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Abstract

This thesis aims to develop a sub-elliptic pseudo-differential calculus on any

compact Lie group G. We build an operator class Ψ which forms an algebra of

operators.

We consider a Hörmander system on G and its associated sub-Laplacian L.

The Sobolev spaces that arise naturally from the sub-elliptic operator L are well

known, and we check some important properties.

Our symbolic calculus is then developed, we define our symbol classes Sm on

G and their associated operator classes Ψm, for m ∈ R. A particular example

of these symbol classes, Sm(Q0), is considered and we show that Sm(Q0) is

contained in any Sm.

The core results of this thesis are then proved. We show that if T1 ∈ Ψm1(Q0)

and T2 ∈ Ψm2(Q0), then the composition operator T1 ◦ T2 satisfies

T1 ◦ T2 ∈ Ψm1+m2(Q0).
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Chapter 1

Introduction

The research presented in this thesis aims to provide an in-depth study of a

sub-elliptic pseudo-differential calculus on compact Lie groups. Our objective is

to define a class of operators which forms a symbolic calculus, and to establish

results analogous to the already well-understood Euclidean setting. We do not

provide an overview of these well-known results in this thesis, but the reader is

referred to Stein [47] for an introduction in this subject.

One of the main tools used in our research is Fourier multipliers. These

have been extensively studied throughout the history of mathematics, with the

first important results appearing in Marcinkiewicz [32], where conditions for Lp

Fourier multipliers on the torus were given. In 1956, this result was extended to

Rn in Mihlin [34]. It was proved that if the bounded function σ : Rn −→ C
satisfies

|∂αξ σ(ξ)| ≤ Cα|ξ|−|α|, ξ ∈ Rn, (1.0.1)

for all multi-indices |α| ≤ dn/2e + 1, then σ is an Lp Fourier multiplier for

1 < p < +∞. In 1960, this result was expanded further in Hörmander [27].

The condition given by (1.0.1) has a natural connection to the definition of the

Euclidean symbol class Sm1,0(Rn) (m ∈ R), which is given by all functions σ on

Rn × Rn such that

|∂βx∂αξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|2)
1
2

(m−|α|),

for all multi-indices α, β. In the setting of Lie groups, the reader is referred, for

example, to Coifman and Weiss [8], which serves as an introduction to Fourier

multipliers on the compact Lie groups SU(2).

Some recent results related to the research presented in this thesis include
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Ruzhansky, Turunen and Wirth [44], which proposes a global characterisation

of a Hörmander class of pseudo-differential operators on compact Lie groups.

Furthermore, Fischer [17] expanded on the results by Ruzhansky et al., providing

a complete intrinsic description of a pseudo-differential calculus of compact Lie

groups. In the literature, one can also find results concerning a pseudo-differential

calculus on non-compact Lie groups. See, for example, Taylor [52] or Hajer

Bahouri, Fermanian-Kammerer and Gallagher [3], which focus on the Heisenberg

group H, and also the monograph Fischer and Ruzhansky [18], which provides a

pseudo-differential calculus for nilpotent Lie groups.

A common theme among the results in the compact case is the use of el-

liptic operators in the calculus, such as the Laplace operator. However, in our

analysis we explore a sub-elliptic setting instead, choosing an appropriate sub-

Laplacian to suit our objectives. This change has some important implications

in the functional analysis. For instance, in this case the Carnot-Carathéodory

metric is a more appropriate tool than a Riemannian metric, which is often useful

in the elliptic case. A study of sub-Riemannian metrics in the Euclidean case can

be found, for example, in Nagel, Stein and Wainger [36], Fefferman and Phong

[15], or Parmeggiani [37]. Another consequence of this choice is reflected on the

Sobolev spaces we work with. As we shall see in Section 3.2, our Sobolev spaces

L2
s will be defined in terms of the sub-Laplacian we chose, and we will need to

check that the fundamental properties of Sobolev spaces are satisfied; such as the

interpolation theorem (see Theorem 3.3.1) or a Sobolev inequality (see Theorem

3.4.1). In this context, sub-elliptic operators are usually a natural consideration

in the case of stratified nilpotent Lie groups, and a study of Sobolev spaces in

this setting can be found, for example, in Folland [19] or Fisher and Ruzhansky

[18].

One of the most important tools we use in our symbol classes Sm (m ∈ R)

are difference operators. These are defined in order to replace differentiation in

the frequency variable. In the literature, they were used with the purpose of

studying a pseudo-differential calculus of compact Lie groups in Fischer [17] and

Ruzhansky et al. [44], and of nilpotent Lie groups in [18]. A first fundamental

example of difference operators can be found in Ruzhansky and Turunen [43] for

the case of the torus. If κ is a function on Td, for some d ∈ N, then for any

j ∈ {1, 2, . . . , d} the difference operator ∆j acts on κ by

∆j κ̂(ξ) = κ̂(ξ + ej)− κ̂(ξ), ξ ∈ Zd, (1.0.2)

where ej denotes the unit vector in the j-th direction. It can then be shown
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that

∆j κ̂(ξ) = q̂j κ(ξ), ξ ∈ Zd,

where qj : Td → C is the function given by

qj(x) = eijx − 1, x ∈ Td.

The concept of difference operators discussed in this thesis generalises this to the

setting of any compact Lie group. Suppose q is a smooth, real-valued function

on G. If κ is a distribution on G, we define the difference operator associated

to q, ∆q, by the relation

∆q κ̂ = q̂κ.

Higher order derivatives applications of difference operators can be explained in

the following way. Suppose Q = {q1, q2, . . . , q`} is a family of smooth, real-valued

functions on G, for ` ∈ N. Then, for any α ∈ N`
0, we let ∆α

Q be the difference

operator given by

∆α
Q κ̂ = ̂̃qακ,

for a distribution κ, where

q̃α(z) := q(z−1)α1 q(z−1)α2 · · · q(z−1)α` , z ∈ G.

A difficulty found in difference operators is that they do not satisfy Leibniz’s

rule, in general, which is usually an exploitable property of differential operators.

However, we are able to prove an analogous result (see Theorem 4.10.1) for a

particular family of difference operators, associated to a class of smooth, real-

valued functions Q0 (see (4.2.12)). In practice, this result plays a similar role to

Leibniz’s rule, and allows us to prove our main theorems. This choice of Q0 is,

in fact, not aleatory, with one of its main properties being that the functions in

Q0 appear in the Taylor expansion of any smooth function (see Theorem 4.3.3).

Additionally, we are also able to show kernel estimates of Calderón-Zygmund type

(in the sense of Coifman and Weiss [7]) for the symbols belonging to Sm(Q0),

the family of symbols of class m, associated to Q0.

This thesis is organised as follows. The preliminary chapter (Chapter 2)

focuses on introducing the fundamental tools needed throughout, including Lie

groups and Lie algebras, Plancherel’s Theorem, the Schwartz kernel Theorem,

3



Haar integration and the exponential map, just to name a few. Chapter 3 then

focuses on establishing a foundation for our work, introducing our Sobolev spaces

and confirming some expected results. In this chapter we also study the Fourier

multipliers of our sub-Laplacian, and we show our first important result in Lemma

3.8.1. Although this chapter does not have any groundbreaking mathematics, we

include it in the thesis to keep this exposition self-contained. Chapter 4 is the

main chapter of this thesis and is dedicated to developing our sub-elliptic pseudo-

differential calculus for any compact Lie group.

Summarising our results presented in Chapter 4, we begin with the introduc-

tion of our difference operators. In Section 4.4.2 is where we first discuss the

classes of symbols Sm and their associated operator classes Ψm. We then show

that Sm(Q0) ⊂ Sm(Q), for any family Q of smooth, real-valued functions, which

satisfies a condition we call ‘comparability to the Carnot-Carathéodory metric’.

In particular, this shows that our calculus will be valid for

⋂
Sm(Q),

where the intersection is taken over all m ∈ R and any Q comparable to the

C-C metric. Our next major result appears in Section 4.10, where we prove the

analogous result to Leibniz’s rule for difference operators. We end the chapter

with the analysis of the composition of two pseudo-differential operators T1 ◦ T2,

where T1 ∈ Sm1(Q0) and T2 ∈ Sm2(Q0), proving that T1 ◦ T2 ∈ Sm1+m2(Q0).

We end this thesis with a conclusion, where we give a technical summary

of the main results. Furthermore, we will provide a discussion about potential

future work, indicating some of the directions that could be taken to expand on

the results presented here.
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Chapter 2

Preliminaries

The aim of this chapter is to introduce the fundamental definitions and techniques

that we shall be using throughout the thesis. These preliminaries are based on

introductory material appearing on several textbooks in the subject. Some of

the material used in this chapter include Faraut [14], Folland [21] and Stein [46],

which serve as an introduction to compact Lie groups, their representation theory

and the Peter-Weyl Theorem. Moreover, the textbooks Lee [31] and Helgason

[26] provide an extensive study of smooth manifolds. Furthermore, for a study

of the representation theory of the Heisenberg group, the reader is referred to

Folland [20]. Other references used throughout this chapter include Fischer and

Ruzhansky [18], Folland [19], Folland and Stein [22], Hall [25], Knapp [30], Ricci

[39], Stein [47], and Treves [53]. We shall state without proof a number of well

known results, and redirect the reader to the relevant source when necessary.

First we discuss the theory in a general setting, for any Lie group G, but

when necessary, we shall provide results for the case in which G is compact.

Furthermore, we will also give an overview of the 3-dimensional Heisenberg group

H and the compact Lie group SU(2), including their representation theory.

2.1 Lie groups and representation theory

We begin this section with some fundamental definitions.

Definition 2.1.1 (Topological group). A topological group is a space G, which

is also a group, endowed with the continuous mappingsG×G −→ G

(x, y) 7−→ xy
,

G −→ G

x 7−→ x−1
.
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Definition 2.1.2 (Lie group). A Lie group is a smooth manifold G, which when

endowed with the smooth mappingsG×G −→ G

(x, y) 7−→ xy,

G −→ G

x 7−→ x−1,

forms a group.

If for every point x, in a topological space G, there exists a neighbourhood

V ⊂ G of x which is compact, then we say that G is locally compact. It is

important to remark that every Lie group is locally compact. Moreover, a Lie

group G is said to be compact if it is compact as a topological space.

For two Hilbert spaces H1,H2, we let L (H1,H2) denote the space of lin-

ear bounded operators mapping H1 into H2. We equip L (H1,H2) with the

topology given by the norm

||T ||L (H1,H2) = sup
v1 ∈H1
||v1||H1

≤1

||Tv1||H2 , T ∈ L (H1,H2).

If H = H1 = H2, we write L (H ) = L (H ,H ).

For the remainder of this section, we assume G is any Lie group, unless stated

otherwise.

Definition 2.1.3 (Representations). A representation π of G on a Hilbert space

Hπ is a mapping

π : G −→ L (Hπ),

such that

(i) π(g1g2) = π(g1)π(g2), for all g1, g2 ∈ G,

(ii) for every g ∈ G, the mapping

π(g) : Hπ −→Hπ,

is continuous and has a bounded inverse.

Usually we will write π instead of (π,Hπ) whenever the context is clear. More-

over, for a representation (π,Hπ) of G, we let dπ denote the dimension of π,

which is defined to be the dimension of Hπ.
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Suppose that (π,Hπ) is a representation of G and consider an inner product

〈·, ·〉Hπ
on Hπ. For each x ∈ G, π(x) is a bounded linear map Hπ → Hπ, so

we may consider its formal adjoint π(x)∗, which is given by the relation

〈π(x)f, g〉Hπ
= 〈f, π(x)∗g〉Hπ

,

for every f, g ∈ Hπ.

Definition 2.1.4 (Unitary representation). A representation (π,Hπ) of G is

said to be unitary if, for every x ∈ G, the linear mapping π(x) : Hπ → Hπ is

unitary; that is,

π(x)−1 = π(x)∗, ∀ x ∈ G.

If G is a compact Lie group, it is a routine argument to show that, for each

representation (π,Hπ) of G, there exists an inner product 〈·, ·〉Hπ
such that π

is unitary with respect to 〈·, ·〉Hπ
.

We let ||·||Hπ denote the norm associated to the inner product 〈·, ·〉Hπ
. Then,

if (π,Hπ) is unitary, we have

||π(x)v||Hπ = ||v||Hπ , ∀ x ∈ G, v ∈ Hπ.

Thus, it follows that

||π(x)||L (Hπ) = 1, ∀ x ∈ G. (2.1.1)

If (π1,H1), (π2,H2) are two finite dimensional representations of G, we say

that π1 and π2 are equivalent if there exists an isomorphism A : H1 → H2

such that

Aπ1(g) = π2(g)A, ∀ g ∈ G.

In such case, we call A an intertwining operator between π1 and π2. Moreover,

equivalence between representations of G forms an equivalence relation, which

we shall denote by ∼.

Definition 2.1.5 (Irreducible representation). A representation (π,Hπ) of G

is said to be irreducible if whenever W is a closed subspace of Hπ, we have

π(x)W ⊂ W for every x ∈ G if and only if W = {0} or W = Hπ.

Definition 2.1.6. Let G be a Lie group. We define Ĝ to be the set of equiva-

lence classes of irreducible, unitary representations of a Lie group G.
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Throughout the thesis, each equivalence class [π]∼ ∈ Ĝ shall be identified

by a representation π equivalent to all other representations in [π]∼. If G is

compact, then by the theory of compact Lie groups, we know that the set Ĝ is

discrete.

Example 2.1.7. If G = Tn is the torus, then it is well known that all the ir-

reducible representations of G are one-dimensional. Moreover, they are given

by

χk : x 7−→ eik·x, x ∈ Tn, k ∈ Zn.

Thus,

Ĝ = {χk : k ∈ Zn} .

2.2 Integration over a group

In this section we shall introduce the concept of integration over a locally compact

group. We present the Peter-Weyl Theorem, and discuss Plancherel’s Theorem

for compact Lie groups. For a detailed discussion on these topics, see for instance

Faraut [14], Folland [21], or Stein [46].

2.2.1 Haar measure

The following theorem is a fundamental fact of Lie theory.

Theorem 2.2.1. Let G be a locally compact group. Then, there exists a non-zero

Radon measure µ on G satisfying the following property:

µ(xB) = µ(B), ∀ x ∈ G, and every Borel set B ⊂ G. (2.2.1)

This measure is unique up to a positive constant.

A measure µ satisfying Theorem 2.2.1, for a locally compact group G, is called

a Haar measure. Moreover, a measure µ satisfying (2.2.1) is said to be a left-

invariant measure. Throughout this text we shall write |B| for the measure of

the Borel set B ⊂ G, and we will denote this measure dx, dy or dz, depending

on the variable of integration. Observe that statement (2.2.1) is equivalent to∫
G

f(xz) dz =

∫
G

f(z) dz, ∀ x ∈ G,
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and all integrable functions f .

If G is a compact or nilpotent Lie group, then it can be shown that the

Haar measure on G is also right-invariant. A group that is both left-invariant

and right-invariant is called unimodular. In this thesis we shall only consider

unimodular groups.

2.2.2 Lp spaces

Suppose G is a locally compact group. For p ∈ [1,+∞], we let Lp(G) be the

usual Lebesgue space with respect to the Haar measure on G, with the norm

|| · ||Lp(G). For p ∈ [1,+∞), the norm || · ||Lp(G) is defined by

||f ||Lp(G) =

(∫
G

|f(z)|p dz

)1/p

, ∀ f ∈ Lp(G),

and moreover, for p = +∞, we let

||f ||L∞(G) = ess sup |f | = inf{a ∈ R : ||f |−1(a,+∞)| = 0}, f ∈ L∞(G).

In general, when we write supx∈G it shall be assumed that this refers to the

essential supremum.

Example 2.2.2. For a locally compact group G, we let πL denote the left regular

representation of G on L2(G); for each g ∈ G, πL(g) : L2(G) → L2(G) is

defined by

(πL(g)f)(x) = f(g−1x), f ∈ L2(G), x ∈ G. (2.2.2)

Similarly, we let πR denote the right regular representation of G on L2(G); for

each g ∈ G, πR(g) : L2(G)→ L2(G) is defined by

(πR(g)f)(x) = f(xg), f ∈ L2(G), x ∈ G. (2.2.3)

The representations πL and πR are unitary and continuous on L2(G).

2.2.3 Peter-Weyl Theorem

Now, for a representation (π,Hπ) of G (of possibly infinite dimension), we let

the entry functions of π be the mappings of the form

x 7−→ 〈π1(x)ϕ, ψ〉Hπ
, x ∈ G, ϕ, ψ ∈ Hπ.
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Furthermore, suppose that the set

Bπ :=
{
ϕ

(π)
1 , ϕ

(π)
2 , . . . , ϕ

(π)
dπ

}
⊂ Hπ

forms an orthonormal basis of Hπ, where it is understood that if π is an infinite

dimensional representation, then Bπ consists of infinitely many elements. We

then define the matrix entries of π to be the entry functions

x 7−→ π(x)(j,k) :=
〈
π(x)ϕ

(π)
k , ϕ

(π)
j

〉
Hπ

, x ∈ G, j, k = 1, 2, . . . , dπ. (2.2.4)

We now suppose G is a compact group. For [π]∼ ∈ Ĝ, we let Mπ be the

subspace of L2(G) spanned by the entry functions of the representations in the

equivalence class [π]∼; that is

Mπ = Span
{
〈π1(·)ϕ, ψ〉Hπ1

: ϕ, ψ ∈ Hπ1 , π1 ∈ [π]∼

}
. (2.2.5)

The space Mπ is independent of the choice of representative π, and is of di-

mension d2
π. Moreover, let M be the space spanned by all entry functions of

representations in Ĝ;

M = Span
{
〈π1(·)ϕ, ψ〉Hπ1

: ϕ, ψ ∈ Hπ1 , π1 ∈ [π]∼, π ∈ Ĝ
}
. (2.2.6)

We are now in a position to state the Peter-Weyl Theorem, whose proof can

be found, for example, in Faraut [14] or Stein [46].

Theorem 2.2.3 (Peter-Weyl Theorem). Let G be a compact Lie group. Then,

the following assertions hold:

(I) Every irreducible unitary representation of G is finite dimensional.

(II) The left regular representations πL can be decomposed into an orthogonal

direct sum of finite dimensional irreducible representations. In particular,

when restricted to the space Mπ, for π ∈ Ĝ, the representations πL is

equivalent to the decomposition

π ⊕ π ⊕ · · · ⊕ π = dππ.

The right regular representation πR satisfies the same property.
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(III) The space M is dense in L2(G).

(IV) For each (π,Hπ) ∈ Ĝ, pick an orthonormal basis of Hπ:

{
ϕ

(π)
1 , ϕ

(π)
2 , . . . , ϕ

(π)
dπ

}
. (2.2.7)

Consider the matrix entries of π, with respect to the basis given by (2.2.7),

x 7−→ π(x)(j,k) =
〈
π(x)ϕ

(π)
k , ϕ

(π)
j

〉
Hπ

, 1 ≤ j, k ≤ dπ, for x ∈ G.

Then, the set

{√
dπ π(·)j,k : 1 ≤ i, j ≤ dπ, π ∈ Ĝ

}
forms an orthonormal basis of L2(G).

2.2.4 Fourier transform

Suppose G is a locally compact group. If f is an integrable function on G, with

respect to the Haar measure, and (π,Hπ) is a representation of G, we define

the Fourier transform of f at π by

f̂(π) = FGf(π) =

∫
G

f(x) π(x)∗ dx.

Observe that f̂(π) defines a bounded linear operator on the Hilbert space Hπ.

The Fourier transform f̂(π) depends on the choice of representative from the

equivalence class [π]∼. In particular, if (π1,Hπ1) ∈ [π]∼, then there exists an

isomorphism A : Hπ1 →Hπ such that

π1(x) = A−1π(x)A, ∀ x ∈ G.

By the linearity of f̂(π), we then have

f̂(π1) = A−1f̂(π)A.

This means that we must consider the Fourier transforms at π modulo conjuga-

tions. Throughout the thesis, it will be assumed that this is understood.

We now have the following result, which follows from the definition of unitarity

of representations (see (2.1.1)).
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Lemma 2.2.4. Let f be an integrable function on a compact Lie group G and

suppose that (π,Hπ) is a unitary representation of G. Then

||f̂(π)||L (Hπ) ≤ ||f ||L1(G).

Proof. Recall that

f̂(π) =

∫
G

f(x) π(x)∗ dx.

So,

||f̂(π)||L (Hπ) ≤
∫
G

||f(x) π(x)∗||L (Hπ) dx

≤
∫
G

|f(x)| ||π(x)∗||L (Hπ) dx.

Since π is unitary, then, by (2.1.1), we have

||f̂(π)||L (Hπ) ≤
∫
G

|f(x)| dx = ||f ||L1(G),

as claimed.

2.2.5 Plancherel’s Theorem on compact Lie groups

We now discuss Plancherel’s Theorem in the case that G is a compact Lie group.

Let H be a Hilbert space. For an operator A ∈ L (H ), we define the

Hilbert-Schmidt norm of A by

||A||2HS = Tr (AA∗) , (2.2.8)

where Tr denotes the trace on the Hilbert space H .

Furthermore, we let L2(Ĝ) denote the space of sequences of operators T =

(Tπ)π ∈ Ĝ, with Tπ ∈ L (Hπ), which satisfy

||T ||2
L2(Ĝ)

:=
∑
π ∈ Ĝ

dπ
∣∣∣∣Tπ∣∣∣∣2HS < +∞.

The space L2(Ĝ) is a Hilbert space with the inner product

〈T, S〉L2(Ĝ) :=
∑
π ∈ Ĝ

dπTr (TπS
∗
π) ,
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for sequences of operators T = (Tπ)π ∈ Ĝ, S = (Sπ)π ∈ Ĝ ∈ L2(Ĝ).

Example 2.2.5. If G = Tn is the torus, then Ĝ = {χk : k ∈ Zn}, as we saw in

Example 2.1.7, and hence L2(Ĝ) is the space given by

L2(Ĝ) =

{
(ak)k∈Zn :

∑
k∈Zn

|ak|2 < +∞

}
,

which is the usual sequence space `2(Zn).

We can also define the following space of operators.

Definition 2.2.6. Let L∞(Ĝ) denote the space of operators

σ = {σ(π) : π ∈ Ĝ}

satisfying

sup
π ∈ Ĝ

||σ(π)||L (Hπ) < +∞.

We endow L∞(Ĝ) with the essential supremum norm

||σ||L∞(Ĝ) := sup
π ∈ Ĝ

||σ(π)||L (Hπ).

We can now state Plancherel’s Theorem, which is a consequence of the Peter-

Weyl Theorem, and its proof can be found, for example in [14].

Theorem 2.2.7 (Plancherel’s Theorem). Suppose G is a compact Lie group and

let f ∈ L2(G). Then, the following assertions hold:

(i) The function f is equal to its Fourier series

f(x) =
∑
π ∈ Ĝ

dπ Tr
(
f̂(π) π(x)

)
,

in the L2 sense. This is also known as the Fourier inversion formula.

(ii) We have

||f ||2L2(G) = ||f̂ ||2
L2(Ĝ)

=
∑
π ∈ Ĝ

dπ
∣∣∣∣f̂(π)

∣∣∣∣2
HS
,

and if f1, f2 ∈ L2(G),
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〈f1, f2〉L2(G) =

∫
G

f1(x) f2(x) dx =
∑
π ∈ Ĝ

dπ Tr
(
f̂1(π) f̂2(π)∗

)
.

(iii) The map f 7→ f̂ is a unitary isomorphism from L2(G) onto L2(Ĝ).

2.3 Lie algebras and vector fields

In this section we summarise the relevant aspects of the theory of Lie algebras.

For a detailed discussion on the subject, see Lee [31] or Helgason [26], for example.

2.3.1 Vector fields

Suppose M is an n-dimensional smooth manifold. Recall that the space C∞(M)

consists of functions f : M → R which are smooth, in the sense that for every

smooth chart (ϕ,U) on M, the composite function f ◦ ϕ−1 is smooth on the

open subset ϕ(U) ⊂ Rn. A function belonging to C∞(M) is said to be smooth.

For d ∈ N, the space Cd(M) is similarly defined, requiring instead that f ◦ϕ−1

belongs to Cd(Rn).

The tangent space at a point x ∈ M, Tx(M), is the n-dimensional vector

space consisting of all linear functionals V : C∞(M)→ R which satisfy

V (fg) = V (f)g(x) + f(x)V (g), ∀ f, g ∈ C∞(M).

An element of Tx(M) is called a tangent vector at x. Recall also that the tangent

bundle of M is the disjoint union of the tangent spaces at all points of M:

T (M) =
⊔
x∈M

Tx(M).

Now, if N is another smooth manifold and F : M→ N is a smooth map,

then for each x ∈ M, the push-forward associated with F is the mapping

F∗ : Tx(M)→ TF (x)(N ) given by

(F∗V )(f) = V (f ◦ F ), for V ∈ Tx(M), f ∈ C∞(N ).

Definition 2.3.1 (Vector field). A vector field on M is a continuous mapX :M −→ T (M)

x 7−→ Xx

,
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where for each x ∈ M, Xx ∈ Tx(M). Throughout this thesis, a vector field on

M will always be assumed to be smooth, unless stated otherwise.

If X is a vector field on M, not necessarily smooth, and f ∈ C∞(M), then the

action of X on f is given by

(Xf)(x) = Xx(f), x ∈ M.

If X, Y are smooth vector fields, then define Lie bracket of X and Y to be

the operator [X, Y ] :M −→ T (M)

x 7−→ [X, Y ]x
,

with

[X, Y ]x(f) = Xx(Y f)− Yx(Xf), for x ∈ M, f ∈ C∞(M).

It is well-known that the map [X, Y ] is a smooth vector field (see, for example,

[31]).

We shall now also define the push-forward of a vector field by a function F .

Let F : M → N be a smooth map between the smooth manifolds M and

N , and suppose X is a vector field on M. Tentatively we might define the

push-forward of X to be the mapping given by

F∗X : x 7−→ F∗Xx,

since F∗Xx ∈ TF (x)(N ). However, F∗X might not necessarily be a vector field

on N , so we need to impose some additional conditions on F . Namely, it is

sufficient to have the following condition: if X is a smooth vector field on M,

then there exists a unique smooth vector field Z on N such that

∀ x ∈ M F∗Xx = ZF (x); (2.3.1)

that is, for any smooth function f defined on an open subset of N we have

Xx(f ◦ F ) = (Zf)(F (x)), ∀ x ∈ M. (2.3.2)

One can then show that if F is a diffeomorphism, then this condition is satisfied.

A proof of this can be found in [31] (see Chapter 8 therein). Hence, we can define

the push-forward of the smooth vector field X by F to be the unique smooth
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vector field Z on N satisfying (2.3.1) (or equivalently (2.3.2)).

2.3.2 Basis of vector fields on a smooth manifold

Suppose M is a smooth manifold of dimension n. In this section we aim to

define what it means for a family of vector fields to form a basis on M.

In Lee [31] it is shown that the space of all vector fields on M is a module

over the ring C∞(M). This means that, if f ∈ C∞(M) and X is a vector field

on M, then the mapping

(fX) :M −→ T (M)

x 7−→ f(x)Xx

defines a smooth vector field. We can now define a basis of vector fields on M.

Definition 2.3.2. A family of vector fields

{
Vj
}n
j=1

on M is said to be a basis of vector fields on M if, for each x ∈ M, the set of

tangent vectors

{
Vj,x : j = 1, 2, . . . , n

}
⊂ Tx(M)

forms a basis of the tangent space Tx(M).

Remark 2.3.3. A basis of vector on M is also known as a (smooth global) frame

for M (see Chapter 8 in Lee [31]).

By definition, if {Vj : j = 1, 2 . . . , n} is basis of vector fields on M and W is

any vector field on M, then there exists a family of functions {cj}nj=1 ⊂ C∞(M)

such that, for any x ∈ M we have

Wx =
n∑
j=1

cj(x)Vj,x.

This observation can be summarised as follows.

Lemma 2.3.4. Suppose {Vj : j = 1, 2 . . . , n} is basis of vector fields on M. If

W is any vector field on M, then there exists a family of functions {cj}nj=1 ⊂
C∞(M) such that

16



W =
n∑
j=1

cjVj.

Now, for ` ∈ N, let I(`) denote the set of multi-indices taking values in

{1, 2, . . . , `}, of arbitrary length. That is, I(`) is the disjoint union

I(`) :=
⊔
a∈N

{1, 2, . . . , `}a. (2.3.3)

Suppose that V = {Vj}`j=1 is a family of vector fields on M, for some ` ∈ N.

For β = (i1, i2, . . . , ib) ∈ I(`), we let Vβ denote the differential operator

Vβ = Vi1Vi2 . . . Vib .

Corollary 2.3.5. Suppose V = {Vj}nj=1 and W = {Wj}nj=1 are two bases of

vector fields on M, and let β ∈ I(n). Then, for any β′ ∈ I(n), with |β′| ≤ |β|,
there exists a function cβ

′

V ,W ∈ C∞(M), which depends on β′ and the bases of

vector fields V and W , such that,

Vβ =
∑

β′ ∈I(n)
|β′|≤|β|

cβ
′

V ,W Wβ′ . (2.3.4)

Remark 2.3.6. Assume M is compact and suppose we have the same hypothesis

as in Corollary 2.3.5. Then, for any β′ ∈ I(n), with |β′| ≤ |β|, the functions

cβ
′

V ,W ∈ C∞(M) which appear in (2.3.4) have compact support. Thus, there

exists a constant Cβ > 0, depending on β, such that

∣∣∣∣Vβf ∣∣∣∣L∞(M)
≤ Cβ sup

β′ ∈I(n)
|β′|≤|β|

||cβ
′

V ,W ||L∞(M) ||Wβ′f ||L∞(M).

In particular, the quantity

Cβ
V ,W := Cβ sup

β′ ∈I(n)
|β′|≤|β|

||cβ
′

V ,W ||L∞(M) < +∞.

Therefore,

∣∣∣∣Vβf ∣∣∣∣L∞(M)
≤ Cβ

V ,W sup
β′ ∈I(n)
|β′|≤|β|

||Wβ′f ||L∞(M).
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2.3.3 Lie algebras

Definition 2.3.7 (Lie algebra). A Lie algebra is a real vector space g endowed

with a bilinear operation [·, ·] : g× g→ g, called the Lie bracket of g, satisfying

(i) [X,X] = 0 for all X ∈ g, and

(ii) Jacobi’s identity: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈
g.

Now suppose that G is a Lie group. It is well known that each g ∈ G defines

the diffeomorphism Lg given by left multiplication by g:Lg : G −→ G

x 7−→ gx
,

and similarly, each g ∈ G also gives rise to the diffeomorphism Rg given by

right multiplication by g: Rg : G −→ G

x 7−→ xg
.

We say that a smooth vector field X is left-invariant if

X(f ◦ Lg) = (Xf) ◦ Lg, ∀ f ∈ C∞(G), g ∈ G.

This can be written as

X(f(g · ))(x) = (Xf)(gx), ∀ C∞(G), x, g ∈ G.

Similarly, we say that X is right-invariant if

X(f ◦Rg) = (Xf) ◦Rg, ∀ f ∈ C∞(G), g ∈ G,

which can also be expressed as

X(f( · g))(x) = (Xf)(xg), ∀ f ∈ C∞(G), x, g ∈ G.

Definition 2.3.8 (Lie algebra of a Lie group). Let G be a Lie group. The set

g of all left-invariant vector fields on G is called the Lie algebra of G.

Now let G be a Lie group and g be its Lie algebra. If X, Y ∈ g, consider the

Lie bracket of X and Y :
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[X, Y ] : G −→ T (G)

x 7−→ [X, Y ]x
.

One checks easily that this mapping defines a smooth left-invariant vector field

[X, Y ] on G. Indeed, suppose that f ∈ C∞(G) and g ∈ G. Then, for every

x ∈ G, we have

[X, Y ](f(g · ))(x) = [X, Y ]x(f(g · )) = Xx(Y f(g · ))− Yx(Xf(g · ))

= X(Y f(g · ))(x)− Y (Xf(g · ))(x)

= X(Y f)(gx)− Y (Xf)(gx),

by the left-invariance of X and Y . Since

X(Y f)(gx)− Y (Xf)(gx) = Xgx(Y f)− Ygx(Xf)

= [X, Y ]gxf

= ([X, Y ]f)(gx),

then we conclude that

[X, Y ](f(g · ))(x) = ([X, Y ]f)(gx),

which means that [X, Y ] is a left-invariant vector field, as claimed. This means

that g is closed under the bracket operation [·, ·], and in particular, one can show

that g, equipped with the Lie bracket [·, ·], forms a Lie algebra in the sense of

Definition 2.3.7 (see [31]).

It is a fundamental result that g is of the same dimension as G. Furthermore,

the evaluation map ε : g −→ TeG(G)

X 7−→ XeG

is a vector space isomorphism (see [31]). More precisely, we have the following

relation. If X is a left-invariant vector field, then it is uniquely determined

at eG ∈ G. On the other hand, if V is a tangent vector at eG (that is,

V ∈ TeG(G)), then, as proved, for instance, in Hall [25] or Lee [31], there exists

a unique left-invariant vector field XV , with XV
eG

= V , which can be constructed
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by

XV
g = (Lg)∗V, g ∈ G.

Or equivalently,

(XV f)(g) = (Lg)∗V f(eG) = V (f(g·))(eG), ∀ f ∈ C∞(G), g ∈ G. (2.3.5)

Observe that

XV
eG
f = V (f(eG·))(eG) = V f, ∀ f ∈ C∞(G),

and so XV
eG

= V . In fact, one can show that the mappingTeG(G) −→ g

V 7−→ XV
(2.3.6)

is the inverse of the evaluation map ε (see [31]). Hence, g can be identified with

the tangent space at the identity element eG of G.

In particular, we have shown that if V is a tangent vector at the identity

eG, then left-translation by g ∈ G yields a uniquely determined tangent vector

at the point g. This implies that there is a one-to-one correspondence between

TeG(G) and Tg(G), given by this relation. Hence, via the evaluation map, we

obtain a one-to-one correspondence between g, the space of all left-invariant

vector fields on G, and the tangent space Tg(G), for any g ∈ G.

Throughout the thesis we will assume the following convention; for any tan-

gent vector V ∈ TeG(G), we shall identify the unique left-invariant vector field

XV , associated to V via the map (2.3.6), with V . Similarly, if a left-invariant

vector field X is given, we shall identify X with its evaluation at the identity

XeG .

2.3.4 Exponential map

In this section we provide an introduction to the exponential map in the context

of Lie groups and Lie algebras. For a deeper study of this subject, the reader

is redirected to Lee [31] (Chapter 20) or Helgason [26] (Chapter 1, Section 6).

We shall also state some fundamental results linking Lie groups and Lie algebras,
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which can be found in Hall [25] (see Chapter 3) or Helgason [26] (see Chapter

II).

Let G be a Lie group and suppose that g denotes its Lie algebra. Now,

assume that γ is a one-parameter subgroup of G; that is, suppose γ : R → G

is a Lie group homomorphism, and let

X := γ∗

(
d

dt

)
.

Viewing R as a Lie group equipped with addition, we see that X is a left-

invariant vector field on G. Then, as shown in [31] (see Theorem 20.1 therein),

one can prove that

γ′(t0) = Xγ(t0), ∀ t0 ∈ R.

On the other hand, if X is any vector field on G, it can be shown (see [31],

Chapter 9) that there exists a unique mapping γ : R→ G satisfying

γ′(t) = Xγ(t), ∀ t ∈ R. (2.3.7)

In fact, as demonstrated in [31] (see Theorem 20.1), we have that γ is a one-

parameter subgroup. In particular, we see that there is a one-to-one correspon-

dence between g, the set of all left-invariant vector fields on G, and the one-

parameter subgroups of G.

Hence, we now define the exponential map exp : g → G as follows: for each

left-invariant vector field X let

eX = exp(X) := γ(1),

where γ is the unique one-parameter subgroup of G satisfying (2.3.7).

The exponential map has the following fundamental properties, the proof of

which can be found in [31] (see Proposition 20.8):

Proposition 2.3.9. Let G be a Lie group and suppose that g denotes its Lie

algebra. Then, the following assertions hold:

(i) The exponential map exp : g→ G is smooth.

(ii) If X ∈ g, then

e(s+t)X = esX etX , ∀ s, t ∈ R.
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(iii) If X ∈ g, then

(
eX
)−1

= e−X .

(iv) If X ∈ g, then

(
eX
)n

= enX , ∀ n ∈ Z.

(v) There exist a neighbourhood U of 0 in g and a neighbourhood V of eG

in G, such that exp maps U diffeomorphically into V .

(vi) If X ∈ g, then the action of X, viewed as a left-invariant vector field, on

a function f ∈ C∞(G) is given by

Xf(x) =
d

dt
f
(
xetX

) ∣∣∣∣
t=0

. (2.3.8)

(vii) Any left-invariant vector field X ∈ g defines a right-invariant differential

operator, which we denote by X̃ and is given by

X̃f(x) =
d

dt
f
(
etXx

) ∣∣∣∣
t=0

. (2.3.9)

Part (vi) of this result tells us that we can view g as the vector space of first

order left-invariant differential operators on G.

Now recall that if n ∈ N, the general linear group, which we denote by

GL(n,C), is defined to be the space consisting of all n × n invertible matrices

with complex entries. We say that a Lie group G is a matrix Lie group if it is a

closed subgroup of GL(n,C), for some n ∈ N.

If G is a matrix Lie group, then its Lie algebra g is a matrix Lie algebra,

in the sense that it is a subalgebra of gl(n,C), the Lie algebra consisting of all

n× n matrices with complex entries. In this case, we can consider the elements

of g to be matrices, instead of left-invariant vector fields. As it turns out, the

exponential map of a matrix is easy to compute. We have the following result, a

proof of which can be found, for example, in [25] or [31].

Proposition 2.3.10. Suppose G is a matrix Lie group and g is its Lie algebra.

Then, for every X ∈ g, we have

eX := exp(X) =
∞∑
k=0

1

k!
Xk,
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where X is considered as a matrix.

Furthermore, we can use this result to compute the Lie algebra of a matrix

Lie group explicitly. We have the following fundamental result, a proof of which

can be found in [26] (see Proposition 2.7 in Chapter II, Section 2).

Proposition 2.3.11. Suppose G is a matrix Lie group. Then its Lie algebra g

is given by

g = {X ∈ gl(n,C) : etX ∈ G, ∀ t ∈ R}. (2.3.10)

2.3.5 Hörmander system

Suppose G is a connected Lie group and let g be its Lie algebra. Further suppose

g∞ denotes the Lie algebra of all smooth real vector fields on G and consider a

family of smooth real vector fields X = {X1, X2, . . . , Xk}. Let gX be the vector

subspace of g∞ generated by the vectors

[
Xi1 ,

[
Xi2 , . . . ,

[
Xia−1 , Xia

]
. . .
]]
, 1 ≤ i1, i2, . . . , ia ≤ k.

One checks easily that gX is a Lie subalgebra of g∞. Furthermore, for each

x ∈ G let gX(x) denote the linear subspace of Tx(G) given by

gX(x) := {Xx : X ∈ gX} .

Definition 2.3.12 (Hörmander system of vector fields). Let G be a connected

Lie group of dimension n and consider a family of vector fields

X = {X1, X2, . . . , Xk}.

Suppose further that g denotes the Lie algebra of G. We say that X forms a

Hörmander system of vector fields if, for every x ∈ G,

gX(x) = Tx(G).

Suppose G is a connected Lie group and let X be a Hörmander system of

left-invariant vector fields on G. Then, the sub-Laplacian associated with X is

denoted by

L := −(X2
1 +X2

2 + · · ·+X2
k).
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Now, recall that I(k) denote the set of multi-indices taking values in {1, 2, . . . , k},
of arbitrary length (see (2.3.3)). For α = (i1, i2, . . . , ia) ∈ I(k), we write

Xα = Xi1 Xi2 . . . Xia , (2.3.11)

and if X̃i1 , X̃i2 , . . . , X̃ia denote the right-invariant vector fields associated to

Xi1 , Xi2 , . . . , Xia , respectively (see (2.3.9)), then we denote

X̃α = X̃i1 X̃i2 . . . X̃ia . (2.3.12)

Definition 2.3.13. Suppose T is a differential operator on G of the form

T =
∑

α∈I(k)

cαXα.

We define the transpose operator T t to be the differential operator given by

T t =
∑

α∈I(k)

(−1)|α|cαXiaXia−1 . . . Xi1 . (2.3.13)

2.4 Comparability of the Carnot-Carathéodory

metric to the Euclidean distance

Suppose G is a compact Lie group of dimension n and let g be the Lie algebra

of G. Further suppose that, for some k ∈ N, the set X = {X1, X2, . . . , Xk}
forms a Hörmander system of left-invariant vector fields on G. The objective of

this section is to show that the Carnot-Carathéodory metric is comparable to the

Euclidean distance. In the case that G = Rn, this result is well known; see, for

example, Chapter 1 in Nagel et al [36].

2.4.1 An adapted basis of g

Let us first construct a basis of the Lie algebra g of G. For a multi-index

I = (i1, i2, . . . , ia) ∈ I(k), we define the vector field X[I] by

X[I] =
[
Xi1 ,

[
Xi2 , . . . ,

[
Xia−1 , Xia

]
. . .
]]
.

Let V1 be the subspace of g consisting of linear combinations of the vector fields

X1, X2, . . . , Xk; that is,

V1 := Span {Xj : j = 1, 2, . . . , k} .
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We now recursively define

Vs = Vs−1 +
[
V1, Vs−1

]
, for s ∈ N,

where we use the convention V0 := {0}. Observe that Vs is spanned by the set

of vector fields

{
X[I] : I(k) |I| ≤ s

}
.

Since X = {X1, X2, . . . , Xk} is a Hörmander system, then there exists an integer

r > 0 such that

Vr = g.

In fact, we have the increasing sequence of subspaces

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vr = g.

We then denote

ns = dim(Vs), s = 0, 1, 2, . . . , r.

We have

0 = n0 < n1 < n2 < · · · < nr = n.

We now construct a basis of g. Choose vector fields Y1, Y2, . . . , Yn1 , from our

Hörmander system {X1, X2, . . . , Xk}, such that the set {Y1, Y2, . . . , Yn1} forms a

basis of V1. Then, for s = 2, 3, . . . , r and for each j = ns−1 + 1, ns−1 + 2, . . . , ns,

we let

Yj = X
[I

(s)
j ]

=
[
Xi1 ,

[
Xi2 , . . . ,

[
Xis−1 , Xis

]
. . .
]]
, (2.4.1)

for some multi-index I
(s)
j ∈ I(k), such that

∣∣I(s)
j

∣∣ = s and the set of vector fields

{Y1, Y2, . . . , Yns−1 , Yns−1+1, . . . Yns}

forms a basis of Vs. Hence, we have constructed a set of vector fields

Y :=
{
Y1, Y2, . . . , Ynr

}
= {Y1, Y2, . . . , Yn}, (2.4.2)

which forms a basis of g. Observe that this basis of g may not be orthonormal.
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Furthermore, for each j = 1, 2, . . . , n, we let

dj := |Ij|, (2.4.3)

and define

δ = max{dj : j = 1, 2, . . . , n}. (2.4.4)

Example 2.4.1. Suppose G = SU(2). In this case, we consider the Hörmander

system of left-invariant vector fields on SU(2) given by

X = {X1, X2},

where

X1 =

(
0 i

i 0

)
, X2 =

(
0 1

−1 0

)
.

Observe that

[X1, X2] =

(
2i 0

0 −2i

)
,

and recall that the set{(
0 i

i 0

)
,

(
0 1

−1 0

)
,

(
i 0

0 −i

)}
forms a (orthonormal) basis of su(2) (see Section 2.8.2). Thus, the set

{X1, X2, [X1, X2]}

is a basis of su(2). Letting Yj (j = 1, 2, 3) be the basis elements of g given by

(2.4.1), one readily checks that we can take

Y1 = X1, Y2 = X2, Y3 = [X1, X2].

Hence, we see that d1 = d2 = 1 and d3 = 2 in this case.
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2.4.2 An important neighbourhood of x in G and the

ball-box theorem

We continue with the setting of Section 2.4.1. Let x ∈ G. We know that there

exist a neighbourhood V of x in G and a neighbourhood N of 0 in Rn such

that the mapping φ : N → V , which is given by

φ((z1, z2, . . . , zn)) := ez1Y1 ez2Y2 . . . eznYn(x), (2.4.5)

is a diffeomorphism (see Proposition 2.3.9 (v)). For z ∈ V we then let

(z1, z2, . . . , zn) ∈ N ⊂ Rn

denote the coordinates of z given by the coordinate chart (φ−1, V ); that is, z

and (z1, z2, . . . , zn) satisfy (2.4.5).

To obtain our desired aim, we shall make use of a result known as the ball-box

theorem. The statement of this theorem can be found, for example, in Section 2.4

in Montgomery [35] or in Section 0.5.A in Gromov [24]. In our case, the ball-box

theorem implies that there exist constants ε0, C, C ′ > 0 such that

C ′φ (Box(ε)) ⊂ Bε(x) ⊂ Cφ (Box(ε)) , (2.4.6)

for all ε ≤ ε0, where for each ε > 0, we let

Box(ε) :=
{
x ∈ Rn : |xi| ≤ εdi , ∀ i = 1, 2, . . . , n

}
. (2.4.7)

It is important to note here that we can apply the ball-box theorem due to the

construction of the basis of g given in Section 2.4.1. A proof of this result can be

found in several references; see, for example, Sections 2.4 and 2.6 in Montgomery

[35] or Section 4 in Nagel et al [36].

Now, let N be a neighbourhood of 0 in Rn and V be a neighbourhood of

x in G small enough such that the following properties are satisfied:

(a) V ⊂ Bε0(x); that is, V satisfies (2.4.6).

(b) The mapping φ : N → V given by (2.4.5) is a diffeomorphism.

(c) Any (z1, z2, . . . , zn) ∈ N satisfies

||(z1, z2, . . . , zn)||Rn ≤ 1.
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For any z ∈ V we can then re-write (2.4.6) as

C ′
(
|z1|1/d1 + |z2|1/d2 + · · ·+ |zn|1/dn

)
≤ d(x, z)

≤ C
(
|z1|1/d1 + |z2|1/d2 + · · ·+ |zn|1/dn

)
. (2.4.8)

2.4.3 Comparing the Carnot-Carathéodory metric to the

Euclidean distance

We continue with the setting of Sections 2.4.1 and 2.4.2. We then have the

following result.

Proposition 2.4.2. There exist constants C1, C2 > 0 such that

C1 dE(x, z) ≤ d(x, z) ≤ C2 dE(x, z)1/δ, ∀ z ∈ V, (2.4.9)

where dE(·, ·) denotes the Euclidean distance on Rn induced by the chart (φ−1, V ).

Proof. Recall that the neighbourhood V of eG in G and the neighbourhood N

of 0 in Rn satisfy properties (a), (b) and (c) from Section 2.4.2. By property (c),

for every (z1, z2, . . . , zn) ∈ N we have |zj| ≤ 1 for all j = 1, 2, . . . , n. Moreover,

dj ≥ 1 for all j = 1, 2, . . . , n. So, for every (z1, z2, . . . , zn) ∈ N , we have

|zj| ≤ |zj|1/dj ≤ |zj|1/δ, ∀ j = 1, 2, . . . , n,

where δ is the integer given by (2.4.4). Hence, by (2.4.8), for every z ∈ V we

have

C ′ (|z1|+ |z2|+ · · ·+ |zn|) ≤ d(x, z)

≤ C
(
|z1|1/δ + |z2|1/δ + · · ·+ |zn|1/δ

)
. (2.4.10)

Furthermore, the equivalence of norms in Rn implies that there exist constants

c1, c2, > 0 such that

c1

(
|z1|2 + |z2|2 + · · ·+ |zn|2

) 1
2 ≤

(
|z1|+ |z2|+ · · ·+ |zn|

)
, (2.4.11)

and
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(
|z1|1/δ + |z2|1/δ + · · ·+ |zn|1/δ

)
≤ c2

(
|z1|2 + |z2|2 + · · ·+ |zn|2

) 1
2δ , (2.4.12)

for all (z1, z2, . . . , zn) ∈ N . Hence, applying (2.4.11) and (2.4.12) to (2.4.10), we

obtain that there exist constants C1, C2 > 0 such that for all z ∈ V we have

C1

(
|z1|2 + |z2|2 + · · ·+ |zn|2

) 1
2 ≤ d(x, z) ≤ C2

(
|z1|2 + |z2|2 + · · ·+ |zn|2

) 1
2δ .

This is equivalent to (2.4.9).

Example 2.4.3. Consider the 3-dimensional, connected and compact Lie group

SU(2), and let {X1, X2, X3} be the basis of su(2) given by (2.8.8). We further

consider the Hörmander system of vector fields X = {X1, X2}. Let x = I be

the identity element of SU(2).

In this case, let I1 = 1, I2 = 2 and I3 = (1, 2). Then, the set

{X[I1], X[I2], X[I3]} = {X1, X2, [X1, X2]}

forms a basis of su(2). We have d1 = 1, d2 = 1 and d3 = 2 (see (2.4.3)).

By the ball-box theorem, in particular (2.4.8), there exists a neighbourhood

V of I in SU(2) and constants C1, C2 > 0 such that

C1(|z1|+ |z2|+ |z3|1/2) ≤ |z| ≤ C2(|z1|+ |z2|+ |z3|1/2), ∀ z ∈ V. (2.4.13)

2.5 Schwartz kernel theorem

Suppose M is a smooth manifold. The objective of this section is to introduce

the Schwartz kernel theorem. Its purpose is to describe certain operators acting

on D(M), the space of compactly supported smooth functions on M, in terms

of an integral kernel. For a detailed exposition of the subject, see Treves [53].

We now assume M = G. Throughout the thesis we use a particular charac-

terisation of the space of compactly supported smooth functions, D(G), which is

relevant to our purposes. Let Ki be an increasing family of compact sets, such

that
⋃
iKi = G. We have the countable increasing union
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D(G) =
⋃
i

D(Ki).

We then define the topology on D(G) via the family of semi-norms which are

given by

||f ||D(Ki),N := sup
α∈I(k)
|α|≤N
x∈Ki

|Xαf(x)|, f ∈ D(Ki), (2.5.1)

for each N ∈ N0 and each i. This topology is independent of the choice of the

Ki.

We let D′(G) be the space of distributions on D(G); that is, the space of

continuous linear functionals on D(G). For u ∈ D′(G) and φ ∈ D(G), we

denote the action of u on φ by 〈u, φ〉. For a given u ∈ Lp(G), for 1 ≤ p < +∞,

we can define a corresponding distribution, Tu ∈ D′(G), by

〈Tu, φ〉 =

∫
G

u(x)φ(x) dx, φ ∈ D(G).

We will usually abuse the notation and identify Tu with u. The topology on

D′(G) is then defined to be given by the family of semi-norms {|| · ||D′(G),N :

N ∈ N0}, where for each N ∈ N0,

||u||D′(G),N := sup
φ∈D(G)

||φ||D(G),N≤1

| 〈u, φ〉 |, u ∈ D′(G). (2.5.2)

If X is a left-invariant vector field, we then define Xu to be the distribution

given by

〈Xu, φ〉 = −〈u,Xφ〉 , ∀ φ ∈ D(G). (2.5.3)

This readily implies that, for any collection {X1, X2, . . . , Xk} of left-invariant

vector fields, if β = (i1, i2, . . . , ib) ∈ I(k), then the differential operator

Xβ = Xi1Xi2 . . . Xib

satisfies

〈Xβu, φ〉 =
〈
u,X t

βφ
〉
, ∀ φ ∈ D(G), (2.5.4)

where X t
β is the differential operator defined by (2.3.13). That is,
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〈Xi1Xi2 . . . Xibu, φ〉 = (−1)|β|
〈
u,XibXib−1

. . . Xi1φ
〉
, ∀ φ ∈ D(G), (2.5.5)

Let us also introduce the following useful notation.

Definition 2.5.1. We let L (L2(G))G denote the space of continuous linear

operators

T : D(G) −→ D′(G),

which are left-invariant and bounded in the L2 norm; that is,

||Tf ||L2(G) ≤ C ||f ||L2(G), ∀ f ∈ D(G),

for some C > 0.

We now state the Schwartz kernel theorem on manifolds. The reader is re-

ferred to [53] for a proof of this result.

Theorem 2.5.2 (Schwartz kernel Theorem). Let M be a smooth connected

manifold and suppose T : D(M) → D′(M) is a continuous linear operator.

Then there exists a unique distribution κ ∈ D′(M×M) such that

Tf(x) =

∫
M
f(z)κ(x, z) dz, ∀ f ∈ D(M), x ∈ M,

in the sense of distributions; that is

〈Tf, φ〉 =

〈∫
M
f(z)κ(·, z) dz, φ

〉
, f, φ ∈ D(M).

The converse also holds. Furthermore, the map

T 7−→ κ

is an isomorphism of topological vector spaces from the space of continuous linear

operators T : D(M)→ D′(M) onto D′(M×M).

2.5.1 Convolution on groups

Suppose G is a locally compact group. For two functions f, g ∈ L1(G), the

convolution f ∗ g is defined by
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(f ∗ g)(x) =

∫
G

f(z) g(z−1x) dz.

This is well-defined and moreover, f ∗ g ∈ L1(G). The following properties of

convolution can be readily checked.

Proposition 2.5.3. Suppose f, g, h ∈ L1(G), for a Lie group G. Then, the

following assertions hold:

(i) We have

||f ∗ g||L1(G) ≤ ||f ||L1(G) ||g||L1(G).

(ii) Convolution is associative; that is,

f ∗ (g ∗ h) = (f ∗ g) ∗ h.

(iii) Now, suppose that f, g ∈ D(G), and X is a left-invariant vector field on

G. Then, we have

X(f ∗ g) = f ∗ (Xg) and X̃(f ∗ g) = (X̃f) ∗ g,

and additionally,

(Xf) ∗ g = f ∗ (X̃g),

whenever these expressions make sense.

The following result about convolutions of L2 functions is also well-known.

Proposition 2.5.4. (1) If f1, f2 ∈ L2(G), then f1 ∗ f2 is continuous on G,

with

||f1 ∗ f2||L∞(G) ≤ ||f1||L2(G) ||f2||L2(G). (2.5.6)

(2) Consequently, the map

L2(G)× L2(G) −→ C(G)

(f1, f2) 7−→ f1 ∗ f2

is bilinear and continuous.
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Proof. Observe that for any f1, f2 ∈ L2(G),

f1 ∗ f2(x) = 〈f1, πL(x)f ∗2 〉L2(G) , ∀ x ∈ G,

where πL denotes the left regular representation on G (see (2.2.2)), and where

for any f ∈ L2(G) we denote

f ∗(x) = f(x−1), ∀ x ∈ G.

As the complex-conjugate linear mapL2(G) −→ L2(G)

f 7−→ f ∗

is an isometry on L2(G), then the continuity of f1 ∗ f2 on G follows from the

continuity of πL (see Example 2.2.2). Furthermore, by the Cauchy-Schwarz

inequality, as well as the unitarity of πL, we have (2.5.6).

Convolution with distributions

Suppose G is a Lie group. For a function f on G, we denote

f̃(x) = f(x−1), x ∈ G.

Observe that, if f, g ∈ L1(G), then we have

f ∗ g(x) =

∫
G

f(z) g(z−1x) dz

=

∫
G

f(z) πL(x)g̃(z) dz,

where πL denotes the left regular representation on G (see (2.2.2)). Hence, the

convolution of f and g can be written as

f ∗ g(x) = 〈f, πL(x)g̃〉 .

Since G is assumed to be unimodular, we also obtain
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f ∗ g(x) =

∫
G

f(z) g(z−1x) dz

=

∫
G

f(xy−1) g(y) dy.

Hence, we can also write the convolution of f and g as

f ∗ g(x) =
〈
g, πR(x−1)f̃

〉
,

where πR denotes the right regular representation on G (see (2.2.3)). This

suggests the following definition:

Definition 2.5.5. Suppose G is a Lie group. Let u ∈ D′(G) and f ∈ D(G).

We then define

f ∗ u(x) =
〈
u, πR(x−1)f̃

〉
, x ∈ G,

and

u ∗ f(x) =
〈
u, πL(x)f̃

〉
, x ∈ G.

Example 2.5.6. Suppose G is a Lie group and let f ∈ D(G). We shall consider

the convolution of f with the Dirac distribution δeG . For every x ∈ G, we have

f ∗ δeG(x) =
〈
δeG , πR(x−1)f̃

〉
= πR(x−1)f̃(eG) = f(x).

The following properties can be readily checked.

Proposition 2.5.7. Suppose G is a Lie group. If u ∈ D′(G) and f ∈ D(G),

then u ∗ f, f ∗ u ∈ D(G).

Observe that, using Definition 2.5.5, we can readily check the following prop-

erty:

∀ u, v, ϕ ∈ D(G), 〈u ∗ v, ϕ〉 = 〈u, ϕ ∗ ṽ〉 . (2.5.7)

If u ∈ D′(G), we define the distribution ũ by

〈ũ, ϕ〉 = 〈u, ϕ̃〉 , ∀ ϕ ∈ D(G).

In particular, the following property holds
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∀ u ∈ D′(G), ϕ ∈ D(G), ϕ ∗ ũ ∈ D(G). (2.5.8)

Expression (2.5.7) naturally leads to the definition of convolution of two distri-

butions.

Definition 2.5.8. Let u ∈ E ′(G) and v ∈ D′(G). Then, we define u ∗ v by

the relation

〈u ∗ v, ϕ〉 := 〈u, ϕ ∗ ṽ〉 . (2.5.9)

The definition of the convolution of two distributions given by (2.5.9) is well-

defined by (2.5.8).

2.5.2 Schwartz kernel theorem on Lie groups

We can also state a consequence of Theorem 2.5.2 in the case that M = G is

a Lie group, for left-invariant operators. More precisely, we have the following

result.

Corollary 2.5.9. Let G be a connected Lie group. Let T : D(G)→ D′(G) be a

continuous linear operator, which is left-invariant; that is,

(Tf)(zx) = T (f(zx)), ∀ f ∈ D(G), x, z ∈ G.

Then, there exists unique κ ∈ D′(G) such that T is a convolution operator,

with right convolution kernel κ; that is,

Tf = f ∗ κ, f ∈ D(G),

in the sense of distributions.

The converse also holds. Furthermore, the map

T 7−→ κ

is an isomorphism of topological vector spaces from the space of continuous linear

operators T : D(G)→ D′(G), which are left-invariant, onto D′(G).

The proof of the converse in Corollary 2.5.9 is, in fact, a routine exercise, which

we now show. If G is a connected Lie group and κ ∈ D′(G), then the right-

convolution operator
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Tκ : D(G) −→ D′(G)

f 7−→ f ∗ κ

is left-invariant. Indeed, for any x, z ∈ G, we have

(Tκf)(zx) = (f ∗ κ)(zx) =

∫
G

f(y)κ(y−1zx) dx

=

∫
G

f(zy)κ(y−1x) dx

= Tκ(f(zx)),

as claimed.

Definition 2.5.10. Let G be a connected Lie group. Let T : D(G) → D′(G)

be a continuous linear operator, which is left-invariant. Then, there exists unique

κ ∈ D′(G) such that

Tf = f ∗ κ, f ∈ D(G).

In this case, we shall call κ the right-convolution kernel associated to the operator

T . Moreover, we denote

Tδ0 = κ.

Now, we suppose G is a connected Lie group. If X is a left-invariant vector

field on G, we claim that the right convolution kernel associated to X is the

distribution XδeG . Suppose f ∈ D(G), then we consider the convolution of f

with the distribution XδeG . For every x ∈ G we have

f ∗ (XδeG)(x) =
〈
XδeG , πR(x−1)f̃

〉
.

By the definition of XδeG (see (2.5.3)), we then obtain

f ∗ (XδeG)(x) = −
〈
δeG , X

{
πR(x−1)f̃

}〉
= −X

{
πR(x−1)f̃

}
(eG)

= − ∂t=0

{
πR(x−1)f̃

}
(etX)

= − ∂t=0 f̃(etXx−1)

= −X̃f̃(x−1),
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where we recall that for a function f on G, we denote

f̃(x) = f(x−1), ∀ x ∈ G.

Now we compute

−X̃f̃(x−1) = ∂t=0 f̃(e−tXx−1) = ∂t=0 f̃
(
(xetX)−1

)
= ∂t=0 f(xetX)

= Xf(x).

So, we have shown that

Xf(x) = f ∗ (XδeG)(x), ∀ x ∈ G,

which proves the claim.

Since f = f ∗ δeG (see Example 2.5.6), then we have also shown that

f ∗ (XδeG) = X(f ∗ δeG). (2.5.10)

By applying this operation recursively, we obtain the following result, which

follows from (2.5.4).

Proposition 2.5.11. Let G be a connected Lie group. Suppose {X1, X2, . . . , Xk}
is any collection of left-invariant vector fields on G. For β = (i1, i2, . . . , ik) ∈
I(k), consider the differential operator

Xβ = Xi1Xi2 . . . Xib .

Then, the right-convolution kernel of Xβ is the distribution

X t
β δeG ,

where the operator X t
β is defined by (2.3.13). Additionally, the distribution

X t
β δeG satisfies

〈
X t
β δeG , φ

〉
= 〈δeG , Xβφ〉 = Xβ φ(eG), ∀ φ ∈ D(G).

Furthermore, consider the right-invariant differential operator
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X̃β = X̃i1X̃i2 . . . X̃ib ,

where X̃ denotes the unique right-invariant vector field associated to X (see

Proposition 2.3.9 (vii)). Then, the right-convolution kernel associated to X̃β is

given by

(−1)`X̃ t
β δeG(x−1),

where the distribution X̃ t
β satisfies

〈
X̃ t
β δeG , φ

〉
=
〈
δeG , X̃βφ

〉
= X̃β φ(eG), ∀ φ ∈ D(G)

Example 2.5.12. Suppose G is a connected Lie group and let the set

{X1, X2, . . . , Xk}

be a Hörmander system of left-invariant vector fields on G, for some k ∈ N.

Furthermore, let

L := −(X2
1 +X2

2 + · · ·X2
k)

denote its associated sub-Laplacian. Then, by Proposition 2.5.11, the right con-

volution kernel associated to L is the distribution LδeG .

2.6 Infinitesimal representations

Let G be a Lie group and suppose that g denotes its Lie algebra. For a repre-

sentation (π,Hπ) of G, we aim to introduce the infinitesimal representation dπ

of g. For a discussion on the subject, one can see, for example, Knapp [30] or

Fischer and Ruzhansky [18].

In order to do this, we need to consider the subset of Hπ consisting of smooth

vectors.

Definition 2.6.1. Let (π,Hπ) be a representation of a Lie group G. We say

that a vector v ∈ Hπ is smooth if the mapping

x 7−→ π(x)v, x ∈ G,

is smooth. We let H ∞
π denote the space of all smooth vectors in Hπ.

A sketch proof of the following result can be found in [18].
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Proposition 2.6.2. Let G be a Lie group and suppose that g denotes its Lie

algebra. Let (π,Hπ) be a strongly continuous representation of G. Then, for

any X ∈ g and v ∈ H ∞
π , we have that the limit

dπ(X)v := lim
t→0

π
(
etX
)
v − v

t
(2.6.1)

exists and is finite. Moreover, dπ is a representation of g on H ∞
π , satisfying

dπ ([X, Y ]) = dπ(X) dπ(Y )− dπ(Y ) dπ(X), ∀ X, Y ∈ g.

Definition 2.6.3. Let G be a Lie group and suppose g denotes its Lie algebra.

If (π,Hπ) is a strongly continuous representation of G, then the representation

dπ of g defined by (2.6.1) is called the infinitesimal representation associated to

π.

Moreover, we also have the following definition.

Definition 2.6.4. Let G be a Lie group and g denote its Lie algebra. Suppose

that X = {X1, X2, . . . , Xk} is a Hörmander system of left-invariant vector fields

on G. If T be a differential operator of the form

T =
∑

α∈I(k)
|α|≤a

cαXα,

for some a ∈ N, then we define

π(T ) = dπ(T ).

If the representation (π,Hπ) of G is finite dimensional, then all of the vectors

in Hπ are smooth; that is,

H ∞
π = Hπ.

Moreover, on a compact Lie group G, every irreducible representation is finite

dimensional, by the Peter-Weyl Theorem. Hence, every representation (π,Hπ) ∈
Ĝ consists of smooth vectors.

A proof of the following property of infinitesimal representations can be found

in [18].

Proposition 2.6.5. Suppose G is a Lie group and let g denote its Lie algebra.

If (π,Hπ) is a strongly continuous unitary representation of G and ϕ ∈ D(G),

then for any left-invariant vector field X ∈ g we have
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π(Xϕ)v = π(X)π(ϕ)v, ∀ v ∈ Hπ.

If X̃ is a right-invariant vector field, then

π(X̃ϕ)v = π(ϕ)π(X)v, ∀ v ∈ Hπ.

2.7 The Lie group H and its representations

We now summarise the relevant theory related to the Heisenberg group and its

Lie algebra. For a detailed exposition of the work presented here, see for example

Stein [47], Folland [20], or Folland and Stein [22].

We shall explain two different ways of characterising the Heisenberg group.

First we may consider H to be the manifold R3, with the following group oper-

ation:

(x, y, t) · (x′, y′, t′) = (x+ x′, y + y′, t+ t′ − (xy′ − x′y)) .

