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Summary

Extreme rainfall is becoming more common and is resulting in an increasing number of

extreme flood events. Exploring why extreme rainfall events occur and how forecasts of

such events can be improved is becoming key to improving society’s preparedness and

response to such events. This thesis evaluates and expands the capability of machine

learning methods to aid both our understanding and forecasting of heavy rainfall events.

First, atmospheric trajectories were generated and clustered to identify the key mois-

ture pathways relating to extreme rainfall events. This showed the applicability of

new clustering methodologies to the identification of extreme rainfall circulation mech-

anisms. Following this, cluster analysis was then used to carry out an indepth analysis

of the synoptic-scale meteorological conditions relating to extreme rainfall events in the

UK. This resulted in the identification of a causal relationship between mean sea-level

pressure and 2m air temperature patterns and extreme rainfall distributions. This

highlights the importance of mean sea-level pressure anomaly polarisation across the

North Atlantic, including strong and significant relationships between the synoptic pat-

terns associated with extreme rainfall events and large-scale climatic indices such as

the North Atlantic Oscillation and Atlantic Multidecedal Oscillation.

A neural network based sensitivity analysis technique was employed to identify which

synoptic regions across the North Atlantic are important for understanding the differ-

ence between extreme and regular rainfall events in Great Britain. Following this a new

model was developed using the gained knowledge to forecast regional, monthly rainfall

values using forecasted synoptic meteorological images. This new image based forecast-

ing model was shown to outperform the current state-of-the-art forecasting models; for

example, at a one-month lead-time the image based model outperforms the ECMWF’s

mathematical model by 6mm. However, when comparing the models on the most ex-

treme rainfall events the new image-based model produces errors 28mm lower than

the ECMWF’s model. Further to this, sensitivity analysis of the image-based model

reveals a strong relationship between a low mean sea-level pressure anomaly followed

by a high mean sea-level pressure anomaly in the North Atlantic results in greatly

increased rainfall forecasts. A similar analysis of the termperature inputs highlights

a key polarisation between warm and cool air to the south west of Great Britain and

France can also lead to hightened rainfall.

Finally, a series of new forecasting techniques were developed which use a sequences

of synoptic images in the form of a meteorological video to forecast regional, monthly

rainfall. This video-based model when combined with the MetOffice’s state of the art
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forecasting model can improve rainfall forecasts across Great Britain. Highlighting this

video-based forecasting method

Throughout this thesis state-of-the-art machine learning techniques were expanded and

evaluated in the interpretation and forecasting of extreme rainfall events. The results

highlight the capability of machine learning methods to not only match but also improve

our current understanding of rainfall based forecasting and analysis. This thesis also

leads the way in opening new avenues of potential work including the investigation of

the cost-benefit analysis of using these new, data intensive models. Further to this,

new and exciting questions remain as to the sensitivity of this work to alternative

meteorological variables such as integrated water vapour and wind vectors.
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Chapter 1

Introduction

1.1 Heavy Rainfall Events

Flooding is becoming more frequent (Hu et al. 2018) and the resulting impact it is

having across the globe is becoming more severe. The number of global deaths due

to flooding is on the rise with severe impact being felt across the world. However, it

is not just deaths which are beginning to rise, the World Meteorological Organization

highlight that in the first half of 2020 alone more than 9.8 million people were displaced

due to hydrometeorological events (World Meteorological Organisation 2021). Most

flood events are caused by riverine flooding, the result of heavy rainfall of which the

magnitude and frequency is increasing (Donat et al. 2016; Allan, Liu, et al. 2014). This

increase in heavy rainfall potential is tightly linked to a warming climate (Donat et al.

2016; Westra, Alexander, and Zwiers 2013; Westra, Fowler, et al. 2014), due to the

thermodynamic Clausius-Clapyeron (CC) relation which states a warmer atmosphere

can store more water than a cooler one (Utsumi, Seto, et al. 2011; Blenkinsop et al.

2015). Mechanisms such as the CC relation are key to providing sustainable forecasts

of heavy rainfall in a changing climate, this thesis expands and evaluates the capability

of machine learning methods to identify and use rainfall mechanisms to improve both

our understanding and forecasts of heavy rainfall.

1.1.1 Primary Rainfall Mechanisms

Rainfall mechanisms across the globe vary; however, a large portion of global rainfall

(> 41%) can be attributed to cyclones (Utsumi, Kim, et al. 2017) characterised by a

very low sea-level pressure centre surrounded by strong winds and often form a spiral

arrangement. There are two key types of cyclone, tropical cyclones (TC) and extra-
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tropical cyclones (ExC). TCs form in tropical waters, with energy being gathered via

heat transfer from the ocean (Emanuel 2003). Due to their forming around tropical

waters TCs are responsible for a large portion of both extreme and non-extreme rain-

fall in the Philippines, south-east China, the southern United States and Madagascar

(Utsumi, Kim, et al. 2017). In contrast, ExCs develop in and impact the mid-latitudes

(> 30◦N , > 30◦S) (Utsumi, Kim, et al. 2017; Gimeno, Vázquez, et al. 2020). ExCs are

energized by high temperature contrasts between the cool air masses of the poles and

warm oceanic air mass towards the equator. The temperature contrast between the

cool and warm airmasses of the mid latitudes is only set to increase in a warming cli-

mate with the warm tropical air masses capable of holding and bringing more moisture

towards the mid-latitude land masses.

