, or M,,. Recall

that, for each © € CA}', M, is the space given by

M7r = Span{<771(')%¢>%l : %w S %ru m € [W]~}~

3.1.3 Spectral decomposition of L

Let E) denote the orthogonal projection onto the eigenspace corresponding to
the eigenvalue \; that is, if A € Spec(L), then

Evf = Z {f, 7T(.)(z’u‘)>L2(G) (09)

7€G,1<i,j<dx
A§’*’=A

Since the spectrum of £ is discrete (see Remark [3.1.2)), then the spectral theory
(see, for instance, Theorem VIIL5 in [38]) tells us that,

L= Y AE\

X € Spec(L)

with domain Dom(L) consisting of functions f € L?(G), such that

> \A|2HEAinQ(G) < +oo.
X € Spec(L)

So, for a function f € Dom(L), we have
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Lf= > & DY de (7)) oy 7

AeSpec(L)  1e@,1<i,j<dx

= > dy N Fom (D) gy 7 (3.1.5)

d7r
Lf =" de Y NP f(m) g, (3.1.6)

re@ i,j=1

Furthermore, we have

dr
S PE e = D de D NP [Fm0 (3.1.7)

A € Spec(L) rel ,j=1

and hence the domain Dom(L) of £ is given by

dr
Fer}G) Y d S NP Fm U < oo

re@ 6=l
More generally, by the spectral theorem (see, for example, [38]), if m is a Borel

function on R, we have

m(£) = Y m(NE. (3.1.8)

X € Spec(L)

Hence,

dr
mO)f = 3 de Y m(AD) F(m)0d 7, (3.1.9)

reG@ =l
and the domain Dom(m(L)) of m(L) consists of functions f € L?*(G) such
that
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Zd Z\mﬂ | |F(7) Z\ < +00.

req 4,j=1

Let us now consider some important examples.

Erample 3.1.4.

(i) For s € R, the operator (I + £)° satisfies

(I+L)7f = dn Z (1+ A7) f(m)0d) 1) (3.1.10)

req 1,j=1

for f € Dom ((I 4+ £)*/?), which is the set consisting of functions f €
L*(G) such that

S dn Z]1+/\(”)|25 F(m) 0D ? < 4o0.

req 1,j=1

(ii) For each t > 0, the operator e~** can be written as

e—tﬁf _ Z e—t)\ElA Z d. Z eft)\(ﬁ) (] i) (z )

A € Spec(L) el 4,j=1

for f € Dom(e~*¢), which is the set consisting of functions f € L?*(G)
such that

> de Z} AP F ()P < 4o

re@ i,j=1

We end this section with the following immediate observation.

Remark 3.1.5. If m € D(G) is such that

supp(m) N[0, 4+00) C [0, A1),

where \; is the smallest non-zero eigenvalue of L, then
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3.1.4 Sub-Laplacian on SU(2)

In this section we study a sub-Laplacian on the compact Lie group SU(2) (see
Section , using the theory developed so far in Section .

Recall that, viewing the elements of su(2) as left-invariant vector fields,
we know that the set {X;, X5} forms a Hormander system on SU(2), where
X1, X2, X3 denote the basis elements of su(2) given by (see Section[2.8.2)).
We consider the following sub-Laplacian on SU(2):

L=—(X2+X2).

Recall that we use the same notation for the differential operator £ and its
self-adjoint extension to L?(SU(2)).

Fix n € Ny. By a direct computation, using Proposition [2.8.2 we obtain

(L) = — (Wn(X1)2 + 7Tn(*X2)2)
= — [(2(=n+ 20,) + 0.)* + (i(2(—n + 20,) — 9))] . (3.1.11)

Observe that

(2(—n+ 20.) + 9.)°
= 22(—n+20,)* + z(—n + 20,)0, + 0. {z(—n +20.)} + 02, (3.1.12)

and similarly,
(i (2(—n + 20.) — 9.))°
= —2*(—n+20,)° + z2(—n + 20,)0, + 0, {z(—n + 20,)} — 9. (3.1.13)
Combining (3.1.12) and (3.1.13)) with (3.1.11), we obtain
(L) = —2z(—n+ 20.)0, — 20, {z(—n + 20,)}

= —2(—2znd. + 2°02) — 2(9.{z}(—n + 20.) — nz0, + (20.)*)
= 2n +4nz0, — 22207 — 220, — 2(20.)*. (3.1.14)

But,
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(20.)? = 20, + %07,

and hence (3.1.14)) becomes

(L) = 2n +4nz0, — 4(20.)>. (3.1.15)

For n € Ny, recall that (see Section [2.8.1)) an orthonormal basis of 2, is
given by

N
3
—
)
~
‘S/\
S
—~~
I
SN—
Il
\}

o\ 12
( ) [n+ 2n20, — 2(20.)] 2/
J

= 2 [n(1+2j) — 2% ¢} (2)-

J

(n)

So, the eigenvalue of the operator m,(L£) associated to the eigenfunction ;" is

given by
A =2 [n(1+ 2) - 257] .

In particular, the basis (2.8.4) of &2, forms a complete set of eigenfunctions of

mn(L). Furthermore,

N A ifi—=
(L)) = <7rn(£)90§-”),s0§")> =97 T (3.1.16)
Pn 0 otherwise

Therefore, the spectrum of the operator L is given by

Spec(£) = {2n(1+2j) — 45> : 0<j<n, n € No}.

Let us now write down some examples of eigenvalues )\g-n) corresponding to
the eigenfunctions 7 of £. The values of j are displayed along the top
horizontal row, whilst the values of n are displayed on the left-most vertical

column. We consider the values of n ranging from 0 to 5 and j < n.
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n\j 0 1 2 3 4 5
0 0

1 2

2 4 8 4

3 6 14 14 6

4 8 20 24 20 8
5 10 26 34 34 26 10

The table above shows that there exists n € Ny, and 5,5/ € {0,1,2,...,n}
such that

() 4 A0
A2 A0,

In particular, this means that there exists n € Ny such that

7Tn(£> 7£ )\In+17

for any A > 0, where I,,1 denotes the (n+ 1) x (n + 1) identity matrix. This
contrasts with the case of the Laplace-Beltrami operator L = —(X?+ X7 + X3).

Recall the classical result

(L) = (n* +2n)l,11, ¥Yn € Np.

This can also be checked directly with a computation, using Proposition [2.8.2]

Moreover, we also notice that, for example we have

A=A =Y =8

This means that

Eﬂg(x)(i’l) = 87r2(x)(i’1), £7T4($)(i,’0) = 87r4(:r)(i/’0), ,C7T4(£L‘)(i/’4) = 87r4($)(i/’4),

whenever 0 <7 <1 and 0 < ¢ < 4. This illustrates what we explained earlier
in Remark (2); the eigenvalue A = 8 has geometric multiplicity at least

12 > 1 and its associated eigenspace, which is given by

{f € L*(SU(2)) : Lf =8f},

is not a subspace of either My or M, (see ([2.8.6))).
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On the other hand, in the case of the Laplace-Beltrami operator on SU(2),
if A\ = n%+ 2n, for some n € Ny, is given, then the eigenspace associated to
A is exactly M,,. Therefore, there is a one-to-one correspondence between the

eigenvalues )\, = n? +2n of L and the spaces M,,.
Now, by (3.1.6), we have

o0 n

Lf =3 "(n+1)>" (2n(1 +25) — 452) f(m,) 0D 7). (3.1.17)

n=0 4,7=0
for any f € Dom(L), where the domain Dom(L) is the space consisting of
functions f € L*(SU(2)), such that

Z(n +1) Z }Zn(l +2j) — 4]'2‘2 ’f(ﬂn)(j’i)}Q < 4o00.
n=0

i,j=0

To put it another way, Dom(L) is given by

{f € LX(SU)) = > (n+1) > |2n(1 +27) — 45| | F(ma)99|* < —i—oo}.
n=0

1,J=0

More generally, by (3.1.9)), if m is a Borel function on R, we have

m(ﬁ)f:Z(n+1)Zm(2n(1+2j) 52 fmn) ) m@), (3.1.18)

and the domain of m (L) consists of functions f € L?*(SU(2)) such that

Zn—l—l Z}m?n 1+25)— | }f (7" < 400.
n=0

2,7=0

3.1.5 Heat semigroup

In this section we aim to introduce the heat semigroup associated to a sub-
Laplacian on a compact Lie group, and the corresponding heat kernels. Results
in the setting of Lie groups can be found, for example, in Hunt [29], Varopoulos
[54] or Saloff-Coste [45]. See also Folland [19] for results in the setting of stratified
nilpotent Lie groups. Further results for Lie groups of polynomial growth can be
found in Alexopoulos [2] or Furioli et al [23]. More general results on manifolds

are also known; for instance, see Strichartz [49], where the Laplace-Beltrami op-
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erator is considered, or Strichartz [50] for related results on the sub-Riemannian
setting. Furthermore, some standard references for semigroups in functional anal-
ysis include Davies [I1], and Reed and Simon [38] (see Sections VIII.3 and VIII.4
in the latter).

Using functional analysis, we may construct the strongly continuous semi-

group of operators on L%(G) associated to the self-adjoint operator L:

{e_w}tzo’

O£ is the identity operator on G. This is known

where it is understood that e

as the heat semigroup. Since for all t+ > 0 the mapping A — e~ is bounded

and continuous on [0, 4+00), then by functional analysis, the operator e™** is
bounded on L?(G), with bound
e | 22y < suple ™| < 1. (3.1.19)
A>0

Hence, {e % };>¢ is a contraction semigroup.

tL

Since L is left-invariant, then for each ¢ > 0, the operator e™** is also left-

t£ is bounded on

invariant. Additionally, since for each ¢t > 0 the operator e~
L*(G), then in particular, it is a continuous operator on L?*(G). So, for each
t > 0, the operator e~** satisfies the hypothesis of Corollary [2.5.9] and hence it

admits a right-convolution kernel p, € D'(G):

e f = fxp, Vt>0,f € L*G). (3.1.20)

L is known as the heat kernel

The kernel p; corresponding to the operator e~
associated with L.

In this thesis we will use the following properties of the heat kernels, which
are classical and well-known. One can find, for example, in Hunt [29], a proof
of properties (i)-(iii), where the heat kernels p; are considered as finite positive
measures on G. The regularity of the heat kernels follows from the fact that they
satisfy the heat equation as a distribution and a famous theorem by Hormander
in [28]. Further discussions on these properties in the more general case of Lie
groups of polynomial growth can be found in Varopoulos [54]. In Folland [19],
one can also find a proof of these properties in the case of stratified nilpotent Lie

groups.
Proposition 3.1.6. The heat kernels satisfy the following conditions:

(1) For each t > 0, the heat kernel p; is smooth on G. Furthermore, pi(z) >0
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for all z € G, and it is integrable, with

/pt(z) dz = 1.
e
(ZZ) If t1,t5 > 0, then

ptl *th - pt1+t2'
(iii) For every t >0 and z € G, p(z) = pi(z7h).
(i) For every t > 0, there exists C' >0 such that

2|2

p(z) S CV(Vt)y e er,  for z € G, t>0, (3.1.21)

where, for each r > 0, we let V(r) denote the volume of the ball B.(eq),
with respect to the Carnot-Carathéodory metric on G (see Deﬁm’tion.

Additionally, one can also find in Varopoulos [55] (Chapter VIII) an estimate

for the volume of a ball with respect to the Carnot-Carathéodory distance:

rt, for r € (0,1),
1, for 1 <r <R,

V(r) =

where [ denotes the local dimension of G (see Definition [A.2.1)) and R denotes
the radius of G:

R = sup|z| < 4o0.
zelG

Moreover, whenever r > R, we have

Hence,

So, we have

rl,  for r € (0,1),
V(r) ~ (0,1) (3.1.22)
,  for 1 <r < +4o0.
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Proposition [3.1.6] can be generalised to a sub-Riemannian manifold which
does not necessarily have a group structure. See Strichartz [50] and [49] for the

properties of the heat kernels in this case.

Remark 3.1.7. Since G is compact and for each ¢ > 0 we have p; € C>*(G), then
p: € L*(G). This implies that, for each t > 0, the operator e~** is compact on
L*(G) (see Theorem 2.3.2 in Bump [5]).

3.1.6 The operator (I + E)_S/Q on a compact Lie group

For a given s € R we let By denote the right-convolution kernel associated to
the operator (I + £)~*/2. That is, B, satisfies

(I+L)*f = fxB,, ¥V f € Dom((I+L)"?). (3.1.23)

The aim of this section is to show that, for a given s € R, the distribution Bj,
whenever it exists, is square integrable subject to a certain condition on s.
As we saw in Example for s € R, the domain of the operator

(I+ L)~/

which we denote by Dom ((] + C)*S/Q), is given by

dr
FeLXG) Y de d 1+ A7 F(m) " < 400y,

reG  iiml
and the action of (I + £)~*/% on a function f contained in Dom ((I + £)~*/?)

is given by

dx
L+L)72f =3 d S (1+ M) fm) 69 g,

reG  HI=l

First observe that, if s > 0, then the mapping

A (14 1)/

is a bounded measurable function in [0, +0c). Hence, by spectral analysis, the
operator (I + £)~*/? is bounded on L?*(G). Since it is also left-invariant, then
by Corollary [2.5.9] it admits a right-convolution kernel, which we shall denote by
Bs.
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To begin with, we shall consider the case G = SU(2). We have the following

result.

Proposition 3.1.8. Suppose G = SU(2) and let

L =—(X]+X3)

be the sub-Laplacian on SU(2) we considered in Section |3.1.4. If s > 2, then
the right convolution kernel By associated to the operator (I 4+ L£)™%/? is square

integrable.

Proof. By definition, the kernel B satisfies

(I+L)*Pf = fxB,, Y fe L*SU(2)).

Furthermore, by the properties of convolution, taking the Fourier transform yields

~

F{<I+£)_S/2f}(7rn> = -F{f*Bs}<7Tn) = B;(ﬂ—n)f(ﬂn)a Vn € No.

Hence, for each n € Ny, we have

F{I+ L)} (mn) = 71+ L)/ = By(my).

Moreover, for each n € Ny,

FLI+ L)} () = (14 2n(1+2)) — 45%) 7, v0<ij<n

Now, in this proof we shall show that

> (n+ 1) |lma (I + L)
n=0

= i(wrl) i ‘(1+2n(1+2j) —452) 7" ; (3.1.24)

is finite provided that s > 2. By Plancherel’s Theorem (see Theorem [2.2.7)), we

have

1Ball2osuy = 3 (n+ 1) lma( + L) |s. (3.1.25)
n=0
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Hence, proving that (3.1.24) is finite for s > 2 yields the result.

First, we claim that

3

—s/2 2

S (n+1) }1+2n(1+2j)—4j2)
n=0

7=0
< / / (z+1) |(1+22(1+2y) —4y*)| " dyda.
o Jo

In order to prove this, we study the function

0,2] — R
yr— [(1+22(1+2y) —4y°)| " = |2y —2)* - 1?77, (3.1.26)
for a fixed z > 0 and s > 0. The expression (2y —z)? — (x4 1)? is equal to 0 if

and only if y =122 +1) =2+ 1% ¢ [0,2], and moreover, (2y — z)? > (z + 1)
if and only if

y—x>x+1 or 2y —ax < —(x+1).

This holds if and only if

2z +1) or y < —=.

DO | —

Hence, it follows that
|2y —2)’ = (z+1)*| = (+1)>— (2y —2)*, whenever 0<y<u.
Furthermore, for y € [0, z], its derivative is given by

d
dy

s—1

{1y —2P = @+ 127} =452y —2) (w12 = 2y —0)°) ",

by the chain rule. So,

d

ey = @[T =0 =y =3,

provided that y € [0,z]. Thus, the only turning point of this function in the
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interval [0,z] is at y = /2. Additionally, we have

((z+1)° =2y —2)*)" — 400 as y—>%(2x+l)_.

Putting all of this information together yields that the function given by (|3.1.26)

is a convex function with a turning point at y = x/2. This implies that

. =)
/ |2y —2)* = (z+1)%° > Z |1+ 2x(1 4 25) — 457,
0

j=1
where |z]_ denotes the highest integer n such that n < x. Furthermore, it is

clear that we also have

> (4 1) [(1+2n(1+24) - 45°)|

S

< /oo(a: +1) ‘(1 +22(14 2y) — 4y2)’7 dz,

for a fixed y > 0, whenever s > 1. So, we have shown that for s > 1, the norm

given by (3.1.24]) is bounded by

/000 {/x(erl) |(1 4221+ 2y) — 49°)| dy—|—2(x+1)|1_|_2x|—s:| da

0
:/ (z+ 1) [(1+2z(142y) —4y°)| dyda:Jr/ 2(z + 1)|1 4 22| * du.
0 0 0

Now, let
o= [T el e - 4] v,
o Jo
with
L, = / (z+1) (14 22(1 4 2y) — 49°) ‘78 dy,
0
and

L ;:/ 2+ 1)|1 + 20| da.
0

It is clear that I, < 400 if s > 2. Let us now consider the integral I ,. Applying
the substitution u = 1+ 2z(1 + 2y) — 4y* for a fixed x > 0, we first compute
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that

W aey—a) = @+ 1) o]

Also using the fact that our function is symmetrical about the line y = x/2, we

have

/Ox(:c +1) [(1+22(1 +2y) — 4y%) | dy

1 [lt)? 3
:_—/ (z+1)u™ [(z+1)° —u] Y2 du.
2 142z

This is finite, provided that s > 1/2, and consequently, I; < 400 provided that
s > 1/2. Hence, we deduce that (3.1.24]) is finite, provided that s > 2. So, by

(13.1.25)), the result is proved. O

We can give an alternate proof of Proposition [3.1.8 which is valid for any
compact Lie group G. In this proof we shall make use of the heat semigroup
{e7*},50 and the results given in Section [3.1.5]

Proposition 3.1.9. Suppose that G is a compact Lie group of local dimen-
sion | (see Definition . Suppose further that {X1,Xo,..., X} forms a

Hérmander system of left-invariant vector fields on G, for some k € N, and let

L= —(X7+X5+X})

denote its associated sub-Laplacian. If s > 1/2, then the right-convolution kernel

associated to the operator (I + L£)7/%, B,, is square integrable.

Proof. Recall that the I" function is defined as the convergent integral

I'(s) = / et dt, for s> 0. (3.1.27)
0

Thus, if A\, s > 0, we have

I'(s/2) = AS/Q/ t2te M dt.
0

So, on rearranging we obtain

1 © |
/\—3/2 - - t——l -t dt
r<s/2>/o S
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Hence,

1 o<
1 A —8/2 - - t7_1 —t =\t dt
N =y | e

Integrating with respect to the spectral measure yields the equality

1 w S
I -s/2 _ t§—1 —t —Lt dt.
(I+L) (/2 /0 ete

Hence, for any f € Dom((I + £)7/?), we obtain

—s/ _ 1 OO 5—1 -t —Lt
(I+L) 2f—F(5/2)/0 tete e dt

1 T s
= m/ﬂ t2 e (f *pt) dt

1 PER
:f*{F(s/Q)/O t27 e ptdt}.

This shows that the kernel B, is formally given by

_ 1 IPEE
Bs = F(S/Q)/O t27 e " py dt.

By Fubini’s Theorem, we have

/ }tgfle’tpt dt <

0

< tzle )| dzdt

< F(s/ / 2 /|pt )| dz
1,

<

t2 et (2) | dtdz

where the last equality is obtained by Proposition |3.1.6|and (3.1.27)). This shows
that B, € L'(G), and ||Bs|r1(q) < 1. Now, the L* norm of B is given by

|@%@:L@wmz

[e'e) 2

t2le () dt| dz.

b
IT(s/2)P Ja

But, for each z € G, we compute
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2 00 o)
s_1 ]
:/ 2 ey (2 )dtl/ t3 e2py,(2)dty
0 0

O s g sy
:/ / t3 3 e (tﬁt?)ptl(z)pw(z) dt; dt,.
o Jo

Hence, by Fubini’s Theorem, we have

/ t2 L et p,(2) dt
0

1 o] 00 s_q s_q oo
Bl = —/ / t2 o t2 e(tIHQ)/ (2)pe, (2) dz dty dt,.
| HL?(G) ITG/2)2 ), /s 1 2 . Pty (2)p1,(2) 1 Al2

By the properties of the heat kernels (see Proposition [3.1.6)), for each t1,t, > 0

we obtain

/ P (2)pia(2) dz = / P (202 dz = oy * Pry(ec) = Prrsea(ec).
G G

Hence,

1 T[T s
1Bs|172(c) = /wao /O tp 3 et p L (eq) dty dts d.

Now, we do the substitutions ¢ = t; +t2 and u = t5/t. We have

/ / (t1t2) %71 t1+t2)pt1+t2(€c) dt; dt,

o0 oo 1,
/ / (ta(t —12))* e ' pileq) dt dis
to=0 Jt=

2= to

/ / 12(3 (u—u) e i pieg) t dt du.
u=0 Jt=0

(1)

Thus, we have

/ (tito)2 e M2 py Ly (eq) dty dis

1 oo
= / (u—u?)>"tdu / t2(%71)+1€_tpt(60) dt
u=0 t=0

1
:/ (u—u2)§1du/ e pi(eq) dt.
u=0 t=0
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Clearly,

1
/ (w—u?)2 "t du < 400,
0

provided that £ —1 > —1; that is, as long as s > 0. Now, observe that

/ e pyeg) dt
0

1 00
= / e pyeq) dt+/ et pyeg) dt. (3.1.28)

0 1
Proposition (iv) tells us that there exists C’ > 0 such that

leg|?

nleg) < OV e & = C'V(VH), Vi 0.

Furthermore, by (3.1.22)), we know that the quantity V(v/t) is bounded and it

satisfies:

—1/2 1
V(Vi) Tl = e e 0) (3.1.29)
1, 1<t < +o0.

This implies that there exists C; > 0 such that

pileg) < CLt™2 Vit e (0,1), (3.1.30)

and C3 > 0 such that

pilec) < Gy, V1<t < oo (3.1.31)

Combining (3.1.30) and (3.1.31f) with (3.1.28)), we deduce that there exists C' > 0

such that

/ s let pe(eq) dt

0
1 [e’e)
<C (/ et dt + / 5l et dt) .
0 1

For any s > 0 we have

/ t*letdt < +oo.

1
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Moreover, the integral

1
/ 73 1ot dt < +oo,
0
provided that s — L — 1> —1; that is, if s > [/2. Hence, a sufficient condition

to have ||B; HL2 < o0 is that s > /2. O

Remark 3.1.10. In the case of stratified nilpotent Lie groups, one can find the
proof of the analogous result to Proposition in Folland [19].

The following result is a consequence of Proposition [3.1.9]

Corollary 3.1.11. If s € R, such that s > 1/2, then,

> d.Tr|r(I+ L) < 4o (3.1.32)

reC

Proof. For each 7 € @, we have

Tr|w(I+L£)"°| = Tr|r(I+L£)72 (v(I+£)72)"| = HWI"FEﬁSHHS

So, by Plancherel’s Theorem (see Theorem , we obtain

Zd Tr|x(I +£)~* Zd Hﬂf‘i‘ﬁ"SHHS_HB||L2(G)7

reC red

where || - ||gs denotes the Hilbert-Schmidt norm (see (2.2.8))), and B, denotes
the right—convolution kernel associated to the operator (I +L£)~*. By Proposition
L if s >1/2, then ||B|[12(¢) < +o0. Thus, the result is proved. O

3.1.7 Complex powers of (I + L)

For @ € C the mapping

A (1+ )

is continuous on [0, +00). Hence, by the spectral theory (see (3.1.9))), the operator
(I + L)~ is given by

dr
T+L°f = de > (1+ A7) f(m) o) 70, (3.1.33)

reG =l
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for f € Dom((I + £)®), which is the space given by

dr
FeHG) : Y d Y 1+ AT F(m) U < oo
reG  BIi=1

The objective in this section is to prove the following proposition.

Proposition 3.1.12. Suppose o € C, with a < Re(a) < b < 0, for some
a,b < 0. Then, the operator (I + L)* extends to a bounded operator on L?*(G)

and satisfies the bound

o . -1
1+ L)z < C0(1—ilm(a))|
for some C' >0 depending only on a and b.

In order to prove this, we shall follow the same strategy as in Folland [19], we
shall require the following result, a proof of which can be found in Stein [46] (see
Chapter IV, Section 6).

Proposition 3.1.13. Suppose m : (0,+00) — R is a function of the form

m(A\) = )\/OOO e MM(t) dt, X € (0,+00), (3.1.34)

where M is a bounded function on (0,400). Then, the operator m(L), which is
given by

f_zd Z (W) (JZ) li:d),

re@ i,j=1

is bounded on L*(G). Moreover, there exists a constant C' > 0 independent of
M such that

[Im(L)|| 12y < C sup [M(2)].

t>0

Remark 3.1.14. Suppose a function m satisfies (3.1.34)). Then, m is said to be

of Laplace transform type. Moreover, observe that the function given by

A — %m()\)

is the Laplace transform of M.

Proof of Lemma First observe that
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1T+ L)% zzep = ||+ L)%+ L)"™| e

S (O P L 2A | PPt

Thus, in order to prove our result, it suffices find a suitable bound for the L2
operator norms of (I + £)®(®) and (I + £)"™(@),

To achieve the former, first observe that, since Re(a) < 0, then the mapping

A (14 \)Re@

is bounded by 1 on (0,400). Moreover, by functional analysis,

(1 + £)" sup (1 4+ A\)Re@ < 1.

A>0

Hence, the operator (I + £)R*(®) is bounded on L?*(G). We now aim to find a
bound for the operator norm of (I4L£)"™™(). Observe that, since Re(ilm(a)) = 0,

then by functional analysis, we have

) ’ |$(L2(G)) S

‘l(]+£)ilm(a

iddm(a)
)H,%(H(G)) < iglg 14+ A = 1. (3.1.35)

Hence, the operator (I + £)™(®) is bounded on L%*(G). However, we are in-
terested in the dependence in « of the bound, so does not provide a
suitable bound for us. In order to investigate the dependence on «, first recall
that, as we saw in the proof of Proposition [3.1.9] for any s > 0, we have

1 o

1 A = ts—l —(1+M)t dt.
e = g ) o

A similar identity holds for any s € C, with Re(s) > 0. Since Re(l —ilm(a)) =

1 > 0, then we have

) 1 N
1 A ilm(a)—1 _ / t—zlm(a) —(1+N)t dt.
(1+2) (1 —im(a)) J, ¢
Hence,
) 14+ X oo
1 A ilm(a) _ —/ t*'LIm(a) —(1+N)t dt. 3.1.36
1+ Il —m(a)) J, ‘ (3.1.36)

Now, we define the function

m(A) = (1+ 1)@ x>0
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The expression given by (3.1.36|) can be formally rewritten as

| A AH1\ [ |

14+ )\ ilm(a) _ / —(14+A)t tlem(a) dt
1+ r—m@y ) e

A = |

-~ —(1+M)t 25—zIm(oz) dt
F(l—z’Im(a))/O ‘
A 1t iim(a)
e, . t timlca dt
* F(l—ilm(a))/o 2 e

Now, observe that

1 o0

—e M= / e Mdu, Yit>0.
A ¢

So, using Fubini’s theorem and changing the dummy variables as necessary, we

o 1 ) 0 t .
/ 2 e M et y—ilm(a) gy — / e / e~ Im(a) 4y, dt.
0o A 0 0

obtain

Hence,

| A > 4 t -
14\ ilm(a) _ - / efAt |i€t tfzIm(oz) +/ e U u*llm(a) du:| dt.
( ) ['(1 —ilm(a)) J 0

Now, consider the function given by

1 . ¢ .
M(t) = —t t—zIm(a) / —u , —ilm(a) d t>0.
") = T im(a)) {6 Lo ok

Observe that

sup |e”* t‘“m(o‘)’ < 1.
>0

Moreover, for any ¢ > 0 we have

t [e%¢}
e Uy M@ qy < e “du = 1.
|
0 0

Hence, we have shown that there exists a constant Cy > 0, independent of «,
such that
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sup [M(t)] < Co|D(1 —ilm(a))| ™" (3.1.37)

t>0

This shows that M is bounded on (0,+00). Hence, the function m satisfies the
hypothesis of Proposition [3.1.13] Thus, the operator m(L) = (I + £)"™(®) is
bounded on L?(G), and there exists C’ > 0, independent of «, such that

I+ £)™ 2@y < € sup [M(D)].
>

Therefore, by (13.1.37)), we have shown that there exists €} > 0, independent of
«, such that

‘ |([ + ﬁ)ilm(a)

2wy < OrIPA —dim(a))[ ™", (3.1.38)

Thus, combining this result with (3.1.7)), yields that there exists C' > 0, indepen-
dent of «, such that

11+ L)l 22y < CI0(1—ilm(e)] ™",

which proves the result. O

3.2 Sobolev spaces

In this section we shall introduce the Sobolev spaces L?(G) for the compact
Lie group G, for s € R, which will be defined in terms of the sub-Laplacian
L. The properties of these spaces are well known in greater generality, see for
example Furioli et. al [23], Coulhon et. al [10], and Dungey et. al [13] for Sobolev
spaces on Lie groups of polynomial growth. See also, for instance, Folland [19]
for Sobolev spaces on nilpotent Lie groups.

Recall that the spectrum of L is given by

Spec(£) = (N7 17 e G, 1< <d,},

where for each 7 € G and every 1 < j < d,, Al

;7 1s the non-negative real

number satisfying

Lr(z)) = Agﬂ)ﬂ(x)(i’j), Ve e G, 1<i<d,.
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3.2.1 Definitions of Sobolev spaces and properties

As we saw in Example for s € R, the domain of the operator (I + £)*/?,
which we denote by Dom ((] + E)S/Q), is given by

dr
FerG) Y d Y (1P F(m)uD)?

reG  Hi=l

< +00 o,

and the action of (I + £)*? on a function f contained in Dom ((I + £)*/?) is
given by

(I+L)2f = dn Z (mY3/2 Fr) 64) grli), (3.2.1)

reC 1,j=1

To define our Sobolev spaces, first we need to check the following brief result.

Proposition 3.2.1. Suppose G is a compact Lie group. For any s € R, we
have D(G) C Dom ((I + L£)*/?).

Proof. First suppose that s < 0. In this case, the mapping

A — (14 N)*2,

is a bounded measurable function in [0,400). By the spectral decomposition of
the operator (I + £)*? (see (3.2.1)), this implies that (I + £)*/? is bounded
on L?(G) and hence Dom ((I 4+ £)*/?) = L*(G). Thus, in particular, we have
D(G) C Dom ((I + L£)*/?).

On the other hand, suppose that s > 0. Then let ¢ € 2N be such that ¢ > s.
Then, for all A > 0 we have

(T+ N2 = (1+ N2+ N2,

where s’ = s —t < 0. Now, consider the operator (I + £)*/?(I + £)"/? given by

I+ L) I+ L)2f = (I+L)*((I+L)2f),

for f in the domain of the operator (I+L£)*/?(I+ £)"?, which is the space given
by

{f € Dom ((I+ L)1) : (I+L£)"72f € Dom((1+.c)s’/2)}.

Since ¢ is an even integer, then (I + L£)/? is a differential operator, and hence
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D(G) C Dom ((I + £)!?). Moreover, D(G) C Dom ((I + £)*/?), since s’ < 0.
So, by functional analysis,
D(G) C Dom ((I + £)*?).
[
Definition 3.2.2 (Sobolev spaces). Let s € R. We define L*(G) C D'(G) to
be the closure of the space D(G) for the norm
1fllzz) = 1T+ L) iz, f € LUG). (322)

We could similarly define the Sobolev spaces LP(G), for any p > 1, however only
the case of p = 2 will be relevant for the results discussed in this thesis, so it
will be the only case we consider.

Recall that Z(k) is the set given by

I(k) = | [{1.2,....k}"

beN

For = (iy,iz,...,1) € Z(k), we write

Xs = Xy, Xy ... X,

be

The following result consists of well-known properties of the Sobolev spaces

LA(G).

Theorem 3.2.3. (a) For any s € R, L?(G) is a Hilbert space for the norm
|- |lr2) given by (8.2.2)). Moreover, D(G) is a dense subspace of L2(G).

(b) For s =0, L*(G) coincides with L*(G), and furthermore,

1|z = I fllezes Y f € Li(G).

(c) If s >0, then

LX(G) = Dom ((I +£)¥*) = Dom (£¥?) C L*(G).
Furthermore, the norm ||| - |||s given by
s = [1fllz@ + 1£72 2@y, f € Dom (L52),
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is equivalent to || - ||r2(q)-

(d) If s <0, then

12(G) ¢ D'(Q).

(e) For si,s9 € R, if s1 < sy then we have continuous inclusion

L.,(G) C L, (G).

(f) For each s € R, the dual space of L*(G) is isomorphic to L? ,(G) wvia the

extension of the distributional duality.

(9) Let B € Z(k) and s € R. Then, the mapping

Xp: LY(G) — Lgf\m(G)

is continuous. Equivalently, there exists C' > 0 such that

X512, @) < CMllize, VY f € LUG).

(h) If s € N, then f € L*(G) if and only if Xsf € L*(G) for every 3 €
Z(k) with |B] < s. Furthermore, in this case the Hilbert space L?*(G)

admits the following norm, which is equivalent to || - ||12(q):

1/2
s (S Ixafle) 323
|BI<s
Sketch proof of Theorem|[3.2.5, The proofs for (a) and (b) are trivial; they follow
from Definition 3.2.2]
Statements (c), (d), (e) and (f) follow classically from functional analysis.
Results (g) and (h) are deeper. For a proof of these results, see for example
Coulhon et al. [I0] (see Section 3), Dungey et al. [I3] (see Proposition I1.6.2)
and Robinson [41] (see Theorem 5.14 in Chapter IV). O

Remark 3.2.4. Observe that if we had considered the self-adjoint extension of the
right-invariant sub-Laplacian

L=—(X}+X3+-+XP),
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we would have obtained an analogous result to Theorem in terms of Sobolev
spaces based on powers of I + L. This is true for any Lie group of polynomial

growth.
The following property of Sobolev spaces shall also prove to be important.

Lemma 3.2.5. Let ¢ € D(G) and, for s € R, define the operator

T L2(G) —  L2(G)
6 — Yo

()

Then, the operator Ts"’ is continuous on L*(G). Moreover, we have

T < C X o
H ;g%x | 6¢HL (G)s

1BI<[ls]]

Nz

for some C' > 0.

Proof. First, we suppose that s € Ny. In this case, by Theorem m (h), for
any ¢ € L*(G) we have

1Wel172) S D I1Xs(Wo)ll32c).
B EZ(k)
1BI<s

Hence, by Leibniz’s rule for vector fields, we obtain

e S Y, (X ¥)(Xsd)lzze

51,82 € Z(k)
|B1]+B2]<s

< max sup | X 8, 2, 0(x1) Z /|Xﬂzx¢ )[? da.
ﬂlel—(k) 1 €G
1B1|<s pa e I(k

|52|<S

Then, we have shown that there exists C' > 0, independent of ¢, such that

2 < C X oo
a < ﬂfg%)ﬂ 5| Lo
18|<s

and so

W ¢ 2(L3(Q)). (3.2.4)

By the Interpolation Theorem (see Theorem below), it follows that ((3.2.4])
holds for any s > 0. Furthermore, from Theorem [3.2.3) (f) we know that, for
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each s € L%(@), the dual space of L?(@) is isomorphic to L? (G). Hence, the
conclusion given by (3.2.4) may be extended to any s € R. O

3.3 Interpolation theorem for Sobolev spaces

In this section we aim to prove the following interpolation theorem for the Sobolev
spaces on the compact Lie group G we defined in the previous section (Definition
3.2.2)):

Theorem 3.3.1 (Interpolation Theorem). Let o, v, Bo, 51 be any real num-

bers. Moreover, suppose T is a bounded linear map:

T:L2(G) — L3 (G),
T:L,(G) — L3 (G).

Then T extends uniquely to a bounded linear map

T:L.(G) — L3 (G), Vo<t<l,

where

(ar, B1) = (0 +t(ar — ), Bo + (B — o)), VO<t<l1

Although we only prove this theorem for the Sobolev spaces L2(G), it is possible
to prove it for any L2(G), with p > 1. The proof we provide here follows the
strategy exhibited in Folland [19], which proves the result in the case of stratified
nilpotent Lie groups.

Before we prove the Interpolation Theorem, let us consider the following con-

sequence.

Lemma 3.3.2. Let k € D'(G). Furthermore, suppose that {ki}ren C D'(G)

be a sequence of distributions such that

ke — £ as { — oo, in D'(G).

For any k' € D'(G), we let T,y denote the operator

T,:D@G) — D(G)

f — f*/f"
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Then, for all a, b € R,

liminf ||T,

pab } ‘X(Lg(G)—)Lg(G)) = ’

7| |$(L§(G)—>L§(G))'

Proof. Let us first consider the case a = b = 0. By Fatou’s Lemma, for any

f € D(G) we have

. . 2 . .
i int (17,1 3y = limint [ 1 « ) do
> / liminf |f * ke(x)|? do
G {—o0

- HT"”foi?(G)'

So, for any f € D(G), with ||f||r2) = 1, we have

lim inf T, | \X(LQ (@) = liminf T f]| -
> ||Tef [l 2y

Thus,

(3.3.1)

liminf [|Te|| 42y 2 11Tl a2y

Observe that, for any <’ € D(G) we have

a

)= | +£)3 T (I +£)7

|| 7| || 229y

2(L2(G), L2(G)
Let us now suppose that either a € —2Ny or a > 0, and either b € 2N; or
b<0. For a € —2Ny and b € 2Ny, (I +£)"% and (I + L)z are differential
operators. On the other hand, for a > 0 and b < 0, (I+L£)2 and (I+L£)"¢ are
convolution operators. Hence, for our choice of a and b, the right convolution
kernel associated to the operator

(I+L)2Ty(I+L) 2

is given by

(I+L)2(I+L) %k, (3.3.2)

Therefore,
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| ‘THI ‘ |Z<L3(G)’L§(G)> - ’ ‘T(I-Fﬁ)% (I+Z)7% K/ L(L2(G)) ’ (333)

We then define the sequence of distributions
Foo=(I+L)2(I+L) %k, €N,

We have

ke — K as ( — oo, in D(G),

where

Fi=(I+L)>I+L) %k

Applying the case a = b = 0 (see (3.3.1)) to the sequence {K;}ren and & we

obtain

li[n_l) inf | }Tge

By (3.3.3) we have shown that

Hg(m(c)) = HT%H%(LQ(G))'

lim inf ! }T,w

=00
for a,b € R such that either a € —2Njy or a > 0, and either b € 2N; or
b <0.
It remains to check the case a,b € R. Suppose that either a € —2N; or
a > 0, and either b € 2Ny or b < 0. Then, we have

H,g(Lg(G),Lg(G)) = HTNHX(LE(G),L,%(G))’

liminf |7, ) 2 |7

‘ |z(LgO(G), L3 (G 2(13,(G), L3 (@)

and
iminf [|To] (13 (@), 08, @) 2 1Tl 222, 00,13 @)

By the Interpolation Theorem (see Theorem [3.3.1)), we then obtain

HT”‘llf(L%t(G),Lgt(G)) < liminf HT’Wl‘f(Lgt(G),Lgt(G))’ (3.3.4)

where
(at,bt) = (a0+t(a1—a0),bo—i—t(bl—bo)), V0§t§1
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This shows that

liminf [Tl (30, 300) 2 11Tl 22000, 1300)

for all a,b € R, as required.

3.3.1 Tools for the proof

In this section we aim to introduce the tools necessary to prove Theorem [3.3.1]
One of the main tools we shall require in our proof will be the following result,

which is a consequence of Proposition [3.1.12]

Lemma 3.3.3. Suppose a € C, with a < Re(a) < b <0, for some a,b < 0.
Then, the operator (I + L)* extends to a bounded operator on L*(G), for all
s € R, and satisfies the bound

0+ £) |22y < C|0(L— ifm(a))|

for some C' >0 depending only on a, b and s.

Proof. By the commutativity of the operator (I + L), for any s € R we have

T+ L)% 1206y = (1 + L) (I + L) (I+L£)"

- } W + ﬁ)a‘ L?(L?(G))'

‘ |$(L2(G))

Thus, the result follows immediately from Proposition 3.1.12] ]

Let us now introduce approximate identities, which will play an important

role in the proof.

Definition 3.3.4. Let U be a neighbourhood base at the identity I in G. For a
neighbourhood U € U, let ¢y € D(G) be such that supp(py) C U, satisfying

the following properties:

(I> Yu > 07
(1) py(z7) = gu(x) for all z € G and,
(I10)

/apy(x) de = 1.
G
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A sequence of functions {¢y }v ey satisfying these properties is called an approx-

imate identity.