We also let h denote the Lie algebra of H, which by the definition, is the vector

space of all left-invariant vector fields on H. We equip h with the Lie bracket

[·, ·] given by

[X, Y ] = XY − Y X, for X, Y ∈ h,

which, as we discussed in Section 2.3.3, defines a smooth left-invariant vector

field on H. By identifying h with the tangent space at the identity of H, one

can show that its basis is given by

X =
∂

∂x
+ y

∂

∂t
, Y =

∂

∂y
− x ∂

∂t
, T ′ = −2

∂

∂t
.

This calculation is done in great detail in [47] (Chapter XII, Section 2.6). Now,

observe that
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[X, Y ] =

(
∂

∂x
+ y

∂

∂t

)(
∂

∂y
− x ∂

∂t

)
−
(
∂

∂y
− x ∂

∂t

)(
∂

∂x
+ y

∂

∂t

)
=

(
∂2

∂x∂y
− ∂

∂x

{
x
∂

∂t

}
+ y

∂2

∂t∂y
− xy ∂

2

∂t2

)
−
(

∂2

∂y∂x
+

∂

∂y

{
y
∂

∂t

}
− x ∂2

∂t∂x
− xy ∂

2

∂t2

)
=

∂

∂x
{x} ∂

∂t
− ∂

∂y
{y} ∂

∂t

= −2
∂

∂t
.

Hence,

[X, Y ] = T ′.

Now, we can also identify the Heisenberg group H with the manifold C× R,

equipped with the group operation

(ζ, t) · (ζ ′, t′) =
(
ζ + ζ ′, t+ t′ + Im

(
ζ ζ ′
))
.

Consider the space

U :=
{
z = (z1, z2) ∈ C2 : Im(z2) > |z1|2 + |z2|2

}
,

and its boundary

∂U :=
{
z = (z1, z2) ∈ C2 : Im(z2) = |z1|2 + |z2|2

}
.

It is shown in Stein [47] (see Chapter XII) that the Heisenberg group may be

identified with the boundary ∂U via the mapping H −→ ∂U

(ζ, t) 7−→ (ζ, t+ i|ζ|2)
.

We now consider differential operators

∂

∂ζ
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂ζ
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

for ζ = x+ iy, and the left-invariant complex vector fields
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Z =
∂

∂ζ
− i ζ

2

∂

∂t
, Z =

∂

∂ζ
+ i

ζ

2

∂

∂t
.

The right-invariant complex vector fields corresponding to Z and Z are given by

Z̃ =
∂

∂ζ
+ i

ζ

2

∂

∂t
, Z̃ =

∂

∂ζ
− i ζ

2

∂

∂t
.

Moreover, set

T =
∂

∂t
.

We have

[Z,Z] = iT.

Observe further that

Z =
1

2
(X + iY ), Z =

1

2
(X − iY ).

Thus, we may identify the complexification of h with T0(∂U), the space of tan-

gent vectors to ∂U at 0. In [47] it is further proved (Section 2.6.3) that the vector

fields Z, Z, T form a basis of the tangent space T0(∂U). Thus, we can assume

that the left-invariant vector fields Z, Z, T form a basis of the complexification

of h.

Haar measure

On the Heisenberg group, we consider the Haar measure given by∫
H
f(g) dg =

∫ +∞

0

∫ 2π

0

∫ +∞

−∞
f(ρ eiϕ, t)

ρ

2π2
dρ dϕ dt.

2.7.1 Representations of H

In this section we aim to describe the infinite dimensional irreducible unitary

representations of H. For λ > 0 we define F λ to be the Fock space consisting of

the entire functions F : C→ C satisfying

||F ||2Fλ =
λ

π

∫
C
|F (z)|2 e−λ|z|2 dz < +∞,

where dz represents the Lebesgue measure on C. We consider the inner product

on F λ given by
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〈F,G〉Fλ =
λ

π

∫
C
F (z)G(z) e−λ|z|

2

dz, for F,G ∈ F λ. (2.7.1)

We now define, for each λ > 0, the representations σλ, σ−λ of H acting on F λ by

[σλ(ζ, t)F ] (z) = e−λ(it+ζ z+
1
2
|ζ|2) F (z + ζ),

[σ−λ(ζ, t)F ] (z) = e−λ(−it−ζ z+
1
2
|ζ|2) F (z − ζ).

An orthonormal basis of F λ with respect to the inner product 〈·, ·〉 is given by{
η

(λ)
j (z) =

(
λj

j !

)1/2

zj : j ≥ 0

}
. (2.7.2)

Since F λ is an infinite dimensional space, then so are the representations σλ, σ−λ.

Moreover, the representations σλ, σ−λ are unitary with respect to the inner prod-

uct on F λ given by (2.7.1). It can then be shown that the representations

σλ, σ−λ (λ > 0) are the only non-equivalent infinite dimensional irreducible uni-

tary representations of H on F λ (see, for instance, Folland [20]).

We can calculate the infinitesimal representations of σλ.

Proposition 2.7.1. For λ > 0 and F ∈ F λ:

(i) dσλ
(
Z
)
F (z) = −λ z F (z),

(ii) dσλ (Z)F (z) = ∂z F (z),

(iii) dσλ (T )F (z) = λF (z).

Proof. The proofs are all similar, so we only exhibit the proof of (iii). Let λ > 0,

then for F ∈ Fλ,

dσλ(T )F (z) = i∂t e
−λ(it+ζ z+ 1

2
|ζ|2) F (z + ζ)

∣∣∣∣
(ζ,t)=(0,0)

= i(−iλ) e−λ(it+ζ z+ 1
2
|ζ|2) F (z + ζ)

∣∣∣∣
(ζ,t)=(0,0)

= λF (z).
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Similarly, we compute the infinitesimal representation of σ−λ:

Proposition 2.7.2. For λ > 0 and F ∈ F λ,

(i) dσ−λ
(
Z
)
F (z) = −∂z F (z),

(ii) dσ−λ (Z)F (z) = λz F (z),

(iii) dσ−λ (T )F (z) = −λF (z).

2.7.2 The Plancherel formula on H

Observe that, for λ > 0, the matrix entries of σλ and σ−λ are given by

σλ(ζ, t)
(j,k) =

〈
σλ(ζ, t)η

(λ)
k , η

(λ)
j

〉
Fλ

, j, k ≥ 0, (ζ, t) ∈ H,

and

σ−λ(ζ, t)
(j,k) =

〈
σ−λ(ζ, t)η

(λ)
k , η

(λ)
j

〉
Fλ

, j, k ≥ 0, (ζ, t) ∈ H.

For an integrable function f on H and for λ > 0, the Fourier transform of

f at the representation σλ is given by

f̂(σλ) =

∫
H
f(x)σλ(x)∗ dx =

∫ +∞

0

∫ 2π

0

∫ +∞

−∞
f(ρ eiϕ, t)σλ(ζ, t)

∗ ρ

2π2
dρ dϕ dt,

and a similar formula is obtained by taking the Fourier transform of f at σ−λ.

Since f̂(σλ) ∈ L (F λ), then the Fourier transform f̂(σλ) can be thought of as

the countably infinite matrix with entries

f̂(σλ)
(j,k) =

∫ +∞

0

∫ 2π

0

∫ +∞

−∞
f(ρ eiϕ, t) [σλ(ζ, t)

∗](j,k) ρ

2π2
dρ dϕ dt, j, k ≥ 0.

Now, for an integrable function f on H, the Plancherel formula of f is given

by

∫
H
|f(x)|2 dx =

∫
R\{0}

Tr
(
f̂(σλ)f̂(σλ)

∗
)
|λ| dλ =

∫
R\{0}

+∞∑
j,k=0

∣∣∣f̂(σλ)
(j,k)
∣∣∣2 |λ| dλ.

For a detailed presentation on the Plancherel formula on the Heisenberg group,

see for example [18].
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2.8 The compact Lie group SU(2) and its rep-

resentations

This section is aimed at introducing the compact Lie group SU(2). For a deep

study in the subject, the reader is referred to Faraut [14], Hall [25], or Folland

[20].

The compact Lie group SU(2) is defined by:

SU(2) = {g ∈ GL2(C) : g∗ = g−1, det(g) = 1}.

It is not difficult to show that

SU(2) =

{(
α β

−β α

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
.

Alternatively, one can parametrise the Lie group SU(2) to obtain an equivalent

definition in terms of Euler angles. Fix an element of SU(2)

x =

 α β

−β α

 ,

with |α|2 + |β|2 = 1. Then, writing the complex numbers α, β in polar coordi-

nates, we see that there exist unique rα ≥ 0 and t∗ ∈ (−π, π], such that

α = rα e
it∗ ,

and rβ ≥ 0 and ϕ∗ ∈ (−3π/2 , π/2], satisfying

β = rβ e
iϕ∗ .

We have,

|α|2 + |β|2 = r2
α + r2

β = 1. (2.8.1)

We write t = −t∗ and we let ϕ ∈ (0, 2π] be given by ϕ = ϕ∗ + 3π/2. Since

cos(ϕ∗) = − sin(ϕ∗ − π/2) = − sin(ϕ)

and

sin(ϕ∗) = cos(ϕ∗ − π/2) = cos(ϕ),
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then we have

β = rβ
(
− sin(ϕ) + i cos(ϕ)

)
= i rβ e

iϕ.

Hence, we can write

β = i rβ e
iϕ, for some rβ ≥ 0, ϕ ∈ (0, 2π],

and

α = rα e
−it, for some rα ≥ 0, t ∈ [−π, π).

Moreover, by (2.8.1), there exists unique 0 ≤ ρ ≤ π/2 such that

rα = cos(ρ), rβ = sin(ρ).

So every element x ∈ SU(2) can be written uniquely in the form e−it cos(ρ) i eiϕ sin(ρ)

i e−iϕ sin(ρ) eit cos(ρ)

 .

Haar measure on SU(2)

For the compact Lie group SU(2) we may consider the Haar measure given by∫
SU(2)

f(g) dg =

∫ π/2

0

∫ 2π

0

∫ π

−π
f(ρ, ϕ, t)

sin(2ρ)

4π2
dρ dϕ dt,

where (ρ, ϕ, t) is the SU(2) element given by

(ρ, ϕ, t) :=

(
e−it cos(ρ) i eiϕ sin(ρ)

i e−iϕ sin(ρ) eit cos(ρ)

)
.

2.8.1 Representations of SU(2)

For each integer n ≥ 0 we let Pn determine the space consisting of polyno-

mials in one complex variable, of degree at most n. We define the irreducible

representation of SU(2), πn, which acts on Pn, by

[πn(g)ϕ] (z) =
(
−i β z + α

)n
ϕ

(
α z − i β
−i β z + α

)
, (2.8.2)

for
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g =

(
α β

− β α

)
∈ SU(2), ϕ ∈ Pn.

An inner product on the space Pn is given by

〈ϕ, ψ〉Pn
=
n+ 1

π

∫
C
ϕ(z)ψ(z) (1 + |z|2)−n−2 dz, (2.8.3)

and its induced norm is

||ϕ||2Pn
=
n+ 1

π

∫
C
|ϕ(z)|2(1 + |z|2)−n−2 dz.

An orthonormal basis of Pn is given by{
ϕ

(n)
j (z) =

(
n

j

)1/2

zj : 0 ≤ j ≤ n

}
. (2.8.4)

The matrix entries of πn associated to the basis (2.8.4) (see (2.2.4)) are then

given by

πn(g)(i,j) =
〈
πn(g)ϕ

(n)
j , ϕ

(n)
i

〉
Pn

, 0 ≤ i, j ≤ n, g ∈ SU(2). (2.8.5)

It is clear that, for each n ∈ N0, πn is an n + 1 dimensional representation.

Moreover, one can also show that πn is unitary with respect to the inner product

given by (2.8.3).

We now have the following result, whose fundamental proof can be found in

[14].

Proposition 2.8.1. For each n ∈ N0, the representation (πn,Pn) of SU(2)

is irreducible. Moreover, if π is an irreducible finite dimensional representation

of SU(2), then there exists n ∈ N0 such that π ∼ πn.

This implies that

ŜU(2) ' {[πn]∼ : n ∈ N0}.

Let Mn := Mπn denote the finite dimensional complex vector space spanned

by the matrix entries of πn; that is,

Mn := Span
{
πn(g)(i,j) : 0 ≤ i, j ≤ n

}
. (2.8.6)
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We then define Mfinite to be the space consisting of finite linear combinations of

vectors in some Mn, for some n ∈ N0; that is,

Mfinite :=
⊕
n∈N0

Mn. (2.8.7)

The Peter-Weyl Theorem (see Theorem 2.2.3) tells us that Mfinite is a dense

subset of L2(SU(2)).

We also introduce the conjugate representation πn, which acts on Pn as

follows:

[πn(g)ϕ] (z) = [πn(g)ϕ] (z) = (−i β z + α)n ϕ

(
α z − i β
−i β z + α

)
,

for

g =

(
α β

− β α

)
∈ SU(2), ϕ ∈ Pn.

For each n ≥ 0, the representation πn is equivalent to πn, and an intertwining

operator is given in [39] (p. 222).

2.8.2 Lie algebra su(2)

One can show that the Lie algebra of SU(2), which we denote by su(2), consists

of the 2× 2 skew-Hermitian matrices, with complex entries, which have trace 0;

that is

su(2) =

{(
ia z

−z −ia

)
: a ∈ R, z ∈ C

}
.

For a proof of this result, see Hall [25] (see Section 3.4 therein).

We now consider linearly independent vectors X1, X2, X3 ∈ su(2) given by

X1 =

(
0 i

i 0

)
, X2 =

(
0 1

−1 0

)
, X3 =

(
i 0

0 −i

)
. (2.8.8)

One easily checks that the set {X1, X2, X3} forms an orthonormal basis of su(2)

with respect to the inner product defined by

〈X, Y 〉su(2) =
1

2
Tr(XY ∗) = −1

2
Tr(XY ), X, Y ∈ su(2).
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Indeed,

〈X1, X1〉su(2) = −1

2
Tr

( i 0

0 −i

)2
 = −1

2
Tr

(
−1 0

0 −1

)
= 1,

〈X2, X2〉su(2) = −1

2
Tr

( 0 1

−1 0

)2
 = −1

2
Tr

(
−1 0

0 −1

)
= 1,

〈X3, X3〉su(2) = −1

2
Tr

( 0 i

i 0

)2
 = −1

2
Tr

(
−1 0

0 −1

)
= 1.

Also,

〈X1, X2〉su(2) = −1

2
Tr

[(
i 0

0 −i

)(
0 1

−1 0

)]
= −1

2
Tr

(
0 i

i 0

)
= 0,

〈X1, X3〉su(2) = −1

2
Tr

[(
i 0

0 −i

)(
0 i

i 0

)]
= −1

2
Tr

(
0 −1

1 0

)
= 0,

〈X2, X3〉su(2) = −1

2
Tr

[(
0 1

−1 0

)(
0 i

i 0

)]
= −1

2
Tr

(
i 0

0 −i

)
= 0.

Further, observe that

[X1, X2] =

(
0 i

i 0

)(
0 1

−1 0

)
−

(
0 1

−1 0

)(
0 i

i 0

)

=

(
−2i 0

0 2i

)
,

so [X1, X2] = −2X3. By identifying the vector Xj, for each j = 1, 2, 3, with

the unique left-invariant vector field associated to it, we then see that the set

{X1, X2} forms a Hörmander system on SU(2), and thus, the operator
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L = −(X2
1 +X2

2 )

is a sub-Laplacian on SU(2).

We now compute the infinitesimal representations of πn and πn on the basis

elements of su(2), X1, X2, X3.

Proposition 2.8.2. Let n ≥ 0 and ϕ ∈ Pn. Then,

(i) πn(X1)ϕ(z) = (z(−n+ z∂z) + ∂z) ϕ(z),

(ii) πn(X2)ϕ(z) = i (z(−n+ z∂z)− ∂z) ϕ(z),

(iii) πn(X3)ϕ(z) = i(n− 2z∂z)ϕ(z).

Proof. First observe that

etX1 =

(
cos t i sin t

i sin t cos t

)
, etX2 =

(
cos t sin t

− sin t cos t

)
, etX3 =

(
eit 0

0 e−it

)
.

We shall calculate πn(X3) only, since all of the calculations are similar. Suppose

first that ϕ(z) = zj, for some 0 ≤ j ≤ n. It is not difficult to calculate that

πn(X3)ϕ(z) =
d

dt

[
πn
(
etX3

)
ϕ
]

(z)

∣∣∣∣
t=0

=
d

dt

[
eint ϕ(e−2itz)

] ∣∣∣∣
t=0

=
d

dt

[
ei(n−2j)tzj

] ∣∣∣∣
t=0

= i(n− 2j)zj,

by (2.6.1). In particular, we have

πn(X3)ϕ(z) = i

(
n− 2z

∂

∂z

)
ϕ(z), (2.8.9)

and hence, by the linearity of the operator i(n − 2z∂z), we deduce that (2.8.9)

holds for any ϕ ∈ Pn. Hence,

πn(X3) = i(n− 2z∂z),

as claimed.
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Similarly, we obtain:

Proposition 2.8.3. Let n ≥ 0 and ϕ ∈ Pn. Then,

(i) πn(X1)ϕ(z) = − (z(−n+ z∂z) + ∂z) ϕ(z),

(ii) πn(X2)ϕ(z) = −i (z(−n+ z∂z)− ∂z) ϕ(z),

(iii) πn(X3)ϕ(z) = −i(n− 2z∂z)ϕ(z).
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Chapter 3

Analysis of the sub-Laplacian

and Sobolev spaces on compact

Lie groups

In this chapter we study the sub-Laplacian associated to a Hörmander system of a

compact Lie group G. We shall first study its spectral theory closely, and use the

spectral theorem to write down the action of its self-adjoint extension on L2(G).

We shall consider the compact Lie group SU(2) as an example, providing some

calculations to put the theory into practice. The heat semigroup is also discussed

in this chapter, and we explain some relevant properties.

Furthermore, we shall also consider the Sobolev spaces arising naturally from

the sub-Laplacian for the case p = 2. We state some important properties of

these, and prove the interpolation theorem and a Sobolev inequality for these

spaces. A local version of Taylor’s theorem is also proved in this chapter.

Lastly, we shall prove some important inequalities regarding the Fourier mul-

tipliers of a sub-Laplacian, using Littlewood-Paley decompositions. We base

these on the results obtained in Alexopoulos [2] in the setting of Lie groups of

polynomial growth, which were later adapted by Furioli et al [23].

3.1 Sub-Laplacians on compact Lie groups

This section is dedicated to providing an overview of the spectral analysis of

a sub-Laplacian on a compact Lie group. The references Varopoulos [54] and

[55] provide an extensive study of a sub-Laplacian on a Lie group of polynomial

growth. For further results in this setting, see Alexopoulos [2] and Furioli et al

[23]. For a comprehensive study of spectral theory, see Akhiezer and Glazman
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[1], Conway [9], Davies [11], Reed and Simon [38], or Rudin [42]. One can also

find in Fischer and Ruzhansky [18] the spectral theory for Rockland operators on

homogeneous groups, which is a generalisation of sub-Laplacians. Additionally,

further results in the case of stratified nilpotent Lie groups can be found in Folland

[19].

In this section we shall also discuss the heat semigroup and its associated

heat kernels (see Section 3.1.5). In Hunt [29] one can find important results on

this topic, wherein the heat kernels are interpreted as positive measures. For

results in the setting of Riemannian and sub-Riemannian geometry, the reader is

redirected to Strichartz [49] and [50].

Throughout this section, we let G be a compact Lie group, and suppose

g denotes its Lie algebra, unless stated otherwise. Furthermore, we consider a

set {X1, X2, . . . , Xk}, for some k ∈ N, which forms a Hörmander system of

left-invariant vector fields on G, and let L be its associated sub-Laplacian:

L = −
(
X2

1 +X2
2 + · · ·+X2

k

)
.

3.1.1 Definitions and the self-adjoint extension of L

We recall the following definitions.

Definition 3.1.1. Suppose T is a densely defined linear operator (not necessarily

bounded) on a Hilbert space H , with domain Dom(T ). Let also Dom(T ∗) be

the set of elements v ∈ H such that there exists w ∈ H which satisfies

〈Tu, v〉H = 〈u,w〉H , ∀ u ∈ Dom(T ).

(a) We then define T ∗, the adjoint of T , to be the operator satisfying

〈Tu, v〉H = 〈u, T ∗v〉 , ∀ u ∈ Dom(T ), v ∈ Dom(T ∗).

(b) We say T is a symmetric operator if Dom(T ) ⊂ Dom(T ∗) and

Tu = T ∗u, ∀ u ∈ Dom(T ).

Or equivalently,

〈Tu, v〉H = 〈u, Tv〉 , ∀ u, v ∈ Dom(T ).
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(c) We say T is self-adjoint if it is symmetric and Dom(T ) = Dom(T ∗).

By definition, L is a differential operator acting on C∞(G). So L is an

unbounded operator which is densely defined on L2(G). Observe that, if X is a

left-invariant vector field and f, g ∈ C∞(G), then

〈Xf, g〉L2(G) =

∫
G

(
∂t=0 f(xetX)

)
g(x) dx

=

∫
G

f(x)
(
∂t=0 g(xe−tX)

)
dx

= −〈f,Xg〉L2(G) .

Therefore,

〈Lf, g〉L2(G) = −
k∑
j=1

〈
X2
j f, g

〉
L2(G)

=
k∑
j=1

〈Xjf,Xjg〉L2(G)

= −
k∑
j=1

〈
f,X2

j g
〉
L2(G)

= 〈f,Lg〉L2(G) ,

which means that L is a symmetric operator. Moreover, we check that

〈Lf, f〉L2(G) =
k∑
j=1

〈Xjf,Xjf〉L2(G)

=
k∑
j=1

||Xjf ||2L2(G)

≥ 0,

and so L is a non-negative operator. Therefore, L admits a self-adjoint ex-

tension to L2(G) (see, for example, Section 85 in Akhiezer and Glazman [1]).

Furthermore, one can show that this extension is unique (see, for instance, Section

12 in Strichartz [50]). Throughout this thesis, we will keep the same notation for

the differential operator L and its unique self-adjoint extension to L2(G). We

let Dom(L) denote the domain of the self-adjoint operator L.
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3.1.2 Fourier analysis of L

In this section we aim to write down the spectrum of the self-adjoint operator

L, which we denote by Spec(L). For each (π,Hπ) ∈ Ĝ we consider an inner

product 〈·, ·〉Hπ
on Hπ, and we let dπ be the dimension of π. Suppose further

that || · ||Hπ denotes the norm associated to 〈·, ·〉Hπ
. Observe that for each

π ∈ Ĝ and each j = 1, 2, . . . , k, π(Xj) is a skew-adjoint operator on Hπ; that

is,

〈π(Xj)u, v〉Hπ
= 〈u,−π(Xj)v〉Hπ

, ∀ u, v ∈ Hπ.

In particular, this implies that

π(X2
j )∗ = π(X2

j ), ∀ j = 1, 2, . . . , k.

Hence,

π(L) = −
k∑
j=1

π(X2
j )

is a self-adjoint operator acting on the finite dimensional inner product space

Hπ. Therefore it is diagonalisable and there exists an orthonormal basis

{
ϕ

(π)
j : j = 1, 2, . . . , dπ

}
(3.1.1)

of Hπ which consists of eigenvectors of π(L). Thus, whenever 1 ≤ j ≤ dπ we

have

π(L)ϕ
(π)
j = λ

(π)
j ϕ

(π)
j , (3.1.2)

where λ
(π)
j ∈ C denotes the eigenvalues of π(L) associated to the eigenfunction

ϕ
(π)
j , and hence

π(L)(i,j) =
〈
π(L)ϕ

(π)
j , ϕ

(π)
i

〉
Hπ

=

λ
(π)
j , if i = j,

0, if i 6= j
. (3.1.3)

Moreover, since for any ϕ ∈ Hπ,
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〈π(L)ϕ, ϕ〉Hπ
= −

k∑
j=1

〈
π(X2

j )ϕ, ϕ
〉

Hπ
=

k∑
j=1

〈π(Xj)ϕ, π(Xj)ϕ〉Hπ

=
k∑
j=1

||π(Xj)ϕ||2Hπ
≥ 0,

then the eigenvalues λ
(π)
j (1 ≤ j ≤ dπ) of π(L) are non-negative real numbers.

Now, for each π ∈ Ĝ, we consider the matrix entries of π (see (2.2.4)) with

respect to the orthonormal basis of Hπ given by (3.1.1):

π(x)(i,j) =
〈
π(x)ϕ

(π)
j , ϕ

(π)
i

〉
Hπ

, 1 ≤ i, j ≤ dπ, x ∈ G.

By the Peter-Weyl Theorem (see Theorem 2.2.3), we have that the set

{√
dπ π( · )(i,j) : π ∈ Ĝ, 1 ≤ i, j ≤ dπ

}
forms an orthonormal basis of L2(G). Now, if X is a left-invariant vector field

on G, then whenever 1 ≤ i, j ≤ dπ, using Proposition 2.3.9 (vi), we calculate

that

Xπ(x)(i,j) = X
〈
π(x)ϕ

(π)
j , ϕ

(π)
i

〉
Hπ

=

〈
d

dt
π
(
xetX

) ∣∣∣∣
t=0

ϕ
(π)
j , ϕ

(π)
i

〉
Hπ

=

〈
d

dt
π(x)π

(
etX
) ∣∣∣∣

t=0

ϕ
(π)
j , ϕ

(π)
i

〉
Hπ

=
〈
π(x)π(X)ϕ

(π)
j , ϕ

(π)
i

〉
Hπ

.

Hence, we obtain

Lπ(x)(i,j) = −
k∑
j=1

〈
X2
j π(x)ϕ

(π)
j , ϕ

(π)
i

〉
Hπ

= −
k∑
j=1

〈
π(x) π(Xj)

2 ϕ
(π)
j , ϕ

(π)
i

〉
Hπ

=
〈
π(x) π(L)ϕ

(π)
j , ϕ

(π)
i

〉
Hπ

.
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By (3.1.2), we then have

Lπ(x)(i,j) =
〈
π(x) π(L)ϕ

(π)
j , ϕ

(π)
i

〉
Hπ

=
〈
π(x)λ

(π)
j ϕ

(π)
j , ϕ

(π)
i

〉
Hπ

= λ
(π)
j π(x)(i,j).

Therefore, we have the spectral decomposition

Spec(L) =
{
λ

(π)
j : π ∈ Ĝ, 1 ≤ j ≤ dπ

}
. (3.1.4)

Remark 3.1.2. One can show that the spectrum of L is discrete. Consider the

operator e−L. As we shall see in a later section, this operator is compact (see

Remark 3.1.7). Now, by spectral theory, the spectrum of e−L is given by

Spec(e−L) =
{
e−λ : λ ∈ Spec(L)

}
.

This implies that we can write the spectrum of L as

Spec(L) =
{
− ln(µ) : µ ∈ Spec(e−L)

}
.

In fact, this relation yields a one-to-one correspondence between Spec(L) and

Spec(e−L). Additionally, eigenvalues associated via this relation have the same

geometric multiplicity.

By the theory of compact operators (see, for example, Section VII.7.1 in

Conway [9]), we know that Spec(e−L) has at most one accumulation point and

that it can only be 0, and moreover all non-zero eigenvalues of e−L have finite

multiplicity. By functional analysis, this implies that Spec(L) is discrete.

We also make the following observation.

Remark 3.1.3. (1) Suppose that L is the Laplace-Beltrami operator of G. By

the theory of compact Lie groups, we know that for every π ∈ Ĝ, there

exists a unique scalar λπ ≥ 0 such that

π(L) = λπ IdHπ .

In the case of a sub-Laplacian L this statement does not hold. We shall

provide an example for the case G = SU(2) in Section 3.1.4.
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(2) Now, as we will also demonstrate in the example of SU(2) in Section

3.1.4, there exists λ ∈ Spec(L) for which there exist π, π′ ∈ Ĝ, i, j ∈
{1, 2, . . . , dπ} and i′, j′ ∈ {1, 2, . . . , dπ′}, where π and π′ are non-equivalent,

such that

Lπ(x)(i,j) = λπ(x)(i,j)

and

Lπ′(x)(i′,j′) = λπ′(x)(i′,j′).

In this case the geometric multiplicity of λ is greater than 1 and the

eigenspace associated to λ is not a subspace of either Mπ or Mπ′ . Recall

that, for each π ∈ Ĝ, Mπ is the space given by

Mπ = Span
{
〈π1(·)ϕ, ψ〉Hπ1

: ϕ, ψ ∈ Hπ1 , π1 ∈ [π]∼

}
.

3.1.3 Spectral decomposition of L

Let Eλ denote the orthogonal projection onto the eigenspace corresponding to

the eigenvalue λ; that is, if λ ∈ Spec(L), then

Eλf :=
∑

π ∈ Ĝ, 1≤i,j≤dπ
λ
(π)
j =λ

〈
f, π(·)(i,j)

〉
L2(G)

π(i,j).

Since the spectrum of L is discrete (see Remark 3.1.2), then the spectral theory

(see, for instance, Theorem VIII.5 in [38]) tells us that,

L =
∑

λ∈ Spec(L)

λEλ,

with domain Dom(L) consisting of functions f ∈ L2(G), such that

∑
λ∈ Spec(L)

|λ|2
∣∣∣∣Eλf ∣∣∣∣2L2(G)

< +∞.

So, for a function f ∈ Dom(L) , we have
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Lf =
∑

λ∈ Spec(L)

λ
∑

π ∈ Ĝ, 1≤i,j≤dπ
λ
(π)
j =λ

dπ
〈
f, π(·)(i,j)

〉
L2(G)

π(i,j)

=
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

λ
(π)
j

〈
f, π(·)(i,j)

〉
L2(G)

π(i,j) (3.1.5)

where we notice that

〈
f , π(·)(i,j)

〉
L2(G)

=

∫
G

f(y) π(y)(i,j) dy = f̂(π)(j,i), ∀ 1 ≤ i, j ≤ dπ.

Hence,

Lf =
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

λ
(π)
j f̂(π)(j,i)π(i,j). (3.1.6)

Furthermore, we have

∑
λ∈ Spec(L)

|λ|2
∣∣∣∣Eλf ∣∣∣∣2L2(G)

=
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

∣∣λ(π)
j

∣∣2 ∣∣f̂(π)(j,i)
∣∣2, (3.1.7)

and hence the domain Dom(L) of L is given byf ∈ L2(G) :
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

∣∣λ(π)
j

∣∣2 ∣∣f̂(π)(j,i)
∣∣2 < +∞

 .

More generally, by the spectral theorem (see, for example, [38]), if m is a Borel

function on R, we have

m(L) =
∑

λ∈ Spec(L)

m(λ)Eλ. (3.1.8)

Hence,

m(L)f =
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

m
(
λ

(π)
j

)
f̂(π)(j,i) π(i,j), (3.1.9)

and the domain Dom(m(L)) of m(L) consists of functions f ∈ L2(G) such

that
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∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

∣∣m(λ(π)
j

)∣∣2 ∣∣f̂(π)(j,i)
∣∣2 < +∞.

Let us now consider some important examples.

Example 3.1.4.

(i) For s ∈ R, the operator (I + L)s satisfies

(I + L)sf =
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

(
1 + λ

(π)
j

)s
f̂(π)(j,i) π(i,j), (3.1.10)

for f ∈ Dom
(
(I + L)s/2

)
, which is the set consisting of functions f ∈

L2(G) such that

∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

∣∣1 + λ
(π)
j

∣∣2s ∣∣f̂(π)(j,i)
∣∣2 < +∞.

(ii) For each t > 0, the operator e−tL can be written as

e−tLf =
∑

λ∈ Spec(L)

e−tλEλ(f) =
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

e−tλ
(π)
j f̂(π)(j,i) π(i,j),

for f ∈ Dom(e−tL), which is the set consisting of functions f ∈ L2(G)

such that

∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

∣∣e−tλ∣∣2 ∣∣f̂(π)(j,i)
∣∣2 < +∞.

We end this section with the following immediate observation.

Remark 3.1.5. If m ∈ D(G) is such that

supp(m) ∩ [0,+∞) ⊂ [0, λ1),

where λ1 is the smallest non-zero eigenvalue of L, then

m(L) = m(0)E0.
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3.1.4 Sub-Laplacian on SU(2)

In this section we study a sub-Laplacian on the compact Lie group SU(2) (see

Section 2.8), using the theory developed so far in Section 3.1.

Recall that, viewing the elements of su(2) as left-invariant vector fields,

we know that the set {X1, X2} forms a Hörmander system on SU(2), where

X1, X2, X3 denote the basis elements of su(2) given by (2.8.8) (see Section 2.8.2).

We consider the following sub-Laplacian on SU(2):

L = −(X2
1 +X2

2 ).

Recall that we use the same notation for the differential operator L and its

self-adjoint extension to L2(SU(2)).

Fix n ∈ N0. By a direct computation, using Proposition 2.8.2, we obtain

πn(L) = −
(
πn(X1)2 + πn(X2)2

)
= −

[
(z(−n+ z∂z) + ∂z)

2 + (i(z(−n+ z∂z)− ∂z))2] . (3.1.11)

Observe that

(z(−n+ z∂z) + ∂z)
2

= z2(−n+ z∂z)
2 + z(−n+ z∂z)∂z + ∂z {z(−n+ z∂z)}+ ∂2

z , (3.1.12)

and similarly,

(i (z(−n+ z∂z)− ∂z))2

= −z2(−n+ z∂z)
2 + z(−n+ z∂z)∂z + ∂z {z(−n+ z∂z)} − ∂2

z . (3.1.13)

Combining (3.1.12) and (3.1.13) with (3.1.11), we obtain

πn(L) = −2z(−n+ z∂z)∂z − 2∂z {z(−n+ z∂z)}

= −2
(
−zn∂z + z2∂2

z

)
− 2

(
∂z{z}(−n+ z∂z)− nz∂z + (z∂z)

2
)

= 2n+ 4nz∂z − 2z2∂2
z − 2z∂z − 2(z∂z)

2. (3.1.14)

But,
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(z∂z)
2 = z∂z + z2∂2

z ,

and hence (3.1.14) becomes

πn(L) = 2n+ 4nz∂z − 4(z∂z)
2. (3.1.15)

For n ∈ N0, recall that (see Section 2.8.1) an orthonormal basis of Pn is

given by {
ϕ

(n)
j (z) =

(
n

j

)1/2

zj : 0 ≤ j ≤ n

}
.

If 0 ≤ j ≤ n, we have

πn(L)ϕ
(n)
j (z) = 2

(
n

j

)1/2 [
n+ 2nz∂z − 2(z∂z)

2
]
zj

= 2
[
n(1 + 2j)− 2j2

]
ϕ

(n)
j (z).

So, the eigenvalue of the operator πn(L) associated to the eigenfunction ϕ
(n)
j is

given by

λ
(n)
j := 2

[
n(1 + 2j)− 2j2

]
.

In particular, the basis (2.8.4) of Pn forms a complete set of eigenfunctions of

πn(L). Furthermore,

πn(L)(i,j) =
〈
πn(L)ϕ

(n)
j , ϕ

(n)
i

〉
Pn

=

λ
(n)
j if i = j

0 otherwise
. (3.1.16)

Therefore, the spectrum of the operator L is given by

Spec(L) =
{

2n(1 + 2j)− 4j2 : 0 ≤ j ≤ n, n ∈ N0

}
.

Let us now write down some examples of eigenvalues λ
(n)
j corresponding to

the eigenfunctions π
(i,j)
n of L. The values of j are displayed along the top

horizontal row, whilst the values of n are displayed on the left-most vertical

column. We consider the values of n ranging from 0 to 5 and j ≤ n.
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n\j 0 1 2 3 4 5

0 0

1 2 2

2 4 8 4

3 6 14 14 6

4 8 20 24 20 8

5 10 26 34 34 26 10

The table above shows that there exists n ∈ N0, and j, j′ ∈ {0, 1, 2, . . . , n}
such that

λ
(n)
j 6= λ

(n)
j′ .

In particular, this means that there exists n ∈ N0 such that

πn(L) 6= λ In+1,

for any λ > 0, where In+1 denotes the (n + 1)× (n + 1) identity matrix. This

contrasts with the case of the Laplace-Beltrami operator L = −(X2
1 +X2

2 +X2
3 ).

Recall the classical result

πn(L) = (n2 + 2n)In+1, ∀ n ∈ N0.

This can also be checked directly with a computation, using Proposition 2.8.2.

Moreover, we also notice that, for example we have

λ
(2)
1 = λ

(4)
0 = λ

(4)
4 = 8.

This means that

Lπ2(x)(i,1) = 8π2(x)(i,1), Lπ4(x)(i′,0) = 8π4(x)(i′,0), Lπ4(x)(i′,4) = 8π4(x)(i′,4),

whenever 0 ≤ i ≤ 1 and 0 ≤ i′ ≤ 4. This illustrates what we explained earlier

in Remark 3.1.3 (2); the eigenvalue λ = 8 has geometric multiplicity at least

12 > 1 and its associated eigenspace, which is given by

{f ∈ L2(SU(2)) : Lf = 8f},

is not a subspace of either M2 or M4 (see (2.8.6)).
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On the other hand, in the case of the Laplace-Beltrami operator on SU(2),

if λ = n2 + 2n, for some n ∈ N0, is given, then the eigenspace associated to

λ is exactly Mn. Therefore, there is a one-to-one correspondence between the

eigenvalues λn = n2 + 2n of L and the spaces Mn.

Now, by (3.1.6), we have

Lf =
∞∑
n=0

(n+ 1)
n∑

i,j=0

(
2n(1 + 2j)− 4j2

)
f̂(πn)(j,i) π(i,j)

n , (3.1.17)

for any f ∈ Dom(L), where the domain Dom(L) is the space consisting of

functions f ∈ L2(SU(2)), such that

∞∑
n=0

(n+ 1)
n∑

i,j=0

∣∣2n(1 + 2j)− 4j2
∣∣2 ∣∣f̂(πn)(j,i)

∣∣2 < +∞.

To put it another way, Dom(L) is given by

{
f ∈ L2(SU(2)) :

∞∑
n=0

(n+ 1)
n∑

i,j=0

∣∣2n(1 + 2j)− 4j2
∣∣2 ∣∣f̂(πn)(j,i)

∣∣2 < +∞

}
.

More generally, by (3.1.9), if m is a Borel function on R, we have

m(L)f =
∞∑
n=0

(n+ 1)
n∑

i,j=0

m
(
2n(1 + 2j)− 4j2

)
f̂(πn)(j,i) π(i,j)

n , (3.1.18)

and the domain of m(L) consists of functions f ∈ L2(SU(2)) such that

∞∑
n=0

(n+ 1)
n∑

i,j=0

∣∣m(2n(1 + 2j)− 4j2)
∣∣2 ∣∣f̂(πn)(j,i)

∣∣2 < +∞.

3.1.5 Heat semigroup

In this section we aim to introduce the heat semigroup associated to a sub-

Laplacian on a compact Lie group, and the corresponding heat kernels. Results

in the setting of Lie groups can be found, for example, in Hunt [29], Varopoulos

[54] or Saloff-Coste [45]. See also Folland [19] for results in the setting of stratified

nilpotent Lie groups. Further results for Lie groups of polynomial growth can be

found in Alexopoulos [2] or Furioli et al [23]. More general results on manifolds

are also known; for instance, see Strichartz [49], where the Laplace-Beltrami op-
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erator is considered, or Strichartz [50] for related results on the sub-Riemannian

setting. Furthermore, some standard references for semigroups in functional anal-

ysis include Davies [11], and Reed and Simon [38] (see Sections VIII.3 and VIII.4

in the latter).

Using functional analysis, we may construct the strongly continuous semi-

group of operators on L2(G) associated to the self-adjoint operator L:

{
e−tL

}
t≥0
,

where it is understood that e0L is the identity operator on G. This is known

as the heat semigroup. Since for all t ≥ 0 the mapping λ 7→ e−tλ is bounded

and continuous on [0,+∞), then by functional analysis, the operator e−tL is

bounded on L2(G), with bound

||e−tL||L (L2(G)) ≤ sup
λ≥0
|e−tλ| ≤ 1. (3.1.19)

Hence, {e−tL}t≥0 is a contraction semigroup.

Since L is left-invariant, then for each t > 0, the operator e−tL is also left-

invariant. Additionally, since for each t > 0 the operator e−tL is bounded on

L2(G), then in particular, it is a continuous operator on L2(G). So, for each

t > 0, the operator e−tL satisfies the hypothesis of Corollary 2.5.9, and hence it

admits a right-convolution kernel pt ∈ D′(G):

e−tLf = f ∗ pt, ∀ t > 0, f ∈ L2(G). (3.1.20)

The kernel pt corresponding to the operator e−tL is known as the heat kernel

associated with L.

In this thesis we will use the following properties of the heat kernels, which

are classical and well-known. One can find, for example, in Hunt [29], a proof

of properties (i)-(iii), where the heat kernels pt are considered as finite positive

measures on G. The regularity of the heat kernels follows from the fact that they

satisfy the heat equation as a distribution and a famous theorem by Hörmander

in [28]. Further discussions on these properties in the more general case of Lie

groups of polynomial growth can be found in Varopoulos [54]. In Folland [19],

one can also find a proof of these properties in the case of stratified nilpotent Lie

groups.

Proposition 3.1.6. The heat kernels satisfy the following conditions:

(i) For each t > 0, the heat kernel pt is smooth on G. Furthermore, pt(z) ≥ 0
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for all z ∈ G, and it is integrable, with

∫
G

pt(z) dz = 1.

(ii) If t1, t2 > 0, then

pt1 ∗ pt2 = pt1+t2 .

(iii) For every t > 0 and z ∈ G, pt(z) = pt(z
−1).

(iv) For every t > 0, there exists C > 0 such that

pt(z) ≤ C V (
√
t)−1 e−

|z|2
Ct , for z ∈ G, t > 0, (3.1.21)

where, for each r > 0, we let V (r) denote the volume of the ball Br(eG),

with respect to the Carnot-Carathéodory metric on G (see Definition A.1.2).

Additionally, one can also find in Varopoulos [55] (Chapter VIII) an estimate

for the volume of a ball with respect to the Carnot-Carathéodory distance:

V (r) ≈

 rl, for r ∈ (0, 1),

1, for 1 ≤ r ≤ R,

where l denotes the local dimension of G (see Definition A.2.1) and R denotes

the radius of G:

R = sup
z ∈G
|z| < +∞.

Moreover, whenever r > R, we have

V (r) =

∫
Br(eG)

dx =

∫
BR(eG)

dx ≈ 1.

Hence,

V (r) ≈ 1, ∀ r ∈ [1,+∞).

So, we have

V (r) ≈

 rl, for r ∈ (0, 1),

1, for 1 ≤ r < +∞.
(3.1.22)
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Proposition 3.1.6 can be generalised to a sub-Riemannian manifold which

does not necessarily have a group structure. See Strichartz [50] and [49] for the

properties of the heat kernels in this case.

Remark 3.1.7. Since G is compact and for each t > 0 we have pt ∈ C∞(G), then

pt ∈ L2(G). This implies that, for each t > 0, the operator e−tL is compact on

L2(G) (see Theorem 2.3.2 in Bump [5]).

3.1.6 The operator (I + L)−s/2 on a compact Lie group

For a given s ∈ R we let Bs denote the right-convolution kernel associated to

the operator (I + L)−s/2. That is, Bs satisfies

(I + L)−s/2f = f ∗ Bs, ∀ f ∈ Dom
(
(I + L)−s/2

)
. (3.1.23)

The aim of this section is to show that, for a given s ∈ R, the distribution Bs,
whenever it exists, is square integrable subject to a certain condition on s.

As we saw in Example 3.1.4, for s ∈ R, the domain of the operator

(I + L)−s/2,

which we denote by Dom
(
(I + L)−s/2

)
, is given byf ∈ L2(G) :

∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

∣∣1 + λ
(π)
j

∣∣−s ∣∣f̂(π)(j,i)
∣∣2 < +∞

 ,

and the action of (I + L)−s/2 on a function f contained in Dom
(
(I + L)−s/2

)
is given by

(I + L)−s/2f =
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

(
1 + λ

(π)
j

)−s/2
f̂(π)(j,i) π(i,j).

First observe that, if s ≥ 0, then the mapping

λ 7−→ (1 + λ)−s/2

is a bounded measurable function in [0,+∞). Hence, by spectral analysis, the

operator (I + L)−s/2 is bounded on L2(G). Since it is also left-invariant, then

by Corollary 2.5.9, it admits a right-convolution kernel, which we shall denote by

Bs.
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To begin with, we shall consider the case G = SU(2). We have the following

result.

Proposition 3.1.8. Suppose G = SU(2) and let

L = −(X2
1 +X2

2 )

be the sub-Laplacian on SU(2) we considered in Section 3.1.4. If s > 2, then

the right convolution kernel Bs associated to the operator (I + L)−s/2 is square

integrable.

Proof. By definition, the kernel Bs satisfies

(I + L)−s/2f = f ∗ Bs, ∀ f ∈ L2(SU(2)).

Furthermore, by the properties of convolution, taking the Fourier transform yields

F
{

(I + L)−s/2f
}

(πn) = F
{
f ∗ Bs

}
(πn) = B̂s(πn)f̂(πn), ∀ n ∈ N0.

Hence, for each n ∈ N0, we have

F
{

(I + L)−s/2
}

(πn) = πn(I + L)−s/2 = B̂s(πn).

Moreover, for each n ∈ N0,

F
{

(I + L)−s/2
}

(πn)(i,j) =
(
1 + 2n(1 + 2j)− 4j2

)−s/2
, ∀ 0 ≤ i, j ≤ n.

Now, in this proof we shall show that

∞∑
n=0

(n+ 1) ||πn(I + L)−s/2||2HS

=
∞∑
n=0

(n+ 1)
n∑
j=0

∣∣∣(1 + 2n(1 + 2j)− 4j2
)−s/2∣∣∣2 (3.1.24)

is finite provided that s > 2. By Plancherel’s Theorem (see Theorem 2.2.7), we

have

||Bs||2L2(SU(2)) =
∞∑
n=0

(n+ 1) ||πn(I + L)−s/2||2HS. (3.1.25)
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Hence, proving that (3.1.24) is finite for s > 2 yields the result.

First, we claim that

∞∑
n=0

(n+ 1)
n∑
j=0

∣∣∣(1 + 2n(1 + 2j)− 4j2
)−s/2∣∣∣2

≤
∫ ∞

0

∫ x

0

(x+ 1)
∣∣(1 + 2x(1 + 2y)− 4y2

)∣∣−s dy dx.

In order to prove this, we study the function

[0, x] −→ R

y 7−→
∣∣(1 + 2x(1 + 2y)− 4y2

)∣∣−s =
∣∣(2y − x)2 − (x+ 1)2

∣∣−s , (3.1.26)

for a fixed x > 0 and s > 0. The expression (2y− x)2− (x+ 1)2 is equal to 0 if

and only if y = 1
2
(2x+ 1) = x+ 1

2
/∈ [0, x], and moreover, (2y − x)2 ≥ (x+ 1)2

if and only if

2y − x ≥ x+ 1 or 2y − x ≤ −(x+ 1).

This holds if and only if

y ≥ 1

2
(2x+ 1) or y ≤ −1

2
.

Hence, it follows that

∣∣(2y − x)2 − (x+ 1)2
∣∣ = (x+ 1)2 − (2y − x)2, whenever 0 ≤ y ≤ x.

Furthermore, for y ∈ [0, x], its derivative is given by

d

dy

{∣∣(2y − x)2 − (x+ 1)2
∣∣−s} = 4s (2y − x)

(
(x+ 1)2 − (2y − x)2

)−s−1
,

by the chain rule. So,

d

dy

{∣∣(2y − x)2 − (x+ 1)2
∣∣−s} = 0 ⇐⇒ y =

x

2
,

provided that y ∈ [0, x]. Thus, the only turning point of this function in the
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interval [0, x] is at y = x/2. Additionally, we have

(
(x+ 1)2 − (2y − x)2

)−s −→ +∞ as y −→ 1

2
(2x+ 1)−.

Putting all of this information together yields that the function given by (3.1.26)

is a convex function with a turning point at y = x/2. This implies that

∫ x

0

∣∣(2y − x)2 − (x+ 1)2
∣∣−s ≥ bxc−∑

j=1

∣∣1 + 2x(1 + 2j)− 4j2
∣∣−s ,

where bxc− denotes the highest integer n such that n < x. Furthermore, it is

clear that we also have

∞∑
n=0

(n+ 1)
∣∣(1 + 2n(1 + 2j)− 4j2

)∣∣−s
≤
∫ ∞

0

(x+ 1)
∣∣(1 + 2x(1 + 2y)− 4y2

)∣∣−s dx,

for a fixed y ≥ 0, whenever s > 1. So, we have shown that for s > 1, the norm

given by (3.1.24) is bounded by

∫ ∞
0

[ ∫ x

0

(x+ 1)
∣∣(1 + 2x(1 + 2y)− 4y2

)∣∣−s dy + 2(x+ 1)|1 + 2x|−s
]

dx

=

∫ ∞
0

∫ x

0

(x+ 1)
∣∣(1 + 2x(1 + 2y)− 4y2

)∣∣−s dy dx+

∫ ∞
0

2(x+ 1)|1 + 2x|−s dx.

Now, let

I1 :=

∫ ∞
0

∫ x

0

(x+ 1)
∣∣(1 + 2x(1 + 2y)− 4y2

)∣∣−s dy dx,

with

I1,x :=

∫ x

0

(x+ 1)
∣∣(1 + 2x(1 + 2y)− 4y2

)∣∣−s dy,

and

I2 :=

∫ ∞
0

2(x+ 1)|1 + 2x|−s dx.

It is clear that I2 < +∞ if s > 2. Let us now consider the integral I1,x. Applying

the substitution u = 1 + 2x(1 + 2y) − 4y2 for a fixed x ≥ 0, we first compute
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that

du

dy
= −4(2y − x) = −4

[
(x+ 1)2 − u

]1/2
.

Also using the fact that our function is symmetrical about the line y = x/2, we

have

∫ x

0

(x+ 1)
∣∣(1 + 2x(1 + 2y)− 4y2

)∣∣−s dy

= −1

2

∫ (x+1)2

1+2x

(x+ 1)u−s
[
(x+ 1)2 − u

]−1/2
du.

This is finite, provided that s > 1/2, and consequently, I1 < +∞ provided that

s > 1/2. Hence, we deduce that (3.1.24) is finite, provided that s > 2. So, by

(3.1.25), the result is proved.

We can give an alternate proof of Proposition 3.1.8 which is valid for any

compact Lie group G. In this proof we shall make use of the heat semigroup

{e−tL}t>0 and the results given in Section 3.1.5.

Proposition 3.1.9. Suppose that G is a compact Lie group of local dimen-

sion l (see Definition A.2.1). Suppose further that {X1, X2, . . . , Xk} forms a

Hörmander system of left-invariant vector fields on G, for some k ∈ N, and let

L := −(X2
1 +X2

2 + · · ·X2
k)

denote its associated sub-Laplacian. If s > l/2, then the right-convolution kernel

associated to the operator (I + L)−s/2, Bs, is square integrable.

Proof. Recall that the Γ function is defined as the convergent integral

Γ(s) =

∫ ∞
0

ts−1 e−t dt, for s > 0. (3.1.27)

Thus, if λ, s > 0, we have

Γ(s/2) = λs/2
∫ ∞

0

t
s
2
−1 e−λ t dt.

So, on rearranging we obtain

λ−s/2 =
1

Γ(s/2)

∫ ∞
0

t
s
2
−1 e−λ t dt.
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Hence,

(1 + λ)−s/2 =
1

Γ(s/2)

∫ ∞
0

t
s
2
−1 e−t e−λt dt.

Integrating with respect to the spectral measure yields the equality

(I + L)−s/2 =
1

Γ(s/2)

∫ ∞
0

t
s
2
−1 e−t e−Lt dt.

Hence, for any f ∈ Dom((I + L)−s/2), we obtain

(I + L)−s/2f =
1

Γ(s/2)

∫ ∞
0

t
s
2
−1 e−t e−Ltf dt

=
1

Γ(s/2)

∫ ∞
0

t
s
2
−1 e−t (f ∗ pt) dt

= f ∗
{

1

Γ(s/2)

∫ ∞
0

t
s
2
−1 e−t pt dt

}
.

This shows that the kernel Bs is formally given by

Bs =
1

Γ(s/2)

∫ ∞
0

t
s
2
−1 e−t pt dt.

By Fubini’s Theorem, we have

∫ ∞
0

∣∣t s2−1 e−t pt
∣∣ dt ≤ 1

Γ(s/2)

∫
G

∫ ∞
0

∣∣t s2−1e−tpt(z)
∣∣ dt dz

≤ 1

Γ(s/2)

∫ ∞
0

t
s
2
−1e−t

∫
G

|pt(z)| dz dt

≤ 1,

where the last equality is obtained by Proposition 3.1.6 and (3.1.27). This shows

that Bs ∈ L1(G), and ||Bs||L1(G) ≤ 1. Now, the L2 norm of Bs is given by

||Bs||2L2(G) =

∫
G

|Bs(z)|2 dz

=
1

|Γ(s/2)|2

∫
G

∣∣∣∣∫ ∞
0

t
s
2
−1 e−t pt(z) dt

∣∣∣∣2 dz.

But, for each z ∈ G, we compute
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∣∣∣∣∫ ∞
0

t
s
2
−1 e−t pt(z) dt

∣∣∣∣2 =

∫ ∞
0

t
s
2
−1

1 e−t1 pt1(z) dt1

∫ ∞
0

t
s
2
−1

2 e−t2 pt2(z) dt2

=

∫ ∞
0

∫ ∞
0

t
s
2
−1

1 t
s
2
−1

2 e−(t1+t2) pt1(z)pt2(z) dt1 dt2.

Hence, by Fubini’s Theorem, we have

||Bs||2L2(G) =
1

|Γ(s/2)|2

∫ ∞
0

∫ ∞
0

t
s
2
−1

1 t
s
2
−1

2 e−(t1+t2)

∫ ∞
0

pt1(z)pt2(z) dz dt1 dt2.

By the properties of the heat kernels (see Proposition 3.1.6), for each t1, t2 > 0

we obtain

∫
G

pt1(z)pt2(z) dz =

∫
G

pt1(z)pt2(z
−1) dz = pt1 ∗ pt2(eG) = pt1+t2(eG).

Hence,

||Bs||2L2(G) =

∫
G

1

|Γ(s/2)|2

∫ ∞
0

∫ ∞
0

t
s
2
−1

1 t
s
2
−1

2 e−(t1+t2) pt1+t2(eG) dt1 dt2 dz.

Now, we do the substitutions t = t1 + t2 and u = t2/t. We have

∫ ∞
0

∫ ∞
0

(t1t2)
s
2
−1 e−(t1+t2) pt1+t2(eG) dt1 dt2

=

∫ ∞
t2=0

∫ ∞
t=t2

(
t2(t− t2)

) s
2
−1
e−t pt(eG) dt dt2

=

∫ 1

u=0

∫ ∞
t=0

t2(
s
2
−1)(u− u2)

s
2
−1 e−t pt(eG) t dt du.

Thus, we have

∫ ∞
0

∫ ∞
0

(t1t2)
s
2
−1 e−(t1+t2) pt1+t2(eG) dt1 dt2

=

∫ 1

u=0

(u− u2)
s
2
−1 du

∫ ∞
t=0

t2(
s
2
−1)+1e−t pt(eG) dt

=

∫ 1

u=0

(u− u2)
s
2
−1 du

∫ ∞
t=0

ts−1e−t pt(eG) dt.
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Clearly, ∫ 1

0

(u− u2)
s
2
−1 du < +∞,

provided that s
2
− 1 > −1; that is, as long as s > 0. Now, observe that

∫ ∞
0

ts−1 e−t pt(eG) dt

=

∫ 1

0

ts−1 e−t pt(eG) dt +

∫ ∞
1

ts−1 e−t pt(eG) dt. (3.1.28)

Proposition 3.1.6 (iv) tells us that there exists C ′ > 0 such that

pt(eG) ≤ C ′ V (
√
t)−1e−

|eG|
2

C′t = C ′ V (
√
t)−1, ∀ t > 0.

Furthermore, by (3.1.22), we know that the quantity V (
√
t) is bounded and it

satisfies:

V (
√
t)−1 ≈

 t−l/2, t ∈ (0, 1)

1, 1 ≤ t < +∞.
(3.1.29)

This implies that there exists C1 > 0 such that

pt(eG) ≤ C1 t
−l/2, ∀ t ∈ (0, 1), (3.1.30)

and C2 > 0 such that

pt(eG) ≤ C2, ∀ 1 ≤ t <∞. (3.1.31)

Combining (3.1.30) and (3.1.31) with (3.1.28), we deduce that there exists C > 0

such that

∫ ∞
0

ts−1 e−t pt(eG) dt

≤ C

(∫ 1

0

ts−
l
2
−1 e−t dt +

∫ ∞
1

ts−1 e−t dt

)
.

For any s > 0 we have ∫ ∞
1

ts−1 e−t dt < +∞.
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Moreover, the integral ∫ 1

0

ts−
l
2
−1 e−t dt < +∞,

provided that s − l
2
− 1 > −1; that is, if s > l/2. Hence, a sufficient condition

to have ||Bs||2L2(G) < +∞ is that s > l/2.

Remark 3.1.10. In the case of stratified nilpotent Lie groups, one can find the

proof of the analogous result to Proposition 3.1.9 in Folland [19].

The following result is a consequence of Proposition 3.1.9.

Corollary 3.1.11. If s ∈ R, such that s > l/2, then,

∑
π ∈ Ĝ

dπ Tr
∣∣π(I + L)−s

∣∣ < +∞. (3.1.32)

Proof. For each π ∈ Ĝ, we have

Tr
∣∣π(I + L)−s

∣∣ = Tr
∣∣π(I + L)−

s
2

(
π(I + L)−

s
2

)∗∣∣ =
∣∣∣∣π(I + L)−

1
2
s
∣∣∣∣2
HS
.

So, by Plancherel’s Theorem (see Theorem 2.2.7), we obtain

∑
π ∈ Ĝ

dπ Tr
∣∣π(I + L)−s

∣∣ =
∑
π ∈ Ĝ

dπ
∣∣∣∣π(I + L)−

1
2
s
∣∣∣∣2
HS

= ||Bs||2L2(G),

where || · ||HS denotes the Hilbert-Schmidt norm (see (2.2.8)), and Bs denotes

the right-convolution kernel associated to the operator (I+L)−s. By Proposition

3.1.9, if s > l/2, then ||Bs||L2(G) < +∞. Thus, the result is proved.

3.1.7 Complex powers of (I + L)

For α ∈ C the mapping

λ 7−→ (1 + λ)α

is continuous on [0,+∞). Hence, by the spectral theory (see (3.1.9)), the operator

(I + L)α is given by

(I + L)αf =
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

(
1 + λ

(π)
j

)α
f̂(π)(j,i) π(i,j), (3.1.33)
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for f ∈ Dom((I + L)α), which is the space given byf ∈ L2(G) :
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

∣∣1 + λ
(π)
j

∣∣2α ∣∣f̂(π)(j,i)
∣∣2 < +∞

 .

The objective in this section is to prove the following proposition.

Proposition 3.1.12. Suppose α ∈ C, with a ≤ Re(α) ≤ b ≤ 0, for some

a, b ≤ 0. Then, the operator (I + L)α extends to a bounded operator on L2(G)

and satisfies the bound

||(I + L)α||L (L2(G)) ≤ C
∣∣Γ(1− iIm(α)

)∣∣−1
,

for some C > 0 depending only on a and b.

In order to prove this, we shall follow the same strategy as in Folland [19], we

shall require the following result, a proof of which can be found in Stein [46] (see

Chapter IV, Section 6).

Proposition 3.1.13. Suppose m : (0,+∞)→ R is a function of the form

m(λ) = λ

∫ ∞
0

e−λtM(t) dt, λ ∈ (0,+∞), (3.1.34)

where M is a bounded function on (0,+∞). Then, the operator m(L), which is

given by

m(L)f =
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

m
(
λ

(π)
j

)
f̂(π)(j,i) π(i,j),

is bounded on L2(G). Moreover, there exists a constant C > 0 independent of

M such that

||m(L)||L (L2(G)) ≤ C sup
t>0
|M(t)|.

Remark 3.1.14. Suppose a function m satisfies (3.1.34). Then, m is said to be

of Laplace transform type. Moreover, observe that the function given by

λ 7−→ 1

λ
m(λ)

is the Laplace transform of M .

Proof of Lemma 3.1.12. First observe that
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||(I + L)α||L (L2(G)) =
∣∣∣∣(I + L)Re(α)(I + L)iIm(α)

∣∣∣∣
L (L2(G))

≤
∣∣∣∣(I + L)Re(α)

∣∣∣∣
L (L2(G))

∣∣∣∣(I + L)iIm(α)
∣∣∣∣

L (L2(G))
.

Thus, in order to prove our result, it suffices find a suitable bound for the L2

operator norms of (I + L)Re(α) and (I + L)iIm(α).

To achieve the former, first observe that, since Re(α) ≤ 0, then the mapping

λ 7−→ (1 + λ)Re(α)

is bounded by 1 on (0,+∞). Moreover, by functional analysis,

∣∣∣∣(I + L)Re(α)
∣∣∣∣

L (L2(G))
≤ sup

λ>0
(1 + λ)Re(α) ≤ 1.

Hence, the operator (I + L)Re(α) is bounded on L2(G). We now aim to find a

bound for the operator norm of (I+L)iIm(α). Observe that, since Re(iIm(α)) = 0,

then by functional analysis, we have

∣∣∣∣(I + L)iIm(α)
∣∣∣∣

L (L2(G))
≤ sup

λ>0
|1 + λ|iIm(α) = 1. (3.1.35)

Hence, the operator (I + L)iIm(α) is bounded on L2(G). However, we are in-

terested in the dependence in α of the bound, so (3.1.35) does not provide a

suitable bound for us. In order to investigate the dependence on α, first recall

that, as we saw in the proof of Proposition 3.1.9, for any s > 0, we have

(1 + λ)−s =
1

Γ(s)

∫ ∞
0

ts−1 e−(1+λ)t dt.

A similar identity holds for any s ∈ C, with Re(s) > 0. Since Re(1− iIm(α)) =

1 > 0, then we have

(1 + λ)iIm(α)−1 =
1

Γ(1− iIm(α))

∫ ∞
0

t−iIm(α) e−(1+λ)t dt.

Hence,

(1 + λ)iIm(α) =
1 + λ

Γ(1− iIm(α))

∫ ∞
0

t−iIm(α)e−(1+λ)t dt. (3.1.36)

Now, we define the function

m(λ) := (1 + λ)iIm(α), λ > 0.
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The expression given by (3.1.36) can be formally rewritten as

(1 + λ)iIm(α) =
λ

Γ(1− iIm(α))

(
λ+ 1

λ

)∫ ∞
0

e−(1+λ)t t−iIm(α) dt

=
λ

Γ(1− iIm(α))

∫ ∞
0

e−(1+λ)t t−iIm(α) dt

+
λ

Γ(1− iIm(α))

∫ ∞
0

1

λ
e−λt e−t t−iIm(α) dt.

Now, observe that

1

λ
e−λt =

∫ ∞
t

e−λu du, ∀ t > 0.

So, using Fubini’s theorem and changing the dummy variables as necessary, we

obtain ∫ ∞
0

1

λ
e−λt e−t t−iIm(α) dt =

∫ ∞
0

e−λt
∫ t

0

e−u u−iIm(α) du dt.

Hence,

(1 + λ)iIm(α) =
λ

Γ(1− iIm(α))

∫ ∞
0

e−λt
[
e−t t−iIm(α) +

∫ t

0

e−u u−iIm(α) du

]
dt.

Now, consider the function given by

M(t) =
1

Γ(1− iIm(α))

[
e−t t−iIm(α) +

∫ t

0

e−u u−iIm(α) du

]
, t > 0.

Observe that

sup
t>0

∣∣e−t t−iIm(α)
∣∣ ≤ 1.

Moreover, for any t > 0 we have∫ t

0

∣∣e−u u−iIm(α)
∣∣ du ≤

∫ ∞
0

e−u du = 1.

Hence, we have shown that there exists a constant C0 > 0, independent of α,

such that
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sup
t>0
|M(t)| ≤ C0 |Γ(1− iIm(α))|−1. (3.1.37)

This shows that M is bounded on (0,+∞). Hence, the function m satisfies the

hypothesis of Proposition 3.1.13. Thus, the operator m(L) = (I + L)iIm(α) is

bounded on L2(G), and there exists C ′ > 0, independent of α, such that

||(I + L)iIm(α)||L (L2(G)) ≤ C ′ sup
t>0
|M(t)|.

Therefore, by (3.1.37), we have shown that there exists C1 > 0, independent of

α, such that

∣∣∣∣(I + L)iIm(α)
∣∣∣∣

L (L2(G))
≤ C1 |Γ(1− iIm(α))|−1. (3.1.38)

Thus, combining this result with (3.1.7), yields that there exists C > 0, indepen-

dent of α, such that

||(I + L)α||L (L2(G)) ≤ C |Γ(1− iIm(α))|−1,

which proves the result.

3.2 Sobolev spaces

In this section we shall introduce the Sobolev spaces L2
s(G) for the compact

Lie group G, for s ∈ R, which will be defined in terms of the sub-Laplacian

L. The properties of these spaces are well known in greater generality, see for

example Furioli et. al [23], Coulhon et. al [10], and Dungey et. al [13] for Sobolev

spaces on Lie groups of polynomial growth. See also, for instance, Folland [19]

for Sobolev spaces on nilpotent Lie groups.