1.1.2 Secondary Rainfall Mechanisms

The secondary impacts of extra-tropical cyclones have also been considered, such as

those which happen either before or after the cyclones frontal systems. For example, a

common precursor to extra-tropical cyclones are atmospheric rivers (ARs) and recent

evidence is highlighting ARs as being key contributors to heavy rainfall events across

the world (Gimeno, Vázquez, et al. 2020) with extensive work highlighting their effect

in western Europe (Lavers, Allan, et al. 2011; Lavers and Villarini 2013; Lavers and Vil-

larini 2015; Eiras-Barca et al. 2021). The technical definition of ARs is widely debated

(Eiras-Barca et al. 2021); however, the American Meteorological Society defines ARs

as “A long, narrow, and transient corridor of strong horizontal water vapor transport

that is typically associated with a low-level jet stream ahead of the cold front of an

extratropical cyclone” (American Meteorological Society 2019). ARs can also influence

the development of explosive cyclones. Explosive cyclones are defined by the deep-

ening of their low pressure centers at a rate much faster than ordinary non-explosive

cyclones. Because of the sharp gradient towards lower pressures explosive cyclones are

often related to stronger winds and heavier precipitation (Tsukijihara, Kawamura, and

Kawano 2019; Liberato 2014). Eiras-Barca et al. (2018) assess the role of ARs in

the development of explosive cyclones in both the North Atlantic and North Pacific

indicating that 80% of explosive cyclones have a related AR whereas only 40% of non-

explosive cyclones are linked to ARs. Despite this, there is dispute over whether ARs

always tend to result heavy precipitation events or not. For example, Champion et al.

(2015) highlight that less than 35% of winter and 15% of summer ARs were associated

with relative seasonal extreme rainfall events in the UK. This indicates the presence of

an AR alone is not sufficient for heavy precipitation.
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Allan et al. (2019) investigated synoptic precursors of extreme short-duration (3-hour)

rainfall events in the UK over northwest Europe and the North Atlantic. Their results

reveal different conditions associated with intense rainfall events in different parts of

the country. For example, intense rainfall events in both the South East of England

and western Scotland coincide with negative SLP anomalies in the eastern Atlantic on

the day prior to the event. However, for intense rainfall events in the South East of

England the centre of this negative SLP anomaly is further south than for events in

western Scotland. Their results highlight not only the regional homogeneity of extreme

events (e.g. Champion, Blenkinsop, et al. 2019; Svensson and Hannaford 2019) in

the UK but also their association with particular synoptic scale atmospheric patterns.

Similarly, Ummenhofer et al. (2017) clustered SLP and precipitation patterns over

Europe and identified a similar northwest and southeast regional disparity across the

British Isles. However, in a study on extreme rainfall in east Africa, Wainwright et al.

(2021) show that the presence of a low-pressure anomaly or cyclonic system is again

not enough to describe the rainfall quantities. Instead, a combination of magnitude,

location and other synoptic factors such as temperature are required to accurately assess

the potential impact of a system. The factors described in this section lead to the need

for incorporating not only the known rainfall mechanisms such as the CC relation and

the presence of cyclonic activity but also the incorporation of unknown meteorological

relationships for the future forecasting and understanding of heavy rainfall.

1.2 Current Techniques

Current methods to identify the meteorological drivers for rainfall events can be split

into three types: (i) the analysis of meteorological patterns for a subset of rainfall

events (event composites), (ii) the analysis of rainfall variation across either a spatial

or temporal domain for a subset of meteorological patterns (meteorological composites),

and (iii) the sensitivity analysis of rainfall forecasting methods which use meteorological

parameters. These three technique varieties are shown in Figure 1-1. Each of these

techniques can then be broken down further as shown in Figure 1-1.

Firstly, event composite studies consist of analyses on a subset of events. Such work

can either focus on developing an understanding of the meteorological drivers behind

distinct events such as Storm Desmond in 2015 (Matthews et al. 2018) and Hurricane

Harvey in 2017 (Sarkar, Singh, and Chauhan 2018). Alternatively, event composite

studies can base their subsets on information of the events themselves such as location

(Westra, Alexander, and Zwiers 2013; Jones, Fowler, et al. 2013; Nalley et al. 2019)

or magnitude (Hellström 2005; Brown 2018; Allan, Blenkinsop, et al. 2020; Champion,
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Blenkinsop, et al. 2019). Next are meteorological composite methods which use meteo-

rological or process-based subsets; for example, grouping meteorological days based on

their synoptic mean sea-level pressure pattern (Neal et al., 2016). From here conclu-

sions regarding the influence the target process has on rainfall variation can be drawn.