In what follows, we shall consider approximate identities to be of the form
{¢:}es0. Here, for each € > 0, we denote . = ¢p_(o), Where B.(eg) is the ball
of radius €, centred at eq, with respect to the Carnot-Carathéodory metric. The
following result, a proof of which can be found in Folland [2I], is an important

property of approximate identities.

Proposition 3.3.5. Let {¢-}.~0 be an approzimate identity. Then, for every
fe L*G),

Hf*%—fHL?(G) —0 as € —0,

and

e * [ = flle2@e) =0 as € = 0.

The proof of the interpolation theorem in [19] relies on the dilation properties
of a nilpotent Lie group. However, since G is compact, the usual mollifier would
not be a well-defined function on . Thus, we must introduce an approximate
identity which can be used in the proof.

We let prn € D(R™) be such that

/ SDR”('CE) dr = 17

with ¢grn(2) = re(—2x), for every z € R”, and @gn > 0. Assume further that
supp(pgrn) C BY"(0), where BY"(0) is the ball centred at 0 and with radius 1
in R". For each ¢ > 0, define the function @gn.:R" — R by

Qrn(T) = 7" pra(x/€), r € R™

Then the family of functions {¢gn.}.>0 forms an approximate identity on R”",

and furthermore,

supp(prn ) C B.(0) C R".

Moreover, let us also consider the exponential map exp : g — G. We know that
there exist a neighbourhood V of 0 in g and a neighbourhood U of eg in
G such that the map exp : V — U is a diffeomorphism (see Proposition m

(v)). We can consider the inverse map In: U — V. Furthermore, there exists a
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continuous function ¢ which maps V diffeomorphically onto a neighbourhood

W of the origin in R". In particular, ¢ : V' — W is a chart, and we have

expoy (BE'(0)) = U.

Therefore,

supp(¢p oln) = U.

Then, for each € > 0 we define the function . : U — R by

@Yrn 0 o In(x) if z €U
0 if z ¢ U.

Pe(x) =
Furthermore, for each € > 0, we define

we(x) = iogi, z € G. (3.3.5)
1@l L2 (o)
Since @gn > 0, then it follows that @.(z) > 0, for all z € G and every e > 0,

and hence

1
/gog(x)dx: —/@g(x)dx: 1, Ve>0.
G G

el o)

This means that the sequence of functions {¢.}.~o satisfies property (III) from
Definition [3.3.4, Additionally, conditions (I) and (II) hold trivially, and therefore

the sequence of functions {p.}.~o forms an approximate identity on G.

3.3.2 Proof of interpolation theorem

Proof of Theorem|3.3.1|. Consider the space B := L'(G)NL>*(G). Welet {©:}es0
be the approximate identity given by (3.3.5)). For each € > 0, we define the family

of operators on B

{T7 : 0 <Re(z) <1},

given by

Tof = I+ L)% T(I+L)%(f+¢.), [ € B,

where we define
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= 1
(a., B.) = 5(040 + 2(a1 — o), Bo + 2(B1 — 50))-
By Lemma |3.3.3, 7% is well-defined on B. We set

‘—1

A(z) = [P(1+4iIm(a.)) T (1 — i Im(5.))

Suppose that g1 > [y without loss of generality. We now aim to show that for
every ¢ > 0, z € C, with Re(z) € (0,1), and any f € B, there exists a
constant C' > 0, independent of f and z, such that

1T fll2e) < CAR) S * gellrz, o) (33.6)

For the rest of the proof, let us fix ¢ > 0. Since [3; > fy, then [y < 2Re(§z) <

f1, and so

Bo B ~. B
3 3 SRe(ﬁz)_? < 0.

Therefore, for all f € B, we have

1T+ L)% T (L + L)% (f 0] | o,

— |+ L)% (T+L) T (I + L)% (f * )iz o (337)

By Lemma [3.3.3] there exists C” > 0, depending only on [, 31, such that

[T+ L7 T+ L) P PT (I +L)*(f *2)l]5
< P —itm(B = A/2) T+ L7 (Pl (g

Hence, we have obtained

(T + L)% T (1 + L)% (f * 02)]| 1o

<O P(1—itm(B) |7 ||T (1 + £)~%(f @E)H%(G). (3.3.8)

Now,
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[T+ 050l o) < 1Tz, i3, [[T+2) (Pl @ (339)
and, by the hypothesis,
1T ez,

is a finite constant. Moreover, by Lemma [3.3.3] there exists a constant C” > 0,

depending only on oy and «q, such that

(1 + L)% (f*gpg)HLal(G) < C"0 (1 +dm(@.)) |7+ eellz @) (3:3.10)

Hence, combining ((3.3.8)), (3.3.9) and ([3.3.10)) we have shown ((3.3.6)).
Now, for any f € B and g € L*(G), the mapping

2 /G (TZ6 f)(a:‘)g(:r;) dzx

is analytic for 0 < Re(z) < 1 and continuous for 0 < Re(z) < 1. Using the

Cauchy-Schwarz inequality, we then have

S A(z) Hf*%HLgl(G) HQHLZ(G)-

/G (T2 1) (2) gla) da

Let us suppose that for any s € Rand all f € B, there exist constants Cy, C; >

0, independent of f, s and e such that

T35 f 2@y < CoA(is) ||f x pellrz@) < Co Alis) || fllr2 ), (3.3.11)
T is fllzee) < Cr AL +is) |[f = ¢ellr2@) < CrAQL +is) [[fllrx ), (3:3.12)
for some constants Cj, C7 > 0, which do not depend on f, s or €. Then the

Riesz-Thorin Interpolation Theorem (see Theorem 4.1 in [48]) implies that, for
all f € B,

T fllcz) < Cillfllze, 0<t<1, (3.3.13)

for some constant C; > 0, which only depends on the function A, and the con-

stants Cy, C; and t. We now demonstrate that (3.3.11)) and (3.3.12)) hold. To
see that the inequality
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N5 Fllee) < CoAlis) |[f * gell2( (3.3.14)

holds, we first note that, if Re(z) = 0, then

~ 1
Re (ﬁz — §ﬁ0> = 0.
So, by Lemma [3.3.3], we obtain
Ty = 10+ DP 8T (0 L7
< 01— iTm(Bi)) ||| T (1 + £)5 (f * %)HL%O(G)

< P = i) [T, T+ 275 (el )

—Bo

Now, observe that, if Re(z) = 0, then

- 1
Re <—ozz + an) = 0.

So, by Lemma |3.3.3], we have

(1 + £)%(f * 90€)HL30(G) = |[( + L£)z00 % (f » ‘PE)HLz(G)
< P+ Im(@)) |7 1F * el (-

By the hypothesis, ||T| 12,13 < +0o0. Hence, we have shown that there exists
« 0
C’" > 0 such that

(T + L5 T (14 L)% (F 5 9| | 1oy < CAG) I * |26,

which is exactly (3.3.14). Finally, observe that, by the definition of an approx-
imate identity (see Definition W (III)), we have ||¢c||z1@) = 1, and so by

Young’s convolution inequality, we obtain

[f *@ellze) < lleelloe 1z = fllze @)

Thus, (3.3.11)) is proved. Inequality (3.3.12)) is similar; it follows by realising that
if Re(z) = 1, then we have

Re (EZ — %51> = Re (—&Z + %m) = 0.
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Now, let us define the space of functions

YV = {f*@:—: : f < B, €>O, ||f||L2(G) < 2Hf*S0s||L2(G)}-

If f € B, then fxp. — fin L*(G). So, for € > 0 sufficiently small, we have
[ x@. € V. This means that the space ¥ is dense in L*(G). Hence, (3.3.13))
implies that if g = f*xp. € ¥, then for 0 < ¢t < 1,

[(T+L)*T (I + L) (f * ) HLQ(G) < Cillfllzeey < 2GS * @ellr2(a)-

Therefore, the operator (I + £)% T (I + £)~* extends uniquely to a bounded
operator on L*(G). And hence it follows that T extends uniquely to a bounded
operator from L2 (G) to L3, (G). O

3.4 Sobolev embedding

In this section we prove a Sobolev inequality for the Sobolev spaces introduced
in Definition B3.2.21

Theorem 3.4.1 (Sobolev embedding). If s > /2, where | denotes the local
dimension of G (see Definition , then the following embedding holds
L2(G) C (C(G) N L™(@G)).

Moreover, if s > 1/2 and f € L*(G), then f is continuous on G and there exists
C > 0, independent of f, such that

1 llzoe@) < CIf]

Proof. Fix s > 0. First we recall that, by Proposition|3.1.9} the right-convolution
kernel B, associated to the operator (I + £)~/2 satisfies

L2(G)- (3.4.1)

B, € LY(G) N L*G).
By Theoremm (c), we know that Dom((I+L)*?) = L}(G), so for f € L*(Q),
we can define
for= I +L)2f € L*(Q).

Now, observe that
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(I+£)_S/2fs - f = fs*st

so Holder’s inequality then implies that

Al < N sllz2 e [1Bsl 2@

Since ||Bs||z2(¢) < 400, then (3.4.1) holds. It remains to show that f is a

continuous function. For x € G we have

/fs S(y ' dy—/fs xz" ) Bs(z) dz.

If x; € G is also fixed, by the Cauchy-Schwarz inequality we have

|f(z) — f(21)] < / |[fs(zz™") = folmiz™)] Bo(z)| dz

|B,(2)]” dz v | folaz) = fo(z12)]” dz 1/2.
(] ) (] )

Since By € L*(G), then there exists C' > 0 such that

IN

Now,

folwz) = fularz) = mr(@™) fo(2) = mo(a ) ful2),

and hence

_ 2
Hfs(x fs L1 HL2(G) /|7TL S _WL(xl 1)f8(2)| dz
Smwp(a™) = (2 D2z sl 2

Since the left regular representation 77, is continuous on L?*(G) (see Example

2.2.2) and f, € L?(G), it follows that

HfS(x')_fs(xl')HLz(G) — 0 as =z — .

Thus, from it follows that
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|f(z) = f(z1)| — 0 as a2 —>

which proves the result. [

3.5 Taylor’s theorem

The objective in this section is to prove a local version of Taylor’s Theorem for a
compact Lie group G. Suppose {Y1,Ys,...,Y,} is a basis of the Lie algebra g

of GG, and recall that we denote

NG G I

for all multi-indices o € Nj. Throughout, we let || - ||[gn denote the usual

Euclidean norm on R".

Theorem 3.5.1. Let x € G and suppose that [ is a smooth function on G.
Then, there exists a neighbourhood V' of eq in G such that for any M € N,
the following Taylor expansion of f at x holds;

1
flzz) = Z — 2t 25?2 YO f(x) + Ri,M(Z% VzeV, (351)

where the remainder Ri’M satisfies

R (2)] < Cll(z1, 2, 20) [ max [[YOf|| iy VzEV. (352)

Proof. Let © € G. First recall that if Y is a smooth vector field on G, then we

denote by ¢;'Y the push-forward of Y by ¢! (see Section for a discussion
on the push-forward of a vector field). The map ¢, 'Y is a smooth vector field

on R™ and is given by

(6. Y)u == Y(uog™t), for u € C*(R").

For each j = 1,2,...,n, we shall consider the smooth vector fields ¢;'Y;. By
identifying the vector fields ¢;'Y; with their corresponding tangent vectors of
R"™ at ¢~ !(z), we see that the set
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{6,'Y; : j=1,2,...,n}

forms a complete orthogonal set of tangent vectors to R™ at the point ¢~1(x).

We write:

0

- =¢,Y;, for y=1,2,...,n.
0Zj | p=1(2) o !

Let f be a smooth map on G and suppose N is a neighbourhood of 0 in
R"™ and V is a neighbourhood of ez in G such that the mapping ¢ : N — V
given by

O((21, 29,y 2n)) = M1 e2Y2 e (22,00 2,) € N, (3.5.3)

is a diffeomorphism. Such mapping exists due to Proposition m (v). For a
given z € V, we shall let (z1,29,...,2,) denote the coordinates of z given by

the coordinate chart (¢, V) (in the sense that (3.5.3)) is satisfied). We then
define the smooth function v on N C R™ by

uw((z1, 22,y 2n)) = fod((z1,20,...,20)), (21,22,...,2n) € N.

Thus, by Taylor’s Theorem on R”, for every M € N, the Taylor expansion of
u at ¢~ 1(x) is given by

1
> A O] gy + Riray (21,22, 20)),
lal<M

for all (z1,22,...,2,) € N, where R{_,) ,/((21,22,...,2,)) denotes the Taylor
remainder, and we write
0

o= (om0 el ) GalL)
z | p=1(z) 81'1 61 (x) 8902 o—1(z) (%Un ¢=1(z) )

for any multi-index a € Nf. Moreover, the remainder satisfies the estimate

Rg—l(x)7M(Zl,22,...,Zn)| < CH(zl,zg,...,zn)H% |g|12ﬁ HaﬁuHLw(Rn).

We now let z = ¢((z1, 22, ...,2,)) and Rj;M : V'— R be the function given by
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Ri,M(Z) = Rg—l(z),NOqf)_l(Z), for z € V.
Observe that

0

dz;

¢~ (x)

Hence, we have
1 (0% « (0% (03
flzz) = E 5211222 oz YO f(x) + R:];M(Z), (3.5.4)

for any z € V. Moreover, the remainder Rj; s satisfies the estimate

‘Ri,M(ZM S CH(217227"'azn)Hﬂ]¥L |g‘1§a])\<4 HYafHLoo(G)> Vze ‘/7

as claimed.
O

Remark 3.5.2. We now express some important observations from the proof of

Theorem B.5.11

(a) It is clear that the neighbourhood V' of eg only needs to be small enough
such that the mapping ¢ : N — V' given by (3.5.3)) is a diffeomorphism,
for some neighbourhood N of 0 in R™.

(b) We can also bound the remainder from Theorem in terms of the
Carnot-Carathéodory metric (see Definition [A.1.2)), which we denote by
d(-,-). We use the following notation

|z| == d(eg,2), Vze€G.
By a result from the appendix (see Proposition [2.4.2)), we know that there
exists a neighbourhood V' of eg in G such that

lz|lg < Cilz], Vz eV, (3.5.5)

for some constant Cy > 0, where |-|g denotes the Euclidean norm induced
by the chart ¢! (see (3.5.3))). We can now choose V' small enough and a
neighbourhood N of 0 in R™ such that the mapping ¢ : N — V given
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by (3.5.3)) is a diffeomorphism. Let f € C>®(G), z € G and M € Ny,

and consider the difference

1
Rlw(z) = flez) = 3 <o 2V f(@), ¥z eVl (356)

Then, by Theorem and part (a), there exists Cy > 0 such that

[Beu()] < Coller ozl max [[YVOF]] ey V2 €V

Hence, by (3.5.5)), there exists C' > 0 such that

[Rra ()] < O max [[Yf| ey V2 €V (3.5.7)

It is important to note that, for z € V, some of the terms of the sum

might also be bounded by |z|*, as we have chosen a bigger bound. If this
is the case, then (3.5.6)) can not be considered as a Taylor remainder in the

context of the Carnot-Carathéodory norm.

Remark 3.5.3.

3.6 Formal degree of a vector field

In this section we discuss the formal degree of a vector field, which appears,

for example, in Nagel et al [36] (see the introduction therein). Throughout this

thesis we are interested in the action of left-invariant vector fields in a Hormander

system on functions, and introducing this term gives us a way of quantifying the

derivatives we take. The formal degree of a vector field functions as an analogous

term to the ‘order’ of a vector field in the elliptic case.

Recall that, for £ € N, Z(k) denotes the set of multi-indices taking values

in {1,2,...,k}, of arbitrary length. That is, Z(k) is the disjoint union
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I(k) == | [{1.2.... . k}" (3.6.1)

aeN
Suppose G is a compact Lie group of dimension n and let g be the Lie alge-
bra of G. Further suppose that, for some & € N, theset X = {X1, Xs,..., Xi}

forms a Hormander system of left-invariant vector fields on G. Let

Y = {Ev%?ayn}

be a basis of g.

It is well known that there exist a neighbourhood V' of x in G and a neigh-
bourhood N of 0 in R" such that the mapping ¢ : N — V, which is given
by

D((21, 20, .. 2n)) 1= e eP2¥2 eFndn (g (3.6.2)

is a diffeomorphism.
By the definition of a Hérmander system, there exists a subset J C Z(k) such

that for each left-invariant vector field X of G, we can write

X = S a [ Xy X (X X ], (3.6.3)
I=(i1,i2 ..... ia)EJ
for some constants ¢; € R. Observe that for each I = (iy,1s,...,1,) € J,
Xy, Xiy, .-, X, is some iteration of a subset of {X7, Xo, ..., X;}.

Now, for every non-negative integer a, let X(® denote the subset of g

consisting of all commutators of length a; that is,

X(a) = {{XiN[Xiga---,[Xia,lyXi ]H . |(i17i2,...,ia)| :CL}.

Definition 3.6.1. Suppose X is a left-invariant vector field on GG. We say that
X has formal degree a, and write d(X) = a, if X € X@,

Observe that for each j =1,2,...,k, X; has formal degree 1.

Definition 3.6.2. For a € N, we define the quantity

laly = _d(Y))ay, (3.6.4)
j=1
where, for each j =1,2,...,n, Y, denotes the basis element of g.
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Ezample 3.6.3. Suppose Y = {Y},Y5,...,Y,} is the basis of g constructed in
Section [2.4.1] In this case, for each j = 1,2,...,n, we have d(Y;) = d; (see
(2.4.3)). So, we have

laly =) dja;,  Va €N (3.6.5)
j=1

Remark 3.6.4. Suppose Y = {Y},Ys,...,Y,} is the basis of g constructed in
Section [2.4.1] Observe that, for any multi-index a € N, the expression
yorype |y
can be expressed in the form
[y k

a1 a2 an  __ (e
}/1 }/2 .. Yn = E Ci17i2 7777 ifaly Xz )(Z'2 c Xl

j=1i;=1

: (3.6.6)

l[aly

for some structure constants c$* . This can be simplified by the following

11,02,.-)8[a]y

notation;

VYRR LY = Y epX, (3.6.7)

B eZ(k)
181=la]y

for some constants cg € R. This, in fact, holds for any basis of the Lie algebra

g, not just the one we chose.

We now show that any differential operator involving the Y; can be rewritten

as a linear combination of differential operators in an order of our choice.

Lemma 3.6.5. Suppose Y = {Y1,Ys,...,Y,} is the basis of g constructed in
Section and let N € N. For B = (i1,ia,...,in) € Z(n), we define the
quantity

N
V3] i= ) d(Yi,) Bi- (3.6.8)
/=1
Then, we have
Yy = YV ... Yy, = Y capY”, (3.6.9)
ae N}

[a]y=[Ys], |a|<|B]
for some constants c,p € R, with the convention that Y, = Id, the identity

operator.
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Proof. We prove this recursively on N. In the case N =1 the result is immedi-
ate. Let us now check this in the case N =2. If (51, 52) € Z(n), with 5 < s,
then the result follows readily. On the other hand, if 51 > (5, we have

Y, Yp, = Yp,Yp + [V, Yp,].

By construction,

[YB1 ) Y52] - Z ¢t Yo,
AT
d(Ye)<d(Yp, )+d(Yp,)

for some ¢, € R. Hence, we have shown that

Y5, Y5, = > Y,
aeNp
[V o]=[Ys, [ +[V,), o] <2

which proves that (3.6.9)) holds for N = 2.
Let us then assume that the statement of the Lemma holds for N, and con-

sider the expression

Y, Y, ... Ya,,

for 6= (f1,...,0n) € Z(n). By the assumption,

Y51 ce YﬁN = Z Ca,p Ye.
aeNg
[Y]=[¥p], [al<N

Hence, we may assume that

Yo, Ya, ... Ys, = YUY P2 Y

for some a € N, such that [Y*] = [Y3] and |a| < N. Furthermore, suppose
g € {1,2,...,N} such that it is the smallest index for which «a; # 0. If 5y < 7,
then the result follows readily. On the other hand, suppose that §y > j. In this

case we have

Y, Y = Y5, Y, + [V, Y]]
= Y, Vs, + > nag

AN
d(Y)<d(Yp,)+d(Y;)
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Hence, we have shown that

Y50 Yﬁl YB2 .. YﬁN = Yﬁo Y;-aj - Yna”

=YY YLV > Y YT Y e

£ €N
d(Ye)<d(Y,)+d(Y)

We now apply this process recursively, so that we obtain

Yo Y0 Y0 =YY LYY LY Y Y

%)
v E€Z(n)
Y5 ]=[Y*], |vISN
where j' € N issuch that j° > 5y and 7' —1 < Sy. By the recursion hypothesis,
the result is then proved.

]

We have the following consequence.

Corollary 3.6.6. Suppose Y = {Y1,Ys, ..., Y,} is the basis of g constructed in
Section[2.4.1. For any 8 € Z(k), we have

Xﬁ = Z Coéwgya,

aeNg
[o]=|8]

for some cop5 € R.

Proof. By the construction of Y, there exists ny € N, with n; < k, such that
{X1,Xs,..., X, } is the largest subset of X consisting of linearly independent

left-invariant vector fields of G, with

XJZY;a \V/j:].,Q, , 1
Therefore,
Xs= ) coYp,
B’ €Z(n)
18'|=18|
for some constants cg € R. By Lemma the result is then proved. O]

We end this section with the following result, which follows from Corollary
3.6.6/ and applying Corollary 2.3.5/to {Y;}}_, and {}7]}?:1
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Proposition 3.6.7. (1) Suppose T is a differential operator of the form

T = Ca Xaa
aeZ(k)
|| <d

with C,, € R, for some d € N. Then,

T= Y X
BEL(k)

|Bl<d
for some ¢z € C®(G).
(II) Suppose T is a differential operator of the form
oY AR
aeZ(k)
| <d
with C,, € R, for some d € N. Then,

j:' = Z CﬁXg,
)

BeT(k
1B1<d

for some cg € C=(G).

3.7 Vanishing functions

Throughout this section we remain in the same setting as in Section [3.6] with

r = €q.

Definition 3.7.1. Let (X,d) be a metric space and consider z, € X. Moreover
suppose that V' is a neighbourhood of xy in X. For a € Ny, we say that a
function ¢ : X — C vanishes at xy up to order a —1 on V with respect to the
metric d if there exists C' > 0 such that

Ve eV = |q¢(x)| < Cd(x,x)".

Notation 3.7.2. Let a € Ny and V' be a neighbourhood of e in GG. Throughout

the thesis we shall use the following convention. If ¢ € D(G) vanishes at eg up
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to order @ — 1 on V with respect to the Carnot-Carathéodory metric, then we
shall write: ¢ CC-vanishes at eg up to order a — 1 on V, for short. Moreover,
if V = G, then we shall usually omit any mention of G; that is, we write: ¢

CC-vanishes at eg up to order a — 1.
The main objective of this section is to show the following result, and Section

3.7.1] shall be devoted to its proof.

Proposition 3.7.3. Let a € N be a positive integer and suppose that ¢ € D(G).

Then, the following statements are equivalent:

(i) For any B € Z(k), with || <a—1, we have

Xsqleq) = 0. (3.7.1)
(i) The function q CC-vanishes at eq up to order a —1.

Furthermore, if (i) and (ii) hold, we have

g(2)] < Cl2|*, V=2 e G, (3.7.2)
where the constant C' can be chosen to be

k —a
Co= 5 sup 2 Xgl2)]

a ze@

i=1,2,....k

Remark 3.7.4. In the Euclidean case, the analogous result to Proposition [3.7.3
holds by Taylor’s Theorem. More precisely, it is a consequence of the estimate
of the Taylor remainder and the uniqueness of the Taylor expansion. Namely, if
p is a smooth function on an open set O C R™ containing 0, then the following

statements are equivalent:

(i) For any g € Ny, with |8] < a — 1, we have

o%r  Hb2 HPn

0z{" 0zy° Ozn"

p(0) = 0.
(ii) For any
5 = (i17i2,...,ib) € I(n),

with |f] < a — 1, we have
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o 0 0
821-1 822'2 @zib p

(0) = 0.

(iii) There exists C' > 0 and a neighbourhood N of 0 in O C R™ such that

p(2)| < Cllzllgn, V2 €N

Ezxample 3.7.5. Suppose the set {q1,qa,...,qq} is a family of functions such that,
for every j =1,2,...,d, the function ¢; CC-vanishes at e up to order a; — 1.

Then, for every multi-index 3 € N¢, the function

108

J=1

CC-vanishes at eg up to order

d
Z Q. Bj — 1.
j=1

Corollary 3.7.6. Let a € N and q € D(G). If q is CC-vanishing at eg up
to order a — 1. Then, for any § € I(k), with |B| < a, the function Xzq is
CC-vanishing at eg up to order a—|B| —1. Furthermore, there exists a constant

C >0, depending on a, B and k, such that

sup 2|7 X5 (2)] < C sup X q(2)].

z€G zeG

18'1=a

Proof. Since ¢ is CC-vanishing at eg up to order a — 1, then the function Xpzgq
is CC-vanishing at eg up to order a — || — 1, by Proposition m Hence,

applying (3.7.2) to Xgq we obtain

—a k —a
sup |2|" M7 X5 ¢(2)] < sup 2" X, X q(2)).
Zz€G a— || C2€G

11=1,2,...,

Applying this argument to the function X; Xggq, for each i = 1,2,... k, we

now get

w k —a
sup |2' X, X q(2)] € ————= sup [N, X, Xgg(2)],
z€G Qa ’B’ 1 ) Z1€2G
2=1,4,...y
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and thus,

sup |z| 7+ | X5 q(2)]
ze@G

k2
< sup 2|28 X X X q(2)].
@—Ba-p-n S | X5, X3, X5 q(2)|

i1,92=1,2,...,

Applying this argument recursively a — || shows that there exists C' > 0,
depending on «, B and k, such that

sup 2| X5 q(2)] < C sup 2| tB X g X 5 g(2))]
8 € T(). 8 |=a—|8)
=C  sup | X q(2)],

zeG
B €L(k),|B'|=a

as required.
m

The following Lemma studies the differentiability of a function of the form

f—;, where f1, fo are smooth functions.

Lemma 3.7.7. Let fi, fo € D(G) and suppose that, for My, My € N, there
exist constants Cy, Cy, Cy > 0 such that

fi2)] < Cule™,  Gol™ < [fl2)] < Cole™,  Vze G (3.73)
If My < My, then the following assertions hold:

(1) The function given by

?:z»—>§1g;, Vze G,

extends to a continuous function on G. Moreover,

¢ — Mo
117 8ellim) = 5 BT (3.7.4)

where R is the radius of the Lie group G:
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R = sup |z|.
zeqG

(2) For any B € Z(k), with |B| < My — Ms, the function
X5 (ﬁ) L2 Xg, (28) ., Vzeg, (3.7.5)

coincides with a continuous function on G. Moreover, there exists a con-

stant C' > 0, depending on B, fo, X, My and My, such that

IXa(f1/f)llLe@ < € sup [ Xg fill=(q)- (3.7.6)
B €Z(k)
|8 |=M

The same result holds for the operator )?5, for any 5 € Z(k).

Proof. For the proof of part (1), note that,

fi(z)
fa(2)
Since My < M, then it follows that the function % extends to a continuous
function on G. Estimate then follows.

We now show part (2). Let us first fix § € Z(k), with |8| < M; — Ms. Then,

observe that, by Leibniz’s rule for vector fields,

|M1 M2

, VzedG.

_O,|

(1) = X ) (X)),
? 61,52 €T (k)
[B1I+1B21=18

for some constants Cgl,ﬂz € R. Taking absolute values yields

(7)o

for any z € G\{eg}, for some constant Cz > 0. Now, we check that for any
62 € I(k?), with |B2| < M, — MQ, we have

<G Y X hXu(/RE)], (3.7.7)

B1,62 € Z(k)
|B11+|B2]=|B]

|52|

X;, (%) = Y cmf H fQ. (3.7.8)

YyET ]{;)\52|
[v|=|B2]
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Indeed, the cases |fa] = 0 and |Gz = 1 are clear, since for any i = 1,2,...,k

e :_Xz'f2
X’(f2> 7

The general case can be proved recursively, by noticing that

we have

|B2]
L) _ _ (Xl \ 7 Xtz
() = 2 el - () I

vez(k)‘f’?‘
1 PIXX L f (X [ Xoufo
+f_H{ 2 _(fz><f2 ﬂ}

Iv[=182]
|B2]|+1

1 X, f
S e

vez(k)\ﬁz\ﬂ
[v|=182]+1

for some constants c¢;g,, € R.

Now, by (B78), for any = € G\{eg} and B € Z(k), with |Bs] < |B], we
have

|B2]

1 |Z|M2—|w|
|X,82(1/f2)(2)‘ Sﬁmfz Z ’Z|M2 H ‘Z|M2
v € I(k)!Bzl =1
[v1=182]
<p s | 2|~ Me-l52l, (3.7.9)

Hence, by (3.7.7) and (3.7.9), for any z € G\{eg} we obtain

5 (3

Seo Y. Xeh@)1Xe 1/ f)()

51,82 € Z(k)
|B11+|B2]=|B]

Sen Y, IXeh(@)] |2 MR (3.7.10)

B1,B82 € Z(k)
|B1|+]B2]=|B]

Observe that, for any z € G\{eg} and py € Z(k), with || < |B|, we have
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[ X, f1(2)] -
[ Xa [1(2)] = |Z|’6;\41—_51||Z|M1 o

: (Sup | 20|~ 711D |X61fj(zo)’) oM, (3.7.11)

20€G

and moreover, by Corollary [3.7.6| for any 8, € Z(k), with |8;] < M;, we have

Sup. |20/ "MV [ X, f1(20)] Sk BSUII?k)||X,B’f1||L°°(G) < 4o0. (3.7.12)
20 "e
|B'|=M;

Then, applying this to (3.7.10)), for any z € G\{eg} we obtain

(7w

YD DI Ll El Sup)llXﬁfflllLowa)

By, € Z(k) § e (k
Br I 1821= 15 1=,
Soope 1ML sup (| X full e, (3.7.13)
B €Z(k)
|8|=M1

which is finite by the hypothesis |3| < M; — My. Taking the supremum of both
sides of (3.7.13) over z € G yields (3.7.6)), as required. ]

Remark 3.7.8. Lemmal3.7.7 also holds when f; is a vector-valued function. More
precisely, suppose (V,||-||v) is a normed vector space, and let f; : G — V
and fo € D(G) be smooth functions on G. Furthermore, suppose that, for
My, My € N, with M; > M, there exist constants Cy, Cy, C > 0 such that

1@y < Cilel™,  Cile™ < [f(2)] < Col2|™, V2 € G

Then, the functions fi/fo and Xz(f1/f2) extend to a continuous function on G,
for any 8 € Z(k), with |B| < My — M,. Moreover,

f1(2) %]

f2(2) v (& 7

and there exists a constant C' > 0, depending on 3, fo, X, M; and Mos,, such
that

Ol RleMg

sup
zeG
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< sup || X a0 f1(2)]] -
Bo GI(z)eJBol:Ml

Jx (55)

3.7.1 Proof of Proposition |3.7.3

\%

The demonstration of Proposition [3.7.3] we provide in this section is adapted
from the proofs given in Bellaiche [4], and Montgomery [35]. In these refer-
ences the result is proved for any finite dimensional manifold, endowed with a
bracket-generating distribution, which is analogous to a Hormander system of
left-invariant vector fields in our setting.

First, let

Y = (Y1, Ya... Y,

be the basis of g constructed in Section [2.4.1]

The ball-box theorem (see Section 2.4 in Montgomery [35], Section 0.5.A in
Gromov [24] and Section in this thesis) tells us that there exist constants
€9, C,C" > 0 such that

C'¢ (Box(g)) C B.(eg) C C¢(Box(e)), (3.7.14)

for all € < ¢p, where for each € > 0 we denote

Box(e) = {z € R" : |z;| <%, Vi=1,2,....n}. (3.7.15)

Here, ¢ denotes the mapping given by

(21,29, .., 2)) = M2 et (3.7.16)

for (z1,29,...,2,) € R", where for each j =1,2,...,n, Y} is the basis element
of g.
Now, let N be a neighbourhood of 0 in R™ and V' be a neighbourhood of

eq in G small enough such that the following properties are satisfied:
(a) V C B.,(eq); that is, V satisfies the ball-box theorem (see (3.7.14))).
(b) The restricted mapping ¢ : N — V' given by (3.7.16) is a diffeomorphism.

(¢) Any (z1,29,...,2,) € N satisfies

H(Z17Z27'--azn)HR" <1
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For any z € V we can then re-write (3.7.14]) as

c’ (|,21|1/d1 + |2o|Y + -+ |Zn|1/d”) < d(eg, z)
< C (| + 2|V 4 ]2, (3.7.17)

where for each j =1,2,...,n, d; = d(Y;) denotes the formal degree of the vector
field Y; (see Definition [3.6.1)).

In order to prove Proposition [3.7.3] we require the following result.

Lemma 3.7.9. Let ¢ € D(G). If B = (i1,i2,...,1) € Z(k), for some b € Ny,
then

0 0 0

T a_%qﬂ(o) = Xgqleg) = Xi, Xiy -+ X, q(eq), (3.7.18)

where qz denotes the mapping on R®:

a5 (21,20, ..., 7)) = q (e ez | e¥u) (3.7.19)
for (21,22,...,2) € RO,

Proof. First observe that, applying the operator -2

BZb}Zb:O to the function gg

yields:
9 9 21X, X; X;
4 \(Z1, 22, .-, 2 = —q (et et e
azb 5(( 1 )) o azb ( ) o
(X q) (2% e | %),
Similarly, we now apply the operator %‘zb_lzo to this function to obtain
0 21Xiy 22X 2p—1 X3,
a_ZbQB((ZhZQ;---aZb)) = (Xi,q) (¥ etz e 1)
zp=0

to obtain
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o 0
921 8_21, qs ((2’1, 22y .- 7Zb>>

z2p—1=2p=0
0

= (Xi, q) (ele"l e?Xis ez”*lx"bfl)
021 ’

zp—1=0

= (X;

Xy q) (70 e | )

Continuing in this way, we obtain

o 0 0
0_218_22 a_ZbQB((ZhZQwﬂazb))

0 .
= 9o (Xip Xig -+ Xy, q) (€70)

- (Xil Xi2 T Xib Q) (60),

z1=22=+-=2p=0

21=0

which is the desired result. O
We are now in a position to prove Proposition [3.7.3]

Proof that (i) = (ii) in Proposition [3.7.3]

Assume that for every § € Z(k), with |f| < a — 1, we have

We first prove (ii) in the case a = 1. Consider the function

p() = q(é(x)), for x € R",
where ¢ is the mapping given by (13.7.16)). Then, the function p is smooth on
N. Moreover, by the hypothesis, we have

p(0) = g(eg) = 0. (3.7.21)

So, by Remark [3.7.4] there exists Cr > 0 such that

Ip(z)] < Cgllz||rn, (3.7.22)

for all z in a neighbourhood N’ C N of 0 in R", where we recall that || - ||g»
denotes the usual Euclidean norm on R™. But, by Proposition [2.4.2] there exists
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C’ > 0 such that

lz][en < C'(z)], V2 e N

Hence, we deduce that there exists C' > 0 such that

la(6(2))] < Cpllz|lpn < Clo(2)];

for all x € N’. Moreover, we can choose N’ and a neighbourhood V' C V' of
eq in G small enough such that ¢ maps N’ diffeomorphically onto V’. Thus,

we have

lg(2)| < Clz|, VzeV.

Since G is compact, then it follows that

la(z)l < Clz,  VzeG,

which finishes the proof for the case a = 1.
Now, for the case a > 1 we proceed by induction. Hence, assume that if for
any 5 € Z(k), with || < a — 2, we have

Xgqlea) = 0,

then there exists C > 0 such that

lq(2)] < Clz|*Y,  VzeG. (3.7.23)

This is our induction hypothesis. Now, suppose that for any 5 € Z(k), with
IB] < a—1, we have

Xg q(eg) = 0. (3724)

Thus, any (i1, i2,...,%-1) € Z(k), with b < a — 1, satisfies

(Xi1 Xiz e Xib—l)(Xi Q)(GG) =0,

forany ¢+ =1,2,..., k. So, applying the induction hypothesis to X;q yields

(X, 9)(2)| < Clel*t,  Vzed, (3.7.25)

for some C' > 0. Now, fix z € G and set T = |z|. Let v :[0,7] — G be a
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geodesic joining es and z such that

for some functions ¢; (i = 1,2,...,k) integrable on [0,7], and with velocity

1 (see Section and in particular, Definition |[A.1.1). In particular, for a.a.
t € [0,T], we have

k

V@O =>alt)? =1 (3.7.26)

i=1
Moreover, since |y(0)| = |eg| =0 and |y(T)| = |z| = T, and the velocity of ~ is

constant, then we deduce that

lv(®)| = d(eg,v(t)) =t, ae. (3.7.27)
Now, we have
d k
2 ae() = Yo al) (Xig)(v(t)  ae.
i=1
Hence, by the triangle inequality, we have
d k
%Q(v(t))‘ < la@NXa (@), (3.7.28)
i=1
noting that here |-| simply denotes the usual Euclidean norm on R. Now, by
(13.7.26) we have
le;i(t)] <1, ae, (3.7.29)

and by the induction hypothesis (see (3.7.25))), there exists C' > 0 such that

(X)) ()] < Ch(O*, ae.

But, by (3.7.27)), in fact we have

(Xiq)(v(1)| < Ct*71  ae. (3.7.30)

Therefore, applying (3.7.29)) and (3.7.30)) to (3.7.28]), we obtain
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d k
EQ(V(@)‘ <y Cctt = kCte! (3.7.31)
=1

Now, we know that

and moreover,

q9(7(0)) = qlec) = 0.

So, integrating both sides of (3.7.31]) with respect to t, between 0 and T, yields

T d
1) = 46T~ a0 = | [ Gataton
T1d
< — t t
< [ |G| a
T
< kC’/ ot dt
0
L
a
Hence, we have shown that
lq(2)] < %|z|“, Vzed, (3.7.32)

which proves (ii).
Furthermore, observe that the constant C' introduced in (3.7.25) may be

chosen to be

C:= sup |2/ |Xig(2)].
zeG
i=1,2,...k

Moreover note that, if ¢ satisfies the hypothesis of (i), then, by the proof we
have just completed, for every i = 1,2,..., k, the function X;q is CC-vanishing

at eg up to order a — 2. Hence,

_ k B B k
sup [ Xig(2)] S X sup oot = F
5% & a4 zeq a

which shows that C' is a finite constant. Hence, by (3.7.32)), (3.7.2)) is also proved.
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Proof that (ii) => (i) in Proposition [3.7.3]

Assume that there exists C > 0 such that

lq(2)| < Cz]%, V2 e Q.

Then, for b € N, with b < a, consider the point

z = e Xa Xy Xy ¢ @

for z1,29,...,2, € R and = (iy,42,...,4) € Z(k). The Carnot-Carathéodory

distance between eg and z satisfies

‘Z| = d(eg, Z) < d(eg, eleil) + d<€G7 eZQXQ) 4.+ d(eg, eszib)

< |Zl| + |22| + -+ |Zb|

By the hypothesis, we then have

[a(z)] < Clel* < C(lza] + |22l + - +12])"

In particular, the function ¢z (see (3.7.19)) satisfies

g5 (21,22, .-, ) | < C (Jaa| + |z2| + -+ z])"

This holds for any z € @G, and in particular, for every (zi,z2q,...

neighbourhood of 0 in R"™. Thus, by Remark [3.7.4, we have

o 0 0
=40
821 822 6zb CI6< )
Hence, by Lemma [3.7.9, the result is proved.

= 0.

(3.7.33)

(3.7.34)

,2p) In a

3.8 Spectral multipliers of the sub-Laplacian on

a compact Lie group

In this section we remain in the same setting as in previous sections. Our objective

focuses on proving some important results about the spectral multipliers of the
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sub-Laplacian

L= —(X7+X;+ - +X7).

The foundations of the results we present here were first laid out by Alexopoulos
in [2], and later adapted by Furioli et al in [23] to dyadic decompositions of £
and Besov spaces. The main difference between the result exhibited in [23] and
Lemma below lies in the weight of the integrals involved; in the reference
mentioned the authors do not allow the weight to vanish at the identity element
of the group, whereas in our case it is one of the defining properties of the function
q to vanish at eq.