Recall that the spectrum of L is given by

Spec(L) =
{
λ

(π)
j : π ∈ Ĝ, 1 ≤ j ≤ dπ

}
,

where for each π ∈ Ĝ and every 1 ≤ j ≤ dπ, λ
(π)
j is the non-negative real

number satisfying

Lπ(x)(i,j) = λ
(π)
j π(x)(i,j), ∀ x ∈ G, 1 ≤ i ≤ dπ.
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3.2.1 Definitions of Sobolev spaces and properties

As we saw in Example 3.1.4, for s ∈ R, the domain of the operator (I + L)s/2,

which we denote by Dom
(
(I + L)s/2

)
, is given byf ∈ L2(G) :

∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

∣∣1 + λ
(π)
j

∣∣s ∣∣f̂(π)(j,i)
∣∣2 < +∞

 ,

and the action of (I + L)s/2 on a function f contained in Dom
(
(I + L)s/2

)
is

given by

(I + L)s/2f =
∑
π ∈ Ĝ

dπ

dπ∑
i,j=1

(
1 + λ

(π)
j

)s/2
f̂(π)(j,i) π(i,j). (3.2.1)

To define our Sobolev spaces, first we need to check the following brief result.

Proposition 3.2.1. Suppose G is a compact Lie group. For any s ∈ R, we

have D(G) ⊂ Dom
(
(I + L)s/2

)
.

Proof. First suppose that s ≤ 0. In this case, the mapping

λ 7−→ (1 + λ)s/2,

is a bounded measurable function in [0,+∞). By the spectral decomposition of

the operator (I + L)s/2 (see (3.2.1)), this implies that (I + L)s/2 is bounded

on L2(G) and hence Dom
(
(I + L)s/2

)
= L2(G). Thus, in particular, we have

D(G) ⊂ Dom
(
(I + L)s/2

)
.

On the other hand, suppose that s > 0. Then let t ∈ 2N be such that t > s.

Then, for all λ ≥ 0 we have

(1 + λ)s/2 = (1 + λ)s
′/2(I + λ)t/2,

where s′ = s− t < 0. Now, consider the operator (I + L)s
′/2(I + L)t/2 given by

(I + L)s
′/2(I + L)t/2f = (I + L)s

′/2
(
(I + L)t/2f

)
,

for f in the domain of the operator (I+L)s
′/2(I+L)t/2, which is the space given

by

{
f ∈ Dom

(
(I + L)t/2

)
: (I + L)t/2f ∈ Dom

(
(I + L)s

′/2
)}

.

Since t is an even integer, then (I + L)t/2 is a differential operator, and hence
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D(G) ⊂ Dom
(
(I + L)t/2

)
. Moreover, D(G) ⊂ Dom

(
(I + L)s

′/2
)
, since s′ < 0.

So, by functional analysis,

D(G) ⊂ Dom
(
(I + L)s/2

)
.

Definition 3.2.2 (Sobolev spaces). Let s ∈ R. We define L2
s(G) ⊂ D′(G) to

be the closure of the space D(G) for the norm

||f ||L2
s(G) := ||(I + L)s/2f ||L2(G), f ∈ L2

s(G). (3.2.2)

We could similarly define the Sobolev spaces Lps(G), for any p > 1, however only

the case of p = 2 will be relevant for the results discussed in this thesis, so it

will be the only case we consider.

Recall that I(k) is the set given by

I(k) :=
⊔
b∈N

{1, 2, . . . , k}b.

For β = (i1, i2, . . . , ib) ∈ I(k), we write

Xβ = Xi1 Xi2 . . . Xib .

The following result consists of well-known properties of the Sobolev spaces

L2
s(G).

Theorem 3.2.3. (a) For any s ∈ R, L2
s(G) is a Hilbert space for the norm

|| · ||L2
s(G) given by (3.2.2). Moreover, D(G) is a dense subspace of L2

s(G).

(b) For s = 0, L2
s(G) coincides with L2(G), and furthermore,

||f ||L2
0(G) = ||f ||L2(G), ∀ f ∈ L2

0(G).

(c) If s > 0, then

L2
s(G) = Dom

(
(I + L)s/2

)
= Dom

(
Ls/2

)
⊂ L2(G).

Furthermore, the norm ||| · |||s given by

|||f |||s := ||f ||L2(G) + ||Ls/2f ||L2(G), f ∈ Dom
(
Ls/2

)
,
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is equivalent to || · ||L2
s(G).

(d) If s < 0, then

L2
s(G) ⊂ D′(G).

(e) For s1, s2 ∈ R, if s1 ≤ s2 then we have continuous inclusion

L2
s2

(G) ⊂ L2
s1

(G).

(f) For each s ∈ R, the dual space of L2
s(G) is isomorphic to L2

−s(G) via the

extension of the distributional duality.

(g) Let β ∈ I(k) and s ∈ R. Then, the mapping

Xβ : L2
s(G)→ L2

s−|β|(G)

is continuous. Equivalently, there exists C > 0 such that

∣∣∣∣Xβf
∣∣∣∣
L2
s−|β|(G)

≤ C ||f ||L2
s(G), ∀ f ∈ L2

s(G).

(h) If s ∈ N, then f ∈ L2
s(G) if and only if Xβ f ∈ L2(G) for every β ∈

I(k) with |β| ≤ s. Furthermore, in this case the Hilbert space L2
s(G)

admits the following norm, which is equivalent to || · ||L2
s(G):

f 7−→
(∑
|β|≤s

||Xβf ||2L2(G)

)1/2

. (3.2.3)

Sketch proof of Theorem 3.2.3. The proofs for (a) and (b) are trivial; they follow

from Definition 3.2.2.

Statements (c), (d), (e) and (f) follow classically from functional analysis.

Results (g) and (h) are deeper. For a proof of these results, see for example

Coulhon et al. [10] (see Section 3), Dungey et al. [13] (see Proposition II.6.2)

and Robinson [41] (see Theorem 5.14 in Chapter IV).

Remark 3.2.4. Observe that if we had considered the self-adjoint extension of the

right-invariant sub-Laplacian

L̃ = −(X̃2
1 + X̃2

2 + · · ·+ X̃2
k),
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we would have obtained an analogous result to Theorem 3.2.3 in terms of Sobolev

spaces based on powers of I + L̃. This is true for any Lie group of polynomial

growth.

The following property of Sobolev spaces shall also prove to be important.

Lemma 3.2.5. Let ψ ∈ D(G) and, for s ∈ R, define the operatorT
(ψ)
s : L2

s(G) −→ L2
s(G)

φ 7−→ ψφ
.

Then, the operator T
(ψ)
s is continuous on L2

s(G). Moreover, we have

∣∣∣∣T (ψ)
s

∣∣∣∣
L (L2

s(G))
≤ C max

β ∈I(k)
|β|≤d|s|e

||Xβψ||L∞(G),

for some C > 0.

Proof. First, we suppose that s ∈ N0. In this case, by Theorem 3.2.3 (h), for

any φ ∈ L2
s(G) we have

||ψφ||2L2
s(G) .

∑
β ∈I(k)
|β|≤s

||Xβ(ψφ)||2L2(G).

Hence, by Leibniz’s rule for vector fields, we obtain

||ψφ||2L2
s(G) .

∑
β1,β2 ∈I(k)
|β1|+|β2|≤s

||(Xβ1ψ)(Xβ2φ)||2L2(G)

. max
β1 ∈I(k)
|β1|≤s

sup
x1 ∈G

|Xβ1,x1ψ(x1)|2
∑

β2 ∈I(k)
|β2|≤s

∫
G

|Xβ2,xφ(x)|2 dx.

Then, we have shown that there exists C > 0, independent of φ, such that

||ψφ||2L2
s(G) ≤ C max

β ∈I(k)
|β|≤s

||Xβψ||L∞(G) ||φ||L2
s(G),

and so

T (ψ)
s ∈ L (L2

s(G)). (3.2.4)

By the Interpolation Theorem (see Theorem 3.3.1 below), it follows that (3.2.4)

holds for any s ≥ 0. Furthermore, from Theorem 3.2.3 (f) we know that, for
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each s ∈ L2
s(G), the dual space of L2

s(G) is isomorphic to L2
−s(G). Hence, the

conclusion given by (3.2.4) may be extended to any s ∈ R.

3.3 Interpolation theorem for Sobolev spaces

In this section we aim to prove the following interpolation theorem for the Sobolev

spaces on the compact Lie group G we defined in the previous section (Definition

3.2.2):

Theorem 3.3.1 (Interpolation Theorem). Let α0, α1, β0, β1 be any real num-

bers. Moreover, suppose T is a bounded linear map:

T : L2
α0

(G) −→ L2
β0

(G),

T : L2
α1

(G) −→ L2
β1

(G).

Then T extends uniquely to a bounded linear map

T : L2
αt(G) −→ L2

βt(G), ∀ 0 ≤ t ≤ 1,

where

(αt , βt) =
(
α0 + t(α1 − α0) , β0 + t(β1 − β0)

)
, ∀ 0 ≤ t ≤ 1.

Although we only prove this theorem for the Sobolev spaces L2
s(G), it is possible

to prove it for any Lps(G), with p > 1. The proof we provide here follows the

strategy exhibited in Folland [19], which proves the result in the case of stratified

nilpotent Lie groups.

Before we prove the Interpolation Theorem, let us consider the following con-

sequence.

Lemma 3.3.2. Let κ ∈ D′(G). Furthermore, suppose that {κ`}`∈N ⊂ D′(G)

be a sequence of distributions such that

κ` −→ κ as ` −→ ∞, in D′(G).

For any κ′ ∈ D′(G), we let Tκ′ denote the operatorTκ′ : D(G) −→ D′(G)

f 7−→ f ∗ κ′
.
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Then, for all a, b ∈ R,

lim inf
`→∞

∣∣∣∣Tκ`∣∣∣∣L (L2
a(G)→L2

b(G))
≥
∣∣∣∣Tκ∣∣∣∣L (L2

a(G)→L2
b(G))

.

Proof. Let us first consider the case a = b = 0. By Fatou’s Lemma, for any

f ∈ D(G) we have

lim inf
`→∞

∣∣∣∣Tκ`f ∣∣∣∣2L2(G)
= lim inf

`→∞

∫
G

|f ∗ κ`(x)|2 dx

≥
∫
G

lim inf
`→∞

|f ∗ κ`(x)|2 dx

=
∣∣∣∣Tκf ∣∣∣∣2L2(G)

.

So, for any f ∈ D(G), with ||f ||L2(G) = 1, we have

lim inf
`→∞

∣∣∣∣Tκ`∣∣∣∣L (L2(G))
≥ lim inf

`→∞

∣∣∣∣Tκ`f ∣∣∣∣L2(G)

≥
∣∣∣∣Tκf ∣∣∣∣L2(G)

.

Thus,

lim inf
`→∞

∣∣∣∣Tκ`∣∣∣∣L (L2(G))
≥
∣∣∣∣Tκ∣∣∣∣L (L2(G))

. (3.3.1)

Observe that, for any κ′ ∈ D(G) we have

∣∣∣∣Tκ′∣∣∣∣L (L2
a(G), L2

b(G)) =
∣∣∣∣(I + L)

b
2 Tκ′ (I + L)−

a
2

∣∣∣∣
L (L2(G))

.

Let us now suppose that either a ∈ −2N0 or a > 0, and either b ∈ 2N0 or

b < 0. For a ∈ −2N0 and b ∈ 2N0, (I + L̃)−
a
2 and (I + L)

b
2 are differential

operators. On the other hand, for a > 0 and b < 0, (I+L)
b
2 and (I+ L̃)−

a
2 are

convolution operators. Hence, for our choice of a and b, the right convolution

kernel associated to the operator

(I + L)
b
2 Tκ′ (I + L)−

a
2

is given by

(I + L)
b
2 (I + L̃)−

a
2 κ′. (3.3.2)

Therefore,
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∣∣∣∣Tκ′∣∣∣∣L (L2
a(G), L2

b(G)) =
∣∣∣∣∣∣T

(I+L)
b
2 (I+L̃)−

a
2 κ′

∣∣∣∣∣∣
L (L2(G))

. (3.3.3)

We then define the sequence of distributions

κ̃` := (I + L)
b
2 (I + L̃)−

a
2 κ`, ` ∈ N.

We have

κ̃` −→ κ̃ as ` −→ ∞, in D′(G),

where

κ̃ := (I + L)
b
2 (I + L̃)−

a
2 κ.

Applying the case a = b = 0 (see (3.3.1)) to the sequence {κ̃`}`∈N and κ̃ we

obtain

lim inf
`→∞

∣∣∣∣Tκ̃`∣∣∣∣L (L2(G))
≥
∣∣∣∣Tκ̃∣∣∣∣L (L2(G))

.

By (3.3.3) we have shown that

lim inf
`→∞

∣∣∣∣Tκ`∣∣∣∣L (L2
a(G), L2

b(G)) ≥
∣∣∣∣Tκ∣∣∣∣L (L2

a(G), L2
b(G)),

for a, b ∈ R such that either a ∈ −2N0 or a > 0, and either b ∈ 2N0 or

b < 0.

It remains to check the case a, b ∈ R. Suppose that either a ∈ −2N0 or

a > 0, and either b ∈ 2N0 or b < 0. Then, we have

lim inf
`→∞

∣∣∣∣Tκ`∣∣∣∣L (L2
a0

(G), L2
b0

(G)) ≥
∣∣∣∣Tκ∣∣∣∣L (L2

a0
(G), L2

b0
(G)),

and

lim inf
`→∞

∣∣∣∣Tκ`∣∣∣∣L (L2
a1

(G), L2
b1

(G)) ≥
∣∣∣∣Tκ∣∣∣∣L (L2

a1
(G), L2

b1
(G)).

By the Interpolation Theorem (see Theorem 3.3.1), we then obtain

∣∣∣∣Tκ∣∣∣∣L (L2
at

(G), L2
bt

(G)) ≤ lim inf
`→∞

∣∣∣∣Tκ`∣∣∣∣L (L2
at

(G), L2
bt

(G)), (3.3.4)

where

(at , bt) =
(
a0 + t(a1 − a0) , b0 + t(b1 − b0)

)
, ∀ 0 ≤ t ≤ 1.
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This shows that

lim inf
`→∞

∣∣∣∣Tκ`∣∣∣∣L (L2
a(G), L2

b(G)) ≥
∣∣∣∣Tκ∣∣∣∣L (L2

a(G), L2
b(G)),

for all a, b ∈ R, as required.

3.3.1 Tools for the proof

In this section we aim to introduce the tools necessary to prove Theorem 3.3.1.

One of the main tools we shall require in our proof will be the following result,

which is a consequence of Proposition 3.1.12.

Lemma 3.3.3. Suppose α ∈ C, with a ≤ Re(α) ≤ b ≤ 0, for some a, b ≤ 0.

Then, the operator (I + L)α extends to a bounded operator on L2
s(G), for all

s ∈ R, and satisfies the bound

||(I + L)α||L (L2
s(G)) ≤ C

∣∣Γ(1− iIm(α)
)∣∣−1

,

for some C > 0 depending only on a, b and s.

Proof. By the commutativity of the operator (I + L), for any s ∈ R we have

∣∣∣∣(I + L)α
∣∣∣∣

L (L2
s(G))

=
∣∣∣∣(I + L)s/2 (I + L)α (I + L)−s/2

∣∣∣∣
L (L2(G))

=
∣∣∣∣(I + L)α

∣∣∣∣
L (L2(G))

.

Thus, the result follows immediately from Proposition 3.1.12.

Let us now introduce approximate identities, which will play an important

role in the proof.

Definition 3.3.4. Let U be a neighbourhood base at the identity I in G. For a

neighbourhood U ∈ U , let ϕU ∈ D(G) be such that supp(ϕU) ⊂ U , satisfying

the following properties:

(I) ϕU ≥ 0,

(II) ϕU(x−1) = ϕU(x) for all x ∈ G and,

(III) ∫
G

ϕU(x) dx = 1.
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A sequence of functions {ϕU}U ∈U satisfying these properties is called an approx-

imate identity.

In what follows, we shall consider approximate identities to be of the form

{ϕε}ε>0. Here, for each ε > 0, we denote ϕε = ϕBε(eG), where Bε(eG) is the ball

of radius ε, centred at eG, with respect to the Carnot-Carathéodory metric. The

following result, a proof of which can be found in Folland [21], is an important

property of approximate identities.

Proposition 3.3.5. Let {ϕε}ε>0 be an approximate identity. Then, for every

f ∈ L2(G),

||f ∗ ϕε − f ||L2(G) → 0 as ε→ 0,

and

||ϕε ∗ f − f ||L2(G) → 0 as ε→ 0.

The proof of the interpolation theorem in [19] relies on the dilation properties

of a nilpotent Lie group. However, since G is compact, the usual mollifier would

not be a well-defined function on G. Thus, we must introduce an approximate

identity which can be used in the proof.

We let ϕRn ∈ D(Rn) be such that∫
Rn
ϕRn(x) dx = 1,

with ϕRn(x) = ϕRn(−x), for every x ∈ Rn, and ϕRn ≥ 0. Assume further that

supp(ϕRn) ⊂ BRn
1 (0), where BRn

1 (0) is the ball centred at 0 and with radius 1

in Rn. For each ε > 0, define the function ϕRn,ε : Rn → R by

ϕRn,ε(x) = ε−n ϕRn(x/ε), x ∈ Rn.

Then the family of functions {ϕRn,ε}ε>0 forms an approximate identity on Rn,

and furthermore,

supp(ϕRn,ε) ⊂ Bε(0) ⊂ Rn.

Moreover, let us also consider the exponential map exp : g→ G. We know that

there exist a neighbourhood V of 0 in g and a neighbourhood U of eG in

G such that the map exp : V → U is a diffeomorphism (see Proposition 2.3.9

(v)). We can consider the inverse map ln : U → V . Furthermore, there exists a
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continuous function ψ which maps V diffeomorphically onto a neighbourhood

W of the origin in Rn. In particular, ψ : V → W is a chart, and we have

exp ◦ψ−1(BRn
ε (0)) = U.

Therefore,

supp(ψ ◦ ln) = U.

Then, for each ε > 0 we define the function ϕ̃ε : U → R by

ϕ̃ε(x) =

ϕRn,ε ◦ ψ ◦ ln(x) if x ∈ U

0 if x /∈ U.

Furthermore, for each ε > 0, we define

ϕε(x) =
ϕ̃ε(x)

||ϕ̃ε||L1(G)

, x ∈ G. (3.3.5)

Since ϕRn ≥ 0, then it follows that ϕ̃ε(x) ≥ 0, for all x ∈ G and every ε > 0,

and hence ∫
G

ϕε(x) dx =
1

||ϕ̃ε||L1(G)

∫
G

ϕ̃ε(x) dx = 1, ∀ ε > 0.

This means that the sequence of functions {ϕε}ε>0 satisfies property (III) from

Definition 3.3.4. Additionally, conditions (I) and (II) hold trivially, and therefore

the sequence of functions {ϕε}ε>0 forms an approximate identity on G.

3.3.2 Proof of interpolation theorem

Proof of Theorem 3.3.1. Consider the space B := L1(G)∩L∞(G). We let {ϕε}ε>0

be the approximate identity given by (3.3.5). For each ε > 0, we define the family

of operators on B

{
T εz : 0 ≤ Re(z) ≤ 1

}
,

given by

T εz f = (I + L)β̃z T (I + L)−α̃z(f ∗ ϕε), f ∈ B,

where we define
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(α̃z, β̃z) =
1

2

(
α0 + z(α1 − α0) , β0 + z(β1 − β0)

)
.

By Lemma 3.3.3, T εz is well-defined on B. We set

A(z) =
∣∣Γ(1 + i Im(α̃z)

)
Γ
(
1− i Im(β̃z)

)∣∣−1
.

Suppose that β1 ≥ β0 without loss of generality. We now aim to show that for

every ε > 0, z ∈ C, with Re(z) ∈ (0, 1), and any f ∈ B, there exists a

constant C > 0, independent of f and z, such that

||T εz f ||L2(G) ≤ C A(z) ||f ∗ ϕε||L2
α1

(G). (3.3.6)

For the rest of the proof, let us fix ε > 0. Since β1 ≥ β0, then β0 ≤ 2Re(β̃z) ≤
β1, and so

β0

2
− β1

2
≤ Re(β̃z)−

β1

2
≤ 0.

Therefore, for all f ∈ B, we have

∣∣∣∣(I + L)β̃z T (I + L)−α̃z(f ∗ ϕε)
∣∣∣∣
L2(G)

=
∣∣∣∣(I + L)β̃z (I + L)−β1/2 T (I + L)−α̃z(f ∗ ϕε)

∣∣∣∣
L2
β1

(G)
. (3.3.7)

By Lemma 3.3.3, there exists C ′ > 0, depending only on β0, β1, such that

∣∣∣∣(I + L)β̃z (I + L)−β1/2 T (I + L)−α̃z(f ∗ ϕε)
∣∣∣∣
L2
β1

(G)

≤ C ′
∣∣Γ(1− i Im

(
β̃z − β1/2

))∣∣−1 ∣∣∣∣T (I + L)−α̃z (f ∗ ϕε)
∣∣∣∣
L2
β1

(G)
.

Hence, we have obtained

∣∣∣∣(I + L)β̃z T (I + L)−α̃z(f ∗ ϕε)
∣∣∣∣
L2(G)

≤ C ′
∣∣Γ(1− i Im(β̃z)

)∣∣−1 ∣∣∣∣T (I + L)−α̃z(f ∗ ϕε)
∣∣∣∣
L2
β1

(G)
. (3.3.8)

Now,
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∣∣∣∣T (I+L)−α̃z(f ∗ϕε)
∣∣∣∣
L2
β1

(G)
≤ ||T ||L2

α1
→L2

β1

∣∣∣∣(I+L)−α̃z (f ∗ϕε)
∣∣∣∣
L2
α1

(G)
. (3.3.9)

and, by the hypothesis,

||T ||L2
α1
→L2

β1

is a finite constant. Moreover, by Lemma 3.3.3, there exists a constant C ′′ > 0,

depending only on α0 and α1, such that

∣∣∣∣(I + L)−α̃z (f ∗ ϕε)
∣∣∣∣
L2
α1

(G)
≤ C ′′ |Γ (1 + iIm(α̃z)) |−1 ||f ∗ ϕε||L2

α1
(G). (3.3.10)

Hence, combining (3.3.8), (3.3.9) and (3.3.10) we have shown (3.3.6).

Now, for any f ∈ B and g ∈ L2(G), the mapping

z 7→
∫
G

(
T εz f

)
(x) g(x) dx

is analytic for 0 < Re(z) < 1 and continuous for 0 ≤ Re(z) ≤ 1. Using the

Cauchy-Schwarz inequality, we then have∣∣∣∣ ∫
G

(
T εz f

)
(x) g(x) dx

∣∣∣∣ . A(z) ||f ∗ ϕε||L2
α1

(G) ||g||L2(G).

Let us suppose that for any s ∈ R and all f ∈ B, there exist constants C0, C1 >

0, independent of f , s and ε such that

||T εis f ||L2(G) ≤ C0A(is) ||f ∗ ϕε||L2(G) ≤ C0A(is) ||f ||L2(G), (3.3.11)

||T ε1+is f ||L2(G) ≤ C1A(1 + is) ||f ∗ ϕε||L2(G) ≤ C1A(1 + is) ||f ||L2(G), (3.3.12)

for some constants C0, C1 > 0, which do not depend on f , s or ε. Then the

Riesz-Thorin Interpolation Theorem (see Theorem 4.1 in [48]) implies that, for

all f ∈ B,

||T εt f ||L2(G) ≤ Ct ||f ||L2(G), 0 ≤ t ≤ 1, (3.3.13)

for some constant Ct > 0, which only depends on the function A, and the con-

stants C0, C1 and t. We now demonstrate that (3.3.11) and (3.3.12) hold. To

see that the inequality
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||T εis f ||L2(G) ≤ C0A(is) ||f ∗ ϕε||L2(G) (3.3.14)

holds, we first note that, if Re(z) = 0, then

Re

(
β̃z −

1

2
β0

)
= 0.

So, by Lemma 3.3.3, we obtain

∣∣∣∣T εisf ∣∣∣∣L2(G)
=
∣∣∣∣(I + L)β̃is−

1
2
β0 T (I + L)−α̃is(f ∗ ϕε)

∣∣∣∣
L2
β0

(G)

.
∣∣Γ(1− i Im(β̃is)

)∣∣−1 ∣∣∣∣T (I + L)−α̃is(f ∗ ϕε)
∣∣∣∣
L2
β0

(G)

.
∣∣Γ(1− i Im(β̃is)

)∣∣−1 ||T ||L2
α0→β0

∣∣∣∣(I + L)−α̃is(f ∗ ϕε)
∣∣∣∣
L2
α0

(G)
.

Now, observe that, if Re(z) = 0, then

Re

(
−α̃z +

1

2
α0

)
= 0.

So, by Lemma 3.3.3, we have

∣∣∣∣(I + L)−α̃is(f ∗ ϕε)
∣∣∣∣
L2
α0

(G)
=
∣∣∣∣(I + L)

1
2
α0−α̃is(f ∗ ϕε)

∣∣∣∣
L2(G)

.
∣∣Γ(1 + i Im(α̃is)

)∣∣−1 ||f ∗ ϕε||L2(G).

By the hypothesis, ||T ||L2
α0
→L2

β0
< +∞. Hence, we have shown that there exists

C ′ > 0 such that

∣∣∣∣(I + L)β̃z T (I + L)−α̃z(f ∗ ϕε)
∣∣∣∣
L2(G)

≤ C ′A(is) ||f ∗ ϕε||L2(G),

which is exactly (3.3.14). Finally, observe that, by the definition of an approx-

imate identity (see Definition 3.3.4 (III)), we have ||ϕε||L1(G) = 1, and so by

Young’s convolution inequality, we obtain

||f ∗ ϕε||L2(G) ≤ ||ϕε||L1(G) ||f ||L2(G) = ||f ||L2(G).

Thus, (3.3.11) is proved. Inequality (3.3.12) is similar; it follows by realising that

if Re(z) = 1, then we have

Re

(
β̃z −

1

2
β1

)
= Re

(
−α̃z +

1

2
α1

)
= 0.
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Now, let us define the space of functions

V =
{
f ∗ ϕε : f ∈ B, ε > 0, ||f ||L2(G) ≤ 2||f ∗ ϕε||L2(G)

}
.

If f ∈ B, then f ∗ ϕε → f in L2(G). So, for ε > 0 sufficiently small, we have

f ∗ ϕε ∈ V . This means that the space V is dense in L2(G). Hence, (3.3.13)

implies that if g = f ∗ ϕε ∈ V , then for 0 ≤ t ≤ 1,

∣∣∣∣ (I + L)βt T (I + L)−αt (f ∗ ϕε)
∣∣∣∣
L2(G)

≤ Ct ||f ||L2(G) ≤ 2Ct ||f ∗ ϕε||L2(G).

Therefore, the operator (I + L)βt T (I + L)−αt extends uniquely to a bounded

operator on L2(G). And hence it follows that T extends uniquely to a bounded

operator from L2
αt(G) to L2

βt
(G).

3.4 Sobolev embedding

In this section we prove a Sobolev inequality for the Sobolev spaces introduced

in Definition 3.2.2.

Theorem 3.4.1 (Sobolev embedding). If s > l/2, where l denotes the local

dimension of G (see Definition A.2.1), then the following embedding holds

L2
s(G) ⊂

(
C(G) ∩ L∞(G)

)
.

Moreover, if s > l/2 and f ∈ L2
s(G), then f is continuous on G and there exists

C > 0, independent of f , such that

||f ||L∞(G) ≤ C ||f ||L2
s(G). (3.4.1)

Proof. Fix s > 0. First we recall that, by Proposition 3.1.9, the right-convolution

kernel Bs associated to the operator (I + L)−s/2 satisfies

Bs ∈ L1(G) ∩ L2(G).

By Theorem 3.2.3 (c), we know that Dom((I+L)s/2) = L2
s(G), so for f ∈ L2

s(G),

we can define

fs := (I + L)s/2f ∈ L2(G).

Now, observe that
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(I + L)−s/2fs = f = fs ∗ Bs,

so Hölder’s inequality then implies that

||f ||L∞ ≤ ||fs||L2(G) ||Bs||L2(G) = ||f ||L2
s(G) ||Bs||L2(G).

Since ||Bs||L2(G) < +∞, then (3.4.1) holds. It remains to show that f is a

continuous function. For x ∈ G we have

f(x) =

∫
G

fs(y)Bs(y−1x) dy =

∫
G

fs(xz
−1)Bs(z) dz.

If x1 ∈ G is also fixed, by the Cauchy-Schwarz inequality we have

|f(x)− f(x1)| ≤
∫
G

∣∣[fs(xz−1)− fs(x1z
−1)
]
Bs(z)

∣∣ dz

≤
(∫

G

∣∣Bs(z)
∣∣2 dz

)1/2 (∫
G

∣∣fs(xz)− fs(x1z)
∣∣2 dz

)1/2

.

Since Bs ∈ L2(G), then there exists C > 0 such that

|f(x)− f(x1)| ≤ C
∣∣∣∣fs(x·)− fs(x1·)

∣∣∣∣
L2(G)

. (3.4.2)

Now,

fs(xz)− fs(x1z) = πL(x−1)fs(z)− πL(x−1
1 )fs(z),

and hence

∣∣∣∣fs(x·)− fs(x1·)
∣∣∣∣2
L2(G)

=

∫
G

∣∣πL(x−1)fs(z)− πL(x−1
1 )fs(z)

∣∣2 dz

. ||πL(x−1)− πL(x−1
1 )||L (L2(G)) ||fs||L2(G).

Since the left regular representation πL is continuous on L2(G) (see Example

2.2.2) and fs ∈ L2(G), it follows that

∣∣∣∣fs(x·)− fs(x1·)
∣∣∣∣
L2(G)

−→ 0 as x1 −→ x.

Thus, from (3.4.2) it follows that
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|f(x)− f(x1)| −→ 0 as x1 −→ x,

which proves the result.

3.5 Taylor’s theorem

The objective in this section is to prove a local version of Taylor’s Theorem for a

compact Lie group G. Suppose {Y1, Y2, . . . , Yn} is a basis of the Lie algebra g

of G, and recall that we denote

Y α = Y α1
1 Y α2

2 . . . Y αn
n ,

for all multi-indices α ∈ Nn
0 . Throughout, we let || · ||Rn denote the usual

Euclidean norm on Rn.

Theorem 3.5.1. Let x ∈ G and suppose that f is a smooth function on G.

Then, there exists a neighbourhood V of eG in G such that for any M ∈ N,

the following Taylor expansion of f at x holds;

f(xz) =
∑
|α|<M

1

α!
zα1

1 zα2
2 . . . zαnn Y αf(x) + Rf

x,M(z), ∀ z ∈ V, (3.5.1)

where the remainder Rf
x,M satisfies

∣∣Rf
x,M(z)

∣∣ ≤ C ||(z1, z2, . . . , zn)||MRn max
|α|≤M

∣∣∣∣Y αf
∣∣∣∣
L∞(G)

, ∀ z ∈ V. (3.5.2)

Proof. Let x ∈ G. First recall that if Y is a smooth vector field on G, then we

denote by φ−1
∗ Y the push-forward of Y by φ−1 (see Section 2.3.1 for a discussion

on the push-forward of a vector field). The map φ−1
∗ Y is a smooth vector field

on Rn and is given by

(φ−1
∗ Y )u := Y (u ◦ φ−1), for u ∈ C∞(Rn).

For each j = 1, 2, . . . , n, we shall consider the smooth vector fields φ−1
∗ Yj. By

identifying the vector fields φ−1
∗ Yj with their corresponding tangent vectors of

Rn at φ−1(x), we see that the set
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{φ−1
∗ Yj : j = 1, 2, . . . , n}

forms a complete orthogonal set of tangent vectors to Rn at the point φ−1(x).

We write:

∂

∂xj

∣∣∣∣
φ−1(x)

= φ−1
∗ Yj, for j = 1, 2, . . . , n.

Let f be a smooth map on G and suppose N is a neighbourhood of 0 in

Rn and V is a neighbourhood of eG in G such that the mapping φ : N → V

given by

φ((z1, z2, . . . , zn)) = ez1Y1 ez2Y2 . . . eznYn , (z1, z2, . . . , zn) ∈ N, (3.5.3)

is a diffeomorphism. Such mapping exists due to Proposition 2.3.9 (v). For a

given z ∈ V , we shall let (z1, z2, . . . , zn) denote the coordinates of z given by

the coordinate chart (φ−1, V ) (in the sense that (3.5.3) is satisfied). We then

define the smooth function u on N ⊂ Rn by

u((z1, z2, . . . , zn)) = f ◦ φ((z1, z2, . . . , zn)), (z1, z2, . . . , zn) ∈ N.

Thus, by Taylor’s Theorem on Rn, for every M ∈ N, the Taylor expansion of

u at φ−1(x) is given by

∑
|α|<M

1

α!
zα1

1 zα2
2 . . . zαnn ∂αx

∣∣
φ−1(x)

u + Ru
φ−1(x),M((z1, z2, . . . , zn)),

for all (z1, z2, . . . , zn) ∈ N , where Ru
φ−1(x),M((z1, z2, . . . , zn)) denotes the Taylor

remainder, and we write

∂αx
∣∣
φ−1(x)

=

(
∂

∂x1

∣∣∣∣
φ−1(x)

)α1
(

∂

∂x2

∣∣∣∣
φ−1(x)

)α2

. . .

(
∂

∂xn

∣∣∣∣
φ−1(x)

)αn
,

for any multi-index α ∈ Nn
0 . Moreover, the remainder satisfies the estimate

∣∣Ru
φ−1(x),M(z1, z2, . . . , zn)

∣∣ ≤ C ||(z1, z2, . . . , zn)||MRn max
|α|≤M

∣∣∣∣∂αx u∣∣∣∣L∞(Rn)
.

We now let z = φ((z1, z2, . . . , zn)) and Rf
x,M : V → R be the function given by
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Rf
x,M(z) = Ru

φ−1(x),N ◦ φ−1(z), for z ∈ V.

Observe that

∂

∂xj

∣∣∣∣
φ−1(x)

u = Yj(u ◦ φ−1)(x) = Yjf(x), ∀ j = 1, 2, . . . , n.

Hence, we have

f(xz) =
∑
|α|≤N

1

α!
zα1

1 zα2
2 . . . zαnn Y αf(x) + Rf

x,M(z), (3.5.4)

for any z ∈ V . Moreover, the remainder Rf
x,M satisfies the estimate

∣∣Rf
x,M(z)

∣∣ ≤ C ||(z1, z2, . . . , zn)||MRn max
|α|≤M

∣∣∣∣Y αf
∣∣∣∣
L∞(G)

, ∀ z ∈ V,

as claimed.

Remark 3.5.2. We now express some important observations from the proof of

Theorem 3.5.1.

(a) It is clear that the neighbourhood V of eG only needs to be small enough

such that the mapping φ : N → V given by (3.5.3) is a diffeomorphism,

for some neighbourhood N of 0 in Rn.

(b) We can also bound the remainder from Theorem 3.5.1 in terms of the

Carnot-Carathéodory metric (see Definition A.1.2), which we denote by

d(·, ·). We use the following notation

|z| := d(eG, z), ∀ z ∈ G.

By a result from the appendix (see Proposition 2.4.2), we know that there

exists a neighbourhood V of eG in G such that

|z|E ≤ C1 |z|, ∀ z ∈ V, (3.5.5)

for some constant C1 > 0, where | · |E denotes the Euclidean norm induced

by the chart φ−1 (see (3.5.3)). We can now choose V small enough and a

neighbourhood N of 0 in Rn such that the mapping φ : N → V given

97



by (3.5.3) is a diffeomorphism. Let f ∈ C∞(G), x ∈ G and M ∈ N0,

and consider the difference

Rf
x,M(z) = f(xz)−

∑
|α|<M

1

α!
zα1

1 zα2
2 . . . zαnn Y αf(x), ∀ z ∈ V. (3.5.6)

Then, by Theorem 3.5.1 and part (a), there exists C2 > 0 such that

∣∣Rf
x,M(z)

∣∣ ≤ C2 ||(z1, z2, . . . , zn)||MRn max
|α|≤M

∣∣∣∣Y αf
∣∣∣∣
L∞(G)

, ∀ z ∈ V.

Hence, by (3.5.5), there exists C > 0 such that

∣∣Rf
x,M(z)

∣∣ ≤ C |z|M max
|α|≤M

∣∣∣∣Y αf
∣∣∣∣
L∞(G)

, ∀ z ∈ V. (3.5.7)

It is important to note that, for z ∈ V , some of the terms of the sum

∑
|α|<M

1

α!
zα1

1 zα2
2 . . . zαnn Y αf(x)

might also be bounded by |z|M , as we have chosen a bigger bound. If this

is the case, then (3.5.6) can not be considered as a Taylor remainder in the

context of the Carnot-Carathéodory norm.

Remark 3.5.3.

3.6 Formal degree of a vector field

In this section we discuss the formal degree of a vector field, which appears,

for example, in Nagel et al [36] (see the introduction therein). Throughout this

thesis we are interested in the action of left-invariant vector fields in a Hörmander

system on functions, and introducing this term gives us a way of quantifying the

derivatives we take. The formal degree of a vector field functions as an analogous

term to the ‘order’ of a vector field in the elliptic case.

Recall that, for k ∈ N, I(k) denotes the set of multi-indices taking values

in {1, 2, . . . , k}, of arbitrary length. That is, I(k) is the disjoint union
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I(k) :=
⊔
a∈N

{1, 2, . . . , k}a. (3.6.1)

Suppose G is a compact Lie group of dimension n and let g be the Lie alge-

bra of G. Further suppose that, for some k ∈ N, the set X = {X1, X2, . . . , Xk}
forms a Hörmander system of left-invariant vector fields on G. Let

Y := {Y1, Y2, . . . , Yn}

be a basis of g.

It is well known that there exist a neighbourhood V of x in G and a neigh-

bourhood N of 0 in Rn such that the mapping φ : N → V , which is given

by

φ((z1, z2, . . . , zn)) := ez1Y1 ez2Y2 . . . eznYn(x), (3.6.2)

is a diffeomorphism.

By the definition of a Hörmander system, there exists a subset J ⊂ I(k) such

that for each left-invariant vector field X of G, we can write

X =
∑

I=(i1,i2,...,ia)∈ J

cI
[
Xi1 ,

[
Xi2 , . . . ,

[
Xia−1 , Xia

]
. . .
]]
, (3.6.3)

for some constants cI ∈ R. Observe that for each I = (i1, i2, . . . , ia) ∈ J ,

Xi1 , Xi2 , . . . , Xia is some iteration of a subset of {X1, X2, . . . , Xk}.
Now, for every non-negative integer a , let X(a) denote the subset of g

consisting of all commutators of length a; that is,

X(a) :=
{

[Xi1 , [Xi2 , . . . , [Xiα−1 , Xiα ] . . . ]] : |(i1, i2, . . . , iα)| = a
}
.

Definition 3.6.1. Suppose X is a left-invariant vector field on G. We say that

X has formal degree a, and write d(X) = a, if X ∈ X(a).

Observe that for each j = 1, 2, . . . , k, Xj has formal degree 1.

Definition 3.6.2. For α ∈ Nn
0 , we define the quantity

[α]Y :=
n∑
j=1

d(Yj)αj, (3.6.4)

where, for each j = 1, 2, . . . , n, Yj denotes the basis element of g.
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Example 3.6.3. Suppose Y = {Y1, Y2, . . . , Yn} is the basis of g constructed in

Section 2.4.1. In this case, for each j = 1, 2, . . . , n, we have d(Yj) = dj (see

(2.4.3)). So, we have

[α]Y =
n∑
j=1

dj αj, ∀ α ∈ Nn
0 . (3.6.5)

Remark 3.6.4. Suppose Y = {Y1, Y2, . . . , Yn} is the basis of g constructed in

Section 2.4.1. Observe that, for any multi-index α ∈ Nn
0 , the expression

Y α1
1 Y α2

2 . . . Y αn
n

can be expressed in the form

Y α1
1 Y α2

2 . . . Y αn
n =

[α]Y∑
j=1

k∑
ij=1

cαi1,i2,...,i[α]Y
Xi1 Xi2 . . . Xi[α]Y

, (3.6.6)

for some structure constants cαi1,i2,...,i[α]Y
. This can be simplified by the following

notation;

Y α1
1 Y α2

2 . . . Y αn
n =

∑
β ∈I(k)
|β|=[α]Y

cβXβ, (3.6.7)

for some constants cβ ∈ R. This, in fact, holds for any basis of the Lie algebra

g, not just the one we chose.

We now show that any differential operator involving the Yj can be rewritten

as a linear combination of differential operators in an order of our choice.

Lemma 3.6.5. Suppose Y = {Y1, Y2, . . . , Yn} is the basis of g constructed in

Section 2.4.1, and let N ∈ N. For β = (i1, i2, . . . , iN) ∈ I(n), we define the

quantity

[Yβ] :=
N∑
`=1

d(Yi`) βi` . (3.6.8)

Then, we have

Yβ = Yβ1Yβ2 . . . YβN =
∑
α∈Nn0

[α]Y =[Yβ ], |α|≤|β|

cα,β Y
α, (3.6.9)

for some constants cα,β ∈ R, with the convention that Y0 = Id, the identity

operator.
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Proof. We prove this recursively on N . In the case N = 1 the result is immedi-

ate. Let us now check this in the case N = 2. If (β1, β2) ∈ I(n), with β1 ≤ β2,

then the result follows readily. On the other hand, if β1 > β2, we have

Yβ1Yβ2 = Yβ2Yβ1 + [Yβ1 , Yβ2 ].

By construction,

[Yβ1 , Yβ2 ] =
∑
`∈N0

d(Y`)≤d(Yβ1 )+d(Yβ2 )

c` Y`,

for some c` ∈ R. Hence, we have shown that

Yβ1Yβ2 =
∑
α∈Nn0

[Y α]=[Yβ1 ]+[Yβ2 ], |α|≤2

cα Y
α,

which proves that (3.6.9) holds for N = 2.

Let us then assume that the statement of the Lemma holds for N , and con-

sider the expression

Yβ0 Yβ1 . . . YβN ,

for β = (β1, . . . , βN) ∈ I(n). By the assumption,

Yβ1 . . . YβN =
∑
α∈Nn0

[Y α]=[Yβ ], |α|≤N

cα,β Y
α.

Hence, we may assume that

Yβ1 Yβ2 . . . YβN = Y α1
1 Y α2

2 . . . Y αn
n ,

for some α ∈ Nn
0 , such that [Y α] = [Yβ] and |α| ≤ N . Furthermore, suppose

j ∈ {1, 2, . . . , N} such that it is the smallest index for which αj 6= 0. If β0 ≤ j,

then the result follows readily. On the other hand, suppose that β0 > j. In this

case we have

Yβ0 Yj = YβjYβ0 + [Yβ0 , Yj]

= YβjYβ0 +
∑
`∈N0

d(Y`)≤d(Yβ0 )+d(Yj)

c` Y`.
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Hence, we have shown that

Yβ0 Yβ1 Yβ2 . . . YβN = Yβ0 Y
αj
j . . . Y αn

n

= Yj Yβ0 Y
αj−1
j . . . Y αn

n +
∑
`∈N0

d(Y`)≤d(Yβ0 )+d(Yj)

c` Y` Y
αj−1
j . . . Y αn

n .

We now apply this process recursively, so that we obtain

Yβ0 Y
αj
j . . . Y αn

n = Y
αj
j . . . Yβ0 Y

αj′

j′ . . . Y αn
n +

∑
γ ∈I(n)

[Yγ ]=[Y α], |γ|≤N

Yγ,

where j′ ∈ N is such that j′ ≥ β0 and j′−1 < β0. By the recursion hypothesis,

the result is then proved.

We have the following consequence.

Corollary 3.6.6. Suppose Y = {Y1, Y2, . . . , Yn} is the basis of g constructed in

Section 2.4.1. For any β ∈ I(k), we have

Xβ =
∑
α∈Nn0
[α]=|β|

cα,β Y
α,

for some cα,β ∈ R.

Proof. By the construction of Y , there exists n1 ∈ N, with n1 ≤ k, such that

{X1, X2, . . . , Xn1} is the largest subset of X consisting of linearly independent

left-invariant vector fields of G, with

Xj = Yj, ∀ j = 1, 2, . . . , n1.

Therefore,

Xβ =
∑

β′ ∈I(n)
|β′|=|β|

cβ′ Yβ′ ,

for some constants cβ′ ∈ R. By Lemma 3.6.5 the result is then proved.

We end this section with the following result, which follows from Corollary

3.6.6 and applying Corollary 2.3.5 to {Yj}nj=1 and {Ỹj}nj=1.
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Proposition 3.6.7. (I) Suppose T is a differential operator of the form

T =
∑

α∈I(k)
|α|≤d

CαXα,

with Cα ∈ R, for some d ∈ N. Then,

T =
∑

β ∈I(k)
|β|≤d

c̃β X̃β,

for some c̃β ∈ C∞(G).

(II) Suppose T̃ is a differential operator of the form

T̃ =
∑

α∈I(k)
|α|≤d

C̃α X̃α,

with C̃α ∈ R, for some d ∈ N. Then,

T̃ =
∑

β ∈I(k)
|β|≤d

cβXβ,

for some cβ ∈ C∞(G).

3.7 Vanishing functions

Throughout this section we remain in the same setting as in Section 3.6, with

x = eG.

Definition 3.7.1. Let (X, d) be a metric space and consider x0 ∈ X. Moreover

suppose that V is a neighbourhood of x0 in X. For a ∈ N0, we say that a

function q : X → C vanishes at x0 up to order a− 1 on V with respect to the

metric d if there exists C > 0 such that

∀ x ∈ V =⇒ |q(x)| ≤ C d(x, x0)a.

Notation 3.7.2. Let a ∈ N0 and V be a neighbourhood of eG in G. Throughout

the thesis we shall use the following convention. If q ∈ D(G) vanishes at eG up
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to order a − 1 on V with respect to the Carnot-Carathéodory metric, then we

shall write: q CC-vanishes at eG up to order a− 1 on V , for short. Moreover,

if V = G, then we shall usually omit any mention of G; that is, we write: q

CC-vanishes at eG up to order a− 1.

The main objective of this section is to show the following result, and Section

3.7.1 shall be devoted to its proof.

Proposition 3.7.3. Let a ∈ N be a positive integer and suppose that q ∈ D(G).

Then, the following statements are equivalent:

(i) For any β ∈ I(k), with |β| ≤ a− 1, we have

Xβ q(eG) = 0. (3.7.1)

(ii) The function q CC-vanishes at eG up to order a− 1 .

Furthermore, if (i) and (ii) hold, we have

|q(z)| ≤ C |z|a, ∀ z ∈ G, (3.7.2)

where the constant C can be chosen to be

C :=
k

a
sup
z ∈G

i=1,2,...,k

|z|1−a |Xi q(z)|.

Remark 3.7.4. In the Euclidean case, the analogous result to Proposition 3.7.3

holds by Taylor’s Theorem. More precisely, it is a consequence of the estimate

of the Taylor remainder and the uniqueness of the Taylor expansion. Namely, if

p is a smooth function on an open set O ⊂ Rn containing 0, then the following

statements are equivalent:

(i) For any β ∈ Nn
0 , with |β| ≤ a− 1, we have

∂β1

∂zβ11

∂β2

∂zβ22

· · · ∂
βn

∂zβnn
p(0) = 0.

(ii) For any

β = (i1, i2, . . . , ib) ∈ I(n),

with |β| ≤ a− 1, we have
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∂

∂zi1

∂

∂zi2
· · · ∂

∂zib
p(0) = 0.

(iii) There exists C > 0 and a neighbourhood N of 0 in O ⊂ Rn such that

|p(z)| ≤ C ||z||aRn , ∀ z ∈ N.

Example 3.7.5. Suppose the set {q1, q2, . . . , qd} is a family of functions such that,

for every j = 1, 2, . . . , d, the function qj CC-vanishes at eG up to order aj − 1.

Then, for every multi-index β ∈ Nd
0, the function

d∏
j=1

qβj

CC-vanishes at eG up to order

d∑
j=1

aj βj − 1.

Corollary 3.7.6. Let a ∈ N and q ∈ D(G). If q is CC-vanishing at eG up

to order a − 1. Then, for any β ∈ I(k), with |β| < a, the function Xβ q is

CC-vanishing at eG up to order a−|β|−1. Furthermore, there exists a constant

C > 0, depending on a, β and k, such that

sup
z ∈G
|z|−a+|β| |Xβ q(z)| ≤ C sup

z ∈G
|β′|=a

|Xβ′ q(z)|.

Proof. Since q is CC-vanishing at eG up to order a− 1, then the function Xβ q

is CC-vanishing at eG up to order a − |β| − 1, by Proposition 3.7.3. Hence,

applying (3.7.2) to Xβ q we obtain

sup
z ∈G
|z|−a+|β| |Xβ q(z)| ≤ k

a− |β|
sup
z ∈G

i1=1,2,...,k

|z|1−a+|β| |Xi1Xβ q(z)|.

Applying this argument to the function Xi1Xβ q, for each i1 = 1, 2, . . . , k, we

now get

sup
z ∈G
|z|1−a+|β| |Xi1Xβ q(z)| ≤ k

a− |β| − 1
sup
z ∈G

i2=1,2,...,k

|z|2−a+|β| |Xi2Xi1Xβ q(z)|,
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and thus,

sup
z ∈G
|z|−a+|β| |Xβ q(z)|

≤ k2

(a− |β|)(a− |β| − 1)
sup
z ∈G

i1,i2=1,2,...,k

|z|2−a+|β| |Xi2Xi1Xβ q(z)|.

Applying this argument recursively a − |β| shows that there exists C > 0,

depending on α, β and k, such that

sup
z ∈G
|z|−a+|β| |Xβ q(z)| ≤ C sup

z ∈G
β′ ∈I(k), |β′|=a−|β|

|z||β′|−a+|β| |Xβ′Xβ q(z)|

= C sup
z ∈G

β′ ∈I(k), |β′|=a

|Xβ′ q(z)|,

as required.

The following Lemma studies the differentiability of a function of the form
f1
f2

, where f1, f2 are smooth functions.

Lemma 3.7.7. Let f1, f2 ∈ D(G) and suppose that, for M1, M2 ∈ N, there

exist constants C1, C2, C
′
2 > 0 such that

|f1(z)| ≤ C1 |z|M1 , C ′2 |z|M2 ≤ |f2(z)| ≤ C2 |z|M2 , ∀ z ∈ G. (3.7.3)

If M2 < M1, then the following assertions hold:

(1) The function given by

f1

f2

: z 7−→ f1(z)

f2(z)
, ∀ z ∈ G,

extends to a continuous function on G. Moreover,

∣∣∣∣f1/f2

∣∣∣∣
L∞(G)

≤ C1

C ′2
RM1−M2 , (3.7.4)

where R is the radius of the Lie group G:
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R = sup
z ∈G
|z|.

(2) For any β ∈ I(k), with |β| < M1 −M2, the function

Xβ

(
f1

f2

)
: z 7−→ Xβ,z

(
f1(z)

f2(z)

)
, ∀ z ∈ G, (3.7.5)

coincides with a continuous function on G. Moreover, there exists a con-

stant C > 0, depending on β, f2, X, M1 and M2, such that

||Xβ(f1/f2)||L∞(G) ≤ C sup
β′ ∈I(k)
|β′|=M1

||Xβ′f1||L∞(G). (3.7.6)

The same result holds for the operator X̃β, for any β ∈ I(k).

Proof. For the proof of part (1), note that,∣∣∣∣f1(z)

f2(z)

∣∣∣∣ ≤ C1

C ′2
|z|M1−M2 , ∀ z ∈ G.

Since M2 < M1, then it follows that the function f1
f2

extends to a continuous

function on G. Estimate (3.7.4) then follows.

We now show part (2). Let us first fix β ∈ I(k), with |β| < M1−M2. Then,

observe that, by Leibniz’s rule for vector fields,

Xβ

(
f1

f2

)
=

∑
β1,β2 ∈I(k)
|β1|+|β2|=|β|

cββ1,β2 (Xβ1f1) (Xβ2(1/f2)) ,

for some constants cββ1,β2 ∈ R. Taking absolute values yields∣∣∣∣Xβ

(
f1

f2

)
(z)

∣∣∣∣ ≤ Cβ
∑

β1,β2 ∈I(k)
|β1|+|β2|=|β|

|Xβ1f1(z)| |Xβ2(1/f2(z))| , (3.7.7)

for any z ∈ G\{eG}, for some constant Cβ > 0. Now, we check that for any

β2 ∈ I(k), with |β2| < M1 −M2, we have

Xβ2

(
1

f2

)
=

∑
γ ∈I(k)|β2|

|γ|=|β2|

cβ2,γ
1

f2

|β2|∏
`=1

Xγ`f2

f2

. (3.7.8)
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Indeed, the cases |β2| = 0 and |β2| = 1 are clear, since for any i = 1, 2, . . . , k

we have

Xi

(
1

f2

)
= −Xif2

f 2
2

.

The general case can be proved recursively, by noticing that

XiXβ2

(
1

f2

)
=

∑
γ ∈I(k)|β2|

|γ|=|β2|

cβ2,γ

{
−
(
Xif2

f 2
2

) |β2|∏
`=1

Xγ`f2

f2

+
1

f2

|β2|∏
`=1

[
XiXγ`f2

f2

−
(
Xif2

f2

)(
Xγ`f2

f2

)]}

=
∑

γ ∈I(k)|β2|+1

|γ|=|β2|+1

c i,β2,γ
1

f2

|β2|+1∏
`=1

Xγ`f2

f2

,

for some constants c i,β2,γ ∈ R.

Now, by (3.7.8), for any z ∈ G\{eG} and β2 ∈ I(k), with |β2| ≤ |β|, we

have

|Xβ2(1/f2)(z)| .β2,f2

∑
γ ∈I(k)|β2|

|γ|=|β2|

1

|z|M2

|β2|∏
`=1

|z|M2−|γ`|

|z|M2

.β2,f2 |z|−M2−|β2|. (3.7.9)

Hence, by (3.7.7) and (3.7.9), for any z ∈ G\{eG} we obtain

∣∣∣∣Xβ

(
f1

f2

)
(z)

∣∣∣∣ .β

∑
β1,β2 ∈I(k)
|β1|+|β2|=|β|

|Xβ1f1(z)| |Xβ2(1/f2)(z)|

.β,f2

∑
β1,β2 ∈I(k)
|β1|+|β2|=|β|

|Xβ1f1(z)| |z|−M2−|β2|. (3.7.10)

Observe that, for any z ∈ G\{eG} and β1 ∈ I(k), with |β1| ≤ |β|, we have
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|Xβ1f1(z)| =
|Xβ1f1(z)|
|z|M1−|β1|

|z|M1−|β1|

≤
(

sup
z0 ∈G

|z0|−(M1−|β1|) |Xβ1fj(z0)|
)
|z|M1−|β1|, (3.7.11)

and moreover, by Corollary 3.7.6, for any β1 ∈ I(k), with |β1| < M1, we have

sup
z0 ∈G

|z0|−(M1−|β1|) |Xβ1f1(z0)| .M1,β1,k sup
β′ ∈I(k)
|β′|=M1

||Xβ′f1||L∞(G) < +∞. (3.7.12)

Then, applying this to (3.7.10), for any z ∈ G\{eG} we obtain

∣∣∣∣Xβ

(
f1

f2

)
(z)

∣∣∣∣ .β,f2

∑
β1,β2 ∈I(k)
|β1|+|β2|=|β|

|z|M1−|β1| |z|−M2−|β2| sup
β′ ∈I(k)
|β′|=M1

||Xβ′f1||L∞(G)

.β,f2 |z|M1−M2−|β| sup
β′ ∈I(k)
|β′|=M1

||Xβ′f1||L∞(G), (3.7.13)

which is finite by the hypothesis |β| < M1 −M2. Taking the supremum of both

sides of (3.7.13) over z ∈ G yields (3.7.6), as required.

Remark 3.7.8. Lemma 3.7.7 also holds when f1 is a vector-valued function. More

precisely, suppose (V, || · ||V ) is a normed vector space, and let f1 : G → V

and f2 ∈ D(G) be smooth functions on G. Furthermore, suppose that, for

M1, M2 ∈ N, with M1 > M2, there exist constants C1, C2, C
′
2 > 0 such that

||f1(z)||V ≤ C1 |z|M1 , C ′2 |z|M2 ≤ |f2(z)| ≤ C2 |z|M2 , ∀ z ∈ G.

Then, the functions f1/f2 and Xβ(f1/f2) extend to a continuous function on G,

for any β ∈ I(k), with |β| < M1 −M2. Moreover,

sup
z ∈G

∣∣∣∣∣∣∣∣f1(z)

f2(z)

∣∣∣∣∣∣∣∣
V

≤ C1

C ′2
RM1−M2 ,

and there exists a constant C > 0, depending on β, f2, X, M1 and M2,, such

that
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∣∣∣∣∣∣∣∣Xβ

(
f1(z)

f2(z)

)∣∣∣∣∣∣∣∣
V

≤ C sup
z ∈G

β0 ∈I(k), |β0|=M1

∣∣∣∣Xβ0f1(z)
∣∣∣∣
V
.

3.7.1 Proof of Proposition 3.7.3

The demonstration of Proposition 3.7.3 we provide in this section is adapted

from the proofs given in Bellaiche [4], and Montgomery [35]. In these refer-

ences the result is proved for any finite dimensional manifold, endowed with a

bracket-generating distribution, which is analogous to a Hörmander system of

left-invariant vector fields in our setting.

First, let

Y := {Y1, Y2, . . . , Yn}

be the basis of g constructed in Section 2.4.1.

The ball-box theorem (see Section 2.4 in Montgomery [35], Section 0.5.A in

Gromov [24] and Section 2.4 in this thesis) tells us that there exist constants

ε0, C, C
′ > 0 such that

C ′φ (Box(ε)) ⊂ Bε(eG) ⊂ Cφ (Box(ε)) , (3.7.14)

for all ε ≤ ε0, where for each ε > 0 we denote

Box(ε) =
{
x ∈ Rn : |xi| ≤ εdi , ∀ i = 1, 2, . . . , n

}
. (3.7.15)

Here, φ denotes the mapping given by

φ
(
(z1, z2, . . . , zn)

)
= ez1Y1ez2Y2 . . . eznYn , (3.7.16)

for (z1, z2, . . . , zn) ∈ Rn, where for each j = 1, 2, . . . , n, Yj is the basis element

of g.

Now, let N be a neighbourhood of 0 in Rn and V be a neighbourhood of

eG in G small enough such that the following properties are satisfied:

(a) V ⊂ Bε0(eG); that is, V satisfies the ball-box theorem (see (3.7.14)).

(b) The restricted mapping φ : N → V given by (3.7.16) is a diffeomorphism.

(c) Any (z1, z2, . . . , zn) ∈ N satisfies

||(z1, z2, . . . , zn)||Rn ≤ 1.
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For any z ∈ V we can then re-write (3.7.14) as

C ′
(
|z1|1/d1 + |z2|1/d2 + · · ·+ |zn|1/dn

)
≤ d(eG, z)

≤ C
(
|z1|1/d1 + |z2|1/d2 + · · ·+ |zn|1/dn

)
, (3.7.17)

where for each j = 1, 2, . . . , n, dj = d(Yj) denotes the formal degree of the vector

field Yj (see Definition 3.6.1).

In order to prove Proposition 3.7.3, we require the following result.

Lemma 3.7.9. Let q ∈ D(G). If β = (i1, i2, . . . , ib) ∈ I(k), for some b ∈ N0,

then

∂

∂z1

∂

∂z2

· · · ∂

∂zb
qβ(0) = Xβ q(eG) = Xi1 Xi2 · · · Xib q(eG), (3.7.18)

where qβ denotes the mapping on Rb:

qβ ((z1, z2, . . . , zb)) = q
(
ez1Xi1 ez2Xi2 . . . ezbXib

)
, (3.7.19)

for (z1, z2, . . . , zb) ∈ Rb.

Proof. First observe that, applying the operator ∂
∂zb

∣∣
zb=0

to the function qβ

yields:

∂

∂zb
qβ ((z1, z2, . . . , zb))

∣∣∣∣
zb=0

=
∂

∂zb
q
(
ez1Xi1 ez2Xi2 . . . ezbXib

) ∣∣∣∣
zb=0

= (Xib q)
(
ez1Xi1 ez2Xi2 . . . ezb−1Xib−1

)
.

Similarly, we now apply the operator ∂
∂zb−1

∣∣
zb−1=0

to this function to obtain

∂

∂zb
qβ ((z1, z2, . . . , zb))

∣∣∣∣
zb=0

= (Xib q)
(
ez1Xi1 ez2Xi2 . . . ezb−1Xib−1

)
to obtain
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∂

∂zb−1

∂

∂zb
qβ ((z1, z2, . . . , zb))

∣∣∣∣
zb−1=zb=0

=
∂

∂zb−1

(Xib q)
(
ez1Xi1 ez2Xi2 . . . ezb−1Xib−1

) ∣∣∣∣
zb−1=0

= (Xib−1
Xib q)

(
ez1Xi1 ez2Xi2 . . . ezb−2Xib−2

)
.

Continuing in this way, we obtain

∂

∂z1

∂

∂z2

· · · ∂

∂zb
qβ ((z1, z2, . . . , zb))

∣∣∣∣
z1=z2=···=zb=0

=
∂

∂z1

(Xi2 Xi3 · · · Xib q)
(
ez1Xi1

) ∣∣∣∣
z1=0

= (Xi1 Xi2 · · · Xib q) (eG),

which is the desired result.

We are now in a position to prove Proposition 3.7.3.

Proof that (i) =⇒ (ii) in Proposition 3.7.3

Assume that for every β ∈ I(k), with |β| ≤ a− 1, we have

Xβ q(eG) = 0. (3.7.20)

We first prove (ii) in the case a = 1. Consider the function

p (x) := q (φ(x)) , for x ∈ Rn,

where φ is the mapping given by (3.7.16). Then, the function p is smooth on

N . Moreover, by the hypothesis, we have

p(0) = q(eG) = 0. (3.7.21)

So, by Remark 3.7.4, there exists CE > 0 such that

|p(x)| ≤ CE ||x||Rn , (3.7.22)

for all x in a neighbourhood N ′ ⊂ N of 0 in Rn, where we recall that || · ||Rn
denotes the usual Euclidean norm on Rn. But, by Proposition 2.4.2, there exists
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C ′ > 0 such that

||x||Rn ≤ C ′ |φ(x)|, ∀ x ∈ N ′.

Hence, we deduce that there exists C > 0 such that

|q(φ(x))| ≤ CE ||x||Rn ≤ C |φ(x)|,

for all x ∈ N ′. Moreover, we can choose N ′ and a neighbourhood V ′ ⊂ V of

eG in G small enough such that φ maps N ′ diffeomorphically onto V ′. Thus,

we have

|q(z)| ≤ C |z|, ∀ z ∈ V ′.

Since G is compact, then it follows that

|q(z)| ≤ C |z|, ∀ z ∈ G,

which finishes the proof for the case a = 1.

Now, for the case a > 1 we proceed by induction. Hence, assume that if for

any β ∈ I(k), with |β| ≤ a− 2, we have

Xβ q(eG) = 0,

then there exists C > 0 such that

|q(z)| ≤ C |z|a−1, ∀ z ∈ G. (3.7.23)

This is our induction hypothesis. Now, suppose that for any β ∈ I(k), with

|β| ≤ a− 1, we have

Xβ q(eG) = 0. (3.7.24)

Thus, any (i1, i2, . . . , ib−1) ∈ I(k), with b ≤ a− 1, satisfies

(Xi1 Xi2 · · · Xib−1
)(Xi q)(eG) = 0,

for any i = 1, 2, . . . , k. So, applying the induction hypothesis to Xi q yields

|(Xi q)(z)| ≤ C |z|a−1, ∀ z ∈ G, (3.7.25)

for some C > 0. Now, fix z ∈ G and set T = |z|. Let γ : [0, T ] → G be a
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geodesic joining eG and z such that

γ′(t) =
k∑
i=1

ci(t)Xi(γ(t)), a.e.,

for some functions ci (i = 1, 2, . . . , k) integrable on [0, T ], and with velocity

1 (see Section A.1, and in particular, Definition A.1.1). In particular, for a.a.

t ∈ [0, T ], we have

||γ′(t)||2 =
k∑
i=1

ci(t)
2 = 1. (3.7.26)

Moreover, since |γ(0)| = |eG| = 0 and |γ(T )| = |z| = T , and the velocity of γ is

constant, then we deduce that

|γ(t)| = d(eG, γ(t)) = t, a.e. (3.7.27)

Now, we have

d

dt
(q ◦ γ)(t) =

k∑
i=1

ci(t) (Xi q)(γ(t)) a.e.

Hence, by the triangle inequality, we have

∣∣∣∣ ddtq(γ(t))

∣∣∣∣ ≤ k∑
i=1

|ci(t)| |(Xiq)(γ(t))|, (3.7.28)

noting that here | · | simply denotes the usual Euclidean norm on R. Now, by

(3.7.26) we have

|ci(t)| ≤ 1, a.e., (3.7.29)

and by the induction hypothesis (see (3.7.25)), there exists C > 0 such that

|(Xiq)(γ(t))| ≤ C |γ(t)|a−1, a.e.