Popular examples of this analysis type is the use of weather patterns to explain rain-

fall variation such as the Lamb weather types (Lamb 1950; Lamb 1972; O’Hare and

Sweeney 1993) and the more recent MO-30 weather patterns defined by Neal et al.

(2016). Finally, the sensitivity of forecasting models can be used to identify the origi-

nal drivers such as shown by Kumar et al. (2019), Larraondo et al. (2019) and Rasp

et al. (2021).

Figure 1-1: Graphical representation of the hierarchy of rainfall analysis methods.

1.2.1 Event composites

Event composite techniques for the analysis of rainfall events are generally based on the

definition of a subset of distinct events followed by agglomoration. This section begins

by first discussing the three dimensions in which rainfall events can be subset (temporal,

magnitude or spatial) followed by which meteorological parameters are commonly used

for comparisons and analysis.

Event Subsetting

Event subsetting are methods of rainfall analysis which use aggregates of meteorological

conditions for a series of rainfall events to identify and discuss the processes which lead

to the resulting rainfall series. The first type of event subsetting is temporal subsetting

which can include either the selection a specific event, such as a storm (Matthews et al.

2018) or hurricane (Sarkar, Singh, and Chauhan 2018), or the use of a temporal range

could be used to identify the factors relating to rainfall within a time range, such as

a aggregating all events within a given season (Huntingford et al. 2014; Wainwright
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et al. 2020). An alternative to temporal subsetting is patial selection which includes the

aggregation of rainfall events across a specified region such as countries, continents or

another spatial domain. Such studies tend to focus on either the temporal fluctuation in

rainfall distributions (Jones, Fowler, et al. 2013) and the resulting spatial correlations

with meteorological variables (Ummenhofer et al. 2017) across the predefined region.

Next, magnitude based subsetting methods are considered. Magnitude based subsets

are created by splitting rainfall series based on the magnitude of the events. There are

primarily two methods for sub-setting extreme rainfall series based on magnitude: a

time-based maxima approach or peaks-over threshold. Time-based maxima take the

maximum events within a given time band within a series, popular examples include the

annual maximum (AMAX) of a daily rainfall series which selected the highest magni-

tude day from each year within the series (Westra, Alexander, and Zwiers 2013; Jones,

Fowler, et al. 2013). However, this can also be applied to a seasonal daily maximum

(Jones, Fowler, et al. 2013) or a monthly daily maximum (Brown, 2018). In contrast to

selecting a set number of events are peak-over threshold (POT) methods which select

any events from a series with magnitudes over a given threshold. Such methods have

been employed in the extraction of extreme sub-daily rainfall events (Hellström 2005;

Gustafsson, Rayner, and Chen 2010; Allan, Blenkinsop, et al. 2020; Champion, Blenk-

insop, et al. 2019) and in the extraction of non-trace rainfall events (Hellström 2005;

Jones, Fowler, et al. 2013). Current literature explores the mechanisms by which the

meteorological processes result in heavy rainfall; however there have been more recent

calls for a more objective approach to this analysis (Kjeldsen et al. 2018).

Maxima based approaches guarantee comparative consistency between different rainfall

series; for example, using a maxima approach on two equally long rainfall series from

different rainfall stations will result in the same number of events for each station

whereas the use of a POT method may not. However, the maxima-based approach does

not guarantee the selection of events is comparable between the selected time bands;

for example, if using an AMAX approach on a multi-year rainfall series particularly

wet and dry years are treated the same, both contributing only a single event. This

results in dry years contributing events which may not have a reasonable magnitude

to be considered extreme and wet years may not be fully represented if there were

multiple large storms throughout the year. There are ways to deal with the short

comings of these approaches, such as those used by Champion et al. (2019) and Allan

et al. (2019). Champion et al (2019) applies a maximum number of events per rainfall

series by taking the largest 30 events from each rainfall series only. Allan et al. (2019)

uses an alternative approach which took three events per year of data, this allowed the
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study to account for station series with multiple large rainfall events while reducing

bias towards rainfall station series.

Meteorological Composites

Following the extraction of events, composite studies use either a composite compos-

ite and/or correlation-based techniques to draw relationships between the extracted

rainfall series and the meteorological conditions. While many studies will focus on a

multitude of meteorological variables (Ummenhofer et al. 2017; Champion, Blenkinsop,

et al. 2019; Allan, Blenkinsop, et al. 2020) there are several key features which have

proved useful in identifying the meteorological drivers of the respective rainfall events

to date: circulation patterns (using mean sea-level pressure, geopotential height and

wind vectors), temperature patterns and water vapour patterns.