This idea was already explored in the elliptic case, and it can be found, for
example, in Fischer [I7]. In that case, the action of the left-invariant vector
fields belonging to the basis of the Lie algebra g of G was considered. On the
other hand, as can be seen in the statement of Lemma [3.8.1] (part (II)) below, in
our case we consider the action of the left-invariant vector fields belonging to a
Hormander system. This choice stems from having chosen a sub-elliptic setting,
and is a natural consideration due to Remark [3.6.4l

One other important difference between Lemma [3.8.1] below and its analogous
version in the elliptic setting is in the implementation of dimension within the

proof. One example of this arises with integrals of the form

/ |2]" dz, (3.8.1)
G

for some r > 0, which we consider in the proof. In our case, |- | denotes
the Carnot-Carathéodory metric (see Definition , whereas in the elliptic
case a Riemannian metric is considered instead. As we prove in the appendix
(see Lemma [A.3.2)), the finiteness of in our case depends on the local
dimension [ of G. On the other hand, in the elliptic setting this is dependent
on the topological dimension of @, instead. Another example arises in the heat

kernel estimates, as can be seen below in (3.8.5)).

3.8.1 Main result on spectral multipliers in £

The main result of this section is the following lemma.

Lemma 3.8.1. (I) Let ¢ € D(G) and m € R. Then there exists a constant
C =Cym >0 such that if f € C([0,00)), with supp(f) C [0,2], we have
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[ 14078, 8= < il 552)

for any t > 1.

(II) Let m € R, a € Ny and 3,0 € I(k). Suppose that q € D(G) CC-
vanishes at eg up to order a — 1 (see Notation . Then, there ez-
ist C >0 and d € N such that for any function f € C%([0,00)) with
supp(f) C [0,2], we have

/G |9(2) X5 X { f(tL)0er, } ()] da

< Otz B8 max H@ijoo, (3.8.3)

0<j<d

whenever t € (0,1).

An easy corollary of Lemma is the following, which follows from Leibniz’s

rule for vector fields.

Corollary 3.8.2. Let m € R, a € Ny and ~,5,5 € Z(k). Suppose that
q € D(G) CC-vanishes at eg up to order a— 1. Then, there exists C' > 0 and
d € N such that for any function f € C%([0,00)) with supp(f) C [0,2], we have

/G|X7{q(x)Xg)zgl{f(t£)5eG}(m)}‘ dr < C 2@ 1B=IF1=hD pax H@ijoo,

0<j<d
for all t € (0,1).

If Y ={Y1,Ys,...,Y,} denotes a basis of the Lie algebra g, one can also
state a version of Lemma[3.8.1] part (II) and Corollary [3.8.2]in terms of differential
operators Y;, j = 1,2,...,n, imitating the elliptic case. However, in that case,
which we do not explore further in this thesis, the condition on ¢ as well as the
dependence of the bound on || are affected. In fact, if we consider the differential
operator Y%, for a € Nj, the formal degree [a]y of Y is substituted for |J]
in the formulae above.

The following sections will be devoted to the proof of Lemma [3.8.1]
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3.8.2 Proof of Lemma [3.8.1]

Although the result of Lemma part (I) is already well known, we include
it here for the sake of completeness. On the other hand, with part (II) we are
introducing the first major original result in this thesis, which has already been
proved in the elliptic setting with respect to the Laplace-Beltrami operator (see,
for example, Fischer [I7]). Despite being in a different setting, our proof’s ideas
stem from Alexopoulos [2] and Furioli et al [23], which also appear in the elliptic
case in [17].

One also notices that the first part of Proposition 6 in [23], which is analogous
to part (I) in Lemma [3.8.1] is proved for all ¢ > 0. However, in our case it is not
possible to have the estimate for ¢t € (0,1), and thus we only prove it for
t>1.

Step 0

This preliminary step aims to set-up the strategy of the proof. Fix a function
f:]0,00) = C, with supp(f) C [0,2], and assume f € C%([0,00)), with d to
be determined later.

We now mention some relevant results. Recall that, as we saw in Proposition
3.1.6, the heat kernels p; (¢t > 0) associated with £ satisfy:

2|2

pe(2)] < CV(VE)te or, for z € G, t > 0. (3.8.4)

Moreover, as shown in Varopoulos et al. [55], for each 3,3 € Z(k), we also have
that,

2|2

X5 Xapy(2)] < CtaGHAFIFD =& for z € G, t € (0,1), (3.8.5)

where X3 and )?5/ are the differential operators defined by ([2.3.11]) and (2.3.12)),

respectively.
For a given t € (0,1) and for 5,8 € Z(k), we split up the integral in part
(II) as follows:

119



/G’q(z)XﬂXﬂ/{f(tﬁ)&G}(z)\ dz
< / |a(2) X5 X { F(tL)0eg } (2)| d2
B (G

+ / |9(2) X X5 {f(tL)3es }(2)| dz. (3.8.6)
B (G)e

The objective of this proof is to first prove part (I), and then bound the integrals
above separately to prove part (II).

Step 1
This step is dedicated to proving the following result.

Proposition 3.8.3. For 3,8 € Z(k) there exists C >0 such that

XX {f(tL)0ec} || 2y S NNl (1 X6 Xamel 2260, (3.8.7)
for any t > 0.

Proof. For t >0, let h; : [0,00) — C be the function given by

hlp) = €% f(tud), € [0.00). (3.8.8)
Since supp(f) C [0, 2], then
|helloe = sup [he(p)] < €] fl]oo: (3.8.9)
u=0
and moreover, observe that for ¢ > 0,

FEN) = (VX e™, VYA>0.

The spectral theory discussed in Section then implies that for every t > 0,

f(tL)oe, = ht(\/z)pt, (3.8.10)

and consequently, since X, and )?j/ commute with hy(vL), for every j,j' =

1,2,...,k, we have

X% {F ()0} oy < Mtlloo | X5 K pill (- (3:811)
Then (3.8.9) implies that
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|| X Xa f(EL)0ec | 2y S I1Flloo [1X5X s il 226

for t > 0, which is the desired result.

Step 2

This step is dedicated to the proof of part (I) of Lemma [3.8.1]

Proof of Lemma part (I): Fix t > 1. First observe that, by the Cauchy

Schwarz inequality, we have

I CH I RCREE (/thzn2dz)lﬂz(]Q|faz»5qJ2)lﬂ. (35.12)

Proposition with 8= 3 =0, implies that

1 F(tL)oe ] 2y S 1 lloo P22 (3.8.13)

Moreover, by (3.8.4), we obtain the estimate

/‘pt(z)‘2 dz < Cl/V(\/%)_Qe_Zlczt dz, (3.8.14)
€ G

for some C; > 0. Furthermore, a result from [55] (see the proof of Lemma
VIII.2.5 therein) tells us that

/e‘z‘t dz S VWD), for t>0, (3.8.15)
G

which, by (3.8.14]), implies that

/ p(2)| dz S CLVVHTEV(VE) = G V(VEDTY

and hence

Pl 2y S CPV(VETY2

Substituting this into (3.8.13)) yields

| F(tL)0ee] |2y S CLEVVOT2 £l
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and hence, as t > 1, the estimates of the volume given by (3.1.22) imply that
there exists C] > 0 such that

|\f(t,c)5eG]|L2(G) < O] so- (3.8.16)

Now, since ¢ CC-vanishes at eg up to order a — 1, then there exists Cy > 0
such that

HQH%?(G) < 02 / ’Za‘2d2 < C2|G‘ sug]z\za = CQ’G|R20L < 400,
G ze
where |G| denotes the volume of G:

|G| = / dz < +o0,
G

and R denotes the radius of G:

R = sup |z| < 4o0.
zeG

Hence, we have shown that there exists C > 0 such that

gl 2@ < Cs. (3.8.17)

Combining (3.8.16]) and (3.8.17)) with (3.8.12]), we then obtain that there exists
C > 0 such that

LM@ﬂwmgastmum,

which is the result required. O]

Step 3

The objective of Step 3 is to prove the following result, which gives a bound for
the first integral in (3.8.6]).

Proposition 3.8.4. There exists a constant C, > 0, depending on q, such that

/ |9(2) Xs X { F(t£)06 }(2)| dz < Coz PV fll, (3.8.18)
B s(eq
whenever t € (0,1) and for any B,8 € Z(k).
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Proof. By Cauchy-Schwarz’s inequality, we have

/ (=) X5 X5 { f (t£)8c } (2)] d2
B s(ec)
< Nall e steen [ X6 Xa f L0 || 2 ey (3-8:19)

for any t > 0 and B, € Z(k). By Lemma [3.8.5] which we prove below, we see
that there exist a constant C; > 0 such that

|| X5 Xa F(EL < Ot 2B Y (VY2 f ]l (3.8.20)

)56G|‘L2<Bﬁ<ec~>> =

for every ¢t € (0,1), and a constant Cs, > 0, depending on ¢, such that

a+i
HQHLZ(Bﬁ(eG)) < Cg,q\/f 2 (3.8.21)

for every ¢ € (0,1). Hence, by ({3.8.19)), there exists a constant C' > 0, depending
on ¢, such that

/ ( )Iq(z)Xﬁ)?ﬁ,{f(tL)éeG}(zﬂ dz < Ct 3B Y (VY2 || £ \/Zﬁg,
B (e

for every t € (0,1). By (3.1.22)), for any ¢ € (0,1), we have

3 (atd) = 3+I81+18') V(VOY2 a taath) =3 (HBIHED = ya(aiBl=I&'D,
Hence, we have obtained
[ R0} 5, He 1]
B j(eq)
whenever ¢ € (0,1). So, the result is proved. O

Lemma 3.8.5. The following assertions hold.

(1) There exists a constant C' > 0 such that

< O3B Y (VOV2 | fll, (3.8.22)

’ |X,3)N(B’f(t£)5ec | ‘LQ(Bﬁ(eG)) -
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whenever t € (0,1) and for any B, € Z(k).

ere extsts a consian > U, aepen mg on q, suc a
2) Th st tant C, > 0, dependi h that

l

HQHL2(BT(eG)) < rots, (3.8.23)

whenever 0 < r < 1.

Proof. (1): By (]3.8.5) we know that

2
_ L=l

| XsXgpi(z)| < Ct 30 BHID ~cr - v e G, t e (0,1).

Hence,

/ | XsXppi(2)|" dz < / F OB 26 4y < I V()
G G

HX[;)’ZIB/ptHLQ(G) S t_%(l+|f8‘+|6/|) V(\/Z)l/Q’ (3824)

for any t € (0,1) and any (8,3 € Z(k). So, applying (3.8.24]) to the inequality
(3-8.7) yields

X6 X {FEL)ecH | ey S (XX {FEL)0e0} | 2y
< D (2| £
for any t € (0,1) and any 3,3 € Z(k), which is the required result.

(2): Since g CC-vanishes at eg up to order a— 1 (see Definition [3.7.1)), then
there exists C, > 0, depending on ¢, such that

lalfsm oy < G5 [ Je e

Br(eg)

for any r > 0. Now, by Lemma we have

/ |Z|2a dz ~ / p2a pl—l dp — / p2a+l—1 dp — T2a+l'
Br(eg) 0 0

Therefore, we have
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L

Hallz2Bree)) < Cqrte,

as claimed.

Step 4

It remains show that there exists a constant C, > 0, depending on ¢, such that

/B - \Q(Z)Xﬁ)?ﬁ'{f(tﬁ)@c}(z)‘ dz < th%(aq,@\qu)Hchd(m])’ (3.8.25)
vilea)®

whenever ¢ € (0,1) and any 3,3 € Z(k). The first thing we shall do is employ

the following decomposition:

Proposition 3.8.6. For t € (0,1) and 3,5 € Z(k), we have the following

inequality:

/ |(2) XaXo { f(££)0:6 }(2)] d2
B s(ec)”

<y { | lemde)

j=0 t,j

dz +/A ‘q(Z) M%) (2)

t,J

dz} . (3.8.26)

where, for each j € Ny, A;; denotes the annulus

Arj = By yilea)\ By ilea),

and moreover,

Mt(;.) = ht(\/z> {(X,szﬁ/pt)Xsz_lﬁ(eG)} 9

and

Mt(j) = ht(\/Z) {(X,BX,B’pt)XBQj,1ﬁ(6G)C} .

Proof. Let t € (0,1) and 8,5 € Z(k). We begin by making the following

straightforward observation
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[ ) XaZa {52150} )] d
B j(ec)e
= /G|q(z) Xﬁ)zﬁ/{f(tﬁﬁec}(z)‘ XB\/E(eG)C(Z) dz,

where yp denotes the indicator function of a set B. Moreover, using (3.8.10)),

we have

X5 Xp{f(tL)0es} = Xg Xg{hi(VL)p:}
= ht(\/z){XB )?ﬁfpt}
= ht(\/z){Xﬁ )?B'Pt}XBQj_lﬁ(eG)
+ ht(\/z){Xﬁ Xﬁ'pt}XBQj,lﬁ(eG)c,

for every j € Nj. Additionally, observe that

B\/E(eG)C = UAt,ja
7=0

where the sets A;; are pairwise disjoint. Thus, it follows that

/ |q(2) X5 X o {f(tL)dee }(2)] dz
ENACN

t

< o VD { (Km0 w0

+ /G‘C](Z) ht(\/z) {(X,B)?ﬂ’pt)XBy_lﬁ(ec)C} (z)‘ XA, (%) dz}, (3.8.27)

which yields the required result. O]

Note that for each ¢ € (0,1) the sum in (3.8.27) is, in fact, finite. In particular,
the number of non-zero terms is equal to the smallest positive integer L such
that 2171/t > R,. However, we shall keep the sum as infinite for reasons that
will be become clear later.

For the rest of the proof, fix t € (0,1) and arbitrary multi-indices 3,3 €
Z(k). Now, for i = 1,2 and any j € Ny, Cauchy-Schwarz’s inequality implies
that
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| 8@ a < oo 128 |,

t,J

Moreover, by (3.8.23)) it follows that

atl
HqHLQ (Aj) = < llgll 2(Byj+15(ec)) < G (2]+1\/_) %

for some constant C;; > 0 depending on ¢. Hence, we have shown that for each
j € Ny and for i =1, 2,

a+
/A ‘q(z) M (2 )‘ dz < C, (277002 || M) 24, (3.8.28)
6,3
We now analyse the bounds for HMt] HL2 (Ar) and HMty HLZ(A B separately,
splitting up the rest of Step 4 into Step 4a and Step 4b.
Step 4a
This step is dedicated to finding a bound for HM (2)H 2(a , for each j € Ny.
In particular, we have the following result:
Proposition 3.8.7. There exists a constant C' > 0 such that
—5-lBl-1g') 22670
1M |2, 5 S W llee VE 2 e, (3.8.29)
for every j € Ng.
Proof. Let us fix j € Ny. We first obtain the simple estimate:
@) 2
175 2,y < MG 2
< N[ VD) | 2 | (XsXape) X1 stecre]| 2y (3:8:30)
By functional analysis and (3.8.9)), we have
Hht<\/z)|‘$(L2(G)) < HhtHOO < 62 HfHoo (3831)

Now observe that, for any C' >0 and z € G with |z| > 2/71/¢, we have

|z|2 2~ tvn)? 22(i-1)

et <e O =e T . (3.8.32)

Moreover, we have
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| ‘ (X@)N(ﬂ’pt)XBijlﬂ(EG)c | ‘12(0)

= / ‘(Xﬁ)zﬁfpt)(z)XBQj,lﬂ(eG)c(Z) dz

:

< sup ‘(XBXB’pt)<Zl)XBQJ 1 ilec)e(21) (/ {XﬁXﬁ'pt ’d2’>

z1€G

= sup ’Xﬁ)zﬁ/pt(zl)} (/ ’X@Xﬁ/pt(Z)’ dz) .
21|22 1VE G

So, by (3.8.5)) and (3.8.32), there exists C' > 0 such that

2
L*(G)

IN

sup ‘Xﬁj?ﬁ/pt(zl)l (/ ’Xﬁ)’zﬁ/pt<2)‘ dZ)
|21]|>29 -1/t

—i1—18l—18 2(j-1) - |21
< Vi 18| 6|620/\/ 181—18'| Y

18-85 2-1) %
< Vi 18l \BIB_% 1Bl IB‘V(\/%)

2 2(3—-1)

— \/%72l72‘:3|72|ﬁ | V(\/%) eiT’
by (3.8.15)). Thus, by (3.1.22]), we have obtained

| (XBXB'Pt)XByﬂﬂ(ea)c

) S p—i-loi-1g1] -

(X6 Xap:) XB,1 sec)

and so
> —L-1B-18'| _22U-D
[(X6Xo00) X, e || o) S VE e (3.8.33)
Hence, combining (3.8.31]) and (3.8.33|) with (3.8.30)), we obtain
2 —5-1Bl-1g') 226D
HMt(,j)HLZ(AtJ) S Hf“oo\/;f ’ e ¢
which is the desired result. O

Applying the estimate (3.8.29) to (3.8.28|) means that so far, we have proved

that there exists a constant C' > 0 and a constant C, > 0, which depends on g,
such that
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22(i—1)
C

ds < G (VA TE |l (VE) 2P e

a—|B—18] (s 2(j-1)
< [l VAT QG T (3834
Using the ratio test, for example. it is not difficult to show that,

[e.e]

22(J 1)
ZZJJrl a+l/2) — < 400,
Jj=0

and thus,

Z/A D)) a5 Gl v (3.8.35)

Step 4b

Recall that we have fixed ¢ € (0,1). The final step of the proof is to find an
estimate for HM(1 HL2 , for each j € Ny. Recall that f € C%(]0,00)), with
d > 2 to be determlned T hen, by construction (see the proof of Proposition
B.8.3), the function h, given by belongs to C4([0,00)) and its Fourier

transform is well-defined. Therefore,

1

—/cos(su)l;t(s) ds, Vo e R,

ht(ﬂ) = o Ju

and the integral is finite for every p € R. The spectral theory then implies that

(VL) = 1/008(3\/_) +(s) ds

2m
and hence,
1 ~ ~
Mt(;)(z) QW/COS(S\/_){(XBXB/pt)XBQjlﬁ(ec)}(z) hi(s) ds. (3.8.36)
In Melrose [33] (see Section 3) it is shown that

supp( cos(sV'L)d.,) C By (ea), VseR.

So, for z € A;; and s € R, with |s| < 2/71V/%, we have

129



COS(S\/Z){ (XﬁXﬂlpt>XBQj71\/{(€G) Hz) = 0.
Now, let ¢ € S(R) be an even function such that its Euclidean Fourier transform

g € D(R) and

1, for & € [-1/2,1/2]
0, for & € (—o0,1]U[1,00).

Furthermore, consider the function

gs == 6 'g(67"), for 6>0.
We now prove the following result regarding g¢:
Lemma 3.8.8. Let d € N and suppose that h € S'(R) such that h € C4(R),

with

H@thOO sup < 4o00.

]

Then, we have

=neall, < Slol, (bl @san

for every 6 > 0.

Proof. Observe that, by the construction of ¢, we have

/R g() dz = §(0) = 1,

and moreover, for every j € N,

/ij g(x) dx = 0.

Using Taylor’s Theorem on h we obtain

h*ga(ﬂﬁ):/h($+5y) (v) dy

(2

T+ Ry(, 51/)) 9(y) dy.

=0
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Since

G 0 (x , |
2 /Rh j!( )(5y)]9(y) dy = h(x )/ ) dy + Zé] /y 9(y) dy,
then

hx gs(z) = h(z) + / Ra(z,5y) 9(y) dy.

By Taylor’s Theorem, the remainder satisfies the following estimate:

5
|Ry(z, dy)| < 9y|? y' ||o%n]| _.

and so,

||hx g5 = hl|, < SUP/\Rd(%éy)g(y)ldy
zeR JR
(5 d
< ||o%n|| /—’ g,’ l9(y)| dy,
R H

which yields the result. [

Furthermore, we also have the following result associated to h; € C%([0,00))
(t > 0), the function given by (3.8.8)).

Lemma 3.8.9. For any t >0,

[0 hel|, = ¥ [|0" bl . (3.8.38)

Proof. First observe that for any ¢ > 0,

o4 o4 2
—h = —— e f(tu? ‘
pek | Op t(u)‘ 22%’ p {6 f(u)}
=5 g el - f(t )

Since supp(f) C [0, 2], then

131



d

aa_wht(u)‘ = Z:( ) {W WQ} {aildjjf(t“2)}‘

sup
peR

J

o B O o (£5)00)

n</2/t | 5=0
. /d =i
> (5)¢ (G 1) )
=0

= (2v2)?1t9? sup
u</2/t

Hence, we deduce that

0’ V2)1 4472 . (d g 017
sup |5 h = (2v2)"tY“ su e A . 3.8.39
pen | o (e )‘ 2v2) e JZO (J) Opd=i fw) ( )
Similarly, we compute
o Lofd\ [ & 2\ [ 0
sup —h(u‘:sup (,){—.e“}{ _.f/f}
neER aﬂdl ) u<\/§j§0‘7 o audj( )
V2) “ (d o (07 2
= (2v2)® sup (.)6 ( f)(,u)
s ; i) G
Hence, by (3.8.39)), we have
)] = 4 [ 00
sup |5 h = t%? su ~—h
pelﬂ)e ol () ue% oy 1)
as required.
O
We are now in a position to prove the following estimate for HM ) H 12(Ar,)’

for each 7 € Nj.

Proposition 3.8.10. There exists C' > 0 such that

1 s,y < € VA2 max [|074]] 2 Vi 3.sa0)

for every j € Ny, where
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- V(2r)
R VAN

and where d > 2 denotes the non-negative integer to be determined such that

f € €40, 00)).

< +00,

Proof. Since

supp </g\(2j71\/g)71> c[- 271/t 2j_1\/¥],

then for every 2z € A;; we have

/RCOS(S\/Z){(ngz@/pt)XBy._lﬂ}(z)f/L\t(S) Gioi-1ypy-1(s) ds = 0.

Since ¢ is an even function, then (3.8.36)) and the Fourier inversion theorem
imply that Mt(;»)(z) is exactly equal to

1

2 L sVE (X Xam)xo, 1 steor () (Ruls) = Rs) Garovya (5)) s

= (ht — hy % g(2j,1ﬂ),1)(\/2) {(Xﬁgﬁ/pt)Xsz—lﬁ(ec)}<Z>’

for every z € G. Applying L? norms yields the estimate:

15 paayy < (e = B 1)) (VO {(Xp X p00) X5, 1 ptear H 2y

< Hht = he % Goi-1 g | ‘oo‘ | (Xﬁ)?ﬂ'pt)Xsz_lﬁ(eg) ’ |L2(G), (3.8.41)

by the spectral theory. Since h; € C%([0,00)), then by Lemma [3.8.8] we obtain

the estimate:

e = he % gyl S 27V [0 hl| -

Then, Lemma [3.8.9 implies that

e = B * gmrym—r || S (277 VE) T 442 max [|&7 f]| . (3.8.42)

0<;j<d

On the other hand, now observe that by (3.8.5]), we obtain
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| (X6 Xo2) Xy e |26y = / [XoXopi(2)] dz

23;1\/{(6@

<
Byji-1,7(eq)

_ / , 2
< \/¥ 2(1+B1+181) V(zjfl\/%) sup (ezcl ) ’

|Zl<2i-1VE

—2(1+|8]+]8’ 2[2|2
N (I+181 \ﬂl)(z, Lz

by the definition of the volume. Since

22
sup <620t ) =1, Vj e Ny,
|| <2i-1VE

then we have shown that

> —1=|B|-18’ i
H(XﬁXﬁ/pt)Xsz—lﬁ(ec)"L2(G) < it o |V(2j 1\/¥)1/2' (3.8.43)

Now, note that

\/E_ZV(Zj_l\/E)l/Q ~ \/‘ ( 27— 1\/‘>l/2 _ %j—l) = 92~ i (2\/—)32\/_ %

()

Thus, we have shown that

& —5=1B1=18'1 _j/2

| (X6 Xa20) X8, steo | 2y S VE %/ (3.8.44)

where
V(2r) -4
= su 00,
0= Ve

by (3.1.22). Hence, by substituting (3.8.42)) and (3.8.44)) into (3.8.41]), we have
the estimate required. O

Proposition(3.8.10[and (3.8.28|) then imply that there exists a constant C, > 0

depending on ¢ such that
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/ lq(2) MO(2)] d
A

C, (2J'+1\/E)a+% (277'Vt) 4yl Dax, HanH j/Z \/E—é—\ﬂl—lﬁ’\

C, max ||&f|| 2’ a+*—d+zlog2(*¥o))\/¥ pand)

0<j<d

N

AN

since

(2];;,_1\/%)(1—&-1 (ZJ 1\/‘) td/2 3/2\/5 2 —181-18']

_ gilati—d) gatid 707 I0m |5"%J)'/2

— 9ilati—d) gatg+d 210g2(v3/2) \/Ea—lﬂ\—lﬁ’l

< gi(ath—dtilon () 7o 7T
Hence, we choose d to be the smallest positive integer such that

I 1
d > a+ 3 + 3 logs(70),

so that the sum

Z 2j(a+é*d+% IOgQ(VU)) < +o00.

Thus, we obtain

0<j<d

q(z) dz < Cg max ||9/f|| - (3.8.45)
' ) a—|BI=15"|
j= td

Applying (3.8.35)) and (3.8.45)) to (3.8.26]) yields

/ X Te (005.0) () 5 ol VB 3500
.

which is exactly (3.8.25)), and thus the proof of Lemma is finished.
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Chapter 4

Pseudo-differential calculus on

compact Lie groups

Pseudo-differential operators have been studied extensively in the literature and
are generally well understood, especially in the Euclidean cases. From the point
of view of harmonic analysis, one can find, for example, a study of the symbolic
calculus in the case of R" in Chapter VI of Stein [47]. For applications of
the pseudo-differential theory to PDEs in the Euclidean case, see for example the
monograph Taylor [51]. A more recent result can be found, for instance, in Fischer
and Ruzhansky [I§], wherein the authors analysed the pseudo-differential theory
on nilpotent Lie groups. The case of compact Lie groups, which is the main focus
of this thesis, has also been studied in the past, although until now, the elliptic
setting has been the central focus of research. See, for example, Ruzhansky and
Turunen [43] for the case of the torus, or Ruzhansky et al [44] as well as Fischer
[T7] for the general case of any compact Lie group.

It is then natural to ask whether it is possible to define classes of pseudo-
differential operators in a sub-elliptic setting without losing the important prop-
erties that can be found in the elliptic case. The aim of this chapter is thus
to define symbol classes S™ and corresponding operator classes W™, using a

sub-Laplacian, such that the space

U o= U\l}m

meR
forms an pseudo-differential calculus. This means that ¥ is stable under taking
the composition and the adjoint. In this chapter, we will prove the following
result: Let mqy,mo € R. If T} € U™ and T, € U2 then their composition
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TyoTy, € Umtme

and the mapping (71,73) — T o Ty is a continuous function U™ x ¥™2 —
prmatme,

The foundation of the ideas used in this thesis for the proof of this result
stem from the classical Euclidean case, which can be found in Chapter VI in
Stein [47]. Other inspirations for the work presented here include Fischer [17],
which provides an intrinsic pseudo-differential calculus on any compact Lie group,
and Fischer and Ruzhansky [18], which presents an adaptation of Stein’s work to
the case of nilpotent Lie groups.

Throughout this chapter, suppose G is a compact Lie group of dimension n
and let g be the Lie algebra of G. Further suppose that, for some k € N, the
set X = {X1,Xy,...,X;} forms a Hormander system of left-invariant vector

fields on G, and consider its associated sub-Laplacian

L= —(X7+X;+ -+ X}).

4.1 Functions comparable to the C-C metric and

difference operators

In this section we aim to introduce a way of comparing a family of functions to

the Carnot-Carathéodory norm.

4.1.1 Definitions, vocabulary and notation

Definition 4.1.1. Let ¢ € Ny and suppose that Q@ = {q¢1,q2,...,q¢} is a
family of smooth real-valued functions on G. We say that @ is compara-
ble to the Carnot-Carathéodory metric (C-C metric, for short) if there exist
w= (w,wa,...,w,) € Nj and constants C,C’ > 0 such that

14

4
O3 g < o] < &3 Jay(2) e, (4.11)
j=1

Jj=1

for all z € G. In this case, we say that () has weight w.

Remark 4.1.2. Observe that, if () is a family of smooth real-valued functions on
G comparable to the C-C metric, then it follows that eq is the only point in G

where the functions ¢; (j =1,2,...,¢) vanish simultaneously. That is,
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ﬂ{z € G:qi(z) =0} = {eg}.

We also introduce the following notations, which will help us shorten our

future calculations considerably.

Notation 4.1.3. If Q = {q1,q2, ..., q} is a family of smooth real-valued functions
on G with weight w = (wy,wy,...,wy) € N§, we will sometimes simplify (4.1.1)
by writing

¢
2 = ) g (2)[V, 2z € G (4.1.2)
j=1
Notation 4.1.4. Suppose that @ = {q1,q2,...,q/} is a family of smooth real-
valued functions on G with weight w = (wy,ws,...,w). Then, for 3 € N§, we
denote
¢
Blo =Y _ Bjw;. (4.1.3)
j=1

Notation 4.1.5. Let ¢ € N and consider the family @ = {qi,q2,...,q} of

smooth functions on G. For any o € N§, we denote

do = ¢ 57 ... q)",
q~a = Qa( _1>

4.1.2 First properties

The following lemma illustrates a simple application of our new notation.

Lemma 4.1.6. Let ¢ € N and consider the set Q = {q1,q2,...,q} of smooth
functions on G. Suppose that Q has weight w = (wy,wy,...,wy) € Nf. Then,

for each j =1,2,...,¢, the function q; CC-vanishes at eq up to order w; —1

(see Definition and Notation[3.7.4) and, for any o € N§, the functions qq
and g, CC-vanish at eq up to order [a]g — 1.

Proof. For each j =1,2,...,¢, the function ¢; satisfies

1 .
g;(2)] < EM“J, VzedgdG. (4.1.4)

This means that ¢; CC-vanishes at eg up to order w; — 1.
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Now, let a € Nf. Applying ([4.1.4), for any 2 € G we have

|9a(2)] = H |4;(2)[*

l 1 a;
< H (ij ij)

Jj=1

Clelg

_ 1 |z e

This means that the function ¢, CC-vanishes at e up to order [o]g — 1. The

proof for ¢, is similar. O]

Lemma 4.1.7. Suppose Q = {q1,q2,...,q} is a family of functions in D(G),

with weight w = (w1, wa, ... ,w;) € N Furthermore, let wy be the lowest com-
mon multiple of the numbers {wy,ws, ... ,we}. Then, for any N' € Ny, we have
N~ Y gal2)l, Yz € G (4.1.5)

[al@=N"wo

Proof. First observe that, by Lemma m, if N € Ny, then for every a € N§,

with [a]g = N'wy, we have

10a(2)] S |21V, V2 e G.

Hence, it follows that

. la@)] S Y, Yz e (4.1.6)

[a]gq=N'wo

Let us now show the reverse inequality (up to a constant). By the equivalence

of norms on R’ for any N’ € N, we obtain

N/

¢ N'wqg ¢
ERAEES <Z ’%(Z)P/wj) ~ (Z’qy'(z)|w°/wj> , VzeG. (417)
=1 =1

Thus, using a multinomial expansion, we obtain

l N’ Y
oy 0
<Z|Qj(2)|w°/“’j> ~ Y [[lu=1", vVzeda (4.1.8)
=1

lal=N" j=1
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Observe that, by the definition of wy, for each j =1,2,...,¢, wy/w; € N. So,
we do the following change of variables; let 8 = (81, 32,...,0:) € Nj be given
by

B i=a; 0 €N, Vj=12...L

Wi

We then have

la| = N' <= [y + fows + -+ + Bowe = N'wy

By the definition of [-]q (see (4.1.3)), this is equivalent to

la| = N <= [f]g = N'wp.

However, this only holds for 8 € Nj of the form

Wo .
= o, =1,2,...,¢,
B RN
for some a = (ay,as,...,ar) € N§. This means that

l y4
a; 20 i
Yo Tla)" = = > ITla(=)17.
|a|=N" j=1 Bj € %?No,j:L? ----- ¢ J=1
[Blg=N'wo

But,

W
—ONO C No
Wy

for each 7 =1,2,...,/, thus we have

¢ v ¢
S Tlw™= < Y J[leGlr, veecd.

la|=N" j=1 peNy J=1
[Blog=N'wo

Hence, by (4.1.7)) and (4.1.8), we have shown that

~

Y S Y a2)l, Yz e G (4.1.9)

[a]g=N'wo

Thus, combining (4.1.6) and (4.1.9), the result is proved. O
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4.1.3 Definition of difference operators

Definition 4.1.8. If ¢ is a smooth, real-valued function on G, we define the

difference operator A, associated to ¢ to be the operator acting on the space
Fa(D'(G)) given by

A f=qf, feD(G).
We also introduce some useful notation.

Definition 4.1.9. Let ¢ € N and suppose Q = {q1,¢2,...,q} is a family
of smooth, real-valued functions on G. Furthermore, consider the collection of
difference operators Ag = {A,,A,,,..., A} associated to @. For a given

a € N§, we denote

AG = Ag,.

Definition 4.1.10. Let ¢ € N and suppose @ = {q1,¢2,-..,q¢} is a family of
smooth, real-valued functions on G. Furthermore, let w = (wy,ws, ...,w,) € N
We shall say that the collection of difference operators Ay associated to () has
weight w if () has weight w.

4.2 An example of a family of functions on G

comparable to the C-C metric

Here we consider an example of a family of functions () which, as shown below
in Proposition is comparable to the C-C metric.

4.2.1 An important neighbourhood of e; in G

We let

Y = {Y17Y'277Yn}
be the basis of g constructed in Section [2.4.1] Recall that, for each j =
1,2,...,n, Y, is written in the form
}/} == X[IJ(_s)] - [Xim [X’i27 ey [X’isanis] . }:|, (421)

for some [J(»S) € ZI(k) (see (2.4.1)). Furthermore, recall that, for each j =
1,2,...,n, we denote d; (see (2.4.3))) by
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, (4.2.2)

and § (see (2.4.4))) is the constant

0 = max{dl, dg, ce ;dn} (423)

Observe that there exist a neighbourhood V' of e in G and a neighbourhood
N of 0 in R™ such that the mapping ¢ : N — V, which is given by

O((21, 20, . . ., 2n)) 1= e V1Yt zndn (4.2.4)

is a diffeomorphism (see Proposition 2.3.9] (v)). For z € V we then let

(z21,22,...,2n) € NCR"

denote the coordinates of z given by the coordinate chart (¢~ V). We also
know, by the ball-box theorem, (see Section 2.4 in Montgomery [35], Section
0.5.A in Gromov [24] and Section in this thesis) that there exist constants
€0, C,C" > 0 such that

C¢ (Box(e)) € B.(eq) C C'¢(Box(e)), (4.2.5)

for all € < ¢y, where for each ¢ > 0 we denote

Box(e) = {z € R" : |z;| <%, Vi=1,2,...,n}. (4.2.6)

In particular, we can choose V and N small enough such that the following

properties are satisfied:

(a) V C B.,(eq); that is, V satisfies (4.2.5)).
(b) The mapping ¢ : N — V given by (4.2.4)) is a diffeomorphism.

(¢) Any (z1,29,...,2,) € N satisfies

||(Zl7z27-”72n)HRn <1

By these properties, for any z € V we have
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C (I + |2l 1% 4 - + |20 V) < |2
< O (] faof Vo V) (4227

Next, observe that there exists r € (0, 1] such that B,(eg), the ball of radius
r centred at eg, with respect to the Carnot-Carathéodory metric, is strictly

contained in V; that is,

By(eg) C V. (4.2.8)

=

4.2.2 Construction of the example

We continue with the same setting as in Section 4.2.1. Our objective is to define
a family of functions Qy = {q,; @ 7 = 1,2,...,n} such that, for each j =

1,2,...,n, we have
Q,5(2) = zj, near the identity
,4(2) =1, far away from the identity

and moreover

n

ﬂ {z € G: q;(z) =0} = {ec}.
j=1
In other words, the only point at which all functions in )y vanish simultaneously
is the identity, eq. In order to achieve this, we proceed in the following way.
We first consider the case n = dimG = 1. In this case, G is isomorphic
to the one dimensional torus, T. So, we may assume that G = T = R/7Z.
Moreover, the torus may be identified with one of its fundamental domains; we
choose the interval [—g, g) In this setting, the Carnot-Carathéodory metric is
equivalent to the Euclidean metric and additionally, the map ¢ (see ) is
the natural identification between elements of the torus and [—g, g) We then
take N = [—%,%) =V,
To fix the ideas, we now let

r =

4 7
so that (4.2.8) is satisfied, and furthermore,

143



rn = —-—=

and

o = 4T1.

For j =1,2, we then let x;,1; € D(T), taking values in [0, 1], be such that

Gt =1 on (=rmy), =0 on |=Z—r|ulrg),
and
YP;(t) =0 on (—%,%), Y(t)=1 on [—%,—q]U[q,%),

Then, we define the functions g 1,02 by

qo,j(t) =tx;(2) +¢;(z) for j=1,2. (4.2.9)

Hence, we define

Qo = {q0,1, 902} (4.2.10)

The following result follows from Proposition below.

Proposition 4.2.1. Suppose G is a compact Lie group of dimension 1. The set
Qo given by (4.2.10) is comparable to the C-C metric with weight (dy,ds).

Let us now consider the case n = dim G > 1. We first let

and for each 7 =2,3,...,n we define

7"]' = 4j71 .

Observe that

B, (eq) € B(eq) € -+ € B, (eq) = B.(eg) € V. (4.2.11)

= = =

Furthermore, let x;,v; € D(G), taking values in [0, 1], be such that
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Xj(z) =1 on B, (eq), Xj(2) =0 on V¢

and

Yij(2) =0 on By (eq), Yi(z) =1 on B, (eq).

Then, we define

QQJ'(Z) =Zj XJ(Z) + 1%(2) for j = 1, 2, .o, n. (4212)
For each j =1,2,...,n, we can also write ¢y ; in the following way:
( .
2, if 2 € B,,)2(eq)
zi +;(2), if z € B,.(eq)\B,. (e
i) = 7T (calBuplea) o
zix;(z) + 1, if z € V\B,,(ea)
k1, it z € Ve

We now define the family of functions

Qo = {901,925+ qon} (4.2.14)

For any o € N, we shall denote by ¢y, the mapping given by

900.0(2) = qo1(2)* qo2(2)* - qon(2)*", Vzed. (4.2.15)

Additionally, we let go, be the function defined by

%:a(z) = QO,a(Zfl), Vz e d.
Next, we prove that the family functions )y is comparable to the C-C metric

with Welght (dl, dg, c. 7dn)

Proposition 4.2.2. Suppose G is a compact Le group of dimension n > 1. The

family Qo of smooth, real-valued functions on G given by (4.2.14)) is comparable
to the C-C metric with weight (dy,ds, ..., d,).

Proof. First observe that, by (4.2.7), there exist C7,C] > 0 such that

CLY Izl < f2f < O |ylh, Yz eV (4.2.16)

j=1 j=1
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Moreover, from (4.2.13]) and the inclusion given by (4.2.11)), it is clear that for

each 7 =1,2,...,n we have

Q,(2) = zj, Yz € By leq).

Hence, it follows that

Cr Y a0 ()M < Jz] < O laos(2)|Y%, V2 € Byypalec).
j=1 j=1

We now consider the annulus B,,/s(eq)\B,, 2(eq). Observe that, for any
NS BTQ/Z(eG)\Bm/Q(eG)a

go,1(2) = 21 x1(2) + ¥1(2),
q,5(2) = zj, Vji=23....n.

By (4.2.16)), it follows that there exist constants Cs g, C5 > 0 such that, for all
z € Brya(ea)\Br 2(ec),

Coo 3 laos (I < 121 < Gy laog )1
j=2

=2
It remains to check g ;. There exists ¢y > 0, only depending on n and 7, such
that

2 < xi(z) <1, Vz € By,alea)\Br 2(eq),
0 < (2) <1, V 2z € B,,a(ec)\Br 2(eq).