But, by (3.7.27), in fact we have

|(Xiq)(γ(t))| ≤ C ta−1, a.e. (3.7.30)

Therefore, applying (3.7.29) and (3.7.30) to (3.7.28), we obtain
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∣∣∣∣ ddtq(γ(t))

∣∣∣∣ ≤ k∑
i=1

C ta−1 = kC ta−1. (3.7.31)

Now, we know that

q(γ(T )) = q(z),

and moreover,

q(γ(0)) = q(eG) = 0.

So, integrating both sides of (3.7.31) with respect to t, between 0 and T , yields

|q(z)| = |q(γ(T ))− q(γ(0))| =

∣∣∣∣∫ T

0

d

dt
q(γ(t)) dt

∣∣∣∣
≤
∫ T

0

∣∣∣∣ ddt q(γ(t))

∣∣∣∣ dt

≤ kC

∫ T

0

ta−1 dt

=
kC

a
T a.

Hence, we have shown that

|q(z)| ≤ kC

a
|z|a, ∀ z ∈ G, (3.7.32)

which proves (ii).

Furthermore, observe that the constant C introduced in (3.7.25) may be

chosen to be

C := sup
z ∈G

i=1,2,...,k

|z|1−a |Xiq(z)|.

Moreover note that, if q satisfies the hypothesis of (i), then, by the proof we

have just completed, for every i = 1, 2, . . . , k, the function Xiq is CC-vanishing

at eG up to order a− 2. Hence,

sup
z ∈G

i=1,2,...,k

|z|1−a |Xiq(z)| . k

a
sup
z ∈G
|z|1−a |z|a−1 =

k

a
,

which shows that C is a finite constant. Hence, by (3.7.32), (3.7.2) is also proved.
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Proof that (ii) =⇒ (i) in Proposition 3.7.3

Assume that there exists C > 0 such that

|q(z)| ≤ C |z|a, ∀ z ∈ G.

Then, for b ∈ N, with b ≤ a, consider the point

z := ez1Xi1 ez2Xi2 . . . ezbXib ∈ G,

for z1, z2, . . . , zb ∈ R and β = (i1, i2, . . . , ib) ∈ I(k). The Carnot-Carathéodory

distance between eG and z satisfies

|z| = d(eG, z) ≤ d(eG, e
z1Xi1 ) + d(eG, e

z2Xi2 ) + · · ·+ d(eG, e
zbXib )

≤ |z1|+ |z2|+ · · ·+ |zb|.

By the hypothesis, we then have

|q(z)| ≤ C |z|a ≤ C (|z1|+ |z2|+ · · ·+ |zb|)a . (3.7.33)

In particular, the function qβ (see (3.7.19)) satisfies

|qβ ((z1, z2, . . . , zb)) | ≤ C (|z1|+ |z2|+ · · ·+ |zb|)a . (3.7.34)

This holds for any z ∈ G, and in particular, for every (z1, z2, . . . , zb) in a

neighbourhood of 0 in Rn. Thus, by Remark 3.7.4, we have

∂

∂z1

∂

∂z2

· · · ∂

∂zb
qβ(0) = 0.

Hence, by Lemma 3.7.9, the result is proved.

3.8 Spectral multipliers of the sub-Laplacian on

a compact Lie group

In this section we remain in the same setting as in previous sections. Our objective

focuses on proving some important results about the spectral multipliers of the
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sub-Laplacian

L := −(X2
1 +X2

2 + · · ·+X2
k).

The foundations of the results we present here were first laid out by Alexopoulos

in [2], and later adapted by Furioli et al in [23] to dyadic decompositions of L
and Besov spaces. The main difference between the result exhibited in [23] and

Lemma 3.8.1 below lies in the weight of the integrals involved; in the reference

mentioned the authors do not allow the weight to vanish at the identity element

of the group, whereas in our case it is one of the defining properties of the function

q to vanish at eG.

This idea was already explored in the elliptic case, and it can be found, for

example, in Fischer [17]. In that case, the action of the left-invariant vector

fields belonging to the basis of the Lie algebra g of G was considered. On the

other hand, as can be seen in the statement of Lemma 3.8.1 (part (II)) below, in

our case we consider the action of the left-invariant vector fields belonging to a

Hörmander system. This choice stems from having chosen a sub-elliptic setting,

and is a natural consideration due to Remark 3.6.4.

One other important difference between Lemma 3.8.1 below and its analogous

version in the elliptic setting is in the implementation of dimension within the

proof. One example of this arises with integrals of the form∫
G

|z|r dz, (3.8.1)

for some r > 0, which we consider in the proof. In our case, | · | denotes

the Carnot-Carathéodory metric (see Definition A.1.2), whereas in the elliptic

case a Riemannian metric is considered instead. As we prove in the appendix

(see Lemma A.3.2), the finiteness of (3.8.1) in our case depends on the local

dimension l of G. On the other hand, in the elliptic setting this is dependent

on the topological dimension of G, instead. Another example arises in the heat

kernel estimates, as can be seen below in (3.8.5).

3.8.1 Main result on spectral multipliers in L

The main result of this section is the following lemma.

Lemma 3.8.1. (I) Let q ∈ D(G) and m ∈ R. Then there exists a constant

C = Cq,m > 0 such that if f ∈ C([0,∞)), with supp(f) ⊂ [0, 2], we have
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∫
G

∣∣q(z)f(tL) δeG(z)
∣∣ dz ≤ C ||f ||∞, (3.8.2)

for any t ≥ 1.

(II) Let m ∈ R, a ∈ N0 and β, β′ ∈ I(k). Suppose that q ∈ D(G) CC-

vanishes at eG up to order a − 1 (see Notation 3.7.2). Then, there ex-

ist C > 0 and d ∈ N such that for any function f ∈ Cd([0,∞)) with

supp(f) ⊂ [0, 2], we have

∫
G

∣∣q(x)Xβ X̃β′
{
f(tL)δeG

}
(x)
∣∣ dx

≤ C t
1
2

(a−|β|−|β′|) max
0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞, (3.8.3)

whenever t ∈ (0, 1).

An easy corollary of Lemma 3.8.1 is the following, which follows from Leibniz’s

rule for vector fields.

Corollary 3.8.2. Let m ∈ R, a ∈ N0 and γ, β, β′ ∈ I(k). Suppose that

q ∈ D(G) CC-vanishes at eG up to order a− 1. Then, there exists C > 0 and

d ∈ N such that for any function f ∈ Cd([0,∞)) with supp(f) ⊂ [0, 2], we have

∫
G

∣∣Xγ

{
q(x)XβX̃β′

{
f(tL)δeG

}
(x)
}∣∣ dx ≤ C t

1
2

(a−|β|−|β′|−|γ|) max
0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞,
for all t ∈ (0, 1).

If Y = {Y1, Y2, . . . , Yn} denotes a basis of the Lie algebra g, one can also

state a version of Lemma 3.8.1 part (II) and Corollary 3.8.2 in terms of differential

operators Yj, j = 1, 2, . . . , n, imitating the elliptic case. However, in that case,

which we do not explore further in this thesis, the condition on q as well as the

dependence of the bound on |β| are affected. In fact, if we consider the differential

operator Y α, for α ∈ Nn
0 , the formal degree [α]Y of Y α is substituted for |β|

in the formulae above.

The following sections will be devoted to the proof of Lemma 3.8.1.
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3.8.2 Proof of Lemma 3.8.1

Although the result of Lemma 3.8.1 part (I) is already well known, we include

it here for the sake of completeness. On the other hand, with part (II) we are

introducing the first major original result in this thesis, which has already been

proved in the elliptic setting with respect to the Laplace-Beltrami operator (see,

for example, Fischer [17]). Despite being in a different setting, our proof’s ideas

stem from Alexopoulos [2] and Furioli et al [23], which also appear in the elliptic

case in [17].

One also notices that the first part of Proposition 6 in [23], which is analogous

to part (I) in Lemma 3.8.1, is proved for all t > 0. However, in our case it is not

possible to have the estimate (3.8.2) for t ∈ (0, 1), and thus we only prove it for

t ≥ 1.

Step 0

This preliminary step aims to set-up the strategy of the proof. Fix a function

f : [0,∞) → C , with supp(f) ⊂ [0, 2], and assume f ∈ Cd([0,∞)), with d to

be determined later.

We now mention some relevant results. Recall that, as we saw in Proposition

3.1.6, the heat kernels pt (t ≥ 0) associated with L satisfy:

|pt(z)| ≤ C V (
√
t)−1 e−

|z|2
Ct , for z ∈ G, t > 0. (3.8.4)

Moreover, as shown in Varopoulos et al. [55], for each β, β′ ∈ I(k), we also have

that,

|XβX̃β′pt(z)| ≤ C t−
1
2

(l+|β|+|β′|) e−
|z|2
Ct , for z ∈ G, t ∈ (0, 1), (3.8.5)

where Xβ and X̃β′ are the differential operators defined by (2.3.11) and (2.3.12),

respectively.

For a given t ∈ (0, 1) and for β, β′ ∈ I(k), we split up the integral in part

(II) as follows:
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∫
G

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz

≤
∫
B√t(G)

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz

+

∫
B√t(G)c

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz. (3.8.6)

The objective of this proof is to first prove part (I), and then bound the integrals

above separately to prove part (II).

Step 1

This step is dedicated to proving the following result.

Proposition 3.8.3. For β, β′ ∈ I(k) there exists C > 0 such that

∣∣∣∣XβX̃β′ {f(tL)δeG}
∣∣∣∣
L2(G)

. ||f ||∞ ||XβX̃β′pt||L2(G), (3.8.7)

for any t > 0.

Proof. For t > 0, let ht : [0,∞)→ C be the function given by

ht(µ) = etµ
2

f(tµ2), µ ∈ [0,∞). (3.8.8)

Since supp(f) ⊂ [0, 2], then

||ht||∞ = sup
µ≥0
|ht(µ)| ≤ e2 ||f ||∞, (3.8.9)

and moreover, observe that for t > 0,

f(tλ) = ht(
√
λ) e−tλ, ∀ λ ≥ 0.

The spectral theory discussed in Section 3.1 then implies that for every t > 0,

f(tL)δeG = ht
(√
L
)
pt, (3.8.10)

and consequently, since Xj and X̃j′ commute with ht(
√
L), for every j, j′ =

1, 2, . . . , k, we have

∣∣∣∣XβX̃β′ {f(tL)δeG}
∣∣∣∣
L2(G)

≤ ||ht||∞ ||XβX̃β′ pt||L2(G). (3.8.11)

Then (3.8.9) implies that
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∣∣∣∣XβX̃β′f(tL)δeG
∣∣∣∣
L2(G)

. ||f ||∞ ||XβX̃β′ pt||L2(G),

for t > 0, which is the desired result.

Step 2

This step is dedicated to the proof of part (I) of Lemma 3.8.1.

Proof of Lemma 3.8.1 part (I): Fix t ≥ 1. First observe that, by the Cauchy

Schwarz inequality, we have

∫
G

|q(z) f(tL)δeG(z)| dz ≤
(∫

G

|q(z)|2 dz

)1/2(∫
G

|f(tL)δeG|
2

)1/2

. (3.8.12)

Proposition 3.8.3, with β = β′ = 0, implies that

∣∣∣∣f(tL)δeG
∣∣∣∣
L2(G)

. ||f ||∞ ||pt||L2(G). (3.8.13)

Moreover, by (3.8.4), we obtain the estimate∫
G

∣∣pt(z)
∣∣2 dz ≤ C1

∫
G

V (
√
t)−2 e−

2|z|2
Ct dz, (3.8.14)

for some C1 > 0. Furthermore, a result from [55] (see the proof of Lemma

VIII.2.5 therein) tells us that∫
G

e−
|z|2
Ct dz . V (

√
t), for t > 0, (3.8.15)

which, by (3.8.14), implies that∫
G

∣∣pt(z)
∣∣2 dz . C1 V (

√
t)−2 V (

√
t) = C1 V (

√
t)−1,

and hence

||pt||L2(G) . C
1/2
1 V (

√
t)−1/2.

Substituting this into (3.8.13) yields

∣∣∣∣f(tL)δeG
∣∣∣∣
L2(G)

. C
1/2
1 V (

√
t)−1/2 ||f ||∞,
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and hence, as t ≥ 1, the estimates of the volume given by (3.1.22) imply that

there exists C ′1 > 0 such that

∣∣∣∣f(tL)δeG
∣∣∣∣
L2(G)

≤ C ′1 ||f ||∞. (3.8.16)

Now, since q CC-vanishes at eG up to order a− 1, then there exists C2 > 0

such that

||q||2L2(G) ≤ C2

∫
G

|za|2 dz ≤ C2 |G| sup
z ∈G
|z|2a = C2 |G|R2a < +∞,

where |G| denotes the volume of G:

|G| :=

∫
G

dz < +∞,

and R denotes the radius of G:

R := sup
z ∈G
|z| < +∞.

Hence, we have shown that there exists C ′2 > 0 such that

||q||L2(G) ≤ C ′2. (3.8.17)

Combining (3.8.16) and (3.8.17) with (3.8.12), we then obtain that there exists

C > 0 such that ∫
G

|q(z) f(tL)δeG(z)| dz ≤ C ||f ||∞,

which is the result required.

Step 3

The objective of Step 3 is to prove the following result, which gives a bound for

the first integral in (3.8.6).

Proposition 3.8.4. There exists a constant Cq > 0, depending on q, such that

∫
B√t(eG)

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz ≤ Cq t

1
2

(a−|β|−|β′|) ||f ||∞, (3.8.18)

whenever t ∈ (0, 1) and for any β, β′ ∈ I(k).
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Proof. By Cauchy-Schwarz’s inequality, we have

∫
B√t(eG)

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz

≤ ||q||L2(B√t(eG))

∣∣∣∣XβX̃β′f(tL)δeG
∣∣∣∣
L2(B√t(eG))

, (3.8.19)

for any t > 0 and β, β′ ∈ I(k). By Lemma 3.8.5, which we prove below, we see

that there exist a constant C1 > 0 such that

∣∣∣∣XβX̃β′f(tL)δeG
∣∣∣∣
L2(B√t(eG))

≤ C1 t
− 1

2
(l+|β|+|β′|) V (

√
t)1/2 ||f ||∞, (3.8.20)

for every t ∈ (0, 1), and a constant C2,q > 0, depending on q, such that

||q||L2(B√t(eG)) ≤ C2,q

√
t
a+ l

2 , (3.8.21)

for every t ∈ (0, 1). Hence, by (3.8.19), there exists a constant C > 0, depending

on q, such that

∫
B√t(eG)

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz ≤ C t−

1
2

(l+|β|+|β′|) V (
√
t)1/2 ||f ||∞

√
t
a+ l

2 ,

for every t ∈ (0, 1). By (3.1.22), for any t ∈ (0, 1), we have

t
1
2(a+ l

2) t−
1
2

(l+|β|+|β′|) V (
√
t)1/2 ≈ t

1
2

(a+l) t−
1
2

(l+|β|+|β′|) = t
1
2

(a−|β|−|β′|).

Hence, we have obtained∫
B√t(eG)

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz .q t

1
2

(a−|β|−|β′|) ∣∣∣∣f ∣∣∣∣∞,
whenever t ∈ (0, 1). So, the result is proved.

Lemma 3.8.5. The following assertions hold.

(1) There exists a constant C > 0 such that

∣∣∣∣XβX̃β′f(tL)δeG
∣∣∣∣
L2(B√t(eG))

≤ C t−
1
2

(l+|β|+|β′|) V (
√
t)1/2 ||f ||∞, (3.8.22)
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whenever t ∈ (0, 1) and for any β, β′ ∈ I(k).

(2) There exists a constant Cq > 0, depending on q, such that

||q||L2(Br(eG)) ≤ Cq r
a+ l

2 , (3.8.23)

whenever 0 < r < 1.

Proof. (1): By (3.8.5) we know that

∣∣XβX̃β′pt(z)
∣∣ ≤ C t−

1
2

(l+|β|+|β′|) e−
|z|2
Ct , ∀ z ∈ G, t ∈ (0, 1).

Hence,

∫
G

∣∣XβX̃β′pt(z)
∣∣2 dz .

∫
G

t−(l+|β|+|β′|) e−
2|z|2
Ct dz . t−(l+|β|+|β′|) V (

√
t),

by (3.8.15), for any t ∈ (0, 1) and any β, β′ ∈ I(k), and so

∣∣∣∣XβX̃β′pt
∣∣∣∣
L2(G)

. t−
1
2

(l+|β|+|β′|) V (
√
t)1/2, (3.8.24)

for any t ∈ (0, 1) and any β, β′ ∈ I(k). So, applying (3.8.24) to the inequality

(3.8.7) yields

∣∣∣∣XβX̃β′
{
f(tL)δeG

}∣∣∣∣
B√t(eG)

.
∣∣∣∣XβX̃β′

{
f(tL)δeG

}∣∣∣∣
L2(G)

. t−
1
2

(l+|β|+|β′|) V (
√
t)1/2

∣∣∣∣f ∣∣∣∣∞,
for any t ∈ (0, 1) and any β, β′ ∈ I(k), which is the required result.

(2): Since q CC-vanishes at eG up to order a− 1 (see Definition 3.7.1), then

there exists Cq > 0, depending on q, such that

||q||2L2(Br(eG)) ≤ C2
q

∫
Br(eG)

|z|2a dz,

for any r > 0. Now, by Lemma A.3.1 we have∫
Br(eG)

|z|2a dz ≈
∫ r

0

ρ2a ρl−1 dρ =

∫ r

0

ρ2a+l−1 dρ = r2a+l.

Therefore, we have
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||q||L2(Br(eG)) ≤ Cq r
a+ l

2 ,

as claimed.

Step 4

It remains show that there exists a constant Cq > 0, depending on q, such that

∫
B√t(eG)c

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz ≤ Cq t

1
2

(a−|β|−|β′|) ||f ||Cd([0,2]), (3.8.25)

whenever t ∈ (0, 1) and any β, β′ ∈ I(k). The first thing we shall do is employ

the following decomposition:

Proposition 3.8.6. For t ∈ (0, 1) and β, β′ ∈ I(k), we have the following

inequality:

∫
B√t(eG)c

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz

≤
∞∑
j=0

{∫
At,j

∣∣∣q(z)M
(1)
t,j (z)

∣∣∣ dz +

∫
At,j

∣∣∣q(z)M
(2)
t,j (z)

∣∣∣ dz

}
. (3.8.26)

where, for each j ∈ N0, At,j denotes the annulus

At,j = B2j+1
√
t(eG)\B2j

√
t(eG),

and moreover,

M
(1)
t,j := ht(

√
L)
{(
XβX̃β′pt

)
χB

2j−1
√
t
(eG)

}
,

and

M
(2)
t,j := ht(

√
L)
{(
XβX̃β′pt

)
χB

2j−1
√
t
(eG)c

}
.

Proof. Let t ∈ (0, 1) and β, β′ ∈ I(k). We begin by making the following

straightforward observation
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∫
B√t(eG)c

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz

=

∫
G

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣χB√t(eG)c(z) dz,

where χB denotes the indicator function of a set B. Moreover, using (3.8.10),

we have

Xβ X̃β′
{
f(tL)δeG

}
= Xβ X̃β′

{
ht(
√
L)pt

}
= ht(

√
L)
{
Xβ X̃β′pt

}
= ht(

√
L)
{
Xβ X̃β′pt

}
χB

2j−1
√
t
(eG)

+ ht(
√
L)
{
Xβ X̃β′pt

}
χB

2j−1
√
t
(eG)c ,

for every j ∈ N0. Additionally, observe that

B√t(eG)c =
∞⋃
j=0

At,j,

where the sets At,j are pairwise disjoint. Thus, it follows that

∫
B√t(eG)c

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz

≤
∞∑
j=0

{∫
G

∣∣∣q(z)ht(
√
L)
{(
XβX̃β′pt

)
χB

2j−1
√
t
(eG)

)}
(z)
∣∣∣ χAt,j(z) dz

+

∫
G

∣∣∣q(z)ht(
√
L)
{(
XβX̃β′pt

)
χB

2j−1
√
t
(eG)c

}
(z)
∣∣∣ χAt,j(z) dz

}
, (3.8.27)

which yields the required result.

Note that for each t ∈ (0, 1) the sum in (3.8.27) is, in fact, finite. In particular,

the number of non-zero terms is equal to the smallest positive integer L such

that 2L+1
√
t > R0. However, we shall keep the sum as infinite for reasons that

will be become clear later.

For the rest of the proof, fix t ∈ (0, 1) and arbitrary multi-indices β, β′ ∈
I(k). Now, for i = 1, 2 and any j ∈ N0, Cauchy-Schwarz’s inequality implies

that
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∫
At,j

∣∣∣q(z)M
(i)
t,j (z)

∣∣∣ dz ≤ ||q||L2(At,j)

∣∣∣∣M (i)
t,j

∣∣∣∣
L2(At,j)

.

Moreover, by (3.8.23) it follows that

||q||L2(At,j) ≤ ||q||L2(B
2j+1

√
t
(eG)) ≤ Cq

(
2j+1
√
t
)a+ l

2 ,

for some constant Cq > 0 depending on q. Hence, we have shown that for each

j ∈ N0 and for i = 1, 2,∫
At,j

∣∣∣q(z)M
(i)
t,j (z)

∣∣∣ dz ≤ Cq
(
2j+1
√
t
)a+ l

2
∣∣∣∣M (i)

t,j

∣∣∣∣
L2(At,j)

. (3.8.28)

We now analyse the bounds for
∣∣∣∣M (2)

t,j

∣∣∣∣
L2(At,j)

and
∣∣∣∣M (1)

t,j

∣∣∣∣
L2(At,j)

separately,

splitting up the rest of Step 4 into Step 4a and Step 4b.

Step 4a

This step is dedicated to finding a bound for
∣∣∣∣M (2)

t,j

∣∣∣∣
L2(At,j)

, for each j ∈ N0.

In particular, we have the following result:

Proposition 3.8.7. There exists a constant C > 0 such that

∣∣∣∣M (2)
t,j

∣∣∣∣
L2(At,j)

. ||f ||∞
√
t
− l

2
−|β|−|β′|

e−
22(j−1)

C , (3.8.29)

for every j ∈ N0.

Proof. Let us fix j ∈ N0. We first obtain the simple estimate:

∣∣∣∣M (2)
t,j

∣∣∣∣
L2(At,j)

≤
∣∣∣∣M (2)

t,j

∣∣∣∣
L2(G)

≤
∣∣∣∣ht(√L)

∣∣∣∣
L (L2(G))

∣∣∣∣(XβX̃β′pt
)
χB

2j−1
√
t
(eG)c

∣∣∣∣
L2(G)

. (3.8.30)

By functional analysis and (3.8.9), we have

∣∣∣∣ht(√L)
∣∣∣∣

L (L2(G))
≤ ||ht||∞ ≤ e2 ||f ||∞. (3.8.31)

Now observe that, for any C > 0 and z ∈ G with |z| ≥ 2j−1
√
t, we have

e−
|z|2
Ct ≤ e−

(2j−1√t)2
Ct = e−

22(j−1)

C . (3.8.32)

Moreover, we have
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∣∣∣∣(XβX̃β′pt
)
χB

2j−1
√
t
(eG)c

∣∣∣∣2
L2(G)

=

∫
G

∣∣∣(XβX̃β′pt
)
(z)χB

2j−1
√
t
(eG)c(z)

∣∣∣2 dz

≤ sup
z1 ∈G

∣∣(XβX̃β′pt
)
(z1)χB

2j−1
√
t
(eG)c(z1)

∣∣ (∫
G

∣∣XβX̃β′pt(z)
∣∣ dz

)
= sup
|z1|≥2j−1

√
t

∣∣XβX̃β′pt(z1)
∣∣ (∫

G

∣∣XβX̃β′pt(z)
∣∣ dz

)
.

So, by (3.8.5) and (3.8.32), there exists C > 0 such that

∣∣∣∣(XβX̃β′pt
)
χB

2j−1
√
t
(eG)c

∣∣∣∣2
L2(G)

≤ sup
|z1|≥2j−1

√
t

∣∣XβX̃β′pt(z1)
∣∣ (∫

G

∣∣XβX̃β′pt(z)
∣∣ dz

)
≤
√
t
−l−|β|−|β′|

e−
22(j−1)

C

∫
G

√
t
−l−|β|−|β′|

e−
|z|2
Ct dz

≤
√
t
−l−|β|−|β′|

e−
22(j−1)

C

√
t
−l−|β|−|β′|

V (
√
t)

=
√
t
−2l−2|β|−2|β′|

V (
√
t) e−

22(j−1)

C ,

by (3.8.15). Thus, by (3.1.22), we have obtained

∣∣∣∣(XβX̃β′pt
)
χB

2j−1
√
t
(eG)c

∣∣∣∣2
L2(G)

. t−
l
2
−|β|−|β′| e−

22(j−1)

C ,

and so

∣∣∣∣(XβX̃β′pt
)
χB

2j−1
√
t
(eG)c

∣∣∣∣
L2(G)

.
√
t
− l

2
−|β|−|β′|

e−
22(j−1)

2C . (3.8.33)

Hence, combining (3.8.31) and (3.8.33) with (3.8.30), we obtain

∣∣∣∣M (2)
t,j

∣∣∣∣
L2(At,j)

. ||f ||∞
√
t
− l

2
−|β|−|β′|

e−
22(j−1)

2C ,

which is the desired result.

Applying the estimate (3.8.29) to (3.8.28) means that so far, we have proved

that there exists a constant C > 0 and a constant Cq > 0, which depends on q,

such that
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∫
At,j

∣∣∣q(z)M
(2)
t,j (z)

∣∣∣ dz ≤ Cq
(
2j+1
√
t
)a+ l

2 ||f ||∞
(√

t
)− l

2
−|β|−|β′|

e−
22(j−1)

C

≤ Cq ||f ||∞
√
t
a−|β|−|β′|

2(j+1)(a+ l/2) e−
22(j−1)

C . (3.8.34)

Using the ratio test, for example. it is not difficult to show that,

∞∑
j=0

2(j+1)(a+ l/2) e−
22(j−1)

C < +∞,

and thus,

∞∑
j=0

∫
At,j

∣∣∣q(z)M
(2)
t,j (z)

∣∣∣ dz . Cq
∣∣∣∣f ∣∣∣∣∞√t a−|β|−|β′|. (3.8.35)

Step 4b

Recall that we have fixed t ∈ (0, 1). The final step of the proof is to find an

estimate for
∣∣∣∣M (1)

t,j

∣∣∣∣
L2(At,j)

, for each j ∈ N0. Recall that f ∈ Cd([0,∞)), with

d ≥ 2 to be determined. Then, by construction (see the proof of Proposition

3.8.3), the function ht given by (3.8.8) belongs to Cd([0,∞)) and its Fourier

transform is well-defined. Therefore,

ht(µ) =
1

2π

∫
R

cos(sµ) ĥt(s) ds, ∀ µ ∈ R,

and the integral is finite for every µ ∈ R. The spectral theory then implies that

ht(
√
L) =

1

2π

∫
R

cos(s
√
L) ĥt(s) ds,

and hence,

M
(1)
t,j (z) =

1

2π

∫
R

cos(s
√
L)
{(
XβX̃β′pt

)
χB

2j−1
√
t
(eG)

}
(z) ĥt(s) ds. (3.8.36)

In Melrose [33] (see Section 3) it is shown that

supp
(

cos(s
√
L)δeG

)
⊂ B|s|(eG), ∀ s ∈ R.

So, for z ∈ At,j and s ∈ R, with |s| ≤ 2j−1
√
t, we have
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cos(s
√
L)
{(
XβX̃β′pt

)
χB

2j−1
√
t
(eG)

}
(z) = 0.

Now, let g ∈ S(R) be an even function such that its Euclidean Fourier transform

ĝ ∈ D(R) and

ĝ(ξ) =

 1, for ξ ∈ [−1/2 , 1/2]

0, for ξ ∈ (−∞, 1] ∪ [1,∞).

Furthermore, consider the function

gδ := δ−1g(δ−1·), for δ > 0.

We now prove the following result regarding g:

Lemma 3.8.8. Let d ∈ N and suppose that h ∈ S ′(R) such that h ∈ Cd(R),

with

∣∣∣∣∂d h∣∣∣∣∞ = sup
s1 ∈R

∣∣∣∣∣
[
∂d

∂sd
h(s)

]
s=s1

∣∣∣∣∣ < +∞.

Then, we have

∣∣∣∣h− h ∗ gδ∣∣∣∣∞ ≤ δd

d!

∣∣∣∣∂d h∣∣∣∣∞ ∫
R
|y|d |g(y)| dy, (3.8.37)

for every δ > 0.

Proof. Observe that, by the construction of g, we have∫
R
g(x) dx = ĝ(0) = 1,

and moreover, for every j ∈ N,∫
R
xj g(x) dx = 0.

Using Taylor’s Theorem on h we obtain

h ∗ gδ(x) =

∫
R
h(x+ δy) g(y) dy

=

∫
R

(
d−1∑
j=0

h(j)(x)

j!
(δy)j + Rd(x, δy)

)
g(y) dy.
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Since

d−1∑
j=0

∫
R

h(j)(x)

j!
(δy)j g(y) dy = h(x)

∫
R
g(y) dy +

d−1∑
j=1

δj
h(j)(x)

j!

∫
R
yj g(y) dy,

then

h ∗ gδ(x) = h(x) +

∫
R
Rd(x, δy) g(y) dy.

By Taylor’s Theorem, the remainder satisfies the following estimate:

|Rd(x, δy)| ≤ |δy|
d

d!

∣∣∣∣∂dh∣∣∣∣∞,
and so,

∣∣∣∣h ∗ gδ − h∣∣∣∣∞ ≤ sup
x∈R

∫
R
|Rd(x, δy) g(y)| dy

≤
∣∣∣∣∂dh∣∣∣∣∞ ∫

R

|δy|d

d!
|g(y)| dy,

which yields the result.

Furthermore, we also have the following result associated to ht ∈ Cd([0,∞))

(t > 0), the function given by (3.8.8).

Lemma 3.8.9. For any t > 0 ,

∣∣∣∣∂d ht∣∣∣∣∞ = td/2
∣∣∣∣∂d h1

∣∣∣∣
∞. (3.8.38)

Proof. First observe that for any t > 0,

sup
µ∈R

∣∣∣∣ ∂d∂µd ht(µ)

∣∣∣∣ = sup
µ∈R

∣∣∣∣ ∂d∂µd {etµ2 f(tµ2)
}∣∣∣∣

= sup
µ∈R

∣∣∣∣∣
d∑
j=0

(
d

j

){
∂j

∂µj
etµ

2

}{
∂d−j

∂µd−j
f(tµ2)

}∣∣∣∣∣ .
Since supp(f) ⊂ [0, 2], then
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sup
µ∈R

∣∣∣∣ ∂d∂µd ht(µ)

∣∣∣∣ = sup
µ≤
√

2/t

∣∣∣∣∣
d∑
j=0

(
d

j

){
∂j

∂µj
etµ

2

}{
∂d−j

∂µd−j
f(tµ2)

}∣∣∣∣∣
= sup

µ≤
√

2/t

∣∣∣∣∣
d∑
j=0

(
d

j

){
(2tµ)jetµ

2
}{

(2tµ)d−j
(
∂d−j

∂µd−j
f

)
(tµ2)

}∣∣∣∣∣
= (2

√
2)d td/2 sup

µ≤
√

2/t

∣∣∣∣∣
d∑
j=0

(
d

j

)
e2

(
∂d−j

∂µd−j
f

)
(tµ2)

∣∣∣∣∣ .
Hence, we deduce that

sup
µ∈R

∣∣∣∣ ∂d∂µd ht(µ)

∣∣∣∣ = (2
√

2)d td/2 sup
µ≤2

∣∣∣∣∣
d∑
j=0

(
d

j

)
e2 ∂d−j

∂µd−j
f(µ)

∣∣∣∣∣ . (3.8.39)

Similarly, we compute

sup
µ∈R

∣∣∣∣ ∂d∂µd h1(µ)

∣∣∣∣ = sup
µ≤
√

2

∣∣∣∣∣
d∑
j=0

(
d

j

){
∂j

∂µj
eµ

2

}{
∂d−j

∂µd−j
f(µ2)

}∣∣∣∣∣
= (2

√
2)d sup

µ≤
√

2

∣∣∣∣∣
d∑
j=0

(
d

j

)
e2

(
∂d−j

∂µd−j
f

)
(µ2)

∣∣∣∣∣ .
Hence, by (3.8.39), we have

sup
µ∈R

∣∣∣∣ ∂d∂µd ht(µ)

∣∣∣∣ = td/2 sup
µ∈R

∣∣∣∣ ∂d∂µd h1(µ)

∣∣∣∣ ,
as required.

We are now in a position to prove the following estimate for
∣∣∣∣M (1)

t,j

∣∣∣∣
L2(At,j)

,

for each j ∈ N0.

Proposition 3.8.10. There exists C > 0 such that

∣∣∣∣M (1)
t,j

∣∣∣∣
L2(At,j)

≤ C
(
2j−1
√
t
)−d

td/2 max
0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞ γj/20

√
t
− l

2
−|β|−|β′|

, (3.8.40)

for every j ∈ N0, where
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γ0 := sup
r>0

V (2r)

V (r)
< +∞,

and where d ≥ 2 denotes the non-negative integer to be determined such that

f ∈ Cd([0,∞)).

Proof. Since

supp
(
ĝ(2j−1

√
t)−1

)
⊂
[
− 2j−1

√
t , 2j−1

√
t
]
,

then for every z ∈ At,j we have∫
R

cos(s
√
L)
{(
XβX̃β′pt

)
χB

2j−1
√
t

}
(z) ĥt(s) ĝ(2j−1

√
t)−1(s) ds = 0.

Since g is an even function, then (3.8.36) and the Fourier inversion theorem

imply that M
(1)
t,j (z) is exactly equal to

1

2π

∫
R

cos(s
√
L)
{(
XβX̃β′pt

)
χB

2j−1
√
t
(eG)

}
(z)
(
ĥt(s)− ĥt(s) ĝ(2j−1

√
t)−1(s)

)
ds

=
(
ht − ht ∗ g(2j−1

√
t)−1

)
(
√
L)
{(
XβX̃β′pt

)
χB

2j−1
√
t
(eG)

}
(z),

for every z ∈ G. Applying L2 norms yields the estimate:

∣∣∣∣M (1)
t,j

∣∣∣∣
L2(At,j)

≤
∣∣∣∣(ht − ht ∗ g(2j−1

√
t)−1

)
(
√
L)
{(
XβX̃β′pt

)
χB

2j−1
√
t
(eG)

}∣∣∣∣
L2(G)

≤
∣∣∣∣ht − ht ∗ g(2j−1

√
t)−1

∣∣∣∣
∞

∣∣∣∣(XβX̃β′pt
)
χB

2j−1
√
t
(eG)

∣∣∣∣
L2(G)

, (3.8.41)

by the spectral theory. Since ht ∈ Cd([0,∞)), then by Lemma 3.8.8, we obtain

the estimate:

∣∣∣∣ht − ht ∗ g(2j−1
√
t)−1

∣∣∣∣
∞ .

(
2j−1
√
t
)−d ∣∣∣∣∂d ht∣∣∣∣∞.

Then, Lemma 3.8.9 implies that

∣∣∣∣ht − ht ∗ g(2j−1
√
t)−1

∣∣∣∣
∞ .

(
2j−1
√
t
)−d

td/2 max
0≤j≤d

∣∣∣∣∂j f ∣∣∣∣∞. (3.8.42)

On the other hand, now observe that by (3.8.5), we obtain
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∣∣∣∣(XβX̃β′pt
)
χB

2j−1
√
t
(eG)

∣∣∣∣2
L2(G)

=

∫
B

2j−1
√
t
(eG)

∣∣XβX̃β′pt(z)
∣∣2 dz

≤
∫
B

2j−1
√
t
(eG)

∣∣∣∣√t−2(l+|β|+|β′|)
e−

2|z|2
Ct

∣∣∣∣ dz

≤
√
t
−2(l+|β|+|β′|)

V (2j−1
√
t) sup
|z|≤2j−1

√
t

(
e−

2|z|2
Ct

)
,

by the definition of the volume. Since

sup
|z|≤2j−1

√
t

(
e−

2|z|2
Ct

)
= 1, ∀ j ∈ N0,

then we have shown that

∣∣∣∣(XβX̃β′pt
)
χB

2j−1
√
t
(eG)

∣∣∣∣
L2(G)

≤
√
t
−l−|β|−|β′|

V (2j−1
√
t)1/2. (3.8.43)

Now, note that

√
t
−l
V (2j−1

√
t)1/2 ≈

√
t
−l (

2j−1
√
t
)l/2

= 2
l
2

(j−1) = 2−
l
2

(
2
√
t
)j l

2
√
t
−j l

2

.

(
V (2
√
t)

V (
√
t)

)j/2
.

Thus, we have shown that

∣∣∣∣(XβX̃β′pt
)
χB

2j−1
√
t
(eG)

∣∣∣∣
L2(G)

.
√
t
− l

2
−|β|−|β′|

γ
j/2
0 , (3.8.44)

where

γ0 = sup
r>0

V (2r)

V (r)
< +∞,

by (3.1.22). Hence, by substituting (3.8.42) and (3.8.44) into (3.8.41), we have

the estimate required.

Proposition 3.8.10 and (3.8.28) then imply that there exists a constant Cq > 0

depending on q such that
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∫
At,j

∣∣q(z)M
(1)
t,j (z)

∣∣ dz

. Cq
(
2j+1
√
t
)a+ l

2
(
2j−1
√
t
)−d

td/2 max
0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞ γj/20

√
t
− l

2
−|β|−|β′|

. Cq max
0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞ 2j(a+ l
2
−d+ 1

2
log2(γ0))

√
t
a−|β|−|β′|

,

since

(
2j+1
√
t
)a+ l

2
(
2j−1
√
t
)−d

td/2 γ
j/2
0

√
t
− l

2
−|β|−|β′|

= 2j(a+ l
2
−d) 2a+ l

2
+d
√
t
a−|β|−|β′|

γ
j/2
0

= 2j(a+ l
2
−d) 2a+ l

2
+d 2

log2

(
γ
j/2
0

)√
t
a−|β|−|β′|

. 2j(a+ l
2
−d+ 1

2
log2(γ0))

√
t
a−|β|−|β′|

.

Hence, we choose d to be the smallest positive integer such that

d > a+
l

2
+

1

2
log2(γ0),

so that the sum

∞∑
j=0

2j(a+ l
2
−d+ 1

2
log2(γ0)) < +∞.

Thus, we obtain

∞∑
j=0

∫
At,j

∣∣q(z)M
(1)
t,j (z)

∣∣ dz . Cq max
0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞√t a−|β|−|β′|. (3.8.45)

Applying (3.8.35) and (3.8.45) to (3.8.26) yields

∫
B√t(eG)c

∣∣q(z)XβX̃β′
{
f(tL)δeG

}
(z)
∣∣ dz . Cq

∣∣∣∣f ∣∣∣∣Cd([0,2])

√
t
a−|β|−|β′|

, (3.8.46)

which is exactly (3.8.25), and thus the proof of Lemma 3.8.1 is finished.
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Chapter 4

Pseudo-differential calculus on

compact Lie groups

Pseudo-differential operators have been studied extensively in the literature and

are generally well understood, especially in the Euclidean cases. From the point

of view of harmonic analysis, one can find, for example, a study of the symbolic

calculus in the case of Rn in Chapter VI of Stein [47]. For applications of

the pseudo-differential theory to PDEs in the Euclidean case, see for example the

monograph Taylor [51]. A more recent result can be found, for instance, in Fischer

and Ruzhansky [18], wherein the authors analysed the pseudo-differential theory

on nilpotent Lie groups. The case of compact Lie groups, which is the main focus

of this thesis, has also been studied in the past, although until now, the elliptic

setting has been the central focus of research. See, for example, Ruzhansky and

Turunen [43] for the case of the torus, or Ruzhansky et al [44] as well as Fischer

[17] for the general case of any compact Lie group.

It is then natural to ask whether it is possible to define classes of pseudo-

differential operators in a sub-elliptic setting without losing the important prop-

erties that can be found in the elliptic case. The aim of this chapter is thus

to define symbol classes Sm and corresponding operator classes Ψm, using a

sub-Laplacian, such that the space

Ψ :=
⋃
m∈R

Ψm

forms an pseudo-differential calculus. This means that Ψ is stable under taking

the composition and the adjoint. In this chapter, we will prove the following

result: Let m1,m2 ∈ R. If T1 ∈ Ψm1 and T2 ∈ Ψm2 , then their composition
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T1 ◦ T2 ∈ Ψm1+m2 ,

and the mapping (T1, T2) 7→ T1 ◦ T2 is a continuous function Ψm1 × Ψm2 →
Ψm1+m2 .

The foundation of the ideas used in this thesis for the proof of this result

stem from the classical Euclidean case, which can be found in Chapter VI in

Stein [47]. Other inspirations for the work presented here include Fischer [17],

which provides an intrinsic pseudo-differential calculus on any compact Lie group,

and Fischer and Ruzhansky [18], which presents an adaptation of Stein’s work to

the case of nilpotent Lie groups.

Throughout this chapter, suppose G is a compact Lie group of dimension n

and let g be the Lie algebra of G. Further suppose that, for some k ∈ N, the

set X = {X1, X2, . . . , Xk} forms a Hörmander system of left-invariant vector

fields on G, and consider its associated sub-Laplacian

L := −(X2
1 +X2

2 + · · ·+X2
k).

4.1 Functions comparable to the C-C metric and

difference operators

In this section we aim to introduce a way of comparing a family of functions to

the Carnot-Carathéodory norm.

4.1.1 Definitions, vocabulary and notation

Definition 4.1.1. Let ` ∈ N0 and suppose that Q = {q1, q2, . . . , q`} is a

family of smooth real-valued functions on G. We say that Q is compara-

ble to the Carnot-Carathéodory metric (C-C metric, for short) if there exist

ω = (ω1, ω2, . . . , ω`) ∈ N`
0 and constants C,C ′ > 0 such that

C
∑̀
j=1

|qj(z)|1/ωj ≤ |z| ≤ C ′
∑̀
j=1

|qj(z)|1/ωj , (4.1.1)

for all z ∈ G. In this case, we say that Q has weight ω.

Remark 4.1.2. Observe that, if Q is a family of smooth real-valued functions on

G comparable to the C-C metric, then it follows that eG is the only point in G

where the functions qj (j = 1, 2, . . . , `) vanish simultaneously. That is,
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⋂
j=1

{z ∈ G : qj(z) = 0} = {eG}.

We also introduce the following notations, which will help us shorten our

future calculations considerably.

Notation 4.1.3. If Q = {q1, q2, . . . , q`} is a family of smooth real-valued functions

on G with weight ω = (ω1, ω2, . . . , ω`) ∈ N`
0, we will sometimes simplify (4.1.1)

by writing

|z| ≈
∑̀
j=1

|qj(z)|1/ωj , z ∈ G. (4.1.2)

Notation 4.1.4. Suppose that Q := {q1, q2, . . . , q`} is a family of smooth real-

valued functions on G with weight ω = (ω1, ω2, . . . , ω`). Then, for β ∈ N`
0, we

denote

[β]Q :=
∑̀
j=1

βj ωj. (4.1.3)

Notation 4.1.5. Let ` ∈ N and consider the family Q = {q1, q2, . . . , q`} of

smooth functions on G. For any α ∈ N`
0, we denote

qα := qα1
1 qα2

2 . . . qα`` ,

q̃α := qα(·−1).

4.1.2 First properties

The following lemma illustrates a simple application of our new notation.

Lemma 4.1.6. Let ` ∈ N and consider the set Q = {q1, q2, . . . , q`} of smooth

functions on G. Suppose that Q has weight ω = (ω1, ω2, . . . , ω`) ∈ N`. Then,

for each j = 1, 2, . . . , `, the function qj CC-vanishes at eG up to order ωj − 1

(see Definition 3.7.1 and Notation 3.7.2) and, for any α ∈ N`
0, the functions qα

and q̃α CC-vanish at eG up to order [α]Q − 1.

Proof. For each j = 1, 2, . . . , `, the function qj satisfies

|qj(z)| ≤ 1

C ωj
|z|ωj , ∀ z ∈ G. (4.1.4)

This means that qj CC-vanishes at eG up to order ωj − 1.
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Now, let α ∈ N`
0. Applying (4.1.4), for any z ∈ G we have

|qα(z)| =
∏̀
j=1

|qj(z)|αj

≤
∏̀
j=1

(
1

Cωj
|z|ωj

)αj
=

1

C [α]Q
|z|[α]Q .

This means that the function qα CC-vanishes at eG up to order [α]Q − 1. The

proof for q̃α is similar.

Lemma 4.1.7. Suppose Q = {q1, q2, . . . , q`} is a family of functions in D(G),

with weight ω = (ω1, ω2, . . . , ω`) ∈ N`. Furthermore, let ω0 be the lowest com-

mon multiple of the numbers {ω1, ω2, . . . , ω`}. Then, for any N ′ ∈ N0, we have

|z|N ′ω0 ≈
∑

[α]Q=N ′ω0

|qα(z)|, ∀ z ∈ G. (4.1.5)

Proof. First observe that, by Lemma 4.1.6, if N ′ ∈ N0, then for every α ∈ N`
0,

with [α]Q = N ′ω0, we have

|qα(z)| . |z|N ′ω0 , ∀ z ∈ G.

Hence, it follows that

∑
[α]Q=N ′ω0

|qα(z)| . |z|N ′ω0 , ∀ z ∈ G. (4.1.6)

Let us now show the reverse inequality (up to a constant). By the equivalence

of norms on R`, for any N ′ ∈ N, we obtain

|z|N ′ω0 ≈

(∑̀
j=1

|qj(z)|1/ωj
)N ′ω0

≈

(∑̀
j=1

|qj(z)|ω0/ωj

)N ′

, ∀ z ∈ G. (4.1.7)

Thus, using a multinomial expansion, we obtain

(∑̀
j=1

|qj(z)|ω0/ωj

)N ′

≈
∑
|α|=N ′

∏̀
j=1

|qj(z)|αj
ω0
ωj , ∀ z ∈ G. (4.1.8)
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Observe that, by the definition of ω0, for each j = 1, 2, . . . , `, ω0/ωj ∈ N. So,

we do the following change of variables; let β = (β1, β2, . . . , β`) ∈ N`
0 be given

by

βj := αj
ω0

ωj
∈ N, ∀ j = 1, 2, . . . , `.

We then have

|α| = N ′ ⇐⇒ β1ω1 + β2ω2 + · · ·+ β`ω` = N ′ω0

By the definition of [ · ]Q (see (4.1.3)), this is equivalent to

|α| = N ′ ⇐⇒ [β]Q = N ′ω0.

However, this only holds for β ∈ N`
0 of the form

βj = αj
ω0

ωj
, j = 1, 2, . . . , `,

for some α = (α1, α2, . . . , α`) ∈ N`
0. This means that

∑
|α|=N ′

∏̀
j=1

|qj(z)|αj
ω0
ωj =

∑
βj ∈

ω0
ωj

N0, j=1,2,...,`

[β]Q=N ′ω0

∏̀
j=1

|qj(z)|βj .

But,

ω0

ωj
N0 ⊂ N0

for each j = 1, 2, . . . , `, thus we have

∑
|α|=N ′

∏̀
j=1

|qj(z)|αj
ω0
ωj ≤

∑
β ∈N`0

[β]Q=N ′ω0

∏̀
j=1

|qj(z)|βj , ∀ z ∈ G.

Hence, by (4.1.7) and (4.1.8), we have shown that

|z|N ′ω0 .
∑

[α]Q=N ′ω0

|qα(z)|, ∀ z ∈ G. (4.1.9)

Thus, combining (4.1.6) and (4.1.9), the result is proved.
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4.1.3 Definition of difference operators

Definition 4.1.8. If q is a smooth, real-valued function on G, we define the

difference operator ∆q associated to q to be the operator acting on the space

FG
(
D′(G)

)
given by

∆q f̂ = q̂f , f ∈ D′(G).

We also introduce some useful notation.

Definition 4.1.9. Let ` ∈ N and suppose Q = {q1, q2, . . . , q`} is a family

of smooth, real-valued functions on G. Furthermore, consider the collection of

difference operators ∆Q = {∆q1 ,∆q2 , . . . ,∆q`} associated to Q. For a given

α ∈ N`
0, we denote

∆α
Q := ∆q̃α .

Definition 4.1.10. Let ` ∈ N and suppose Q = {q1, q2, . . . , q`} is a family of

smooth, real-valued functions on G. Furthermore, let ω = (ω1, ω2, . . . , ω`) ∈ N`.

We shall say that the collection of difference operators ∆Q associated to Q has

weight ω if Q has weight ω.

4.2 An example of a family of functions on G

comparable to the C-C metric

Here we consider an example of a family of functions Q which, as shown below

in Proposition 4.2.2, is comparable to the C-C metric.

4.2.1 An important neighbourhood of eG in G

We let

Y := {Y1, Y2, . . . , Yn}

be the basis of g constructed in Section 2.4.1. Recall that, for each j =

1, 2, . . . , n, Yj is written in the form

Yj = X
[I

(s)
j ]

=
[
Xi1 ,

[
Xi2 , . . . ,

[
Xis−1 , Xis

]
. . .
]]
, (4.2.1)

for some I
(s)
j ∈ I(k) (see (2.4.1)). Furthermore, recall that, for each j =

1, 2, . . . , n, we denote dj (see (2.4.3)) by
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dj =
∣∣I(s)
j

∣∣, (4.2.2)

and δ (see (2.4.4)) is the constant

δ = max{d1, d2, . . . , dn}. (4.2.3)

Observe that there exist a neighbourhood V of eG in G and a neighbourhood

N of 0 in Rn such that the mapping φ : N → V , which is given by

φ((z1, z2, . . . , zn)) := ez1Y1+z2Y2+···znYn , (4.2.4)

is a diffeomorphism (see Proposition 2.3.9 (v)). For z ∈ V we then let

(z1, z2, . . . , zn) ∈ N ⊂ Rn

denote the coordinates of z given by the coordinate chart (φ−1, V ). We also

know, by the ball-box theorem, (see Section 2.4 in Montgomery [35], Section

0.5.A in Gromov [24] and Section 2.4.2 in this thesis) that there exist constants

ε0, C, C
′ > 0 such that

Cφ (Box(ε)) ⊂ Bε(eG) ⊂ C ′φ (Box(ε)) , (4.2.5)

for all ε ≤ ε0, where for each ε > 0 we denote

Box(ε) =
{
x ∈ Rn : |xi| ≤ εdi , ∀ i = 1, 2, . . . , n

}
. (4.2.6)

In particular, we can choose V and N small enough such that the following

properties are satisfied:

(a) V ⊂ Bε0(eG); that is, V satisfies (4.2.5).

(b) The mapping φ : N → V given by (4.2.4) is a diffeomorphism.

(c) Any (z1, z2, . . . , zn) ∈ N satisfies

||(z1, z2, . . . , zn)||Rn ≤ 1.

By these properties, for any z ∈ V we have
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C
(
|z1|1/d1 + |z2|1/d2 + · · ·+ |zn|1/dn

)
≤ |z|

≤ C ′
(
|z1|1/d1 + |z2|1/d2 + · · ·+ |zn|1/dn

)
. (4.2.7)

Next, observe that there exists r ∈ (0, 1] such that Br(eG), the ball of radius

r centred at eG, with respect to the Carnot-Carathéodory metric, is strictly

contained in V ; that is,

Br(eG) ( V. (4.2.8)

4.2.2 Construction of the example

We continue with the same setting as in Section 4.2.1. Our objective is to define

a family of functions Q0 = {q0,j : j = 1, 2, . . . , n} such that, for each j =

1, 2, . . . , n, we haveq0,j(z) = zj, near the identity

q0,j(z) = 1, far away from the identity
,

and moreover

n⋂
j=1

{
z ∈ G : q0,j(z) = 0

}
= {eG}.

In other words, the only point at which all functions in Q0 vanish simultaneously

is the identity, eG. In order to achieve this, we proceed in the following way.

We first consider the case n = dimG = 1. In this case, G is isomorphic

to the one dimensional torus, T. So, we may assume that G = T = R/πZ.

Moreover, the torus may be identified with one of its fundamental domains; we

choose the interval
[
−π

2
, π

2

)
. In this setting, the Carnot-Carathéodory metric is

equivalent to the Euclidean metric and additionally, the map φ (see (4.2.4)) is

the natural identification between elements of the torus and
[
−π

2
, π

2

)
. We then

take N =
[
−π

2
, π

2

) ∼= V .

To fix the ideas, we now let

r =
π

4
,

so that (4.2.8) is satisfied, and furthermore,
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r1 =
r

10
,

and

r2 = 4r1.

For j = 1, 2, we then let χj, ψj ∈ D(T), taking values in [0, 1], be such that

χj(t) ≡ 1 on (−rj, rj), χj(t) ≡ 0 on
[
−π

2
,−r

]
∪
[
r,
π

2

)
,

and

ψj(t) ≡ 0 on
(
−rj

2
,
rj
2

)
, ψ(t) ≡ 1 on

[
−π

2
,−rj

]
∪
[
rj,

π

2

)
,

Then, we define the functions q0,1, q0,2 by

q0,j(t) = t χj(z) + ψj(z) for j = 1, 2. (4.2.9)

Hence, we define

Q0 = {q0,1, q0,2}. (4.2.10)

The following result follows from Proposition 4.2.2 below.

Proposition 4.2.1. Suppose G is a compact Lie group of dimension 1. The set

Q0 given by (4.2.10) is comparable to the C-C metric with weight (d1, d2).

Let us now consider the case n = dimG > 1. We first let

r1 :=
r

4n−1
,

and for each j = 2, 3, . . . , n we define

rj = 4j−1 r1.

Observe that

Br1(eG) ( Br2(eG) ( · · · ( Brn(eG) = Br(eG) ( V. (4.2.11)

Furthermore, let χj, ψj ∈ D(G), taking values in [0, 1], be such that
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χj(z) ≡ 1 on Brj(eG), χj(z) ≡ 0 on V c,

and

ψj(z) ≡ 0 on Brj/2(eG), ψj(z) ≡ 1 on Brj(eG)c.

Then, we define

q0,j(z) = zj χj(z) + ψj(z) for j = 1, 2, . . . , n. (4.2.12)

For each j = 1, 2, . . . , n, we can also write q0,j in the following way:

q0,j(z) =



zj, if z ∈ Brj/2(eG)

zj + ψj(z), if z ∈ Brj(eG)\Brj/2(eG)

zjχj(z) + 1, if z ∈ V \Brj(eG)

1, if z ∈ V c.

(4.2.13)

We now define the family of functions

Q0 := {q0,1, q0,2, . . . , q0,n}. (4.2.14)

For any α ∈ Nn
0 , we shall denote by q0,α the mapping given by

q0,α(z) = q0,1(z)α1q0,2(z)α2 · · · q0,n(z)αn , ∀ z ∈ G. (4.2.15)

Additionally, we let q̃0,α be the function defined by

q̃0,α(z) = q0,α(z−1), ∀ z ∈ G.

Next, we prove that the family functions Q0 is comparable to the C-C metric

with weight (d1, d2, . . . , dn).

Proposition 4.2.2. Suppose G is a compact Le group of dimension n > 1. The

family Q0 of smooth, real-valued functions on G given by (4.2.14) is comparable

to the C-C metric with weight (d1, d2, . . . , dn).

Proof. First observe that, by (4.2.7), there exist C1, C
′
1 > 0 such that

C1

n∑
j=1

|zj|1/dj ≤ |z| ≤ C ′1

n∑
j=1

|zj|1/dj , ∀ z ∈ V. (4.2.16)
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Moreover, from (4.2.13) and the inclusion given by (4.2.11), it is clear that for

each j = 1, 2, . . . , n we have

q0,j(z) = zj, ∀ z ∈ Br1/2(eG).

Hence, it follows that

C1

n∑
j=1

|q0,j(z)|1/dj ≤ |z| ≤ C ′1

n∑
j=1

|q0,j(z)|1/dj , ∀ z ∈ Br1/2(eG).

We now consider the annulus Br2/2(eG)\Br1/2(eG). Observe that, for any

z ∈ Br2/2(eG)\Br1/2(eG),

q0,1(z) = z1 χ1(z) + ψ1(z),

q0,j(z) = zj, ∀ j = 2, 3, . . . , n.

By (4.2.16), it follows that there exist constants C2,0, C
′
2,0 > 0 such that, for all

z ∈ Br2/2(eG)\Br1/2(eG),

C2,0

n∑
j=2

|q0,j(z)|1/dj ≤ |z| ≤ C ′2,0

n∑
j=2

|q0,j(z)|1/dj .

It remains to check q0,1. There exists c2 > 0, only depending on n and r, such

that

c2 ≤ χ1(z) ≤ 1, ∀ z ∈ Br2/2(eG)\Br1/2(eG),

0 ≤ ψ1(z) ≤ 1, ∀ z ∈ Br2/2(eG)\Br1/2(eG).

So, we have

c2 |z1| ≤ |q0,1(z)| ≤ |z1|+ 1, ∀ z ∈ Br2/2(eG)\Br1/2(eG),

and in particular, there exist constants C2,1, C
′
2,1 > 0 such that

C2,1 |q0,1(z)|1/d1 ≤ |z| ≤ C ′2,1 |q0,1(z)|1/d1 , ∀ z ∈ Br2/2(eG)\Br1/2(eG).

Hence, there exist C2, C
′
2 > 0 such that, for all z ∈ Br2/2(eG)\Br1/2(eG),
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C2

n∑
j=1

|q0,j(z)|1/dj ≤ |z| ≤ C ′2

n∑
j=1

|q0,j(z)|1/dj ,

Continuing in this way successively, we deduce that there exist constants

Cr, C
′
r > 0, depending on r, such that, for all z ∈ Br/2(eG),

Cr

n∑
j=1

|q0,j(z)|1/dj ≤ |z| ≤ C ′r

n∑
j=1

|q0,j(z)|1/dj . (4.2.17)

Next, let us consider the space V \Br/2(eG). For each j = 1, 2, . . . , n we have

1 ≤ |q0,j(z)| ≤ zj + 1, ∀ z ∈ V \Br/2(eG),

which implies that there exist constants Cr,V , C
′
r,V > 0, depending on the choices

of r and V , such that

Cr,V |z| ≤
n∑
j=1

|q0,j(z)|1/dj ≤ C ′r,V |z|, ∀ z ∈ V \Br/2(eG). (4.2.18)

The inequality given by (4.2.18) can be extended to G\Br/2(eG). Indeed, as

we saw in (4.2.13), for each j = 1, 2, . . . , n, we have

q0,j(z) = 1, ∀ z ∈ G\V.

So, we deduce that there exist constants Cr,G, C
′
r,G > 0, depending on r and G,

such that

Cr,G ≤
n∑
j=1

|q0,j(z)|1/dj ≤ C ′r,G, ∀ z ∈ G\Br/2(eG). (4.2.19)

Observe also that

r

2
≤ |z| ≤ R, ∀ z ∈ G\Br/2(eG), (4.2.20)

where R > 0 is the radius of G:

R := sup
z ∈G
|z|.

Hence,
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r

2C ′r,G

n∑
j=1

|q0,j(z)|1/dj ≤ |z| ≤ R

Cr,G

n∑
j=1

|q0,j(z)|1/dj , (4.2.21)

for all z ∈ G\Br/2(eG).

Now, we take

C := min

{
Cr,

r

2C ′r,G

}
and C ′ := max

{
C ′r,

R

Cr,G

}
.

Thus, combining (4.2.17) and (4.2.21), we obtain

C
n∑
j=1

|q0,j(z)|1/dj ≤ |z| ≤ C ′
n∑
j=1

|q0,j(z)|1/dj , ∀ z ∈ G,

which shows that Q0 has weight (d1, d2, . . . , dn).

Remark 4.2.3. One could replace χj and ψj (j = 1, 2, . . . , n) with any other

cut-off functions. The resulting smooth functions q0,1, q0,2, . . . , q0,n would then

also be comparable to the C-C metric.

Remark 4.2.4. If Q0 is the family of smooth, real-valued functions on G given

by (4.2.14), then by Proposition 4.2.2, we have that

[α]Q0 =
n∑
j=1

dj αj, ∀ α ∈ Nn
0 ,

where, for each j = 1, 2, . . . , n, dj denotes the positive integer given by (2.4.3).

Furthermore, suppose that Y denotes the basis of g constructed in Section 2.4.1.

Then, by Example 3.6.3, we have

[α]Q0 = [α]Y , ∀ α ∈ Nn
0 . (4.2.22)

Example 4.2.5. We consider the case G = SU(2). In this case, n = 3 and we

consider the family of functions Q0 = {q0,1, q0,2, q0,3}, where for each j = 1, 2, 3,

the function q0,j is given by

q0,j(z) = zjχ(z) + ψ(z), z ∈ SU(2).

By Example 2.4.1 and Proposition 4.2.2, Q0 has weight (1, 1, 2), and in partic-

ular, there exist C,C ′ > 0 such that

C(|q0,1(z)|+ |q0,2(z)|+ |q0,3(z)|1/2) ≤ |z| ≤ C ′(|q0,1(z)|+ |q0,2(z)|+ |q0,3(z)|1/2),
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for all z ∈ SU(2).

4.3 Taylor’s Theorem revisited

For each j = 1, 2, . . . , n, recall that q0,j is the smooth function on G given by

(4.2.12) and Q0 is the family of smooth, real-valued functions on G given by

(4.2.14). The following observation is then an immediate consequence of Theorem

3.5.1 and the construction of the q0,j.

Remark 4.3.1. Suppose f is a smooth function on G and let x ∈ G. Then, by

Theorem 3.5.1, there exists a neighbourhood U of eG in G, independent of f ,

such that for every M ∈ N and z ∈ U ,

f(xz) =
∑
|α|<M

1

α!
zα1

1 zα2
2 · · · zαn Y αf(x) + Rf

x,M(z)

=
∑
|α|<M

1

α!
q0,α(z)Y αf(x) + Rf

x,M(z),

where Rf
x,M(z) satisfies

∣∣Rf
M(z)

∣∣ ≤ C ||(z1, z2, . . . , zn)||MRn max
|α|=M

∣∣∣∣Y αf
∣∣∣∣
L∞(G)

, ∀ z ∈ U. (4.3.1)

In fact, by the construction of the functions q0,j, j = 1, 2, . . . , n (see (4.2.12)),

it follows that U = Br/2(eG) is a suitable choice, where r ∈ (0, 1] is the real

number satisfying (4.2.8).

Now, as we saw in Remark 3.5.2 (b) (see also Proposition 2.4.2), there exists

C ′ > 0 such that

||(z1, z2, . . . , zn)||Rn ≤ C ′|z|, ∀ z ∈ Br/2(eG). (4.3.2)

Hence, we have

∣∣Rf
M(z)

∣∣ ≤ C |z|M max
|α|=M

∣∣∣∣Y αf
∣∣∣∣
L∞(G)

, ∀ z ∈ U, (4.3.3)

for some C > 0. However, as a consequence of (4.3.2), there might exist α ∈ Nn
0 ,

with |α| < M , such that

|q0,α(z)| ≤ C |z|M , ∀ z ∈ Br/2(eG), (4.3.4)
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for some C > 0 (see Example 4.3.2 below). This means that Rf
x,M is not a true

Taylor remainder, when estimated via the Carnot-Carathéodory metric, because

it does not encompass all elements with O(|z|M). This is illustrated in Example

4.11.20 below. In order to fix this issue, we must remove the unwanted terms

from the sum, which is the main objective of Theorem 4.3.3 below.

Example 4.3.2. Let G = SU(2) and M = 3. Furthermore, suppose f is a smooth

function on SU(2) and let x be any element of SU(2). Additionally, for each

j = 1, 2, 3, we let q0,j be the smooth function on SU(2) defined by (4.2.12). As

we worked out in Example 4.2.5, the family of functions Q := {q0,1, q0,2, q0,3} has

weight (1, 1, 2) (see also Example 2.4.1). Now, by Remark 4.3.1, we have

f(xz) =
∑
|α|<3

1

α!
q0,α(z)Y αf(x) +Rf

x,3(z), ∀ z ∈ Br/2(I),

where

|Rf
x,3(z)| ≤ C |z|3 max

|α|=3
||Y αf ||L∞(SU(2)), ∀ z ∈ Br/2(I),

for some C > 0. Consider, for instance, the multi-index α0 = (0, 0, 2) ∈ N3
0.

Clearly, |α0| = 2 < 3, so the expression

1

α0!
q0,α0(z)Y α0f(x), z ∈ Br/2(I),

is included in the sum
∑
|α|<3.

Now, since Q0 has weight (1, 1, 2), we have

[α0]Q0 = 1 · 0 + 1 · 0 + 2 · 2 = 4 (see (4.1.3)).

Moreover, by Lemma 4.1.6, there exists C ′ > 0 such that

|q0,α0(z)| ≤ C ′ |z|[α0]Q = C ′ |z|4 ≤ C ′ |z|3, ∀ z ∈ Br/2(I),

since r ∈ (0, 1]. This is precisely the scenario described in Remark 4.3.1 (see

(4.3.4)).

Theorem 4.3.3. Suppose f is a smooth function on G. Then, there exists a

neighbourhood U of eG in G, independent of f , such that for any x ∈ G and

any M ∈ N, we have the Taylor expansion

f(xz) =
∑

[α]Q0
<M

1

α!
q0,α(z)Y αf(x) +Rf

x,M(z), ∀ z ∈ U, (4.3.5)

150



where the remainder Rf
x,M satisfies

|Rf
x,M(z)| ≤ C |z|M max

[α]Q0
≥M

|α|≤M

||Y αf ||L∞(G), ∀ z ∈ U, (4.3.6)

for some C > 0 independent of x.