First, circulation pattern-based analysis is conducted either through the interpreta-

tion of synoptic-scale composites of mean sea-level pressure (MSLP) (Ummenhofer

et al. 2017; Champion, Blenkinsop, et al. 2019; Allan, Blenkinsop, et al. 2020) and

geopotential height (GpH) (Hellström 2005; Champion, Blenkinsop, et al. 2019; Allan,

Blenkinsop, et al. 2020) patterns or by correlating the events with change to large scale

synoptic indices such as the North Atlantic Oscillation (NAO) (Huntingford et al. 2014;

Brown 2018). The NAO indicates the difference in pressure between the generally low

pressure centred on Iceland and a generally higher pressure centred on the Azores.

Indices such as the NAO influence the MSLP and GpH are often used to generalise

large-scale variation in MSLP anomalies. Using either a meteorological variable such

as the NAO or a MSLP/GpH composite, the pressure differences are used to explain

moisture transport systems, with pressure centres pulling air masses across the globe.

However, it is not just concurrent conditions which can be considered; for example,

Champion et al. (2019) and Allan et al. (2019) also utilise the preceding circulation

variables to identify how rainfall generating patterns develop.

However, circulation patterns alone are not enough to describe rainfall patterns. Tem-

perature patterns relating to rainfall events have also been studied, increase in extreme

rainfall intensity with an increase in global temperatures (Westra, Alexander, and

Zwiers 2013). The links between rainfall have been linked to three key global tempera-

ture oscillations namely the El-Nino-Southern Oscillation (ENSO) (Brown 2018; Nalley

et al. 2019), Pacific Decadal Oscillation (PDO) (Nalley et al. 2019) and the Atlantic

Multi-decadal Oscillation (AMO) (Brown 2018).
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1.2.2 Meteorological Composites

Meteorological composite methods which analyse rainfall distribution across either the

spatial or temporal domain of event groups based on their concurrent and prior me-

teorological conditions. Such methods range from the quantification of precipitation

relating to known meteorological processes such as cyclonic activity (Utsumi, Kim,

et al. 2017) to those which group time-steps using either local (Lamb 1972; Jenkinson

and Collison 1977) or synoptic patterns (Richardson, Fowler, Kilsby, and Neal 2018;

Richardson, Fowler, Kilsby, Neal, and Dankers 2020) of mean sea-level pressure.

The first of these analyse the implications of known meteorological processes. To begin,

Utsumi et al. (2017) uses three weather systems to calculate their relative contribution

to rainfall at both global and regional levels. The weather systems are TCs, frontal and

centers of ExCs and finally a ‘others’ category which contains anything not resulting

from either a TC or ExC. These systems were detected at 6 hourly intervals using the

IBTrACS dataset (Knapp et al. 2010) and a ExC detection method based on Utsum

et al. (2016) using the JRA-25 meteorological dataset (Onogi et al. 2007). Through

separating rainfall data using the weather system classifications Utsumi et al. (2017)

showed that 4%, 37% and 49% of global precipitation related to TCs, ExCs and other

systems, respectively. Related approaches have identified synoptic systems such as

ARs with many studies highlighting a relationship between ARs and rainfall across

the globe (Champion, Allan, and Lavers 2015; Lavers and Villarini 2013; Lavers and

Villarini 2015; Blamey et al. 2018).

Earlier attempts to classify daily synoptic conditions include the Lamb weather types

(LWTs) as described by Lamb (1972) which were later automated by Jenkinson & Col-

lison (1977). This scheme uses the grid-point MSLP across the British Isles and assigns

each synoptic day to one of 27 classifications describing the circulation pattern present

during that day. More recently, Neal et al. (2016) clustered MSLP patterns across a re-

gion covering the British Isles and the North Atlantic resulting in 30 patterns (MO-30).

Richardson et al. (2017) compared both MO-30 and the LWTs, illustrating a difference

in the regional rainfall distributions between the patterns for each classification scheme.

More recent attempts to generalise circulation patterns come in the form of atmospheric

trajectory generation. Atmospheric trajectories are the paths taken by parcels of air

and can either be forwards or backwards in time and generating them takes a range of

meteorological data (MSLP, 2AT, wind vectors and geopotential heights etc.). However,

once this data has been gathered a dispersion model such as HYSPLIT (Stein et al.

2015) can be used to generate either the forwards (future) or backwards (preceding)
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tracks. Multiple studies clustering the trajectories of both extreme and non-extreme

rainfall events leads to the potential to extract different rainfall distributions based on

the preceding atmospheric trajectory (Tan, Gan, and Chen 2018; Santos et al. 2018).

Moreover, earlier work has attempted to generalise circulation patterns using clustering

techniques such as Reusch et al. (2007) who used self-organising maps to highlight the

coupling of synotpic scale meteorological phenomenon.