IN

So, we have

co 21| < goa(2)] < Jan| + 1, V2 € By, alea)\Br 2(eq),

and in particular, there exist constants Cy;,C5; > 0 such that

Co laoa (Y™ < |2| < Coylaoa()[Y ™, V2 € Bryya(ea)\Brya(eq)-
Hence, there exist Cy, C5 > 0 such that, for all 2z € B,,/(eq)\B, 2(eq),
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Co > laos ()4 < 12| < Ch > laog ()%,
7=1

j=1
Continuing in this way successively, we deduce that there exist constants
C,,C, > 0, depending on 7, such that, for all z € B, s(eq),

Cr Y a0y (M < J2] < C0 Y g (=) VD (4.2.17)
j=1

j=1

Next, let us consider the space V\B, 2(eqc). For each j =1,2,...,n we have

1 S |q0,j(z)| S Zj+1, VZ - V\Br/g(eg),

which implies that there exist constants C, v, C;ﬂ,v > 0, depending on the choices
of r and V, such that

Covlzl <3 laos(2)|V% < Clylel, V2 € VAB,paleq). (4.2.18)

j=1
The inequality given by (4.2.18)) can be extended to G\B,/2(eq). Indeed, as
we saw in (4.2.13)), for each j =1,2,...,n, we have
Q. (2) =1, Vze G\W

So, we deduce that there exist constants C.. g, C] o > 0, depending on 7 and G,
such that

Crc <Y lgo ()% < Clg, V2 € G\Byplee). (4.2.19)
j=1

Observe also that

5 <SR Vze G\Biplea), (4.2.20)

where R > 0 is the radius of G:

R := sup |z|.
zeqG

Hence,
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" 3 ()[4 R < A 1/d,
g 2 s S < g Dl (1.2:21)

J=1

for all z € G\B,2(eq).

Now, we take

C = min{C’r, ﬁ} and C = maX{C’,’,, CTG}'

Thus, combining (4.2.17]) and (4.2.21)), we obtain

C o (M5 < 12| < €Y qog(2)V 4, Yz € G,
j=1

Jj=1

which shows that @y has weight (dy,ds, ..., d,). ]

Remark 4.2.3. One could replace x; and ; (j = 1,2,...,n) with any other
cut-off functions. The resulting smooth functions ¢o1,qo2,-..,q, would then

also be comparable to the C-C metric.

Remark 4.2.4. If Q) is the family of smooth, real-valued functions on G given

by (4.2.14)), then by Proposition 4.2.2) we have that

g, = Zdj aj, Va e Nj,
j=1

where, for each j =1,2,...,n, d; denotes the positive integer given by ([2.4.3).
Furthermore, suppose that Y~ denotes the basis of g constructed in Section[2.4.1]
Then, by Example [3.6.3 we have

g, = [aly, Va e Nj. (4.2.22)

Ezample 4.2.5. We consider the case G = SU(2). In this case, n = 3 and we

consider the family of functions Qo = {qo.1, %02, qo,3}, where for each j =1,2,3,

the function ¢o; is given by

q0.i(2) = zix(z) +¥(z), =z € SU(2).

By Example and Proposition 4.2.2] Qo has weight (1,1,2), and in partic-
ular, there exist C,C" > 0 such that

Cllqoa(2)| + lgo2(2)] + la0,3(2)["?) < |2 < C'(|g01(2)] + lgo2(2)| + lg0,3(2)['/?),
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for all z € SU(2).

4.3 Taylor’s Theorem revisited

For each j = 1,2,...,n, recall that gy ; is the smooth function on G given by
(4.2.12) and Qo is the family of smooth, real-valued functions on G given by
(4.2.14)). The following observation is then an immediate consequence of Theorem

3.5.1| and the construction of the g ;.

Remark 4.3.1. Suppose f is a smooth function on G and let x € G. Then, by

Theorem there exists a neighbourhood U of es in G, independent of f,
such that for every M € N and z € U,

faz) = 3 L ves) + RL,(0)

= 3 a2 V) + By (2)

where R/ (2) satisfies

IR}, (2)] < Cll(21,22,- -, 20)|[3h max |[Y

la|=M fHLOO(G)v VzeUl (431)

In fact, by the construction of the functions ¢p;, j =1,2,...,n (see (4.2.12)),
it follows that U = B,/s(eq) is a suitable choice, where r € (0,1] is the real

number satisfying (4.2.8]).
Now, as we saw in Remark (b) (see also Proposition [2.4.2)), there exists

C" > 0 such that

||(21,22,...,Zn)||]Rn S C,|Z|, Vze Br/g(eg). (432)
Hence, we have
IR, (2)] < Cz[M max HYafHLOO(G), Vzel, (4.3.3)

for some C' > 0. However, as a consequence of (4.3.2)), there might exist a@ € N,
with |a] < M, such that

90.0(2)] < Cl2|M, ¥z € Bypleq), (4.3.4)
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for some C > 0 (see Example [4.3.2| below). This means that Ruf; u 1s not a true

Taylor remainder, when estimated via the Carnot-Carathéodory metric, because
it does not encompass all elements with O(|z|™). This is illustrated in Example
below. In order to fix this issue, we must remove the unwanted terms
from the sum, which is the main objective of Theorem below.

Ezample 4.3.2. Let G = SU(2) and M = 3. Furthermore, suppose f is a smooth
function on SU(2) and let x be any element of SU(2). Additionally, for each
j=1,2,3, welet go; be the smooth function on SU(2) defined by ([£.2.12). As
we worked out in Example , the family of functions @ := {qo1, %02, q 3} has

weight (1,1,2) (see also Example [2.4.1)). Now, by Remark [4.3.1 we have
1 «
flaz) =Y ()Y f(2) +RI4(2), Yz e B,

|| <3

where

[Ris(2)| < Ol fgi};!\Yafl\LOO(SU(z))» vz € Byp(l),

for some C > 0. Consider, for instance, the multi-index ag = (0,0,2) € Nj.

Clearly, |ap| =2 < 3, so the expression

1
_‘qo,ao(z)yaof(x)v z € BT/Q(I)7
ap-
is included in the sum 3, 5.
Now, since Qo has weight (1,1,2), we have
o), = 1-0+1-04+2-2 =4 (see (4.1.3)).

Moreover, by Lemma [4.1.6, there exists C” > 0 such that

|d0.00 ()] < C' 2[00 = C"[e* < C'[2f’, V2 € Brp(l),

since r € (0,1]. This is precisely the scenario described in Remark (see
@.3.4)).

Theorem 4.3.3. Suppose f is a smooth function on G. Then, there exists a
netghbourhood U of e in G, independent of f, such that for any x € G and
any M € N, we have the Taylor expansion

fa) = iqo,a(z)yaf(zHRgM(z), Vee U, (4.3.5)

[a]QO<M
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where the remainder R;;M satisfies

IRL ()] < CleM max ||V flle@), VzeU (4.3.6)
’ [l]Q‘OZM
al<M

for some C' > 0 independent of x.
Remark 4.3.4. Suppose Y = {Y},Y5,...,Y,} denotes the basis of g constructed

in Section [2.4.1 Furthermore, let f be a smooth function on G and suppose

x = eq. If f is CC-vanishing at e up to order a — 1, for some a € N, then,

by Remark (in particular, see (4.2.22))), we have

Yefleg) = 0, Va e Nj, [oy =[a]g, <a-—1

Hence, by Theorem there exists a neighbourhood U of eg in G such that,
if M > a, then

1
fz) =) Jqo,a(z)Yo‘f(eg)+R£G,M(z), Vzel, (4.3.7)
a€eNT ’
a<[a]€Q00<M

where the remainder Rf@ ) satisfies

Bl < Ol max [Voflli@, VzeU — (438)

[ Qo=

|| <M
Recall that, for each j =1,2,...,n, d; is the positive integer given by (4.2.2)).
Moreover, we know that the family of functions )y is comparable to the C-C
metric with weight (dy,ds,...,d,) (see Proposition [4.2.2)). Hence, by definition

(see (4.1.3))), we have

(g, = diar + dyas + -+ dpov,, YV € NG,

Proof of Theorem [{.3.9 Let r € (0,1] be the real number satisfying (4.2.8)
and suppose M is any positive integer. By Remark we then obtain the

expansion

fa) = 3 éqo,a(@ Yof(@) + R y(2), ¥z € Bplea)  (43.9)

laj<M
where
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}RiM(Zﬂ < C]M ‘gﬂgj‘xd HY“fHLOO(G), Vz € Byleq). (4.3.10)

Now, we aim to show that the sum > laj<M €DCOmpasses all elements of the sum
. In order to prove this, it is sufficient to show that if a € N{, with
[a]Q <M 0
0

[a]g, < M, then |a| < M. First observe that, for any o € Nf, we have

‘Oé‘ = tay+ - to, < do+dg + -+ dyon = [a]QO'

Thus, for any o € Nj, with [a]g, < M, we have

|a| < [a]Qo < M?

which implies the desired result. In particular, this means that

> d0al) V)

lo| <M

1 N 1 o
= E aqoﬂ(z)Y f(]?) + g JCIO,a(z)Y f(ZE), Vze BT’/Q(eG)'
llgo<M lalgo=M
o |a?O<M

So, expression (4.3.9)) can be rewritten as

fa) = éqo,C,(z)w f@)+ R (), ¥z € Boplea),  (4311)

[a]Q0<M
where
1
Rl y(z) = > —0a(2)Yf(z) + R ,(2), Yz € Bypleg). (4.3.12)
[alge=M
|o| <M

It remains to show that the remainder Rj: ) satisfies the estimate (4.3.6). We

shall first find an estimate for the sum

1
Z JCJO,a(Z)Yaf(f), FANS Br/2(€G)‘
[elgg>M
|a|l<M
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By Lemma [4.1.6, we know that ¢p, CC-vanishes at e up to order [og, — 1,

for every a € N, so we have

1 1
> Glwa@IY @IS > Sl i@l (43.13)
[elgy>M [alge>M
lal<M |a|<M

for all z € B,/s(eq). In fact, (4.3.13) holds for every z € G, but in this proof
we are only interested in the local behaviour of these sums. Furthermore, for

every a € Nj with [a]g, > M, we have

|z][o‘]Q0 < |z|M, V2 e Balea),

since 7 € (0, 1]. Therefore,

1 [0} (03
S el jye o)

[O‘]QQZM
|a|<M
S M max [|[Yf|lie@@), Yz € Bypleg). (4.3.14)
[a]QOZM
|a|<M
Moreover,
‘R:’;M(zﬂ S |Z|M IgllfﬁHYafHLw(G), Vze Br/2<€G). (4.3.15)

Therefore, by (4.3.14)) and (4.3.15)), the remainder Rf;M satisfies

[Rip(2)] S 1M max [[Y*fl|iea) + 2 max [V fllz=(c)

[a]Qon
|a| <M
< 2™ Yf|| oo
S e 1V llmo
la| <M

for all z € B, /s(eq), which proves the result.
[

Remark 4.3.5. Theorem can readily be extended to functions which are
valued in a normed vector space. More precisely, if (V,||-||y/) is a normed vector

space and f : G — V is a smooth function on G, then for any M € N we have
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flzz) = Z %qova(z)Yo‘f(x) +R£7M(2), Vzel, (4.3.16)

[a]QO<M

where the remainder Ri v satisfies

1BLu @], < Clal™ o VS, V2 €U (4.3.17)
\a|<M

for some C' > 0 independent of .

Lemma 4.3.6. Suppose f is a smooth function on G, and let U be a neigh-
bourhood of eq in G such that, for any * € G and any M € N,

flzz) = Z ﬁqgﬁa(z)Y"‘f(x)—i-Ri’M(z), Vzel,

[Oc]QO<M
where
IRL i (2)] < Cl[™ max [[Yf|lp), Yz €U
’ [a}QOZM
la| <M
Then,
SUIC)J | X5, R_,’;M(z” S sup HYO‘fHLOO (4.3.18)
z e aeN
BeL(k),|8l=M [o]qq <M

Furthermore, the same result holds for the right-invariant operators X 3.
Proof. Let us first fix © € G. Then, for any z € U,

Xoo{BLy(9)} = (Xaf)w2) = 30— (Xaa)(2) V" f(x).

[a}Q0<M

Taking the supremum over z € G and € Z(k), with || = M, we obtain

sup X Ry (2] e
BEL(k),|Bl=M
< sup HngHLoo + Z — sup HXBQHLOO )HY‘)‘fHLw(G).
‘ |=M [a]Q0<M ' BeL

181= M

Since ¢ is a smooth function on the compact Lie group G, then
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sup || Xg ql|pe(qy < +oo.
B e I(k)
|Bl=M

By Corollary [3.6.6| for any § € Z(k) we have

Xg= > caY”
aeNg
[O‘]QOZ‘BI

In particular, we obtain

sup || Xpfllee@y S sup Y fllz=)-
|Bl=M [alg,=M

Hence, we have shown that

Sup Xﬂ@’ Ri,M(Z> ‘LOO(G) 5 sup ||Yaf| |L°°(G')7
zeG [O‘}Qo <M

BeL(k),|Bl=M
as claimed.

The fact that the result also holds for differential operators X 3 follows from
Proposition [3.6.7] O

Remark 4.3.7. Lemma [4.3.6] may be extended to functions f which are vector
valued. More precisely, suppose (V,||-||v) is a normed vector space, and let
f G — V be asmooth function on G. If the hypothesis of Lemma is
satisfied, then

f «a
ZSEPG) HX/?,Z Rx,M(z)Hv S asélgg HY fHLoo(G)‘

BeL(k),|8l=M [elgp =M

4.4 Symbols on G and their associated opera-

tors

In this section we shall introduce pseudo-differential operators on the compact
Lie group G, as well as their associated symbols. This topic has been studied in
the elliptic case in the context of compact Lie groups, see Ruzhansky et al [44]
or Fischer [17].

Symbols shall be initially defined to be the Fourier transform of a right-
convolution kernel, as a form of introduction, and in a later section we will define

symbols more generally.
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4.4.1 Introduction to symbols

Let T : D(G) — D'(G) be a continuous linear operator and, as a first exam-
ple, suppose T is left-invariant. Then, as a consequence of the Schwartz kernel
theorem (see Corollary , it is a convolution operator; that is, there exists a
unique distribution x € D'(G) such that

Tf = f«r, f € DQ), (4.4.1)

in the sense of distributions. Taking the Fourier transform, for any function
f € D(G) we have

~ A~

Tf(r) = fxn(r) = o(x) f(x), =€ G,

where o := K is known as the symbol of T'. In this case, T' is a Fourier multiplier
operator with multiplier .

Now, suppose T' is not necessarily a left-invariant operator. Then, by the
Schwartz kernel theorem (see Theorem [2.5.2), there exists a unique distribution
k € D'(G x G) such that

Tf(x) = [+ ralz) = /G F(2)he(z0)dz, ¥ f € D(G),

in the sense of distributions, where

ke(2) == k(z,2), Vx,ze€G.

If we take the Fourier transform, we obtain

THx) = o(a,m) f(x), V7 e, (4.4.2)

where o is the field of operators which is given on G x G by

olz,7) = ry(x), Yz e G, med. (4.4.3)
In this case, o is called the symbol of T', and moreover, (4.4.3)) can be rewritten
as

ke(2) = Fo{o(z,)}(2), Y,z € G. (4.4.4)

Remark 4.4.1. Let us now explain why this definition of symbols is independent of

the choice of 7 from its equivalence class [7|. € G. If (m1,7,) and (7o, )
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are equivalent representations, then, by definition, there exists an isomorphism
A 7 — 4 such that

m(z) = A 'm(2)A, Vo € G.
Then, for any function f € D(G), we have

~

flms) = A7V f(m)A,

and therefore,

o(r,m) = A lo(x,m)A, Ve G.

However, as we shall see below, the quantization we develop will not depend on

this choice.

By applying the Fourier inversion formula to (4.4.2)) (see Theorem (1)),

we have

Tf) = Y dTr (W(w)o(:v,ﬂ) A(w)) (4.4.5)
in the sense of L?*(@). If (4.4.5) holds, then we denote T' = Op(c). Furthermore,

observe that

Tr <7r1(x) o(x,m) f(m)) = Tr (7r2(x) o(x,ms) f(w2)> :
whenever m; and my are equivalent representations. Thus, the sum given in
(4.4.5) does not depend on the choice of a representation from its equivalence
class. Therefore, the symbol defined by (4.4.3)) is well-defined.

Remark 4.4.2. Tt is important to note here that not all symbols arise in this form.
In general, we will not define symbols as the Fourier transform of a distribution.
Nonetheless, symbols belonging to the class S™, for some m € R, which we
define later (see Definition , always admit a right-convolution kernel, as we
shall see later (see Section [4.5.1]).

Furthermore, observe that, by definition, if x € D'(G), then for every
(7,.7) € G, the expression ®(r) is a bounded linear map on .%%. This leads
to the definition of a symbol given below (see Definition .

4.4.2 First definitions

We now state the definition of a symbol on a compact Lie group G.
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Definition 4.4.3 (Symbol). A symbol on G is a collection

o:={o(x,m):z€CG 7€ é},

where for each = € G and 7 € G, o(z,7m) is a linear map 7, — J,.
A symbol o = {o(7) : 7 € @} that does not depend on the G variable is

said to be an invariant symbol.
For a symbol o, the notions of continuity and differentiability can be defined.

Definition 4.4.4. Suppose that for each 7w € @, a matrix realisation of 7 is
fixed.

(i) A symbol 0 = {o(z,7) : v € G, 7 € @} is said to be continuous in x

if, for each 7 € CA}’, the entries of o(x,7) are continuous.

(ii) Similarly, a symbol ¢ = {o(z,7) : z € G, 7 € @} is said to be smooth

if, for each 7 € @, the entries of o(x,7) are smooth.

An immediate observation from these definitions is that any invariant symbol
o € Fq(D'(G)) is smooth. We will usually assume that any symbol we work
with is smooth, unless stated otherwise.

We also define what it means for a symbol to admit an associated kernel,
based on the discussion from the previous section (see (4.4.4)).

Definition 4.4.5 (Associated kernel). A symbol o on G is said to admit an
associated kernel if, for each z € G, we have o(z,) € Fg (D'(G)). In this case,

its associated kernel is given by

ke(2) = Fo'{o(z,)}(2), V=2 € qG. (4.4.6)

For any symbol ¢ on G we have the notion of associated operator Op(o).
Let us now explain how we can define this. First recall that, for each 7 € G , we
define M, to be the subspace of L?*(G) spanned by the entry functions of the

representations in the equivalence class [r]. of 7; that is,

My = Span {(m()p.¥) . © 0,00 € Hay, w1 € [ ]

Additionally, recall that we define the space M (originally defined in (2.2.6))) to
be the subspace of L?(G) consisting of finite linear combinations of vectors in
M, for some 7w € G
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M = @MW.

weé

By the Peter-Weyl Theorem (see Theorem , M is dense in L*(G) and, in
particular, the closure of M, which we denote by M, satisfies
M = L*G).

If o={o(x,m): 2 € G, € @} is a symbol, then its associated operator,

which we denote by Op(c), is given by

~

Op(o)f(z) = ZdﬁTr <7T(x) o(z, ) f(ﬂ')), feMzeQgdG.

Observe that the operator Op(c) is well defined on M, since every function

~

f € M is afinite linear combination of entry functions of representations © € G;

that is, the mappings belonging to M are of the form

T (T(T)u,v) ,, , = € G, u,v € .

If the operator Op(c) is bounded in the L? norm, in the sense that there exists
C > 0 such that

HOp(U)me(G) < C||f||L2(G)7 Vf € M, (447)

then it can be extended uniquely to L?*(G). This unique extension will also
be denoted by Op(c). More generally, it is a routine exercise to check that
M C C*(G) and that it is dense in the Sobolev space L%(G), for any s € R. If,
for some si, 89 € R, there exists C' > 0 such that

1T+ £)% Op(@) (1 +£)77 fl] oy < Cllfllzey ¥ f € M,
then the operator (I + £)% Op(o) (I + L)% extends uniquely to an operator

(I+L)7Oplo)(I+L£)" 7 : L}(G) — L*G).

In particular, as M is dense in L? (G), this implies that the operator Op(o)

extends uniquely to an operator
Op(0) : L2, (G) — 12,(C).
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As we did in the case of L*(G), we will denote this extension by Op(o).
Remark 4.4.6. Suppose o is a symbol on G. If ¢ € D(G), then, the field of

operators

co = {cx)o(z,7):x € G, 7 e G}

is a symbol on G. Moreover, its associated operator is ¢ Op(o).

If 7 is another symbol on G, then

o+1 ={o(x,m)+7(x,m) : x € G, € @}

is also a symbol on G. Additionally, its associated operator is Op(o) + Op(7).

4.4.3 First examples

Suppose V' = {V},V,,...,V,} is any family of left-invariant vector fields on G,
for some r € N, and, for 8 € Z(r), consider the symbol given by the collection

of operators

{n(Vs) : 7 € G}. (4.4.8)

This symbol will usually be denoted by 7(Vj). We will assume this notation as
long as there is no ambiguity between the symbol 7(Vj3) and the infinitesimal
representation associated to a given m € G of the differential operator Vg, which
is also expressed as m(Vj).

More generally, if a € N and T is a differential operator of the form

T = Z Ca Vi,

a€eZ(r)
lo|<a

for some constant coefficients ¢, € R, then we let 7(T") denote the invariant
symbol given by
{m(T) : 7 € @}

Example 4.4.7. If = (i1,42,...,1%) € Z(r), then 7(V3) is an invariant symbol.
This follows from the fact that, for each (7, .7) € G, m(Vp) € ZL(7).

We can also establish the operator associated to the symbol 7(V3) (8 € Z(r)).
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Lemma 4.4.8. Suppose V. = {V},Va,....V.} is any family of left-invariant
vector fields on G, for some r € N. Then, for any 5 € Z(r), the symbol m(V3)

has associated operator Vg; that is,

Vs = Op(m(Vp)).

Moreover, the kernel associated to the symbol m(Vg) is the distribution Vﬁt(S

which, by (2.5.5)), is given by

eq

(Vibeir o) = (=D)PI(V, Vi, o Visbens )
= <6€G7Vﬁ 90>
= V5 SO(GG)a (4.4.9)

for ¢ € D(G).

Remark 4.4.9. Once it has been shown that the associated operator of the symbol
7(Vs) is V3, we can readily obtain that the symbol 7(V3) has associated kernel
Vﬁtéec. Indeed, by Proposition |2.5.11} the right-convolution kernel of the operator
Vg is Vééeg. This means that, for each f € D(G), we have

Vaf = fx (Vﬁtéeg). (4.4.10)
Taking the Fourier transform of Vi f yields

-~

Vaf(r) = =(Vp) f(m), 7€ G.
But, by (4.4.10)), we also have

~

Vaf(m) = F{Vibe,} (mf(m), =€ d. (4.4.11)

and so this shows that

7(Vs) = F{Vid. }(n), =€ G.

Hence, the associated kernel of m(Vj) is the distribution Vjd.,, as claimed in

Lemma [£.4.8
Proof of Lemma m If V is any left-invariant vector field and = € G, we

have

eqs
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= o(ze™) m(x)* da

d

dt Jq o

We now apply the substitution

y = ze'V.

Since G is a unimodular group, we have

Since

then we have

In particular, by applying this method recursively to V;,, V,,, .

obtain that

finished, by Remark

(V)

d
- | #w) m(ye V) dy

G
G | ey ay

(%w(e%

t=0

t=0

(Vo) = n(V)m(p).

F{Vep}(m) = n(Vap) = n(Vg)m(e).

Therefore, the operator associated to the symbol 7(V3) is Vp, and the proof is

to) /G“”(y) (y)* dy.

(4.4.12)

., Vi, we

]

Ezample 4.4.10. Let us now consider the symbol 7(T"), where T is a differential

operator of the form

162



T = Z CaVa,

a€Z(r)
laj<a

for some coefficients ¢, € D(G) and some a € N. By Remark|4.4.6/and Lemma
4.4.8) it follows that the symbol 7(7") has associated operator

Op(n(T)) = T.
A more general example is given by the Fourier transform of a distribution,
as we shall see next.

Ezample 4.4.11. If k € D'(G), then its group Fourier transform

R ={R(r): 7 e G}

is an invariant symbol, and in fact, as saw in Section [1.4.1] (see (4.4.1))), the

operator associated to k is the right convolution operator given by

Op(R)f = f*r, V[ € D).
This shows that all functions in the space Fg (D/(G)) are invariant symbols.

The scenario proposed in Example 4.4.11] is, in fact, not a rare occurrence.
That is, it will often be the case that if ¢ is a symbol, which satisfies certain
conditions, then it admits an associated kernel. In the following section we discuss

some important examples of these conditions.

4.4.4 Sufficient condition for a symbol to admit an asso-

ciated kernel

Let us now discuss an important sufficient condition for a symbol to admit an
associated kernel (see Definition [4.4.5)). Suppose ¢ is an invariant symbol. If

sup ||o(m)|| 2z < +o0,
reG

then by the Peter-Weyl Theorem (see Theorem [2.2.3), the operator Op(o) is
bounded in the L?(G) norm, in the sense that holds. Hence, as we dis-
cussed in Section , Op(o) extends uniquely to an operator Op(o) : L*(G) —
L*(G@), and we have
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HOp(U)HX(LQ(G)) = su%||a(7r)||g((;g;7) < +00. (4.4.13)
T™E

Therefore, by the Schwartz kernel theorem (see Theorem [2.5.2), the operator
Op(o) is given by right convolution against a distribution. That is, there exists
a unique k£ € D'(G) such that

Op(o)f = f*w, V[ e L*G),
in the sense of distributions. Taking the Fourier transform yields

F{Op(o)[}(7) = R(m)[(x) = o(m)](m),
by the definition of Op(c). This implies that the symbol ¢ admits an associated
kernel, k, in the sense of Definition 4.4.5

More generally, suppose that, for some s1,s9 € R, we have

sup H7T<I+£)%2 o(m)m(I+ L)~

TeG

Then, the operator (I + £)% Op(o) (I + £)~% is bounded in the L2(G) norm,
in the sense that there exists C' > 0 such that

%Hz(%w) < +00.

s

[T+ £)% 0p(0) (I +£) % ]| gy < Cllflliz@y ¥ F € M.

As was explained is Section [4.4.2) this means that the operator Op(o) extends

uniquely to an operator

Op(0) : L, (G) — LL,(G),

and moreover, we have

| ‘Op(a) ‘ {g(Lgl (@), L2,(@))

= [|[(1+£)7 0p(0) (I + £) || 12
= suRHﬂ'([—i-E)%QU(W) (I +L

TeG

)7 ||y, < Fo0 (44.14)

Hence, by the Schwartz kernel theorem, the operator Op(c) is given by right

convolution against a distribution. This implies that the symbol o admits an
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associated kernel.
Remark 4.4.12. Suppose ¢ is a symbol on G such that, for some v € R,
sup ||o(z,m) 7 (I + L)

zelG
relC

2(6) < +00;

that is, there exists a constant C' > 0 such that

< C. (4.4.15)

sup | o (z, 7) 7 ([+£)VH$(%) =

zeG

red
Then, the operator Op(o) associated to o, which is originally defined on M,
can be extended to D(G). Let us now prove this.

Note that it suffices to show that, for any f € D(G) and x € G, the sum

Zd Tr( v, m) f(n )) (4.4.16)

is absolutely convergent. First observe that

S d (W(x)a(:c,w) f(w))’ < ZdﬂTr‘ﬁ(x)a(x,W) iml @4

71'6@ 71'6@

For any 7 € G we have

Tr |7 (z) o(z, ) f(ﬂ')‘
= Tr|r(z)o(z, m)w(I + L) n(I + E)ﬂj]?(ﬂ')‘
< o, ) 7T+ L) || ) Tr 7T+ £)77 f(m)]. (44.18)

Now, let N € Ny to be determined. We have

-~

(™) = T|wlI + L) n(1 + £)" i)
< |7 (1 +L£)N fi Tr |7 (1 + L)V

Tr|w(l + L)

W)H,zﬂ(;ﬁf

~

Applying this to (£.4.18) yields the following bound for Tr |x(z) o (z,7) f(7)|:
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||o(z, 7y 7(I + ,C)”Hj(%) ||m (I + L) ]/C\(T(')Hg(%)Tl" \m(I+L£)"N7"]. (4.4.19)

Now, by Lemma [2.2.4]

17T+ L)Y FO oy = IFLT+ LY
< NI+ L)Y fllevo): (4.4.20)

Since f € D(G), then (I +L)Nf € L'(G). Then, let

CN = C||(I+£)Nf||L1(G) < +o00,

where C' > 0 is the constant given in (4.4.15)). Thus, by (4.4.19), we obtain

-~

Tr|n(z) oz, m) f(7)] < CyTr|a(l+ L)V (4.4.21)
Therefore,
Z d, Tr ‘ﬂ(x) o(x,m) f(w)’ < Cy Z de Tr|m(I+ L)~ (4.4.22)
me@ red

But, by Corollary [3.1.11] if we choose N such that N+v > /2, where [ denotes

the local dimension of G, then

ZdﬂTr‘ﬂ(I—FE)_N_”‘ < 00,
Ted

which proves the result.

4.4.5 The associated kernel of a non-invariant symbol

Fix a basis of vector fields {V; : j=1,2,...,n} on G and m € R, and let o
be a symbol on G. For 3 € N2, we let VPo be the symbol

Vig = {Vlo(z,7) : 2 € G, 7 € @},
where V/ denotes the differential operator
Ve = vk v
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acting on each operator o(z,7) (z € G, # € G) with respect to z. Further-

more, let us assume that, for all § € Nf, o satisfies

sup HW(I+L’)7%’” Vfa(x,ﬂ)Hg(%) < +o00. (4.4.23)
zeqG ’ T
WG@

In this section, we explain how condition (4.4.23) implies that ¢ admits an
associated kernel, in the sense of Definition [4.4.5]

Let us first consider the case § = 0. Then, for any x € G we have

sup (1 + L) "o
el

As was discussed in Section above, condition implies that the op-
erator Op(o(z,-)) associated to o(z,-) extends uniquely to a bounded operator
from the Sobolev space L?  (G) to L*(G). Hence, by the Schwartz kernel the-
orem (see Corollary [2.5.9), the operator Op(o(z,-)) admits a right-convolution
kernel. That is, there exists a unique distribution x, € D’'(G), depending on z,
such that

(JZ,T)}’X(%W) < +o0. (4.4.24)

Op(o)f = f*h,, Y[ e L2,(G),

in the sense of distributions. Taking the Fourier transform, we obtain

F{Op(0)f}(r) = F{f * k. }(r) = Fa(r) f(m), © € G.

This means that the symbol o(z,-) admits an associated kernel, in the sense of

Definition [4.4.5, and we have

o(x,:) = k. (4.4.25)

It is then a routine exercise to show that x +— k, is a continuous mapping. Let
us sketch, as a case in point, the proof in the special case m = 0.

Recall that, if T': D(G) — D'(G) is a continuous linear operator, which is
left-invariant, then 76y € D'(G) denotes its associated right-convolution kernel
(see Deﬁnition. The Schwartz kernel theorem on Lie groups (see Corollary

2.5.9)) implies that the mapping

T +— T(S(),

is an isomorphism from Z(L*(G))Y (see Definition [2.5.1)) onto its image in
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D'(G). As a consequence, for each N € Ny there exists C' > 0 such that,
for any v € D'(G),

kllpeyn < CIf = fx&llzw@2@),

where || - ||pq),n denotes the semi-norm on D'(G) given by (2.5.2)). So, for any

x,x1 € G, we have

IA

C Hop(@) - Op K.’El

[z = iz

DI(G),N ‘ |$(L2(G))

=C SUEHU($,7T) —o(xq,m)

L(Hr)"
TelG

Now, for each 7 € é, let us apply Taylor’s Theorem to o(z,7) — o(xq, ), with
respect to the basis of vector fields {V; : j = 1,2,...,n} (see Theorem [3.5.1]).
This yields the estimate

HO‘(ZL’,W) _O-(:L‘lﬂr)”g(%{;r) 5 dR(xvxl) SIEIIéH‘/jU(y,W)H‘(/((%;),
)

where dg(+,-) denotes the Riemannian metric. By the hypothesis (see (4.4.23),
this implies that there exists C' > 0 such that

H/{x — /@x1| DIC)N < Cd(x, ).
Thus, we have shown that the mapping
T —> Ky
is continuous in the case m = 0.
This idea can be pushed further. For each j = 1,2,...,n, one can use the

condition

SupHW I+ L) 7mV o(x,m H,s,ﬂ% < 400,

zeG ™)

re@
to show that the mapping x — &, is differentiable, and that the kernel of Vo
is Vjz Ky So, proceeding recursively we obtain that the mapping x — k, is

smooth, and that, for each 3 € NZ, the symbol VP¢ has associated kernel
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(z,2) — VP ka(2).

Hence, the symbol o has an associated kernel, x € D'(G x G), which is given
by

k(x,z) = ke(2), 2,2 € G.

4.5 Definitions of the symbol classes S and
their associated operator classes V", and

first examples

Our objective in this section is to define the symbol classes S™ on G, with
respect to a sub-Laplacian. The definition we provide here is inspired, partly, by
the classical definition of symbols on R™ (see, for example, Chapter VI in Stein
[47]), and the symbol classes in the elliptic case of compact Lie groups, which
can be found, for instance, in Fischer [I7] or Ruzhansky et al [44]. Moreover,
the nilpotent case (see Fischer and Ruzhansky [I§]) also influenced the work
presented here.

We continue on the same setting as in the previous sections; recall that the
set X = {Xj1,Xs,...,X;} forms a Hormander system of left-invariant vector

fields on G, for some k£ € N, and its associated sub-Laplacian is given by
L= —(X7+X5+-+X7).

4.5.1 Definition of symbol classes S

Before we state our definition of the symbol classes S™, let us first establish the
following convention. Suppose that @ = {q1,¢2,...,q/} is a family of functions

comparable to the C-C metric. When the context is clear, we shall denote

[a] = [a]g, Va € N
Let us now define what it means for a symbol to be of class m.

Definition 4.5.1. Suppose m € R. Let us now fix a basis of vector fields
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V ={V;:j=12...,n}

on G (see Definition [2.3.2)) and a family

Q:{QDQ%---a(H}

of smooth, real-valued functions on G, which is comparable to the C-C metric
(see Definition , for some ¢ € Nj. Furthermore, let A = Ag be the family

of difference operators on G associated to (). We then say that a symbol

o={o(z,7):z € G, 7 € G},

on G is of class m with respect to £, V and @ if it has smooth entries in x
and for each o € N, 3 € N and every v € R, there exists C' > 0 such that,

sup | |7 (I + E)_%(m_[aHy) VAN (z, 7)) 7w (I + /l)%
zeqG
red

Ny C- (451)

Remark 4.5.2. Observe that the basis of vector fields V' chosen in Definition
does not necessarily consist of left-invariant vector fields.

Notation 4.5.3. Consider the same hypothesis as in Definition [£.5.3] We then let

S™G, L, V,Q)™

be the space of symbols of class m, with respect to the sub-Laplacian L, the
basis of vector fields V', the family of difference operators A and the family @)
of smooth, real-valued functions on G, comparable to the C-C metric.

We shall often omit any mention of £, V', A and @, as long as the context
is clear. In this case, we shall write S™ instead of S™(G, L,V ,Q)*"".

As was already mentioned in Remark above, not every symbol on G is
the Fourier transform of a distribution. However, our definition of the difference
operators A% (see Definition requires a symbols in S™ to admit an asso-
ciated kernel, in the sense of Definition [4.4.5] This is indeed the case, since any

symbol o of class m satisfies

suBHW(I%—ﬁ)_%m 0(1’,7T)H$(%) < 400,
TeG

for every x € G, so, as discussed in Section [4.4.5] it admits an associated kernel
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ke. In particular, for any o € Nj, the expression

A% (x, )

is well-defined for each x € G, as required. For every x € G, we have

A (z,7) = F{faka}(r), m € G.

Remark 4.5.4. Let us assume we remain in the same setting as in Definition [£.5.1]
Then, suppose o is a symbol on G, and let k denote its associated convolution

kernel. Furthermore, let {vy, }n, ez C R be a sequence of real numbers such that

Up, —>» +00 as n;3 — 409, Up, —» —00 as n; —» —00,

and suppose that for any o € Nj we have

[|7(1 + L)) Aoo(my m( + £)3 ||, gy < 400, Vm € Z
Then, in particular (see (4.4.13))), we have
[|(1 4+ £)730m 1) Op(Gar) (1 + £) 3| gy < +000  ¥mi € Z.

By the Interpolation Theorem for Sobolev spaces (see Theorem [3.3.1)), we have

(1 + £)~ 204 Op(Gor) (I + £)%

22@) < ~+00, Vv e R

In particular, this implies that ¢ € S™. In particular this shows that, in general,
to verify o € S™ it suffices to prove (4.5.1)) for a sequence {vy, }n, ez C R which

converges to both 400 and —oo.

We have the following result.

Proposition 4.5.5. Suppose my, my € R, with my < my. Fizx a basis of vector
fields V .= {V; : 7 =1,2,...,n} on G and a family Q = {q1,q,...,q} of
smooth, real-valued functions on G, which is comparable to the C-C metric, for
some ¢ € Ny. Furthermore, let S™, S™2 be the families of symbols of class

my, ma, with respect to L, V and Q, respectively. Then,
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Smoc S™e

Proof. Let ¢ € S™ and suppose that a € Nj, 3 € NI and v € R. First

observe that

sup || (1 +£) 2" I VA (@) 7 (1 + £)F
reG
red

—L(mi—m
< (I + £)720m 2)||Lo<>(é)
sup H?T(I%—L’)_%(ml_[a}w) VAN (z,m)m (I + L

zeG
TeG

2 (Hx)

) lomy

Since my < mao, then by functional analysis,

”W(I—F,C)*%(mlme)HLoo(@) < sup (1+)\)%(m1+m2) < 1.
A>0

Since o, € S™!, then it follows that there exists C' > 0, independent of o, such
that

sup ||7 (1 + E)fé(mr[a]ﬂ') VAo (z,70)m (I + E)%V
zeld
XLE

zom) = ¢

Thus, we have obtained that

sup HW(I—}-E)_%(W_[O‘HV) VfAO‘J(x,W)W(I—l—E)% <C,
zeG

TeG

' Hx(m)

which shows that o € S™2, as required.

Definition 4.5.6. We define the space

7 = ) 9™

meR

A symbol in the class ST is called a smoothing symbol.

Observe that, if () and P are any two families of smooth, real-valued functions

on (, which are comparable to the C-C metric, we have
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S™(G, L, V,Q)"™ = S~(G,L,V, P)™.

Thus, S™° is independent on the choice of Q.

4.5.2 Definition of operator classes U™

Recall that, for any symbol ¢ on G, we define its associated operator, Op(o),
by

-~

Op(o)f(z) = ZdﬂTr (71’(1’) U(:E,?T)f(ﬂ')), fe M, zxedG. (4.5.2)

As was explained in Section [.4.2] this is well-defined. If o € S™, then by
Remark [4.4.12} for any f € D(G) and = € G, the sum

Z d, Tr (W(x) o(x,m) f(w))

is absolutely convergent. Furthermore, for each x € G,

Op(0)f(x) = (f * ka) (), (4.5.3)

where k, is the kernel associated to o.

We now show that, for each x € G, the mapping = — (f * k,)(x) has a
meaning and is, in fact, smooth. Observe that, as x — k, is a smooth mapping
G — D'(G) (see Section[4.4.5)), then £, is well-defined as a distribution, for each
r € G, and for any f € D(G), the convolution given by f % k, has a meaning
(see Definition [2.5.5). Moreover, in this case, f *r, € D(G) (see Proposition
2.5.7), and hence the sum in ([.5.2) converges pointwise to (f * k,)(z), for each
z € G. So, the definition of the operator Op(c) may be extended to D(G).

Definition 4.5.7. Let m € R. If ¢ € S™ then its associated operator, which

is given by

-~

Op(o) f(z) = Zdﬂ T (7?($)0(:E,7T)f(77)>, feDG), zed,

is said to be of class m.

We now also define the space of operators U™.
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Definition 4.5.8. For each m € R, we let U™ denote the space of operators

of class m. That is,

U™ = Op(S™).

Definition 4.5.9. We define the space

Y = ﬂ ym,

meR

An operator in the class W~ is called a smoothing operator.

4.5.3 Example: The symbol 7(X3)

Recall that X = {X;, Xs,..., X} forms a Hormander system of left-invariant
vector fields on G, and L is its corresponding sub-Laplacian. For a multi-index
B = (i1,1a,...,%) € Z(k), consider the symbol 7(Xpz), which is given by

{r(Xs) : 7 € G}.

By Lemma [4.4.8), the operator associated to m(Xpg) is Xg.

Let us fix a basis of vector fields

V ={V;:j=12...,n}

on G (see Deﬁnition. Furthermore, let )y be the set of smooth,real-valued
functions on G given by , and suppose A denotes the family of difference
operators associated to Q)g. For m € R, we then let S™ be the space of symbols
of class m, with respect to £, V and the family of difference operators A.