Remark 4.3.4. Suppose Y = {Y1, Y2, . . . , Yn} denotes the basis of g constructed

in Section 2.4.1. Furthermore, let f be a smooth function on G and suppose

x = eG. If f is CC-vanishing at eG up to order a − 1, for some a ∈ N, then,

by Remark 4.2.4 (in particular, see (4.2.22)), we have

Y αf(eG) = 0, ∀ α ∈ Nn
0 , [α]Y = [α]Q0 ≤ a− 1.

Hence, by Theorem 4.3.3, there exists a neighbourhood U of eG in G such that,

if M > a, then

f(z) =
∑
α∈Nn0

a≤[α]Q0
<M

1

α!
q0,α(z)Y αf(eG) +Rf

eG,M
(z), ∀ z ∈ U, (4.3.7)

where the remainder Rf
eG,M

satisfies

|Rf
eG,M

(z)| ≤ C |z|M max
[α]Q0

≥M
|α|≤M

||Y αf ||L∞(G), ∀ z ∈ U. (4.3.8)

Recall that, for each j = 1, 2, . . . , n, dj is the positive integer given by (4.2.2).

Moreover, we know that the family of functions Q0 is comparable to the C-C

metric with weight (d1, d2, . . . , dn) (see Proposition 4.2.2). Hence, by definition

(see (4.1.3)), we have

[α]Q0 = d1α1 + d2α2 + · · ·+ dnαn, ∀ α ∈ Nn
0 .

Proof of Theorem 4.3.3. Let r ∈ (0, 1] be the real number satisfying (4.2.8)

and suppose M is any positive integer. By Remark 4.3.1 we then obtain the

expansion

f(xz) =
∑
|α|<M

1

α!
q0,α(z)Y αf(x) + Rf

x,M(z), ∀ z ∈ Br/2(eG), (4.3.9)

where
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∣∣Rf
x,M(z)

∣∣ ≤ C |z|M max
|α|=M

∣∣∣∣Y αf
∣∣∣∣
L∞(G)

, ∀ z ∈ Br/2(eG). (4.3.10)

Now, we aim to show that the sum
∑
|α|<M encompasses all elements of the sum∑

[α]Q0
<M . In order to prove this, it is sufficient to show that if α ∈ Nn

0 , with

[α]Q0 < M , then |α| < M . First observe that, for any α ∈ Nn
0 , we have

|α| = α1 + α2 + · · ·+ αn ≤ d1α1 + d2α2 + · · ·+ dnαn = [α]Q0 .

Thus, for any α ∈ Nn
0 , with [α]Q0 < M , we have

|α| ≤ [α]Q0 < M,

which implies the desired result. In particular, this means that

∑
|α|<M

1

α!
q0,α(z)Y αf(x)

=
∑

[α]Q0
<M

1

α!
q0,α(z)Y αf(x) +

∑
[α]Q0

≥M
|α|<M

1

α!
q0,α(z)Y αf(x), ∀ z ∈ Br/2(eG).

So, expression (4.3.9) can be rewritten as

f(xz) =
∑

[α]Q0
<M

1

α!
q0,α(z)Y αf(x) +Rf

x,M(z), ∀ z ∈ Br/2(eG), (4.3.11)

where

Rf
x,M(z) :=

∑
[α]Q0

≥M
|α|<M

1

α!
q0,α(z)Y αf(x) + Rf

x,M(z), ∀ z ∈ Br/2(eG). (4.3.12)

It remains to show that the remainder Rf
x,M satisfies the estimate (4.3.6). We

shall first find an estimate for the sum

∑
[α]Q0

≥M
|α|<M

1

α!
q0,α(z)Y αf(x), z ∈ Br/2(eG).
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By Lemma 4.1.6, we know that q0,α CC-vanishes at eG up to order [α]Q0 − 1,

for every α ∈ Nn
0 , so we have

∑
[α]Q0

≥M
|α|<M

1

α!
|q0,α(z)| |Y αf(x)| .

∑
[α]Q0

≥M
|α|<M

1

α!
|z|[α]Q0 |Y αf(x)|, (4.3.13)

for all z ∈ Br/2(eG). In fact, (4.3.13) holds for every z ∈ G, but in this proof

we are only interested in the local behaviour of these sums. Furthermore, for

every α ∈ Nn
0 with [α]Q0 ≥M , we have

|z|[α]Q0 ≤ |z|M , ∀ z ∈ Br/2(eG),

since r ∈ (0, 1]. Therefore,

∑
[α]Q0

≥M
|α|<M

1

α!
|z|[α]Q0 |Y αf(x)|

. |z|M max
[α]Q0

≥M
|α|<M

||Y αf ||L∞(G), ∀ z ∈ Br/2(eG). (4.3.14)

Moreover,

|Rf
x,M(z)| . |z|M max

|α|=M
||Y αf ||L∞(G), ∀ z ∈ Br/2(eG). (4.3.15)

Therefore, by (4.3.14) and (4.3.15), the remainder Rf
x,M satisfies

∣∣Rf
x,M(z)

∣∣ . |z|M max
[α]Q0

≥M
|α|<M

||Y αf ||L∞(G) + |z|M max
|α|=M

||Y αf ||L∞(G)

. |z|M max
[α]Q0

≥M
|α|≤M

||Y αf ||L∞(G),

for all z ∈ Br/2(eG), which proves the result.

Remark 4.3.5. Theorem 4.3.3 can readily be extended to functions which are

valued in a normed vector space. More precisely, if (V, || · ||V ) is a normed vector

space and f : G→ V is a smooth function on G, then for any M ∈ N we have
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f(xz) =
∑

[α]Q0
<M

1

α!
q0,α(z)Y αf(x) +Rf

x,M(z), ∀ z ∈ U, (4.3.16)

where the remainder Rf
x,M satisfies

∣∣∣∣Rf
x,M(z)

∣∣∣∣
V
≤ C |z|M max

[α]Q0
≥M

|α|≤M

||Y αf ||L∞(G), ∀ z ∈ U, (4.3.17)

for some C > 0 independent of x.

Lemma 4.3.6. Suppose f is a smooth function on G, and let U be a neigh-

bourhood of eG in G such that, for any x ∈ G and any M ∈ N,

f(xz) =
∑

[α]Q0
<M

1

α!
q0,α(z)Y αf(x) +Rf

x,M(z), ∀ z ∈ U,

where

|Rf
x,M(z)| ≤ C |z|M max

[α]Q0
≥M

|α|≤M

||Y αf ||L∞(G), ∀ z ∈ U.

Then,

sup
z ∈G

β ∈I(k), |β|=M

∣∣Xβ,z R
f
x,M(z)

∣∣ . sup
α∈Nn0

[α]Q0
≤M

∣∣∣∣Y αf
∣∣∣∣
L∞(G)

. (4.3.18)

Furthermore, the same result holds for the right-invariant operators X̃β.

Proof. Let us first fix x ∈ G. Then, for any z ∈ U ,

Xβ,z

{
Rf
x,M(z)

}
= (Xβf)(xz)−

∑
[α]Q0

<M

1

α!
(Xβ q)(z)Y αf(x).

Taking the supremum over z ∈ G and β ∈ I(k), with |β| = M , we obtain

sup
z ∈G

β ∈I(k), |β|=M

∣∣Xβ,z R
f
x,M(z)

∣∣
L∞(G)

≤ sup
|β|=M

∣∣∣∣Xβf
∣∣∣∣
L∞(G)

+
∑

[α]Q0
<M

1

α!
sup

β ∈I(k)
|β|=M

||Xβ q||L∞(G)

∣∣∣∣Y αf
∣∣∣∣
L∞(G)

.

Since q is a smooth function on the compact Lie group G, then
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sup
β ∈I(k)
|β|=M

||Xβ q||L∞(G) < +∞.

By Corollary 3.6.6, for any β ∈ I(k) we have

Xβ =
∑
α∈Nn0

[α]Q0
=|β|

cα Y
α.

In particular, we obtain

sup
|β|=M

||Xβf ||L∞(G) . sup
[α]Q0

=M

||Y αf ||L∞(G).

Hence, we have shown that

sup
z ∈G

β ∈I(k), |β|=M

∣∣Xβ,z R
f
x,M(z)

∣∣
L∞(G)

. sup
[α]Q0

≤M
||Y αf ||L∞(G),

as claimed.

The fact that the result also holds for differential operators X̃β follows from

Proposition 3.6.7.

Remark 4.3.7. Lemma 4.3.6 may be extended to functions f which are vector

valued. More precisely, suppose (V, || · ||V ) is a normed vector space, and let

f : G → V be a smooth function on G. If the hypothesis of Lemma 4.3.6 is

satisfied, then

sup
z ∈G

β ∈I(k), |β|=M

∣∣∣∣Xβ,z R
f
x,M(z)

∣∣∣∣
V

. sup
α∈Nn0

[α]Q0
≤M

∣∣∣∣Y αf
∣∣∣∣
L∞(G)

.

4.4 Symbols on G and their associated opera-

tors

In this section we shall introduce pseudo-differential operators on the compact

Lie group G, as well as their associated symbols. This topic has been studied in

the elliptic case in the context of compact Lie groups, see Ruzhansky et al [44]

or Fischer [17].

Symbols shall be initially defined to be the Fourier transform of a right-

convolution kernel, as a form of introduction, and in a later section we will define

symbols more generally.
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4.4.1 Introduction to symbols

Let T : D(G) → D′(G) be a continuous linear operator and, as a first exam-

ple, suppose T is left-invariant. Then, as a consequence of the Schwartz kernel

theorem (see Corollary 2.5.9), it is a convolution operator; that is, there exists a

unique distribution κ ∈ D′(G) such that

Tf = f ∗ κ, f ∈ D(G), (4.4.1)

in the sense of distributions. Taking the Fourier transform, for any function

f ∈ D(G) we have

T̂ f(π) = f̂ ∗ κ(π) = σ(π) f̂(π), π ∈ Ĝ,

where σ := κ̂ is known as the symbol of T . In this case, T is a Fourier multiplier

operator with multiplier κ̂.

Now, suppose T is not necessarily a left-invariant operator. Then, by the

Schwartz kernel theorem (see Theorem 2.5.2), there exists a unique distribution

κ ∈ D′(G×G) such that

Tf(x) = f ∗ κx(x) =

∫
G

f(z)κx(z
−1x) dz, ∀ f ∈ D(G),

in the sense of distributions, where

κx(z) := κ(x, z), ∀ x, z ∈ G.

If we take the Fourier transform, we obtain

T̂ f(π) = σ(x, π) f̂(π), ∀ π ∈ Ĝ, (4.4.2)

where σ is the field of operators which is given on G× Ĝ by

σ(x, π) := κ̂x(π), ∀ x ∈ G, π ∈ Ĝ. (4.4.3)

In this case, σ is called the symbol of T , and moreover, (4.4.3) can be rewritten

as

κx(z) = F−1
G {σ(x, ·)}(z), ∀ x, z ∈ G. (4.4.4)

Remark 4.4.1. Let us now explain why this definition of symbols is independent of

the choice of π from its equivalence class [π]∼ ∈ Ĝ. If (π1,Hπ1) and (π2,Hπ2)
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are equivalent representations, then, by definition, there exists an isomorphism

A : H1 →H2 such that

π2(x) = A−1π1(x)A, ∀ x ∈ G.

Then, for any function f ∈ D(G), we have

f̂(π2) = A−1f̂(π1)A,

and therefore,

σ(x, π2) = A−1σ(x, π1)A, ∀ x ∈ G.

However, as we shall see below, the quantization we develop will not depend on

this choice.

By applying the Fourier inversion formula to (4.4.2) (see Theorem 2.2.7 (i)),

we have

Tf(x) =
∑
π ∈ Ĝ

dπ Tr
(
π(x)σ(x, π) f̂(π)

)
(4.4.5)

in the sense of L2(G). If (4.4.5) holds, then we denote T = Op(σ). Furthermore,

observe that

Tr
(
π1(x)σ(x, π1) f̂(π1)

)
= Tr

(
π2(x)σ(x, π2) f̂(π2)

)
,

whenever π1 and π2 are equivalent representations. Thus, the sum given in

(4.4.5) does not depend on the choice of a representation from its equivalence

class. Therefore, the symbol defined by (4.4.3) is well-defined.

Remark 4.4.2. It is important to note here that not all symbols arise in this form.

In general, we will not define symbols as the Fourier transform of a distribution.

Nonetheless, symbols belonging to the class Sm, for some m ∈ R, which we

define later (see Definition 4.5.3), always admit a right-convolution kernel, as we

shall see later (see Section 4.5.1).

Furthermore, observe that, by definition, if κ ∈ D′(G), then for every

(π,Hπ) ∈ Ĝ, the expression κ̂(π) is a bounded linear map on Hπ. This leads

to the definition of a symbol given below (see Definition 4.4.3).

4.4.2 First definitions

We now state the definition of a symbol on a compact Lie group G.
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Definition 4.4.3 (Symbol). A symbol on G is a collection

σ :=
{
σ(x, π) : x ∈ G, π ∈ Ĝ

}
,

where for each x ∈ G and π ∈ Ĝ, σ(x, π) is a linear map Hπ →Hπ.

A symbol σ =
{
σ(π) : π ∈ Ĝ

}
that does not depend on the G variable is

said to be an invariant symbol.

For a symbol σ, the notions of continuity and differentiability can be defined.

Definition 4.4.4. Suppose that for each π ∈ Ĝ, a matrix realisation of π is

fixed.

(i) A symbol σ =
{
σ(x, π) : x ∈ G, π ∈ Ĝ

}
is said to be continuous in x

if, for each π ∈ Ĝ, the entries of σ(x, π) are continuous.

(ii) Similarly, a symbol σ =
{
σ(x, π) : x ∈ G, π ∈ Ĝ

}
is said to be smooth

if, for each π ∈ Ĝ, the entries of σ(x, π) are smooth.

An immediate observation from these definitions is that any invariant symbol

σ ∈ FG (D′(G)) is smooth. We will usually assume that any symbol we work

with is smooth, unless stated otherwise.

We also define what it means for a symbol to admit an associated kernel,

based on the discussion from the previous section (see (4.4.4)).

Definition 4.4.5 (Associated kernel). A symbol σ on G is said to admit an

associated kernel if, for each x ∈ G, we have σ(x, ·) ∈ FG (D′(G)). In this case,

its associated kernel is given by

κx(z) := F−1
G {σ(x, ·)}(z), ∀ x, z ∈ G. (4.4.6)

For any symbol σ on G we have the notion of associated operator Op(σ).

Let us now explain how we can define this. First recall that, for each π ∈ Ĝ, we

define Mπ to be the subspace of L2(G) spanned by the entry functions of the

representations in the equivalence class [π]∼ of π; that is,

Mπ = Span
{
〈π1(·)ϕ, ψ〉Hπ1

: ϕ, ψ ∈ Hπ1 , π1 ∈ [π]∼

}
.

Additionally, recall that we define the space M (originally defined in (2.2.6)) to

be the subspace of L2(G) consisting of finite linear combinations of vectors in

Mπ, for some π ∈ Ĝ:
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M =
⊕
π ∈ Ĝ

Mπ.

By the Peter-Weyl Theorem (see Theorem 2.2.3), M is dense in L2(G) and, in

particular, the closure of M , which we denote by M , satisfies

M = L2(G).

If σ = {σ(x, π) : x ∈ G, π ∈ Ĝ} is a symbol, then its associated operator,

which we denote by Op(σ), is given by

Op(σ)f(x) =
∑
π ∈ Ĝ

dπ Tr
(
π(x)σ(x, π) f̂(π)

)
, f ∈ M, x ∈ G.

Observe that the operator Op(σ) is well defined on M , since every function

f ∈ M is a finite linear combination of entry functions of representations π ∈ Ĝ;

that is, the mappings belonging to M are of the form

x 7−→ 〈π(x)u, v〉Hπ
, x ∈ G, u, v ∈ Hπ.

If the operator Op(σ) is bounded in the L2 norm, in the sense that there exists

C > 0 such that

∣∣∣∣Op(σ)f
∣∣∣∣
L2(G)

≤ C ||f ||L2(G), ∀ f ∈ M, (4.4.7)

then it can be extended uniquely to L2(G). This unique extension will also

be denoted by Op(σ). More generally, it is a routine exercise to check that

M ⊂ C∞(G) and that it is dense in the Sobolev space L2
s(G), for any s ∈ R. If,

for some s1, s2 ∈ R, there exists C > 0 such that

∣∣∣∣(I + L)
s2
2 Op(σ) (I + L)−

s1
2 f
∣∣∣∣
L2(G)

≤ C ||f ||L2(G), ∀ f ∈ M,

then the operator (I + L)
s2
2 Op(σ) (I + L)−

s1
2 extends uniquely to an operator

(I + L)
s2
2 Op(σ) (I + L)−

s1
2 : L2(G) −→ L2(G).

In particular, as M is dense in L2
s1

(G), this implies that the operator Op(σ)

extends uniquely to an operator

Op(σ) : L2
s1

(G) −→ L2
s2

(G).
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As we did in the case of L2(G), we will denote this extension by Op(σ).

Remark 4.4.6. Suppose σ is a symbol on G. If c ∈ D(G), then, the field of

operators

c σ = {c(x)σ(x, π) : x ∈ G, π ∈ Ĝ}

is a symbol on G. Moreover, its associated operator is cOp(σ).

If τ is another symbol on G, then

σ + τ = {σ(x, π) + τ(x, π) : x ∈ G, π ∈ Ĝ}

is also a symbol on G. Additionally, its associated operator is Op(σ) + Op(τ).

4.4.3 First examples

Suppose V = {V1, V2, . . . , Vr} is any family of left-invariant vector fields on G,

for some r ∈ N, and, for β ∈ I(r), consider the symbol given by the collection

of operators

{
π(Vβ) : π ∈ Ĝ

}
. (4.4.8)

This symbol will usually be denoted by π(Vβ). We will assume this notation as

long as there is no ambiguity between the symbol π(Vβ) and the infinitesimal

representation associated to a given π ∈ Ĝ of the differential operator Vβ, which

is also expressed as π(Vβ).

More generally, if a ∈ N and T is a differential operator of the form

T =
∑

α∈I(r)
|α|≤a

cαVα,

for some constant coefficients cα ∈ R, then we let π(T ) denote the invariant

symbol given by

{
π(T ) : π ∈ Ĝ

}
.

Example 4.4.7. If β = (i1, i2, . . . , ib) ∈ I(r), then π(Vβ) is an invariant symbol.

This follows from the fact that, for each (π,Hπ) ∈ Ĝ, π(Vβ) ∈ L (Hπ).

We can also establish the operator associated to the symbol π(Vβ) (β ∈ I(r)).
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Lemma 4.4.8. Suppose V = {V1, V2, . . . , Vr} is any family of left-invariant

vector fields on G, for some r ∈ N. Then, for any β ∈ I(r), the symbol π(Vβ)

has associated operator Vβ; that is,

Vβ = Op(π(Vβ)).

Moreover, the kernel associated to the symbol π(Vβ) is the distribution V t
βδeG,

which, by (2.5.5), is given by

〈
V t
βδeG , ϕ

〉
= (−1)|β|

〈
VibVib−1

. . . Vi1δeG , ϕ
〉

= 〈δeG , Vβ ϕ〉

= Vβ ϕ(eG), (4.4.9)

for ϕ ∈ D(G).

Remark 4.4.9. Once it has been shown that the associated operator of the symbol

π(Vβ) is Vβ, we can readily obtain that the symbol π(Vβ) has associated kernel

V t
βδeG . Indeed, by Proposition 2.5.11, the right-convolution kernel of the operator

Vβ is V t
βδeG . This means that, for each f ∈ D(G), we have

Vβf = f ∗ (V t
βδeG). (4.4.10)

Taking the Fourier transform of Vβf yields

V̂βf(π) = π(Vβ) f̂(π), π ∈ Ĝ.

But, by (4.4.10), we also have

V̂βf(π) = F
{
V t
βδeG

}
(π)f̂(π), π ∈ Ĝ. (4.4.11)

and so this shows that

π(Vβ) = F
{
V t
β δeG

}
(π), π ∈ Ĝ.

Hence, the associated kernel of π(Vβ) is the distribution V t
βδeG , as claimed in

Lemma 4.4.8.

Proof of Lemma 4.4.8: If V is any left-invariant vector field and π ∈ Ĝ, we

have
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π(V ϕ) =

∫
G

(V ϕ)(x) π(x)∗ dx

=

∫
G

(
d

dt
ϕ(xetV )

∣∣∣∣
t=0

)
π(x)∗ dx

=
d

dt

∫
G

ϕ(xetV ) π(x)∗ dx

∣∣∣∣
t=0

.

We now apply the substitution

y = xetV .

Since G is a unimodular group, we have

π(V ϕ) =
d

dt

∫
G

ϕ(y)π(ye−tV )∗ dy

∣∣∣∣
t=0

=
d

dt

∫
G

ϕ(y)π(etV )π(y)∗ dy

∣∣∣∣
t=0

=

(
d

dt
π(etV )

∣∣∣∣
t=0

)∫
G

ϕ(y) π(y)∗ dy.

Since

d

dt
π(etV )

∣∣∣∣
t=0

= π(V ),

then we have

π(V ϕ) = π(V ) π(ϕ). (4.4.12)

In particular, by applying this method recursively to Vi1 , Vi2 , . . . , Vib , we

obtain that

F {Vβϕ} (π) = π(Vβϕ) = π(Vβ)π(ϕ).

Therefore, the operator associated to the symbol π(Vβ) is Vβ, and the proof is

finished, by Remark 4.4.9.

Example 4.4.10. Let us now consider the symbol π(T ), where T is a differential

operator of the form
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T =
∑

α∈I(r)
|α|≤a

cαVα,

for some coefficients cα ∈ D(G) and some a ∈ N. By Remark 4.4.6 and Lemma

4.4.8, it follows that the symbol π(T ) has associated operator

Op(π(T )) = T.

A more general example is given by the Fourier transform of a distribution,

as we shall see next.

Example 4.4.11. If κ ∈ D′(G), then its group Fourier transform

κ̂ =
{
κ̂(π) : π ∈ Ĝ

}
is an invariant symbol, and in fact, as saw in Section 4.4.1 (see (4.4.1)), the

operator associated to κ̂ is the right convolution operator given by

Op(κ̂)f = f ∗ κ, ∀ f ∈ D(G).

This shows that all functions in the space FG (D′(G)) are invariant symbols.

The scenario proposed in Example 4.4.11 is, in fact, not a rare occurrence.

That is, it will often be the case that if σ is a symbol, which satisfies certain

conditions, then it admits an associated kernel. In the following section we discuss

some important examples of these conditions.

4.4.4 Sufficient condition for a symbol to admit an asso-

ciated kernel

Let us now discuss an important sufficient condition for a symbol to admit an

associated kernel (see Definition 4.4.5). Suppose σ is an invariant symbol. If

sup
π ∈ Ĝ
||σ(π)||L (Hπ) < +∞,

then by the Peter-Weyl Theorem (see Theorem 2.2.3), the operator Op(σ) is

bounded in the L2(G) norm, in the sense that (4.4.7) holds. Hence, as we dis-

cussed in Section 4.4.2, Op(σ) extends uniquely to an operator Op(σ) : L2(G)→
L2(G), and we have
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∣∣∣∣Op(σ)
∣∣∣∣

L (L2(G))
= sup

π ∈ Ĝ
||σ(π)||L (Hπ) < +∞. (4.4.13)

Therefore, by the Schwartz kernel theorem (see Theorem 2.5.2), the operator

Op(σ) is given by right convolution against a distribution. That is, there exists

a unique κ ∈ D′(G) such that

Op(σ)f = f ∗ κ, ∀ f ∈ L2(G),

in the sense of distributions. Taking the Fourier transform yields

F{Op(σ)f}(π) = κ̂(π)f̂(π) = σ(π)f̂(π),

by the definition of Op(σ). This implies that the symbol σ admits an associated

kernel, κ, in the sense of Definition 4.4.5.

More generally, suppose that, for some s1, s2 ∈ R, we have

sup
π ∈ Ĝ

∣∣∣∣π(I + L)
s2
2 σ(π) π(I + L)−

s1
2

∣∣∣∣
L (Hπ)

< +∞.

Then, the operator (I + L)
s2
2 Op(σ) (I + L)−

s1
2 is bounded in the L2(G) norm,

in the sense that there exists C > 0 such that

∣∣∣∣(I + L)
s2
2 Op(σ) (I + L)−

s1
2 f
∣∣∣∣
L2(G)

≤ C ||f ||L2(G), ∀ f ∈ M.

As was explained is Section 4.4.2, this means that the operator Op(σ) extends

uniquely to an operator

Op(σ) : L2
s1

(G) −→ L2
s2

(G),

and moreover, we have

∣∣∣∣Op(σ)
∣∣∣∣

L (L2
s1

(G) , L2
s2

(G))

=
∣∣∣∣(I + L)

s2
2 Op(σ) (I + L)−

s1
2

∣∣∣∣
L (L2(G))

= sup
π ∈ Ĝ

∣∣∣∣π(I + L)
s2
2 σ(π) π(I + L)−

s1
2

∣∣∣∣
L (Hπ)

< +∞. (4.4.14)

Hence, by the Schwartz kernel theorem, the operator Op(σ) is given by right

convolution against a distribution. This implies that the symbol σ admits an
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associated kernel.

Remark 4.4.12. Suppose σ is a symbol on G such that, for some ν ∈ R,

sup
x∈G
π ∈ Ĝ

∣∣∣∣σ(x, π)π(I + L)ν
∣∣∣∣

L (Hπ)
< +∞;

that is, there exists a constant C > 0 such that

sup
x∈G
π ∈ Ĝ

∣∣∣∣σ(x, π) π(I + L)ν
∣∣∣∣

L (Hπ)
≤ C. (4.4.15)

Then, the operator Op(σ) associated to σ, which is originally defined on M ,

can be extended to D(G). Let us now prove this.

Note that it suffices to show that, for any f ∈ D(G) and x ∈ G, the sum

∑
π ∈ Ĝ

dπ Tr
(
π(x)σ(x, π) f̂(π)

)
(4.4.16)

is absolutely convergent. First observe that

∑
π ∈ Ĝ

dπ

∣∣∣Tr
(
π(x)σ(x, π) f̂(π)

)∣∣∣ ≤ ∑
π ∈ Ĝ

dπ Tr
∣∣∣π(x)σ(x, π) f̂(π)

∣∣∣ (4.4.17)

For any π ∈ Ĝ we have

Tr
∣∣π(x)σ(x, π) f̂(π)

∣∣
= Tr

∣∣π(x)σ(x, π) π(I + L)ν π(I + L)−ν f̂(π)
∣∣

≤
∣∣∣∣σ(x, π) π(I + L)ν

∣∣∣∣
L (Hπ)

Tr
∣∣π(I + L)−ν f̂(π)

∣∣. (4.4.18)

Now, let N ∈ N0 to be determined. We have

Tr
∣∣π(I + L)−ν f̂(π)

∣∣ = Tr
∣∣∣π(I + L)−N−ν π(I + L)N f̂(π)

∣∣∣
≤
∣∣∣∣π(I + L)N f̂(π)

∣∣∣∣
L (Hπ)

Tr
∣∣π(I + L)−N−ν

∣∣.
Applying this to (4.4.18) yields the following bound for Tr

∣∣π(x)σ(x, π) f̂(π)
∣∣:
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∣∣∣∣σ(x, π)π(I + L)ν
∣∣∣∣

L (Hπ)

∣∣∣∣π(I + L)N f̂(π)
∣∣∣∣

L (Hπ)
Tr
∣∣π(I + L)−N−ν

∣∣. (4.4.19)

Now, by Lemma 2.2.4,

∣∣∣∣π(I + L)N f̂(π)
∣∣∣∣

L (Hπ)
=
∣∣∣∣F{(I + L)Nf}(π)

∣∣∣∣
L (Hπ)

≤ ||(I + L)Nf ||L1(G). (4.4.20)

Since f ∈ D(G), then (I + L)Nf ∈ L1(G). Then, let

CN := C ||(I + L)Nf ||L1(G) < +∞,

where C > 0 is the constant given in (4.4.15). Thus, by (4.4.19), we obtain

Tr
∣∣π(x)σ(x, π) f̂(π)

∣∣ ≤ CN Tr
∣∣π(I + L)−N−ν

∣∣. (4.4.21)

Therefore,

∑
π ∈ Ĝ

dπ Tr
∣∣∣π(x)σ(x, π) f̂(π)

∣∣∣ ≤ CN
∑
π ∈ Ĝ

dπ Tr
∣∣π(I + L)−N−ν

∣∣. (4.4.22)

But, by Corollary 3.1.11, if we choose N such that N+ν > l/2, where l denotes

the local dimension of G, then

∑
π ∈ Ĝ

dπ Tr
∣∣π(I + L)−N−ν

∣∣ < ∞,
which proves the result.

4.4.5 The associated kernel of a non-invariant symbol

Fix a basis of vector fields {Vj : j = 1, 2, . . . , n} on G and m ∈ R, and let σ

be a symbol on G. For β ∈ Nn
0 , we let V βσ be the symbol

V βσ :=
{
V β
x σ(x, π) : x ∈ G, π ∈ Ĝ

}
,

where V β
x denotes the differential operator

V β
x = V β1

1 V β2
2 . . . V βn

n ,
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acting on each operator σ(x, π) (x ∈ G, π ∈ Ĝ) with respect to x. Further-

more, let us assume that, for all β ∈ Nn
0 , σ satisfies

sup
x∈G
π ∈ Ĝ

∣∣∣∣π(I + L)−
1
2
m V β

x σ(x, π)
∣∣∣∣

L (Hπ)
< +∞. (4.4.23)

In this section, we explain how condition (4.4.23) implies that σ admits an

associated kernel, in the sense of Definition 4.4.5.

Let us first consider the case β = 0. Then, for any x ∈ G we have

sup
π ∈ Ĝ

∣∣∣∣π(I + L)−
1
2
m σ(x, π)

∣∣∣∣
L (Hπ)

< +∞. (4.4.24)

As was discussed in Section 4.4.4 above, condition (4.4.24) implies that the op-

erator Op(σ(x, ·)) associated to σ(x, ·) extends uniquely to a bounded operator

from the Sobolev space L2
−m(G) to L2(G). Hence, by the Schwartz kernel the-

orem (see Corollary 2.5.9), the operator Op(σ(x, ·)) admits a right-convolution

kernel. That is, there exists a unique distribution κx ∈ D′(G), depending on x,

such that

Op(σ)f = f ∗ κx, ∀ f ∈ L2
−m(G),

in the sense of distributions. Taking the Fourier transform, we obtain

F{Op(σ)f}(π) = F{f ∗ κx}(π) = κ̂x(π) f̂(π), π ∈ Ĝ.

This means that the symbol σ(x, ·) admits an associated kernel, in the sense of

Definition 4.4.5, and we have

σ(x, ·) = κ̂x. (4.4.25)

It is then a routine exercise to show that x 7→ κx is a continuous mapping. Let

us sketch, as a case in point, the proof in the special case m = 0.

Recall that, if T : D(G) → D′(G) is a continuous linear operator, which is

left-invariant, then Tδ0 ∈ D′(G) denotes its associated right-convolution kernel

(see Definition 2.5.10). The Schwartz kernel theorem on Lie groups (see Corollary

2.5.9) implies that the mapping

T 7−→ Tδ0,

is an isomorphism from L (L2(G))G (see Definition 2.5.1) onto its image in
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D′(G). As a consequence, for each N ∈ N0 there exists C > 0 such that,

for any κ ∈ D′(G),

||κ||D′(G),N ≤ C ||f 7→ f ∗ κ||L (L2(G)),

where || · ||D′(G),N denotes the semi-norm on D′(G) given by (2.5.2). So, for any

x, x1 ∈ G, we have

∣∣∣∣κx − κx1∣∣∣∣D′(G),N
≤ C

∣∣∣∣Op(κ̂x)−Op(κ̂x1)
∣∣∣∣

L (L2(G))

= C sup
π ∈ Ĝ

∣∣∣∣σ(x, π)− σ(x1, π)
∣∣∣∣

L (Hπ)
.

Now, for each π ∈ Ĝ, let us apply Taylor’s Theorem to σ(x, π)− σ(x1, π), with

respect to the basis of vector fields {Vj : j = 1, 2, . . . , n} (see Theorem 3.5.1).

This yields the estimate

∣∣∣∣σ(x, π)− σ(x1, π)
∣∣∣∣

L (Hπ)
. dR(x, x1) sup

y ∈G
||Vj σ(y, π)||L (Hπ),

where dR(·, ·) denotes the Riemannian metric. By the hypothesis (see (4.4.23)),

this implies that there exists C > 0 such that

∣∣∣∣κx − κx1∣∣∣∣D′(G),N
≤ C d(x, x1).

Thus, we have shown that the mapping

x 7−→ κx

is continuous in the case m = 0.

This idea can be pushed further. For each j = 1, 2, . . . , n, one can use the

condition

sup
x∈G
π ∈ Ĝ

∣∣∣∣π(I + L)−
1
2
m Vj,x σ(x, π)

∣∣∣∣
L (Hπ)

< +∞,

to show that the mapping x 7→ κx is differentiable, and that the kernel of Vjσ

is Vj,x κx. So, proceeding recursively we obtain that the mapping x 7→ κx is

smooth, and that, for each β ∈ Nn
0 , the symbol V βσ has associated kernel
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(x, z) 7−→ V β
x κx(z).

Hence, the symbol σ has an associated kernel, κ ∈ D′(G × G), which is given

by

κ(x, z) = κx(z), x, z ∈ G.

4.5 Definitions of the symbol classes Sm and

their associated operator classes Ψm, and

first examples

Our objective in this section is to define the symbol classes Sm on G, with

respect to a sub-Laplacian. The definition we provide here is inspired, partly, by

the classical definition of symbols on Rn (see, for example, Chapter VI in Stein

[47]), and the symbol classes in the elliptic case of compact Lie groups, which

can be found, for instance, in Fischer [17] or Ruzhansky et al [44]. Moreover,

the nilpotent case (see Fischer and Ruzhansky [18]) also influenced the work

presented here.

We continue on the same setting as in the previous sections; recall that the

set X = {X1, X2, . . . , Xk} forms a Hörmander system of left-invariant vector

fields on G, for some k ∈ N, and its associated sub-Laplacian is given by

L := −(X2
1 +X2

2 + · · ·+X2
k).

4.5.1 Definition of symbol classes Sm

Before we state our definition of the symbol classes Sm, let us first establish the

following convention. Suppose that Q = {q1, q2, . . . , q`} is a family of functions

comparable to the C-C metric. When the context is clear, we shall denote

[α] = [α]Q, ∀ α ∈ N`
0.

Let us now define what it means for a symbol to be of class m.

Definition 4.5.1. Suppose m ∈ R. Let us now fix a basis of vector fields
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V := {Vj : j = 1, 2, . . . , n}

on G (see Definition 2.3.2) and a family

Q = {q1, q2, . . . , q`}

of smooth, real-valued functions on G, which is comparable to the C-C metric

(see Definition 4.1.1), for some ` ∈ N0. Furthermore, let ∆ = ∆Q be the family

of difference operators on G associated to Q. We then say that a symbol

σ = {σ(x, π) : x ∈ G, π ∈ Ĝ},

on G is of class m with respect to L, V and Q if it has smooth entries in x

and for each α ∈ N`
0, β ∈ Nn

0 and every ν ∈ R, there exists C > 0 such that,

sup
x∈G
π ∈ Ĝ

∣∣∣∣π (I + L)−
1
2

(m−[α]+ν) V β
x ∆ασ(x, π) π (I + L)

1
2
ν
∣∣∣∣

L (Hπ)
≤ C. (4.5.1)

Remark 4.5.2. Observe that the basis of vector fields V chosen in Definition

4.5.1 does not necessarily consist of left-invariant vector fields.

Notation 4.5.3. Consider the same hypothesis as in Definition 4.5.3. We then let

Sm(G,L,V , Q)sub

be the space of symbols of class m, with respect to the sub-Laplacian L, the

basis of vector fields V , the family of difference operators ∆ and the family Q

of smooth, real-valued functions on G, comparable to the C-C metric.

We shall often omit any mention of L, V , ∆ and Q, as long as the context

is clear. In this case, we shall write Sm instead of Sm(G,L,V , Q)sub.

As was already mentioned in Remark 4.4.2 above, not every symbol on G is

the Fourier transform of a distribution. However, our definition of the difference

operators ∆α (see Definition 4.1.8) requires a symbols in Sm to admit an asso-

ciated kernel, in the sense of Definition 4.4.5. This is indeed the case, since any

symbol σ of class m satisfies

sup
π ∈ Ĝ

∣∣∣∣π(I + L)−
1
2
m σ(x, π)

∣∣∣∣
L (Hπ)

< +∞,

for every x ∈ G, so, as discussed in Section 4.4.5, it admits an associated kernel
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κx. In particular, for any α ∈ N`
0, the expression

∆ασ(x, π)

is well-defined for each x ∈ G, as required. For every x ∈ G, we have

∆ασ(x, π) = F{q̃ακx}(π), π ∈ Ĝ.

Remark 4.5.4. Let us assume we remain in the same setting as in Definition 4.5.1.

Then, suppose σ is a symbol on G, and let κ denote its associated convolution

kernel. Furthermore, let {νn1}n1 ∈Z ⊂ R be a sequence of real numbers such that

νn1 −→ +∞ as n1 −→ +∞, νn1 −→ −∞ as n1 −→ −∞,

and suppose that for any α ∈ Nn
0 we have

∣∣∣∣π(I + L)−
1
2

(m−[α]+νn1 ) ∆ασ(π) π(I + L)
νn1
2

∣∣∣∣
L∞(Ĝ)

< +∞, ∀ n1 ∈ Z.

Then, in particular (see (4.4.13)), we have

∣∣∣∣(I + L)−
1
2

(m−[α]+νn1 ) Op(̂̃qακ) (I + L)
νn1
2

∣∣∣∣
L (L2(G))

< +∞, ∀ n1 ∈ Z.

By the Interpolation Theorem for Sobolev spaces (see Theorem 3.3.1), we have

∣∣∣∣(I + L)−
1
2

(m−[α]+ν) Op(̂̃qακ) (I + L)
ν
2

∣∣∣∣
L (L2(G))

< +∞, ∀ ν ∈ R.

In particular, this implies that σ ∈ Sm. In particular this shows that, in general,

to verify σ ∈ Sm it suffices to prove (4.5.1) for a sequence {νn1}n1 ∈Z ⊂ R which

converges to both +∞ and −∞.

We have the following result.

Proposition 4.5.5. Suppose m1, m2 ∈ R, with m1 ≤ m2. Fix a basis of vector

fields V := {Vj : j = 1, 2, . . . , n} on G and a family Q = {q1, q2, . . . , q`} of

smooth, real-valued functions on G, which is comparable to the C-C metric, for

some ` ∈ N0. Furthermore, let Sm1 , Sm2 be the families of symbols of class

m1, m2, with respect to L, V and Q, respectively. Then,
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Sm1 ⊂ Sm2 .

Proof. Let σ ∈ Sm1 and suppose that α ∈ N`
0, β ∈ Nn

0 and ν ∈ R. First

observe that

sup
x∈G
π ∈ Ĝ

∣∣∣∣π (I + L)−
1
2

(m2−[α]+ν) V β
x ∆ασ(x, π) π (I + L)

ν
2

∣∣∣∣
L (Hπ)

≤ ||π(I + L)−
1
2

(m1−m2)||L∞(Ĝ)

sup
x∈G
π ∈ Ĝ

∣∣∣∣π (I + L)−
1
2

(m1−[α]+ν) V β
x ∆ασ(x, π) π (I + L)

ν
2

∣∣∣∣
L (Hπ)

.

Since m1 ≤ m2, then by functional analysis,

||π(I + L)−
1
2

(m1−m2)||L∞(Ĝ) ≤ sup
λ≥0

(1 + λ)
1
2

(m1+m2) ≤ 1.

Since σ1 ∈ Sm1 , then it follows that there exists C > 0, independent of σ, such

that

sup
x∈G
π ∈ Ĝ

∣∣∣∣π (I + L)−
1
2

(m1−[α]+ν) V β
x ∆ασ(x, π)π (I + L)

1
2
ν
∣∣∣∣

L (Hπ)
≤ C.

Thus, we have obtained that

sup
x∈G
π ∈ Ĝ

∣∣∣∣π (I + L)−
1
2

(m2−[α]+ν) V β
x ∆ασ(x, π)π (I + L)

1
2
ν
∣∣∣∣

L (Hπ)
≤ C,

which shows that σ ∈ Sm2 , as required.

Definition 4.5.6. We define the space

S−∞ =
⋂
m∈R

Sm.

A symbol in the class S−∞ is called a smoothing symbol.

Observe that, if Q and P are any two families of smooth, real-valued functions

on G, which are comparable to the C-C metric, we have
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S−∞(G,L,V , Q)sub = S−∞(G,L,V , P )sub.

Thus, S−∞ is independent on the choice of Q.

4.5.2 Definition of operator classes Ψm

Recall that, for any symbol σ on G, we define its associated operator, Op(σ),

by

Op(σ)f(x) =
∑
π ∈ Ĝ

dπ Tr
(
π(x)σ(x, π) f̂(π)

)
, f ∈ M, x ∈ G. (4.5.2)

As was explained in Section 4.4.2, this is well-defined. If σ ∈ Sm, then by

Remark 4.4.12, for any f ∈ D(G) and x ∈ G, the sum

∑
π ∈ Ĝ

dπ Tr
(
π(x)σ(x, π) f̂(π)

)
is absolutely convergent. Furthermore, for each x ∈ G,

Op(σ)f(x) = (f ∗ κx)(x), (4.5.3)

where κx is the kernel associated to σ.

We now show that, for each x ∈ G, the mapping x 7→ (f ∗ κx)(x) has a

meaning and is, in fact, smooth. Observe that, as x 7→ κx is a smooth mapping

G→ D′(G) (see Section 4.4.5), then κx is well-defined as a distribution, for each

x ∈ G, and for any f ∈ D(G), the convolution given by f ∗ κx has a meaning

(see Definition 2.5.5). Moreover, in this case, f ∗ κx ∈ D(G) (see Proposition

2.5.7), and hence the sum in (4.5.2) converges pointwise to (f ∗ κx)(x), for each

x ∈ G. So, the definition of the operator Op(σ) may be extended to D(G).

Definition 4.5.7. Let m ∈ R. If σ ∈ Sm then its associated operator, which

is given by

Op(σ)f(x) =
∑
π ∈ Ĝ

dπ Tr
(
π(x)σ(x, π) f̂(π)

)
, f ∈ D(G), x ∈ G,

is said to be of class m.

We now also define the space of operators Ψm.
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Definition 4.5.8. For each m ∈ R, we let Ψm denote the space of operators

of class m. That is,

Ψm = Op(Sm).

Definition 4.5.9. We define the space

Ψ−∞ =
⋂
m∈R

Ψm.

An operator in the class Ψ−∞ is called a smoothing operator.

4.5.3 Example: The symbol π(Xβ)

Recall that X = {X1, X2, . . . , Xk} forms a Hörmander system of left-invariant

vector fields on G, and L is its corresponding sub-Laplacian. For a multi-index

β = (i1, i2, . . . , ib) ∈ I(k), consider the symbol π(Xβ), which is given by

{π(Xβ) : π ∈ Ĝ}.

By Lemma 4.4.8), the operator associated to π(Xβ) is Xβ.

Let us fix a basis of vector fields

V := {Vj : j = 1, 2, . . . , n}

on G (see Definition 2.3.2). Furthermore, let Q0 be the set of smooth,real-valued

functions on G given by (4.2.14), and suppose ∆ denotes the family of difference

operators associated to Q0. For m ∈ R, we then let Sm be the space of symbols

of class m, with respect to L, V and the family of difference operators ∆.

The objective in this section is to prove the following result.

Proposition 4.5.10. For any β ∈ I(k), the symbol π(Xβ) belongs to the symbol

class S|β|.

Remark 4.5.11. Proposition 4.5.10 implies that if a ∈ N0, then any differential

operator of the form

∑
β ∈I(k)
|β|≤a

cβ(x)Xβ,

where the coefficients cβ ∈ D(G), belongs to the operator class Ψa.

In order to prove Proposition 4.5.10, we first calculate ∆α π(Xβ), for α ∈ Nn
0 .
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Lemma 4.5.12. Let β ∈ I(k). Then, the symbol

π(Xβ) = {π(Xβ) : π ∈ Ĝ}

satisfies

∆απ(Xβ) = 0, for any α ∈ Nn
0 , with [α] > |β|. (4.5.4)

On the other hand,

∆απ(Xβ) =
∑

β2 ∈I(k)
[α]+|β2|=|β|

cα,ββ2 π(Xβ2), for any α ∈ Nn
0 , with [α] ≤ |β|, (4.5.5)

for some constants cα,ββ2 ∈ R, depending on α, β, and on the dummy variable

β2.

Proof. Let α ∈ Nn
0 . We have already seen that the right convolution kernel as-

sociated to the symbol π(Xβ) is the distribution X t
βδeG (see Proposition 2.5.11).

Thus, we have

∆απ(Xβ) = π(q̃0,αX
t
βδeG),

where we recall that, for any function f on G, f̃ is given by

f̃(z) = f(z−1), z ∈ G.

Now, using (4.4.9), we can see that the distribution q̃0,αX
t
βδeG is given by

〈
q̃0,αX

t
βδeG , ϕ

〉
=
〈
X t
βδeG , q̃0,αϕ

〉
= 〈δeG , Xβ{q̃0,αϕ}〉

= Xβ{q̃0,αϕ}(eG),

for any ϕ ∈ D(G). By the Leibniz rule for vector fields, we have

Xβ{q̃0,αϕ}(eG) =
∑

β1,β2 ∈I(k)
|β1|+|β2|=|β|

cββ1,β2(Xβ1 q̃0,α)(eG)(Xβ2ϕ)(eG), (4.5.6)

for some constants cββ1,β2 ∈ R. Now, by Proposition 3.7.9 and the definition of

the q0,j (see (4.2.12)), we have
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Xβ1 q̃0,α(eG) =
∑

α′ ∈I(k)
[α′]=[α]−|β1|

c̃β1,αα′ q̃0,α′(eG),

for some constants c̃β1,αα′ ∈ R, where it is understood that, if |β1| > [α], then

Xβ1 q̃0,α(eG) = 0.

So, we have

Xβ{q̃0,αϕ}(eG) =
∑

|β1|+|β2|=|β|

cββ1,β2(Xβ1 q̃0,α)(eG)(Xβ2ϕ)(eG)

=
∑

|β1|+|β2|=|β|
[α′]=[α]−|β1|

cββ1,β2 c̃
β1,α
α′ (q̃0,α′Xβ2ϕ)(eG). (4.5.7)

Now, suppose β1 ∈ I(k), with |β1| ≤ |β|, and let α′ ∈ Nn
0 , with [α′] = [α]−|β1|.

By Lemma 4.1.6 the function q0,α′ CC-vanishes at eG up to order [α′] − 1 =

[α]− |β1| − 1. This means that

|q̃0,α′(z)| . |z|[α′], ∀ z ∈ G,

and in particular, by Proposition 3.7.3,

q̃0,α′(eG) = 0, whenever [α] > |β1|. (4.5.8)

Furthermore, q̃0,α′(eG) = 1 for α′ = 0, so, by (4.5.7), we have

Xβ{q̃0,αϕ}(eG) =
∑

|β1|+|β2|=|β|
[α]=|β1|

cββ1,β2 c̃
β1,α
α′ (Xβ2ϕ)(eG).

Thus,

q̃0,αXβδeG =
∑

β2 ∈I(k)
[α]+|β2|=|β|

cα,ββ2 Xβ2δeG ,

for some constants cα,ββ2 ∈ R. Taking the Fourier transform, we obtain

∆απ(Xβ) =
∑

β2 ∈I(k)
[α]+|β2|=|β|

cα,ββ2 π(Xβ2),
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which shows (4.5.5). Observe that (4.5.4) follows from the fact that, if α ∈ I(k),

with [α] > |β|, then for any β1, β2 ∈ I(k) such that |β1| + |β2| = |β|, we have

|β1| < [α], and by (4.5.8).

We now show the main result of this section.

Proof of Proposition 4.5.10: Let α ∈ Nn
0 and β ∈ I(k). By Lemma 4.5.12, we

have

sup
π ∈ Ĝ

∣∣∣∣π(I + L)−
1
2

(|β|−[α]+ν)∆απ(Xβ) π(I + L)ν/2
∣∣∣∣

L (Hπ)

.
∑

β2 ∈I(k)
[α]+|β2|=|β|

sup
π ∈ Ĝ

∣∣∣∣π(I + L)−
1
2

(|β|−[α]+ν)π(Xβ2)π(I + L)ν/2
∣∣∣∣

L (Hπ)

.
∑

β2 ∈I(k)
|β2|=|β|−[α]

sup
π ∈ Ĝ

∣∣∣∣π(I + L)−
1
2

(|β2|+ν)π(Xβ2) π(I + L)ν/2
∣∣∣∣

L (Hπ)
.

Now, by Proposition 3.2.3 (g), for each β2 ∈ I(k), the operator Xβ2 maps

L2
−ν(G) continuously into L2

−ν−|β2|(G), so the operator

(I + L)−
1
2

(|β2|+ν) Xβ2 (I + L)ν/2

is bounded on L2(G). This implies that

sup
π ∈ Ĝ

∣∣∣∣π(I + L)−
1
2

(|β2|+ν)π(Xβ2) π(I + L)ν/2
∣∣∣∣

L (Hπ)

=
∣∣∣∣(I + L)−

1
2

(|β2|+ν) Xβ2 (I + L)ν/2
∣∣∣∣

L (L2(G))

< +∞.

Since the sum over all β2 ∈ I(k), with |β2| = |β| − [α], is finite, it follows that

sup
π ∈ Ĝ

∣∣∣∣π(I + L)−
1
2

(|β|−[α]+ν)∆απ(Xβ) π(I + L)ν/2
∣∣∣∣

L (Hπ)
< +∞,

which shows that π(Xβ) ∈ S|β|, as required.

Remark 4.5.13. As a consequence of Proposition 4.5.10 and Lemma 4.4.8, for any

β ∈ I(k), the operator Xβ is of class |β|.
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4.6 First properties of symbol classes Sm and

their associated operator classes Ψm

4.6.1 Independence of Sm on the choice of basis of vector

fields

In Definition 4.5.1 we fixed a basis of vector fields {V1, V2, . . . , Vn} on G to define

our symbols classes Sm. However, one might ask whether our definition of Sm

is dependent on this choice. We shall now explain why, for any m ∈ R, the

definition of these symbol classes is, in fact, independent of the choice of basis of

vector fields V .

Let V = {V1, V2, . . . , Vn} be a basis of vector fields on G and suppose Q

is a family of smooth, real-valued functions on G, which is comparable to the

C-C metric. Furthermore, suppose ∆ denotes the family of difference operators

associated to Q. Consider a symbol σ ∈ Sm(G,L,V , Q)sub, for m ∈ R. Then,

for α ∈ N`
0 and β ∈ Nn

0 , we have

sup
x∈G
π ∈ Ĝ

∣∣∣∣π (I + L)−
1
2

(m−[α]+ν) V β
x ∆ασ(x, π) π (I + L)

1
2
ν
∣∣∣∣

L (Hπ)
< +∞.

Suppose now that W = {W1,W2, . . . ,Wn} is another basis of vector fields on

G. Then, by Corollary 2.3.5 and Remark 2.3.6, for every α ∈ N`
0 and β ∈ Nn

0 ,

there exists a constant Cβ
W ,V > 0, depending on β and the families of vector

fields W and V , such that

sup
x∈G
π ∈ Ĝ

∣∣∣∣π (I + L)−
1
2

(m−[α]+ν)W β
x ∆ασ(x, π) π (I + L)

1
2
ν
∣∣∣∣

L (Hπ)

≤ Cβ
W ,V sup

|β′|≤|β|
x∈G
π ∈ Ĝ

∣∣∣∣π (I + L)−
1
2

(m−[α]+ν) V β′

x ∆ασ(x, π) π (I + L)
1
2
ν
∣∣∣∣

L (Hπ)

< +∞.

Hence σ ∈ Sm(G,L,W , Q)sub. The converse also holds, since V and W play

a symmetric role.
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4.6.2 Sm as a Fréchet space

Let m ∈ R. In view of the condition for a symbol to belong to the space Sm

(see (4.5.1)), for each a, b ∈ N0 and c ≥ 0, we define the quantity

||σ||Sm,a,b,c

:= sup
[α]≤a, [β]≤b

x∈G
π ∈ Ĝ, |ν|≤c

∣∣∣∣π (I + L)−
1
2

(m−[α]+ν) V β
x ∆ασ(x, πn) π (I + L)

1
2
ν
∣∣∣∣

L (Hπ)
,

for σ ∈ Sm. We also define

||σ||RSm,a,b := max
[α]≤a, [β]≤b

sup
x∈G
π ∈ Ĝ

∣∣∣∣V β
x ∆ασ(x, π) π (I + L)−

1
2

(m−[α])
∣∣∣∣

L (Hπ)
,

for σ ∈ Sm. Note that σ ∈ Sm if and only if

||σ||Sm, a,b,c < +∞,

for all a, b ∈ N0 and all c ≥ 0. It is not difficult to show that, for any a, b ∈ N0

and c ≥ 0, the functions || · ||Sm, a,b,c and || · ||RSm, a,b are semi-norms on Sm.

Additionally, Sm becomes a Fréchet space when equipped with the semi-norm

given by || · ||Sm, a,b,c, for every a, b ∈ N0 and c ≥ 0.

Moreover, for each m ∈ R, the space Ψm admits a Fréchet topology given

by the family of semi-norms {|| · ||Ψm, a,b,c : a, b ∈ N0, c ≥ 0}, which are defined

by

||Op(σ)||Ψm,a,b,c := ||σ||Sm, a,b,c, σ ∈ Sm.

4.6.3 Continuity of operators in Ψm on D(G)

The objective in this section is to prove that, for any m ∈ R, any operator

T ∈ Ψm maps D(G) continuously into itself. We first need the following result.

Proposition 4.6.1. Let σ ∈ Sm, for some m ∈ R, and suppose that κx

denotes its associated kernel. If m < − l
2

then for any x ∈ G, the following

estimates hold:
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||κx||L2(G) ≤ C sup
π ∈ Ĝ

∣∣∣∣π(I + L)−
m
2 σ(x, π)

∣∣∣∣
L (Hπ)

,

||κx||L2(G) ≤ C sup
π ∈ Ĝ

∣∣∣∣σ(x, π) π(I + L)−
m
2

∣∣∣∣
L (Hπ)

,

for some C > 0, which does not depend on σ or x.

Proof. By Plancherel’s Theorem we hobtain

||κx||2L2(G) = ||κ̂x||2L2(Ĝ)
=
∑
π ∈ Ĝ

dπ ||σ(x, π)||2HS.

Now, we observe that, for any π ∈ Ĝ, we have

||σ(x, π)||HS =
∣∣∣∣π(I + L)

m
2 π(I + L)−

m
2 σ(x, π)

∣∣∣∣
HS

≤
∣∣∣∣π(I + L)

m
2

∣∣∣∣
HS

∣∣∣∣π(I + L)−
m
2 σ(x, π)

∣∣∣∣
L (Hπ)

.

Hence, we have

||σ(x, π)||HS ≤ sup
π1 ∈ Ĝ

∣∣∣∣π1(I + L)−
m
2 σ(x, π1)

∣∣∣∣
L (Hπ)

∣∣∣∣π(I + L)
m
2

∣∣∣∣
HS
. (4.6.1)

So,

∑
π ∈ Ĝ

dπ
∣∣∣∣σ(x, π)

∣∣∣∣2
HS

≤ sup
π1 ∈ Ĝ

∣∣∣∣π1(I + L)−
1
2
m σ(x, π1)

∣∣∣∣
L (Hπ)

∑
π ∈ Ĝ

dπ
∣∣∣∣π(I + L)

1
2
m
∣∣∣∣2

HS

 .

Applying the Plancherel Theorem to π(I + L)
m
2 , we obtain

∑
π ∈ Ĝ

dπ
∣∣∣∣π(I + L)

1
2
m
∣∣∣∣2

HS
= ||B−m||2L2(G),

where B−m is the right-convolution kernel associated to the operator (I + L)
m
2 .

By Proposition 3.1.8,
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||B−m||2L2(G) < +∞,

if m < − l
2
, so the first inequality is proved. The other inequality is similar.

We now consider the space D(G) of smooth compactly supported functions

on G. We endow this space with the family of semi-norms

||f ||D(G),N := sup
β ∈I(k)
|β|<N
x∈Ki

|Xβf(x)|.

Theorem 4.6.2. Let m ∈ R. Then any pseudo-differential operator T ∈ Ψm

maps D(G) continuously into itself. That is, for any N ′ ∈ N0, there exist a

constant C > 0 and N ∈ N0 such that

||Tf ||D(G),N ′ ≤ C ||f ||D(G),N ,

for every f ∈ D(G). In particular, for any β ∈ I(k), if

N >
1

2

(
m+ |β|+ l

2

)
,

then there exists a constant C1 > 0, depending on G, X, β and N , but is

independent of σ, such that

∣∣∣∣Xβ Op(σ)f
∣∣∣∣
L2(G)

≤ C1 ||σ||Sm,0,|β|,N
∣∣∣∣(I + L)Nf

∣∣∣∣
L2(G)

, (4.6.2)

Proof. Let T ∈ Ψm and suppose that f ∈ D(G). We know that if κ : (x, z) 7→
κx(z) is the right convolution kernel associated to T , then

Tf(x) =

∫
G

f(z)κx(z
−1x) dz, x ∈ G.

For β ∈ I(k), the Leibniz formula for vector fields implies that

Xβ Tf(x) =
∑

|β1|+|β2|=|β|

cββ1,β2

∫
G

f(z)Xβ1,x1=xXβ2,x2=z−1x κx1(x2) dz,

for some constants cββ1,β2 . We write

f(z) = (I + L)−N (I + L)N f(z),

for some N ∈ N0 to be determined later. Then, we have
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Xβ Tf(x)

=
∑

|β1|+|β2|=|β|

cββ1,β2

∫
G

[
(I + L)−N(I + L)Nf(z)

]
Xβ1,x1=xXβ2,x2=z−1xκx1(x2) dz

=
∑

|β1|+|β2|=|β|

cββ1,β2

∫
G

[
(I + L)Nf(z)

][
(I + L̃)−NXβ1,x1=xXβ2,x2=z−1xκx1

]
(x2) dz,

by employing integration by parts. By the Cauchy-Schwartz inequality, we obtain

the estimate

|Xβ Tf(x)| ≤ C ′
∑

|β1|+|β2|=|β|

∣∣∣∣(I + L)Nf
∣∣∣∣
L2(G)

∣∣∣∣(I + L̃)−NXβ1,xXβ2,zκx
∣∣∣∣
L2(G)

,

for some C ′ > 0 depending on β. Now, since for every β1, β2 ∈ I(k) the symbol

given by

F
{

(I + L̃)−NXβ1,xXβ2,z κx
}

(π) = π(Xβ2)Xβ1,x σ(x, π)π(I + L)−N

is of class m+ |β2| − 2N , then Proposition 4.6.1 implies that

∣∣∣∣ (I + L̃)−NXβ1,xXβ2,z κx
∣∣∣∣
L2(G)

≤ C sup
π ∈ Ĝ

∣∣∣∣ π(I + L)−
1
2

(m+|β2|−2N) π(Xβ2)Xβ1,x σ(x, π) π(I + L)−N
∣∣∣∣

L (Hπ)

≤ C ||σ||Sm,0,|β1|,N , (4.6.3)

whenever m+ |β2| − 2N < −2. Since |β2| ≤ |β|, then the condition

m+ |β| − 2N < − l
2

is sufficient. Additionally, since |β1| ≤ |β|, (4.6.3) implies that

∣∣∣∣ (I + L̃)NXβ1,xXβ2,z κx
∣∣∣∣
L2(G)

≤ C ||σ||Sm,0,|β|,N , (4.6.4)

whenever m + |β| − 2N < − l
2
. Let us then fix N > 1

2

(
m+ |β|+ l

2

)
. Thus, we

obtain the estimate
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|Xβ Tf(x)| .
∣∣∣∣(I + L)Nf

∣∣∣∣
L2(G)

||σ||Sm,0,|β|,N . (4.6.5)

Since f ∈ D(G), then it follows that there exists N ′ ∈ N0, depending on N ,

such that

∣∣∣∣(I + L)Nf
∣∣∣∣
L2(G)

≤ ||f ||D(G),N ′ ,

which proves the result.

More precisely, by (4.6.5), we have shown that there exists C1 > 0 such that

for any σ ∈ Sm and every β ∈ I(k) we have

∣∣∣∣Xβ Op(σ)f
∣∣∣∣
L2(G)

≤ C1 ||σ||Sm,0,|β|,N
∣∣∣∣(I + L)Nf

∣∣∣∣
L2(G)

,

where N denotes the smallest non-negative integer satisfying

N >
1

2

(
m+ |β|+ l

2

)
.

4.7 Kernel estimates

As has been the case in previous sections, G denotes a compact Lie group of

dimension n and local dimension l (see Definition A.2.1). Furthermore, we shall

suppose that Q = {q1, q2, . . . , q`} is a family of smooth, real-valued functions on

G, which is comparable to the C-C metric, with weight (ω1, ω2, . . . , ω`). For any

α ∈ N`
0, we shall denote

[α] := [α]Q,

and

∆α := ∆α
Q.

Furthermore, we let ω0 denote the lowest common multiple of the numbers

ω1, ω2, . . . , ω`, and for a given m ∈ R, we define

Nm =

⌈
m+ 2l

2ω0

⌉
. (4.7.1)

In this section we aim to prove the following result.
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Theorem 4.7.1. Let σ ∈ Sm, for m ∈ R, and suppose that κx denotes its

associated kernel. Then, for each x ∈ G, the mapping z 7→ κx(z) is smooth on

G\{eG}, and furthermore there exist C > 0, a, b ∈ N0 and c > 0 such that

|κx(z)| ≤ C ||σ||Sm,a,b,c |z|
Nm , ∀ x ∈ G, z ∈ G\{eG}. (4.7.2)

The rest of this section is devoted to the proof of Theorem 4.7.1. We start

Lemma 4.7.2.

Lemma 4.7.2. For m ∈ R let σ ∈ Sm and suppose that κx is its associated

convolution kernel.

(1) If β ∈ I(k), α ∈ N`
0 and β1, β2 ∈ I(k) are such that

m− [α] + |β1|+ |β2| < −
l

2
,

then the distribution Xβ1,zX̃β2,z (Xβ,x q̃α(z)κx(z)) is square integrable and

for every x ∈ G, there exist C > 0 and a, b ∈ N0 and c > 0, such that

∫
G

∣∣Xβ1,zX̃β2,z (Xβ,x q̃α(z)κx(z))
∣∣2 dz ≤ C ||σ||2Sm,a,b,c .

(2) If β ∈ I(k), α ∈ N`
0 and β1, β2 ∈ I(k) are such that

m− [α] + |β1|+ |β2| < −l,

then the distribution Xβ1,zX̃β2,z (Xβ,x q̃α(z)κx(z)) is continuous on G for

every x ∈ G and there exist C > 0 and a, b ∈ N0 and c > 0 such that

sup
z ∈G

∣∣Xβ1,zX̃β2,z (Xβ,x q̃α(z)κx(z))
∣∣ ≤ C ||σ||Sm,a,b,c. (4.7.3)

Proof. Observe that to prove this result it suffices to assume that σ is an invariant

symbol; that is,

σ(x, π) = σ(π), ∀ x ∈ G, π ∈ Ĝ.

To prove (1), observe that, by Plancherel’s Theorem,

∣∣∣∣Xβ1X̃β2(q̃ακ)
∣∣∣∣
L2(G)

=
∣∣∣∣π(Xβ1) ∆ασ(π) π(Xβ2)

∣∣∣∣
L2(Ĝ)

.
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Now,

∣∣∣∣π(Xβ1) ∆ασ(π) π(Xβ2)
∣∣∣∣
L2(Ĝ)

≤
∣∣∣∣π(Xβ1) π(I + L)

1
2

(m−[α]+|β2|)
∣∣∣∣
L2(Ĝ)∣∣∣∣π(I + L)−

1
2

(m−[α]+|β2|)∆ασ(π) π(I + L)
|β2|
2

∣∣∣∣
L∞(Ĝ)∣∣∣∣π(I + L)−

|β2|
2 π(Xβ2)

∣∣∣∣
L∞(Ĝ)

.

Since π(Xβ2) ∈ S|β2|, by Proposition 4.5.10, then

∣∣∣∣π(I + L)−
|β2|
2 π(Xβ2)

∣∣∣∣
L∞(Ĝ)

< +∞.

We also have

∣∣∣∣π(I + L)−
1
2

(m−[α]+|β2|)∆ασ(π) π(I + L)
|β2|
2

∣∣∣∣
L∞(Ĝ)

≤ ||σ||Sm,[α],0,|β2|,

as σ ∈ Sm. Moreover, by Plancherel’s Theorem (see Theorem 2.2.7), we obtain

∣∣∣∣π(Xβ1)π(I + L)
1
2

(m−[α]+|β2|)
∣∣∣∣
L2(Ĝ)

= ||Xβ1 B−(m−[α]+|β2|)||L2(G),

where B−(m−[α]+|β2|) denotes the right convolution kernel associated with the

operator (I + L)
1
2

(m−[α]+|β2|). Moreover, by Theorem 3.2.3 (h), we obtain

||Xβ1 B−(m−[α]+|β2|)||L2(G) ≤
∣∣∣∣(I + L)

|β1|
2 B−(m−[α]+|β2|)

∣∣∣∣
L2(G)

=
∣∣∣∣B−(m−[α]+|β1|+|β2|)

∣∣∣∣
L2(G)

.