Aside from generalising circulation patterns some methods have focussed on the gen-

eration of missing rainfall events using clustering. For example, Crane & Hewitson

(2014) use a self-organising map technique to combines both station and rainfall char-

acteristics to generate similar rainfall regions. A second self-organizing map is then

used to identify the temporal trends within the rainfall regions, this second SOM can

then be used to generate missing rainfall data.

1.2.3 Forecasting

Traditional approaches to weather based forecasting rely on mathematical models which

can be combined into numerical weather prediction models (NWPs) such as the GloSea5

forecasting system (Maclachlan et al. 2015). Other traditional approaches include the

role of expert systems which have been shown successful. For example, Wedgbrow

et al. (2005) use meteorological based expert systems to forecast the correct sign for

the flow rate anomalies of the River Thames. Alternative approaches have used the

low-frequency predictors of the NAO and sea-surface temperature, showing promising

results compared to stochastic approaches (Wilby, Conway, and Jones 2002). More re-

cently however a move towards machine learning based approaches to weather forecast-

ing removes the dependence on pre-defined mathematical models and instead transfers

the responsibility over to optimisation procedures such as those used in Neural Net-

works. A review by Pham et al. (2020) found that neural networks can predict daily

and sub-daily rainfall to within 10mm, on a larger sub-seasonal time scale Kumar et

al. (2019) showed deep neural networks were capable of predicting regional rainfall;

however the resulting errors were high (211.48 - 408.152mm). However, the greatest

success in using neural networks was reported by Haidar & Verma (2018), who devel-

oped a one-dimensional convolutional neural network (CNN) using climate variables

(including, but not limited to, max temperature, min temperature, southern oscilla-

tion index, dipole mode index and interdecadal pacific oscillation) to predict monthly

rainfall total in eastern Australia. They found that the resulting model showed higher

predictive performance than the recently released Australian Community Climate and

Earth System (Hudson et. al. 2017). Recently, CNNs have been shown as capable at
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predicting gridded precipitation; first Larrando et al. (2019) uses Geopotential Height

fields across the North Atlantic to predict total 3-hourly precipitation across Western

Europe presenting more accurate results than alternative traditional machine learning

approaches such as regression.

1.2.4 Opportunities

The processes and methods surrounding heavy rainfall analysis are broad, encompass-

ing highly subjective selection and interpretation of subsets of rainfall events to the

interpretation of output from sophisticated numerical weather models. However, there

are three key areas in which the methods of analysis can be modernised using recent

advances in machine learning methods.

Firstly, the multivariate analysis of meteorological conditions leading up to heavy rain-

fall events has yet to be interpreted using objective analysis schemes. Current studies

(Champion, Blenkinsop, et al. 2019; Allan, Blenkinsop, et al. 2020) use subjective in-

terpretation of multiple variables as discussed above and more recent forecasting works

such as Rasp and Thuerey (2021) include multiple time-steps of various parameters

to the forecast however offer limited attribution value of the resulting forecast to the

initial parameters. This leaves scope to not only investigate the co-variability of dif-

ferent meteorological parameters but also their influence on resulting heavy rainfall

distributions and their forecasting potential.

Next, limited objective analysis has been done on the temporal variation of the meteo-

rological conditions. Where recent works consider discrete timesteps such as Champion

et al. (2019) and Allan et al. (2019) there is an opportunity to use alternative machine

learning techniques to analyse meteorological aggregates such as the atmospheric tra-

jectories used by Tan et al. (2017) and Santos et al. (2018) to develop an objective

classification scheme for heavy rainfall events. Furthermore, Rasp and Thuerey (2021)

developed a forecasting model using multiple timesteps, but this could be improved us-

ing alternative neural network architectures proposed in the domain of video analysis

(Karpathy et al. 2014).

Finally, as Rasp and Thuerey (2021) demonstrate, neural network based techniques for

forecasting provide ample opportunity for interpretability of the resulting models which

can aid in the understanding of how and why heavy rainfall events occur. However,

they do not consider the interpretability of variables across different time-steps, where

they have offered potential direction there is scope for developing new and localised

models for greater interpretability with higher resolution datasets.
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1.3 Research Aims and Objectives

The overall aim of this thesis is to evaluate and expand the capability of machine

learning methods to aid both our understanding and forecasting potential of heavy

rainfall events. Specifically, this thesis aims to address the following hypotheses:

H1 The moisture pathways leading to heavy rainfall events can be identified using

neural-network based clustering and the preceding atmospheric trajectories.

H2 Combining modern self-organizing maps and regression methods can reveal the

interdependence between synoptic-scale atmospheric conditions and heavy rain-

fall events.

H3 Synoptic-scale atmospheric conditions be used to train neural-networks to distin-

guish heavy rainfall events from expected rainfall events.