The objective in this section is to prove the following result.

Proposition 4.5.10. Forany € Z(k), the symbol w(Xg) belongs to the symbol
class S1°.

Remark 4.5.11. Proposition |4.5.10| implies that if a € Ny, then any differential

operator of the form

Z Cﬁ(x)Xﬂa
BeI(k)
|BI<a

where the coefficients ¢z € D(G), belongs to the operator class Ue.
In order to prove Proposition [4.5.10] we first calculate A®7(Xp), for a € Nf.
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Lemma 4.5.12. Let 8 € Z(k). Then, the symbol

satisfies

Am(Xg) =0, forany o € Ny, with [o] > |5]. (4.5.4)

On the other hand,

A“m(Xp) = Z cgfﬂ(X52), for any « € Ny, with [o] <], (4.5.5)

B2 € Z(k)
[a]+|B2|=8]

for some constants cgf € R, depending on «, 8, and on the dummy variable

Bo.

Proof. Let a € Nj. We have already seen that the right convolution kernel as-
sociated to the symbol 7(Xjz) is the distribution Xfd., (see Proposition 2.5.11)).

Thus, we have

Am(Xp) = W(Zjo,anéeG),

where we recall that, for any function f on G, ]}V is given by

f2) = [, z€@
Now, using (4.4.9), we can see that the distribution gy Xjde, is given by

<a0,aXééec7(p> = <Xé5eG,§o,a¢> = <5egaXﬁ{§0,a90}>
= Xg{%,a@}(eg),

for any ¢ € D(G). By the Leibniz rule for vector fields, we have

Xp{doaptea) = D ¢} 5 Xadoa)(ea)(Xap)(ea), (4.5.6)
B1,82 € Z(k)
|B1]+[B2|=|8]
8

for some constants cg 5 € R. Now, by Proposition |3.7.9 and the definition of

the qo; (see (4.2.12))), we have
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Xodalea) = Y T Gwleq).
o € Z(k)
[o']=[a]—]B1]

for some constants ¢ € R, where it is understood that, if |8,| > [a], then

Xﬁl 5076,(6(;) = 0

So, we have

Xo{doarec) = D &5 Xadoa)ea)(Xnw)(ec)
1B 1+1521=15]

- Z 621,6255’1’0[(50,&’Xﬁ2§0) (GG>~ (457)

|81|+1B2|=I8
[a']=[a]—|B1]

Now, suppose 5, € Z(k), with |51| < |8|, and let o/ € Nf, with [o/] = [a]—|S1].
By Lemma the function ¢p. CC-vanishes at eq up to order [o] —1 =
[a] — | 41| — 1. This means that

G ()] S 2, Ve,

and in particular, by Proposition [3.7.3]

doo(ecg) = 0, whenever [a] > |fy]. (4.5.8)

Furthermore, go o (ec) =1 for o/ =0, so, by (4.5.7)), we have

Xe{dop}ea) = D pl (Xae)(ea).
181|+182|=18]
[o]=]B1]
Thus,
GooXsbee = 3. 5 X500,
B2 € I(k)
[o]+]B2|=|B]

for some constants cgf € R. Taking the Fourier transform, we obtain

Aaﬂ-(X,B) = Z CZ;BW(X,BQ)a
B2 € (k)
[a]+[B2|=I8]
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which shows (4.5.5)). Observe that (4.5.4)) follows from the fact that, if « € Z(k),
with [a ] > |f], then for any 1,82 € Z(k) such that |5i|+ |52| = ||, we have

|61] < [a], and by-

]

We now show the main result of this section.

Proof of Proposition|4.5.1(0: Let o € N and g € Z(k). By Lemma |4.5.12] we

have

suEHW(I—i— £) 2Pl A (X g) (1 + L)/
TelG

[P

< >0 sup a4+ £) 2R (X )y m (1 L)

Bo€Z(k) ™ S G
[a]+|B2|=]8]

N Z sup || ( I+L’)7% P07 (X g,) (I + L) y/QHz H)'

Brex(k) TEC
|B2]=|8]|—[c]

|20

Now, by Proposition [3.2.3) (g), for each 8, € Z(k), the operator Xz, maps
L?,(G) continuously into L?, , (G), so the operator

(I + £)" 2081+ x o (1 4 L)/

is bounded on L?*(G). This implies that

sup H?T (I+L) 2 B2l e (X g, ) (I 4 L£)*/?

re@

|0

H([Jrﬁ) 3(1B2]+v) X, ([+£)V/2

Z(L2(@)

< +o00.

Since the sum over all B € Z(k), with |52 = |5| — [a], is finite, it follows that

sup H7r (I+L) 2 Bl Ao (X g) (T + L)/

req

Hz(%) < +oo,

which shows that 7(Xs) € Sl as required.
O

Remark 4.5.13. As a consequence of Proposition [4.5.10]and Lemma[4.4.8] for any
p € Z(k), the operator Xz is of class |3].
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4.6 First properties of symbol classes 5™ and

their associated operator classes V"

4.6.1 Independence of S” on the choice of basis of vector
fields

In Deﬁnitionwe fixed a basis of vector fields {Vi,V5,...,V,} on G to define
our symbols classes S™. However, one might ask whether our definition of S™
is dependent on this choice. We shall now explain why, for any m € R, the
definition of these symbol classes is, in fact, independent of the choice of basis of
vector fields V.

Let V = {V,Va,...,V,} be a basis of vector fields on G and suppose @
is a family of smooth, real-valued functions on G, which is comparable to the
C-C metric. Furthermore, suppose A denotes the family of difference operators
associated to Q. Consider a symbol o € S™(G,L,V,Q)**®, for m € R. Then,
for « € Nf and 8 € Ny, we have

sup | |7 (I + ﬁ)_%(m_[a}ﬂ) VAN (z, ) (I + ,C)%
reG
TelG

”Hg(%) < +o00.

Suppose now that W = {W;, Wy, ..., W, } is another basis of vector fields on
G. Then, by Corollary and Remark for every a € Nj and 3 € Np,
there exists a constant C‘BMV > 0, depending on [ and the families of vector
fields W and V/, such that

sup || (I + E)fé(mf[a]w) WPAYo (x,7) (I + E)%'/

zeCG s
71'6@
< Cpyy s ||r(1+£) 2" VIAG (2 1) 7 (14 £)2 || 4
"<
|i|g(\;ﬂl
71'6@

< +00.

Hence o € S™(G, L, W ,Q)*™®. The converse also holds, since V and W play

a symmetric role.

178



4.6.2 S™ as a Fréchet space

Let m € R. In view of the condition for a symbol to belong to the space S™
(see (4.5.1), for each a,b € Ny and ¢ > 0, we define the quantity

”OHSmﬂbm

- ~L(m—la++) 178 Aa !
: sup |‘7T(I+,C) V> A% (x,m,) m (1 + L)
[a]<a, [B]<b
zeG
WE@JWSC

Y Hz(%ﬂ)’
for o € S™. We also define

R o B A —5(m—[a])
50 = 225, 508 1V A0 e ) (T T oy

TeG

for o € S™. Note that 0 € S™ if and only if

HUHSmﬂbm < +OO,

for all a,b € Ny and all ¢ > 0. It is not difficult to show that, for any a,b € Ny
and ¢ > 0, the functions || - ||gm ape and || - |[§n ., are semi-norms on S™.
Additionally, S™ becomes a Fréchet space when equipped with the semi-norm
given by || ||sm, ape, for every a,b € Ny and ¢ > 0.

Moreover, for each m € R, the space U™ admits a Fréchet topology given
by the family of semi-norms {|| - ||gm ape @ a,b € Npy, ¢ > 0}, which are defined
by

|Op(o)||wm ape == |lo||lsm ape;, o € S™.

4.6.3 Continuity of operators in U™ on D(G)

The objective in this section is to prove that, for any m € R, any operator

T € U™ maps D(G) continuously into itself. We first need the following result.

Proposition 4.6.1. Let 0 € S™, for some m € R, and suppose that k,

denotes its associated kernel. If m < —% then for any v € G, the following

estimates hold:
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Kzl 22(c) £ C sup H?T(]—i-ﬁ)_% 0($,7T)H$(%)7

TelG
k|| 2y < C sup Ha(x,w)w([%—ﬁ)_% 208

TedG

for some C' > 0, which does not depend on o or x.

Proof. By Plancherel’s Theorem we hobtain

ol Bay = 1R 2y = 3 drllo(a, )l s
red
Now, we observe that, for any © &€ @, we have
llo(z,7)||ns = Hﬂ'([ + C)% (I + ,C)*% O’(x,ﬂ')HHS

IN

1+ 2% |y |70 +£)7% ()

LA

Hence, we have

||0-(m77r)||HS S SupA HWI(I—FE)_% O-(xaﬂ-l)Hg(ﬂgr) "ﬂ(1+£)%‘|HS (461)
T E€EG

So,

S de||o(z,m)| [

WE@

< sup [Jm(I+ L) 0w, m)|| 5y | D del 7+ £)27 [y

meG WG@

Applying the Plancherel Theorem to (I + £)Z, we obtain

N de ||+ L)1 = 1Bl 32,
ne@

m
2

where B_,, is the right-convolution kernel associated to the operator (I + L)
By Proposition [3.1.8]
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1B-mlli2) < +oo,
if m< —%, so the first inequality is proved. The other inequality is similar. [

We now consider the space D(G) of smooth compactly supported functions

on GG. We endow this space with the family of semi-norms

[ fllp@e).n = sup |Xpf(z)l.
BEeTI(k)

I8|<N
Z‘GKi

Theorem 4.6.2. Let m € R. Then any pseudo-differential operator T € W™
maps D(G) continuously into itself. That is, for any N' € Ny, there exist a
constant C' >0 and N € Ny such that

[T fllpy.n < Cllfllpe) .,

for every f € D(G). In particular, for any € Z(k), if

1 l
N>z i
> 2(m+|5|+2>,

then there exists a constant Cy > 0, depending on G, X, B and N, but is
independent of o, such that

|| X5 0p(0) f| 120y < Chllollsmogan [|(T+ L)Y ]| o (4.6.2)
@) @)

Proof. Let T € ¥™ and suppose that f € D(G). We know that if «x: (z,2) —

Kz(2) is the right convolution kernel associated to T, then

Tf(x) = Lf(z) Kka(2 ') dz, z € G.

For g € Z(k), the Leibniz formula for vector fields implies that

XpTf(x) = Z Cglm / f(2) Xy or=2 Xy wo=z-12 Ky (T2) d2,
|B1|+1B21=18] ¢

for some constants cgl By We write

fz) = I +L)N (I + L)% f(2),

for some N € Ny to be determined later. Then, we have
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XgTf()

= Z Cgl,ﬁz/ [(I + E)iN(I + E)Nf<z>]X51,$1:$X527$2=Z_1:E’£w1 (I2) dz
|81]+1821=18] ¢

= Z Cgl,ﬁQ / [(I + E)Nf<z)} [(I + E)7NX517$1=$Xﬁ27$2=2_190’f931] (5(32) dZ,
|1 |+1821=16] “

by employing integration by parts. By the Cauchy-Schwartz inequality, we obtain

the estimate

|Xﬂ Tf(:)j)| < C’ Z H(I"f_‘C)Npr(G)H(I+Z)_NX/J’LZ’XB%Z’%J:HLQ(GV
|B1]+182|=|8]

for some C” > 0 depending on (. Now, since for every 1,8 € Z(k) the symbol
given by

F{UI + L) Xp, 0 X,z k2 } (1) = 7(Xp,) Xp, o o, m) (I + L)V

is of class m + |B2| — 2N, then Proposition implies that

H (] + Z)_NX61,:E Xy, Ka HL2(G)

< C sup || w(I 4 £) 2R 1) X o, m) w14+ L) || 40
re@ o
< Cllollsm 0,813 (4.6.3)

whenever m + |f3] — 2N < —2. Since |52| < |S], then the condition

l

is sufficient. Additionally, since |5;] < |5], (4.6.3) implies that

| (T + L)V X, 0 Xp, 2 o < Cllollsm o8, (4.6.4)

226

whenever m + || — 2N < —L. Let us then fix N > 1 (m + [8] + £). Thus, we

obtain the estimate

182



X5 TF@) £ |1+ £ 1] 2 llllsmon (46.5)

Since f € D(G), then it follows that there exists N’ € Ny, depending on N,
such that

H(I + E)Npr(G) < || fllp@).ns

which proves the result.
More precisely, by (4.6.5)), we have shown that there exists €} > 0 such that
for any o € S™ and every 8 € Z(k) we have

HXﬂ Op(0>f| ‘LQ(G) < Gy H0’|Sm707|5\»N H<I + E)Nfl ‘LQ(G)’

where N denotes the smallest non-negative integer satisfying

1 [

4.7 Kernel estimates

As has been the case in previous sections, G denotes a compact Lie group of
dimension n and local dimension [ (see Definition [A.2.1). Furthermore, we shall
suppose that Q = {q1,q2,-..,q¢} is a family of smooth, real-valued functions on
G, which is comparable to the C-C metric, with weight (wy,ws, ..., wy). For any

a € N§, we shall denote

[ = [alq,
and
A% = Ap).
Furthermore, we let wy denote the lowest common multiple of the numbers
Wi, Wws, .. .,wy, and for a given m € R, we define
m + 2l
N, = . 4.7.1
’V 20.}0 -‘ ( )

In this section we aim to prove the following result.
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Theorem 4.7.1. Let 0 € S™, for m € R, and suppose that k, denotes its
associated kernel. Then, for each © € G, the mapping z +— kK.(z) is smooth on
G\{eg}, and furthermore there exist C >0, a,b € Ny and ¢ > 0 such that

52 (2)] < Clollgm ape ElR Vo e G, z € G\{eg} (4.7.2)

The rest of this section is devoted to the proof of Theorem [4.7.1. We start
Lemma [4.7.2

Lemma 4.7.2. For m € R let ¢ € S™ and suppose that k, is its associated

convolution kernel.

(1) If B € I(k), o € N§ and By, 3, € Z(k) are such that

l

m — [a] +|B1] + [Ba] < 5

then the distribution Xg, X, . (Xs.Ga(2) e(2)) is square integrable and
for every x € G, there exist C >0 and a,b € Ny and ¢ > 0, such that

oy ~ 2
/G X502 K, (X Gal2) () [Pz < C 0] By

(2) If B € Z(k), o € N§ and By, By € Z(k) are such that

m — [a] + |B1] + [Ba2] < I,

then the distribution Xg, .Xs, . (Xs.z Gu(2)ka(2)) is continuous on G for
every x € G and there exist C >0 and a, b € Ny and ¢ > 0 such that

sup | X612 X .2 (Xpo Ga(2) Ka(2)) | < Cllo]] 5 ape (4.7.3)

Proof. Observe that to prove this result it suffices to assume that ¢ is an invariant

symbol; that is,

o(x,m) = o(m), VeeG rmed

To prove (1), observe that, by Plancherel’s Theorem,

|| X5, X5, (Gari = ||7(Xs,) A% () 7(X3,)

] e 2

184



Now,

HW(X&)AQU( ) Xﬂz HLQ(G

< |[w(Xg,) w(I + L£)2 D] o

1 \ﬂzl

H7r (I + £)~zm-leHBD Ao () n (1 + £) =

!ILoo @

77+ £)"F 7(X5)|| 5

Since 7(Xgs,) € SI%I by Proposition 4.5.10| then

eI+ £)" F 7(Xp)]], iy < +00.

v

We also have

1 182]

||7(L + L) 2 DA (m) w1 (L + L) 2 || gy < Nollsm falosals

as o € S™. Moreover, by Plancherel’s Theorem (see Theorem , we obtain

Lim—|a
||7(Xg,) w(1 4 L) HE=D]] o = 11X, B nefal il 20

where B_,,— a]+|52|) denotes the right convolution kernel associated with the

operator (I + £)2(m=lel+l5D Moreover, by Theorem m (h), we obtain
\/31\
1 X5, B-m—ta)+ia 22y < ||(T+L£)2 Bm [a1+\62|>HL2(G)

= [|B-tm—tar+1s1+1820 || 2

By Proposition [3.1.9] we then have that this is finite if

l
m — [a] + 5] + (5] < 5 (4.7.4)
In particular, we have shown that if (4.7.4) holds, then there exist constants

a, b, ¢c € Ny and C' > 0, depending only on «, (1, f2, such that

|1 X8, X8, (Gar) || 22y < Cllo]]5m,00,05

which proves part (1).
In order to prove part (2), first let s € R to be determined. By the Sobolev
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embedding (see Theorem [3.4.1), if s > 1/2 and X Xz, (Gur) € LA(G), then
X 51)~( 3,(gur) is continuous on G and there exists C' > 0 such that

(4.7.5)

Slelg |X51)?/52 (Zja'%) (’Z } < CHX/J’lXﬁQ qa HL2

Let us then fix s > /2. By Theorem [3.2.3] (h), there exists C' > 0 such that

|| X5, X5, (Guk §0\|I+£ Fa+D# (G w) |

Mz

(@)
+\B \ 2 ~
= C||(T+ L)1+ L)' (Gur) "
By Plancherel’s Theorem (see Theorem [2.2.7]), we then have
(1 + L)+ £)'F (s )26

+|B1| a @
:H”[Jrﬁ) Ato(m)m(l+ L) HLQ(G)
< m(I + L) Ao (m) (1 4 £)7 =0l

[[7(I + £)sem-lebssipiisioa)|

Now, observe that

HTI’ ]—i-ﬁ)% s+|B1]) AaO'( ) ( +£) (m—[a]+s+|B1]) HLOO(@)
= ||7(1 + £) 30l Ao (my n(1+ £)F ] g

S | |U| |Sm,[o¢],0,|l/1\7
where

v o= —(m—[a] +s+[B]).

Moreover,

HW([ 4 E)%(m*[Oé]JrSJrlﬁl\+|ﬁ2|)|}L2 .

@) < +00,

provided that

[
m — [a] + 54 |Bi] + |B2| < 5
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by Proposition [3.1.9, Since s > [/2, then the condition becomes
m —[a] +[Bi] + [B2] < —,
proving part (2).
We can now show Theorem [£.7.1]
Proof of Theorem [{.7.1 The Leibniz property for vector fields implies that it

suffices to prove the result for invariant symbols. For N € Ny, we now define

the function

¢
= avy,
j=1

where, for each j =1,2,...,n, the function gy ; is given by
2w N
qng = q;
where wy is the highest common divisor of wy, ws, ..., ws. Observe that, for
any z € G,

E E 1\ 2woN “
v~ (a2 +lga(2)[% + -+ gu(2)[20) 77 &= |2V, (4.7.6)

since () has weight (wy,ws, ..., wy). We now define the multi-index
2woN
any = (o, 0,...,0 =% o o), j=1,2,... .4,
Wy

in the j-th position. Then,

with the non-zero value Z“ijﬂ
J

fN(Z) = ZQNJ<Z> = anN,j(Z)'

Observe that, for every j =1,2,...,¢,

[OéNJ'] = QWON.

Hence, by Lemma m (2), the mapping fyk is continuous provided that

m —2woN < —I, (4.7.7)
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and there exist C' >0 and a, b, ¢ € Ny such that

Fnhlle@) < Cllollsmap.e

By (4.7.6), for any z € G, we then obtain

’z’2wON’I€(Z)’ 5 HfNK'HLOO(G) S HUHSm,a,b,c.

If we choose

NN, — Fn—i—QZ—‘7

2w0

then, in particular, (4.7.7) is satisfied. Hence, (4.7.2) is obtained, and the result
is proved.

]

4.8 Smoothing symbols

We shall continue with the same setting as in previous sections. Suppose that
Q = {q1,q,...,q} is a family of smooth, real-valued functions on G, which
is comparable to the C-C metric, with weight (w;,ws,...,wy). Additionally,
suppose that

Y = {Yla}/Qw"uYn}

is the basis of the Lie algebra g of G constructed in Section [2.4.1] Throughout
this section, for any m € R we let S™ denote the space of symbols of class m,
with respect to £, Y and Q.

4.8.1 Main result

Recall that, for a given function « € D(G x G), with

K:(x,2) — ke(2),

its associated symbol is the collection

o= {ry(r):z € G medql}

and we often write o = k, to denote this relationship.

The objective in this section is to prove the following theorem.
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Theorem 4.8.1. The mapping

D(GxG) — 9§
(4.8.1)
K — 0 =hk,
is an isomorphism of topological vector spaces. Hence, a symbol is smoothing if

and only if its associated convolution kernel is smooth.

Recall that a symbol ¢ on G is said to be smoothing if

o€ S = ﬂ S™.
meR
This is a notion we introduced in Definition [4.5.6]
Furthermore, the space S™° is equipped with the projective limit induced by
(merS™; that is, the topology for which the inclusion S7> C S™ is continuous,

for any m € R.

Proof of Theorem [{.8.1 We first show that, if ¢ € S~ then its associated

convolution, s : (z,2) — k.(z), is smooth; that is,

sup  sup |XQ7ZX57I HI(ZM < 400,
z,2€G o,BeI(k)

|a|<N1

|B] < N2

for every Ni, Ny € Ny. Since ¢ € S, it follows that for every Ny, Ny € N,
there exists m € R such that

m+N1 < —l,

and o € S™. In particular, whenever a € Z(k), with |a| < Ny, we have

m+|al < —l.

Hence, by Lemma part (2), it follows that there exist C' > 0, a, b € Ny
and ¢ > 0 such that

sup  sup | X Xggoha(2)| < Clollgmgpe < 400,
z,2€G aeZ(k)

|a] < Ny

18] < N2

as required. In particular, this shows that the map
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S — D(G xG)
o=k, — K
is continuous, which means that the map given by (4.8.1)) has a continuous inverse.
Furthermore, this also shows that the map given by (4.8.1)) is surjective.
We now show that the map given by (4.8.1) is continuous. Let « : (z,z) —

kz(z) be a smooth function on G x G; that is, suppose that

sup  sup ‘XO[,ZX/B@ mx(z)| < +00, (4.8.2)
z,2€G a,BeZ(k)

laf <Ny

|B] < N2

for every Ni, No € Nj. Then, consider the symbol given by

o~

0 = Kg.

Furthermore, let 71,7, € R and suppose that N;, Ny € Ny such that v; < Nj,
for each j =1,2. Then, for x € G and [, € Nj we have

|71+ L)Y * A (2, m)m (1 + £)2||

< H7T([ + L)Y P A (@, m)m(I + E)NQHLOO(@)

= ||F LU+ LM+ £) Yo ko } (1) o

By Lemma [2.2.4] we then have

F{T+ L) T+ L) VP ke } ()] e

<[+ L) T+ L) Y P ko] 11 -

Moreover, there exist constants cg € R such that

Yﬁo = Z CﬁXﬁ.

BEL(k)
181<]80]

Similarly,

T+L)M = > 5 X,

B1€Z(k)
|B1]<2N1
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for some constants cs, € R and

(I+Z)N2 - Z 552)2527

B2 € Z(k)
|B2| <2N2

for some cg, € R. Hence, it follows that

1T+ LM I+ L) Y2 4a ko] 1

S’ Z HXﬁlxﬁQXB,x o "J:JcHLl(G)
B,81,82 € Z(k)
[B1|<2N1, |B2]|<2N>
181<|Bo]

< sup sup | Xs 2 Xp o hia(2)
22€G B3 €L(k)
18]<Bol
|8'|<2N1+2N2

)

which is finite, by the hypothesis (see (4.8.2))). Hence, we have shown that the

map given by (4.8.1)) is continuous.
Additionally, we know that this map is linear and one-to-one. Therefore, we

conclude that it is an isomorphism of topological vector spaces.

]

4.8.2 Consequence

Many properties we study throughout this thesis associated with symbols will
hold for smoothing symbols. So, the argument we provide below shows that,
given a symbol o € S™, we may assume its associated convolution kernel is
supported in a neighbourhood of e, whenever the context is appropriate.
Suppose that, for m € R, 0 € S™ is a symbol on G and let k : (z,z) —
k.(z) denote its associated convolution kernel. Furthermore, let U, V' be neigh-

bourhoods of eg in G satisfying

{ec} U CV,

and let x € D(G) be a cut-off function, taking values in [0, 1], such that

x(z) =1 on U, x(z) =0 on V¢

Then, we may write
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Re(2) = K (2)x(2) + K (2)(1 — x(2)), V(z,z) € GxQG.

We now let #14, k), be given by

K1z(2) = Ke(2)x(2), /-i/lw,c(z) = k(2)(1 — x(2)), (x,z) € GxG,

and suppose 71, 71 denote their associated symbols, respectively:

T (z,m) = F{k1.}H(m), (2, ) = F{/i'17x}(7r), r e G, e G.

Observe that, as supp(x},) C V¢, then s}, is smooth on G, by Proposition
So, by Theorem 4.8.1} the symbol 7{ is smoothing; that is, for any m’ € R

the following assertion holds:

Va,b € Ny, ¢ >0, Tl g g pe < +00. (4.8.3)

Now, for any o € N§, 3 € NI and v € R we have

|71+ £) 72 YA (2, m) 71+ £)F]]
< |71+ £) 2 I YA 7y (2, ) w1+ L)F] | g
+ ||r(1 4 £) 72 YA 2wy (1 + £)3] |

Moreover, by (4.8.3)),

—L(m—[a e s
HW(I+£) 5(m=[a]) yB A T{(:E,Tr)ﬂ'(]—i—ﬁ)zHLw(é) < | sm (10 < +00,

and in particular, there exists C' > 0 such that

|71+ £) 720 YA (2, m) (1 + £
< Hﬂ(}_'_E)—%(mf[a]Jru) YﬁAaTl(l’,Tr) 7T([+£)%HLOO(§) + C.

>%HL°°(@)

Here, 7 is a symbol on G of class m, whose associated kernel is supported in V.

This shows we may assume the convolution kernel associated to ¢ is supported
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in a neighbourhood of eg.

4.9 The continuous inclusion S™(Q,) C S™(Q)

Recall that, for any family ) of smooth real-valued functions on G, which is
comparable to the C-C metric, any basis of vector fields V' on G, and any
m € R,

S™G, L, V,Q)™

denotes the space of symbols of class m with respect to £, V and @ (see
Definition {4.5.1). By the work done in Section |4.6.1} S™ is independent of the
choice of basis of vector fields V', so it shall be convenient for us to fix one

throughout the rest of the section. To this aim, we let

Y = {Y17Y'277Yn}

denote the basis of left-invariant vector fields constructed in Section 2.4.1l For
any family @) of smooth, real-valued functions on G, which is comparable to the

C-C metric, and m € R, we shall then write

5™(Q)

for the space of symbols of class m with respect to £, Y and (@), omitting any

mention of £ and Y. Moreover, recall that

Qo = {901,925 -+ qon} (4.9.1)

denotes the family of smooth, real-valued functions on G given by (4.2.12).
Throughout this section we shall consider the family of symbols of class m, with

respect to o,

5™(Qo)-

The objective in this section is to show that, if () is any family of smooth,
real-valued functions comparable to the C-C metric, then for any m € R, the
space S™(Qp) is contained in S™(Q). The following proposition, which we shall

prove later in Section [4.9.2] summarises this result.

Proposition 4.9.1. For some ¢ € N, let Q = {q1,q2,...,q} be any family
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of smooth, real-valued functions on G, which is comparable to the C-C metric.
Then,

S™(Qo) C S™(Q).

Furthermore, the inclusion is continuous.

The proof of Proposition will require an important lemma, which allows
us to compare symbol classes semi-norms for different difference operators. We

study this lemma in the following section.

4.9.1 An important lemma

Lemma 4.9.2. Let ¢, € D(G) be such that the function

/ /
z
., — M, z e G
q q(z)
extends to a smooth function on G. Let s1 € Ny and sy € R, and suppose o

15 an invariant symbol such that

Hﬂ'(]+£)%Aq0'(ﬂ')ﬂ'(f+£>%2HLm( < +00.

&)
Then, there exists a constant C > 0, depending on G, L, s1, S2, q¢ and ¢, such
that

[7(1 + £)% Ayo(m) w(I + £)F || g

< C||n(I+L)2 Ago(m)m(I + L (4.9.2)

>%2HL°°(@)'

Proof. Let k € D'(G) be the convolution kernel associated to o. Moreover, we

also let

oy = F{qr}, oy = F{¢'k}.

Observe that,

In(1 + L)% A0 (m) (I + L) F || 5

= |[(I+ L)% Op(oy) (I +L)7| |$(L2(G)).
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The same equality holds if we substitute ¢’ for ¢ and o} for o;. Thus, it suffices
to show that there exists C' > 0 such that

H([ + E) Op(01) (I + E) L(L2(GQ))

< Cl|I+£)7 Op(on) (I +£)F ] 50 (4.9.3)

(@)

Or equivalently,

“()p<U£)H;?<LEw(GLL§N @) < Co|Op(os H;e 2, (G).L2,(Q))’

Let ¢ € D(G). For any x € G, we have

On(e) olz) = 6 (gw)(a) = | o) () ~'a)
For a fixed © € G, we now define the mapping

/

ba(y) = %(y—lx), y € G.

By our hypothesis, this map extends to a smooth function both in = and y.

Then, we have

Op(o}) é(x) = /G o) Yaly) (aw) (™) dy.

Since s; € Ny, by Theorem [3.2.3] (h) we then have

o6}, 0~ [ 3

BeT(k)
1BI<s1

ng/qﬁ Yo (y) (gr)(y ') dy dzx.

Using Leibniz’s rule for vector fields, we have

100(1) &[5

P>

By € I(k)
|51 |+|/32|<81

/¢ Xﬁ1 - )Xﬁz —e $2) dy dx.

We now take the supremum over z; € G of Xg, ;% (y) outside of the integral

over ¥, to obtain
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HOP(UD qbHigl(G)
< [ o
Gz €G

Moreover, by the Sobolev embedding (see Theorem [3.4.1]), there exists a constant
Cy > 0 such that, for any x € G and every S, 5y € Z(k), with || +]|52] < s1,

we have

2

/¢ X51$1¢x1( )Xﬁzxz :c(q/f)(y x?)dy dx.

61 ﬁ eZ(k)
[B1]+]B2|<s1

2

sup
1 €G

/ng(y)Xﬂhmwm (y>Xﬁ2,x2=r(q’€) (yile) dy

§C1/
a

whenever s’ > [/2, where [ denotes the local dimension of G (see Definition
. For convenience we may choose s’ = (%w + 1. Moreover, observe that for

each x1 € G we have

2

(I + ['m)%/ Xﬁ1,aﬁ1 /G ¢(y) %1 (y) Xﬁz,m:x(q/{) (y_le) dy d:El,

/G O(Y) Vo, () Xppo(qr) (y~'2) dy = X, 0p(01)(¢0,)(z), z € G.

Hence, by Theorem [3.2.3] (h), we obtain

2

sup
1 €G

/GQb(y)Xﬁhmwm(y)XBQ,m:x(q’i)(y_lx?) dy

Scl/
G

By our choice of s, we have

2

(I + L£2))F Xy Xp,.20p(01) (000,) ()| dlzy.

2

sup
1 €G

/G O(0) X oy s (8) X3y g (05) (51 12) g

Z /|Xa+,31$1Xﬁ2m0p(01)(¢¢x1>( )| dz;.

a€eZ(k)
la|<s’
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Hence, we have obtained

2§1(G) S Z Z / |‘X52Op 01 ¢Xa+51 1 wx1)HL2(G

B1,82€Z(k) a€Z(k
\51\+|52\<81 |Oé|<3

S HOp g1 H,sf (G).L2,(@))

Z Z / H¢Xa+51 x1 meLz dxl, (494)

B1 €Z(k) aeZ(k)
1B11<s1  |a|<s’

since, for every x; € G and each «, 5y € Z(k), with |fs] < s1 and |a| < ¢/, we

have

Z HX/32Op(01)(¢ Xatpa 1%1)”;((:)

51 €Z(k)
|B11+1B2]<s1
52

ST +L)20p(e) (I + £)F(1+ L) (6 Xat g ¥a) |12

< |‘Op(gl)‘|;(LZ’_S2(G),L§1(G)) (1 +£)"% (& Xt Vo) ]2

Moreover, by Lemma there exists C' > 0, independent of ¢, such that

HQSXa-l—Bl,xl ¢x1 | ‘L%S2(G’) < C ||¢||L%52(G)

Hence, by (4.9.4]), we obtain

2.(G) ~ Hop 01 Hf 2., (G),L2, ( )) |’¢|‘L332(G)7

which yields (4.9.3]).

The following result is a consequence of the proof of Lemma [4.9.2]

Corollary 4.9.3. Let s; € Ny, so € R and fix

[
sy o= s+ [5-‘ + 1.

Moreover, suppose q,q € D(G) are such that, for every B € Z(k), with |f| <

sy, the function
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Xﬁ(%)ﬁxﬁ(%) e g,

extends to a continuous function on G. Furthermore, suppose o is an invariant

symbol such that

Hﬂ'([“‘/:)%l Ayo(m) W(I—i—ﬁ)%HLw( < +00.

)

Then, there exists a constant C' > 0 such that

|71+ £)F Ago(@) n(I + £)F ] g
< CCy H7T(I+E)%Aqo'(ﬂ->7r(j+£)%2HL°°(é)’
where
Pyp— q’
Cy = sup 'Xﬁl <—) (2)] -
zeG q

B1 €Z(k),|B1]<s]

For N € Ny, we now define the function

= ang, (4.9.5)
j=1
where, for each j =1,2,...,n, the function ¢y ; is given by
2NN
j
an,; ‘= 4o ;" >
where Ny is the highest common divisor of dy, ds, ..., d,. Observe that, for

any z € G,

1

1 1 2No N
)] = (lgoa ()™ + |go2(2)1%2 + -+ + lgon(2)|7) 7 = |22V, (4.9.6)

since Qo has weight (dy,ds, ..., d,).

4.9.2 Proof of Proposition [4.9.1

In order to prove this result, observe that it suffices to consider the case of

invariant symbols. Then, let ¢ € S™(Qp) be an invariant symbol. We want
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to show that, for any 8 € Nj and v € R, there exists C > 0, a,b € Ny and
¢ > 0 such that

—Lim— v v
||7(I + L) 3 (m—[Blo+ )Aga(w)ﬂ(1+£)2 HLOO(@) < Cllollsm@o)ape  (4.9.7)

Let k € D'(G) denotes the convolution kernel associated to o. By the work
done in Section 4.8.2, we may assume that supp(k) C B, a2(eq).

Step 1

In the first step of the proof, we find a decomposition for gg, for any 3 € N§.
So, let us fix 8 € Nj. Then, by Theorem 4.3.3 for any M € N we have

1
gp(z) = Y a%,a(z) Ygs(ea) + Ree (2), Yz € Bypleg),

aeNp
[a]Q0<M

where 7 € (0,1] is the real number satisfying (4.2.8)), and

RO (@) € CLY max [V fllim@. V7 € Bralea).  (4.98)
alQy>
lal<M

for some C > 0. By Remark since gz is CC-vanishing at eg up to order
[Blo — 1, then, assuming M > [f]p, we have

(]ﬁ(Z) - Z Ca C]O,a(z) + RZ@,M(Z)a Vze BT/2(6G)>
ae Ny
[Ble<[dlqe<M

where for some constants ¢, € R. For simplicity, we shall write
a3

pym = Ry

Then, for v € R,
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Hﬂ- (I+ L)~ 3 (m=[Blo+v) Ago(m)m(I + L£)? &
S Y IrU o)A o(m)w(I + £)F

aeN§
[B]QS[O‘]QO<M

| ‘Lw(@)

+||w (1 + L) A o (m) 7 (1 + £)F] g

Step 2

In this step we examine the sum over . For each o € N, with [3]g < [a]g, <

M, we write

—5(m = [8la +) = 5([8la ~ lolay) ~ 5(m — lala, +¥),

so that

Hﬂ' I+£)*% ~[Blotv) Ay o(m)m(I —I—L’)%HLOO(@)

< | (1 + £)z(Ple- [a}Q(J)HLOO@

|1+ £) 72 Lot Ay o(m)w(I+ £)3 ] )

In this case, by functional analysis,

HTF ]—l—[ﬁ)é [a]QO)HLm@) < sup (1+ /\)% o~ldes) < 4o,
A>0

as [Blo — [a]g, <0, and since o € S™(Qy), then

1

Hﬂ- I+’C) § [a}QO+V) AQO,OAO_(W) ﬂ—([_‘_ﬁ)%HLOO(a) S ||O—||Sm(QO)7[O‘]Q0707|V"

So, we have shown that there exists C' > 0, independent of o, such that

1

Hﬂ' I+L)” 2(m-laty) Ago,0(T) 71'(I”“C)%HLoo(@ < Cllollsm o), )sladqg 0.l

Step 3

We now consider the remainder term:
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|71 +£) 2Pt A o (m) (] + £ ] -

First note that we have

||7(1 + L) 2Bl A, o () m(1 + £

PM
[

(1 + L) 22N M) N (1) (] + L

PM

)%HLW(@)

ﬁ”};oo(@)'

Now, consider the function fy;, defined by (4.9.5)), for some M; € Ny to be

determined. By Lemma using (4.9.6) and (4.9.8), we have that for any
p' e Z(k), with |B'| < M — 2NyM;, the function

xo (54)

extends to a continuous function on G. Let us now choose M, M; € N such
that

M —s; > 2NoM; > max{m + v, [5lo},

where

sp = —(m—[Blg+v)+ M + 1.

In this case, 2NoM; > [B]g, so by functional analysis we have

L([Blo—2NoM
Hﬂ-(]+£)2([ ]Q 0 1)HLOO(@) < +o00.
Moreover, M — 2NoM; > s}, and if —(m —2NyM; +v) € N, then the mapping

xo (52)

extends to a continuous function on G, for any 5 € Z(k), with |g'| < s}. So,

by Corollary [4.9.3 we have

H?T(I + E)_%(m_QNOMﬁV) Ayyo(m)m(l+ 'C)% } ’Lw(é)

< Oy ||m(1 + £) 722N Ay o(m) (I + L£)F] | s
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where

Cy = sup ’Xgl (p—M) (2)]-

ze€@G
B1 €Z(k),|B1|<s]

We now define the multi-index

2No M
5M17j:(0707"'a07 C(i) 1707---,0), =12 ...,n,
J

with the non-zero value

—QijMl in the j-th position. Hence,

|7+ £)7 202N A o) (] + L) i

< N |r(I 4 £) 702 NM ) AP 5 () (T - L) (4.9.9)
j=1

[y

Since [Ban jlo, = 2NoM; for every j =1,2,...,n, then it follows that

_Lliom— v 1/
||m(1 + L) 220 M A o (m) w1+ L) gy S Nollsm@o2vorn ofu-

Hence, we have shown that if M, M; € Ny are such that

M — sy > 2NoM; > max{m + v, [f]g},

then there exists C' > 0, independent of ¢, such that

1

||7(1 + )72 et Ay o (m) w1+ £)2]] gy < Cllollsm@o2norn ofw-

Step 4

We have obtained that (4.9.7)) holds for any v € —m + Z, and therefore for any
v € R, by Remark Hence, the result is proved.
]

4.10 Product of symbols

Throughout this section, for any m € R, the symbol class S™ shall be assumed
to be defined with respect to (g (see (4.2.14])) and the basis Y constructed in
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Section 2.4.1] (see (2.4.2)) and (2.4.1)) therein).

4.10.1 Main result

The objective in this section is to prove the following result.

Theorem 4.10.1. Let my,my € RU{—o0}. Then, the mapping

Smi oy gm2 y Sm1+m2

(4.10.1)
(0'1, 0'2) — 0109
is a morphism of topological vector spaces.
This may be viewed as a generalised Leibniz property for symbols.
For convenience, throughout this section we shall let
m = mq + ma, (4.10.2)

with the following convention:

m' + (—o0) == —o0, Vm' € RU{—o0}.

We now prove the result in the following cases, separately:
(I) my € R and my = —o0,
(IT) m; = —oc0 and my € R,
(III) my = 0o and mg = —00,

(IV) my,mqe € R.

4.10.2 Proof of cases I, II, III

In this section we aim to show Theorem for the cases I, II and III. We
shall prove this result only for invariant symbols (see Definition [4.4.3)), and the
general case follows by the Leibniz property for vector fields. We first consider

the case that m; € R and msy = —o0, and consider the map

(01,09) — 0109, Vo, e S™, o9 € S invariant. (4.10.3)
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Let us then fix invariant symbols o; € S™, 0o € S, and furthermore,
suppose that k1 and ko denote their associated convolution kernels, respectively.
Since oy is smoothing, by Theorem it follows that ks € D(G). Hence, by
Proposition [2.5.7, we have ks * k1 € D(G). In particular, this means that the
symbol oy09 is smoothing, by Theorem [4.8.1] Hence, for any a € Ny and

m’ € R we have

lo102]|gm 400 = sup HW(I"'E)_%(W_[&D A%(0107 < +00,
a €Ny

[@]<a

)HLoo(é)

thus proving that the map given by (4.10.3) is continuous. We also know that it
is linear, hence the result is proved in this case.
The case that m; = —oo and my € R is obtained in a similar way, and both

of these cases readily imply the case m; = —oo and my = —o0.