By Proposition 3.1.9, we then have that this is finite if

m− [α] + |β1|+ |β2| < −
l

2
. (4.7.4)

In particular, we have shown that if (4.7.4) holds, then there exist constants

a, b, c ∈ N0 and C > 0, depending only on α, β1, β2, such that

||Xβ1X̃β2(q̃ακ)||L2(G) ≤ C ||σ||Sm,a,b,c,

which proves part (1).

In order to prove part (2), first let s ∈ R to be determined. By the Sobolev
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embedding (see Theorem 3.4.1), if s > l/2 and Xβ1X̃β2(q̃ακ) ∈ L2
s(G), then

Xβ1X̃β2(q̃ακ) is continuous on G and there exists C > 0 such that

sup
z ∈G

∣∣Xβ1X̃β2 (q̃ακ) (z)
∣∣ ≤ C

∣∣∣∣Xβ1X̃β2 (q̃ακ)
∣∣∣∣
L2
s(G)

. (4.7.5)

Let us then fix s > l/2. By Theorem 3.2.3 (h), there exists C > 0 such that

∣∣∣∣Xβ1X̃β2 (q̃ακ)
∣∣∣∣
L2
s(G)
≤ C

∣∣∣∣(I + L)
|β1|
2 (I + L̃)

|β2|
2 (q̃ακ)

∣∣∣∣
L2
s(G)

= C
∣∣∣∣(I + L)

s+|β1|
2 (I + L̃)

|β2|
2 (q̃ακ)

∣∣∣∣
L2(G)

.

By Plancherel’s Theorem (see Theorem 2.2.7), we then have

∣∣∣∣(I + L)
s+|β1|

2 (I + L̃)
|β2|
2 (q̃ακ)

∣∣∣∣
L2(G)

=
∣∣∣∣π(I + L)

s+|β1|
2 ∆ασ(π) π(I + L)

|β2|
2

∣∣∣∣
L2(Ĝ)

≤
∣∣∣∣π(I + L)

1
2

(s+|β1|) ∆ασ(π) π(I + L)−
1
2

(m−[α]+s+|β1|)
∣∣∣∣
L∞(Ĝ)∣∣∣∣π(I + L)

1
2

(m−[α]+s+|β1|+|β2|)
∣∣∣∣
L2(Ĝ)

.

Now, observe that

∣∣∣∣π(I + L)
1
2

(s+|β1|) ∆ασ(π) π(I + L)−
1
2

(m−[α]+s+|β1|)
∣∣∣∣
L∞(Ĝ)

=
∣∣∣∣π(I + L)−

1
2

(m−[α]+ν1) ∆ασ(π) π(I + L)
ν1
2

∣∣∣∣
L∞(Ĝ)

≤ ||σ||Sm,[α],0,|ν1|,

where

ν1 := −(m− [α] + s+ |β1|).

Moreover,

∣∣∣∣π(I + L)
1
2

(m−[α]+s+|β1|+|β2|)
∣∣∣∣
L2(Ĝ)

< +∞,

provided that

m− [α] + s+ |β1|+ |β2| < −
l

2
,
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by Proposition 3.1.9. Since s > l/2, then the condition becomes

m− [α] + |β1|+ |β2| < −l,

proving part (2).

We can now show Theorem 4.7.1.

Proof of Theorem 4.7.1. The Leibniz property for vector fields implies that it

suffices to prove the result for invariant symbols. For N ∈ N0, we now define

the function

fN =
∑̀
j=1

qN,j,

where, for each j = 1, 2, . . . , n, the function qN,j is given by

qN,j := q
2ω0N
ωj

j ,

where ω0 is the highest common divisor of ω1, ω2, . . . , ω`. Observe that, for

any z ∈ G,

|fN(z)| ≈
(
|q1(z)|

1
ω1 + |q2(z)|

1
ω2 + · · ·+ |qn(z)|

1
ωn

)2ω0N ≈ |z|2ω0N , (4.7.6)

since Q has weight (ω1, ω2, . . . , ω`). We now define the multi-index

αN,j =

(
0, 0, . . . , 0,

2ω0N

ωj
, 0, . . . , 0

)
, j = 1, 2, . . . , `,

with the non-zero value 2ω0N
ωj

in the j-th position. Then,

fN(z) =
∑̀
j=1

qN,j(z) =
∑̀
j=1

qαN,j(z).

Observe that, for every j = 1, 2, . . . , `,

[
αN,j

]
= 2ω0N.

Hence, by Lemma 4.7.2 (2), the mapping fNκ is continuous provided that

m− 2ω0N < −l, (4.7.7)
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and there exist C > 0 and a, b, c ∈ N0 such that

||fNκ||L∞(G) ≤ C ||σ||Sm,a,b,c.

By (4.7.6), for any z ∈ G, we then obtain

|z|2ω0N |κ(z)| . ||fNκ||L∞(G) . ||σ||Sm,a,b,c.

If we choose

N := Nm =

⌈
m+ 2l

2ω0

⌉
,

then, in particular, (4.7.7) is satisfied. Hence, (4.7.2) is obtained, and the result

is proved.

4.8 Smoothing symbols

We shall continue with the same setting as in previous sections. Suppose that

Q = {q1, q2, . . . , q`} is a family of smooth, real-valued functions on G, which

is comparable to the C-C metric, with weight (ω1, ω2, . . . , ω`). Additionally,

suppose that

Y = {Y1, Y2, . . . , Yn}

is the basis of the Lie algebra g of G constructed in Section 2.4.1. Throughout

this section, for any m ∈ R we let Sm denote the space of symbols of class m,

with respect to L, Y and Q.

4.8.1 Main result

Recall that, for a given function κ ∈ D(G×G), with

κ : (x, z) 7−→ κx(z),

its associated symbol is the collection

σ = {κ̂x(π) : x ∈ G, π ∈ Ĝ},

and we often write σ = κ̂x to denote this relationship.

The objective in this section is to prove the following theorem.
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Theorem 4.8.1. The mappingD(G×G) −→ S−∞

κ 7−→ σ = κ̂x
(4.8.1)

is an isomorphism of topological vector spaces. Hence, a symbol is smoothing if

and only if its associated convolution kernel is smooth.

Recall that a symbol σ on G is said to be smoothing if

σ ∈ S−∞ :=
⋂
m∈R

Sm.

This is a notion we introduced in Definition 4.5.6.

Furthermore, the space S−∞ is equipped with the projective limit induced by⋂
m∈R S

m; that is, the topology for which the inclusion S−∞ ⊂ Sm is continuous,

for any m ∈ R.

Proof of Theorem 4.8.1. We first show that, if σ ∈ S−∞, then its associated

convolution, κ : (x, z) 7→ κx(z), is smooth; that is,

sup
x,z ∈G

sup
α,β ∈I(k)
|α|<N1

|β|<N2

∣∣Xα,zXβ,x κx(z)
∣∣ < +∞,

for every N1, N2 ∈ N0. Since σ ∈ S−∞, it follows that for every N1, N2 ∈ N0,

there exists m ∈ R such that

m+N1 < −l,

and σ ∈ Sm. In particular, whenever α ∈ I(k), with |α| < N1, we have

m+ |α| < −l.

Hence, by Lemma 4.7.2 part (2), it follows that there exist C > 0, a, b ∈ N0

and c > 0 such that

sup
x,z ∈G

sup
α∈I(k)
|α|<N1

|β|<N2

∣∣Xα,zXβ,x κx(z)
∣∣ ≤ C ||σ||Sm,a,b,c < +∞,

as required. In particular, this shows that the map
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S−∞ −→ D(G×G)

σ = κ̂x 7−→ κ

is continuous, which means that the map given by (4.8.1) has a continuous inverse.

Furthermore, this also shows that the map given by (4.8.1) is surjective.

We now show that the map given by (4.8.1) is continuous. Let κ : (x, z) 7→
κx(z) be a smooth function on G×G; that is, suppose that

sup
x,z ∈G

sup
α,β ∈I(k)
|α| ≤N1

|β| ≤N2

∣∣Xα,zXβ,x κx(z)
∣∣ < +∞, (4.8.2)

for every N1, N2 ∈ N0. Then, consider the symbol given by

σ = κ̂x.

Furthermore, let γ1, γ2 ∈ R and suppose that N1, N2 ∈ N0 such that γj ≤ Nj,

for each j = 1, 2. Then, for x ∈ G and β0 ∈ Nn
0 we have

∣∣∣∣π(I + L)γ1Y β0∆ασ(x, π)π(I + L)γ2
∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣π(I + L)N1Y β0∆ασ(x, π)π(I + L)N2

∣∣∣∣
L∞(Ĝ)

=
∣∣∣∣F{(I + L)N1(I + L̃)N2 Y β0

x qα κx
}

(π)
∣∣∣∣
L∞(Ĝ)

.

By Lemma 2.2.4, we then have

∣∣∣∣F{(I + L)N1(I + L̃)N2 Y β0
x qα κx

}
(π)
∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣(I + L)N1(I + L̃)N2 Y β0

x qα κx
∣∣∣∣
L1(G)

.

Moreover, there exist constants cβ ∈ R such that

Y β0 =
∑

β ∈I(k)
|β|≤|β0|

cβXβ.

Similarly,

(I + L)N1 =
∑

β1 ∈I(k)
|β1|≤2N1

cβ1Xβ1 ,
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for some constants cβ1 ∈ R and

(I + L̃)N2 =
∑

β2 ∈I(k)
|β2|≤2N2

c̃β2X̃β2 ,

for some cβ2 ∈ R. Hence, it follows that

∣∣∣∣(I + L)N1(I + L̃)N2 Y β0
x qα κx

∣∣∣∣
L1(G)

.
∑

β,β1,β2 ∈I(k)
|β1|≤2N1, |β2|≤2N2

|β|≤|β0|

∣∣∣∣Xβ1X̃β2Xβ,x qα κx
∣∣∣∣
L1(G)

. sup
x,z ∈G

sup
β,β′ ∈I(k)
|β|≤|β0|

|β′|≤2N1+2N2

∣∣Xβ′,zXβ,x κx(z)
∣∣,

which is finite, by the hypothesis (see (4.8.2)). Hence, we have shown that the

map given by (4.8.1) is continuous.

Additionally, we know that this map is linear and one-to-one. Therefore, we

conclude that it is an isomorphism of topological vector spaces.

4.8.2 Consequence

Many properties we study throughout this thesis associated with symbols will

hold for smoothing symbols. So, the argument we provide below shows that,

given a symbol σ ∈ Sm, we may assume its associated convolution kernel is

supported in a neighbourhood of eG, whenever the context is appropriate.

Suppose that, for m ∈ R, σ ∈ Sm is a symbol on G and let κ : (x, z) 7→
κx(z) denote its associated convolution kernel. Furthermore, let U, V be neigh-

bourhoods of eG in G satisfying

{eG} ⊂ U ⊂ V,

and let χ ∈ D(G) be a cut-off function, taking values in [0, 1], such that

χ(z) ≡ 1 on U, χ(z) ≡ 0 on V c,

Then, we may write
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κx(z) = κx(z)χ(z) + κx(z)(1− χ(z)), ∀ (x, z) ∈ G×G.

We now let κ1,x, κ
′
1,x be given by

κ1,x(z) := κx(z)χ(z), κ′1,x(z) = κx(z)(1− χ(z)), (x, z) ∈ G×G,

and suppose τ1, τ ′1 denote their associated symbols, respectively:

τ1(x, π) = F{κ1,x}(π), τ ′1(x, π) = F{κ′1,x}(π), x ∈ G, π ∈ Ĝ.

Observe that, as supp(κ′1,x) ⊂ V c, then κ′1,x is smooth on G, by Proposition

4.7.1. So, by Theorem 4.8.1, the symbol τ ′1 is smoothing; that is, for any m′ ∈ R
the following assertion holds:

∀ a, b ∈ N0, c > 0, ||τ ′1||Sm′ ,a,b,c < +∞. (4.8.3)

Now, for any α ∈ N`
0, β ∈ Nn

0 and ν ∈ R we have

∣∣∣∣π(I + L)−
1
2

(m−[α]+ν) Y β∆α σ(x, π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣π(I + L)−

1
2

(m−[α]+ν) Y β∆α τ1(x, π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

+
∣∣∣∣π(I + L)−

1
2

(m−[α]+ν) Y β∆α τ ′1(x, π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

.

Moreover, by (4.8.3),

∣∣∣∣π(I + L)−
1
2

(m−[α]) Y β∆α τ ′1(x, π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ ||τ ′1||Sm,[α],[β],|ν| < +∞,

and in particular, there exists C > 0 such that

∣∣∣∣π(I + L)−
1
2

(m−[α]+ν) Y β∆α σ(x, π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣π(I + L)−

1
2

(m−[α]+ν) Y β∆α τ1(x, π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

+ C.

Here, τ1 is a symbol on G of class m, whose associated kernel is supported in V .

This shows we may assume the convolution kernel associated to σ is supported

192



in a neighbourhood of eG.

4.9 The continuous inclusion Sm(Q0) ⊂ Sm(Q)

Recall that, for any family Q of smooth real-valued functions on G, which is

comparable to the C-C metric, any basis of vector fields V on G, and any

m ∈ R,

Sm(G,L,V , Q)sub

denotes the space of symbols of class m with respect to L, V and Q (see

Definition 4.5.1). By the work done in Section 4.6.1, Sm is independent of the

choice of basis of vector fields V , so it shall be convenient for us to fix one

throughout the rest of the section. To this aim, we let

Y := {Y1, Y2, . . . , Yn}

denote the basis of left-invariant vector fields constructed in Section 2.4.1. For

any family Q of smooth, real-valued functions on G, which is comparable to the

C-C metric, and m ∈ R, we shall then write

Sm(Q)

for the space of symbols of class m with respect to L, Y and Q, omitting any

mention of L and Y . Moreover, recall that

Q0 := {q0,1, q0,2, . . . , q0,n} (4.9.1)

denotes the family of smooth, real-valued functions on G given by (4.2.12).

Throughout this section we shall consider the family of symbols of class m, with

respect to Q0,

Sm(Q0).

The objective in this section is to show that, if Q is any family of smooth,

real-valued functions comparable to the C-C metric, then for any m ∈ R, the

space Sm(Q0) is contained in Sm(Q). The following proposition, which we shall

prove later in Section 4.9.2, summarises this result.

Proposition 4.9.1. For some ` ∈ N, let Q = {q1, q2, . . . , q`} be any family
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of smooth, real-valued functions on G, which is comparable to the C-C metric.

Then,

Sm(Q0) ⊂ Sm(Q).

Furthermore, the inclusion is continuous.

The proof of Proposition 4.9.1 will require an important lemma, which allows

us to compare symbol classes semi-norms for different difference operators. We

study this lemma in the following section.

4.9.1 An important lemma

Lemma 4.9.2. Let q, q′ ∈ D(G) be such that the function

q′

q
: z 7−→ q′(z)

q(z)
, z ∈ G

extends to a smooth function on G. Let s1 ∈ N0 and s2 ∈ R, and suppose σ

is an invariant symbol such that

∣∣∣∣π(I + L)
s1
2 ∆qσ(π)π(I + L)

s2
2

∣∣∣∣
L∞(Ĝ)

< +∞.

Then, there exists a constant C > 0, depending on G, L, s1, s2, q and q′, such

that

∣∣∣∣π(I + L)
s1
2 ∆q′σ(π) π(I + L)

s2
2

∣∣∣∣
L∞(Ĝ)

≤ C
∣∣∣∣π(I + L)

s1
2 ∆qσ(π) π(I + L)

s2
2

∣∣∣∣
L∞(Ĝ)

. (4.9.2)

Proof. Let κ ∈ D′(G) be the convolution kernel associated to σ. Moreover, we

also let

σ1 := F{qκ}, σ′1 := F{q′κ}.

Observe that,

∣∣∣∣π(I + L)
s1
2 ∆q σ(π) π(I + L)

s2
2

∣∣∣∣
L∞(Ĝ)

=
∣∣∣∣(I + L)

s1
2 Op(σ1) (I + L)

s2
2

∣∣∣∣
L (L2(G))

.

194



The same equality holds if we substitute q′ for q and σ′1 for σ1. Thus, it suffices

to show that there exists C > 0 such that

∣∣∣∣(I + L)
s1
2 Op(σ′1) (I + L)

s2
2

∣∣∣∣
L (L2(G))

≤ C
∣∣∣∣(I + L)

s1
2 Op(σ1) (I + L)

s2
2

∣∣∣∣
L (L2(G))

. (4.9.3)

Or equivalently,

∣∣∣∣Op(σ′1)
∣∣∣∣

L (L2
−s2

(G),L2
s1

(G)) ≤ C0

∣∣∣∣Op(σ1)
∣∣∣∣

L (L2
−s2

(G),L2
s1

(G)).

Let φ ∈ D(G). For any x ∈ G, we have

Op(σ′1)φ(x) = φ ∗ (q′κ)(x) =

∫
G

φ(y) (q′κ)(y−1x) dy.

For a fixed x ∈ G, we now define the mapping

ψx(y) :=
q′

q
(y−1x), y ∈ G.

By our hypothesis, this map extends to a smooth function both in x and y.

Then, we have

Op(σ′1)φ(x) =

∫
G

φ(y)ψx(y) (qκ)(y−1x) dy.

Since s1 ∈ N0, by Theorem 3.2.3 (h) we then have

∣∣∣∣Op(σ′1)φ
∣∣∣∣2
L2
s1

(G)
≈
∫
G

∑
β ∈I(k)
|β|≤s1

∣∣∣∣Xβ,x

∫
G

φ(y)ψx(y) (qκ)(y−1x) dy

∣∣∣∣2 dx.

Using Leibniz’s rule for vector fields, we have

∣∣∣∣Op(σ′1)φ
∣∣∣∣2
L2
s1

(G)

.
∫
G

∑
β1,β2 ∈I(k)
|β1|+|β2|≤s1

∣∣∣∣∫
G

φ(y)Xβ1,x1=xψx1(y)Xβ2,x2=x(qκ)(y−1x2) dy

∣∣∣∣2 dx.

We now take the supremum over x1 ∈ G of Xβ1,x1ψx1(y) outside of the integral

over y, to obtain
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∣∣∣∣Op(σ′1)φ
∣∣∣∣2
L2
s1

(G)

.
∫
G

sup
x1 ∈G

∑
β1,β2 ∈I(k)
|β1|+|β2|≤s1

∣∣∣∣∫
G

φ(y)Xβ1,x1ψx1(y)Xβ2,x2=x(qκ)(y−1x2) dy

∣∣∣∣2 dx.

Moreover, by the Sobolev embedding (see Theorem 3.4.1), there exists a constant

C1 > 0 such that, for any x ∈ G and every β1, β2 ∈ I(k), with |β1|+ |β2| ≤ s1,

we have

sup
x1 ∈G

∣∣∣∣∫
G

φ(y)Xβ1,x1ψx1(y)Xβ2,x2=x(qκ)(y−1x2) dy

∣∣∣∣2
≤ C1

∫
G

∣∣∣∣(I + Lx1)
s′
2 Xβ1,x1

∫
G

φ(y)ψx1(y)Xβ2,x2=x(qκ)(y−1x2) dy

∣∣∣∣2 dx1,

whenever s′ > l/2, where l denotes the local dimension of G (see Definition

A.2.1). For convenience we may choose s′ =
⌈
l
2

⌉
+ 1. Moreover, observe that for

each x1 ∈ G we have

∫
G

φ(y)ψx1(y)Xβ2,x(qκ)(y−1x) dy = Xβ2Op(σ1)(φψx1)(x), x ∈ G.

Hence, by Theorem 3.2.3 (h), we obtain

sup
x1 ∈G

∣∣∣∣∫
G

φ(y)Xβ1,x1ψx1(y)Xβ2,x2=x(qκ)(y−1x2) dy

∣∣∣∣2
≤ C1

∫
G

∣∣∣∣(I + Lx1)
s′
2 Xβ1,x1Xβ2,xOp(σ1)(φψx1)(x)

∣∣∣∣2 dx1.

By our choice of s′, we have

sup
x1 ∈G

∣∣∣∣∫
G

φ(y)Xβ1,x1ψx1(y)Xβ2,x2=x(qκ)(y−1x2) dy

∣∣∣∣2
.

∑
α∈I(k)
|α|≤s′

∫
G

|Xα+β1,x1Xβ2,xOp(σ1)(φψx1)(x)|2 dx1.
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Hence, we have obtained

∣∣∣∣Op(σ′1)φ
∣∣∣∣2
L2
s1

(G)
.

∑
β1,β2 ∈I(k)
|β1|+|β2|≤s1

∑
α∈I(k)
|α|≤s′

∫
G

∣∣∣∣Xβ2Op(σ1)
(
φXα+β1,x1 ψx1

)∣∣∣∣2
L2(G)

dx1

.
∣∣∣∣Op(σ1)

∣∣∣∣2
L (L2

−s2
(G),L2

s1
(G))∑

β1 ∈I(k)
|β1|≤s1

∑
α∈I(k)
|α|≤s′

∫
G

∣∣∣∣φXα+β1,x1 ψx1
∣∣∣∣2
L2
−s2

(G)
dx1, (4.9.4)

since, for every x1 ∈ G and each α, β2 ∈ I(k), with |β2| ≤ s1 and |α| ≤ s′, we

have

∑
β1 ∈I(k)
|β1|+|β2|≤s1

∣∣∣∣Xβ2Op(σ1)
(
φXα+β1,x1 ψx1

)∣∣∣∣2
L2(G)

.
∣∣∣∣(I + L)

s1
2 Op(σ1)(I + L)

s2
2 (I + L)−

s2
2

(
φXα+β1,x1 ψx1

)∣∣∣∣2
L2(G)

≤
∣∣∣∣Op(σ1)

∣∣∣∣2
L (L2

−s2
(G),L2

s1
(G))

∣∣∣∣(I + L)−
s2
2

(
φXα+β1,x1 ψx1

)∣∣∣∣2
L2(G)

.

Moreover, by Lemma 3.2.5, there exists C > 0, independent of φ, such that

∣∣∣∣φXα+β1,x1 ψx1
∣∣∣∣
L2
−s2

(G)
≤ C ||φ||L2

−s2
(G).

Hence, by (4.9.4), we obtain

∣∣∣∣Op(σ′1)φ
∣∣∣∣2
L2
s1

(G)
.
∣∣∣∣Op(σ1)

∣∣∣∣2
L (L2

−s2
(G),L2

s1
(G)) ||φ||L2

−s2
(G),

which yields (4.9.3).

The following result is a consequence of the proof of Lemma 4.9.2.

Corollary 4.9.3. Let s1 ∈ N0, s2 ∈ R and fix

s′1 := s1 +

⌈
l

2

⌉
+ 1.

Moreover, suppose q, q′ ∈ D(G) are such that, for every β ∈ I(k), with |β| ≤
s′1, the function
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Xβ

(
q′

q

)
: z 7−→ Xβ,z

(
q′(z)

q(z)

)
, z ∈ G,

extends to a continuous function on G. Furthermore, suppose σ is an invariant

symbol such that

∣∣∣∣π(I + L)
s1
2 ∆qσ(π) π(I + L)

s2
2

∣∣∣∣
L∞(Ĝ)

< +∞.

Then, there exists a constant C > 0 such that

∣∣∣∣π(I + L)
s1
2 ∆q′σ(π) π(I + L)

s2
2

∣∣∣∣
L∞(Ĝ)

≤ C Cs′1
∣∣∣∣π(I + L)

s1
2 ∆qσ(π) π(I + L)

s2
2

∣∣∣∣
L∞(Ĝ)

,

where

Cs′1 := sup
z ∈G

β1 ∈I(k), |β1|≤s′1

∣∣∣∣Xβ1

(
q′

q

)
(z)

∣∣∣∣ .
For N ∈ N0, we now define the function

fN =
n∑
j=1

qN,j, (4.9.5)

where, for each j = 1, 2, . . . , n, the function qN,j is given by

qN,j := q
2N0N
dj

0,j ,

where N0 is the highest common divisor of d1, d2, . . . , dn. Observe that, for

any z ∈ G,

|fN(z)| ≈
(
|q0,1(z)|

1
d1 + |q0,2(z)|

1
d2 + · · ·+ |q0,n(z)|

1
dn

)2N0N ≈ |z|2N0N , (4.9.6)

since Q0 has weight (d1, d2, . . . , dn).

4.9.2 Proof of Proposition 4.9.1

In order to prove this result, observe that it suffices to consider the case of

invariant symbols. Then, let σ ∈ Sm(Q0) be an invariant symbol. We want
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to show that, for any β ∈ N`
0 and ν ∈ R, there exists C > 0, a, b ∈ N0 and

c > 0 such that

∣∣∣∣π(I + L)−
1
2

(m−[β]Q+ν) ∆β
Qσ(π) π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

≤ C ||σ||Sm(Q0),a,b,c. (4.9.7)

Let κ ∈ D′(G) denotes the convolution kernel associated to σ. By the work

done in Section 4.8.2, we may assume that supp(κ) ⊂ Br/2(eG).

Step 1

In the first step of the proof, we find a decomposition for qβ, for any β ∈ N`
0.

So, let us fix β ∈ N`
0. Then, by Theorem 4.3.3, for any M ∈ N we have

qβ(z) =
∑
α∈Nn0

[α]Q0
<M

1

α!
q0,α(z)Y αqβ(eG) +R

qβ
eG,M

(z), ∀ z ∈ Br/2(eG),

where r ∈ (0, 1] is the real number satisfying (4.2.8), and

|Rqβ
eG,M

(z)| ≤ C |z|M max
[α]Q0

≥M
|α|≤M

||Y αf ||L∞(G), ∀ z ∈ Br/2(eG), (4.9.8)

for some C > 0. By Remark 4.3.4, since qβ is CC-vanishing at eG up to order

[β]Q − 1, then, assuming M > [β]P , we have

qβ(z) =
∑
α∈Nn0

[β]Q≤[α]Q0
<M

cα q0,α(z) +R
qβ
eG,M

(z), ∀ z ∈ Br/2(eG),

where for some constants cα ∈ R. For simplicity, we shall write

ρM := R
qβ
eG,M

.

Then, for ν ∈ R,

199



∣∣∣∣π(I + L)−
1
2

(m−[β]Q+ν) ∆qβσ(π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

.
∑
α∈Nn0

[β]Q≤[α]Q0
<M

∣∣∣∣π(I + L)−
1
2

(m−[β]Q+ν) ∆q0,ασ(π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

+
∣∣∣∣π(I + L)−

1
2

(m−[β]Q+ν) ∆ρMσ(π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

.

Step 2

In this step we examine the sum over α. For each α ∈ Nn
0 , with [β]Q ≤ [α]Q0 <

M , we write

−1

2
(m− [β]Q + ν) =

1

2
([β]Q − [α]Q0)−

1

2
(m− [α]Q0 + ν),

so that

∣∣∣∣π(I + L)−
1
2

(m−[β]Q+ν) ∆q0,ασ(π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

.
∣∣∣∣π(I + L)

1
2

([β]Q−[α]Q0
)
∣∣∣∣
L∞(Ĝ)∣∣∣∣π(I + L)−

1
2

(m−[α]Q0
+ν) ∆q0,ασ(π) π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

.

In this case, by functional analysis,

∣∣∣∣π(I + L)
1
2

([β]Q−[α]Q0
)
∣∣∣∣
L∞(Ĝ)

≤ sup
λ>0

(1 + λ)
1
2

([β]Q−[α]Q0
) < +∞,

as [β]Q − [α]Q0 ≤ 0, and since σ ∈ Sm(Q0), then

∣∣∣∣π(I + L)−
1
2

(m−[α]Q0
+ν) ∆q0,ασ(π) π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

≤ ||σ||Sm(Q0),[α]Q0
,0,|ν|.

So, we have shown that there exists C > 0, independent of σ, such that

∣∣∣∣π(I + L)−
1
2

(m−[β]Q+ν) ∆q0,ασ(π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ C ||σ||Sm(Q0),[α]Q0
,0,|ν|.

Step 3

We now consider the remainder term:
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∣∣∣∣π(I + L)−
1
2

(m−[β]Q+ν) ∆ρMσ(π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

.

First note that we have

∣∣∣∣π(I + L)−
1
2

(m−[β]Q+ν) ∆ρMσ(π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣π(I + L)

1
2

([β]Q−2N0M1)
∣∣∣∣
L∞(Ĝ)∣∣∣∣π(I + L)−

1
2

(m−2N0M1+ν) ∆ρMσ(π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

.

Now, consider the function fM1 defined by (4.9.5), for some M1 ∈ N0 to be

determined. By Lemma 3.7.7, using (4.9.6) and (4.9.8), we have that for any

β′ ∈ I(k), with |β′| < M − 2N0M1, the function

Xβ′

(
ρM
fM1

)
extends to a continuous function on G. Let us now choose M,M1 ∈ N such

that

M − s′1 > 2N0M1 > max{m+ ν, [β]Q},

where

s′1 := −(m− [β]Q + ν) +

⌈
l

2

⌉
+ 1.

In this case, 2N0M1 > [β]Q, so by functional analysis we have

∣∣∣∣π(I + L)
1
2

([β]Q−2N0M1)
∣∣∣∣
L∞(Ĝ)

< +∞.

Moreover, M − 2N0M1 > s′1, and if −(m− 2N0M1 + ν) ∈ N, then the mapping

Xβ′

(
ρM
fM1

)
extends to a continuous function on G, for any β′ ∈ I(k), with |β′| ≤ s′1. So,

by Corollary 4.9.3, we have

∣∣∣∣π(I + L)−
1
2

(m−2N0M1+ν) ∆ρMσ(π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ Cs′1
∣∣∣∣π(I + L)−

1
2

(m−2N0M1+ν) ∆fM1
σ(π) π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

,
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where

Cs′1 ≈ sup
z ∈G

β1 ∈I(k), |β1|≤s′1

∣∣∣∣Xβ1

(
ρM
fM1

)
(z)

∣∣∣∣ .
We now define the multi-index

βM1,j =

(
0, 0, . . . , 0,

2N0M1

dj
, 0, . . . , 0

)
, j = 1, 2, . . . , n,

with the non-zero value 2N0M1

dj
in the j-th position. Hence,

∣∣∣∣π(I + L)−
1
2

(m−2N0M1+ν) ∆fM1
σ(π) π(I + L)ν/2

∣∣∣∣
L∞(Ĝ)

.
n∑
j=1

∣∣∣∣π(I + L)−
1
2

(m−2N0M1+ν) ∆
βM1,j

Q0
σ(π) π(I + L)ν/2

∣∣∣∣
L∞(Ĝ)

. (4.9.9)

Since [βM1,j]Q0 = 2N0M1 for every j = 1, 2, . . . , n, then it follows that

∣∣∣∣π(I + L)−
1
2

(m−2N0M1+ν) ∆fM1
σ(π) π(I + L)ν/2

∣∣∣∣
L∞(Ĝ)

. ||σ||Sm(Q0),2N0M1,0,|ν|.

Hence, we have shown that if M,M1 ∈ N0 are such that

M − s′1 > 2N0M1 > max{m+ ν, [β]Q},

then there exists C > 0, independent of σ, such that

∣∣∣∣π(I + L)−
1
2

(m−[β]Q+ν) ∆ρMσ(π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ C ||σ||Sm(Q0),2N0M1,0,|ν|.

Step 4

We have obtained that (4.9.7) holds for any ν ∈ −m+ Z, and therefore for any

ν ∈ R, by Remark 4.5.4. Hence, the result is proved.

4.10 Product of symbols

Throughout this section, for any m ∈ R, the symbol class Sm shall be assumed

to be defined with respect to Q0 (see (4.2.14)) and the basis Y constructed in
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Section 2.4.1 (see (2.4.2) and (2.4.1) therein).

4.10.1 Main result

The objective in this section is to prove the following result.

Theorem 4.10.1. Let m1,m2 ∈ R ∪ {−∞}. Then, the mappingSm1 × Sm2 −→ Sm1+m2

(σ1, σ2) 7−→ σ1σ2

(4.10.1)

is a morphism of topological vector spaces.

This may be viewed as a generalised Leibniz property for symbols.

For convenience, throughout this section we shall let

m := m1 +m2, (4.10.2)

with the following convention:

m′ + (−∞) := −∞, ∀ m′ ∈ R ∪ {−∞}.

We now prove the result in the following cases, separately:

(I) m1 ∈ R and m2 = −∞,

(II) m1 = −∞ and m2 ∈ R,

(III) m1 =∞ and m2 = −∞,

(IV) m1,m2 ∈ R.

4.10.2 Proof of cases I, II, III

In this section we aim to show Theorem 4.10.1 for the cases I, II and III. We

shall prove this result only for invariant symbols (see Definition 4.4.3), and the

general case follows by the Leibniz property for vector fields. We first consider

the case that m1 ∈ R and m2 = −∞, and consider the map

(σ1, σ2) 7−→ σ1σ2, ∀ σ1 ∈ Sm1 , σ2 ∈ S−∞ invariant. (4.10.3)
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Let us then fix invariant symbols σ1 ∈ Sm1 , σ2 ∈ S−∞, and furthermore,

suppose that κ1 and κ2 denote their associated convolution kernels, respectively.

Since σ2 is smoothing, by Theorem 4.8.1 it follows that κ2 ∈ D(G). Hence, by

Proposition 2.5.7, we have κ2 ∗ κ1 ∈ D(G). In particular, this means that the

symbol σ1σ2 is smoothing, by Theorem 4.8.1. Hence, for any a ∈ N0 and

m′ ∈ R we have

||σ1σ2||Sm′ ,a,0,0 = sup
α∈N0
[α]≤a

∣∣∣∣π(I + L)−
1
2

(m′−[α]) ∆α(σ1σ2)
∣∣∣∣
L∞(Ĝ)

< +∞,

thus proving that the map given by (4.10.3) is continuous. We also know that it

is linear, hence the result is proved in this case.

The case that m1 = −∞ and m2 ∈ R is obtained in a similar way, and both

of these cases readily imply the case m1 = −∞ and m2 = −∞.

4.10.3 Proof of case IV

In this section we shall prove case IV. It suffices to prove this result only for

invariant symbols, and the general case follows by the Leibniz property for vector

fields.

Fix m1,m2 ∈ R, and let σ1 ∈ Sm1 and σ2 ∈ Sm2 be invariant symbols. We

also let κ1, κ2 ∈ D′(G) denote their associated convolution kernels, respectively,

and fix m := m1 +m2.

Furthermore, let χ ∈ D(G) be a cut-off function, taking values in [0, 1], such

that

χ(z) ≡ 1 on Br/2(eG), χ(z) ≡ 0 on Br(eG)c,

where r is the real number satisfying (4.2.8). We define the symbols

τj(π) = F{κjχ}(π), τ ′j(π) = F{κj(1− χ)}(π),

for j = 1, 2. Observe that, by Theorem 4.8.1, it follows that τ ′j ∈ S−∞, for

j = 1, 2. Moreover, we have

σ1σ2 = τ1τ2 + τ1τ
′
2 + τ ′1τ2 + τ ′1τ

′
2.

By the cases I, II, III already proved, τ1τ
′
2, τ ′1τ2 and τ ′1τ

′
2 are smoothing symbols.
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Since the inclusion S−∞ ⊂ Sm is continuous, it remains to study the symbol τ1τ2.

This implies that case IV follows from the following lemma.

Lemma 4.10.2. Let m1,m2 ∈ R and fix m := m1 + m2. Suppose σ1 ∈ Sm1

and σ2 ∈ Sm2 are invariant symbols and let κ1 and κ2 denote their associated

convolution kernels, respectively, and assume that supp(κj) ⊂ Br/2(eG), for j =

1, 2. Furthermore, let q be a smooth, real-valued function on G, which is CC-

vanishing at eG up to order a−1, for a ∈ N. Then, for any ν ∈ R, there exist

C > 0, aj, bj ∈ N0 and cj > 0 (j = 1, 2), independent of σ1 and σ2, such that

∣∣∣∣π(I + L)−
1
2

(m−a+ν) ∆q(σ1σ2)(π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ C ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 .

Moreover, we can choose c2 = |ν|.

The next section is devoted to the proof of this result.

4.10.4 Proof of Lemma 4.10.2

In this section we prove Lemma 4.10.2. We split up the proof in several steps.

Step 1

In this step we present a decomposition of the expression ∆q(σ1σ2).

Fix x ∈ G and let M ∈ N0, with M > a, to be determined. Applying

Theorem 4.3.3 to the mapping

q(x·) 7−→ q(xy), ∀ y ∈ G, (4.10.4)

we obtain

q(xy) =
∑

[α1]<M

1

α1!
q0,α1(y) (Y α1q)(x) +Rq

x,M(y), (4.10.5)

for all y ∈ Br/2(eG), where we recall that for each α1 ∈ I(k), q0,α1 is the

function given by (4.2.15). Moreover, we have

|Rq
x,M(y)| . |y|M , ∀ y ∈ Br/2(eG). (4.10.6)

Note that
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∆q(σ1σ2)(π) = F{q̃(κ2 ∗ κ1)}(π), ∀ π ∈ Ĝ.

We now have

(q̃(κ2 ∗ κ1))(x) = q̃(x)

∫
G

κ2(y)κ1(y−1x) dy

=

∫
G

q(x−1yy−1)κ2(y)κ1(y−1x) dy.

By (4.10.5), for any y ∈ Br/2(eG) we obtain

q(x−1yy−1) =
∑

[α1]<M

1

α1!
q0,α1(y

−1) (Y α1q)(x−1y) +Rq
x−1y,M(y−1). (4.10.7)

Since supp(κ1), supp(κ2) ⊂ Br/2(eG), then by (4.10.7) we have

∫
G

q(x−1yy−1)κ2(y)κ1(y−1x) dy

=
∑

[α1]<M

1

α1!

∫
G

(Y α1q)(x−1y) q0,α1(y
−1)κ2(y)κ1(y−1x) dy

+

∫
G

Rq
x−1y,M(y−1)κ2(y)κ1(y−1x) dy. (4.10.8)

Now observe that

(q̃(κ2 ∗ κ1))(x)

=
∑

[α1]<M

1

α1!

(
q̃0,α1 κ2

)
∗
(
(Ỹ α1q)κ1

)
(x)

+

∫
G

Rq
x−1y,M(y−1)κ2(y)κ1(y−1x) dy, (4.10.9)

We now consider the function ηx given by

ηx(y) := Rq
x−1y,M(y−1)κ2(y), ∀ y ∈ G, (4.10.10)

and define the distribution
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ρ = q̃(κ2 ∗ κ1)−
∑

[α1]<M

1

α1!

(
q̃0,α1 κ2

)
∗
(
(Ỹ α1q)κ1

)
=

∫
G

ηx(y)κ1(y−1x) dy. (4.10.11)

By (4.10.9), taking the Fourier transform of (q̃(κ2 ∗ κ1)) yields

∆q(σ1σ2)(π) =
∑

[α1]<M

1

α1!
F{(Ỹ α1q)κ1}(π)F{q̃0,α1 κ2}+ π(ρ)

=
∑

[α1]<M

1

α1!
∆Y α1q σ1(π) ∆α1σ2(π) + π(ρ), (4.10.12)

for all π ∈ Ĝ, which gives us the decomposition we were seeking. In particular,

we have

∣∣∣∣π(I + L)−
1
2

(m−a+ν)∆q(σ1σ2)(π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

.
∑

α1 ∈Nn0
[α1]<M

∣∣∣∣π(I + L)−
1
2

(m−a+ν)∆Y α1q σ1(π) ∆α1σ2(π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

+
∣∣∣∣π(I + L)−

1
2

(m−a+ν) π(ρ)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

. (4.10.13)

Step 2

In this step, we find an estimate for the terms in the sum given by (4.10.13). For

each α1 ∈ Nn
0 , with [α1] < M , we have

∣∣∣∣π(I + L)−
1
2

(m−a+ν)∆Y α1q σ1(π) ∆α1σ2(π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣π(I + L)−

1
2

(m1−(a−[α1])+ν1) ∆Y α1q σ1(π)π(I + L)
ν1
2

∣∣∣∣
L∞(Ĝ)∣∣∣∣π(I + L)−

1
2

(m2−[α1]+ν) ∆α1σ2(π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

,

where ν1 := m2−[α1]+ν. Since Y α1q is CC-vanishing at eG up to order a−[α1],

then by Proposition 4.9.1, we have

∣∣∣∣π(I + L)−
1
2

(m1−(a−[α1])+ν1) ∆Y α1q σ1(π) π(I + L)
ν1
2

∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1 ,
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for some a1, b1 ∈ N0 and c1 > 0, since σ1 ∈ Sm1 . For σ2 ∈ Sm2 we see that

∣∣∣∣π(I +L)−
1
2

(m2−[α1]+ν) ∆α1σ2(π) π(I +L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ ||σ2||Sm2 ,[α1],0,|ν|. (4.10.14)

Then, by (4.10.13), we have

∣∣∣∣π(I + L)−
1
2

(m−a+ν)∆q(σ1σ2)(π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

.
∑

α1 ∈Nn0
[α1]<M

||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2

+
∣∣∣∣π(I + L)−

1
2

(m−a+ν) π(ρ) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

. (4.10.15)

It remains to study the norm

∣∣∣∣π(I + L)−
1
2

(m−a+ν) π(ρ) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

.

Step 3

In this step we analyse the remainders y 7→ Rq
x−1y,M and ρ (see (4.10.11)). First

observe that, since the mapG −→ D(G)

x 7−→
(
y 7→ Rq

x−1y,M(y−1)
) ,

is smooth, then the mapping G −→ D′(G)

x 7−→ ηx

is smooth. Hence, note that

ρ = ηx ∗ κ1(x), (4.10.16)

for x ∈ G, in the sense of distributions.

Let us first study the derivatives in x1 of the remainder Rq
x1,M

(y−1), for a

given y ∈ Br/2(eG). By (4.10.5), for any β ∈ I(k) and x1 ∈ G we have
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X̃β,x1R
q
x1,M

(y−1)

= X̃β,x1q(x1y
−1)− X̃β,x1

∑
[α1]<M

1

α1!
q0,α1(y

−1) (Y α1q)(x1)

= (X̃β q)(x1y
−1)−

∑
[α1]<M

1

α1!
q0,α1(y

−1) (Y α1X̃β q)(x1),

which means that

X̃β,x1R̃
q
x1,M

= R̃
X̃βq
x1,M

. (4.10.17)

Furthermore, for any x ∈ G we have

Xβ,xR
q
x−1y,M(y−1) = (−1)|β|X̃β,x1=x−1yR

q
x1,M

(y−1) = (−1)|β|R
X̃βq

x−1y,M(y−1),

by (4.10.17). So, we have obtained

Xβ,xR
q
x−1y,M(y−1) = (−1)|β|R

X̃βq

x−1y,M(y−1), ∀ y ∈ Br/2(eG). (4.10.18)

Next, we study the distribution Xβ0ρ, for β0 ∈ I(k). Observe that, by

(4.10.16), for any x ∈ G we have

Xβ0 ρ(x) =
∑

β1,β2 ∈I(k)
|β1|+|β2|=|β0|

cβ1,β2 Xβ1,x1=xXβ2,x2=x

(
(ηx1 ∗ κ1)(x2)

)
=

∑
β1,β2 ∈I(k)
|β1|+|β2|=|β0|

cβ1,β2
(
Xβ1,x1=x ηx1

)
∗
(
Xβ2 κ1

)
(x),

for some constants cβ1,β2 ∈ R. By the definition of ηx (see (4.10.10)), for any

β1 ∈ I(k), |β1| ≤ |β0|, and any y ∈ G we have

Xβ1,x ηx(y) = Xβ1,x

(
R̃q
x−1y,M κ2

)
(y)

= (−1)|β1|
(
R̃
X̃β1q

x−1y,M κ2

)
(y),

by (4.10.18). So,
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Xβ0 ρ(x) =
∑

β1,β2 ∈I(k)
|β1|+|β2|=|β0|

c′β1,β2
(
R̃
X̃β1q

x−1·,M κ2

)
∗
(
Xβ2 κ1

)
(x), (4.10.19)

for some constants c′β1,β2 ∈ R.

Step 4

Let us now show that ρ is continuous for a suitably chosen M . Observe that,

for every x ∈ G and any N ∈ N0, as the operator (I +L)N is self-adjoint, we

formally have

ρ(x) = ηx ∗ κ1(x) =

∫
G

ηx(y)κ1(y−1x) dy

=

∫
G

(
(I + Ly)Nηx(y)

)(
(I + Ly)−Nκ1(y−1x)

)
dy

=
(
(I + L)Nηx

)
∗
(
(I + L̃)−Nκ1

)
(x).

Furthermore, by Proposition 2.5.4 (1) we have

∣∣∣∣((I + L)Nηx
)
∗
(
(I + L̃)−Nκ1

)∣∣∣∣
L∞(G)

.
∣∣∣∣(I + L)Nηx

∣∣∣∣
L2(G)

∣∣∣∣(I + L̃)−Nκ1

∣∣∣∣
L2(G)

,

provided that the distributions (I+L̃)−Nκ1 and (I+L)Nηx are square integrable,

which we shall now prove.

Step 4a

We first study (I + L̃)−Nκ1. This has a meaning in the sense of distributions,

(I + L̃)−Nκ1 = B2N ∗ κ1,

where B2N is the right convolution kernel associated to the operator (I +L)−N

(see (3.1.23)).

Observe that, by Plancherel’s Theorem,
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∣∣∣∣(I + L̃)−Nκ1

∣∣∣∣
L2(G)

=
∣∣∣∣σ1(π)π(I + L)−N

∣∣∣∣
L2(Ĝ)

.
∣∣∣∣σ1(π) π(I + L)−

1
2
m1
∣∣∣∣
L∞(Ĝ)

∣∣∣∣π(I + L)
1
2

(m1−2N)
∣∣∣∣
L2(Ĝ)

. ||σ1||Sm1 ,0,0,c1 ||B−(m1−2N)||L2(G),

for some c1 > 0, and this is finite provided that 2N > m1 + l
2
, by Proposition

3.1.9. Hence, for this choice of N , we have (I + L̃)−Nκ1 ∈ L2(G).

Step 4b

Now we look at (I + L)Nηx. First recall that, for M1 ∈ N0 to be determined,

the function fM1 (see also (4.9.5)) is defined by

fM1 =
n∑
j=1

qM1,j,

where N0 is the lowest common multiple of d1, d2, . . . , dn (see (2.4.3)), and

for each j = 1, 2, . . . , n, the function qM1,j is given by

qM1,j := q
2N0M1
dj

0,j .

We have

|fM1(z)| ≈ |z|2N0M1 , ∀ z ∈ G. (4.10.20)

We now write

ηx =
R̃q
x−1y,M

fM1

fM1 κ2. (4.10.21)

Let us fix x ∈ G. We first have

(I + Ly)Nηx(y) =
∑
|β|≤2N

cβXβ,y ηx(y), ∀ y ∈ G,

for some constants cβ ∈ R. Hence, by (4.10.21), the definition of ηx (see

(4.10.10)) and Leibniz’s rule for vector fields, for any y ∈ G we obtain
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(I + Ly)Nηx(y)

=
∑

β ∈I(k)3

|β|≤2N

cβXβ1,y1=yXβ2,y2=yXβ3,y3=y

(
R̃q
x−1y1,M

/fM1

)
(y2)

(
fM1 κ2

)
(y3)

=
∑

β ∈I(k)3

|β|≤2N

cβXβ1,x1=x−1y

(
X̃β2

(
R̃q
x1,M

/fM1

))
(y−1)

(
Xβ3fM1 κ2

)
(y)

for some cβ ∈ C∞(G). Furthermore, for any β1 ∈ I(k), we have

Xβ1 =
∑

β′1 ∈I(k)
|β′1|≤|β1|

cβ′1 X̃β′1
,

for some cβ′1 ∈ C
∞(G), by Proposition 3.6.7. Thus, for a fixed y ∈ G, and for

every β1, β2 ∈ I(k) and any x1 ∈ G, we have, by (4.10.17),

Xβ1,x1

(
X̃β2

(
R̃q
x1,M

/fM1

))
(y−1) =

∑
β′1 ∈I(k)
|β′1|≤|β1|

cβ′1(y) X̃β′1,x1

(
X̃β2

(
R̃q
x1,M

/fM1

))
(y−1)

=
∑

β′1 ∈I(k)
|β′1|≤|β1|

cβ′1(y)
(
X̃β2

(
R̃
X̃β′1

q

x1,M
/fM1

))
(y−1).

Hence,

∣∣∣∣(I + L)Nηx
∣∣∣∣
L2(G)

.
∑

β ∈I(k)3

|β|≤2N

∣∣∣∣X̃β2

(
R̃
X̃β1q

x−1·,M/fM1

)∣∣∣∣
L∞(G)

∣∣∣∣Xβ3(fM1 κ2)
∣∣∣∣
L2(G)

.

Now, we have

∣∣∣∣X̃β2

(
R̃
X̃β1q

x−1·,M/fM1

)∣∣∣∣
L∞(G)

< +∞, (4.10.22)

by Lemma 3.7.7 (2), whenever |β2| < M − 2N0M1 (see (4.10.6) and (4.10.20)).

Thus, it is sufficient to have

2N < M − 2N0M1. (4.10.23)

Moreover, by Theorem 3.2.3 and Plancherel’s Theorem, for any β3 ∈ I(k), with
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|β3| ≤ 2N , we obtain

∣∣∣∣Xβ3(fM1 κ2)
∣∣∣∣
L2(G)

.
∣∣∣∣(I + L)

|β3|
2 (fM1κ2)

∣∣∣∣
L2(G)

=
∣∣∣∣π(I + L)

|β3|
2 ∆fM1

σ2

∣∣∣∣
L2(Ĝ)

.

Additionally,

∣∣∣∣π(I + L)
|β3|
2 ∆fM1

σ2

∣∣∣∣
L2(Ĝ)

.
∣∣∣∣π(I + L)

1
2

(|β3|+m2−2N0M1)
∣∣∣∣
L2(Ĝ)

∣∣∣∣π(I + L)−
1
2

(m2−2N0M1)∆fM1
σ2

∣∣∣∣
L∞(Ĝ)

.
∣∣∣∣π(I + L)

1
2

(|β3|+m2−2N0M1)
∣∣∣∣
L2(Ĝ)

||σ2||Sm2 ,2N0M1,0,0,

and this is finite, provided that

2N +m2 − 2N0M1 < −
l

2
, (4.10.24)

by Proposition 3.1.9. Let us then choose M,M1 ∈ N0 such that

2N +m2 +
l

2
< 2N0M1 < M − 2N. (4.10.25)

In this case, both (4.10.23) and (4.10.24) are satisfied. Thus, we have shown that

for any x ∈ G and any N ∈ N0 there exists MN ∈ N0 such that, for all

M > MN , (I + L)Nηx ∈ L2(G), with

∣∣∣∣(I + L)Nηx
∣∣∣∣
L2(G)

≤ C ||σ2||Sm2 ,a2,0,0,

for some C > 0, independent of x and σ1, and some a2 ∈ N0. In particular, we

may choose

MN := 2N0M1 + 2N,

where M1 ∈ N0 is chosen such that

2N0M1 > 2N +m2 +
l

2
.

Step 4c

In conclusion, by Proposition 2.5.4 (1), for each fixed x ∈ G we have that for

every N,M ∈ N0 satisfying
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N > m1 +
l

2
, M > MN ,

the mapping

ρ1,x : y 7−→
(
(I + L)Nηx

)
∗
(
(I + L̃)−Nκ1

)
(y)

is continuous on G. Moreover,

||ρ1,x||L∞(G) =
∣∣∣∣((I + L)Nηx

)
∗
(
(I + L̃)−Nκ1

)∣∣∣∣
L∞(G)

≤
∣∣∣∣(I + L)Nηx

∣∣∣∣
L2(G)

∣∣∣∣(I + L̃)−Nκ1

∣∣∣∣
L2(G)

≤ C ||σ1||Sm1 ,0,0,c1 ||σ2||Sm2 ,a2,0,0,

for some constant C > 0, independent of σ1, σ2 and of x, some c1 > 0 and a2 ∈
N0. Furthermore, Proposition 2.5.4 (2) implies that the mapping x 7−→ ρ1,x is

continuous G → C(G). Hence, by composition, x 7−→ ρ(x) is a continuous

function on G, with

||ρ||L∞(G) ≤ sup
x∈G
||ρ1,x||L∞(G) ≤ C ||σ1||Sm1 ,0,0,c1 ||σ2||Sm2 ,a2,0,0, (4.10.26)

provided that

N > m1 +
l

2
, M > MN .

Hence we have obtained that for all m1, m2 ∈ R, there exists Mm1,m2 ∈ N such

that, for all M > Mm1,m2 there exist C > 0 and c1, a2 ∈ N satisfying

||ρ||L∞(G) ≤ C ||κ̂1||Sm1 ,0,0,c1 ||κ̂2||Sm2 ,a2,0,0,

where κ1, κ2 ∈ C∞(G) are such that

ρ(x) :=
(
Rq
x−1·,M(·−1)κ2(·)

)
∗ κ1(x) = ρq,κ2,κ1,M(x). (4.10.27)

Step 4c’

Let us suppose that

g = Xβ0κ1,
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for β0 ∈ I(k). In this case, for any N ∈ N we have

∣∣∣∣(I + L̃)−Ng
∣∣∣∣
L2(G)

=
∣∣∣∣(I + L̃)−NXβ0 κ1

∣∣∣∣
L2(G)

=
∣∣∣∣π(Xβ0) κ̂1(π) π(I + L)−N

∣∣∣∣
L2(Ĝ)

,

by Plancherel’s Theorem. Furthermore, by Lemma 4.5.10, for any N ′ ∈ N0 we

have

∣∣∣∣π(Xβ0) κ̂1(π) π(I + L)−N
∣∣∣∣
L2(Ĝ)

≤
∣∣∣∣π(I + L)

1
2

(|β0|−N ′)
∣∣∣∣
L∞(Ĝ)

∣∣∣∣π(I + L)−
1
2

(|β0|−N ′) π(Xβ0) π(I + L)−
1
2
N ′
∣∣∣∣
L∞(Ĝ)∣∣∣∣π(I + L)−

1
2

(m1−(m1+N ′)) κ̂1(π) π(I + L)−
1
2

(m1+N ′)
∣∣∣∣
L∞(Ĝ)∣∣∣∣π(I + L)

1
2

(m1+N ′−2N)
∣∣∣∣
L2(Ĝ)

. ||σ1||Sm1 ,0,0,c′ ,

for some c′ > 0, provided that N ′ > |β0| and 2N > m1 +N ′+ l
2
, by Proposition

3.1.9.

Therefore, we have obtained that for all m1, m2 ∈ R and β0 ∈ I(k), there

exists Mm1,m2,β0 ∈ N such that, for all M > Mm1,m2,β0 there exist C > 0 and

c1, a2 ∈ N satisfying

||ρq,κ2,Xβ0κ1,M ||L∞(G) ≤ C ||κ̂1||Sm1 ,0,0,c1 ||κ̂2||Sm2 ,a2,0,0.

Step 5

We now consider the distribution Xβ0ρ, for β0 ∈ I(k). Using (4.10.27), we may

rewrite (4.10.19) as

Xβ0ρ =
∑

β1,β2 ∈I(k)
|β1|+|β2|=|β0|

c′β1,β2 ρX̃β1q, κ2, Xβ2κ1,M
.

Now, for each β1, β2 ∈ I(k), with |β1|+ |β2| = |β0|, we apply Step 4 (from Step

4a through to Step 4c’) to ρX̃β1q, κ2, Xβ2κ1,M
. There exist N ∈ N and MN are

such that, if M > MN , then we have
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||Xβ0ρ||L∞(G) .
∑

β1,β2 ∈I(k)
|β1|+|β2|=|β0|

||κ̂1||Sm1 ,0,0,c1(m1,β2) ||κ̂2||Sm2 ,a2,0,0, (4.10.28)

for some constants c1(m1, β2) > 0, depending on m1 and β2, and a2 ∈ N0.

Thus, we have obtained that for all β0 ∈ I(k) and all m1, m2 ∈ R there

exists Mm1,m2,β0 ∈ N such that, for any M > Mm1,m2,β0 , there exist constants

C > 0 and c′1, a
′
2 ∈ N satisfying

||Xβ0ρ||L∞(G) ≤ C ||κ̂1||Sm1 ,0,0,c′1
||κ̂2||Sm2 ,a′2,0,0

,

for any κ1, κ2 ∈ C∞(G) such that (4.10.27) holds.

Step 6

Next, we study the distribution X̃β̃0
Xβ0ρ, for β̃0, β0 ∈ I(k). Observe that, by

Proposition 3.6.7, the right-invariant operator X̃β̃0
can be written as

X̃β̃0
=

∑
β′0 ∈I(k)

|β′0|≤|β̃0|

cβ′0Xβ′0
,

for some cβ′0 ∈ C
∞(G). Hence, proceeding as in Step 5 we obtain that for all

β̃0, β0 ∈ I(k) and all m1, m2 ∈ R there exists Mm1,m2,β̃0,β0
∈ N such that, for

any M > Mm1,m2,β̃0,β0
, there exist constants C > 0 and c̃1, ã2 ∈ N0 satisfying

||X̃β̃0
Xβ0ρ||L∞(G) ≤ C ||κ̂1||Sm1 ,0,0,c̃1 ||κ̂2||Sm2 ,ã2,0,0,

for any κ1, κ2 ∈ C∞(G) such that (4.10.27) holds.

Step 7: Conclusion

Let ν ∈ R. By Lemma 2.2.4 we have

∣∣∣∣π(I + L)−
1
2

(m−a+ν) π(ρ) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣(I + L)−

1
2

(m−a+ν)(I + L̃)
ν
2 ρ
∣∣∣∣
L1(G)

.
∣∣∣∣(I + L)−

1
2

(m−a+ν)(I + L̃)
ν
2 ρ
∣∣∣∣
L2(G)

.

We now define
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s1 = max(−(m− a+ ν), 0), s2 = max(dνe+ 1, 0).

By Theorem 3.2.3, we get

∣∣∣∣(I + L)−
1
2

(m−a+ν)(I + L̃)
ν
2 ρ
∣∣∣∣
L2(G)

.
∣∣∣∣(I + L)

s1
2 (I + L̃)

s2
2 ρ
∣∣∣∣
L2(G)

.
∑

β0,β̃0 ∈I(k)

|β0|≤s1, |β̃0|≤s2

||X̃β̃0
Xβ0ρ||L2(G).

Hence, by Step 6, we have obtained that there exists Ms1,s2 ∈ N such that, for

any M > Ms1,s2 , there exist constants C > 0 and c̃1, ã2 ∈ N0 satisfying

∣∣∣∣π(I + L)−
1
2

(m−a+ν) π(ρ) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ C ||σ1||Sm1 ,0,0,c̃1 ||σ2||Sm2 ,ã2,0,0.

By Remark 4.5.4, Lemma 4.10.2 is thus proved.

The following result is an immediate consequence of the proof of this result

(see (4.10.12)).

Corollary 4.10.3. Let σ1 ∈ Sm1 and σ2 ∈ Sm2, for m1, m2 ∈ R, and set

m := m1 +m2. Furthermore, suppose q is a smooth, real-valued function on G,

which is CC-vanishing at eG up to order a− 1, for a ∈ N. For M ∈ N, let

τM := ∆q(σ1σ2) −
∑

[α1]<M

1

α1!

(
∆Y α1q σ1

)(
∆α1σ2

)
.

Then,

∆q(σ1σ2) ∼
∑

[α1]<M

1

α1!

(
∆Y α1q σ1

)(
∆α1σ2

)
,

in the sense that, for all M ∈ N and any ν ∈ R, there exist C > 0,

a1, a2, b1, b2 ∈ N0 and c1, c2 > 0 such that

sup
x∈G
π ∈ Ĝ

∣∣∣∣π(I + L)−
1
2

(m−[α]+ν) τM(x, π) π(I + L)
ν
2

∣∣∣∣
L (Hπ)

≤ C ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 .
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4.11 Spectral multipliers of L

We continue on the same setting as in previous sections. Recall that

Q0 := {q0,1, q0,2, . . . , q0,n},

where, for each j = 1, 2, . . . , n, q0,j denotes the smooth, real-valued function on

G given by (4.2.12). We know that Q0 has weight (d1, d2, . . . , dn) (see (2.4.3)).

Throughout this section, for any m ∈ R, the symbol class Sm shall be assumed

to be defined with respect to Q0.

4.11.1 Definition of Mm and main result

Throughout this section we shall consider the following class of functions:

Definition 4.11.1. For m ∈ R, let Mm be the space consisting of smooth

functions on (0,+∞) such that the quantities

||f ||Mm,d := sup
λ>0

0≤j≤d

(1 + λ)−m+j
∣∣∂jλf(λ)

∣∣
are finite for every d ∈ N0.

The objective of Section 4.11 is to prove the following result.

Theorem 4.11.2. Let m ∈ R. If f ∈ Mm
2

, then f(L) ∈ Ψm. Furthermore,

for all a, b ∈ N0 and c > 0, there exists d ∈ N and C > 0, independent of f ,

such that its corresponding symbol, which is given by

{f(π(L)) : π ∈ Ĝ},

satisfies

∣∣∣∣f(π(L))
∣∣∣∣
Sm,a,b,c

≤ C ||f ||Mm
2
,d. (4.11.1)

This theorem is a consequence of Proposition 4.11.3 and Corollary 4.11.6 below,

which are more precise results.

Proposition 4.11.3. Let m ∈ R and a ∈ N0. Suppose that q ∈ D(G)

CC-vanishes at eG up to order a − 1 (see Definition 3.7.1). Then, there exists

d ∈ N0 satisfying the following statements:
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(A) Let f ∈ Mm
2

, such that supp(f) ⊂ [r1,+∞), for some r1 > 0. Then,

there exists C > 0 such that for all ν ∈ R we have

∣∣∣∣π(I + L)−
1
2

(m−a+ν)∆q{f(t π(L))} π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ C t
m
2 ||f ||Mm

2
,d, (4.11.2)

for every t ∈ (0, 1).

(B) Let f ∈ D(R) and ν ∈ R. If m and ν satisfy −m + a − ν ≥ 0 and

ν ≥ 0, then there exists C > 0, depending on q and m, such that

∣∣∣∣π(I + L)−
1
2

(m−a+ν)∆q{f(t π(L))} π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ C t
m
2 max

0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞, (4.11.3)

for every t ∈ (0, 1).

Remark 4.11.4. In Proposition 4.11.3 (A) and (B), the condition t ∈ (0, 1) may

be changed to t ∈ (0, t0), for any t0 > 0. In this thesis we use t0 = 1.

Remark 4.11.5. The hypothesis on the support of f in Proposition 4.11.3 (A)

does not affect our analysis. Let us expand on this. Let λ1 be the smallest

non-zero eigenvalue of L and suppose that f ∈ D(R), with

supp(f) ∩ [0,+∞) ⊂ [0, λ1).

Then, by Remark 3.1.5,

f(π(L)) =

0, if π 6= 1Ĝ

f(0), if π = 1Ĝ

,

where 1Ĝ denotes the trivial representation of G. Moreover, in this case,

Op
(
f(π(L))

)
= f(0)E0,

where E0 denotes the spectral projection onto the 0-eigenspace (see Section

3.1.3). Furthermore, the right convolution kernel associated to the operator E0

is E0δ0 = 1, the constant function 1 on G. Hence, the operator E0 is smoothing,

and so the operator Op
(
f(π(L))

)
is also smoothing.
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Proposition 4.11.3 has the following consequence.

Corollary 4.11.6. Suppose m0 ∈ R, a0, b0 ∈ N0 and c0 ≥ 0, such that

m0 ≤ −c0. Then, there exist C > 0 and d ∈ N0 such that, for all f ∈ D(R),

we have

∣∣∣∣f(t π(L))
∣∣∣∣
S
m0
a0,b0,c0

≤ C t
m0
2 max

0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞.
In the following sections we prove Proposition 4.11.3, following the strategy

presented in Fischer [17] (see Appendix A therein). However let us first show

Theorem 4.11.2.

Proof of Theorem 4.11.2. As we saw in Section 3.1.2 (see (3.1.4)), the spectrum

of L is given by

Spec(L) =
{
λ

(π)
j : π ∈ Ĝ, 1 ≤ j ≤ dπ

}
.

Since the spectrum of L is discrete (see Remark 3.1.2), then the eigenvalues of

L may be ordered. We then let λ1 be the smallest positive eigenvalue of L.

We now let χ ∈ D(R), taking values in [0, 1], be such that

χ ≡ 1 on

(
−λ1

4
,
λ1

4

)
, χ ≡ 0 on

[
λ1

2
,+∞

)
.

Then,

f ≡ fχ+ f1

on (0,+∞), where we write f1 = f(1− χ). Now, by the spectral decomposition

of L (see (3.1.8)), we have

f(L) =
∑

λ∈ Spec(L)

f(λ)Eλ,

where Eλ denotes the orthogonal projection onto the eigenspace corresponding

to the eigenvalue λ. Thus, by the construction of f1, we have
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f(L) =
∑

λ∈ Spec(L)

f(λ)Eλ

= f(0)E0 +
∑

λ∈ Spec(L)\{0}

f(λ)Eλ

= f(0)E0 + f1(L).