H4 Synoptic-scale atmospheric conditions can be combined with new video-based

neural-networks to improve sub-seasonal rainfall forecasts.

Each hypothesis is addressed by a series of research objectives as follows:

H1 The moisture pathways leading to heavy rainfall events can be identified using

neural-network based clustering and the preceding atmospheric trajectories.

Objective 1.1 - Develop a novel methodology for clustering trajectory data.

Objective 1.2 - Cluster extreme rainfall events based on their preceding

atmospheric trajectories.

Objective 1.3 - Identify variations in the temporal and magnitude distri-

butions of extreme rainfall between each cluster.

H2 Combining modern self-organizing maps and regression methods can reveal the

interdependence between synoptic-scale atmospheric conditions and heavy rain-

fall events.

Objective 2.1 - Cluster selected synoptic-scale atmospheric conditions for

a series of heavy rainfall events.

Objective 2.2 - Evaluate the covariance of the atmospheric conditions

within each cluster.

Objective 2.3 - Evaluate the spatial and temporal distributions of each

cluster’s frequency of occurrence.
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H3 Synoptic-scale atmospheric conditions be used to train neural-networks to distin-

guish heavy rainfall events from expected rainfall events.

Objective 3.1 - Extract both heavy and non-heavy rainfall days from two

hydrologically diverse regions.

Objective 3.2 - Develop a neural network based methodology for classi-

fying the events into heavy and non-heavy rainfall events using concurrent

atmospheric conditions.

Objective 3.3 - Evaluate the accuracy of the machine learning model and

identify the relevant limitations.

H4 Synoptic-scale atmospheric conditions can be combined with new video-based

neural-networks to improve sub-seasonal rainfall forecasts.

Objective 4.1 - Extract monthly rainfall values and their relative mean sea

level pressure & air temperature profiles for a set of case-study regions.

Objective 4.2 - Develop a machine learning based methodology for fore-

casting using meteorological patterns.

Objective 4.3 - Evaluate the effectiveness of the new forecasting approach

to current sub-seasonal forecasting models.

1.4 Thesis Structure

To answer the research questions provided in section 1.3 this thesis is structured into

the following chapters:

Chapter 2 addresses H1 by detailing the first attempt in this thesis to char-

acterise heavy rainfall events based on the preceding atmospheric conditions,

specifically using atmospheric trajectories.

Chapter 3 expands on the work of Chapter 2 by clustering heavy rainfall events

based on the inter-dependencies of their concurrent atmospheric conditions. By

addressing H2 this chapter uses the mean-sea level pressure and 2m air tempera-

ture anomalies to group heavy rainfall events. The contents of this chapter have

been submitted to the International Journal of Climatology.

Chapter 4 develops a new approach to identifying heavy rainfall events by using

the concurrent mean-sea level pressure patterns to classify rainfall days as either
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heavy or non heavy events. The resulting model is then evaluated against H3.

The work in this chapter has been submitted to the Journal of Hydroinformatics.

Chapter 5 changes focus from the previous three chapters by forecasting sub-

seasonal rainfall based on forecasted atmospheric conditions. In answer to H4

this chapter develops a machine learning model capable of forecasting monthly,

regional rainfall totals. This model is then evaluated against the current ECMWF

sub-seasonal forecasting service.

Chapter 6 expands further on Chapter 5 and H4 by developing a model which

incorporates a time dimension into the input data. Instead of using a single image

for each month this chapter describes a method of using a series of atmospheric

forecasts to forecast each month’s regional rainfall. The models developed using

this method are then evaluated against forecasts made by the latest MetOffice

SEAS5 model.

Chapter 7 then concludes this thesis by summarizing the key findings, providing

analysis on the limitations of applied machine learning in this domain and finally

highlighting the importance of this work in the future of heavy rainfall analysis.
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Chapter 2

Identifying the origins of extreme

rainfall using storm track

classification
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2.1 Preamble

To address Hypothesis 1, this chapter reports the results of two experiments which

characterise heavy rainfall events based on their preceding atmospheric trajectories

using cluster analysis.

This chapter begins by reporting the proof of concept study conducted using extreme

rainfall events extracted from a network of rain gauges located in the river Duoro’s

catchment in north-western Spain. Following the extraction of both annual maximum

(AMAX) events and the associated atmospheric trajectories, a set of neural network

architectures were developed using the self-organising map framework. These networks

were optimised for the clustering of various subsets of the trajectory data and are

compared and contrasted in order to address Objective 1.1 and Objective 1.2. The

clusters generated by each network were first compared based on their frequency and

shape before the extreme rainfall distributions were evaluated in answer to Objective

1.3.