4.10.3 Proof of case IV

In this section we shall prove case IV. It suffices to prove this result only for
invariant symbols, and the general case follows by the Leibniz property for vector
fields.

Fix my,mo € R,and let oy € S™ and o9 € S™ be invariant symbols. We
also let k1, ke € D'(G) denote their associated convolution kernels, respectively,
and fix m = mq + mo.

Furthermore, let x € D(G) be a cut-off function, taking values in [0, 1], such
that

x(z) =1 on B,(eq), X(z) =0 on B.(eq)S,

where r is the real number satisfying (4.2.8). We define the symbols

7i(m) = Flupxd(m),  7i(m) = Flr;(1 = x)}(m),

for 7 = 1,2. Observe that, by Theorem m, it follows that T]/- e S™, for

7 = 1,2. Moreover, we have
0109 = T1Ty + T1Ty + T1T2 + T1Th.
By the cases I, II, III already proved, 775, 7{75 and 7{75 are smoothing symbols.
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Since the inclusion S™>° C S™ is continuous, it remains to study the symbol 775.

This implies that case IV follows from the following lemma.

Lemma 4.10.2. Let mi,ms € R and fit m := my + my. Suppose o1 € S™
and oo € S™ are invariant symbols and let k1 and kg denote their associated
convolution kernels, respectively, and assume that supp(r;) C B, 2(eq), for j =
1,2. Furthermore, let q be a smooth, real-valued function on G, which is CC-
vanishing at e up to order a—1, for a € N. Then, for any v € R, there exist
C >0, aj,b;j € Ng and ¢; >0 (j =1,2), independent of o1 and o9, such that

|| (1 + C)_%(m_a+y) Ag(o109)(m) w(I + L)? | |L°°(@)

<C HalHSml,al,bl,Cl ||0-2H5m27a2,b2702'
Moreover, we can choose ¢y = |v|.

The next section is devoted to the proof of this result.

4.10.4 Proof of Lemma [4.10.2

In this section we prove Lemma 4.10.2l We split up the proof in several steps.

Step 1

In this step we present a decomposition of the expression A,(oy05).

Fix x € G and let M € Ny, with M > a, to be determined. Applying
Theorem to the mapping

q(z) — q(zy), Yy € G, (4.10.4)
we obtain
1
g@y) = Y — o () (Y1q)(2) + Ry (y), (4.10.5)
[a1]<M =t

for all y € B,)2(eq), where we recall that for each oy € Z(k), qoa, is the
function given by (4.2.15)). Moreover, we have

IRy S Y, Yy € Byaleq). (4.10.6)

Note that
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A(0105)(7) = F{G(rs xk1)}(x), Ve d.

We now have

(@2 # 51))(2) = () /G () iy ') dy
- /G 2@ yy™) maly) ma(y ') dy.

By (4.10.5), for any y € B,/2(eq) we obtain

gz lyy ") = Z O%! Q.0 (Y™ (Y ) (2 y) + Rg_lij(y_l). (4.10.7)

[a1]<M

Since supp(k1), supp(k2) C By j2(eq), then by (4.10.7) we have

/Gq(x_lyy_l) ra(y) Fa(y ) dy
= X L e ) st )

ar]<M

+ /G Ry () kay) ma(y o) dy. (4.10.8)

Now observe that

(q(k2 * k1)) ()
Z (@ )+ (V) 2)
ar]<M

/RZ W) Ra(y) mi(y ) dy,  (4.10.9)

We now consider the function 7, given by

me(y) = R, () key), Yy € G, (4.10.10)

and define the distribution
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p= ) = 3o @)+ (Fram)
[an]<M
= /nx(y) Fa(y~ o) dy. (4.10.11)
G

By (4.10.9)), taking the Fourier transform of (g(ks * k1)) yields

By(o(m) = 3 o FATTQ} ) Flioa w2} + (0

[a1]<M

= > %Amqm(ﬂ) A% ay(m) + 7 (p), (4.10.12)

[041]<M

forall 7 € G , which gives us the decomposition we were seeking. In particular,

we have

Hﬂ' [—|—£) %m a+V)Aq(010'2)(7T) 7T([+£)%HLOO(6)
S Y |[r(T 4 £)7 2 Ayary 01 (7) A% oa(m) (1 + L)

a1 € Ng
[a1]<M

HLoo(é)

1 Hﬂ([_|_£)*%(m’a+”)W(p)ﬂ([—}—ﬁ)%HLoo(é). (4.10.13)

Step 2

In this step, we find an estimate for the terms in the sum given by (4.10.13)). For
each oy € N, with [ay] < M, we have

7L+ £)72 ") Ay g 01 () A () (1 + £) ]
< | (I + £)~ztm=load ) Aoy oy () m(1 + £) 7

1

||m(I+L)2 (ma=laaltv) Nty () (1 + L)

| }Lw(é)

HLoo(é)’

where vy := mg—[a;]+v. Since Y* ¢ is CC-vanishing at eg up to order a—[ay],

then by Proposition [4.9.1] we have

Hﬂ' [ + ﬁ)ié ~(a=leal)+n) AYo‘lqo-l(ﬂ-) 7T<[+£>%1HL00(@) Sj HUIHSml,al,bl,cla
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for some aq,b; € Ny and ¢; > 0, since o1 € S™. For o, € S™ we see that

(|7 (I + £)~3ma=loal+) A% g () (T + ﬁ)%HLw@ < ||o2]|sma jargo - (4.10.14)

Then, by (4.10.13]), we have

—i(m—atv z
H7r([+£) z(m—a+ )Aq(alag)(ﬂ)ﬁ(1+£)2HLOO(G)
5 Z ||01||Sm17a17b1761 ||02||Sm27a2,b2,02
ay €Ny
[a1]<M

+ |7+ L) 2 (o) (1 + £ 4.10.15)

)%HLOO(é)' (

It remains to study the norm

|| (I + £)72 =) w(p) w(I + L) | iy

Step 3
In this step we analyse the remainders y — R;]:—ly,M and p (see (4.10.11))). First
observe that, since the map

G — D(G)

T — (y — Rg_lyyM(y_l))

is smooth, then the mapping

G — TD(G)
T — Nz

is smooth. Hence, note that

p = N * Kki(x), (4.10.16)

for x € G, in the sense of distributions.

Let us first study the derivatives in x; of the remainder R ,/(y7'), for a
given y € B,s(eq). By (4.10.5), for any § € Z(k) and x; € G we have
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Xﬁazl RZLM (y_1>

- B - 1 B N
= Xﬂ;$1q<x1y 1) _XB,Il Z mqoﬂl(y 1) (Y 1Q)(I1>
lan]<M &
~ - 1 - o
= (X)) = Y, —da ) (Y X g) (@),
lar]<M
which means that
XpoRY o = RS (4.10.17)

Furthermore, for any € G we have

_ > _ X _
Xﬁ,ngflva(y 1) = (_1)|6|Xﬁ,$1:z*1yRil,M(y 1) = (_1)I/B|Rxflqy7]\/[(y 1)7

by (4.10.17)). So, we have obtained

_ X _
XpaRI, ™) = COPIRZE L (y7Y), Yy € Byleg).  (4.10.18)

Next, we study the distribution Xg p, for By € Z(k). Observe that, by

(4.10.16|), for any = € G we have

Xopp() = D s XpymmaXps oo () % 51)(22))

B1,82 € Z(k)
|B141B2|=]Bol

- Z CB1.B2 (Xﬂhl'l:fc 77361) * (X52 ’il)('r%

B1,82 € Z(k)
|B1141B82|=|Bol

for some constants cg, g5, € R. By the definition of 7, (see (4.10.10))), for any
Bi € Z(k), 14| < |Bol, and any y € G we have

Xy a1 (y) = Xoya (BRI, 1y 52) ()

3
= (~D)PNR k) (),
by (10.18). So,
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Xg, p(z) = Z C3, 5, (ﬁffﬁ_(fM ko) * (X, k1) (2), (4.10.19)

B1,82 € Z(k)
|B1]41B82|=|Bol

/
for some constants Cs ., € R.
Step 4

Let us now show that p is continuous for a suitably chosen M. Observe that,
for every z € G and any N € Ny, as the operator (I + £)V is self-adjoint, we

formally have

p(e) = 1% ma(z) = / ne () (™) dy

/G (T + £, na) (1 + £,) N ka(y~'2)) dy

(T + £)"na) = (I + £)rk1) ().

Furthermore, by Proposition [2.5.4] (1) we have

17+ £)¥n2) 5 (T 4+ £)81) ||
ST+ LY 2 1T+ £)7 [ 2

provided that the distributions (I+£) "k, and (I+£)"n, are square integrable,

which we shall now prove.

Step 4a

We first study (I + Z)_N k1. This has a meaning in the sense of distributions,

(1+£N)_Nl<&1 = Ban * K1,

where Byy is the right convolution kernel associated to the operator (I + £)~N
(see (3.1.23)).
Observe that, by Plancherel’s Theorem,
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107+ £) k]| 2y = Nl w(T+ £)7| o)

S Nlon(m) m(I+ £)73 | g 17+ £)30 729 g
<

’ ’01 | S5™1.0,0,c1 | |Bf(m172N) ’ ‘LQ(G)a

for some c¢; > 0, and this is finite provided that 2N > m; + %, by Proposition
3.1.9] Hence, for this choice of N, we have (I +£) Nk, € LX(G).

Step 4b

Now we look at (I + £)Vn,. First recall that, for M; € Ny to be determined,
the function fy, (see also (4.9.5))) is defined by

n
fM1 - E M55
Jj=1

where Ny is the lowest common multiple of dy, ds, ..., d, (see (2.4.3)), and
for each j =1,2,...,n, the function gy ; is given by
2N My
j
4y, = o,y
We have
|far,(2)| = |2 M Yz e G. (4.10.20)

We now write

q
Rx—ly,M

fM1

Na = Jan Ko (4.10.21)

Let us fix £ € G. We first have

T+ L) m(y) = > s Xpymaly), VyeG,

|B1<2N

for some constants ¢ € R. Hence, by (4.10.21), the definition of 7, (see
(4.10.10)) and Leibniz’s rule for vector fields, for any y € G we obtain
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(L + Ey)N% (y)

D s Xovimy Xosmy Xogwsmy (B, 1/ o) (02) (fory i2) ()

BeI(k)?
|B|<2N

Z %] Xﬂl,m:w_ly ()?52 (Eil,M/fMl)) (yil) (Xﬂg fM1 /432) (y>

BeI(k)?
|8|<2N

for some ¢z € C*(G). Furthermore, for any 5, € Z(k), we have

Xp = D, g X,
B €Z(k)
1B11<181]

for some cg € C>(G), by Proposition w Thus, for a fixed y € G, and for
every (1,02 € Z(k) and any x; € G, we have, by (4.10.17)),

X/31 I1(Xﬁ2( 1 M/fMl))( ) = Z C/Bi(y))?517351(5(:52(§317M/fM1))(y71)

B €Z(k)
1B11<1B81]

= S (e (B i) ).
By € Z(k)
AR

Hence,

NI+ 00| oy S Y N1 Xen(B fﬁ%qM/fMl)HLoo(@HXﬁg(fMl’f?)Hm(G)‘

BeI(k)?
|BI<2N
Now, we have
X (B2 ) F1i) || iy < +o0, (4.10.22)

by Lemma [3.7.7 (2), whenever |Bs] < M — 2NoM; (see ([4.10.6) and (4.10.20)).

Thus, it is sufficient to have

Moreover, by Theorem and Plancherel’s Theorem, for any f3 € Z(k), with
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|B5] < 2N, we obtain

X5, Fan 52| oy S 11+ L) 2 (Fanro)|| o

1831

= HT(([ + ‘C)TAfIVHJQHL?(@)'

Additionally,

17+ £ Agyy 021y
S ||m 1+ £)%(|ﬁ3|+m272N0M1 5 |7 (I + E)f%(m272NgM1)Af

< H7T<[ _|_ E)%(IﬁSl‘FWD*QNOMl)"L2(é) HO'2HSm272NOM170707

)HLQ( M1‘72HL0<>(G)

Y

and this is finite, provided that

l

by Proposition |3.1.90 Let us then choose M, M; € Ny such that

l

In this case, both (4.10.23)) and (4.10.24)) are satisfied. Thus, we have shown that

for any x € G and any N € Nj there exists My € Ny such that, for all
M > My, (I +£)"n, € L*(G), with

H(I+£)N77$HL2(G) < Cl|oa|lsm2,a2,0,05

for some C > 0, independent of z and oy, and some ay € Ny. In particular, we
may choose
MN = 2N0M1 + 2N,

where M; € Ny is chosen such that

[
2NoM; > 2N +mq + 5

Step 4c
In conclusion, by Proposition m (1), for each fixed * € G we have that for

every N, M € N satisfying
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[
N>m1+§7 M>MN7

the mapping

pro:y — ((T+L)n) * (I +L£)Vk1)(y)

is continuous on G. Moreover,

lorelle = [[(T+ L)) (L + L)V k1) || gy
(T + L)V ] o 1T+ L) ] o

IA

IN

C H<71|’Sm1,0,0,c1 H@HSm,ag,o,O,

for some constant C' > 0, independent of o1, 09 and of x, some ¢; > 0 and ay €
Ny. Furthermore, Proposition (2) implies that the mapping = +—— p;, is
continuous G — C(G). Hence, by composition, * —— p(z) is a continuous

function on G, with

ooy < Sug||pl,x||L°°(G) < Clo1]|sm1,0,0.e1 [|o2][572,02,0,04 (4.10.26)
T e

provided that

l
N>m1—i—§, M > My.

Hence we have obtained that for all m,, mge € R, there exists M,,, m, € N such

that, for all M > M,,, ,, there exist C' > 0 and c¢;, as € N satistying

oz < CllR1l[sm1,00,e0 |F2]]572,02,0,05

where k1, ko € C>®(G) are such that

p(x) = <Ri,1.’M('_1>I€2(')> % k1(2) = Pgrourm(T). (4.10.27)

Step 4c¢’

Let us suppose that
g = Xpyk1,
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for By € Z(k). In this case, for any N € N we have

H([“‘Z)iNgHLz(G) - H([+E)*NX/30 mHL2(G)

= |I7(Xa) & (@) 7+ £)7N|| o

by Plancherel’s Theorem. Furthermore, by Lemma [4.5.10] for any N’ € Ny we

have

17 (X)) w1+ £)7]] oy
< H7T<[—|—£)%(|ﬁo|*N’) Loo(@)Hﬂ'(I"‘E)i%("BO'*Nl) W(XBO)W(I_FE)*%N'
|1 + £)730m= N & () (1 4 £) 3 0m+N) )

||7(L + )2 moaN=2N

L>=(6)

)HL2(@)

f, |\U1Hsm1,o,0,c/,

for some ¢ > 0, provided that N’ > |5y| and 2N > m; + N’ + é, by Proposition
0. 1.9l

Therefore, we have obtained that for all m;, mg € R and By € Z(k), there
exists My, m,8, € N such that, for all M > M,,, ., 3, there exist C' > 0 and
c1, a; € N satisfying

| Pgyma x gm0 [ (G) < C|R1]]sm1,0,0,00 [|R2[5m2,05,0,0-

Step 5

We now consider the distribution Xg,p, for gy € Z(k). Using (4.10.27)), we may
rewrite (4.10.19) as

. / Y
Xﬁop — E 651752 pxﬁlqym,XﬁQm,M.
B1,62 € Z(k)
[B11+B2|=IBol

Now, for each [y, 8y € Z(k), with |B1|+ |Ba| = |50, we apply Step 4 (from Step
4a through to Step 4¢’) to PR, g, ko X, k1, M There exist N € N and My are
such that, if M > My, then we have
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1 Xaoolle) S D N&llsm 00 mse) [1E2llsm w00, (4.10.28)

B1,82 € Z(k)
|B1]4|B2|=|Bol

for some constants ¢;(mq, f2) > 0, depending on m; and fs, and ay € Ny.

Thus, we have obtained that for all §y € Z(k) and all my, my € R there
exists My, m, 3, € N such that, for any M > M, m, s,, there exist constants
C >0 and ¢}, a;, € N satisfying

[ X ool < CllR1]]sm1 0,0, [1F2]|5m2,05.0,0,

for any ki, ko € C*®(G) such that (4.10.27)) holds.

Step 6

Next, we study the distribution )?EOXBO;), for 50, Bo € Z(k). Observe that, by

Proposition [3.6.7, the right-invariant operator X 5, can be written as

XBO - Z CﬁéXrBf)’
Bo € Z(k)
1861<8ol
for some cg € C*(G). Hence, proceeding as in Step 5 we obtain that for all
50750 € Z(k) and all my, my € R there exists M € N such that, for

m1,m2,80,80

any M > M, 5 5, there exist constants C'> 0 and c1, ay € Ny satisfying

1X5, Xeull=@) < CllRllsm1.008 [1R2lls72 a200,

for any ki, ko € C(G) such that (4.10.27)) holds.

Step 7: Conclusion
Let v € R. By Lemma [2.2.4] we have
7+ 05 5(0) (14 £)F] |
< ||(I+ L)zt ([ L))
S|+ £)y=2mmem(1 4 L)3p

M

M\»—A

We now define
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s1 = max(—(m —a+v),0), sy = max([v] + 1,0).

By Theorem we get

~ s

H(I+£)7%(m*“+")(1+E)%PHL2(G) N H(I_Fﬁ)%l(j—'_ﬁ)%pHLQ(G)
<

> 1K Xaellee.
Bo,Bo € Z(k)
[Bol<s1, |[Bol<s2

Hence, by Step 6, we have obtained that there exists M;, s, € N such that, for
any M > M, s,, there exist constants C' > 0 and ¢;, a; € Ny satisfying

—Lom—a+v v
[|7(I + L)~z w(p) w1 + L) ] 1) < Clloallsmiooz lloallsm @00

By Remark |4.5.4] Lemma [4.10.2]is thus proved.
O

The following result is an immediate consequence of the proof of this result

(see (E1012)).

Corollary 4.10.3. Let o1 € S™ and oo € S™2, for my, my € R, and set
m = mq + mo. Furthermore, suppose q is a smooth, real-valued function on G,
which s CC-vanishing at e up to order a — 1, for a € N. For M € N, let

1

v = By(0102) = Z — (Ayerg01) (A% 02).
[a1}<M Oél'
Then,
1
Ay(0109) ~ Z ﬁ(AYalqal)(Aalﬁ)v
[a1]<M o

in the sense that, for all M € N and any v € R, there exist C' > 0,
ai, as, by, by € Ny and c1, co > 0 such that

sup HT{'(I—I— E)_%(m_[o‘]“) vz, m) (L + L
xeG
Teqd

)%H_Z’(ﬁ%)

< C HalHSml,al,bl,Cl ||0-2H5m27a2752702'
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4.11 Spectral multipliers of L

We continue on the same setting as in previous sections. Recall that

Qo = {90,1; qo,2; - - - 7QO,n}a

where, for each 7 =1,2,...,n, g ; denotes the smooth, real-valued function on

G given by (4.2.12)). We know that Qo has weight (dy,ds,...,d,) (see (2.4.3)).

Throughout this section, for any m € R, the symbol class S™ shall be assumed
to be defined with respect to Q).

4.11.1 Definition of M,, and main result

Throughout this section we shall consider the following class of functions:

Definition 4.11.1. For m € R, let M,, be the space consisting of smooth

functions on (0,4o00) such that the quantities

1/l = sup (LX) [ f(N)]
A>0

0<j<d

are finite for every d € Nj.
The objective of Section is to prove the following result.

Theorem 4.11.2. Let m € R. If f € Mm, then f(L) € ¥™. Furthermore,
for all a,b € Ny and ¢ > 0, there exists d € N and C' > 0, independent of f,

such that its corresponding symbol, which is given by

satisfies

AN grape < CllAatg (411.1)

This theorem is a consequence of Proposition [4.11.3| and Corollary [4.11.6| below,

which are more precise results.

Proposition 4.11.3. Let m € R and a € Ny. Suppose that ¢ € D(G)
CC-vanishes at eg up to order a — 1 (see Definition . Then, there exists
d € Ny satisfying the following statements:
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(A) Let f € M=, such that supp(f) C [r1,+o0), for some r1 > 0. Then,
there exists C' > 0 such that for all v € R we have

(1 + L) 3 IAL f (¢ (L)} (L + L) |

<CtE||fllagar (411.2)
for every t € (0,1).

(B) Let f € D(R) and v € R. If m and v satisfy —m+a—v >0 and
v >0, then there exists C' > 0, depending on q and m, such that

[|7(1 + £) 72 AL (e (L)} 7 (I +L)? ] g
< C't? max H@jfﬂoo, (4.11.3)

0<j<d

for every t € (0,1).

Remark 4.11.4. In Proposition [4.11.3| (A) and (B), the condition ¢ € (0,1) may
be changed to t € (0,tg), for any ¢y > 0. In this thesis we use ¢y = 1.

Remark 4.11.5. The hypothesis on the support of f in Proposition 4.11.3| (A)
does not affect our analysis. Let us expand on this. Let A\; be the smallest

non-zero eigenvalue of £ and suppose that f € D(R), with

supp(f) N[0, 4+00) C [0, A1).

Then, by Remark |3.1.5]

where 15 denotes the trivial representation of G. Moreover, in this case,

Op(f(m(£))) = f(0)Eq,

where FEy denotes the spectral projection onto the 0-eigenspace (see Section
3.1.3)). Furthermore, the right convolution kernel associated to the operator FEj
is Eydg = 1, the constant function 1 on G. Hence, the operator Ej is smoothing,

and so the operator Op(f(7(L£))) is also smoothing.
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Proposition [4.11.3| has the following consequence.

Corollary 4.11.6. Suppose mg € R, ag, by € Ny and co > 0, such that
mo < —co. Then, there exist C' >0 and d € Ny such that, for all f € D(R),

we have
en(E] g, < CFF a0

In the following sections we prove Proposition [4.11.3] following the strategy
presented in Fischer [I7] (see Appendix A therein). However let us first show
Theorem [4.11.2]

Proof of Theorem |4.11.2. As we saw in Section [3.1.2] (see (3.1.4)), the spectrum
of L is given by

Spec(L) = {)\5.”) reG, 1<5< dr }.

Since the spectrum of £ is discrete (see Remark [3.1.2)), then the eigenvalues of
L may be ordered. We then let A\; be the smallest positive eigenvalue of L.
We now let x € D(R), taking values in [0, 1], be such that

_ At A _ At
x =1 on <_Z’Z)’ x =0 on [2,—{-00).

Then,

f=fx+h

on (0,400), where we write f; = f(1 — x). Now, by the spectral decomposition
of L (see (3.1.8])), we have

fIL) = > fNE
(L)

A € Spec

where F) denotes the orthogonal projection onto the eigenspace corresponding

to the eigenvalue A. Thus, by the construction of f;, we have
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L) = S FEs

A € Spec(L)

= f(0)Ey + Z FA)EN

A € Spec(£)\{0}

= f(0)Eo + f1(£).

Now, for any ¢ € D(G) and z € G we have

Eyp(z) = /Ggp(x) - 1dz.

Therefore, the right-convolution kernel associated to the operator Ej is the con-
stant function 1, which is a smooth function. Hence, by Theorem this
means that FEj is a smoothing operator in the sense of Definition [£.5.9] Since

supp(f1) C [%,+oo), then we can apply Proposition 4.11.3| (A) to fi, which
yields the result.

O
4.11.2 Proof of Proposition 4.11.3| (B)
Fix t € (0,1). We first let x; be the distribution
ke = qf(tL)dey- (4.11.4)
Observe that the field of operators
T 7r([+£)_%(m_a+”)/@(W)W([—Fﬁ)%, T e G,
is exactly the Fourier transform of the distribution
(I + L)~ 2"t ([ 4 L) g, (4.11.5)

Moreover, its associated operator is given by

(I +L)~2m=e) 7, (14 L),

where T, denotes the operator associated to the right-convolution kernel r; =
qf(tL)de,. By Lemma it then follows that
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|7(1 +£) 720 Gy (m) (1 + L] g

< / (I + ﬁ)_%(m_‘”“) (I+L)"? re(2)| dz.
G

Now, by Lemma [3.8.1| and the Leibniz formula for vector fields, it follows that if
—m+a—v € 2N and v € 2N, then

/ ‘([ + E)*%(mfaJrll) ([+E>% /@t(z)| dz
G

< ¥ / X5 X5{af (1000 }(2)] dz

|B|<—m+a—v
1Bl <
1 Py .
1(a—18I-15]) y
s > o |91
61 —m-+a—v
1Bl<v

Observe that for any 5,5 € Z(k), with || < —m+a—v and |B| < v, we have

w[3

t%(a—\m—@) < t%(a'i'm—a'i‘V—V) =t

b

as t € (0,1). Hence, we have shown that if —m +a—v € 2N and v € 2N,

then there exists a constant C' > 0, which depends on m, ¢ and a, such that

[|7(L+ L)AL f ()} 7L+ L)F]] o g
< C7t%’ggg§iH5”f}Lm- (4.11.6)

Moreover, we also obtain

(I + L)) T (14 £)F]] oy < CHF max ||| (4117)

0<j<d

So, T}, is a bounded operator:

T : L2, (G) — L2, .. .(G), (4.11.8)

with bound
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Tell 22 6. 12,,,, @) S t2 Orélfmgde@JfHoo'
Now, by the Interpolation Theorem (see Theorem [3.3.1]), the operator T, ex-
tends uniquely to a bounded linear map T, : L? (G) — L?,,., ,(G), when-

ever —m +a — v and v are non-negative real numbers.
By Theorem [3.2.3] (f), the dual to T}, extends uniquely to the operator

T: : L?

m—a-+v

(G) — LI(G),
whenever —m +a —v > 0 and v > 0. Moreover, it satisfies Ty, =Tk, where
k; is the distribution given by

i = Qf(tL)0ee = q(-71) F(1L)0e

We now let

Qg = —Up, Bo = —mp +a — 1y,

with —mg+a—19 >0 and vy > 0, and

ap = myp —a+ v, B = 11,

with —mi+a—v; > 0 and v; > 0, such that, without loss of generality, my < m;

and vy < 1. Then, we have that T}, is a bounded operator

T, : L (G) — L3 (G),
T, : L. (G) — L3 (G).

Hence, by the Interpolation Theorem (see Theorem [3.3.1]), T}, extends uniquely

to a bounded operator

T, : L?

Qs

(G) — L5.(G),

where, for each s € [0, 1],

as 1= —1y+ s(my —a+ v + ),

Bs 1= (—mo+a— 1)+ s(v1 +my —a+ 1),
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For each s € [0, 1], we now define mg, vy € R via the relationship

s = —Vs,
ﬁs = —ms+a—Vs

Hence, one easily checks that

ve = (1= 3s)vy+ s(—my +a —17),

ms = (1 —s)mg + smy.

This implies that m, € [mg, m1]. So, we have shown that, for any m, v € R,
such that —m +a —v >0 and v > 0, we have

|71+ L) IA (e (E)y (T + L2 ] g

< Ct% max ||0°f]]

as claimed.

4.11.3 Reduction of the proof of Proposition 4.11.3| (A)

We claim that it suffices to prove Proposition 4.11.3[ (A) for m < 0. Let us then
suppose the result holds for any m’ < 0. Now, fix m > 0 and consider a function
f € D(R), such that

sup (1+X3) 720" 3] f(A)] < oo,
A>0
0<j<d
Observe that, by the hypothesis on f, we may assume that supp(f) C [1,+00).

Thus, we have

sup A7) (] F(V)] < oo,
A>1
0<j<d

Then, define the function f; by

f1<)‘) = /\7Nf(>‘)7 A S [07OO>7

for some N € N to be determined. As supp(f) C [1,00), f1 is well-defined,
also supported in [1,00), and f; € C%([0,00)). We choose N > m/2 and let
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m; = m — 2N.

Then, it follows that

sup A~ 2(mit2d) 105 f1(N)] < sup A~ 2(m+2)) 105 f(N)] < oc.

A>1 A>1

0<j<d 0<j<d
In particular, f; € M%,d. Next, fix t € (0,1) and observe that f(\) =
AN (X)) for all A > 0. Then, the spectral theory developed in Section m

implies that for any ¢ € L*(G) for which ||f(tL) ¢||12(@) < +oo, we have

ftL) ¢ = (L)Y fi(t L)o.

So, we have

fim(L) = tNe(LN) it w(L), V7 e G. (4.11.9)

Now, observe that 7(£"Y) can be written as

T(LY) = ) com(Xy),
B €Z(k)
|8’|<2N

for some constants cg € R. By Proposition (4.5.10} for each ' € Z(k), with
|5'] = 2N, the symbol 7(Xg ) is of class 2N. Furthermore, as m; = m—2N <0
and f; € M%, then we can apply Proposition(4.11.3/(A) to fi and m;. Indeed,

if ¢; is a smooth, real-valued function on G, which is CC-vanishing at e up to
order a; — 1, for a; € N, then there exists C'; > 0, independent of ¢, such that

for any v € R we have

HT('(] + £)_%(m1_“1+”){Aqlfl(tﬂ(ﬁ))}ﬂ([ + E)% ‘ |L°°(@)
< C 2| fill oy 0 (4.11.10)

2

This also tells us that the symbol fi(¢t7(L)) is of class m;.
Therefore, by Proposition [4.10.2] for any v € R there exist semi-norms

- llsm a1, and [ - [[52v a5, such that
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|71+ L) 72 I FEm (L)} 7+ L) | ey
< Z tN Hfl tﬂ- HSml,al,bQ,cz HW(Xﬂi)

By €Z(k)
|B11=2N

S2N az,ba,c2°

By (4.11.10) we readily deduce that there exists C' > 0, independent of ¢, such
that

|71 + £) 72N f(t (L))} m(I+ L)) < Ot 2| il My

T

= Ot%”fHM%,da

[P

A

which is the desired result.

4.11.4 Proof of Proposition [4.11.3| (A)

In this section we show Proposition [4.11.3) (A). We shall split up the proof in
several steps, starting by laying out the strategy.

Strategy

Let ¢ € D(G) and fix t € (0,1). By the work done in Section {4.11.3] we
may assume m < 0 and f € C%([0,00)) such that supp(f) C [1,+00). The
properties of Sobolev spaces imply that it suffices to show that

|£8 T, £ < Ct% sup (14+0) 20 9] f()
0372

*Hz @) (4.11.11)

for b=0 =0, and for b=—-m+a—v and V = v.

In order to prove this we shall first construct a dyadic decomposition. This
allows us to study the case b, € 2Ny, and provides us with a bound for the
Ll-norm of £5L% K.

Furthermore, to extend the result to any b, € R, we shall use the almost or-
thogonality of the operator L3, Kt Eb?,, via the Cotlar-Stein Lemma (see Theorem
B.0.1J).
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Dyadic decomposition

We now construct the following dyadic decomposition. Let x € D(R) be such
that

1
0<x<1, X’[g 5] = 1, supp(x) C {5,2}
472

Next, we define

xe(A) = x(27°X), L €N,
such that

d xe(N) =1, VAx>1

=1
For each ¢ € N and A > 0 we set

fo(N) == 2755 F(2°N) x(N). (4.11.12)

1

Then, for any ¢ € N, the function f, is smooth and supp(f,) C [5, 2]. Moreover,

for any d € Ny, it satisfies

sup |04 (M) < sup 27°% [0 £(2°A)| [x (V)]

12 12
0<j<d
< Ihlz=@ sup 277 (& 1) (2'V) -
1<
0<j<d

By substituting A for 27“\ on the right hand side, we obtain the estimate

sup |04 SeN)| < [Ixllew@  sup  27EH[H ()|
3SAL2 271 <a<ot
0<j<d

Since the supremum is taken over A € [2°71, 27 and ||x|[r~®) < 1, then it
follows that there exists C' > 0 such that

sup [fe(A)] < O sup  ATEH[FOV)].
32 20-1< A < 2fH!
0<j<d

Thus, we have shown that there exists C' > 0 such that
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O fel| ey < € sup (14 2)720m720) [ F(N)
0372

. VleNy. (411.13)

Observe that

FO) =D 2% fi(27N),

=1
and furthermore, since m < 0, the sum

f3

(=1

< +00.
So, we obtain
o 0
Hf(tﬁ)H_?(L?(G)) < ZZ 22| fu(2 w)Hf(m(G))
=1
< Csup A% [ f(N)]
A>1
< 400,
by (4.11.13). This means that
fL) =25 f271L) in L(L(G)), (4.11.14)
=1
and also,
fL)6ey = > 2°% f(27tL)s., in D'(G). (4.11.15)
=1

Estimates for the dyadic pieces in the case b =¥V =0

Let us show that (4.11.11]) holds in the case that b =¥ = 0. First observe that

1Tl 220) = |2 FET(EN ] 1 )

< [ Haf @010}l =
G
by Lemma Now, by (4.11.15]) we have
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o0

af(tL)0eq |1y < D 2% [lafe2 tL)deq |10 (4.11.16)

=1
By Lemma (IT), there exists d € N such that, for each ¢ € N there exists
C > 0, depending on ¢, such that

lafe2 " tL)begllrie) < € (27%)% max ||&3 fe

0<;5<d HL""(R

< C (27 Zt)2 sup A~2(m=2) ‘6‘]]“ (4.11.17)
02744
by (4.11.13)). By (4.11.16)), this yields the estimate
||q.f(t£)5eg||L1(G) 5 Z 2(7” Zt 2 sup )\ z(m 27) {yf |
A>1
0<j<d
< ¢35 sup AT2(m) |8] }
A>1
0<j5<d
< t7 sup A7z mZJ‘ajf {
A>1
0<j<d
as m —a < 0. This implies (4.11.11)) for the case b ="' = 0.
Estimates for the dyadic pieces in the case b0 € 2N,
We first let
ke = qfe(274L) 0, ¢ € N. (4.11.18)
The aim of this section is to show that for every ¢ € N and any b,0' € 2N, we
have
bfl —L a=t-¥/ m—2j)
H£2 et 2H,gﬁ(LQ(G)) S @) i‘ifl) A2 2 fV)], (411.19)
0<j5<d

where the function f, is defined by (4.11.12)) and T, , is the right-convolution
operator associated to the distribution ry .
Observe that, if b, € 2Ny, then
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HL K, %Hz(LZ(G)):Hﬂ(ﬁ)gﬁq{fé(z_em }W 7HL<>°

< [ LA {afl2 05,0} ()] d,
G

by Lemma [2.2.4] Moreover,

/ L7 {qfu2tL)0, ) () dz < S / | X X5{afe(271L)0es }(2)] d2
G shezw) ° ¢
|8|=b,|8|=b'

= Z | ‘Xg)?g{qu(?ftﬁ)éea}‘ |L1(G)’

8,8 €L(k)
|B|=b,|B|=b"

So, we have obtained

|£2 T, ‘Cng(LQ(G)) < Z

8,8 € Z(k)
|8]=b,| B|=b"

| X X5{afe@ 00| ) (411.20)

Now, by Lemma , for very £, E € Z(k) and each ¢ € N there exists C' > 0,
depending on ¢, 3, E and m such that

|| X X 5{afe(2L)de ] 1 o

\ﬁ\ 18]

< C(2 ét) 0L Haj ffHLoo(R)
< C(Q_et)i““@‘_'ﬁ' sup A2 |0 £(N)], (4.11.21)
0<5<d

by (4.11.13). We can then apply (4.11.21)) to (4.11.20)), giving us (4.11.19).

Estimate for the dyadic pieces for the case b0’ € R

We now generalise the result obtained in the previous step for b, € R. First
observe that, by duality, the result obtained in (4.11.19)) is extended to b,b' € 27Z.
The case for b,/ € R follows from an argument of convexity summarised in the

following lemma.
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Lemma 4.11.7. Let k € D'(G) and suppose that T,, denotes the right-convolution

operator associated to k. For b,V € R, let us fix

b b v b
= = — | = = = — | =] 4.11.22

Then, we have

0.0,

|c3 T L% 2(L2(G))’

b1 b
LWAE) N s b2] len T £
v=(v//2], [ /2]
01=0,1—0
0,=0',1—0'

(4.11.23)

in the sense that, if the right-hand side is finite, then the left-hand side is also
finite and the inequality holds.

Proof. By the spectral decomposition of L (see Section [3.1.3), for any ¢ €
Dom(ﬁb/Q), we have

2
)

b2
1£20][ ey = D A][E] (4.11.24)
A € Spec(L)
where FE\¢ denotes the orthogonal projection onto the eigenfunction ¢. Now,

there exists a real number 6 € [0,1] such that b/2 = [b/2] 0+ [b/2] (1 —6). In
particular, § = b/2 — |b/2]. Hence

H/;%(pHiZ(G) — Z |)\|2Ub/2w“b/2m*0))HEAcbW
A € Spec(L)
= Y WP Bl (4.11.25)
X € Spec(L)

Furthermore, as a consequence of Holder’s inequality, we obtain

S PP ] |
A € Spec(£)

IN

Z |>\2WQWHEA¢H2 Z })‘QLb/szlE/\¢H2

A € Spec(L) A € Spec(L)

Combining this with (4.11.25), we deduce that
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1£56]] 2y < ™10l a6 €726 |y

Similarly, if ¢ € Dom (Eb// 2), then there exists ¢ € [0,1] such that

1£56]| ) < 117

@ 1€ 6] | ey,

Therefore, for ¢ € N, if ¢ € L*(G) satisfies

H5%7k5%¢Hm@)<‘+“%
then we have

b o 016}
H[,z TH£2¢HL2(G) < - Ur)?%x(b/ﬂ H[,blT ,Cbld)H 1
b= Lb'/ 2], [v'/2]

=0,1-6
9;_9' 16

This means that

0.0,

H£271£ Z(L2(Q))’

< £b1 T/{ £b/1
H_s,ﬂ L2(G) ~ p = L?/lﬁx(b/ﬂ H
=l /2), [z
=0,1-6
9' =60',1-6’

as required.

]

Fix b,b/ € R and let 6, ' be as in ({#.11.22). By (4.11.19), for any ¢ € N
and every by = [b/2], [b/2], b] = |b'/2], [V'/2], 6, =0,1—6 and 0, =6, 16,

we have

b b/ 919/
‘ |‘C ' Tﬁt £ E g(zz(g))
0,0,
a—2by —2b) ,
5 (2—€t) é L(6167) sup A~ 2(m 27) |a] |
A>1
0<j5<d
Hence, by Lemma [4.11.7],
ILI _ a=b=bt/ —Llim—2i .
HL Fit,e 2Hz(p(c)) < (27 sup A2 (V) (4.11.26)
0<;j<d
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as required.

Application of the Cotlar-Stein Lemma

Next, we do the final step of the proof, where we finally show (4.11.11)) for

b=—-—m+a—v and ' =v. We define the operators

T, = 2%03T, L% (€N,

Kt 0

where Ty, , denotes the right-convolution operator associated to the distribution

Kee (see (4.11.18))). So, by (4.11.14)), we have, in the strong operator topology,

/

SIS
VIR

:iTg in  Z(L*Q)). (4.11.27)

=1
We cannot immediately conclude that the operator T defined by (4.11.27) is
bounded on L?(G). Thus, we must rely on the almost orthogonality of the

T :=L2T,L

operator 1" in order to prove this.