Now, for any ϕ ∈ D(G) and z ∈ G we have

E0 ϕ(z) =

∫
G

ϕ(x) · 1 dx.

Therefore, the right-convolution kernel associated to the operator E0 is the con-

stant function 1, which is a smooth function. Hence, by Theorem 4.8.1, this

means that E0 is a smoothing operator in the sense of Definition 4.5.9. Since

supp(f1) ⊂
[
λ1
2
,+∞

)
, then we can apply Proposition 4.11.3 (A) to f1, which

yields the result.

4.11.2 Proof of Proposition 4.11.3 (B)

Fix t ∈ (0, 1). We first let κt be the distribution

κt := qf(tL)δeG . (4.11.4)

Observe that the field of operators

π 7−→ π(I + L)−
1
2

(m−a+ν) κ̂t(π)π(I + L)
ν
2 , π ∈ Ĝ,

is exactly the Fourier transform of the distribution

(I + L)−
1
2

(m−a+ν) (I + L̃)
ν
2 κt. (4.11.5)

Moreover, its associated operator is given by

(I + L)−
1
2

(m−a+ν) Tκt (I + L)
ν
2 ,

where Tκt denotes the operator associated to the right-convolution kernel κt =

qf(tL)δeG . By Lemma 2.2.4 it then follows that
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∣∣∣∣π(I + L)−
1
2

(m−a+ν) κ̂t(π)π(I + L)ν/2
∣∣∣∣
L∞(Ĝ)

≤
∫
G

∣∣(I + L)−
1
2

(m−a+ν) (I + L̃)ν/2 κt(z)
∣∣ dz.

Now, by Lemma 3.8.1 and the Leibniz formula for vector fields, it follows that if

−m+ a− ν ∈ 2N and ν ∈ 2N, then

∫
G

∣∣(I + L)−
1
2

(m−a+ν) (I + L̃)
ν
2 κt(z)

∣∣ dz

≤
∑

|β|≤−m+a−ν
|β̃|≤ν

∫
G

∣∣Xβ X̃β̃

{
qf(tL)δeG

}
(z)
∣∣ dz

≤
∑

|β|≤−m+a−ν
|β̃|≤ν

t
1
2

(a−|β|−|β̃|) max
0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞.

Observe that for any β, β̃ ∈ I(k), with |β| ≤ −m+ a− ν and |β̃| ≤ ν, we have

t
1
2

(a−|β|−|β̃|) ≤ t
1
2

(a+m−a+ν−ν) = t
m
2 ,

as t ∈ (0, 1). Hence, we have shown that if −m + a − ν ∈ 2N and ν ∈ 2N,

then there exists a constant C > 0, which depends on m, q and a, such that

∣∣∣∣π(I + L)−
1
2

(m−a+ν)∆q{f(t π(L))} π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ C t
m
2 max

0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞. (4.11.6)

Moreover, we also obtain

∣∣∣∣(I + L)−
1
2

(m−a+ν) Tκt (I + L)
ν
2

∣∣∣∣
L (L2(G))

≤ C t
m
2 max

0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞. (4.11.7)

So, Tκt is a bounded operator:

Tκt : L2
−ν(G) −→ L2

−m+a−ν(G), (4.11.8)

with bound
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||Tκt ||L (L2
−ν(G), L2

−m+a−ν(G)) . t
m
2 max

0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞.
Now, by the Interpolation Theorem (see Theorem 3.3.1), the operator Tκt ex-

tends uniquely to a bounded linear map Tκt : L2
−ν(G) −→ L2

−m+a−ν(G), when-

ever −m+ a− ν and ν are non-negative real numbers.

By Theorem 3.2.3 (f), the dual to Tκt extends uniquely to the operator

T ∗κt : L2
m−a+ν(G) −→ L2

ν(G),

whenever −m + a − ν ≥ 0 and ν ≥ 0. Moreover, it satisfies T ∗κt = Tκ∗t , where

κ∗t is the distribution given by

κ∗t = q̃f(tL)δeG = q(·−1)f(tL)δeG .

We now let

α0 = −ν0, β0 = −m0 + a− ν0,

with −m0 + a− ν0 ≥ 0 and ν0 ≥ 0, and

α1 = m1 − a+ ν1, β1 = ν1,

with −m1+a−ν1 ≥ 0 and ν1 ≥ 0, such that, without loss of generality, m0 ≤ m1

and ν0 ≤ ν1. Then, we have that Tκt is a bounded operator

Tκt : L2
α0

(G) −→ L2
β0

(G),

Tκt : L2
α1

(G) −→ L2
β1

(G).

Hence, by the Interpolation Theorem (see Theorem 3.3.1), Tκt extends uniquely

to a bounded operator

Tκt : L2
αs(G) −→ L2

βs(G),

where, for each s ∈ [0, 1],

αs : = −ν0 + s(m1 − a+ ν1 + ν0),

βs : = (−m0 + a− ν0) + s(ν1 +m0 − a+ ν0),
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For each s ∈ [0, 1], we now define ms, νs ∈ R via the relationshipαs = −νs,

βs = −ms + a− νs
.

Hence, one easily checks that

νs = (1− s)ν0 + s(−m1 + a− ν1),

ms = (1− s)m0 + sm1.

This implies that ms ∈ [m0,m1]. So, we have shown that, for any m, ν ∈ R,

such that −m+ a− ν ≥ 0 and ν ≥ 0, we have

∣∣∣∣π(I + L)−
1
2

(m−a+ν)∆q{f(t π(L))} π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤ C t
m
2 max

0≤j≤d

∣∣∣∣∂jf ∣∣∣∣∞,
as claimed.

4.11.3 Reduction of the proof of Proposition 4.11.3 (A)

We claim that it suffices to prove Proposition 4.11.3 (A) for m < 0. Let us then

suppose the result holds for any m′ < 0. Now, fix m ≥ 0 and consider a function

f ∈ D(R), such that

sup
λ≥0

0≤j≤d

(1 + λ)−
1
2

(m+2j) |∂jλf(λ)| < ∞.

Observe that, by the hypothesis on f , we may assume that supp(f) ⊂ [1,+∞).

Thus, we have

sup
λ≥1

0≤j≤d

λ−
1
2

(m+2j) |∂jλf(λ)| < ∞.

Then, define the function f1 by

f1(λ) = λ−Nf(λ), λ ∈ [0,∞),

for some N ∈ N to be determined. As supp(f) ⊂ [1,∞), f1 is well-defined,

also supported in [1,∞), and f1 ∈ Cd([0,∞)). We choose N > m/2 and let
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m1 := m− 2N.

Then, it follows that

sup
λ≥1

0≤j≤d

λ−
1
2

(m1+2j) |∂jλf1(λ)| ≤ sup
λ≥1

0≤j≤d

λ−
1
2

(m+2j) |∂jλf(λ)| < ∞.

In particular, f1 ∈ Mm1
2
,d. Next, fix t ∈ (0, 1) and observe that f(λ) =

λNf1(λ) for all λ ≥ 0. Then, the spectral theory developed in Section 3.1.4

implies that for any φ ∈ L2(G) for which ||f(tL)φ||L2(G) < +∞, we have

f(tL)φ = (tL)Nf1(tL)φ.

So, we have

f(t π(L)) = tNπ(LN)f1(t π(L)), ∀ π ∈ Ĝ. (4.11.9)

Now, observe that π(LN) can be written as

π(LN) =
∑

β′ ∈I(k)
|β′|≤2N

cβ′π(Xβ′),

for some constants cβ′ ∈ R. By Proposition 4.5.10, for each β′ ∈ I(k), with

|β′| = 2N , the symbol π(Xβ′) is of class 2N . Furthermore, as m1 = m−2N < 0

and f1 ∈ Mm1
2

, then we can apply Proposition 4.11.3 (A) to f1 and m1. Indeed,

if q1 is a smooth, real-valued function on G, which is CC-vanishing at eG up to

order a1 − 1, for a1 ∈ N, then there exists C1 > 0, independent of t, such that

for any ν ∈ R we have

∣∣∣∣π(I + L)−
1
2

(m1−a1+ν)
{

∆q1f1(tπ(L))
}
π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

≤ C1 t
m1
2 ||f1||Mm1

2
,d. (4.11.10)

This also tells us that the symbol f1(t π(L)) is of class m1.

Therefore, by Proposition 4.10.2, for any ν ∈ R there exist semi-norms

|| · ||Sm1 ,a1,b1,c1 and || · ||S2N ,a2,b2,c2 such that
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∣∣∣∣π(I + L)−
1
2

(m−a+ν)∆q

{
f(t π(L))

}
π(I + L)ν/2

∣∣∣∣
L∞(Ĝ)

.
∑

β′1 ∈I(k)
|β′1|=2N

tN
∣∣∣∣f1(tπ(L))

∣∣∣∣
Sm1 ,a1,b2,c2

∣∣∣∣π(Xβ′1
)
∣∣∣∣
S2N ,a2,b2,c2

.

By (4.11.10) we readily deduce that there exists C > 0, independent of t, such

that

∣∣∣∣π(I + L)−
1
2

(m−a+ν)∆q

{
f(t π(L))

}
π(I + L)ν/2

∣∣∣∣
L∞(Ĝ)

≤ C tN t
m1
2 ||f1||Mm1

2
,d

≤ C t
m
2 ||f ||Mm

2
,d,

which is the desired result.

4.11.4 Proof of Proposition 4.11.3 (A)

In this section we show Proposition 4.11.3 (A). We shall split up the proof in

several steps, starting by laying out the strategy.

Strategy

Let q ∈ D(G) and fix t ∈ (0, 1). By the work done in Section 4.11.3, we

may assume m < 0 and f ∈ Cd([0,∞)) such that supp(f) ⊂ [1,+∞). The

properties of Sobolev spaces imply that it suffices to show that

∣∣∣∣L b
2 Tκt L

b′
2

∣∣∣∣
L (L2(G))

≤ C t
m
2 sup

λ>0
0≤j≤d

(1 + λ)−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣, (4.11.11)

for b = b′ = 0, and for b = −m+ a− ν and b′ = ν.

In order to prove this we shall first construct a dyadic decomposition. This

allows us to study the case b, b′ ∈ 2N0, and provides us with a bound for the

L1-norm of L b
2L b′

2 κt.

Furthermore, to extend the result to any b, b′ ∈ R, we shall use the almost or-

thogonality of the operator L b
2 Tκt L

b′
2 , via the Cotlar-Stein Lemma (see Theorem

B.0.1).
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Dyadic decomposition

We now construct the following dyadic decomposition. Let χ ∈ D(R) be such

that

0 ≤ χ ≤ 1, χ
∣∣
[ 34 ,

3
2 ] = 1, supp(χ) ⊂

[
1

2
, 2

]
.

Next, we define

χ`(λ) = χ(2−`λ), ` ∈ N,

such that

∞∑
`=1

χ`(λ) = 1, ∀ λ ≥ 1.

For each ` ∈ N and λ ≥ 0 we set

f`(λ) := 2−`
m
2 f(2`λ)χ(λ). (4.11.12)

Then, for any ` ∈ N, the function f` is smooth and supp(f`) ⊂
[

1
2
, 2
]
. Moreover,

for any d ∈ N0, it satisfies

sup
1
2
≤λ≤2

∣∣∂dλ f`(λ)
∣∣ ≤ sup

1
2
≤λ≤2

0≤j≤d

2−`
m
2

∣∣∂jλ f(2`λ)∣∣ |χ(λ)|

≤ ||χ||L∞(R) sup
1
2
≤λ≤2

0≤j≤d

2−`
m
2

+j
∣∣(∂jλ f)(2`λ)∣∣.

By substituting λ for 2−`λ on the right hand side, we obtain the estimate

sup
1
2
≤λ≤2

∣∣∂dλ f`(λ)
∣∣ ≤ ||χ||L∞(R) sup

2`−1≤λ≤ 2`+1

0≤j≤d

2−`
m
2

+j
∣∣∂jλ f(λ)

∣∣
Since the supremum is taken over λ ∈ [2`−1, 2`+1] and ||χ||L∞(R) ≤ 1, then it

follows that there exists C > 0 such that

sup
1
2
≤λ≤2

∣∣f`(λ)
∣∣ ≤ C sup

2`−1≤λ≤ 2`+1

0≤j≤d

λ−
m
2

+j
∣∣∂jλ f(λ)

∣∣.
Thus, we have shown that there exists C > 0 such that
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∣∣∣∣∂dλ f`∣∣∣∣L∞(R)
≤ C sup

λ>0
0≤j≤d

(1 + λ)−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣, ∀ ` ∈ N0. (4.11.13)

Observe that

f(λ) =
∞∑
`=1

2 `
m
2 f`(2

−`λ),

and furthermore, since m < 0, the sum

∞∑
`=1

2 `
m
2 < +∞.

So, we obtain

∣∣∣∣f(tL)
∣∣∣∣

L (L2(G))
≤

∞∑
`=1

2 `
m
2

∣∣∣∣f`(2−`tL)
∣∣∣∣

L (L2(G))

≤ C sup
λ≥1

λ−
m
2 |f(λ)|

< +∞,

by (4.11.13). This means that

f(tL) =
∞∑
`=1

2 `
m
2 f`(2

−`tL) in L (L2(G)), (4.11.14)

and also,

f(tL)δeG =
∞∑
`=1

2 `
m
2 f`(2

−`tL)δeG in D′(G). (4.11.15)

Estimates for the dyadic pieces in the case b = b′ = 0

Let us show that (4.11.11) holds in the case that b = b′ = 0. First observe that

||Tκt ||L (L2(G)) =
∣∣∣∣∆q

{
f(tπ(L))

}∣∣∣∣
L∞(Ĝ)

≤
∫
G

|{qf(tL)δeG}(z)| dz,

by Lemma 2.2.4. Now, by (4.11.15) we have
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||qf(tL)δeG||L1(G) ≤
∞∑
`=1

2 `
m
2 ||qf`(2−`tL)δeG ||L1(G). (4.11.16)

By Lemma 3.8.1 (II), there exists d ∈ N such that, for each ` ∈ N there exists

C > 0, depending on q, such that

||qf`(2−`tL)δeG ||L1(G) ≤ C
(
2−`t

)a
2 max

0≤j≤d

∣∣∣∣∂jλ f`∣∣∣∣L∞(R)

≤ C
(
2−`t

)a
2 sup

λ≥1
0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣, (4.11.17)

by (4.11.13). By (4.11.16), this yields the estimate

||qf(tL)δeG||L1(G) .
∞∑
`=1

2 `
m
2

(
2−`t

)a
2 sup

λ≥1
0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλf(λ)

∣∣
. t

a
2 sup

λ≥1
0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλf(λ)

∣∣
. t

m
2 sup

λ≥1
0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλf(λ)

∣∣
as m− a < 0. This implies (4.11.11) for the case b = b′ = 0.

Estimates for the dyadic pieces in the case b, b′ ∈ 2N0

We first let

κt,` := qf`(2
−`tL)δeG , ` ∈ N. (4.11.18)

The aim of this section is to show that for every ` ∈ N and any b, b′ ∈ 2N0, we

have

∣∣∣∣L b
2 Tκt,` L

b′
2

∣∣∣∣
L (L2(G))

.
(
2−`t

)a−b−b′
2 sup

λ≥1
0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣, (4.11.19)

where the function f` is defined by (4.11.12) and Tκt,` is the right-convolution

operator associated to the distribution κt,`.

Observe that, if b, b′ ∈ 2N0, then
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∣∣∣∣L b
2 Tκt,` L

b′
2

∣∣∣∣
L (L2(G))

=
∣∣∣∣π(L)

b
2 ∆q

{
f`(2

−`t π(L))
}
π(L)

b′
2

∣∣∣∣
L∞(Ĝ)

≤
∫
G

∣∣L b
2 L̃

b′
2

{
qf`(2

−`tL)δeG
}

(z)
∣∣ dz,

by Lemma 2.2.4. Moreover,

∫
G

∣∣L b
2 L̃

b′
2

{
qf`(2

−`tL)δeG
}

(z)
∣∣ dz ≤ ∑

β,β̃ ∈I(k)

|β|=b,|β̃|=b′

∫
G

∣∣XβX̃β̃

{
qf`(2

−`tL)δeG
}

(z)
∣∣ dz

=
∑

β,β̃ ∈I(k)

|β|=b,|β̃|=b′

∣∣∣∣XβX̃β̃

{
qf`(2

−`tL)δeG
}∣∣∣∣

L1(G)
,

So, we have obtained

∣∣∣∣L b
2 Tκt,` L

b′
2

∣∣∣∣
L (L2(G))

≤
∑

β,β̃ ∈I(k)

|β|=b,|β̃|=b′

∣∣∣∣XβX̃β̃

{
qf`(2

−`tL)δeG
}∣∣∣∣

L1(G)
. (4.11.20)

Now, by Lemma 3.8.1, for very β, β̃ ∈ I(k) and each ` ∈ N there exists C > 0,

depending on q, β, β̃ and m such that

∣∣∣∣XβX̃β̃{qf`(2
−`tL)δeG}

∣∣∣∣
L1(G)

≤ C
(
2−`t

)a−|β|−|β̃|
2 max

0≤j≤d

∣∣∣∣∂jλ f`∣∣∣∣L∞(R)

≤ C
(
2−`t

)a−|β|−|β̃|
2 sup

λ≥1
0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣, (4.11.21)

by (4.11.13). We can then apply (4.11.21) to (4.11.20), giving us (4.11.19).

Estimate for the dyadic pieces for the case b, b′ ∈ R

We now generalise the result obtained in the previous step for b, b′ ∈ R. First

observe that, by duality, the result obtained in (4.11.19) is extended to b, b′ ∈ 2Z.

The case for b, b′ ∈ R follows from an argument of convexity summarised in the

following lemma.
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Lemma 4.11.7. Let κ ∈ D′(G) and suppose that Tκ denotes the right-convolution

operator associated to κ. For b, b′ ∈ R, let us fix

θ :=
b

2
−
⌊
b

2

⌋
, θ′ :=

b′

2
−
⌊
b′

2

⌋
. (4.11.22)

Then, we have

∣∣∣∣L b
2 Tκ L

b′
2

∣∣∣∣
L (L2(G))

. max
b1=bb/2c, db/2e
b′1=bb′/2c, db′/2e

θ1=θ, 1−θ
θ′1=θ′, 1−θ′

∣∣∣∣Lb1 Tκ Lb′1∣∣∣∣θ1θ′1L (L2(G))
, (4.11.23)

in the sense that, if the right-hand side is finite, then the left-hand side is also

finite and the inequality holds.

Proof. By the spectral decomposition of L (see Section 3.1.3), for any φ ∈
Dom

(
Lb/2

)
, we have

∣∣∣∣L b
2φ
∣∣∣∣2
L2(G)

=
∑

λ∈ Spec(L)

|λ|b
∣∣∣∣Eλφ∣∣∣∣2, (4.11.24)

where Eλφ denotes the orthogonal projection onto the eigenfunction φ. Now,

there exists a real number θ ∈ [0, 1] such that b/2 = db/2e θ+ bb/2c (1− θ). In

particular, θ = b/2− bb/2c. Hence

∣∣∣∣L b
2φ
∣∣∣∣2
L2(G)

=
∑

λ∈ Spec(L)

|λ|2(db/2e θ+bb/2c (1−θ)) ∣∣∣∣Eλφ∣∣∣∣2
=

∑
λ∈ Spec(L)

∣∣λ 2db/2e
b

θ
∣∣b ∣∣λ 2bb/2c

b
(1−θ)∣∣b ∣∣∣∣Eλφ∣∣∣∣2. (4.11.25)

Furthermore, as a consequence of Hölder’s inequality, we obtain

∑
λ∈ Spec(L)

∣∣λ 2db/2e
b

θ
∣∣b ∣∣λ 2bb/2c

b
(1−θ)∣∣b ∣∣∣∣Eλφ∣∣∣∣2

≤

 ∑
λ∈ Spec(L)

∣∣λ2db/2e∣∣ ∣∣∣∣Eλφ∣∣∣∣2
θ ∑

λ∈ Spec(L)

∣∣λ2bb/2c∣∣ ∣∣∣∣Eλφ∣∣∣∣2
1−θ

.

Combining this with (4.11.25), we deduce that
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∣∣∣∣L b
2φ
∣∣∣∣
L2(G)

≤
∣∣∣∣Ldb/2eφ∣∣∣∣θ

L2(G)

∣∣∣∣Lbb/2cφ∣∣∣∣1−θ
L2(G)

.

Similarly, if φ ∈ Dom
(
Lb′/2

)
, then there exists θ′ ∈ [0, 1] such that

∣∣∣∣L b′
2 φ
∣∣∣∣
L2(G)

≤
∣∣∣∣Ldb′/2eφ∣∣∣∣θ′

L2(G)

∣∣∣∣Lbb′/2cφ∣∣∣∣1−θ′
L2(G)

.

Therefore, for ` ∈ N, if φ ∈ L2(G) satisfies

∣∣∣∣L b
2 Tκ L

b′
2 φ
∣∣∣∣
L2(G)

< +∞,

then we have

∣∣∣∣L b
2 Tκ L

b′
2 φ
∣∣∣∣
L2(G)

. max
b1=bb/2c, db/2e
b′1=bb′/2c, db′/2e

θ1=θ, 1−θ
θ′1=θ′, 1−θ′

∣∣∣∣Lb1 Tκ Lb′1φ∣∣∣∣θ1θ′1L2(G)
.

This means that

∣∣∣∣L b
2 Tκ L

b′
2

∣∣∣∣
L (L2(G))

. max
b1=bb/2c, db/2e
b′1=bb′/2c, db′/2e

θ1=θ, 1−θ
θ′1=θ′, 1−θ′

∣∣∣∣Lb1 Tκ Lb′1∣∣∣∣θ1θ′1L (L2(G))
,

as required.

Fix b, b′ ∈ R and let θ, θ′ be as in (4.11.22). By (4.11.19), for any ` ∈ N
and every b1 = bb/2c, db/2e, b′1 = bb′/2c, db′/2e, θ1 = θ, 1−θ and θ′1 = θ′, 1−θ′,
we have

∣∣∣∣Lb1 Tκt,` Lb′1∣∣∣∣θ1θ′1L (L2(G))

.
(
2−`t

)a−2b1−2b′1
2

(θ1θ′1)

 sup
λ≥1

0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣θ1θ′1

.

Hence, by Lemma 4.11.7,

∣∣∣∣L b
2 Tκt,` L

b′
2

∣∣∣∣
L (L2(G))

.
(
2−`t

)a−b−b′
2 sup

λ≥1
0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣, (4.11.26)
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as required.

Application of the Cotlar-Stein Lemma

Next, we do the final step of the proof, where we finally show (4.11.11) for

b = −m+ a− ν and b′ = ν. We define the operators

T` = 2 `
m
2 L

b
2 Tκt,` L

b′
2 , ` ∈ N,

where Tκt,` denotes the right-convolution operator associated to the distribution

κt,` (see (4.11.18)). So, by (4.11.14), we have, in the strong operator topology,

T := L
b
2 Tκt L

b′
2 =

∞∑
`=1

T` in L (L2(G)). (4.11.27)

We cannot immediately conclude that the operator T defined by (4.11.27) is

bounded on L2(G). Thus, we must rely on the almost orthogonality of the

operator T in order to prove this.

We now aim to find a bound for operators T`1T
∗
`2

, for `1, `2 ∈ N, to show

that the hypothesis of the Cotlar-Stein Lemma holds. Observe that the kernel

associated to T`1T
∗
`2

is

κ`1,`2 := 2(`1+`2)m
2

{
Lb/2 L̃b′/2κt,`1

}
∗
{
Lb/2 L̃b′/2κt,`2

}
.

Let c ∈ R to be determined. We now write

κ`1,`2 = 2(`1+`2)m
2

{
L(b+c)/2 L̃b′/2κt,`1

}
∗
{
Lb/2 L̃(b′−c)/2κt,`2

}
.

We have

||T`1T ∗`2 ||L (L2(G)) ≤ 2(`1+`2)m
2

∣∣∣∣L(b+c)/2 Tκt,`1 L
b′/2
∣∣∣∣

L (L2(G))

×
∣∣∣∣Lb/2 Tκt,`2 L(b′−c)/2∣∣∣∣

L (L2(G))
.

Then, by (4.11.26), we obtain

||T`1T ∗`2||L (L2(G))

≤ 2(`1+`2)m
2

(
2−`1t

)a−(b+c)−b′
2

(
2−`2t

)a−b−(b′−c)
2

 sup
λ≥1

0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣2

.
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For b = −m+ a− ν and b′ = ν, we have

2(`1+`2)m
2

(
2−`1t

)a−(b+c)−b′
2

(
2−`2t

)a−b−(b′−c)
2 = 2(`1+`2)m

2 2−
`1
2

(m−c) 2−
`2
2

(m+c) tm

= 2(`1−`2) c
2 tm,

and thus, we obtain the estimate

||T`1T ∗`2||L (L2(G)) ≤ 2(`1−`2) c
2 tm

 sup
λ≥1

0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣2

.

We now let c = c(`1) = −4 sgn(`1). Then, we define

γ(`1) = 2`1
c(`1)

4 t
m
2 sup

λ≥1
0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣, `1 ∈ N.

Hence, we have

A :=
∞∑

`1=−∞

γ(`1) = 3 t
m
2 sup

λ≥1
0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣ < +∞.

By a consequence of the Cotlar-Stein Lemma (see Corollary B.0.2) we then con-

clude that

||T ||L (L2(G)) ≤ C t
m
2 sup

λ≥1
0≤j≤d

λ−
1
2

(m−2j)
∣∣∂jλ f(λ)

∣∣,
for a constant C > 0, which is exactly (4.11.11). This proves Proposition 4.11.3.

4.12 Density of S−∞ and Ψ−∞

We continue in the same setting as in previous sections. Recall that

Q0 = {q0,1, q0,2, . . . , q0,n}

is the set of smooth, real-valued functions on G, which is comparable to the C-C

metric (see Definition 4.1.1), given by (4.2.14). Furthermore, let ∆ = ∆Q0 be

the family of difference operators on G associated to Q0. For m ∈ R, we then

let Sm be the space of symbols of class m, with respect to Q0 and Y , where

Y is the basis of g constructed in Section 2.4.1.
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The aim of this section is to show that, for any m ∈ R, the spaces of

smoothing symbols S−∞ and their associated operators Ψ−∞ are weakly dense in

Sm and Ψm, respectively, in the sense explained in Lemma 4.12.1 below. Recall

that S−∞ is the space of smoothing symbols introduced in Definition 4.5.6.

Lemma 4.12.1. Let m ∈ R and suppose that σ ∈ Sm. Then there exists a

family of symbols {σε}ε>0 ⊂ S−∞ such that the following properties are satisfied:

(i) For any m1 ∈ R and any a, b, c ∈ N0, such that m1 ≤ −c, there exist

C > 0, a1, b1 ∈ N0 and c1 > 0 such that

||σε||Sm1 ,a,b,c ≤ C ε
1
2

(m1−m) ||σ||Sm,a1,b1,c1 , ∀ ε ∈ (0, 1),

and whenever m1 ≥ m, there exist C ′ > 0, a′, b′ ∈ N0 and c′ > 0 such

that

||σε − σ||Sm1 ,a,b,c ≤ C ′ ε
1
2

(m1−m) ||σ||Sm,a′,b′,c′ , ∀ ε ∈ (0, 1). (4.12.1)

(ii) If f ∈ D(G), then

Op(σε)f −→ Op(σ)f as ε→ 0,

in D(G). More precisely, there exist C > 0, α > 0, a seminorm ||·||Sm,a,b,c
and M > 0 such that, for all β ∈ I(k) and σ ∈ Sm, we have

∣∣∣∣Xβ Op(σ − σε)f
∣∣∣∣
L2(G)

≤ C εα ||σ||Sm,a,b,c
∣∣∣∣(I + L)Mf

∣∣∣∣
L2(G)

, (4.12.2)

for all ε ∈ (0, 1).

(iii) For any a, b ∈ N0 and c > 0, we have

lim inf
ε→0

||σε||Sm,a,b,c ≥ ||σ||Sm,a,b,c. (4.12.3)

Moreover, there exist C ′ ≥ 0, a′, b′ ∈ N0 and c′ > 0 such that

||σε||Sm,a,b,c ≤ C ′ ||σ||Sm,a′,b′,c′ , (4.12.4)
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for all ε ∈ (0, 1).

Proof. Let σ ∈ Sm. Consider a cut-off function η ∈ D(R), satisfying

η ≡ 1 on [0, 1], supp(η) ⊂ [0,+∞).

Then, for each ε > 0, define the symbol

σε(x, π) = σ(x, π) η(επ(L)), x ∈ G, π ∈ Ĝ.

Observe that, by the definition of η, the symbol η(επ(L)) is smoothing for every

ε > 0. So, by Lemma 4.10.2 and Corollary 4.11.6, whenever m1 ≤ −c there exist

a1, a2, b1, b2 ∈ N0 and c1 > 0 such that

||σε||Sm1 ,a,b,c = ||σ(x, π) η(ε π(L))||Sm1 ,a,b,c

. ||σ||Sm,a1,b1,c1 ||η(επ(L))||Sm1−m,a2,b2,c

. ε
1
2

(m1−m) ||σ||Sm,a1,b1,c1 .

Hence, the first part of (i) is proved.

We now show the second part of (i). First observe that, by Lemma 4.10.2,

there exist C ′ > 0, and a′1, a
′
2, b

′
1, b

′
2 ∈ N0 and c′1 > 0, such that, for every

ε ∈ (0, 1) we have

||σ − σε||Sm1 ,a,b,c = ||(I − η(ε π(L)))σ||S(m1−m)+m,a,b,c

≤ C ′ ||I − η(ε π(L))||Sm1−m,a′1,b
′
1,c
′
1
||σ||Sm,a′2,b′2,c.

Furthermore, supp(1 − η) ⊂ [1,+∞) and, since m1 ≥ m, 1 − η ∈ M 1
2

(m1−m).

Hence, by Proposition 4.11.3 (A), for any m1 ∈ R there exists d ∈ N0 such

that

||I − η(ε π(L))||Sm1−m,a′1,b
′
1,c
′
1
≤ C ′1 ε

1
2

(m1−m)||1− η||M 1
2 (m1−m)

,d,

for some C ′1 > 0, for every ε ∈ (0, 1). So, we have shown that there exist C ′ > 0,

a′, b′ ∈ N0 and c′ > 0 such that

||σε − σ||Sm1 ,a,b,c ≤ C ′ ε
1
2

(m1−m) ||σ||Sm,a′,b′,c′ , ∀ ε ∈ (0, 1),
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as required.

We now show part (ii). For ε ∈ (0, 1) and β ∈ I(k) we have

∣∣∣∣Xβ Op(σ − σε)f
∣∣∣∣
L2(G)

=
∣∣∣∣Xβ Op(σ − σε)(I + L)−N1(I + L)N1f

∣∣∣∣
L2(G)

,

for N1 ∈ N. Observe that

Op(σ − σε)(I + L)−N1 = Op
(
(σ − σε) π(I + L)−N1

)
.

Hence, we have

∣∣∣∣Xβ Op(σ − σε)f
∣∣∣∣
L2(G)

=
∣∣∣∣Xβ Op

(
(σ − σε) π(I + L)−N1

)
(I + L)N1f

∣∣∣∣
L2(G)

≤
∣∣∣∣(σ − σε) π(I + L)−N1

∣∣∣∣
Sm1 ,0,|β|,N

∣∣∣∣(I + L)N+N1f
∣∣∣∣
L2(G)

, (4.12.5)

where

N >
1

2

(
m1 + |β|+ l

2

)
.

by Theorem 4.6.2 (in particular, see (4.6.2)). Moreover, by Lemma 4.10.2, there

exist C ′ > 0, a′1, a
′
2, b
′
1, b
′
2 ∈ N0 and c′1, c

′
2 > 0 such that

∣∣∣∣(σ − σε)π(I + L)−N1
∣∣∣∣
Sm1 ,0,|β|,N

≤ ||σ − σε||Sm+2N1 ,a′1,b
′
1,c
′
1
||π(I + L)−N1 ||Sm1−(m+2N1),a′2,b

′
2,N
.

Observe that π(I+L)−N1 ∈ S−2N1 , and since m1 ≥ m, then by Proposition 4.5.5

we have π(I + L)−N1 ∈ Sm1−(m+2N1). Additionally, by part (i) of the Lemma

(see (4.12.1)), there exist C ′ > 0, a, b ∈ N0 and c > 0 such that

||σ − σε||Sm+2N1 ,a′1,b
′
1,c
′
1
≤ C ′ ε2N1 ||σ||Sm,a,b,c.

By (4.12.5) we have then proved that there exists C > 0 such that

∣∣∣∣Xβ Op(σ − σε)f
∣∣∣∣
L2(G)

≤ C ε2N1
∣∣∣∣(I + L)N+N1f

∣∣∣∣
L2(G)

||σ||Sm,a,b,c,
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as required.

It remains to show part (iii). Observe that, if σ′ ∈ Sm is an invariant symbol,

with associated right-convolution kernel κ′ ∈ D′(G), then for every α ∈ Nn
0

and ν ∈ R we have

∣∣∣∣π(I + L)−
1
2

(m−a+ν) ∆ασ′(π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

=
∣∣∣∣(I + L)−

1
2

(m−a+ν) Op
(
F{q̃α κ′}

)
(I + L)

ν
2

∣∣∣∣
L (L2(G))

=
∣∣∣∣Op

(
F{q̃α κ′}

)∣∣∣∣
L
(
L2
−ν(G), L2

−(m−a+ν)(G)
). (4.12.6)

Hence, part (iii) follows from applying (4.12.6) to σ and σε, for every ε ∈ (0, 1),

and Lemma 3.3.2.

Remark 4.12.2. Suppose σ ∈ Sm. Lemma 4.12.1 allows us to apply a density

argument when we want to prove a quantitative result about σ. More precisely,

we may assume that σ = σε ∈ S−∞, for some ε ∈ (0, 1), and then use parts

(i) and (iii) of the Lemma to take the limit as ε → 0. By Theorem 4.8.1, this

means that the convolution kernel associated to σ is smooth. An instance of the

usefulness of this Lemma is in the proof of Theorem 4.15.1 below.

4.13 Improved kernel estimates for Sm(Q0)

As in previous sections, G denotes a compact Lie group of dimension n and

local dimension l. Here,

Y = {Y1, Y2, . . . , Yn}

denotes the basis of the Lie algebra g of G constructed in Section 2.4.1. Fur-

thermore, recall also that

Q0 = {q0,1, q0,2, . . . , q0,n}

is the set of smooth, real-valued functions on G, which is comparable to the

C-C metric (see Definition 4.1.1), given by (4.2.14). Recall that Q0 has weight

(d1, d2, . . . , dn), where, for each j = 1, 2, . . . , n, dj is the positive integers given

by (2.4.3). Throughout this section we then let
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N0 := lcm(d1, d2, . . . , dn) (4.13.1)

be the lowest common multiple of d1, d2, . . . , dn.

Furthermore, let ∆ = ∆Q0 be the family of difference operators on G asso-

ciated to Q0. For m ∈ R, we then let Sm be the space of symbols of class m,

with respect to Q0 and Y .

For a distribution κ′ ∈ D′(G) and smooth function ϕ ∈ D(G), recall that

〈κ′, ϕ〉 denotes the action of κ′ on ϕ.

We aim to show the following result.

Proposition 4.13.1. Let σ ∈ Sm and suppose that κx denotes its associated

kernel. Then for any α, β0 ∈ Nn
0 , β1, β2 ∈ I(k) satisfying

l +m− [α] + |β1|+ |β2| > 0,

there exist C > 0 and non-negative integers a, b and c > 0, which do not depend

on σ, such that for all (x, z) ∈ G×
(
G\{eG}

)
we have

∣∣Xβ1,z X̃β2,z

{
Y β0
x q̃α(z)

(
κx(z)− 〈κx, 1〉

)}∣∣ ≤ C |z|−(l+m−[α]+|β1|+|β2|) ||σ||Sm,a,b,c,

where 〈κx, 1〉 denotes the action of κx on the smooth constant function 1 ∈
D(G).

Remark 4.13.2. Observe that, for any x ∈ G

〈κx, 1〉 =

∫
G

κx(z) dz = σ(x, 1Ĝ),

where 1Ĝ is the trivial representation of G, and

σ(x, 1Ĝ) = κ̂x(1Ĝ).

Furthermore, σ(x, 1Ĝ) is a smooth function in x, constant in z.

This result will be proved in the following sections. Observe that, in the case

m = 0, the kernel is Calderón-Zygmund in the sense of Coifman and Weiss (see

Chapter III in [7]). For the Euclidean case, the reader is referred to Stein [47].

4.13.1 Tools for the proof of Proposition 4.13.1

In this section we prove two important lemmata regarding a dyadic decomposition

of symbols belonging to the class Sm.
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Lemma 4.13.3. Let σ ∈ Sm and c0 > 0. Furthermore, consider a function

η ∈ D(R), with supp(η) ⊂ [r1,+∞), for some r1 > 0. For ` ∈ N0, we define

the symbols

σR,`(x, π) = σ(x, π) η
(
2−`c0 π(L)

)
,

and

σL,`(x, π) = η
(
2−`c0 π(L)

)
σ(x, π).

Then σR,`, σL,` ∈ S−∞ and satisfy the following property: For any a, b ∈ N0

and c > 0, and m1 ∈ R. there exist C > 0, a1, a2, b1, b2 ∈ N0 and c1, c2 > 0,

which do not depend on σ, such that for any ` ∈ N0 we have

||σR,`||Sm1 ,a,b,c ≤ C 2 `
c0
2

(m−m1) ||σ||Sm,a1,b1,c1 ,

and

||σL,`||Sm1 ,a,b,c ≤ C 2 `
c0
2

(m−m1) ||σ||Sm,a2,b2,c2 .

Proof. Fix β0 ∈ Nn
0 , α0 ∈ N`

0 and ν ∈ R, with [α0]Q0 ≤ a, [β0]Y ≤ b and

|ν| ≤ c. We study the quantity

∣∣∣∣π(I + L)
1
2

([α0]−m1+ν) Y β0
x ∆α0σR,`(x, π) π(I + L)−

ν
2

∣∣∣∣
L (Hπ)

.

By Lemma 4.10.2, there exist a1, a2, b1, b2 ∈ N0 and c1 > 0 such that

∣∣∣∣π(I + L)
1
2

([α0]−m1+ν) Y β0
x ∆α0σR,`(x, π) π(I + L)−

ν
2

∣∣∣∣
L (Hπ)

. ||σ||Sm,a1,b1,c1
∣∣∣∣η(2−`c0 π(L)

)∣∣∣∣
Sm1−m,a2,b2,c

. (4.13.2)

Since η ∈ Mm1−m
2

, then by Proposition 4.11.3 part (A) we have

∣∣∣∣η(2−`c0 π(L)
)∣∣∣∣

Sm1−m,a2,b2,c
. 2 `c0

m−m1
2 sup

λ>0
0≤j≤d

(1 + λ)−
1
2

(m1−m−2j)
∣∣∂jλ η(λ)

∣∣.
for some d ∈ N0. Therefore, there exists a constant C ′ > 0, depending on

d, m1, m, such that

∣∣∣∣η(2−`c0 π(L)
)∣∣∣∣

Sm1−m,a2,b2,c
≤ C ′ 2 `c0

m−m1
2
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In particular, by (4.13.2), we have shown that there exists C > 0, independent

of σ, such that

∣∣∣∣π(I + L)
1
2

([α0]−m1+ν) Y β0
x ∆α0 σR,`(x, π) π(I + L)−

ν
2

∣∣∣∣
L (Hπ)

≤ C 2 `c0
(m−m1)

2 ||σ||Sm,a1,b1,c1 .

which yields the desired estimate for σR,` on taking suprema. The estimate for

σL,` is similar.

Now, we let λ1 be the smallest non-zero eigenvalue of L and consider func-

tions η0, η1 ∈ D((0,∞)), taking values in [0, 1], such that

supp(η0) ∩ [0,+∞) ⊂ [0, λ1), η0(0) = 1,

and

supp(η1) ⊂
[
λ1

2
, λ1

)
.

We also assume that

∞∑
`=0

η`(λ) = 1, λ > 0,

where we define η` by

η`(λ) = η1

(
2−(`−1) λ

)
, ` ∈ N, λ > 0.

Proposition 4.13.4. For m ∈ R, let σ ∈ Sm and suppose that κx denotes its

associated kernel.

(a) Then, for each ` ∈ N, the symbol given by

σ`(x, π) := σ(x, π) η`
(
π(L)

)
= σ(x, π) η1

(
2−(`−1) π(L)

)
, (4.13.3)

belongs to S−∞, and furthermore, its associated kernel of σ`(x, π) is given

by

κ`(x, z) = κ`,x(z) =
(
η`(L)δ0

)
∗ κx(z), (x, z) ∈ G×G. (4.13.4)
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Moreover, the sum

N∑
`=0

κ`,x

converges to κx, as N → +∞, in the sense of distributions.

(b) For ` = 0, the symbol given by

σ0(x, π) =

0, if π 6= 1Ĝ,

σ(x, 1Ĝ), if π = 1Ĝ

. (4.13.5)

belongs to S−∞, and furthermore, its associated kernel is given by

κ0,x(z) =
〈
κx, 1Ĝ

〉
. (4.13.6)

(c) We have

∣∣κx(z)− κ0,x(z)
∣∣ ≤ ∞∑

`=1

|κ`,x(z)|, ∀ z ∈ G\{eG}. (4.13.7)

Proof. We begin with the proof of (a). For each ` ∈ N, the symbol η`(π(L))

belongs to S−∞, by Theorem 4.11.2, so σ` ∈ S−∞. Additionally, its associated

right-convolution kernel, which is given by

η`(L)δ0,

is in D(G). Furthermore, the operator given by

N∑
`=0

η`(L)

converges in the strong operator topology of L (L2(G)) to the identity operator

I, as N →∞. That is,∣∣∣∣∣
∣∣∣∣∣
N∑
`=0

η`(L) f − f

∣∣∣∣∣
∣∣∣∣∣
L2(G)

−→ 0 as N −→∞, (4.13.8)

for every f ∈ L2(G). Thus, the sum of smooth functions
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N∑
`=0

η`(L)δ0

converges to δ0 as N → ∞ in D′(G). Convolving on the right with κx yields

the convergence

N∑
`=0

κ`,x −→ κx as N −→∞,

in D′(G), which shows part (a).

Observe that (b) is a consequence of Remark 4.13.2. Hence, it remains to

prove (c). By Lemma 4.13.3, we have that if m1 ∈ R, then there exists C > 0

such that

||σ`||Sm1 ,a,b,c ≤ C 2`(m−m1) ||σ||Sm,a′,b′,c′ , ∀ ` ∈ N,

and thus

∞∑
`=1

||σ`||Sm1 ,a,b,c < ∞,

whenever m1 > m. This implies that the sum

N∑
`=1

σ`

converges to σ − σ0 in Sm1 , for m1 > m; that is,∣∣∣∣∣
∣∣∣∣∣σ − σ0 −

N∑
`=1

σ`

∣∣∣∣∣
∣∣∣∣∣
Sm1 ,a,b,c

−→ 0, as N −→ +∞. (4.13.9)

Since σ` ∈ S−∞, for each ` ∈ N, then the kernels κ` are smooth on G × G,

by Theorem 4.8.1. Now, by Theorem 4.7.1, observe that there exist C > 0,

a, b ∈ N0 and c > 0 such that, for all x ∈ G and z ∈ G\{eG}, we have

∣∣∣∣∣κx(z)− κ0,x(z)−
N∑
`=1

κ`,x(z)

∣∣∣∣∣ ≤ C |z|Nm1

∣∣∣∣∣
∣∣∣∣∣σ − σ0 −

N∑
`=1

σ`

∣∣∣∣∣
∣∣∣∣∣
Sm1 ,a,b,c

,

where

Nm1 =

⌈
m1 + 2l

2N0

⌉
.
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By (4.13.9), we then have

N∑
`=1

κ`,x(z) −→ κx(z)− κ0,x(z) as N −→∞, (4.13.10)

for every z ∈ G\{eG}. So,

∣∣κx(z)− κ0,x

∣∣ =

∣∣∣∣∣
∞∑
`=1

κ`,x(z)

∣∣∣∣∣ ≤
∞∑
`=1

|κ`,x(z)|, ∀ z ∈ G\{eG},

which proves the result.

4.13.2 Proof of Proposition 4.13.1

We now prove the main result of this section.

Step 1: Set up

Let

σ1 = F
{
Xβ1,z X̃β2,z

{
Y β0
x q̃α(z)

(
κx(z)− 〈κx, 1〉

)}}
.

Routine arguments show this symbol belongs to the class Sm−[α]+|β1|+|β2|, so it

suffices to prove the result for α = β0 = β1 = β2 = 0. Our hypothesis then

becomes

l +m > 0,

which we assume. By the work done in Section 4.12, we may assume that the

kernel κ : (x, z) 7→ κx(z) is in D(G × G). Recall that, for ` ∈ N0, σ` is the

symbol on G given by (4.13.3) (with the case ` = 0 given by (4.13.5)), and its

associated kernel κ`,x is given by (4.13.4) (with the case ` = 0 given by (4.13.6)).

Now, whenever ` ∈ N and r ∈ N0N, by Lemma 4.1.7 we have

|z|r |κ`,x(z)| ≤ C
∑
[α]=r

|qα(z)| |κ`,x(z)|, ∀ (x, z) ∈ G×G,

for some C > 0. If m1 ∈ R is such that m1− r < −l, then by Lemma 4.7.2 (2)

there exist a constant C ′ > 0, a, b ∈ N0 and c > 0 such that, for each ` ∈ N0,
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∑
[α]=r

|qα(z)| |κ`,x(z)| ≤ C ′ ||σ`||Sm1 ,a,b,c, ∀ (x, z) ∈ G×G.

Hence, for all (x, z) ∈ G×G we have

|z|r |κ`,x(z)| ≤ C ||σ`||Sm1 ,a,b,c

≤ C 2
`−1
2

(m−m1) ||σ||Sm,a,b,c, (4.13.11)

by Lemma 4.13.3. Recall that R denotes the radius of G:

R := sup
z ∈G
|z|.

For a fixed z ∈ G\{eG}, we now let `0 be the unique integer such that

2−`0 <
|z|

R + 1
≤ 2−(`0−1). (4.13.12)

By Proposition 4.13.4, we have

|κx(z)− κ0,x(z)| ≤
∞∑
`=1

∣∣κ`,x(z)
∣∣

=
∑

1≤`<`0

|κ`,x(z)|+
∑
`≥`0

|κ`,x(z)|. (4.13.13)

We then study the sums in (4.13.13) separately.

Step 2: Sum
∑

1≤`<`0

Let us first consider the sum

∑
1≤`<`0

|κ`,x(z)|,

for (x, z) ∈ G×
(
G\{eG}

)
. We use (4.13.11) with m1 ∈ R and r ∈ N0N such

that

m−m1

2
= m+ l − r > 0 and m1 − r < −l.

To this aim we choose r = 0 and
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m1 := −m− 2l = −m− l − l < −l.

By (4.13.11), for any ` ∈ N0, with 1 ≤ ` < `0, we then obtain

|κ`,x(z)| ≤ C 2
`−1
2

(m−m1) ||σ||Sm,a,b,c,

as m1 < −l. So, we have the bound

`0−1∑
`=1

|κ`,x(z)| .
`0−1∑
`=1

2
`−1
2

(m−m1) ||σ||Sm,a,b,c

. 2
`0−1

2
(m−m1) ||σ||Sm,a,b,c.

Since 1
2
(m−m1) = 1

2
(2m+ 2l) = m+ l, then we have

2
`0
2

(m−m1) = 2(`0−1)(m+l) ≤ (R + 1) |z|−(m+l),

by our choice of `0 (see (4.13.12)). Thus, we have shown that

`0−1∑
`=1

|κ`,x(z)| . |z|−(m+l) ||σ||Sm,a,b,c, ∀ z ∈ G\{eG}. (4.13.14)

Step 3: The sum
∑

`≥`0

It remains to bound the sum
∑∞

`=`0
|κ`,x(z)|. In this step we use (4.13.11) with

r ∈ N0N and m1 ∈ R such that

m−m1

2
= m+ l − r and

1

2
(m−m1) < 0.

We set

r = N0

⌈
m+ l

N0

⌉
, m1 = −m− 2l + 2r.

For this choice of r and m1 we have

1

2
(m−m1) = m+ l − r < 0.

Thus, there exist a, b ∈ N0 and c > 0 such that, for any z ∈ G,
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∞∑
`=`0

|z|r |κ`,x(z)| ≤ C ||σ||Sm,a,b,c
∞∑
`=`0

2
(`−1)

2
(m−m1)

≤ C 2
`0−1

2
(m−m1) ||σ||Sm,a,b,c.

Therefore,

∞∑
`=`0

|κ`,x(z)| ≤ C 2
(`0−1)

2
(m−m1) |z|−r ||σ||Sm,a,b,c

≤ C |z|−r−
1
2

(m−m1) ||σ||Sm,a,b,c,

by our choice of `0. Since −r− 1
2
(m−m1) = −(m+ l), then we have shown that

∞∑
`=`0

|κ`,x(z)| ≤ C |z|−(m+l) ||σ||Sm,a,b,c, ∀ z ∈ G\{eG}.

In combination with (4.13.14) and (4.13.13), this shows the result.

4.13.3 A consequence of Proposition 4.13.1

The following result is a consequence of Proposition 4.13.1.

Corollary 4.13.5. Let σ ∈ Sm and suppose that κx denotes its associated

kernel. For any γ ∈ R, if

γ + l > max {m+ l, 0} ,

then there exists C > 0 and a, b, c ∈ N0 such that∫
G

|z|γ |κx(z)| dz ≤ C ||σ||Sm,a,b,c.

Proof. We first write∫
G

|z|γ |κx(z)| dz =

∫
|z|>1

|z|γ |κx(z)| dz +

∫
|z|≤1

|z|γ |κx(z)| dz.

Since G is compact, it follows that∫
|z|>1

|z|γ |κx(z)| dz < +∞.
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Let us now suppose that |z| ≤ 1. By Proposition 4.13.1, if m+ l > 0, then there

exist C > 0, a, b ∈ N0 and c > 0 such that, for all x ∈ G and z ∈ G\{eG},
we have

|κx(z)| ≤ C |z|−(m+l) ||σ||Sm,a,b,c.

Therefore, we have∫
|z|≤1

|z|γ |κx(z)| dz .
∫
|z|≤1

|z|γ−(m+l) dz,

and this is finite if γ + l > m+ l, by Lemma A.3.2.

On the other hand, if m+ l < 0, then there exists C ′ > 0 such that, for any

x ∈ G, z ∈ G we have

|κx(z)| ≤ C ′ ||σ||Sm,a,b,c,

by Lemma 4.7.2 (2). So,∫
|z|≤1

|z|γ |κx(z)| dz .
∫
|z|≤1

|z|γ dz,

which is finite if γ + l > 0.

Finally, suppose that m+ l = 0. In this case,∫
|z|≤1

|z|γ dz < +∞,

provided that γ + l > 0. Therefore, the condition γ + l > max
{
m + l, 0

}
is

sufficient to have the desired bound.

4.14 Boundedness on L2(G)

Let us fix a basis of vector fields

V := {Vj : j = 1, 2, . . . , n}

on G (see Definition 2.3.2). Furthermore, let us also fix a family

Q = {q1, q2, . . . , q`}

of functions on G comparable to the C-C metric (see Definition 4.1.1), for some

` ∈ N0, and let ∆ = ∆Q be the family of difference operators on G associated
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to Q. For m ∈ R, we then let Sm be the space of symbols of class m, with

respect to the family of difference operators Q.

In this section we shall prove the boundedness of any pseudo-differential op-

erator Op(σ), for σ ∈ S0, on L2(G) .

Theorem 4.14.1. Suppose that σ ∈ S0. Then, the pseudo-differential operator

Op(σ) extends to a bounded operator L2(G)→ L2(G), with

∣∣∣∣Op(σ)
∣∣∣∣

L (L2(G))
≤ C ||σ||S0,0,l,0, (4.14.1)

for some C > 0 independent of σ, where l denotes the local dimension of G.

Proof. Let η0 ∈ D((0,∞)), taking values in [0, 1], be such that

supp(η0) ∩ [0,+∞) ⊂ [0, λ1), η0(0) = 1,

where λ1 denotes the smallest non-zero eigenvalue of L. We now write

σ = σ − ση0(π(L)) + ση0(π(L)).

By Remarks 3.1.5, 4.11.5 and 4.13.2, the operator associated to the symbol

ση0(π(L)) is given by

Op
(
ση0(π(L))

)
= σ(·, 1Ĝ)E0,

where 1Ĝ denotes the trivial representation of G and E0 denotes the orthogonal

projection onto the 0-eigenspace of L. Since σ(·, 1Ĝ) is a smooth function on

G, then for any f ∈ L2(G),

||σ(·, 1Ĝ)E0f ||L2(G) ≤ ||σ(·, 1Ĝ)||L∞(G) ||E0f ||L2(G).

And since E0 is an orthogonal projection of L2(G), then

||E0f ||L2(G) ≤ ||f ||L2(G).

Hence, the operator σ(·, 1Ĝ)E0 is bounded in L2(G). Thus, it suffices to show the

L2 boundedness of Op(σ − ση0). Additionally, Proposition 4.13.1 is applicable

in this case and we may assume that σ(·, 1Ĝ) ≡ 0.

Furthermore, by Lemma 4.12.1 (see also Remark 4.12.2) and Theorem 4.8.1,

we may assume that the mapping

x 7−→ κx, x ∈ G,
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is smooth.

If f ∈ D(G), then

||Op(σ)f ||2L2(G) =

∫
G

∣∣Op(σ)f(x)
∣∣2 dx =

∫
G

∣∣ f ∗ κx(x)
∣∣2 dx

≤
∫
G

∣∣∣∣ sup
x1 ∈G

(f ∗ κx1)(x)

∣∣∣∣2 dx.

By the Sobolev inequality (3.4.1) we have

sup
x1 ∈G

(f ∗ κx1)(x) .

∫
G

∑
α∈I(k)
|α|≤dse

∣∣Xα,x1 (f ∗ κx1)(x)
∣∣2 dx1


1/2

,

for any x ∈ G and s > l/2, where l denotes the local dimension of G. We may

assume that dse = l; thus we have obtained the estimate

||Op(σ)f ||2L2(G) ≤
∫
G

∫
G

∑
α∈I(k)
|α|≤dse

∣∣Xα,x1 (f ∗ κx1)(x)
∣∣2 dx1 dx

=
∑

α∈I(k)
|α|≤dse

∫
G

∫
G

∣∣Xα,x1 (f ∗ κx1)(x)
∣∣2 dx dx1,

by Fubini’s Theorem. Now, Xα,x1(f∗κx1) = f∗(Xα,x1κx1). Hence, by Plancherel’s

Theorem, for every α ∈ I(k), with |α| ≤ l, we have

∫
G

∣∣Xα,x1 (f ∗ κx1)(x)
∣∣2 dx = ||f ∗ (Xα,x1κx1)||2L2(G)

=
∣∣∣∣F {f ∗ (Xα,x1κx1)}

∣∣∣∣2
L2(Ĝ)

=
∣∣∣∣F {Xα,x1κx1} f̂

∣∣∣∣2
L2(Ĝ)

.

Moreover,

∣∣∣∣F {Xα,x1κx1} f̂
∣∣∣∣2
L2(Ĝ)

=
∑
π ∈ Ĝ

dπ
∣∣∣∣F {Xα,x1κx1} (π) f̂(π)

∣∣∣∣2
HS

≤
∣∣∣∣F {Xα,x1κx1}

∣∣∣∣2
L∞(Ĝ)

∣∣∣∣f̂ ∣∣∣∣2
L2(Ĝ)

,
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where

∣∣∣∣F {Xα,x1κx1}
∣∣∣∣
L∞(Ĝ)

= sup
π ∈ Ĝ

∣∣∣∣F {Xα,x1κx1} (π)
∣∣∣∣

L (Hπ)
.

Applying Plancherel’s Theorem once again, we obtain

∫
G

∣∣Xα,x1 (f ∗ κx1)(x)
∣∣2 dx ≤ C

∣∣∣∣F {Xα,x1κx1}
∣∣∣∣2
L∞(Ĝ)

||f ||2L2(G).

Since F
{
Xα,x1 κx1

}
= Xα,x1 σ(x1, ·) belongs to the symbol class S0, then

∣∣∣∣F{Xα,x1 κx1
}∣∣∣∣

L∞(Ĝ)
= ||Xα,x1 σ(x1, ·)||L∞(Ĝ) < +∞,

and thus,

||Op(σ)f ||2L2(G) .
∑
|α|≤l

∫
G

||Xα,x1 σ(x1, ·)||2L∞(Ĝ)
||f ||2L2(G) dx1

. max
|α|≤l

sup
x1 ∈G

||Xα,x1 σ(x1, ·)||2L∞(Ĝ)
||f ||2L2(G).

Hence, there exists C > 0 such that

||Op(σ)||L (L2(G)) ≤ C ||σ||Sm,0,l,0,

as required.

4.15 Composition of pseudo-differential opera-

tors

Throughout this section, the set

Y = {Y1, Y2, . . . , Yn}

denotes the basis of the Lie algebra g of G constructed in Section 2.4.1. Recall

also that

Q0 = {q0,1, q0,2, . . . , q0,n}
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is the set of smooth, real-valued functions on G, which is comparable to the C-C

metric (see Definition 4.1.1), given by (4.2.14). Furthermore, we let ∆ = ∆Q0

be the family of difference operators on G associated to Q0. We shall assume

that, for m ∈ R, Sm is the space of symbols of class m, with respect to Q0

and Y . We shall also assume that Ψm denotes the family of operators of class

m, corresponding to Sm.

4.15.1 Main result

The main objective of this section is to prove the following result:

Theorem 4.15.1. Let m1,m2 ∈ R. If T1 ∈ Ψm1 and T2 ∈ Ψm2, then their

composition

T1 ◦ T2 ∈ Ψm1+m2 ,

and the mapping (T1, T2) 7→ T1 ◦ T2 is continuous Ψm1 × Ψm2 → Ψm1+m2.

If T1 = Op(σ1) and T2 = Op(σ2), with σ1 ∈ Sm1 and σ2 ∈ Sm2 , then we

must show that the symbol σ1 ◦σ2, associated to the operator T1 ◦T2, exists and

satisfies

σ1 ◦ σ2 ∈ Sm1+m2 .

Furthermore, for any a, b ∈ N0 and c > 0, there exist C > 0, a1, a2, b1, b2 ∈
N0 and c1, c2 > 0, independent of σ1, σ2, such that

||σ1 ◦ σ2||Sm1+m2 ,a,b,c ≤ C ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 . (4.15.1)

Throughout this section, we let κ1,x and κ2,x denote the right-convolution kernels

associated to σ1 and σ2, respectively.

Observe that, by Lemma 4.12.1 (see also Remark 4.12.2) and Theorem 4.8.1,

we may assume both κ1,x and κ2,x are smooth on G.

4.15.2 The composition symbol σ1 ◦ σ2
Lemma 4.15.2. Let σ1, σ2 ∈ S−∞ and suppose that κ1 and κ2 denote their

associated convolution kernels, respectively. Set

κx(z) =

∫
G

κ2,xy−1(zy−1)κ1,x(y) dy,
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for x, z ∈ G. Then the Fourier transform

σ(x, π) := κ̂x(π), x ∈ G, π ∈ Ĝ,

defines a smooth symbol. Furthermore, it satisfies

Op(σ) = Op(σ1) ◦Op(σ2), (4.15.2)

and

σ(x, π) =

∫
G

κ1,x(y) π(y)∗ σ2(xy−1, π) dy. (4.15.3)

We will write σ = σ1 ◦ σ2.

Proof. The kernel κ : (x, z) 7→ κx(z) is smooth on G×G and compactly supported

in x. Furthermore,

∫
G

|κx(z)| dz ≤
∫
G

∫
G

∣∣κ2,xy−1(zy−1)κ1,x(y)
∣∣ dy dz

≤
∫
G

|κ2,xy−1(w)| dw

∫
G

|κ1,x(y)| dy

≤ sup
x′ ∈G

(∫
G

|κ2,x′(w)| dw

)∫
G

|κ1,x(y)| dy,

where in the second inequality we have applied the substitution w = zy−1. Thus,

κx is integrable, for every x ∈ G. Now, using Leibniz’s rule for vector fields, for

every β0 ∈ I(k), we obtain

X̃β0,x κx(z) =

∫
G

X̃β0,x

{
κ2(xy−1, zy−1)κ1(x, y)

}
dy

=
∑

|β1|+|β2|=|β0|

cβ0β1,β2

∫
G

X̃β2,x2=xy−1 κ2,x2(zy
−1) X̃β1,x1=x κ1,x1(y) dy.

Hence, proceeding as before, we have

∫
G

∣∣∣X̃β0,x κx(z)
∣∣∣ dz

.
∑

|β1|+|β2|=|β0|

sup
x′ ∈G

(∫
G

∣∣∣X̃β2,x2=x′ κ2,x2(w)
∣∣∣ dw

)∫
G

∣∣∣X̃β1,x1=x κ1,x1(y)
∣∣∣ dy.
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This implies that σ is a smooth symbol.

Next, we must prove that (4.15.2) and (4.15.3) hold. To this aim, first observe

that formally, for f ∈ D′(G) and x ∈ G, we have

Op(σ1) ◦Op(σ2) f(x) =

∫
G

[Op(σ2) f ] (z)κ1,x(z
−1x) dz

=

∫
G

∫
G

f(y)κ2,z(y
−1z)κ1,x(z

−1x) dy dz

=

∫
G

∫
G

f(y)κ2,xw−1(y−1xw−1)κ1,x(w) dy dw,

using the substitution w = z−1x. Since∫
G

κ2,xw−1(y−1xw−1)κ1,x(w) dw = κx(y
−1x), ∀ y ∈ G,

then applying Fubini’s Theorem to swap the order of integration, we obtain

Op(σ1) ◦Op(σ2) f(x) =

∫
G

f(y)κx(y
−1x) dy = f ∗ κx(x).

It follows that

Op(σ1) ◦Op(σ2) = Op(σ),

as required.

Finally, for x ∈ G and π ∈ Ĝ,

σ(x, π) = κ̂x(π) =

∫
G

κx(z) π(z)∗ dz

=

∫
G

∫
G

κ2,xy−1(zy−1)κ1,x(y)π(z)∗ dy dz.

Since κx is integrable, we can apply Fubini’s Theorem to obtain that

σ(x, π) =

∫
G

∫
G

κ2,xy−1(zy−1)π(z)∗ dz κ1,x(y) dy

=

∫
G

κ1,x(y) π(y)∗
(∫

G

κ2,xy−1(zy−1) π(zy−1)∗ dz

)
dy,

as π(z−1) = π(y−1)π(yz−1) = π(y)∗ π(zy−1)∗. Since
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∫
G

κ2,xy−1(zy−1)π(zy−1)∗ dz = F {κ2,xy−1} (π) = σ2(xy−1, π),

then we have

σ(x, π) =

∫
G

κ1,x(y) π(y)∗ σ2(xy−1, π) dy,

as required.

The following result is an immediate consequence of Lemma 4.15.2 and Theorem

4.10.1.

Corollary 4.15.3. Let σ1, σ2 ∈ S−∞, and suppose that σ2 is an invariant

symbol. Then,

σ1 ◦ σ2 = σ1σ2.

Let us now consider the cut-off function η0 ∈ D((0,+∞)), taking values in

[0, 1], such that

supp(η0) ∩ [0,+∞) ⊂ [0, λ1), η0(0) = 1.

We write

σ1 = σ1 − σ1η0(π(L)) + σ1η0(π(L)), σ2 = σ2 − σ2η0(π(L)) + σ2η0(π(L)).

Hence, we have

Op(σ1) ◦Op(σ2) =
(
Op
(
σ1 − σ1η0(π(L))

)
+ Op

(
σ1η0(π(L))

))
◦
(
Op
(
σ2 − σ2η0(π(L))

)
+ Op

(
σ2η0(π(L))

))
.

Furthermore, by Proposition 4.11.3 (B), σ1η0(π(L)), σ2η0(π(L)) ∈ S−∞, so by

Corollary 4.15.3 and Theorem 4.10.1, it suffices to show the result for

Op
(
σ1 − σ1η0(π(L))

)
◦Op

(
σ2 − σ2η0(π(L))

)
.