The second part of this chapter details a comparison of the self-organising maps method

with traditional clustering techniques (k-means and linkage) regarding the clustering

of atmospheric trajectories. This comparison of methods further answers Objective

1.1. This was done using a case-study of extreme rainfall events observed across Great

Britain, extracted from a series of locations across the island from which trajectories

were extracted. Each of the clustering methods was used to cluster these trajectories

using a varying number of clusters (Objective 1.2). The optimal models were then

compared based on their centroid shapes and frequency. Finally, the most optimal

model was selected to produce both a spatial distribution of the event types across

Great Britain and a comparison of the relevance of the North Atlantic Oscillation

(NAO) (Objective 1.3).
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2.2.2 Abstract

Identifying patterns in data relating to extreme rainfall is important for classifying and

estimating rainfall and flood frequency distributions routinely used in civil engineering

design and flood management. This study extracts the key moisture pathways for

extreme rainfall events in northern Spain using several novel self-organising map (SOM)

models. These models are trained using various subsets of a backwards trajectory

data set generated for extreme rainfall events between 1967 and 2016. The results of

our analysis show 69.2% of summer rainfall extremes rely on recirculatory moisture

pathways concentrated on the Iberian Peninsula where as 57% of winter extremes

rely on deep Atlantic pathways to bring moisture from the ocean. These moisture

pathways have also shown differences in rainfall magnitude, such as in the summer

where peninsular pathways are 8% more likely to deliver the higher magnitude extremes

than their Atlantic counterparts.
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2.2.3 Introduction

Floods generated by extreme weather events continue to be a global issue causing

widespread social and economic damages. Effective flood risk management requires

estimates of the frequency and magnitude of future flood characteristics, such as for

example the magnitude of the design rainfall and flood events with a return period of

100 or 10000 years. Such estimates are obtained through frequency analysis by fitting

statistical extreme value distributions directly to past extreme events. Traditional fre-

quency analysis techniques do not account for differences in the underlying processes

causing extreme events. The importance of accounting for different event-generating

processes in frequency analysis has been discussed in several studies. Waylen and Woo

(1982) separated an annual maximum series of flood peak into events caused by rainfall

and snowmelt, respectively, and fitted a mixture distribution consisting of two Gum-

bel distributions. Hirschboeck (1987) manually divided a flood distribution into eight

subcategories each representing floods caused by different atmospheric patterns. This

resulted in a set of distributions, each with significantly different structure with some

containing multiple peaks, whereas others showed a distinct generalised extreme value

distribution (Hirschboeck 1986). Merz & Blöschl, (2003) utilised a process-oriented

method by separating the initial flood distribution by generating mechanisms in Aus-

trian catchments, which was then used to show “short rain” floods generally happened

in the southern part of the country. Villarini and Smith (2010) found that the up-

per tail of flood distributions in the Eastern part of the US are influenced by tropical

cyclones. Kjeldsen et al. (2018) studied extreme rainfall in South Korea and used

information published by the Korean Meteorological Administration to create annual

maximum series of one day rainfall caused by typhoons and non-typhoons, respectively.

However, while most studies argue that improved process-understanding will improve

the reliability of model predictions, there is still a need to develop objective methods

for distinguishing between events generated by different mechanisms (Kjeldsen et al.

2018). In addition, the benefits of process-oriented techniques come at a computa-

tional cost; previously constraints regarding the availability of data and computational

power have limited our ability to identify these generation mechanisms. Where data

has been available it has generally been provided in small sample sizes. This limitation

also explains the preference for non-process-based methods which are less computation-

ally expensive (Hirschboeck 1986). Despite this, with increasing amounts of data are

becoming available such as through the Hybrid Single Particle Lagrangian Integrated

Trajectory Model (HYSPLIT) (Stein et al. 2015) which opens-up new opportunities to

take advantage of auxiliary knowledge regarding these extreme events.
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This study will focus on the different processes controlling extreme precipitation events

in the Douro catchment, located in north-western Spain. Mediero et al. (2014) found

a general decrease trend in annual maximum flood series in Spain. In addition, a

recent study found that floods towards the north of the Iberian Peninsula are trending

towards early winter (Blöschl et al. 2017). Santos et al. (2018) partially explained such

decreasing trends by a negative trend in the moisture amount that arrives in Spain,

more evident in the case of Continental storms. Without high resolution knowledge

of how the underlying processes affect flood distributions current models come with

higher process uncertainty.

Current literature explores the large-scale atmospheric processes which influence global

rainfall variation. Utsumi et al. (2017) found the main driver for precipitation in

central Europe is extratropical cyclones. The author’s found a similar result in the

Mediterranean but with a higher tendency to be manipulated by extratropical cy-

clones. Further studies have identified the tropical-subtropical North Atlantic corridor

(a corridor stretching from the Gulf of Mexico and the Caribbean Sea to the Mediter-

ranean) to influence moisture fluxes on the Iberian Peninsula (Gimeno, Nieto, et al.