We now aim to find a bound for operators T;,Tj , for £1,f, € N, to show
that the hypothesis of the Cotlar-Stein Lemma holds. Observe that the kernel
associated to Ty, Ty, is

Koy gy o= 2(£1+£2)% {Eb/Z Zb//2/€t,zl} " {Lb/z Zb//Z’it,Eg}-

Let ¢ € R to be determined. We now write
Koty 0y = 2(£1+42)%{£(b+c)/2 Ebl/zf‘ft,el} % {Eb/Q Z(b,_c)/th,fg}'
We have

1T Tyl 22y < 2925 ||LOO2 T, L], o

% "Eb/Q TNM2 £b'=0)/2

Z(L2(G))
Then, by (4.11.26f), we obtain
T, T 222y
2
m a—(b+c)—b/ a—b—(b/—c) . .
< 2Bt F (9hy) e (270g) T E [ sup A2 (9] F(N)|
055<d
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For b=—m+a — v and V' = v, we have

a—(btc)—b’ a—b—(b'—c)

o(l1+2) (24%) 5 (24%) 3 _ olli+te) % 27%1(me) 27%(m+0) /m

_ oli=ta) ym.

and thus, we obtain the estimate

HTflTZ;Hf/(LQ(G)) S 2(51782)% tm sup Aié(min) ‘8; f()\)‘
055

We now let ¢ = ¢(¢1) = —4sgn(¢1). Then, we define

(1) = o1 <41 % sup 3 (m=2j) |a§ f()\)|’ ¢, € N.
0<5<d
Hence, we have
P A>1
e 0<j<d

By a consequence of the Cotlar-Stein Lemma (see Corollary [B.0.2)) we then con-
clude that

m —l(m—9i .
‘|TH$(L2(G)) S Ctz sup A 2( 2J)|8if()\)|,

A>1
0<j<d
for a constant C' > 0, which is exactly (4.11.11f). This proves Proposition [4.11.3]

]

4.12 Density of 57 and ¥~

We continue in the same setting as in previous sections. Recall that

Qo = {%,17 40,2, - - - ;%,n}

is the set of smooth, real-valued functions on G, which is comparable to the C-C

metric (see Definition 4.1.1)), given by (4.2.14). Furthermore, let A = Ag, be
the family of difference operators on G associated to (). For m € R, we then

let S™ be the space of symbols of class m, with respect to Qg and Y, where

Y is the basis of g constructed in Section [2.4.1
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The aim of this section is to show that, for any m € R, the spaces of

smoothing symbols S™>° and their associated operators W ~> are weakly dense in
S™ and W™, respectively, in the sense explained in Lemma 4.12.1| below. Recall
that S~ is the space of smoothing symbols introduced in Definition [4.5.6]

Lemma 4.12.1. Let m € R and suppose that o € S™. Then there exists a
family of symbols {o.}e~0 C S™° such that the following properties are satisfied:

(i) For any m; € R and any a,b,c € Ny, such that my < —c, there exist
C >0, a;, by € Ng and ¢y >0 such that

1 _
||O-E||Sm1,a,b,c < 062(m1 ™ ||J||5m,a1,b1,017 Ve € (0’1>’

and whenever my; > m, there exist C' >0, a’, b € Ny and ¢ > 0 such
that

llow — ollsmiape < C' 2™ ||o||smaye, Ve e (0,1). (4.121)
(i) If f € D(G), then

Op(o.)f — Op(o)f as & —0,

in D(G). More precisely, there exist C > 0, a > 0, a seminorm ||-||sm ap.c
and M >0 such that, for all § € Z(k) and o € S™, we have

X5 00(0 — 0.)f 1oy < € lollsmane |7+ LY ]| ey (4122)

for all € € (0,1).

(111) For any a, b € Ny and ¢ > 0, we have

lim inf ||0-8||Sm,a,b,c Z ||U||Sm,a,b,c~ (4123)
e—0

Moreover, there exist C'' >0, o', b € Ny and ¢ >0 such that

||g£||Sm,a,b,c S Cl||g||5m,a/,b’,c’a (4124)
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forall € € (0,1).

Proof. Let o € S™. Consider a cut-off function n € D(R), satisfying

n=1 on [0,1, supp(n) C [0,+0c0).

Then, for each ¢ > 0, define the symbol

oc(z,m) = o(z,m)n(en(L)), = € G, w € G.

Observe that, by the definition of 7, the symbol n(ew(L)) is smoothing for every

e > 0. So, by Lemma and Corollary 4.11.6, whenever m; < —c there exist
ai, as, by, by € Ny and ¢; > 0 such that

loellsm1ape = llo(z,m)n(em(L))llsm ape

1

€§(m1 -m

5 | |U| |5m7a1,b1701 | |77(57T<£)) I |Sm1*m,a2,b2,c
<

)||0||Sm,a1,b1,01‘

Hence, the first part of (i) is proved.

We now show the second part of (i). First observe that, by Lemma ,
there exist C' > 0, and df, a}, b}, 0, € Ny and ¢ > 0, such that, for every
e € (0,1) we have

llo = oellsmiape = [I(I = ne (L))ol gwm-mrem gpe

< O =nlem(L)lsmi—ma by 1l0]

/ /
S7n’a27b2’c.

Furthermore, supp(1 —7n) C [1,400) and, since my > m, 1 —n € My -
Hence, by Proposition 4.11.3| (A), for any m; € R there exists d € Ny such
that

1 _
1T = (e llsmray e < CLEX ™I =llag, o

for some C > 0, for every ¢ € (0,1). So, we have shown that there exist C’ > 0,
a,b € Ny and ¢ > 0 such that

1

||U€ _O||Sml,a,b,c S Cl@i(ml_m

) ||U||Sm,a'7b'70'7 Ve € (07 1)7
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as required.
We now show part (ii). For ¢ € (0,1) and 8 € Z(k) we have

X5 0b(0 = 0)f || oy = |1X5 00 = 0)(T+ L) (T + L) ] o
for N; € N. Observe that

Op(o —o)(I+ L) = Op ((0 —oe) w(I+ L)),

Hence, we have

HXﬁ Op(a—as)fHL'Z(G)
= HXB Op ((0 - JE)W(I+£)_N1) ([—i—E)leHLQ(G)
< [ = o) 7T+ L) || gn, g g [T+ LYoy (4125)

where

1 [
N > - = I
5 (ml + 18] + 2)
by Theorem [4.6.2] (in particular, see (4.6.2)). Moreover, by Lemma [£.10.2] there

exist C" >0, a},a), by, by € Ny and ¢}, ¢, > 0 such that

H(O‘ —o)m(l+ L)~

pl
Sml 707|ﬁ‘7N

< [lo = o

SmE2N1 gl b)) ||7T(I + L)_Nl | |Sml_(m+2N1),a’2,b’2,N'

Observe that w(I+L£)~™ € S72M and since m; > m, then by Proposition
we have m([ + £)™™M € §m—(m+2N)  Additionally, by part (i) of the Lemma
(see (4.12.1))), there exist C" >0, a,b € Ny and ¢ > 0 such that

||0' — 0'5||Sm+2N1,a'1,b'1,0'1 S C/ 52N1 ||(T||5m,a7b,c-

By (4.12.5) we have then proved that there exists C' > 0 such that

HXB Op(O’ - Ue)f‘ |L2(G) < C€2Nl H<[ + ﬁ)N+N1f} ‘LQ(G) HUHSm’a’b’C’
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as required.
It remains to show part (iii). Observe that, if ¢’ € S™ is an invariant symbol,
with associated right-convolution kernel ' € D'(G), then for every a € Nj

and ¥ € R we have

[7(1+£) 720 A% (7) 7(1 + £)F]] o
. —%(mfa v) ~ ! 5
= |[(T+2) ODP(F{Ga v'Y) (T + L£)2|] 4 12(c)

- ‘ |Op (]:{aoc ’il}) ‘ |$(L2—U(G)’L2—(m—a+u)(c))‘ (4.12.6)

Hence, part (iii) follows from applying (4.12.6)) to o and o, for every ¢ € (0, 1),
and Lemma [3.3.2]

]

Remark 4.12.2. Suppose o € S™. Lemma [4.12.1] allows us to apply a density
argument when we want to prove a quantitative result about o. More precisely,
we may assume that 0 = 0. € S~ for some ¢ € (0,1), and then use parts
(i) and (iii) of the Lemma to take the limit as ¢ — 0. By Theorem this
means that the convolution kernel associated to ¢ is smooth. An instance of the
usefulness of this Lemma is in the proof of Theorem below.

4.13 TImproved kernel estimates for S™(Q)

As in previous sections, G denotes a compact Lie group of dimension n and

local dimension [. Here,

Y = {leavaaaYn}

denotes the basis of the Lie algebra g of G constructed in Section [2.4.1} Fur-

thermore, recall also that

Qo = {%,1; qo,2; - - - ;QO,n}

is the set of smooth, real-valued functions on G, which is comparable to the

C-C metric (see Definition 4.1.1)), given by (4.2.14]). Recall that @ has weight

(dy,ds,...,d,), where, for each j =1,2,...,n, d; is the positive integers given
by (2.4.3]). Throughout this section we then let
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N() = lcm(dl, dg, ceey dn) (4131)

be the lowest common multiple of dy, ds, ..., d,.

Furthermore, let A = A, be the family of difference operators on G asso-
ciated to QQg. For m € R, we then let S™ be the space of symbols of class m,
with respect to )y and Y.

For a distribution ' € D'(G) and smooth function ¢ € D(G), recall that
(K', ) denotes the action of k" on .

We aim to show the following result.

Proposition 4.13.1. Let 0 € S™ and suppose that k, denotes its associated
kernel. Then for any o, By € Niy, B, 02 € Z(k) satisfying
L+m —[o] +[B1] + [B2| >0,

there exist C' > 0 and non-negative integers a, b and ¢ > 0, which do not depend
on o, such that for all (z,z) € G x (G\{eg}) we have

| X610 Xz {Y2" Ga(2) (Ra(2) = (i, 1)) | < C [ IHRRD o1 g,

where (kg,1) denotes the action of k., on the smooth constant function 1 €

D(G).
Remark 4.13.2. Observe that, for any z € G

(1) = /Gﬁx(z) dz = o(r,12),

where 15 is the trivial representation of G, and

o(x,1g) = ka(1a).

Furthermore, o(x,15) is a smooth function in , constant in z.

This result will be proved in the following sections. Observe that, in the case
m = 0, the kernel is Calderén-Zygmund in the sense of Coifman and Weiss (see
Chapter III in [7]). For the Euclidean case, the reader is referred to Stein [47].

4.13.1 Tools for the proof of Proposition |4.13.1

In this section we prove two important lemmata regarding a dyadic decomposition

of symbols belonging to the class S™.
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Lemma 4.13.3. Let 0 € S™ and cy > 0. Furthermore, consider a function
n € D(R), with supp(n) C [ri,+00), for some ry > 0. For ¢ € Ny, we define
the symbols

ore(x,m) =0o(x,m) 77(2_&0 7r(£)),

and

ore(x,m) = (27 (L)) ol 7).
Then ogy, ore € S~ and satisfy the following property: For any a,b € Ny
and ¢ >0, and m; € R. there exist C' > 0, aq, as, by, by € Ny and ¢y, co > 0,
which do not depend on o, such that for any ¢ € Ny we have

orellsmiape < C 257 (|0] gm0y rcrs

and

S™1 a.b,c < C2Z (m—m1) ||0||Sm,a2,b2,c2'

ol
Proof. Fix By € NI, ap € Nj and v € R, with [ag]g, < a, [Bo]y < b and
|v| < c. We study the quantity

|7 (1 + £)2eolmt) Yo A0 (2, m) (1 + L) 72 ] 4

By Lemma |4.10.2] there exist ai,as,b;,00 € Ny and ¢; > 0 such that

|7 (1 + £)2(leol=mt) Yo Ay (o, m) w1 (1 4+ £) 78] 4

Leco

(4.13.2)

m(L

< lollsmare ||n(2” )] |

Since n € Mm-m, then by Proposition 4.11.3| part (A) we have
2

¢ co L —L(mi—m—2j j
Hn( —leg ( HSml ma2b2cN2€0 3 iu%) (1—|—)\) 3 (ma 25) ’8177()\)|
0§J>'Sd
for some d € Ny. Therefore, there exists a constant C’ > 0, depending on

d, mq, m, such that

17 T g1 e < C 27
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In particular, by (4.13.2), we have shown that there exists C' > 0, independent
of o, such that

|| (I + £)2leod=m+n) yio Ao g (0, 1) (T + L£) 75

(m—mj)

< C2°7 2 [o]|sm ay e

L(A)

which yields the desired estimate for or, on taking suprema. The estimate for
o, is similar.

]

Now, we let A\; be the smallest non-zero eigenvalue of £ and consider func-

tions 7o, m € D((0,00)), taking values in [0, 1], such that

supp(no) N [0, +00) C [0,A1),  n0(0) = 1,

and

We also assume that

where we define 7, by

n\) =m (27 YN), £eN A>0.

Proposition 4.13.4. For m € R, let 0 € S™ and suppose that k, denotes its

associated kernel.

(a) Then, for each ¢ € N, the symbol given by

ooz, m) = oz, m)n(m(L)) = oz, m)m (2_“_1) (L)), (4.13.3)

belongs to S™°°, and furthermore, its associated kernel of o,(x,m) is given

by

ke(x, 2) = kee(2) = (0(L£)d0) * Ku(2), (x,2) € GxG.  (4.13.4)
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Moreover, the sum

N
E Koz
£=0

converges to kg, as N — 400, in the sense of distributions.

(b) For ¢ =0, the symbol given by

S vorle (4.13.5)

o(x,1z), if m=1g

belongs to S™°°, and furthermore, its associated kernel is given by

Kow(2) = (ks 1g). (4.13.6)
(c) We have
|ka(2) = koa(2)] <) |Keal2)l, V2 € G\{ea} (4.13.7)

Proof. We begin with the proof of (a). For each ¢ € N, the symbol n(7(L))
belongs to S™°, by Theorem 4.11.2} so o, € S™>°. Additionally, its associated

right-convolution kernel, which is given by

1e(L)do,
is in D(G). Furthermore, the operator given by

N

converges in the strong operator topology of .Z(L*(G)) to the identity operator
I, as N — oco. That is,

N

> (L) f—f

=0

— 0 as N — oo, (4.13.8)
L2(G)

for every f € L*(G). Thus, the sum of smooth functions
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> (L)

/=

o

converges to dp as N — oo in D'(G). Convolving on the right with x, yields

the convergence

N
5 Kig —> Ky as N — 00,
=0

in D'(G), which shows part (a).

Observe that (b) is a consequence of Remark [4.13.2l Hence, it remains to
prove (c¢). By Lemma [4.13.3) we have that if m; € R, then there exists C' > 0
such that

o2l |51 ape < C 247 |G| 5m arpr ot Vi e N,

and thus

o0
> lloellsmape < oo,
/=1

whenever m, > m. This implies that the sum

WE

O¢
(=1

converges to o — g in S™, for my; > m; that is,

— 0, as N — +o0. (4.13.9)

N
o— 0y — E oy
=1

Since g, € S7=°, for each ¢ € N, then the kernels x, are smooth on G x G,
by Theorem [4.8.1. Now, by Theorem [4.7.1] observe that there exist C' > 0,
a, b € Ny and ¢ > 0 such that, for all x € G and z € G\{eg}, we have

S™1 . a,b,c

N N
Fal2) = Fow(2) = D hea(2)| € Cle™ |lo—a0 =Y 0 ,
t=1 /=1 Sm17a7b7c
where
my + 21
Nm == .
! [ 2N, W
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By (4.13.9), we then have

Z/{g,z(z) — Kg(2) — kou(2) as N — oo, (4.13.10)

for every z € G\{eg}. So,

< ZMM(Z)\, Vz e G\{eg},

|I€E(Z) — mo,z} =

which proves the result.

4.13.2 Proof of Proposition 4.13.1

We now prove the main result of this section.

Step 1: Set up

Let

o1 = F{Xp, - X {Y Ga(2) (Ka(2) — (50, 1)) } }.

Routine arguments show this symbol belongs to the class S™~lel+Al+A1 o it
suffices to prove the result for « = 5y = 1 = P2 = 0. Our hypothesis then

becomes

[+m >0,

which we assume. By the work done in Section we may assume that the
kernel k : (z,2) — kKg(z) is in D(G x G). Recall that, for ¢ € Ny, o, is the
symbol on G given by (with the case ¢ =0 given by (4.13.5)), and its
associated kernel xy, is given by (with the case ¢ = 0 given by )
Now, whenever ¢ € N and r € NygN, by Lemma [4.1.7] we have

2] |Kea(2)] < C Z |G (2)] [z (2)], V(z,2z) € GxG,

for some C' > 0. If my; € R is such that m; —r < —[, then by Lemma[1.7.2] (2)
there exist a constant C' >0, a, b € Ny and ¢ > 0 such that, for each ¢ € Ny,
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D laa(@) ke (2)] < Cllodllsmape ¥ (r,2) € GxG.

la]=r

Hence, for all (z,2) € G x G we have

21" (K (2)] < Clloellsmape

< C27 ) 0| |gm e

by Lemma 4.13.3] Recall that R denotes the radius of G:

R = sup |z|.
zeld

(4.13.11)

For a fixed z € G\{eg}, we now let ¢, be the unique integer such that

d
ot < L <t
R+1~

By Proposition 4.13.4] we have

o0

[Ka(2) = Roa(2)] < D |kea()]

/=1

= Z ’/ig@(Z)I‘FZl"W,x(Z)"

1<0< 0y >4

We then study the sums in (4.13.13)) separately.

Step 2: Sum 21§£<£0

Let us first consider the sum

> ka2,

1<b<£y

(4.13.12)

(4.13.13)

for (z,2) € Gx (G\{ec}). We use (£.13.11)) with m; € R and r € NyN such

that

m —1ma
2

To this aim we choose » = 0 and
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m; = -m-—20=-m-—I[—-1< —I[.

By (4.13.11]), for any ¢ € Ny, with 1 < /¢ < ¢y, we then obtain

-1
e (2)] < C277 0] [gm apes

as my < —[. So, we have the bound

lo—1 lo—1
6—71(

3 ka2 S 3027 Yol gm e
/=1 =1

< 2550 g gm e

Since 3(m —my) = 5(2m + 2I) = m + [, then we have

Lo

2% (m—m1) — 2(8071)(m+l) S (R + 1) ’Z‘f(m+l)

)

by our choice of ¢y (see (4.13.12))). Thus, we have shown that

lo—1

> lkea(2) S 127" ol [smabe, V2 € G\ e} (4.13.14)

=1
Step 3: The sum ).,

It remains to bound the sum /%, |k, (2)|. In this step we use (4.13.11)) with
r € NoN and m; € R such that

— 1
L 1O ST B and —(m —mq) < 0.
2 2
We set
[
T:No[mjL -‘, my = —m — 2l + 2r.
No

For this choice of » and m; we have

1
E(m—ml) =m+l—r <0

Thus, there exist a, b € Ny and ¢ > 0 such that, for any 2z € G,
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00
-1,
Z’ | |’i€z |<C||0||Smabc22 5 (m—m1)

=Ly L=lo

< 027 M) || g o pe

Therefore,
)(m mi) —r
Zmﬁx 127" o ]|sma.b.c
t=to
< Cle| 2 o |sm g
by our choice of fy. Since —r—3(m —m;) = —(m+1), then we have shown that

Zlfm < Cl" " lollsmape, ¥z € G\{ea).

{=Lg

In combination with (4.13.14)) and (4.13.13)), this shows the result.

4.13.3 A consequence of Proposition 4.13.1
The following result is a consequence of Proposition

Corollary 4.13.5. Let 0 € S™ and suppose that k, denotes its associated
kernel. For any v € R, if

v+ 1 > max{m+1, 0},

then there exists C' >0 and a, b, c € Ny such that

/ 2 |ka(2)] d= < Cllollsmape.
G

Proof. We first write

/ 2 [k (2)] dz = / 27 [ ()] dz + / 2 [k (2)] d.
G [z|>1 |z|<1

Since G is compact, it follows that

/ 12| |ke(2)] dz < +oc.
|z|>1

247



Let us now suppose that |z| < 1. By Proposition [4.13.1}, if m +1 > 0, then there
exist C' >0, a,b € Ny and ¢ > 0 such that, for all z € G and z € G\{eg},

we have

k2 (2)] < Clel” ™D o] [sm g

Therefore, we have

[l s [ e
|2/<1 j2/<1

and this is finite if v+ 1 > m +{, by Lemma[A.3.2]
On the other hand, if m + 1 < 0, then there exists C’ > 0 such that, for any
xr € G, z € G we have

ke (2)] < Clo]]sm e,

by Lemma [£.7.2] (2). So,

[ el s [ gp e
|2]<1 |2|<1

which is finite if v+ > 0.
Finally, suppose that m + [ = 0. In this case,

/ |27 dz < o0,
|z|<1

provided that v 41 > 0. Therefore, the condition v + [ > max {m + 1, O} is
sufficient to have the desired bound. O

4.14 Boundedness on L*(G)

Let us fix a basis of vector fields

V ={V;:j=12...,n}

on G (see Definition [2.3.2)). Furthermore, let us also fix a family

Q:{qla(ha-'-aq@}

of functions on G comparable to the C-C metric (see Definition [4.1.1)), for some
¢ € Ny, and let A = Ag be the family of difference operators on G associated
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to Q. For m € R, we then let S™ be the space of symbols of class m, with
respect to the family of difference operators Q).

In this section we shall prove the boundedness of any pseudo-differential op-
erator Op(o), for o € 5% on L*(G).

Theorem 4.14.1. Suppose that o € S°. Then, the pseudo-differential operator
Op(o) eatends to a bounded operator L*(G) — L*(G), with

||Op(e < Cllollso0.1.0, (4.14.1)

)| ’z(w(G))
for some C' > 0 independent of o, where | denotes the local dimension of G.

Proof. Let ny € D((0,00)), taking values in [0, 1], be such that

supp(1o) N [0, +00) C [0, A1), m(0) = 1,

where \; denotes the smallest non-zero eigenvalue of £. We now write

o = o — on(w(L)) + ome(r(L)).

By Remarks [3.1.5] {.11.5] and [£.13.2], the operator associated to the symbol
ono(m(L)) is given by

Op(ano(ﬂ(ﬁ))) = o(-,15) Eo,

where 15 denotes the trivial representation of G and £ denotes the orthogonal
projection onto the 0-eigenspace of L. Since o(:,15) is a smooth function on
G, then for any f € L*(G),

llo(1g) Eofllzeey < llo( 1)l =@ [ Eofllzzc)-

And since Ej is an orthogonal projection of L?(G), then

Eofllz2y < IIf1lL2ec)-

Hence, the operator o(-, 15) Ey is bounded in L*(G). Thus, it suffices to show the
L? boundedness of Op(c — o19). Additionally, Proposition [4.13.1] is applicable

in this case and we may assume that o(:,15) = 0.

Furthermore, by Lemma [4.12.1] (see also Remark [4.12.2)) and Theorem {4.8.1}

we may assume that the mapping

x — Ky, x € G,
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is smooth.
If f € D(G), then

HOP(J)JCH%?(G) = / ‘ Op(o)f(z) |2 dr = | f* ke(2) !2 dx
G G

<),

By the Sobolev inequality (3.4.1)) we have

sup (f * kyy )(2) | dz.

z1 €G

1/2

sup (f * kyy ) (z / Z ax (f * ke ) (2 ‘ day :

T E€G aeZ(k
|a|<M

forany x € G and s > [/2, where | denotes the local dimension of G. We may

assume that [s] = [; thus we have obtained the estimate

10p(0) |y < / / S | X (F 5 i) (2)* iy dat

acZ(k)
|a\<fs1

= Z //‘Xom1 (f % Kkey ) (T | dx dzq,

acZ(k)
|a\<f51

by Fubini’s Theorem. Now, X, ,, (f*ks,) = f*(Xa. ke, ). Hence, by Plancherel’s
Theorem, for every a € Z(k), with |a| < I, we have

[ o (5 m)@F do = 1 5 (Ko
= [|F{f * (Xawke)} Hi?@
= HF{Xa,mK'm}ﬂ‘iQ(@)

Moreover,

| F X awrria} Alra = D de [|F {Xamrian} () F)| 15

71'66

|| F { X ko, } Hioo(é) Hﬂfm(@)

IN
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where

H]:{le’%l} HLoo(é) = Su% H]:{XQM""”M}(W)H.,%(%)‘
e

Applying Plancherel’s Theorem once again, we obtain

| Ko (5 m)@F do < CJ|F (o [ ey 1 e

Since F{ Xz, Koy } = Xam o(21,-) belongs to the symbol class S, then

H}—{Xa@l HCEI}HLOO(@) = HXa,asl 0(3317')”Loo(6;) < 400,

and thus,

10p(0) fll2c) < ZAllXa,zla(wla')||2m(@)Hfl\ia(c) da
lor|<i

< max sup || Xoa, o(71,)|]?

2
0l<l o ca (@) HfHL2(G)‘

Hence, there exists C' > 0 such that

10p(0)|| 22y < Cllo||sm 0.0,

as required.

4.15 Composition of pseudo-differential opera-

tors

Throughout this section, the set

Y = {Y17}677Yn}

denotes the basis of the Lie algebra g of G constructed in Section [2.4.1] Recall
also that

QU = {90,1, qo,2, - - - 7q0,n}
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is the set of smooth, real-valued functions on G, which is comparable to the C-C

metric (see Definition |4.1.1)), given by (4.2.14]). Furthermore, we let A = Ag,

be the family of difference operators on G associated to Qg. We shall assume
that, for m € R, S™ is the space of symbols of class m, with respect to Qg
and Y. We shall also assume that U™ denotes the family of operators of class

m, corresponding to S™.

4.15.1 Main result

The main objective of this section is to prove the following result:
Theorem 4.15.1. Let my,my € R. If T} € U™ and T, € V™2, then their
composition
Tl OT2 c \I,m1+m2,
and the mapping (T1,Ts) — Ty o Ty is continuous W™ x Ym2 — Prmitms,

If Ty = Op(oy) and Ty = Op(oq), with 07 € S™ and oy € S™2, then we
must show that the symbol oy o0y, associated to the operator 77 o T5, exists and

satisfies

01009 € Sm1+m2.

Furthermore, for any a, b € Ny and ¢ > 0, there exist C' > 0, ay, as, by, by €

Ny and ¢q, ¢ > 0, independent of o1, 0g, such that

||01 © U2||Sml+m2,a,b,c < C ||0-1||5'm17a1,b1761 H0-2||Sm27(l21b2752‘ (4'15‘1)

Throughout this section, we let 1, and k2, denote the right-convolution kernels

associated to oy and o9, respectively.

Observe that, by Lemma [£.12.1] (see also Remark [£.12.2)) and Theorem [4.8.1]

we may assume both k;, and ke, are smooth on G.

4.15.2 The composition symbol o; o o9

Lemma 4.15.2. Let 01,00 € S~ and suppose that k1 and ko denote their

associated convolution kernels, respectively. Set

a2 = /G Famy1 (2™Y) Kra(y) dy,
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forx,z € G. Then the Fourier transform

olz,7):=rp(n), z€d xe¢ed,

defines a smooth symbol. Furthermore, it satisfies

Op(c) = Op(oy) o Op(oy), (4.15.2)

and

o(x,m) = /G,ﬁ’x(y) m(y)* oo(zy™t, m) dy. (4.15.3)

We will write o = 01 0 09.

Proof. The kernel k : (z, z) — £,(z) is smooth on G x G and compactly supported

in z. Furthermore,

Lol < [ [ fra oG] dods
< [ ol dw [ )l ay

< sup ( [ It dw) [ )l a,
e G G

where in the second inequality we have applied the substitution w = zy~!. Thus,
k. is integrable, for every x € G. Now, using Leibniz’s rule for vector fields, for
every By € Z(k), we obtain

X0 bia(2) :/G)N(ﬁo,m {kolzy™" 2y ) ki(z,y)} dy

~ N
= Z Cg(;,ﬁg / ‘X,Bz,wz:cﬂzf1 K229 (Zy )Xﬁl,xlzl‘ K1,a, (y) dy.
161 1+182 /=160l “

Hence, proceeding as before, we have

dz

/‘)N(ﬂo,a:’%(z)
G
5 Z sup (/G’)z&,ﬂﬂz:w’ ’%2,2102(7“0)‘ dw)/G‘Xﬁl,l‘l:I Rl,xl(@/) dy’

181 |+1821=160] T €€
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This implies that ¢ is a smooth symbol.

Next, we must prove that (4.15.2)) and (4.15.3]) hold. To this aim, first observe
that formally, for f € D'(G) and x € G, we have

Op(01) 0 Op(as) f(x) = /G Op(02) f] (2) kr(z'2)

:/G/Gf(y)527z(y_1z)/<;17x(z_1:1:) dydz
- /G /G F(9) Koo (™~ w0™) o (w) dy d,

using the substitution w = z~!z. Since

/ /<;2,m—1(y’1:cw’1) K1 z(w) dw = ﬁm(y’lq:), Vy € G,
G

then applying Fubini’s Theorem to swap the order of integration, we obtain

Op(01) © Op(oy) f(x) = /G F() oy 2) dy = f 5 m(2).

It follows that

Op(01) o Op(as) = Op(0),

as required.
Finally, for z € G and 7 € G,

oo, 7) = 7o) :/ ) w(2)* dz

Ke(z
G
[ [ rson G sty o
GJG

Since k, is integrable, we can apply Fubini’s Theorem to obtain that

oo, ) = /G /G eyt (25~) 7(2)" dz yaly) dy

= /G Fie(y) T(y)" ( /G Ryt (2y~ ) m(2y™")” d2> dy,

as w(z7Y) =w(y ) w(yz7t) = n(y)* w(zy~')*. Since
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/ /ig}xyfl(zy_l) W(zy_l)* dz = F{kouy} (1) = JQ(xy_l, ),
G

then we have

o(w,7) = / 1o () ()" oy ) dy,

as required.
]

The following result is an immediate consequence of Lemma and Theorem
4101

Corollary 4.15.3. Let 01,00 € S™°°, and suppose that oo 1is an invariant

symbol. Then,

01009 = 01029.

Let us now consider the cut-off function 7y € D((0,+00)), taking values in
[0, 1], such that

supp(7o) N [0, 4+00) C [0, A1), 70(0) = 1.

We write

o1 = o1 —om(r(L)) + oine(m(L)), oy = 09 — 0ano(m(L)) + gano(m(L)).

Hence, we have

Op(0o1) 0 Op(o2) = (Op(Ul - 01770(77(5))) + OP(UWO(W(Q)))
o (Op((72 — agno(w(ﬁ))) + Op(O’gT]()(’YT(,C)))) .

Furthermore, by Proposition [4.11.3[ (B), o1no(7(L)), oano(m(L)) € S, so by
Corollary [4.15.3| and Theorem 4.10.1} it suffices to show the result for

OP(U1 - 01770(7(5))) o OP(U2 - 02770(77([')))-

Therefore, Proposition is applicable in this case, and we may assume that

oi(-,1g) = om(m(L)) = 0, Jj=12
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4.15.3 First step of the proof of Theorem [4.15.1

We now start the proof of Theorem [4.15.1} First observe that, by Theorem [4.3.3
and Remark , for fixed 7 € G and 7 € G we have

— 1 — o oo (-, —
ooy m) = D —aoaly ) Yooslam) + BRIV, (4154)

[al<M

for any y € G, where

IR 6™ 20

< C\Z/IM sup Yooz, m)|| 2y, Yy € G, (4.15.5)
BTt
jal <M

for some C' > 0 independent of x. Consequently, for all y € G, we have

HRG2( ) < ClyM sup |Yeoa(z, Hzm (4.15.6)

|a|<M

”‘f(%jr

Then, by (4.15.3)), for any € G and 7 € G we have

o(z,m) = / o () 7(y)* oa(ay ™, ) dy
= [ 2 ol ) sl wlo) Yoa(e ) dy

[a]l<M
+ / ke(y) T(y)* RO (v dy
G
1
= Z gAaal(x,ﬂ) Yoo (x, )
[a]<M

+ / kre(y) m(y) R (v ) dy.  (4.15.7)
G
Note that, by Theorem |4.10.1 we have

(A%) - (Y,) € S™mtme=led v o € N2, [a] < M. (4.15.8)

Hence,
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1
Z — Aoy (z,m,) Yoo (2, m0) € Srmtms, (4.15.9)
a!

lal<M

For M € N, we now let pars, 0, be the symbol given by
(7)== olem) = 3 = A%y (w, 1) Yoos(w, ), (415.10)
pM,O'l,O'Q ) . ) - MOC! 1\4&y z Y24, ) . .
o)<

for x € G, ™ € G. By (4.15.7) we have

Prtion oy (1,7 = / fra) 7(0) B2V ) dy,  z € G w e G (41511)
G

We then need to show that, for any a, b € Ny and ¢ > 0, there exist M € N,
C >0, ay, as, by, bo € Ny and c¢;, ¢s > 0, independent of o7, 09, such that

“pM,Gl,Uz“Sml+m2,a,b,c < C‘|Ul‘|sm17alyb1701 ’|U2H5m2,a2,b2702' (4'15'12)

We prove this result in the following sections.

4.15.4 Analysis of the remainder
Step 1: The symbol pyr o, 0, (2, 7)

In this section we study the symbol pass, oy, given by (4.15.10), and claim that
there exists My € Ny such that, for any M > M, there exist aqy, by, by € Ny
and ¢; > 0 such that, for all z € G,

HpMﬁl,@(*’Evﬂ-)HLoo(@) 5 ||0-1||Sm17a1,b1761 ||0-2||Sm2,0,b2,0‘

Then, let M € N to be determined and fix 7 € G. For any y € G, we now

write

m(y) =7(y) 71+ L)YM (I + L),

for some M; € N to be determined. Note that
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IT+LM = Y X, (4.15.13)

v €Z(k)
lv|<2My

for some constants ¢, € R. And similarly,

(I+E)M1 - /Cvﬁ 5(%7
Yy €Z(k)
[¥|<2M1

*

for some constants ¢5 € R. So, m(y)* can be re-written as

> oymly) w (X)) (I + L)~ (4.15.14)

yEZ(k)
[v[<2M;

Moreover, for any left-invariant vector field X, we have

(y) (X)) = — (#(X) 7(y)" = — (X, 7(y))". (4.15.15)

Combining (4.15.14]) and (4.15.15)), we obtain

/G k12 (y) 7(y)" R2ZGD (5 dy

= Y (i, / o) (X 7(0) 7L + £)7M B2 dy

v €T(k) ¢
|y|<2M;
v * sm(I+L) " Migy(-m —
= Z (_1)|’Y| C’Y/’{lﬂﬁ(y) (X%yﬂ'(y)) Rx,(M+ )" Migg( )(y 1)dy
v €T(k) ¢
[v|<2My

Recall that, for N € N to be determined, fy is the function given by

n 2NN
d.
=Y a) (4.15.16)
j=1
where Ny denotes the lowest common multiple of (dy,ds, ..., d,). We have
Ifn(2)| = |22V, Vzed. (4.15.17)

We then write
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PM,o1,00 (.I, 7T)

_ /G ke () T () B2 () dy

= X e [ (o) (B ) (7 B0 )y

Y eZ(k) G fn
|v|<2M;

Using integration by parts and Leibniz’s rule for vector fields yields

PM,o1,00 (LU 7T)

Z e [ Foanes (1) o) )

vyeZ(k
|’y|<2M1

> 1 ~; ~Mi (o n
X o=y (f_N RGO )) (o) dy.  (4.15.18)

Taking norms, we obtain

1P81.01,02 (2 )| oo )

Z /‘ 1y1ny/{1x yl}dy

761@V
|v|<2M1
v Sa(I+L£)"M1 o T
Su%HXw,yzzy’ (Rgg,(MJr ) 2 )/fN)(yz)HLoo(@). (4.15.19)
Yy €

Observe that, by Lemma [3.7.7 (2) and Remark for any v, € Z(k), with
|72| < 2Mj, there exists C' > 0, depending on 7o, fy and k, such that

o o T 1) Dl
y'
<C s (B B )y (01520
yeqG
[70,2|=M

provided that |y,| < M —2NyN, having used (4.15.17)) and adapted (4.15.6). As
|72| < 2Mj, it suffices to assume that
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2M; < M — 2N,N. (4.15.21)

Moreover, by Lemma and Remark [£.3.7] we obtain

I+£ —M o ('vﬂl)
SUP HX"rozy’R ’ HLOO(@)
vy eG
[v0,2|=M
N sup ||7(I +£)~ MlYBOUz(?/ T HLOO(@)’
y' eG
[Bol<M
Furthermore,

sup H7r I+ L) MlYﬁOUz(y ™ HLoo(@)

vy eqG
[Bo]<M
ma—2M1) B
5 ySlé% H’]TI—‘—;C) ( 2= 1HL°°(@)H7T(I+£) YOGZ yv HLoo
[Bol<M
5 ||U2||Sm2,O,M,07 (41522)
provided that
Thus, by (4.15.21)) and (4.15.23)), we have have shown that, if
mo < 2Mp < M—QN[)N, (41524)
then
w(I+L)~M1 oo (-ym
sgp HX,Y”(RI’(J\Zr ) )/fN)(y)HLoo(a) S loallsm2 0,0r0- (4.15.25)
y

On the other hand, we have

/ | Xy (f ) ()] dy S Z/\ gi—y (Qo.an; K1) (y1)| Ay, (4.15.26)

2NN

where ay; = (O, 0,..., 5, ..,0), with the only non-zero term of the multi-
J
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index being in the j-th position. Therefore, by Lemma m (2), for any j =
1,2,...,n,if

m— [OCNJ] + h/ll < _l7

then there exist C' > 0, a1, by € Ny and ¢; > 0 such that

Sup | Y1,y q0,0éN,j /{17$)(y)‘ < C||01||Sm17a1,b1,01'

Since [an,;| = 2NoN and |y;| < 2M;, then a sufficient condition is

my — 2NoN + 2M; < —L. (4.15.27)

Thus, we have shown that, if m; — 2NgN + 2M; < —I[, then we have

/ | V1,Y1=Y fN"{la: Y1 ‘dy ||01||5’m1 ,a1,b1,c1+ (4'15‘28)

Combining (4.15.25)) and (4.15.28)) with (4.15.19) (see also (4.15.24)) and (4.15.27))),
we obtain that if we choose M, M;, N € N such that

my < 2My < M — 2NyN
m1—2N0N—|—2M1 < =1 7

then, there exist aq, by, by € Ny and ¢; > 0 such that

HIOM,01702(5677T)|‘L00(§) S ||01||5m1,a1,b1,01 HO-2HS’"2,0,b2707 (4'15'29)

which concludes the first step.

Step 2: Xg, . par(z, )

Let M € N to be determined. In this section, we study the symbol )~(50,$ PM 1,05 (T, T),

for a given By € Z(k). By the definition of pury,0, (see (4.15.10)), for any
r € Gand ™ € (A}’,Wehave

Xﬁo,l‘ PM,o1,09 (l‘, 7T>

= Xgyo0(z,7) Z Xﬁox (A% (z, 7)Y oo (x,m)).  (4.15.30)

a]<M

Observe that, by Leibniz’s rule for vector fields we have
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. /G () ()" oa(zy~, ) dy

Y /G Ksrons Kty (0) T(0) K spas 0oy~ ) dy

[B1]+]82|=|Bol
= Z Cg(i’ﬁz / (Xﬁl,a: Kfl,x) (:U) 7T(y)* (Xﬂz,xgzry—l 02) (:U27 7T> dy7
|11+ 82 =150 ¢

for some constants cgf 5 € R
Moreover, applying Leibniz’s rule for vector fields once again, for any o € N,

with [a] < M, we have

Xy (A% (z, 7)Y oo (z, )

= Y A (R o) (@ m) Y (R 2) (2, 7)
|B1]-+|B2]=|Bo]

Observe that, for each (i, 52 € Z(k), )?/3101 = )A(:/th o1(x,m) belongs to the

symbol class S™!, with associated kernel

)?5151 : (a:,y) — ()?ﬁl,x /€1,x)<y),

and )?5202 = )?52@ oo(z,m) belongs to the symbol class S™2 with associated

kernel

555252 : (fI?,y) — ()?52,:2 K2,:E)<y)'

Thus, by (4.15.30)) we have obtained

e _ B
Xﬁg PM,o1,00 = Z 05(1)’52 pM7§ﬁ1017)}ﬁ202.
|B1]+B2|=|8
Applying Step 1 to each PM s, 01 Kgyor WO conclude that there exists M, € Ny
such that, for any M > M, there exist aq, by, bo € Ny and ¢; > 0 such that,

for all x € G,

}‘Xﬁoapr,UhUz(x’W)}‘Loo(@) 5 ||01||Sm1,a1,b1761 ||02||Sm270,b2,0'
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Step 3a: PM,o1,09 7T(‘X/D’o)

In this step of the proof, we consider the symbol pps o, o, T(Xg,), for By € Z(k).
We let M € N to be determined.
First observe that, by the definition of pass, .0, (see (4.15.10))), we have

Pitonos T(Xa) = 0 7(Xg) = D7 (A%0) (Vo) (X,

[a]<M

Now, note that, for any z € G and 7 € G we have

oz, m) m(Xs,) = F{Xs w2} (m),

and moreover, for any z € G,

Xﬁo,z "{z(Z) = /G)N(Bo,z ’{2,xy*1<zy_1> ’ﬁ,z(y) dy
= / ()?ﬁo HQ,wy’l) <Zy_1) /fl,a:(y) dy.
G

So,

F{ Ky o b (1) = /G o () (0)* F{ K gy gyt } () dly

/G o) 7(4)" (02 7(X5)) ey, ) ly

= 010 (o2 m(Xg,)) (2, 7).