Therefore, Proposition 4.13.1 is applicable in this case, and we may assume that

σj(·, 1Ĝ) = σjη0(π(L)) ≡ 0, j = 1, 2.
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4.15.3 First step of the proof of Theorem 4.15.1

We now start the proof of Theorem 4.15.1. First observe that, by Theorem 4.3.3

and Remark 4.3.5, for fixed x ∈ G and π ∈ Ĝ we have

σ2(xy−1, π) =
∑

[α]<M

1

α!
q0,α(y−1)Y α

x σ2(x, π) + R
σ2(·,π)
x,M (y−1), (4.15.4)

for any y ∈ G, where

∣∣∣∣Rσ2(·,π)
x,M (y−1)

∣∣∣∣
L (Hπ)

≤ C |y|M sup
z ∈G

[α]≥M
|α|≤M

||Y α
z σ2(z, π)||L (Hπ), ∀ y ∈ G, (4.15.5)

for some C > 0 independent of x. Consequently, for all y ∈ G, we have

∣∣∣∣Rσ2(·,π)
x,M (y−1)

∣∣∣∣
L (Hπ)

≤ C |y|M sup
z ∈G
|α|≤M

∣∣∣∣Y α
z σ2(z, π)

∣∣∣∣
L (Hπ)

(4.15.6)

Then, by (4.15.3), for any x ∈ G and π ∈ Ĝ we have

σ(x, π) =

∫
G

κ1,x(y) π(y)∗ σ2(xy−1, π) dy

=

∫
G

∑
[α]<M

1

α!
q0,α(y−1)κ1,x(y) π(y)∗ Y α

x σ2(x, π) dy

+

∫
G

κ1,x(y)π(y)∗R
σ2(·,π)
x,M (y−1) dy

=
∑

[α]<M

1

α!
∆ασ1(x, π)Y α

x σ2(x, π)

+

∫
G

κ1,x(y)π(y)∗R
σ2(·,π)
x,M (y−1) dy. (4.15.7)

Note that, by Theorem 4.10.1, we have

(∆ασ1) · (Y ασ2) ∈ Sm1+m2−[α], ∀ α ∈ Nn
0 , [α] < M. (4.15.8)

Hence,
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∑
[α]<M

1

α!
∆ασ1(x, πn)Y α

x σ2(x, πn) ∈ Sm1+m2 . (4.15.9)

For M ∈ N, we now let ρM,σ1,σ2 be the symbol given by

ρM,σ1,σ2(x, π) := σ(x, π) −
∑

[α]<M

1

α!
∆ασ1(x, π)Y α

x σ2(x, π), (4.15.10)

for x ∈ G, π ∈ Ĝ. By (4.15.7) we have

ρM,σ1,σ2(x, π) =

∫
G

κ1,x(y) π(y)∗R
σ2(·,π)
x,M (y−1) dy, x ∈ G, π ∈ Ĝ. (4.15.11)

We then need to show that, for any a, b ∈ N0 and c > 0, there exist M ∈ N,

C > 0, a1, a2, b1, b2 ∈ N0 and c1, c2 > 0, independent of σ1, σ2, such that

||ρM,σ1,σ2||Sm1+m2 ,a,b,c ≤ C ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 . (4.15.12)

We prove this result in the following sections.

4.15.4 Analysis of the remainder

Step 1: The symbol ρM,σ1,σ2(x, π)

In this section we study the symbol ρM,σ1,σ2 , given by (4.15.10), and claim that

there exists M0 ∈ N0 such that, for any M ≥ M0, there exist a1, b1, b2 ∈ N0

and c1 > 0 such that, for all x ∈ G,

∣∣∣∣ρM,σ1,σ2(x, π)
∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,0,b2,0.

Then, let M ∈ N to be determined and fix π ∈ G. For any y ∈ G, we now

write

π(y)∗ = π(y)∗ π(I + L)M1 π(I + L)−M1 ,

for some M1 ∈ N to be determined. Note that
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(I + L)M1 =
∑

γ ∈I(k)
|γ|≤2M1

cγ Xγ, (4.15.13)

for some constants cγ ∈ R. And similarly,

(I + L̃)M1 =
∑

γ̃ ∈I(k)
|γ̃|≤2M1

c̃ γ̃ X̃γ̃,

for some constants c̃ γ̃ ∈ R. So, π(y)∗ can be re-written as

∑
γ ∈I(k)
|γ|≤2M1

cγ π(y)∗ π(Xγ) π(I + L)−M1 . (4.15.14)

Moreover, for any left-invariant vector field X, we have

π(y)∗ π(X) = − (π(X) π(y))∗ = −
(
X̃y π(y)

)∗
. (4.15.15)

Combining (4.15.14) and (4.15.15), we obtain

∫
G

κ1,x(y) π(y)∗R
σ2(·,π)
x,M (y−1) dy

=
∑

γ ∈I(k)
|γ|≤2M1

(−1)|γ| cγ

∫
G

κ1,x(y)
(
X̃γ,y π(y)

)∗
π(I + L)−M1 R

σ2(·,π)
x,M (y−1) dy

=
∑

γ ∈I(k)
|γ|≤2M1

(−1)|γ| cγ

∫
G

κ1,x(y)
(
X̃γ,y π(y)

)∗
R
π(I+L)−M1σ2(·,π)
x,M (y−1) dy.

Recall that, for N ∈ N to be determined, fN is the function given by

fN =
n∑
j=1

q
2N0N
dj

0,j , (4.15.16)

where N0 denotes the lowest common multiple of (d1, d2, . . . , dn). We have

|fN(z)| ≈ |z|2N0N , ∀ z ∈ G. (4.15.17)

We then write

258



ρM,σ1,σ2(x, π)

=

∫
G

κ1,x(y) π(y)∗R
σ2(·,π)
x,M (y−1) dy

=
∑

γ ∈I(k)
|γ|≤2M1

(−1)|γ|cγ

∫
G

(fN κ1,x)(y)
(
X̃γ,y π(y)

)∗( 1

fN
R̃
π(I+L)−M1σ2(·,π)
x,M

)
(y) dy.

Using integration by parts and Leibniz’s rule for vector fields yields

ρM,σ1,σ2(x, π)

=
∑

γ ∈I(k)2

|γ|≤2M1

cγ

∫
G

X̃γ1,y1=y

(
fN κ1,x

)
(y1) π(y)∗

X̃γ2,y2=y

(
1

fN
R̃
π(I+L)−M1σ2(·,π)
x,M

)
(y2) dy. (4.15.18)

Taking norms, we obtain

||ρM,σ1,σ2(x, π)||L∞(Ĝ)

.
∑

γ ∈I(2)2

|γ|≤2M1

∫
G

∣∣X̃γ1,y1=y (fN κ1,x)(y1)
∣∣ dy

sup
y′ ∈G

∣∣∣∣X̃γ2,y2=y′
(
R̃
π(I+L)−M1 σ2(·,π)
x,M /fN

)
(y2)

∣∣∣∣
L∞(Ĝ)

. (4.15.19)

Observe that, by Lemma 3.7.7 (2) and Remark 3.7.8, for any γ2 ∈ I(k), with

|γ2| ≤ 2M1, there exists C > 0, depending on γ2, fN and k, such that

sup
y′ ∈G

∣∣∣∣X̃γ2,y′
(
R̃
π(I+L)−M1 σ2(·,π)
x,M /fN

)
(y′)
∣∣∣∣
L∞(Ĝ)

≤ C sup
y′ ∈G
|γ0,2|=M

∣∣∣∣X̃γ0,2,y′ R̃
π(I+L)−M1 σ2(·,π)
x,M (y′)

∣∣∣∣
L∞(Ĝ)

(4.15.20)

provided that |γ2| < M − 2N0N , having used (4.15.17) and adapted (4.15.6). As

|γ2| ≤ 2M1, it suffices to assume that
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2M1 < M − 2N0N. (4.15.21)

Moreover, by Lemma 4.3.6 and Remark 4.3.7, we obtain

sup
y′ ∈G
|γ0,2|=M

∣∣∣∣X̃γ0,2,y′ R̃
π(I+L)−M1 σ2(·,π)
x,M (y′)

∣∣∣∣
L∞(Ĝ)

. sup
y′ ∈G

[β0]≤M

∣∣∣∣π(I + L)−M1Y β0
y′ σ2(y′, π)

∣∣∣∣
L∞(Ĝ)

,

Furthermore,

sup
y′ ∈G

[β0]≤M

∣∣∣∣π(I + L)−M1Y β0
y′ σ2(y′, π)

∣∣∣∣
L∞(Ĝ)

. sup
y′ ∈G

[β0]≤M

∣∣∣∣π(I + L)
1
2

(m2−2M1)
∣∣∣∣
L∞(Ĝ)

∣∣∣∣π(I + L)−
m2
2 Y β0

y′ σ2(y, π)
∣∣∣∣
L∞(Ĝ)

. ||σ2||Sm2 ,0,M,0, (4.15.22)

provided that

m2 − 2M1 ≤ 0. (4.15.23)

Thus, by (4.15.21) and (4.15.23), we have have shown that, if

m2 ≤ 2M1 < M − 2N0N, (4.15.24)

then

sup
y ∈G

∣∣∣∣X̃γ2,y

(
R̃
π(I+L)−M1 σ2(·,π)
x,M /fN

)
(y)
∣∣∣∣
L∞(Ĝ)

. ||σ2||Sm2 ,0,M,0. (4.15.25)

On the other hand, we have

∫
G

∣∣X̃γ1,y1=y (fN κ1,x)(y1)
∣∣ dy .

n∑
j=1

∫
G

∣∣X̃γ1,y1=y (q0,αN,j κ1,x)(y1)
∣∣ dy, (4.15.26)

where αN,j =
(
0, 0, . . . , 2N0N

dj
, . . . , 0

)
, with the only non-zero term of the multi-
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index being in the j-th position. Therefore, by Lemma 4.7.2 (2), for any j =

1, 2, . . . , n, if

m− [αN,j] + |γ1| < −l,

then there exist C > 0, a1, b1 ∈ N0 and c1 > 0 such that

sup
y ∈G

∣∣X̃γ1,y (q0,αN,j κ1,x)(y)
∣∣ ≤ C ||σ1||Sm1 ,a1,b1,c1 .

Since [αN,j] = 2N0N and |γ1| ≤ 2M1, then a sufficient condition is

m1 − 2N0N + 2M1 < −l. (4.15.27)

Thus, we have shown that, if m1 − 2N0N + 2M1 < −l, then we have∫
G

∣∣X̃γ1,y1=y (fN κ1,x)(y1)
∣∣ dy . ||σ1||Sm1 ,a1,b1,c1 . (4.15.28)

Combining (4.15.25) and (4.15.28) with (4.15.19) (see also (4.15.24) and (4.15.27)),

we obtain that if we choose M, M1, N ∈ N such that m2 ≤ 2M1 < M − 2N0N

m1 − 2N0N + 2M1 < −l
,

then, there exist a1, b1, b2 ∈ N0 and c1 > 0 such that

∣∣∣∣ρM,σ1,σ2(x, π)
∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,0,b2,0, (4.15.29)

which concludes the first step.

Step 2: X̃β0,x ρM(x, π)

Let M ∈ N to be determined. In this section, we study the symbol X̃β0,x ρM,σ1,σ2(x, π),

for a given β0 ∈ I(k). By the definition of ρM,σ1,σ2 (see (4.15.10)), for any

x ∈ G and π ∈ Ĝ, we have

X̃β0,x ρM,σ1,σ2(x, π)

= X̃β0,x σ(x, π) −
∑

[α]<M

1

α!
X̃β0,x

(
∆ασ1(x, π)Y α

x σ2(x, π)
)
. (4.15.30)

Observe that, by Leibniz’s rule for vector fields we have
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X̃β0,x σ(x, π)

= X̃β0,x

∫
G

κ1,x(y)π(y)∗ σ2(xy−1, π) dy

=
∑

|β1|+|β2|=|β0|

cβ0β1,β2

∫
G

X̃β1,x1=x κ1,x1(y) π(y)∗ X̃β2,x2=x σ2(x2y
−1, π) dy

=
∑

|β1|+|β2|=|β0|

cβ0β1,β2

∫
G

(
X̃β1,x κ1,x

)
(y)π(y)∗

(
X̃β2,x2=xy−1 σ2

)
(x2, π) dy,

for some constants cβ0β1,β2 ∈ R.

Moreover, applying Leibniz’s rule for vector fields once again, for any α ∈ Nn
0 ,

with [α] < M , we have

X̃β0,x

(
∆ασ1(x, π)Y α

x σ2(x, π)
)

=
∑

|β1|+|β2|=|β0|

cβ0β1,β2 ∆α
(
X̃β1,x σ1

)
(x, π)Y α

x

(
X̃β2,x σ2

)
(x, π)

Observe that, for each β1, β2 ∈ I(k), X̃β1σ1 = X̃β1,x σ1(x, π) belongs to the

symbol class Sm1 , with associated kernel

X̃β1κ1 : (x, y) 7−→
(
X̃β1,x κ1,x

)
(y),

and X̃β2σ2 = X̃β2,x σ2(x, π) belongs to the symbol class Sm2 with associated

kernel

X̃β2κ2 : (x, y) 7−→
(
X̃β2,x κ2,x

)
(y).

Thus, by (4.15.30) we have obtained

X̃β0 ρM,σ1,σ2 =
∑

|β1|+|β2|=|β|

cβ0β1,β2 ρM,X̃β1σ1,X̃β2σ2
.

Applying Step 1 to each ρM,X̃β1σ1,X̃β2σ2
we conclude that there exists M0 ∈ N0

such that, for any M ≥ M0, there exist a1, b1, b2 ∈ N0 and c1 > 0 such that,

for all x ∈ G,

∣∣∣∣X̃β0,x ρM,σ1,σ2(x, π)
∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,0,b2,0.
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Step 3a: ρM,σ1,σ2 π(Xβ0)

In this step of the proof, we consider the symbol ρM,σ1,σ2 π(Xβ0), for β0 ∈ I(k).

We let M ∈ N to be determined.

First observe that, by the definition of ρM,σ1,σ2 (see (4.15.10)), we have

ρM,σ1,σ2 π(Xβ0) = σ π(Xβ0)−
∑

[α]<M

1

α!
(∆ασ1)(Y ασ2)π(Xβ0).

Now, note that, for any x ∈ G and π ∈ Ĝ we have

σ(x, π) π(Xβ0) = F
{
X̃β0 κx

}
(π),

and moreover, for any z ∈ G,

X̃β0,z κx(z) =

∫
G

X̃β0,z κ2,xy−1(zy−1)κ1,x(y) dy

=

∫
G

(
X̃β0 κ2,xy−1

)
(zy−1)κ1,x(y) dy.

So,

F
{
X̃β0,z κx

}
(π) =

∫
G

κ1,x(y) π(y)∗F{X̃β0 κ2,xy−1}(π) dy

=

∫
G

κ1,x(y) π(y)∗ (σ2 π(Xβ0))(xy
−1, π) dy

= σ1 ◦ (σ2 π(Xβ0))(x, π).

Therefore, we have shown that

ρM,σ1,σ2 π(Xβ0) = σ1 ◦ (σ2 π(Xβ0))−
∑

[α]<M

1

α!
(∆ασ1)(Y ασ2 π(Xβ0))

= ρM,σ1,σ2π(Xβ0 ).

Moreover, by Theorem 4.10.1 and Proposition 4.5.10, σ2 π(Xβ0) ∈ Sm2+|β0|.

Thus, applying Step 1 to ρM,σ1,σ2π(Xβ0 ), we conclude that there exists M0 ∈ N0,

depending on β0, σ1, σ2, such that, for any M ≥M0, there exist a1, b1, b̃2 ∈ N0

and c1 > 0 such that, for all x ∈ G,
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∣∣∣∣ρM,σ1,σ2(x, π) π(Xβ0)
∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1 ||σ2 π(Xβ0)||Sm2+|β0|,0,̃b2,0
.

By applying Lemma 4.10.2 to σ2 π(Xβ0), there exist a2, a
′
2, a2, b

′
2 ∈ N0 and

c2, c
′
2 > 0 such that

||σ2 π(Xβ0)||Sm2+|β0|,0,b2,0
. ||σ2||Sm2 ,a2,b2,c2 ||π(Xβ0)||S|β0|,a′2,b′2,c′2 .

So, for every x ∈ G and all M ≥M0 we have

∣∣∣∣ρM,σ1,σ2(x, π) π(Xβ0)
∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 . (4.15.31)

Step 3b: X̃β0 κM,σ1,σ2,x

Let M ∈ N0 to be chosen and β0 ∈ I(k). Furthermore, suppose that the

distribution

κM,σ1,σ2 : (x, z) 7−→ κM,σ1,σ2,x(z)

denotes the right convolution kernel associated to ρM,σ1,σ2 . In this step we com-

pute an estimate for the L∞-norm of X̃β0 κM,σ1,σ2,x, for a fixed x ∈ G.

By Theorems 3.4.1 and 3.2.3, X̃β0 κM,σ1,σ2,x is continuous on G and there

exists C > 0, independent of X̃β0 κM,σ1,σ2,x, such that

∣∣∣∣X̃β0 κM,σ1,σ2,x

∣∣∣∣
L∞(G)

≤ C
∑

β′0 ∈I(k)

|β′0|≤d l2e+|β0|

∣∣∣∣X̃β0 κM,σ1,σ2,x

∣∣∣∣
L2(G)

, (4.15.32)

provided that the right hand side of this inequality is finite. We now prove

this. By Plancherel’s Theorem (see Theorem 2.2.7), for any β′0 ∈ I(k), with

|β′0| ≤ |β0|, we have

∣∣∣∣X̃β′0
κM,σ1,σ2,x

∣∣∣∣
L2(G)

=
∣∣∣∣ρM,σ1,σ2(x, π) π(Xβ′0

)
∣∣∣∣
L2(Ĝ)

≤
∣∣∣∣ρM,σ1,σ2(x, π) π(I + L)N1

∣∣∣∣
L∞(Ĝ)∣∣∣∣π(I + L)−N1 π(Xβ′0

)
∣∣∣∣
L2(Ĝ)

,
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for N1 ∈ N0 to be determined.

Observe that, by the work done in Step 3 (see (4.15.31)), there exists M0 ∈
N0 such that, for any M ≥ M0, there exist a1, a2, b1, b2 ∈ N0 and c1, c2 > 0

such that

∣∣∣∣ρM,σ1,σ2(x, π) π(I + L)N1
∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1
||σ2||Sm2 ,a2,b2,c2

. (4.15.33)

Furthermore, we have

∣∣∣∣π(I + L)−N1 π(Xβ′0
)
∣∣∣∣
L2(Ĝ)

.
∣∣∣∣π(I + L)−

1
2

(2N1−|β′0|)
∣∣∣∣
L2(Ĝ)

=
∣∣∣∣B2N1−|β′0|

∣∣∣∣
L2(G)

,

where B2N1−|β′0| denotes the right-convolution kernel associated to the operator

(I + L)−
1
2

(2N1−|β′0|). This is finite, provided that 2N1 − |β′0| > l
2
, by Proposition

3.1.9. Thus, it suffices to assume that N1 is such that

2N1 −
⌈
l

2

⌉
− |β0| >

l

2
.

Therefore, by (4.15.33), we have proved that, for each β0 ∈ I(k), for any

M ≥M0, there exists C > 0, independent of x, such that

∣∣∣∣X̃β0 κM,σ1,σ2,x

∣∣∣∣
L∞(G)

≤ C ||σ1||Sm1 ,a1,b1,c1
||σ2||Sm2 ,a2,b2,c2

.

Step 4: π(Xβ0) ρM,σ1,σ2

In this step of the proof, we consider the symbol π(Xβ0) ρM,σ1,σ2 , for β0 ∈ I(k).

We let M ∈ N to be determined, and suppose κM,σ1,σ2 : (x, z) 7→ κM,σ1,σ2,x(z)

denotes the right-convolution kernel associated to ρM,σ1,σ2 .

First observe that, by Lemma 2.2.4,

∣∣∣∣π(Xβ0) ρM,σ1,σ2

∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣Xβ0 κM,σ1,σ2,x

∣∣∣∣
L1(G)

.
∣∣∣∣Xβ0 κM,σ1,σ2,x

∣∣∣∣
L∞(G)

, (4.15.34)

for x ∈ G. Now, recall that Xβ0 can be written as
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Xβ0 =
∑
|β̃0|≤|β0|

cβ̃0 X̃β̃0
,

for some cβ̃0 ∈ C
∞(G). Hence,

Xβ0 κM,σ1,σ2,x =
∑
|β̃0|≤|β0|

cβ̃0 X̃β̃0
κM,σ1,σ2,x.

By applying in Step 3b to X̃β̃0
κM,σ1,σ2,x, for each β̃0 ∈ I(k), with |β̃0| ≤ |β0|,

we then obtain that Xβ0 κM,σ1,σ2,x is continuous on G and satisfies the estimate

∣∣∣∣Xβ0 κM,σ1,σ2,x

∣∣∣∣
L∞(G)

. ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 ,

for some a1, a2, b1, b2 ∈ N0 and c1, c2 > 0, for M large enough. So, by

(4.15.34), we have obtained that, for every β0 ∈ I(k), there exists M0 ∈ N0

such that, whenever M ≥M0,

∣∣∣∣π(Xβ0) ρM,σ1,σ2

∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 .

Step 5: ∆αρM,σ1,σ2

Let q be a smooth, real-valued function on G, which is CC-vanishing at eG up

to order a − 1, for a ∈ N. In this step of the proof we consider the symbol

∆q ρM,σ1,σ2 , for M ∈ N0 to be determined. First observe that

(q̃ κx)(z) =

∫
G

q(y−1yz−1)κ2,xy−1(zy−1)κ1,x(y) dy. (4.15.35)

By Theorem 4.3.3, for any y, z ∈ G and M ∈ N0 we have

q(y−1yz−1) =
∑

[α]<M

1

α!
q0,α(yz−1) (Y αq)(y−1) +Rq

y−1,M(yz−1), (4.15.36)

where

|Rq
y−1,M(z1)| ≤ C |z1|M max

|α|≤M
||Y αq||L∞(G), ∀ z1, y ∈ G, (4.15.37)

for some C > 0 independent of y. Substituting (4.15.36) into (4.15.35) we obtain
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(q̃ κx)(z) =
∑

[α]<M

1

α!

∫
G

q0,α(yz−1) (Y αq)(y−1)κ2,xy−1(zy−1)κ1,x(y) dy

+

∫
G

Rq
y−1,M(yz−1)κ2,xy−1(zy−1)κ1,x(y) dy

=
∑

[α]<M

1

α!

∫
G

(
q̃0,α κ2,xy−1

)
(zy−1)((Ỹ αq)κ1,x)(y) dy

+

∫
G

Rq
y−1,M(yz−1)κ2,xy−1(zy−1)κ1,x(y) dy. (4.15.38)

Now note that, for each α ∈ Nn
0 , with [α] < M , the distribution (x, z) 7→(

(Ỹ αq)κ1,x

)
(z) is the kernel associated to the symbol ∆Y αq σ1. Hence,

(x, z) 7−→
∫
G

(
q̃0,α κ2,xy−1

)
(zy−1)((Ỹ αq)κ1,x)(y) dy

is the convolution kernel associated to the symbol

(∆Y αq σ1) ◦ (∆ασ2),

by Lemma 4.15.2. Hence, taking the Fourier transform of the expression given

by (4.15.38), for any x ∈ G and π ∈ Ĝ we obtain

∆q σ(x, π) =
∑

[α]<M

1

α!
(∆Y αq σ1) ◦ (∆ασ2)(x, π)

+

∫
G

κ1,x(y) π(y)∗F
{
R̃q
y−1,M κ2,xy−1

}
(π) dy.

Therefore, by the definition of ρM,σ1,σ2 (see (4.15.10)), we have

∆q ρM,σ1,σ2(x, π) =
∑

[α]<M

1

α!
(∆Y αq σ1) ◦ (∆ασ2)(x, π)

+

∫
G

κ1,x(y) π(y)∗F
{
R̃q
y−1,M κ2,xy−1

}
(π) dy

−
∑

[α]<M

1

α!
∆q

(
∆ασ1(x, π)Y α

x σ2(x, π)
)
. (4.15.39)

Step 5a: Simplification of (4.15.39)

We now aim to simplify (4.15.39). First we study the sum
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∑
[α]<M

1

α!
∆q(∆

ασ1)(Y ασ2).

Observe that, for each α ∈ Nn
0 , with [α] < M , applying Corollary 4.10.3 to

∆ασ1 and Y ασ2, with M ′ ∈ N0 to be determined, we obtain

∆q

(
∆ασ1

)(
Y ασ2

)
=

∑
[α1]<M ′

1

α1!

(
∆Y α1q ∆ασ1

)(
Y α∆α1σ2

)
+ τM ′,α,

where, for any ã, b̃ ∈ N0 and c̃ > 0, τM ′,α satisfies

||τM ′,α||Sm1−[α]+m2 ,ã,̃b,c̃ . ||∆ασ1||Sm1−[α],ã1 ,̃b1,c̃1
||Y ασ2||Sm2 ,ã2 ,̃b2,c̃2

. ||σ1||Sm1 ,ã1+[α],̃b1,c̃1
||σ2||Sm2 ,ã2 ,̃b2+[α],c̃2

, (4.15.40)

for some ã1, ã2, b̃1, b̃2 ∈ N0, c̃1, c̃2 > 0. Hence, we have obtained

∑
[α]<M

1

α!
∆q(∆

ασ1)(Y ασ2)

=
∑

[α]<M
[α1]<M ′

1

α1!

(
∆Y α1q ∆ασ1

)(
Y α∆α1σ2

)
+
∑

[α]<M

τM ′,α. (4.15.41)

Next, we study the sum

∑
[α]<M

1

α!
(∆Y αq σ1) ◦ (∆ασ2).

Applying (4.15.7) to the symbols ∆Y αq σ1 and ∆ασ2, with M ′, we obtain

(∆Y αq σ1) ◦ (∆ασ2) =
∑

[α1]<M ′

1

α1!

(
∆α1∆Y αq σ1

)(
Y α1∆ασ2

)
+ ρM ′,∆Y αqσ1,∆ασ2 .

Thus, we have shown that
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∑
[α]<M

1

α!
(∆Y αq σ1) ◦ (∆ασ2)

=
∑

[α]<M
[α1]<M ′

1

α1!

(
∆α1∆Y αq σ1

)(
Y α1∆ασ2

)
+
∑

[α]<M

ρM ′,∆Y αqσ1,∆ασ2 . (4.15.42)

Hence, combining (4.15.41) and (4.15.42) with (4.15.39), we obtain

∆q ρM,σ1,σ2(x, π) =
∑

[α]<M

(ρM ′,∆Y αqσ1,∆ασ2 − τM ′,α)

+

∫
G

κ1,x(y) π(y)∗F
{
R̃q
y−1,M κ2,xy−1

}
(π) dy. (4.15.43)

Next, we shall find an estimate for
∣∣∣∣∆q ρM,σ1,σ2(x, π)

∣∣∣∣
L∞(Ĝ)

using (4.15.43).

Step 5b

We first study the L∞(Ĝ)-norm of the sum

∑
[α]<M

(ρM ′,∆Y αqσ1,∆ασ2 − τM ′,α).

By the work done in Step 1, we readily obtain that there exists M0 ∈ N0 such

that, for any M,M ′ ≥ M0, whenever [α] < M , there exist a1, a2, b1, b2 ∈ N0

and c1, c2 > 0 such that

||ρM ′,∆Y αqσ1,∆ασ2||L∞(Ĝ) . ||∆Y αqσ1||Sm1−(a−[α]),a1,b1,c1
||∆ασ2||Sm2−[α],a2,b2,c2

. ||σ1||Sm1 ,a1+(a−[α]),b1,c1
||σ2||Sm2 ,a2+[α],b2,c2

.

This, together with (4.15.40), shows that there exist a′1, a
′
2, b

′
1, b

′
2 ∈ N0 and

c′1, c
′
2 > 0 such that

∑
[α]<M

∣∣∣∣ρM ′,∆Y αqσ1,∆ασ2 − τM ′,α
∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a′1,b
′
1,c
′
1
||σ2||Sm2 ,a′2,b

′
2,c
′
2
. (4.15.44)

269



Step 5c

It remains to check the L∞(Ĝ)-norm of the integral∫
G

κ1,x(y) π(y)∗F
{
R̃q
y−1,M κ2,xy−1

}
(π) dy.

Let M1 ∈ N to be chosen. For π ∈ Ĝ we have

∫
G

κ1,x(y) π(y)∗F
{
R̃q
y−1,M κ2,xy−1

}
(π) dy

=

∫
G

(
(I + L̃y)M1(I + L̃y)−M1κ1,x(y)

)
π(y)∗F

{
R̃q
y−1,M κ2,xy−1

}
(π) dy

=

∫
G

(
(I + L̃y)−M1κ1,x

)
(y) (I + L̃y)M1

[
π(y)∗F

{
R̃q
y−1,M κ2,xy−1

}
(π)
]

dy,

as I + L̃ is a symmetric operator on L2(G). Since

(I + L̃)M1 =
∑

β0 ∈I(k)
|β0|≤2M1

cβ0 X̃β0 ,

for some cβ0 ∈ R, then

∫
G

(
(I + L̃y)−M1κ1,x

)
(y) (I + L̃y)M1

[
π(y)∗F

{
R̃q
y−1,M κ2,xy−1

}
(π)
]

dy

=
∑

β0 ∈I(k)
|β0|≤2M1

cβ0

∫
G

(
(I + L̃y)−M1κ1,x

)
(y) X̃β0,y

[
π(y)∗F

{
R̃q
y−1,M κ2,xy−1

}
(π)
]

dy

=
∑

β ∈I(k)3

|β|≤2M1

cβ

∫
G

(
(I + L̃y)−M1κ1,x

)
(y) (X̃β1,y1=y π(y1)∗)

F
{(
X̃β2,y2=y R̃

q

y−1
2 ,M

) (
X̃β3,y3=y κ2,xy−1

3

)}
(π) dy,

for some cβ ∈ R, having used Leibniz’s rule for vector fields on the last equality.

Now, observe that, for β ∈ I(k)3 and y ∈ G we have

X̃β1,y π(y)∗ = (−1)|β1| π(y)∗π(Xβ1).

Moreover, by (4.10.17),

X̃β2,y R̃
q
y−1,M = R̃

X̃β2q

y−1,M .
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Additionally,

X̃β3,y κ2,xy−1 = (−1)|β3|Xβ3,x1=xy−1 κ2,x1 .

Thus, we have

∫
G

κ1,x(y) π(y)∗F
{
R̃q
y−1,M κ2,xy−1

}
(π) dy

=
∑

β ∈I(k)3

|β|≤2M1

(−1)|β1|+|β3| cβ

∫
G

(
(I + L̃y)−M1 κ1,x

)
(y) π(y)∗

π(Xβ1)F
{
R̃
X̃β2q

y−1,M

(
Xβ3,x1=xy−1 κ2,x1

)}
(π) dy.

Taking L∞(Ĝ)-norm we obtain

∣∣∣∣∣∣∣∣∫
G

κ1,x(y) π(y)∗F
{
R̃q
y−1,M κ2,xy−1

}
(π) dy

∣∣∣∣∣∣∣∣
L∞(Ĝ)

.
∑

β ∈I(k)3

|β|≤2M1

sup
y ∈G

∣∣∣∣π(Xβ1)F
{
R̃
X̃β2q

y−1,M

(
Xβ3,x1=xy−1 κ2,x1

)}
(π)
∣∣∣∣
L∞(Ĝ)

×
∣∣∣∣(I + L̃)−M1 κ1,x

∣∣∣∣
L1(G)

. (4.15.45)

We first study the L1(G)-norm on the right hand side of (4.15.45). Note that,

by Plancherel’s Theorem (see Theorem 2.2.7), for every x ∈ G we have

∣∣∣∣(I + L̃)−M1 κ1,x

∣∣∣∣
L1(G)

.
∣∣∣∣(I + L̃)−M1 κ1,x

∣∣∣∣
L2(G)

=
∣∣∣∣σ1(x, π) π(I + L)−M1

∣∣∣∣
L2(Ĝ)

≤
∣∣∣∣π(I + L)−

1
2

(m1−m1) σ1(x, π)π(I + L)
−m1

2

∣∣∣∣
L∞(Ĝ)∣∣∣∣π(I + L)−

1
2

(2M1−m1)
∣∣∣∣
L2(Ĝ)

.

By Proposition 3.1.9,

∣∣∣∣π(I + L)−
1
2

(2M1−m1)
∣∣∣∣
L2(Ĝ)

< +∞,

provided that 2M1 > m1 + l
2
. Moreover, there exist ã1, b̃1 ∈ N0 and c̃1 > 0

such that
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∣∣∣∣π(I + L)−
1
2

(m1−m1) σ1(x, π) π(I + L)
−m1

2

∣∣∣∣
L∞(Ĝ)

≤ ||σ1||Sm1 ,ã1 ,̃b1,c̃1
.

Hence, for 2M1 > m1 + l
2
,

∣∣∣∣(I + L̃y)−M1κ1,x

∣∣∣∣
L1(G)

. ||σ1||Sm1 ,ã1 ,̃b1,c̃1
. (4.15.46)

Next we study the L∞(Ĝ)-norm on the right hand side of (4.15.45). Now,

observe that, by Lemma 2.2.4, for every x, y ∈ G and β ∈ I(k)3, with |β| ≤
2M1, we have

∣∣∣∣π(Xβ1)F
{
R̃
X̃β2q

y−1,M

(
Xβ3,x1=xy−1 κ2,x1

)}
(π)
∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣Xβ1

{
R̃
X̃β2q

y−1,M

(
Xβ3,y3=y κ2,xy−1

3

)}∣∣∣∣
L1(G)

≤
∑

β1,1,β1,2 ∈I(k)
|β1,1|+|β1,2|=|β1|

∫
G

∣∣Xβ1,1,z1=z R̃
X̃β2q

y−1,M(z1)
∣∣

∣∣Xβ1,2,z2=zXβ3,x1=xy−1 κ2,x1(z2)
∣∣ dz, (4.15.47)

by Leibniz’s rule for vector fields. Furthermore, for any β1,1, β1,2 ∈ I(k), with

|β1,1|+ |β1,2| = |β1|, we have

∣∣Xβ1,1,z R̃
X̃β2q

y−1,M(z)
∣∣ . |z|M−|β1,1|, ∀ z ∈ G, (4.15.48)

Hence, by (4.15.47) we obtain

∣∣∣∣π(Xβ1)F
{
R̃
X̃β2q

y−1,M

(
Xβ3,x1=xy−1 κ2,x1

)}
(π)
∣∣∣∣
L∞(Ĝ)

.
∑

β1,1,β1,2 ∈I(k)
|β1,1|+|β1,2|=|β1|

∫
G

|z|M−|β1,1|
∣∣Xβ1,2,z2=zXβ3,x1=xy−1 κ2,x1(z2)

∣∣ dz. (4.15.49)

Furthermore, for any β1,1, β1,2 ∈ I(k), with |β1,1| + |β1,2| = |β1|, observe that

the distribution

(x, z) 7−→ Xβ1,2,zXβ3,x κ2,x(z)

is the right-convolution kernel associated to the symbol
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Xβ3 π(Xβ1,2)σ2 =
{
Xβ3,x π(Xβ1,2)σ2(x, π) : x ∈ G, π ∈ Ĝ

}
,

and additionally, by Proposition 4.5.10 and Theorem 4.10.1, Xβ3 π(Xβ1,2)σ2 ∈
Sm2+|β1,2|. Therefore, if M −|β1,1|+ l > max(m2 + |β1,2|+ l, 0), then by Corollary

4.13.5, there exist a′, b′ ∈ N0 and c′ > 0

∫
G

|z|M−|β1,1|
∣∣Xβ1,2,z2=zXβ3,x1=xy−1 κ2,x1(z2)

∣∣ dz
.
∣∣∣∣Xβ3 π(Xβ1,2)σ2

∣∣∣∣
Sm2+|β1,2|,a′,b′,c′

.
∣∣∣∣π(Xβ1,2)

∣∣∣∣
S|β1,2|,a′1,b

′
1,c
′
1
||σ2||Sm2 ,a′2,b

′
2,c
′
2
, (4.15.50)

for some a′1, a
′
2, b

′
1, b

′
2 ∈ N0 and c′1, c

′
2 > 0, by Lemma 4.10.2. It then suffices

to choose M ∈ N such that

M > 2M1 + l + max(m2 + 2M1 + l, 0). (4.15.51)

Combining (4.15.50) and (4.15.51) with (4.15.49) we then deduce that there exists

M0 ∈ N0 such that, for any M ≥M0, there exist ã2, b̃2 ∈ N0 and c̃2 > 0 such

that

∣∣∣∣π(Xβ1)F
{
R̃
X̃β2q

y−1,M

(
Xβ3,y3=y κ2,xy−1

3

)}
(π)
∣∣∣∣
L∞(Ĝ)

. ||σ2||Sm2 ,ã2 ,̃b2,c̃2
. (4.15.52)

Thus, by (4.15.45), (4.15.46) and (4.15.52), we conclude that there exists

M0 ∈ N0 such that, for all M ≥ M0, there exist ã1, ã2, b̃1, b̃2 ∈ N0 and

c̃1, c̃2 > 0 such that

∣∣∣∣∣∣∣∣∫
G

κ1,x(y) π(y)∗F
{
R̃q
y−1,M κ2,xy−1

}
(π) dy

∣∣∣∣∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,ã1 ,̃b1,c̃1
||σ2||Sm2 ,ã2 ,̃b2,c̃2

. (4.15.53)

Step 5d: Conclusion of Step 5

By (4.15.43), combining (4.15.44) and (4.15.53), we conclude that there exist

a1, a2, b1, b2 ∈ N0 and c1, c2 > 0 such that

sup
x∈G
π ∈ Ĝ

∣∣∣∣∆q ρM,σ1,σ2(x, π)
∣∣∣∣

L (Hπ)
. ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 ,
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as required.

4.15.5 End of the proof of Theorem 4.15.1

Performing the analysis done in Steps 1-5 simultaneously, we obtain that for all

β0, β1, β2 ∈ I(k) and α ∈ N0, there exists M0 ∈ N0 such that for all M ≥M0

there exist C > 0, and a′1, a
′
2, b

′
1, b

′
2 ∈ N0 and c′1, c

′
2 > 0 such that

∣∣∣∣π(Xβ1) ∆αX̃β0 ρM,σ1,σ2(x, π) π(Xβ2)
∣∣∣∣
L∞(Ĝ)

≤ C ||σ1||Sm1 ,a′1,b
′
1,c
′
1
||σ2||Sm2 ,a′2,b

′
2,c
′
2
. (4.15.54)

Now, if α ∈ Nn
0 , β ∈ I(k) and ν ∈ R, then for any M ≥M0 we have

∣∣∣∣π(I + L)−
1
2

(m−[α]+ν) ∆αX̃β0 σ(x, π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

.
∑

[α1]<M

∣∣∣∣π(I + L)−
1
2

(m−[α]+ν) ∆αX̃β0(∆
α1σ1)(Y α1σ2)(x, π) π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

+
∣∣∣∣π(I + L)−

1
2

(m−[α]+ν) ∆αX̃β0 ρM,σ1,σ2(x, π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

, (4.15.55)

by the definition of ρM,σ1,σ2 (see (4.15.10)).

First, we analyse the sum. Note that, by Theorem 4.10.1, for every α1 ∈ Nn
0 ,

with [α1] < M , there exist ã1, ã2, b̃1, b̃2 ∈ Nn
0 and c̃1, c̃2 > 0 such that

∣∣∣∣π(I + L)−
1
2

(m−[α]+ν) ∆αX̃β0(∆
α1σ1)(Y α1σ2)(x, π) π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

. ||∆α1σ1||Sm1−[α1],ã1 ,̃b1,c̃1
||Y α1σ2||Sm2 ,ã2 ,̃b2,c̃2

. ||σ1||Sm1 ,ã1+[α1],̃b1,c̃1
||σ2||Sm2 ,ã2 ,̃b2+[α1],c̃2

. (4.15.56)

Moreover, we let

γ1 := max

(
−1

2
(m− [α] + ν), 0

)
, γ2 := max

(ν
2
, 0
)
.

By (4.15.54), there exist a1, a2, b1, b2 ∈ N0 and c1, c2 > 0 such that
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∣∣∣∣π(I + L)−
1
2

(m−[α]+ν) ∆αX̃β0 ρM,σ1,σ2(x, π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

≤
∑
|β1|≤γ1
|β2|≤γ2

∣∣∣∣π(Xβ1) ∆αX̃β0 ρM,σ1,σ2(x, π) π(Xβ2)
∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1
||σ2||Sm2 ,a2,b2,c2

. (4.15.57)

Combining (4.15.56) and (4.15.57) with (4.15.55), we conclude that there exist

a1, a2, b1, b2 ∈ N0 and c1, c2 > 0 such that

∣∣∣∣π(I + L)−
1
2

(m−[α]+ν) ∆αX̃β0,x σ(x, π) π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 .

Observe that, for any β ∈ Nn
0 , the differential operator Y β can be written as

Y β =
∑

β0 ∈I(k)
|β0|≤[β]

cβ0 X̃β0 ,

for some cβ0 ∈ C∞(G). Hence, we have shown that, for any α, β ∈ Nn
0 , there

exist a1, a2, b1, b2 ∈ N0 and c1, c2 > 0 such that

∣∣∣∣π(I + L)−
1
2

(m−[α]+ν) ∆αY β
x σ(x, π)π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 .

This finishes the proof of Theorem 4.15.1.

4.15.6 Asymptotics for composition

Theorem 4.15.1 can be improved via the following result.

Corollary 4.15.4. Let m1, m2 ∈ R, and set m := m1 + m2. Furthermore, let

σ1 ∈ Sm1 and σ2 ∈ Sm2, denoting σ := σ1 ◦ σ2, and recall that, for M ∈ N,

ρM,σ1,σ2 := σ −
∑

[α]<M

1

α!
(∆ασ1) (Y ασ2) .

Then, there exists M0 ∈ N0 such that, for all M ≥M0, we have
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σ ∼
∑

[α]<M

1

α!
(∆ασ1) (Y ασ2) ,

in the sense that, for all a, b ∈ N0 and c > 0, there exist a1, a2, b1, b2 ∈ N0

and c1, c2 > 0 such that

||ρM,σ1,σ2||Sm−M ,a,b,c . ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 .

Proof. Let α, β ∈ Nn
0 and ν ∈ R. Furthermore, let M ′ > M to be determined.

First observe that

ρM,σ1,σ2 = σ −
∑

[α1]<M

1

α1!
(∆α1σ1) (Y α1σ2)

= σ −
∑

[α1]<M ′

1

α1!
(∆α1σ1) (Y α1σ2) +

∑
[α1]<M ′

1

α1!
(∆α1σ1) (Y α1σ2)

−
∑

[α1]<M

1

α1!
(∆α1σ1) (Y α1σ2)

= ρM ′,σ1,σ2 +
∑

M≤[α1]<M ′

1

α1!
(∆α1σ1) (Y α1σ2) .

Hence, for every x ∈ G,

∣∣∣∣π(I + L)−
1
2

(m−M−[α]+ν) ∆αY β
x ρM,σ1,σ2(x, π)π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣π(I + L)−

1
2

(m−M−[α]+ν) ∆αY β
x ρM ′,σ1,σ2(x, π) π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

+
∑

M≤[α1]<M ′

∣∣∣∣π(I + L)−
m−M−[α]+ν

2 ∆αY β
x (∆α1σ1)(Y α1σ2)(x, π)π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

.

We now do the same analysis as in Section 4.15.5. First note that, for any

α1 ∈ Nn
0 , with M ≤ [α1] < M , we have

∣∣∣∣π(I + L)−
m−M−[α]+ν

2 ∆αY β
x (∆α1σ1)(Y α1σ2)(x, π)π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

≤
∣∣∣∣π(I + L)−

1
2

([α1]−M)
∣∣∣∣
L∞(Ĝ)∣∣∣∣π(I + L)−

m−[α1]+ν
2 ∆αY β

x (∆α1σ1)(Y α1σ2)(x, π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

,

and by functional analysis,
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∣∣∣∣π(I + L)−
1
2

([α1]−M)
∣∣∣∣
L∞(Ĝ)

< +∞.

Hence observe that, by Theorem 4.10.1 (see also (4.15.56)), there exist ã1, ã2, b̃1, b̃2 ∈
N0 and c̃1, c̃2 > 0 such that

∑
M≤[α1]<M ′

∣∣∣∣π(I + L)−
1
2

(m−M−[α]+ν)∆αY β
x (∆α1σ1)(Y α1

x σ2)(x, π)π(I + L)
ν
2

∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,ã1 ,̃b1,c̃1
||σ2||Sm2 ,ã2 ,̃b2,c̃2

.

Furthermore, by (4.15.54) and the work done in (4.15.57), we also deduce that

there exist a1, a2, b1, b2 ∈ N0 and c1, c2 > 0 such that

∣∣∣∣π(I + L)−
1
2

(m−M−[α]+ν) ∆αY β
x ρM ′,σ1,σ2(x, π) π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

. ||σ1||Sm1 ,a1,b1,c1
||σ2||Sm2 ,a2,b2,c2

.

Hence, we have shown that there exist a1, a2, b1, b2 ∈ N0 and c1, c2 > 0 such

that

∣∣∣∣π(I + L)−
1
2

(m−M−[α]+ν) ∆αY β
x ρM,σ1,σ2(x, π) π(I + L)

ν
2

∣∣∣∣
L∞(Ĝ)

||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 .

The following result is a consequence of Theorems 4.14.1 and 4.15.1, and the

fact that (I + L)
s
2 is in the calculus, for any s ∈ R.

Corollary 4.15.5. Let m ∈ R. If σ ∈ Sm, then Op(σ) extends to a bounded

operator from L2
s(G) to L2

s−m(G), for all s ∈ R. Moreover, there exist C > 0,

a, b ∈ N0 and c > 0, independent of σ, such that

∣∣∣∣Op(σ)
∣∣∣∣

L (L2
s(G),L2

s−m(G))
≤ C ||σ||Sm,a,b,c.
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Chapter 5

Conclusion and future work

5.1 Conclusion

In this section we summarise the main results of this thesis. The objective of

this exposition was to define a class of operators Ψ which forms a symbolic

pseudo-differential calculus on a compact Lie group G, in a sub-elliptic setting.

The chosen sub-elliptic operator was the sub-Laplacian L associated to a

Hörmander system of left-invariant vector fields on G. The Sobolev spaces L2
s(G)

that arise naturally from L have relatively well known properties, and we checked

some of them, such as the Interpolation Theorem (see Theorem 3.3.1) or a Sobolev

embedding (see Theorem 3.4.1). In this chapter we also introduced a notion of

order for a smooth function q. We have that q is CC-vanishing at eG up to

order a− 1, for a ∈ N, if

|q(z)| . |z|a, ∀ z ∈ G,

where | · | denotes the Carnot-Carathéodory norm on G.

The core of the new results of this thesis appear in Chapter 4. We first

introduced the notion of comparability to the C-C metric, and the concept of

difference operators. An example of a family of functions comparable to C-C

metric is Q0, which we define in the following way. For a small neighbourhood

V of eG in G and r ∈ (0, 1], satisfying (4.2.8), we let χ, ψ ∈ D(G), taking

values in [0, 1], be such that

χ(z) ≡ 1 on Br(eG), χ(z) ≡ 0 on V c,

and
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ψ(z) ≡ 0 on Br/2(eG), ψ(z) ≡ 1 on Br(eG)c.

We then define

q0,j(z) = zj χ(z) + ψ(z) for j = 1, 2, . . . , n, (5.1.1)

and let

Q0 := {q0,1, q0,2, . . . , q0,`}.

Our next objective was to develop a pseudo-differential calculus, which is

meant in the following way: If for each m ∈ R, Ψm is a class of operators, then

the space

Ψ :=
⋃
m∈R

Ψm

is said to form a calculus if it satisfies the following properties:

(I) If T1 ∈ Ψm1 and T2 ∈ Ψm2 , for m1, m2 ∈ R, then

T1 ◦ T2 ∈ Ψm1+m2 .

Moreover, the composition is a continuous map Ψm1 ×Ψm2 → Ψm1+m2 .

(II) If T ∈ Ψm, for m ∈ R, then its adjoint

T ∗ ∈ Ψm.

Moreover, the adjoint is a continuous map Ψm → Ψm.

We first defined our symbol classes Sm on G, for m ∈ R, with respect to

our sub-Laplacian L, any basis of vector fields V , and any Q comparable to

the C-C metric, as well as their associated operator classes Ψm. In the case

that Sm = Sm(Q0) is defined in terms of Q0 and the basis of vector fields Y

(see Section 2.4.1), we have some important properties. First of all, for any Q

comparable to the C-C metric we have

Sm(Q0) ⊂ Sm(Q).
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Secondly, on the classes of symbols Sm(Q0), difference operators satisfy a prop-

erty analogous to Leibniz’s rule. More precisely, if q is CC-vanishing at eG up

to order a− 1, for a ∈ N, and σ1 ∈ Sm1 , σ2 ∈ Sm2 , for m1, m2 ∈ R, then for

any a′, b′ ∈ N0 and c′ > 0 we have

||∆q(σ1σ2)||Sm1+m2−a,a′,b′,c′ . ||σ1||Sm1 ,a1,b1,c1 ||σ2||Sm2 ,a2,b2,c2 ,

for some a1, a2, b1, b2 ∈ N0 and c1, c2 > 0.

This result on the product of symbols provided us with the tools necessary to

prove that if T1 ∈ Ψm1(Q0) and T2 ∈ Ψm2(Q0), for m1, m2 ∈ R, then

T1 ◦ T2 ∈ Ψm1+m2(Q0),

and that the composition is a continuous map Ψm1 × Ψm2 → Ψm1+m2 . Hence,

we have proved that the space

Ψ(Q0) :=
⋃
m∈R

Ψm(Q0)

satisfies property (I) above.

5.2 Future work

The author of this thesis believes one can prove stability of Ψ(Q0) under taking

the adjoint. That is, if T ∈ Ψm(Q0), for m ∈ R, then its adjoint T ∗ ∈ Ψm(Q0).

The main ideas for the proof of this result appear in Section 4.15, where we proved

the stability of Ψ(Q0) under composition. This will imply that the space

⋃
m∈R

Ψm(Q0)

has all the natural properties of a symbolic pseudo-differential calculus; that is,

it is an algebra of operators with a notion of order compatible with the action on

functional spaces.

The next questions will require more work and new ideas. For example,

understanding the appropriate conditions for a function to be comparable to the

C-C metric, so that

Sm(P ) = Sm(Q),

whenever P, Q are comparable to the C-C metric. Another example involves
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describing a sub-elliptic symbolic calculus for the symbol classes Smρ,δ. A priori,

for m ∈ R and 0 ≤ δ ≤ ρ ≤ 1, the class Smρ,δ is defined to be the space consisting

of symbols σ such that, for any α, β ∈ Nn
0 and any ν ∈ R, we have

sup
x∈G
π ∈ Ĝ

∣∣∣∣π (I + L)−
1
2

(m−ρ[α]+δ[β]+ν) Y β
x ∆ασ(x, π)π (I + L)

1
2
ν
∣∣∣∣

L (Hπ)
≤ C.

Observe that the case ρ = 1 and δ = 0 is the one presented in this thesis.

Moreover, the case 0 < δ < ρ < 1 will certainly be a direct generalisation of

the methods presented here. But there are other cases, such as ρ = δ = 0 (in

particular, the Calderón-Vaillancourt Theorem), which will require new ideas.

More generally, we may consider studying a sub-elliptic pseudo-differential

calculus for a Lie group G of polynomial growth. One of the main difficulties in

this task is in proving the Calderón-Zygmund-type estimates for the convolution

kernel associated to a symbol belonging to the class Sm (see Section 4.13). In the

case that G is compact the convolution kernel has compact support, and hence

the behaviour away from the identity is clear, but in the non-compact setting this

has to be considered. The author of this thesis expects that finding a family of

difference operators such that the estimate away from the identity is satisfied to

not be difficult. However, obtaining the estimate near the identity would require

more work.

As the pseudo-differential calculus of H was developed in Fisher and Ruzhan-

sky [18] (see also Bahouri et al. [3]), it is natural to compare it with the con-

traction of our pseudo-differential calculus on G = SU(2). The setting of these

investigations can be extended to any contraction of a compact Lie group to its

nilpotent counterpart intervening in the Iwasawa decomposition of a non-compact

semisimple Lie group (see Dooley and Ricci [12]).

In conclusion, having obtained a sub-elliptic pseudo-differential calculus in

the compact setting, the author believes this exposition presents the groundwork

for more general results.

281



Appendix A

The Carnot-Carathéodory metric

A.1 Connecting paths

Let G be a connected Lie group of dimension n and suppose that

X = {X1, X2, . . . , Xk}

forms a Hörmander system of vector fields in G (see Definition 2.3.12).

Suppose γ : J → G is a continuous map, where J ⊂ R is an interval. The

velocity of γ at t0 ∈ J is defined to be the vector

γ′(t0) = γ∗

(
d

dt

∣∣∣∣
t=t0

)
, (A.1.1)

which is the push-forward of d
dt

∣∣
t=t0

by γ (see Section 2.3.1). Here d
dt

∣∣
t=t0

denotes the usual derivative on R, or equivalently, the canonical tangent vector

to R at t0. Moreover, note that γ′(t0) is a tangent vector to G at the point

γ(t0). The action of γ′(t0) on a smooth function f on G is given by

γ′(t0)f = (f ◦ γ)′(t0).

For a, b ∈ R, with a ≤ b, we define CX([a, b]) to be the set consisting of

absolutely continuous paths γ : [a, b]→ G such that

γ′(t) =
k∑
i=1

ci(t)Xi(γ(t)) a.e., (A.1.2)

where c1, c2, . . . , ck are some integrable functions over the interval [a, b]. For a

path γ ∈ CX([a, b]) , we define the length of γ as
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|γ| =

∫ b

a

(
k∑
i=1

ai(t)
2

)1/2

dt. (A.1.3)

Definition A.1.1. Suppose a, b ∈ R, with a ≤ b. Let γ : [a, b] → G be an

absolutely continuous path belonging to CX([a, b]). Then, its velocity γ′ satisfies

γ′(t) =
k∑
i=1

ci(t)Xi(γ(t)) a.e.,

where c1, c2, . . . , ck are some integrable functions over the interval [a, b]. We say

γ has constant velocity λ ≥ 0 if for a.a. t ∈ [a, b], we have

||γ′(t)|| :=

(
k∑
i=1

ci(t)
2

)1/2

= λ.

Definition A.1.2. For x, y ∈ G, if there exists an absolutely continuous path

γ ∈ CX([0, 1]), for some a, b ∈ R, with γ(0) = x and γ(1) = y, we define the

Carnot-Carathéodory distance between x and y by

d(x, y) = inf
{
|γ| : γ ∈ CX([0, 1]), γ(0) = x, γ(1) = y

}
.

For z ∈ G, we denote

|z| := d(eG, z). (A.1.4)

It is proved in [55] (p. 39) that d(·, ·) is indeed a metric on G. Moreover, for

any two points x, y ∈ G, the existence of a path connecting x and y is due

to the following well-known result by Chow and Rashevskii (for a proof, see, for

example, Chapter 2 in Montgomery [35]).

Theorem A.1.3 (Chow’s Theorem). If x, y are any two points on G, then there

exists an absolutely continuous path γ which connects x and y.

One can also study the special case of absolutely continuous paths γ satisfying

d(x, y) = |γ|,

for some points x, y ∈ G. Such paths are called (minimising) geodesics. In the

general setting of manifolds, a geodesic between any two points does not always

exist. However, as proved in Bellaiche and Risler [4] (see Theorem 2.7 therein),

one always exists in our case due to Hörmander’s condition on X.
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Theorem A.1.4. Any two points in G can be joined by a geodesic. That is, for

any x, y ∈ G, there exists an absolutely continuous path γ : [a, b] → G, such

that γ(a) = x and γ(b) = y, for some a, b ∈ R, which satisfies

|γ| = d(x, y).

Remark A.1.5. Let x, y be two distinct points in the compact Lie group G.

Furthermore, suppose γ : [a, b]→ G is an absolutely continuous path connecting

x and y belonging to CX([a, b]). Then, consider the path γ0 : [0, 1]→ G given

by

γ0(t) = γ ((1− t)a+ tb) , t ∈ [0, 1].

Then, γ0 is also an absolutely continuous path connecting x and y, and more-

over,

|γ0| =
1

b− a
|γ|.

Thus, γ0 ∈ CX([0, 1]), and in particular, the Carnot-Carathéodory distance

between x and y, d(x, y), is well defined.

Furthermore, let T = d(x, y). We can also construct the path γ1 : [0, T ]→ G

given by

γ1(t) = γ

(
(T − t)a+ tb

T

)
, t ∈ [0, T ].

The path γ1 ∈ CX([0, T ]) is also an absolutely continuous path lying in G, and

connects x and y. Moreover, we have

|γ1| =
T

b− a
|γ|.

A.2 Local theory

As in the previous section, we let G be a connected Lie group of dimension n

and consider a Hörmander system of vector fields X = {X1, X2, . . . , Xk}, for

some k ∈ N. Suppose further that g denotes the Lie algebra of G.

Now, let Br(eG) be the ball centred at the identity element eG of radius r,

with respect to the Carnot-Carathéodory metric. Furthermore, let V (r) denote

the volume of the ball; that is,
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V (r) =

∫
Br(eG)

dz,

where dz denotes the Haar measure on G. The objective is to give an estimate

for V (r). We start by letting Vj, j ∈ N, be the linear subspace of g spanned

by the commutators of vector fields of length at most a . That is,

Vj := Span
{

[Xi1 , [Xi2 , . . . , [Xiα−1 , Xiα ] . . . ]] : |(i1, i2, . . . , iα)| ≤ j
}
, (A.2.1)

where the span is taken over all multi-indices (i1, i2, . . . , iα), with i1, i2, . . . , iα

taking values in {1, 2, . . . , k}. The definition of Hörmander systems implies that

there exists s ∈ N such that

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vs = g.

We denote nj = dimVj, so 0 = n0 < n1 < · · · < ns = n.

Definition A.2.1 (Local dimension). Let G be a connected Lie group of dimen-

sion n and consider a Hörmander system of vector fields X = {X1, X2, . . . , Xk},
for some k ∈ N. Let Vj be the linear subspace of the Lie algebra of G given

by (A.2.1), and let nj denote its dimension. Then, the expression

l := n1 + 2(n2 − n1) + · · ·+ s(ns − ns−1)

is called the local dimension of G.

Example A.2.2. In the case of SU(2) it is not difficult to see that

V0 = Span{I}, V1 = Span{X1, X2}, V2 = Span{X1, X2, [X1, X2]}.

Since X3 = 2[X1, X2], then V2 = su(2), and so it follows that the local dimension

of SU(2) is given by

l = dimV1 + 2(dimV2 − dimV1) = 2 + 2 · (3− 2) = 4.

In general, we have the following result, whose proof may be found in [55]

(Chapter V, Theorem V.1.1).

Theorem A.2.3. Let G be a connected Lie group of dimension n and consider a

Hörmander system of left-invariant vector fields X = {X1, X2, . . . , Xk}. Suppose
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that Br(eG) denotes the ball of radius r > 0 centred at the identity eG, with

respect to the Carnot-Carathéodory metric. and let V (r) denote the volume of

this ball. Suppose further that l denotes the local dimension of G. Then there

exists C > 0 such that

C−1 rl ≤ V (r) ≤ C rl, for 0 < r < 1.

Example A.2.4. In the case of SU(2) we summarise this result as follows. For

any r > 0, there exists C > 0 such that

C−1 r4 ≤ V (r) ≤ C r4, for 0 < r < 1. (A.2.2)

Remark A.2.5. Since SU(2) is a unimodular Lie group, then for any x ∈ SU(2),

the volume of the ball Br(x) of radius r > 0 centred at x is equal to the volume

of the ball Br(I).

A.3 Integration of powers of |z|

Let G be a compact Lie group of dimension n and local dimension l. Fur-

thermore, suppose Y = {Y1, Y2, . . . , Yn} denotes a basis of the Lie algebra g of

G.

Now, for any given r ∈ (0, 1) there exists a neighbourhood N of 0 in Rn

such that the mapping φ : N → Br(eG) given by

φ((z1, z2, . . . , zn)) = ez1Y1 ez2Y2 . . . eznYn , (z1, z2, . . . , zn) ∈ N, (A.3.1)

is a diffeomorphism. For a given z ∈ Br(eG), we shall let (z1, z2, . . . , zn) denote

the coordinates of z in the sense that (A.3.1) is satisfied.

Lemma A.3.1. For any γ ∈ R, we have∫
Br(eG)

|z|γ dz ≈
∫ r

0

ργ+l−1 dρ.

Proof. We consider the change of coordinates map φ : Br(eG)→ N given by

φ(z) := (z1, z2, . . . , zn), z ∈ Br(eG).

Thus, we have
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∫
Br(eG)

|z|γ dz =

∫
N

∣∣∣∣(z1, z2, . . . , zn)
∣∣∣∣γ
Rn |Jφ−1(z1, z2, . . . , zn)| dz1 dz2 . . . dzn,

where |Jφ−1(z1, z2, . . . , zn)| denotes the determinant of the Jacobian of φ−1. Since

Vol(Br(eG)) ≈ rl (see Theorem A.2.3), then it follows that we must have

rl ≈
∫
BRn
r (0)

|Jφ−1(z1, z2, . . . , zn)| dz1 dz2 . . . dzn =

∫
Br(eG)

dz.

We now apply the substitution ρ =
∣∣∣∣(z1, z2, . . . , zn)

∣∣∣∣
Rn . Hence, the volume

element in polar coordinates satisfies

|Jφ−1(z1, z2, . . . , zn)| dz1 dz2 . . . dzn ≈ ρl−1 dρ,

which yields the result.

Proposition A.3.2. Let γ ∈ R. Then the integral∫
G

|z|γ dz < +∞,

provided that γ > −l.

Proof. Observe that, if r > 0, then∫
G

|z|γ dz =

∫
Br(eG)

|z|γ dz +

∫
Br(eG)c

|z|γ dz.

By the compactness of G,∫
Br(eG)c

|z|γ dz < +∞,

for any γ ∈ R.

We now study the integral ∫
Br(eG)

|z|γ dz, (A.3.2)

and assume that γ < 0. The case γ ≥ 0 is immediate, as the integral (A.3.2) is

finite whenever γ ≥ 0. By Proposition A.3.1, we then have∫
Br(eG)

|z|γ dz ≈
∫ r

0

ργ+l−1 dρ < +∞,

provided that γ > −l. This finishes the proof.
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Appendix B

Cotlar-Stein Lemma

This brief section is dedicated to the proof of the Cotlar-Stein Lemma for the

case in which we have a collection of infinitely many operators. First, let us state

the result for finitely many operators, whose proof can be found in Stein [47]

(Chapter VII, Section 2).

Theorem B.0.1 (Cotlar-Stein Lemma). Suppose that {T`}N`=1 is a collection of

bounded operators on a Hilbert space H and assume that we are given a sequence

of constants {γ(`)}`∈Z ⊂ R+, such that

A :=
∑
`∈Z

γ(`) < +∞.

Furthermore, suppose that for every `, k = 1, 2, . . . , N , we have

∣∣∣∣T ∗` Tk∣∣∣∣L (H )
≤ γ(`− k)2,∣∣∣∣T`T ∗k ∣∣∣∣L (H )
≤ γ(`− k)2.

Then, the operator

T :=
N∑
`=1

T`

satisfies

||T ||L (H ) ≤ A.

In the context of our work, we will use the following consequence of the Cotlar-

Stein Lemma.
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Corollary B.0.2. Suppose that {T`}`∈Z is a collection of bounded operators on

L2(G) and assume that we are given a sequence of constants {γ(`)}`∈Z ⊂ R+,

such that

A :=
∑
`∈Z

γ(`) < +∞.

Suppose that for every `, k ∈ N, we have

∣∣∣∣T ∗` Tk∣∣∣∣L (L2(G))
≤ γ(`− k)2,∣∣∣∣T`T ∗k ∣∣∣∣L (L2(G))
≤ γ(`− k)2.

Furthermore, let us assume that for any f ∈ D(G), the sum

∑
`∈Z

T`f

converges in the sense of distributions. We denote by Tf ∈ D′(G) the limit of

this sum. Then, T extends to a bounded operator on L2(G), with

||T ||L (L2(G)) ≤ A.

Proof. Theorem B.0.1 tells us that for every N ∈ N,

T (N) :=
N∑

`=−N

T`

extends to a bounded operator on L2(G) and satisfies

∣∣∣∣T (N)
∣∣∣∣

L (L2(G))
≤ A,

where A is independent of N . In particular, this means that for every f ∈
L2(G), ∣∣∣∣∣

∣∣∣∣∣
N∑
`=1

T`f

∣∣∣∣∣
∣∣∣∣∣
L2(G)

≤ A
∣∣∣∣f ∣∣∣∣

L2(G)
. (B.0.1)

Now, by the assumption that the sum
∑

`∈Z T` converges in the sense of distri-

butions, for f, g ∈ D(G), we have

〈Tf, g〉L2(G) = lim
N→∞

〈
T (N)f, g

〉
L2(G)

.
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Since

∣∣ 〈T (N)f, g
〉
L2(G)

∣∣ ≤ ∣∣∣∣T (N)
∣∣∣∣

L (L2(G))
||f ||L2(G) ||g||L2(G)

≤ A||f ||L2(G) ||g||L2(G),

where A is independent of N , then we have

∣∣ 〈Tf, g〉L2(G)

∣∣ ≤ A ||f ||L2(G) ||g||L2(G).

The density of D(G) in L2(G) implies the result.
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A. Belläıche and J. J. Risler (eds.), Sub-Riemannian geometry, volume 144.

Birkhauser Verlag, 1996, pp. 1–78.

[5] D. Bump. Automorphic forms and representations, volume 55. Cambridge

University Press, 1997.

[6] N. Burq and C. Sun. Time optimal observability for Grushin Schrödinger

equation. https://arxiv.org/pdf/1910.03691.pdf, 2019. Accessed:

13/05/2021.

[7] R. R. Coifman and G. Weiss. Analyse harmonique non-commutative sur cer-
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[27] L. Hörmander. Estimates for translation invariant operators in Lp spaces.

Acta Math., 104, 1960.
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differential operators on compact Lie groups and global hypoellipticity. Jour-

nal of Fourier Analysis and Applications, 20, 2014.

[45] L. Saloff-Coste. Analyse sur les groupes de Lie à croissance polynômiale.
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