Therefore, we have shown that

Prtones T(X) = 010 (7(X3)) = 30— (M%) (Vo m(Xi)

[o]<M

- pM,crl,agfr(Xgo) .

Moreover, by Theorem [4.10.1| and Proposition [4.5.10, oo 7(Xg,) € Sm2Fl%l.

Thus, applying Step 1 to pase, eon( Xg,)> WE conclude that there exists My € Ny,
depending on [y, 01, 09, such that, for any M > M, there exist aq, by, gg € Ny
and c; > 0 such that, for all x € G,
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HpM,m,Uz(xﬂr) Xﬁo HLOO 5 ||0-1H5m1,a1,b1,61 ||J2 71-(*Xﬁo)‘|sz+lﬂol,075270'

By applying Lemma [4.10.2] to o9 m(Xpg,), there exist ag, ab, as, V), € Ny and
o, ¢y > 0 such that

[loa 7 (Xgo) [ sma+itol 0000 S 1102ll5m2 0 b2 |17 (Xigo) | s1201 81,01

So, for every x € G and all M > M, we have

HPM,U1,U2(‘T77T) Xﬁo HLOO ‘|01||Sm1,al,b1,c1 ||02||Sm2,a2,b2702' (4'15'31>

Step 3b: )ZBO KM,o1,00,2

Let M € Ny to be chosen and [, € Z(k). Furthermore, suppose that the

distribution

KM,o1,00 * (:L“,Z) — "{M701,U2,x(2)

denotes the right convolution kernel associated to pas4,.0,. In this step we com-

pute an estimate for the L*°-norm of )Zﬁo KM,o1,00,2, 10T a fixed o € G.

By Theorems |3.4.1| and |3.2.3|, X 8o KM,01,00,z 18 continuous on G and there

exists C' > 0, independent of X 8o KM, o1 ,00,0, Such that

[ Xo0 ortoronil ey S C D N Xaobrtoronellpoey  (415:32)
By €Z(k)
EANEARREY
provided that the right hand side of this inequality is finite. We now prove
this. By Plancherel’s Theorem (see Theorem [2.2.7)), for any 5, € Z(k), with
1861 < |Bol, we have

H)?ﬁ() HM70'17027$HL2(G) = HpMUI,UQ( )F(X50
Hthn,az( )W(I+‘C NlHLoo
||m(I+ L)~ N17T(X56)

IN

’LQ(@)’
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for N; € Ny to be determined.

Observe that, by the work done in Step 3 (see (4.15.31))), there exists M, €
Ny such that, for any M > M, there exist @i, Ga, b1, by € Ny and ¢, ¢ > 0
such that

HpM,ol,aQ(xaﬂ-) 71-(I—i_‘C)J\ZIHLOQ(G‘\) S./ H0-1||Sm1,51,51,51 HO-QHSmQ,EQ,EQ,EQ' (41533)

Furthermore, we have

Hﬂ'([ + L) m(Xg)

| S ||+ L) 2CM=| o

- HB2N1—|56|HL2(G)’
where By, |5 denotes the right-convolution kernel associated to the operator

(I + £)~2@N=18D  This is finite, provided that 2N; — 8| > L, by Proposition
3.1.9] Thus, it suffices to assume that N; is such that

[ l
oN, — | =] — L
1 [2-‘ |Bo] > 5

Therefore, by (4.15.33)), we have proved that, for each By € Z(k), for any
M > M, there exists C' > 0, independent of x, such that

HX/BO K’Muo'lyo'%mHLOO(G) S 6||01||Sm1,51,51,51 ||0-2’|Sm2,52,52,52'

Step 4: m(Xg,) prior,00

In this step of the proof, we consider the symbol 7(Xga,) prr.o1.00, for By € Z(k).
We let M € N to be determined, and suppose Koy .05 : (%, 2) ¥ EMoy.00.2(Z)
denotes the right-convolution kernel associated to pase, o,-

First observe that, by Lemma [2.2.4]

IN

| ‘Xﬁo /iM,al,osz} ‘Ll(G)

HXBO ,{/M’UI70—2’$HLOO(G)7 (41534)

’ |7T<X/30> PM,01,02 | ‘Loo(a)

N

for x € G. Now, recall that Xz, can be written as
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Xgy = Z €Bo XE()’
1Bo| <50

for some ¢z € C*°(G). Hence,
0

X,Bo KM,o1,00,2 = E CEO XEO KM, 01,00,z
|Bol <|Bo

By applying in Step 3b to )?50 KMoy 00,25 fOr €ach 50 € Z(k), with |Bo‘ < |Bol,

we then obtain that Xg, Ka16,.0,2 18 continuous on G and satisfies the estimate

HXBO KM,U1,<T2@HL00(G) 5 ||0-1||5m1,a1,b1761 |‘U2’|Sm2,a2,b2,827

for some ai, as, b1, by € Ny and ¢y, co > 0, for M large enough. So, by
(4.15.34), we have obtained that, for every [y € Z(k), there exists My € Ny
such that, whenever M > M,

HTF(XBO)pM,Uh@HLoo(@) 5 ||O-1H5m1,al7b1,61 ||0-2||Sm2,t12,b2762'

Step 5: A%Proy 00

Let ¢ be a smooth, real-valued function on G, which is CC-vanishing at eg up
to order a — 1, for a € N. In this step of the proof we consider the symbol
Ay PMo1,00, for M € Ny to be determined. First observe that

(ra)(2) = /G gy yz ") Koy (27 ) K1 (y) dy. (4.15.35)

By Theorem [£.3.3] for any y,z € G and M € Ny we have

1 - 1 _ o _ _
av e = Y Saelyr ) (V) + Ry, (415.36)
[a]l<M

where

R}y (21)] < C |z |M |m31}\<4||Y"‘q||Loo(G), Vz,y € G, (4.15.37)

a

for some C' > 0 independent of y. Substituting (4.15.36)) into (4.15.35)) we obtain
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@) = Y 2 [ a0alo= )OO ka1 ) dy

[a]<M

+ / RZ,17M(yz_1) ”i?wy*l('zy—l) /<J1,x(y) dy

= 3 L @) Gy (O )

la]<M
+/C¥R51’M(yz_1)m2’my1(zy_1) k12(y) dy.  (4.15.38)
Now note that, for each o € Nf, with [a] < M, the distribution (z,z)
((l//\o‘/q)mu) (z) is the kernel associated to the symbol Aya,oy. Hence,

(2,2) s /G (@ ooy () (Vag)ir.0)(9) dy

is the convolution kernel associated to the symbol

(Ayeqo1) o (A%ay),

by Lemma [4.15.2 Hence, taking the Fourier transform of the expression given
by (4.15.38), for any z € G and 7 € G we obtain

Ayo(z,m) = Z i(AYaq 01) o (A%)(z, )

la]l<M

+ / k12(y) T(y)* ‘F{EZ*17M Ko,z () dy.
G

Therefore, by the definition of pasy,.0, (see (4.15.10))), we have

1
Aq PM,o1,02 (l‘, 7T> = Z J (AY"Q Ul) © (Aa02)<x7 71—)

[a]<M
+/G/i1,x(y)7T(y)*F{§31,M “Zwy*l}(m dy

S éAq(Aagl(gg,ﬂ)m@(m,w)). (4.15.39)

[a]l<M

Step 5a: Simplification of (4.15.39)

We now aim to simplify (4.15.39). First we study the sum
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> ﬁAq(Aaal)(Yaag).

lal<M

Observe that, for each o € Nj, with [a] < M, applying Corollary 4.10.3 to
A% and Y%0,, with M’ € Ny to be determined, we obtain

1
By(8°0) (Yo0) = 3 (Ayey A1) (YA 03) + T

lar]<M’

where, for any a, b e Nyo and ¢ > 0, 75, satisfies

||7'M’,a||sm—[a]+m27a,3,5 S ||Aa01||5m1—[a],51,’51,51 ||Ya02||smg,52,32752

< | (4.15.40)

|01 | |Sm1 ,El+[a],51,61 | |02 | |Sm2 ,EQ,EQ-%[O&},EQ’

for some aq, as, by, b € Ny, ¢1, ¢co > 0. Hence, we have obtained

> AA%)(V )

[a]<M
1
= > — (A A%) (YOAM00) + Y Tara. (4.15.41)

aj<nr M [a]<M
[a1]<M/

Next, we study the sum

> o By o (A%).

lal<M

Applying (4.15.7)) to the symbols Ayo, 01 and A%c9, with M’, we obtain

1
(Ayaq 0’1) O (AQO'Q) = Z —'(AalAyaq 0'1) (YalAaO'Q) -+ pM/,Ayaqcrl,Ao‘Uz'

7.
[a1]<M’

Thus, we have shown that
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> By o (A%)

[a]<M
1 Z
= E a_1|<AalAyaq 0'1) (YO“AO‘UQ) + pM’,Ayaqal,Aaaz' (41542)

[a]<M ’ [a]<M
[0&1]<M’

Hence, combining (4.15.41)) and (4.15.42)) with (4.15.39)), we obtain

Aq pM70'1702(x77T> = Z (pM',AyaqU1,AD‘0'2 - TM’@)
[al<M

+ / /£17x(y)7r(y)*F{§Z,17M Koy p(m)dy.  (4.15.43)
G

Next, we shall find an estimate for HAq PM o105 (T, W)‘ ‘Loo(é) using (4.15.43)).

Step 5b

We first study the L*°(G)-norm of the sum

E (pM’,Ayaqal,Af"ag - TM’,a)'
[o]<M

By the work done in Step 1, we readily obtain that there exists M, € Ny such
that, for any M, M’ > M, whenever [a] < M, there exist @, @, b1, by € Ny
and ¢, ¢a > 0 such that

prrr,avagor800: | Lo @) S NAvaqO1]|gmi-@ 1o g, 5 2 [[A%02]|gmate1 5,5, 2,
S "0-]-|’Sm1,61+(a—[a]),51751 Ho—zHSmQ,EQ-i-[a],BQ,EQ'

This, together with (4.15.40), shows that there exist af, aj, b, b, € Ny and
i, ¢4 > 0 such that

Z HpM/’AYaqffl,Ao‘og — TM’,al ‘Lw(é)
la]<M

S oillsmar e o2l sme ap b0 (4.15.44)
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Step 5¢c

It remains to check the L‘X’(a)—norm of the integral

[ rus ) 7 PRy a2} )

Let M; € N to be chosen. For 7w € G we have

[ rrs) ) PRy Y )
= L ((I -+ Ey)Ml ([ + Zy)iMl Kl,x(y)) W(y)* ‘F{Eg—u\/[ "12,:cy—1}(7r) dy

= /G (T + L) ™ k1a) () (T + L) [7(y)* F{RI_ Koy } ()] dy,
as I+ L is a symmetric operator on L2(G). Since

(I+Z)M1 = Z CBo )’Eﬁov

Bo € Z(k)
|Bol <2M;

for some cg, € R, then

/G ((I + Zy>7M1’il,z) (y) (I + Zy)Ml [W(y)* F{Eq—l M ’12,wy‘1}(7r)] dy

Z / ]+£ M) (y )Xﬁoy[ )*‘F{EZ*HM Koy } ()] dy
Bo €Z(k
\,30|<2M1

= > / (T + L) ™ k12) () (X amy 7(91)°)

BEI(k)?
\B|<2M1

‘F{ (55/3271/2:9 EZQ—17M) (5(:637113:?/ K’2,xy3_1) } <7T) dy7

for some cg € R, having used Leibniz’s rule for vector fields on the last equality.
Now, observe that, for 8 € Z(k)? and y € G we have

Xorym(y)" = (=) a(y)w(Xs).
Moreover, by (4.10.17)),

~Xp,q
y~L,M"

ngR =R

_1M
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Additionally,

X537y R2ay=1 = <_1)|53| X5375E1=96y*1 K2z, -

Thus, we have

/G e () T) FARL by } () dy

= 3 0P [ (4B ) ) o

BeT(k)? ¢
IB]<2M)

~)~(62‘1

W(Xﬁl) F{Ry—lyM (Xﬂ3,961=:0y—1 /412,901) }(ﬂ-) dy.

~

Taking L°°(G)-norm we obtain

[ 1) ) LRy Y )

L>=(G)
S, Z sup H’/T(X&) f{é;(_ﬂfjw (Xﬁzs,m:ﬂcy_l 5271’1) }(W)HL“’(@)
pezhyp V<C
|B|<2M;

< ||(I + L)~ sy, (4.15.45)

[Py
We first study the L'(G)-norm on the right hand side of (4.15.45)). Note that,
by Plancherel’s Theorem (see Theorem [2.2.7)), for every x € G we have

17+ 2 ki agy S NIT+£)7

e =

= [for(em) 7 (L + L) g

"Rl }L2(G)

—mq

< |[n (@ + L)~z oy (@ m) w4 L) 72 ] g
|| (1 + £)~z @M=

: ‘ ’LQ(é) '
By Proposition [3.1.9|

H7r(]+L’)_%(2M1_m1)”L2(a) < +oo,

provided that 2M; > mq + é Moreover, there exist aq, 51 € Ny and ¢; > 0
such that
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|7+ £)=2m=m) oy (2, 7) (1 +

||O-1||Sm1,51£1,51'

Hence, for 2M; > mq + %7

|\(I+Zy)—M1m’m|\L1(G) S Nollgm 3, 5,2 (4.15.46)

Next we study the Lm(@)—norm on the right hand side of (4.15.45). Now,
observe that, by Lemma [2.2.4] for every x,y € G and 8 € Z(k)3, with |f] <
2M;, we have

[[7(X) FLRL (Kot K2e) Y e

< HXﬁl{RX_BEM (Xﬁs Y3=y K?:vy?,_l)}HLl
< Z /’Xﬁllzl zR ﬁf?\/l(zl)l

B1,1,81,2 € Z(k)
|B1,11+1B1,2|=151

| X1 0,20—2 X gy o1may—1 Koy (22)] dz,  (4.15.47)

by Leibniz’s rule for vector fields. Furthermore, for any f;:, 812 € Z(k), with
|Bi1| + |Br2] = |Bi], we have

~F B
[ Xpi,2 BT ()] S 10 vz e G, (4.15.48)

1,M

Hence, by (4.15.47]) we obtain

XBQ

Hﬂ- Xﬁl ‘F{R -1.M (XBS z1=zy~1 K2 m1)} T HLOO G

< > / M X g e Xy iyt Fioa (22)| d2. (4.15.49)

B1,1,61,2 € I(k)
|81, 1|+\61 2|=[61]

Furthermore, for any S, f12 € Z(k), with |511] + |S12| = |B1], observe that
the distribution

(ZL‘, Z) — Xﬁl,z,z X,337l‘ ’{Q,w(z)

is the right-convolution kernel associated to the symbol
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Xp, m(Xp,,) 00 = {Xp,om(Xp,,)00(z,7) : 2 € G, 7w € CA;},

and additionally, by Proposition [4.5.10[ and Theorem [4.10.1} Xpg, 7(Xp,,) 02 €
SmatlBral - Therefore, if M — |81]+1 > max(mg+|B1.2| +1,0), then by Corollary

4.13.5| there exist a’, b/ € Ny and ¢ >0

/G |z|M_‘BL1| |X51,2,22:Z X537$1=96y*1 K2,z (ZQ)’ dz
SJ ‘ |X,83 7T<X61,2) U2| ‘Sm2+‘ﬂl,2|7a/’b/’cl
S ‘ |7T<Xﬁ1,2) ‘ |S‘ﬁ1v2‘,a’1,b’1,c’l ||02||Sm2,a’2,b’27c/2, (4.15.50)

for some af, af, b, by, € Ny and ¢}, ¢, > 0, by Lemma 4.10.2] It then suffices
to choose M € N such that
M > 2M; + [ + max(msy + 2M; +1,0). (4.15.51)

Combining (4.15.50|) and (4.15.51)) with (4.15.49)) we then deduce that there exists

My € Ny such that, for any M > My, there exist as, by € Ny and ¢ > 0 such
that

| ‘W(Xﬁl) F{ﬁjff,iw (Xﬁayyszy /{ny;l) } (ﬂ-) | ‘Lm(é) S ||O-2||Sm2 ,EQ,EQ,EQ’ (41552)

Thus, by (4.15.45)), (4.15.46) and (4.15.52), we conclude that there exists
My € Ny such that, for all M > Mg, there exist ay, 52,51,52 € Ny and
¢1, Co > 0 such that

Step 5d: Conclusion of Step 5
By (4.15.43), combining (4.15.44)) and (4.15.53)), we conclude that there exist

ai, as, by, by € Ny and ¢y, co > 0 such that

[ r1) ) PRy oY)

L*=(G)

< lollgm 2,52 o2llgme 5,5, (4.15.53)

Su% HAQPM,UL@(%W)HX(%) S ||‘71||Sm1,a17b1701 ||02||Sm27a2,b27027
relG
TeG
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as required.

4.15.5 End of the proof of Theorem 4.15.1

Performing the analysis done in Steps 1-5 simultaneously, we obtain that for all
Bo, P1, P2 € Z(k) and a € Ny, there exists My € Ny such that for all M > M,
there exist C' > 0, and a}, aj, b}, b, € Ny and ¢}, ¢, > 0 such that

‘ |7T<X/31) Aa‘)’zﬁo PM,o1,02 (.Q?, 7T) W(X,32) } ‘Loo(a)

< Cllowllsmiar v e loallsm2 a0, (4.15.54)

Now, if o« € Nj, f € Z(k) and v € R, then for any M > M, we have

‘ ‘7‘(‘([ + E)fé(mf[a]“) Aa)}go o(z,m)m(I+ E)% | ‘Lw(é)
S D R+ L) AKX (A% ) (Vo) (1) (] + £)2| g

[a1]<M

|71+ £)7 2 AKX prg gy g (2,7 7L+ L)F]] gy (4.15.55)
by the definition of pps s, o, (see (4.15.10)).

First, we analyse the sum. Note that, by Theorem [4.10.1} for every oy € N,
with [ay] < M, there exist a, as, 51, 62 € Ny and ¢;, ¢2 > 0 such that

|7 (1 4 £) 72071 A X (A% ) (Y 0) (2, ) (1 + £)2 ]

5 ||Aa10-1||Sm1—[a1]761;[;1751 ||Ya10-2||5m275252752
5 ||01||sm17al+[a1]fl§17a ||02| S"L2,52,52+[a1],52' (41556)
Moreover, we let
1 v
Y1 = max —é(m— [Oz]+l/),0 s Yo = max <§’O> .

By (4.15.54]), there exist @y, ao, 1_)1, by € Ny and C1, Co > 0 such that
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|71+ £)7 2 A X pag 00 (0 7) 7L+ £)F|

S Z ‘ |7T<X51> A“Xgy PMo1,00 (T, T) W(X52>‘ ‘Loo(a)
1B11<m
[B2]<72

5 ||0-1||Sm1761751761 ||02||Sm27527g2752o (41557)

Combining (4.15.56)) and (4.15.57)) with (4.15.55|), we conclude that there exist

ai, as, by, by € Ny and ¢y, co > 0 such that

(|7 (1 + £)72 ) A X, o (e, m) w1+ £)7]| g

5 ||01||Sm1 ,a1,b1,c1 ||02||S"L2,a2,b2,02'

Observe that, for any 3 € Ng, the differential operator Y can be written as

YP = Z C8o X B0
Bo € Z(k)
|Bo|<[8]

for some c¢g, € C>®(G). Hence, we have shown that, for any «, § € Nf, there

exist aq, as, b1, by € Ny and ¢y, co > 0 such that

(|7 (1 + £)72 ) AYY P, m) w (1 + £)2 ] g

S HUlHSm1 ,a1,b1,c1 HO—QHS"L?,M,bz,CQ‘

This finishes the proof of Theorem [4.15.1}

4.15.6 Asymptotics for composition
Theorem can be improved via the following result.

Corollary 4.15.4. Let my, my € R, and set m := my + mo. Furthermore, let
op € 8™ and oy € S™2, denoting o := gy 0 g9, and recall that, for M € N,

1
PM,oc1,00 *— O — Z al (A%) (Y%3) .

[a]<M

Then, there exists My € Ny such that, for all M > M,, we have
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1
g ~ Z a (Ao‘al) (Yagg),
[ .

al<M
in the sense that, for all a, b € Ny and ¢ > 0, there exist aq, as, by, by € Ny
and ci, co > 0 such that

HPMJLUQHSm*M,a,b,C S H01| S™1,a1,b1,c1 HO—QHsz,ambz,Cz'

Proof. Let «, B € Njj and v € R. Furthermore, let M’ > M to be determined.
First observe that

1
Praro = 0— Y o (A%on) (Vo)
[o1]<M ’
1 1
= 0 — Z m (AalUl) (Y 0'2 + Z —| Aalal) (Yala'g)
lan]<M’ L [aa]<M’ L
1
— — (Aalgl) (Y‘“ag)
Oéﬂ
[Oq]<M
1
= PM'o1,00 + Z o (A% g,) (Ya10'2) .
M<[ar]<M’
Hence, for every =z € G,
H7T(I+ L:)—%(m—M—[a}+u) Aa)/xﬂpM7O'170'2(x77T) 77(]+ [’)%HLOO(@)

< HT(([ + E)ié(miM*[aHy) Aayf PM’ 1,00 (*Ta 7T> ﬂ'([ + ‘c)% ‘ |L°°(é)

n Z H’]T(I n E)*m_lwg[aH_VAanB(Aalal)(Yalo-2)<x7ﬂ-)ﬂ-(] + E)%HLOO(@)

M<[aa] <M’

We now do the same analysis as in Section First note that, for any
a; € N§, with M < [oy] < M, we have

m—M—[a]+v
2

|71+ £)" AP (AN ) (Y0) (2, ) (] + L) | g
< (1 + L)) g

AL (A0 (Y U 00) (2, m)m (L + £)F]] )

m—[aq]
r(r + 2
and by functional analysis,
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|| (1 4 £)~2(leal=M < 4o0.

)HLoo(é)

Hence observe that, by Theorem4.10.1{(see also (4.15.56))), there exist a;, as, 51, by €

Ny and ¢, ¢; > 0 such that

Do w4 £y M A B (A6 ) (V) () (] 4 £

M<[oq]<M’

)%Hm(é)

S Haleml,‘dl,Zha HUZHsmz,aQ,'EQ,gQ-

Furthermore, by (4.15.54]) and the work done in (4.15.57)), we also deduce that

there exist @, as, 1_91, by € Ny and ¢1, ¢o > 0 such that

[[7(1 4+ £) 72N AYE g g 2. 1) 7L+ L3

S Ho-lHSml ,51,51,51 HO.Q‘ ‘Sm2762,52752'

Hence, we have shown that there exist aq, as, by, by € Ny and ¢q, ¢ > 0 such
that

| ‘W(I + [’)—%(m—M—[a]—&-u) AayxﬂpM,m,m (JZ, 7T) W(I + E)% ‘ {LOO(@)

Ho-lHSml,ahbl,Cl |’02||Sm2,a2,b2,62'

O

The following result is a consequence of Theorems |4.14.1| and 4.15.1], and the
fact that (I 4+ £)2 is in the calculus, for any s € R.

Corollary 4.15.5. Let m € R. If 0 € S™, then Op(o) extends to a bounded
operator from L*(G) to L?_, (G), for all s € R. Moreover, there exist C' > 0,
a, b € Ny and ¢ > 0, independent of o, such that

| }Op(O’ ) S C H0-| |Sm,a,b,¢:‘

) | ‘K(LE(G)ﬂLim(G)

277



Chapter 5

Conclusion and future work

5.1 Conclusion

In this section we summarise the main results of this thesis. The objective of
this exposition was to define a class of operators ¥ which forms a symbolic
pseudo-differential calculus on a compact Lie group G, in a sub-elliptic setting.

The chosen sub-elliptic operator was the sub-Laplacian £ associated to a
Hormander system of left-invariant vector fields on G. The Sobolev spaces L?(G)
that arise naturally from £ have relatively well known properties, and we checked
some of them, such as the Interpolation Theorem (see Theorem|3.3.1]) or a Sobolev
embedding (see Theorem . In this chapter we also introduced a notion of
order for a smooth function ¢q. We have that ¢ is CC-vanishing at ez up to

order a — 1, for a € N, if

lg(2)] S =% Vz e G,

where |- | denotes the Carnot-Carathéodory norm on G.

The core of the new results of this thesis appear in Chapter [l We first
introduced the notion of comparability to the C-C metric, and the concept of
difference operators. An example of a family of functions comparable to C-C
metric is (g, which we define in the following way. For a small neighbourhood
V of e¢ in G and r € (0,1], satisfying (4.2.), we let x,¢ € D(G), taking
values in [0, 1], be such that

xX(z) =1 on B.(eg), x(z)=0 on V¢

and
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P(z) =0 on B,(eq), P(z) =1 on B.(eg)".

We then define

Qo (2) =z x(2) +¢¥(z) for j=1,2,...,n, (5.1.1)

and let

Qo = {%,1, q0,25 - - - 7Q0,£}-

Our next objective was to develop a pseudo-differential calculus, which is
meant in the following way: If for each m € R, U™ is a class of operators, then

the space

U = U\Ifm

meR

is said to form a calculus if it satisfies the following properties:

(I) f T3 € U™ and Ty € U™ for my, my € R, then

TyoTy, € Imtm2,

Moreover, the composition is a continuous map U™ x Wm2 — ymitmz,

(I) If T € ¥™, for m € R, then its adjoint

T e v™m.
Moreover, the adjoint is a continuous map ¥™ — U™,

We first defined our symbol classes S™ on G, for m € R, with respect to
our sub-Laplacian L, any basis of vector fields V', and any () comparable to
the C-C metric, as well as their associated operator classes U™. In the case
that S™ = S™(Qy) is defined in terms of @y and the basis of vector fields Y
(see Section , we have some important properties. First of all, for any @

comparable to the C-C metric we have

5™(Qo) € 5™(Q).
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Secondly, on the classes of symbols S™((Q)y), difference operators satisfy a prop-
erty analogous to Leibniz’s rule. More precisely, if ¢ is CC-vanishing at eg up
to order a —1, for a € N, and o, € S™, g9 € S™2, for my, ms € R, then for

any a’, b € Ny and ¢ > 0 we have

||AQ<0102)||Sm1+m2_“,a’,b’7c’ 5 ||0-1H5m1,¢11,b1,c1 ||0-2||Sm2,a2,527627

for some aq, as, by, by € Ny and ¢, ¢ > 0.
This result on the product of symbols provided us with the tools necessary to
prove that if 73 € U™ (Qy) and Ty € U™2(Qy), for my, my € R, then

Tyo1; € ‘I’ml+m2(Q0)a

and that the composition is a continuous map U™ x U™2 — y™+m2  Hence,

we have proved that the space

U(Qo) = U U™ (Qo)

meR

satisfies property (I) above.

5.2 Future work

The author of this thesis believes one can prove stability of V(@) under taking
the adjoint. That is, if T € U™(Qy), for m € R, then its adjoint T* € U™(Qy).
The main ideas for the proof of this result appear in Section [4.15, where we proved
the stability of ¥(Qo) under composition. This will imply that the space

U ¥(Qo)

meR
has all the natural properties of a symbolic pseudo-differential calculus; that is,
it is an algebra of operators with a notion of order compatible with the action on
functional spaces.
The next questions will require more work and new ideas. For example,
understanding the appropriate conditions for a function to be comparable to the
C-C metric, so that

S"(P) = S™(Q),

whenever P, () are comparable to the C-C metric. Another example involves
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m
po”

for m € R and 0 < § < p <1, the class nga is defined to be the space consisting

describing a sub-elliptic symbolic calculus for the symbol classes A priori,

of symbols ¢ such that, for any a,3 € Nj and any v € R, we have

sup ||m (I + 5)—%(m—p[a}+5[ﬂ]+u) YPA“o(x, m)m (I + ,C)%
reG
TeqG

Nepn <C-

Observe that the case p = 1 and 6 = 0 is the one presented in this thesis.
Moreover, the case 0 < § < p < 1 will certainly be a direct generalisation of
the methods presented here. But there are other cases, such as p = ¢ = 0 (in
particular, the Calderén-Vaillancourt Theorem), which will require new ideas.

More generally, we may consider studying a sub-elliptic pseudo-differential
calculus for a Lie group G of polynomial growth. One of the main difficulties in
this task is in proving the Calderén-Zygmund-type estimates for the convolution
kernel associated to a symbol belonging to the class S™ (see Section. In the
case that G is compact the convolution kernel has compact support, and hence
the behaviour away from the identity is clear, but in the non-compact setting this
has to be considered. The author of this thesis expects that finding a family of
difference operators such that the estimate away from the identity is satisfied to
not be difficult. However, obtaining the estimate near the identity would require
more work.

As the pseudo-differential calculus of H was developed in Fisher and Ruzhan-
sky [I8] (see also Bahouri et al. [3]), it is natural to compare it with the con-
traction of our pseudo-differential calculus on G = SU(2). The setting of these
investigations can be extended to any contraction of a compact Lie group to its
nilpotent counterpart intervening in the Iwasawa decomposition of a non-compact
semisimple Lie group (see Dooley and Ricci [12]).

In conclusion, having obtained a sub-elliptic pseudo-differential calculus in
the compact setting, the author believes this exposition presents the groundwork

for more general results.
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Appendix A

The Carnot-Carathéodory metric

A.1 Connecting paths

Let G' be a connected Lie group of dimension n and suppose that

X = {X, Xo,..., X3}

forms a Hormander system of vector fields in G (see Definition [2.3.12]).
Suppose v : J — G is a continuous map, where J C R is an interval. The

velocity of v at tg € J is defined to be the vector
d

V' (to) = 1 (% . ) : (A.1.1)

which is the push-forward of % —t by ~ (see Section [2.3.1). Here %‘t:to

denotes the usual derivative on R, or equivalently, the canonical tangent vector

to R at tg. Moreover, note that +'(ty) is a tangent vector to G at the point
v(to). The action of +/(¢y) on a smooth function f on G is given by

Y'(to)f = (f o) (to).

For a,b € R, with a < b, we define Cx([a,b]) to be the set consisting of
absolutely continuous paths v : [a,b] — G such that

v (t) = Z () X, (1) ae., (A.1.2)

=1
where ¢, ¢y, ..., cp are some integrable functions over the interval [a,b]. For a

path v € Cx([a,b]), we define the length of v as
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1/2

il z/ (Z ai(t)2> dt. (A.1.3)

Definition A.1.1. Suppose a,b € R, with a < b. Let v : [a,b] = G be an
absolutely continuous path belonging to Cx ([a,b]). Then, its velocity «' satisfies

Y(t) = Z () Xi(v(t))  ae.,

=1
where ¢q,ca, ..., ¢ are some integrable functions over the interval [a,b]. We say

~ has constant velocity A > 0 if for a.a. t € [a,b], we have

1/2
V@I = (Zci(t)Q) =\

i=1
Definition A.1.2. For z,y € G, if there exists an absolutely continuous path
v € Cx([0,1]), for some a,b € R, with v(0) = 2 and (1) = y, we define the

Carnot-Carathéodory distance between x and y by

d(z,y) = inf { || : v € Cx([0,1]), ¥(0) =z, v(1) = y}.

For z € (G, we denote

|z| == d(eg, 2). (A.14)

It is proved in [55] (p. 39) that d(-,-) is indeed a metric on G. Moreover, for
any two points z,y € G, the existence of a path connecting x and y is due
to the following well-known result by Chow and Rashevskii (for a proof, see, for

example, Chapter 2 in Montgomery [35]).

Theorem A.1.3 (Chow’s Theorem). If x,y are any two points on G, then there

exists an absolutely continuous path ~ which connects x and y.

One can also study the special case of absolutely continuous paths 7 satisfying

d(z,y) =[],

for some points x,y € G. Such paths are called (minimising) geodesics. In the
general setting of manifolds, a geodesic between any two points does not always
exist. However, as proved in Bellaiche and Risler [4] (see Theorem 2.7 therein),

one always exists in our case due to Hérmander’s condition on X.
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Theorem A.1.4. Any two points in G can be joined by a geodesic. That s, for
any x,y € G, there exists an absolutely continuous path ~ : [a,b] — G, such
that v(a) = x and ~(b) =y, for some a,b € R, which satisfies

V] = d(z,y).

Remark A.1.5. Let z,y be two distinct points in the compact Lie group G.
Furthermore, suppose 7 : [a,b] — G is an absolutely continuous path connecting
r and y belonging to Cx([a,b]). Then, consider the path 7, : [0,1] — G given
by

Y(t) = v (1 —=t)a+1tb), t € [0,1].

Then, ~, is also an absolutely continuous path connecting x and y, and more-
over,

ol = s

ol = g
Thus, v € Cx([0,1]), and in particular, the Carnot-Carathéodory distance
between z and y, d(z,y), is well defined.

Furthermore, let T' = d(z,y). We can also construct the path v, : [0,7] - G

given by

T —1t)a+tb

T(t) = 7 (%), t € [0,7].

The path v; € Cx([0,77]) is also an absolutely continuous path lying in G, and

connects x and y. Moreover, we have

ml =

A.2 Local theory

As in the previous section, we let G be a connected Lie group of dimension n
and consider a Hormander system of vector fields X = {X;, Xs,..., X}, for
some k € N. Suppose further that g denotes the Lie algebra of G.

Now, let B,(eg) be the ball centred at the identity element eg of radius r,
with respect to the Carnot-Carathéodory metric. Furthermore, let V(r) denote
the volume of the ball; that is,
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V(r) = / dz,
By (eq)

where dz denotes the Haar measure on G. The objective is to give an estimate
for V(r). We start by letting V;, j € N, be the linear subspace of g spanned

by the commutators of vector fields of length at most a. That is,

V= Span{[X;,, [Xsy, .., [Xin Xio] - ]) 0 |Gsia, . uta)| < 5, (AL221)

where the span is taken over all multi-indices (iy,is,...,%,), With i1,d9,... 44
taking values in {1,2,...,k}. The definition of Hormander systems implies that
there exists s € N such that

We denote n; =dim V), s0 0 =ny <n; <--- <ng=n.

Definition A.2.1 (Local dimension). Let G be a connected Lie group of dimen-
sion n and consider a Hérmander system of vector fields X = { Xy, Xo, ..., Xs},
for some k € N. Let V; be the linear subspace of the Lie algebra of G given
by , and let n; denote its dimension. Then, the expression

l:=n1+2(ng—mny1) + -+ s(ns —ns_1)
is called the local dimension of G.

Ezxample A.2.2. In the case of SU(2) it is not difficult to see that

‘/b - Spa‘n{]}v ‘/1 - Spa‘n{Xla X2}7 ‘/2 = Spa‘n{Xla X27 [XhXQ]}'

Since X3 = 2[X1, X3, then V5 = su(2), and so it follows that the local dimension
of SU(2) is given by
[ = dimV; +2(dim Ve —dimV}) = 2+2-(3-2) = 4.

In general, we have the following result, whose proof may be found in [55]
(Chapter V, Theorem V.1.1).

Theorem A.2.3. Let G be a connected Lie group of dimension n and consider a

Hérmander system of left-invariant vector fields X = { Xy, Xa, ..., Xi}. Suppose
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that B, (eq) denotes the ball of radius r > 0 centred at the identity eq, with
respect to the Carnot-Carathéodory metric. and let V(r) denote the volume of
this ball. Suppose further that | denotes the local dimension of G. Then there
exists C' > 0 such that

C—1y <V(r) < crl,  for 0<r<l.
Ezample A.2.4. In the case of SU(2) we summarise this result as follows. For
any r > 0, there exists C' > 0 such that

Clrt <V(r) < Crt, for 0<r<l. (A.2.2)

Remark A.2.5. Since SU(2) is a unimodular Lie group, then for any x € SU(2),
the volume of the ball B,(x) of radius r > 0 centred at x is equal to the volume

of the ball B, (I).

A.3 Integration of powers of |z|

Let G be a compact Lie group of dimension n and local dimension [. Fur-
thermore, suppose Y = {Y7,Y5,...,Y,} denotes a basis of the Lie algebra g of
G.

Now, for any given r € (0,1) there exists a neighbourhood N of 0 in R"
such that the mapping ¢ : N — B,(eg) given by

H((21, 22, ... 2n)) = €22 eI (22 . 2,) € N, (A.3.1)

is a diffecomorphism. For a given z € B,(eq), we shall let (2, 29,...,2,) denote
the coordinates of z in the sense that (A.3.1)) is satisfied.

Lemma A.3.1. For any v € R, we have

/ |2|" dz =~ / P dp.
By (eg) 0

Proof. We consider the change of coordinates map ¢ : B,(eg) — N given by

d(2) == (21,22, .., 2n), z € B.(eq).

Thus, we have
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/ |z]" dz = / || (21, 22, . .- ,zn)H%n | Jp-1(21, 22, .., 2)| dz1 dza ... dzp,
Br(eg) N

where |Jy-1(21, 29, . . ., 2,)| denotes the determinant of the Jacobian of ¢~'. Since
Vol(B,(eg)) =~ r* (see Theorem [A.2.3)), then it follows that we must have

o~ / | Jg-1(21, 22, - -, 2n)| d21d2y ... dz, = / dz.
BER"(0) By(eo)

We now apply the substitution p = H(Zl,ZQ, e ’Z”)HR"' Hence, the volume

element in polar coordinates satisfies

|J¢71 (2517 22y .- ,Zn)| le dZQ e dzn ~ pl—l dp,
which yields the result. -

Proposition A.3.2. Let v € R. Then the integral

/ |z|7 dz < +o0,
G

provided that ~v > —I.

Proof. Observe that, if r > 0, then

/\zl” dz :/ 2 dz+/ 2 de.
G B'r'(eG) B’l'(eG)C

By the compactness of G,

/ |z]” dz < o0,
Br(eG)c

for any v € R.
We now study the integral

/ |27 dz, (A.3.2)
Byr(eg)

and assume that v < 0. The case v > 0 is immediate, as the integral (A.3.2)) is
finite whenever v > 0. By Proposition [A.3.1} we then have

/ |2|" dz ~ / P dp < oo,
BT‘(EG) 0

provided that v > —[. This finishes the proof.
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Appendix B

Cotlar-Stein Lemma

This brief section is dedicated to the proof of the Cotlar-Stein Lemma for the
case in which we have a collection of infinitely many operators. First, let us state
the result for finitely many operators, whose proof can be found in Stein [47]
(Chapter VII, Section 2).

Theorem B.0.1 (Cotlar-Stein Lemma). Suppose that {T,})_, is a collection of
bounded operators on a Hilbert space € and assume that we are given a sequence
of constants {y(€)}eez C RT, such that

Furthermore, suppose that for every €,k =1,2,..., N, we have

N

17T

2
L) = ’Y(é_k) )

| T T3 (- k).

IN

L(H)

Then, the operator
N
T:=>T,
=1
satisfies

T 2e) < A.

In the context of our work, we will use the following consequence of the Cotlar-

Stein Lemma.
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Corollary B.0.2. Suppose that {T;}icz is a collection of bounded operators on
L*(G) and assume that we are given a sequence of constants {v({)}ecz C RT,
such that

Suppose that for every ¢,k € N, we have

|| 77 T < A0 —k)?,

< (L — k).

ZL(L2(G))
| T T

Z(L*(@))

Furthermore, let us assume that for any f € D(G), the sum

> Tf

LeZ

converges in the sense of distributions. We denote by T'f € D'(G) the limit of
this sum. Then, T extends to a bounded operator on L*(G), with

Tl 22y < A

Proof. Theorem tells us that for every N € N,

N
7™ = " T,
{=—N

extends to a bounded operator on L?(G) and satisfies

(
1Ty < A

e

where A is independent of N. In particular, this means that for every f €
L*(G),

N
Y Tf
(=1

Now, by the assumption that the sum »_,_, 7, converges in the sense of distri-
butions, for f,g € D(G), we have

< AHfHLQ(G). (B.0.1)
L*(G)

<Tf7 g>L2(G) = ]\}1_{1;0 <T(N)f7g>L2(G)'
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Since

| <T(N)f’g>L2(G) ‘

IA

HT(N)Hg(p(G)) 1 fllz2e) 9]l e2(q)
< Allfllr2e) N19llz26)s

where A is independent of N, then we have

(Tf,9) 2y | < Allflle2e 1912 (-

The density of D(G) in L*(G) implies the result.
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