2010; Gimeno, Drumond, et al. 2010; Scoccimarro, Gualdi, and Krichak 2018). Jorba

et al. (2004) extracted the high-level trajectories arriving in the Barcelona area by

using HYSPLIT, clustering them into 10 different patterns describing the 2D (lati-

tude/longitude) pathways. Such work highlights the tropospheric circulation patterns

that influence the Barcelona area by identifying that the main flows come from the

Atlantic, 5500m above sea level. However, this study focussed on the upper portion of

the atmosphere and therefore is not directly useful for identifying moisture transport

systems which are generally found in the lower 2000m (McIntosh 1978). More recently,

links have been drawn between low-level trajectory classifications and a temporal trend

in their occurrence, by using HYSPLIT to extract trajectories associated with flood

events and classifying them using a different clustering method (k-means). The results

of this analysis showed the Continental storms appeared to be more common than their

Atlantic/Mediterranean counterparts when aligned with extreme flood timings (Santos

et al. 2018).

Moisture pathways associated with seasonal extremes have been identified in Canada

by following a similar approach, extracting and classifying trajectories for extreme

rainfall events at varying altitudes between 0 and 5000m (Tan, Gan, and Chen 2018).

The study identifies nine spatially coherent regions using self-organizing maps (SOM),

highlighting the key moisture sources related to the seasonal extreme precipitation.

Despite this there is limited consideration for varying the number of clusters the algo-
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rithm was initialised with and no indication of whether a numerically accurate solution

was produced.

Methods for classifying these moisture trajectories can be grouped into two main cat-

egories: supervised and unsupervised. Supervised methods for classification rely on

having a training data set with both inputs and known outputs. These methods are

most useful for identifying similarities and differences between the known classifica-

tions. An example of a supervised trajectory classification algorithm is TraClass (Lee

et al. 2008), which utilises the known class labels to identify descriptive areas of the

trajectories which can be used to differentiate each class. Unsupervised classification

methods do not require a training set with known class labels. Instead these methods

can be used to identify groups of numerically related input vectors. The most popu-

lar unsupervised methods are k-means and SOMs, which have recently been shown to

successfully identify trajectory groups (Owens and Hunter 2000; Lee et al. 2008; Tan,

Gan, and Chen 2018; Santos et al. 2018).

This paper aims to use self-organising maps both to identify the key moisture path-

ways which lead to annual maximum (AMAX) rainfall and to highlight the magnitude

differences between these classifications. To begin the selected case study and data

used is described. Second, the classification methodology and models are introduced.

Third, the results of the classification model development are presented before final

conclusions are presented.

2.2.4 Methods

Precipitation & Trajectory Data

This analysis focuses on the Douro catchment located in a north-western region of

Spain. AMAX series of one-day precipitation were extracted from 310 gauging stations

shown in Figure 2-1. The data sets available for each station vary in length with some

containing data from 1948 and others only containing data from 1967 to 2016. In

total 16,534 one-day rainfall events were extracted. The AMAX data were normalised

between 0 and 1 using the equation:

NormalisedRainfalli =
rainfalli −min(rainfalli)

max(rainfalli)−min(rainfalli)
, (2.1)

where rainfalli refers to the annual maximum series vector for a given station i.

This provides a more comparable view of the rainfall variation between stations, as
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Figure 2-1: Locations of gauging stations used to extract annual maximum rainfall
events, black line indicates the catchment boundary for the Duoro river.

rainfall magnitudes depend on height and spatial location, among other variables. Con-

sequently, this normalisation removes differences between stations with high and low

rainfall magnitudes, providing a baseline to analyse any magnitude changes without

the need to use the station as a dependent variable. The normalisation smooths the

empirical cumulative distribution curve of rainfall magnitudes (Figure 2-2).

Figure 2-2: Empirical cumulative distribution for all rainfall data both before normal-
isation (left) and after (right).

For each AMAX event 24 backwards trajectories were generated using the HYSPLIT
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system (Stein et al. 2015). In order to generate these trajectories HYSPLIT must be

initialised with a start location, start time and run-time which are then used along-

side meteorological files to generate a trajectories. We used NCEP/NCAR reanalysis

data files (Khalilia and Popescu 2014) as input for the HYSPLIT model. The primary

variables used are related to air pressure, velocity, specific humidity and temperature

(PRSS, T02M, U10M, V10M, TPP6, HGTS, TEMP, UWND, VWND, WWND and

RELH). For a full description of the variables please refer to NOAA (2003). HYS-

PLIT uses these files to estimate the storm tracks and water budgets for each storm

event.The method used by HYSPLIT is a hybrid between a Lagrangian and Eulerian

approach which allow the relative calculation of the advection, diffusion and particle

concentrations (Draxler and Hess 1997; Draxler and Hess 1998; Stohl and James 2004).

These trajectories were initiated using a set of combinations of altitudes (10, 410,

810, 1210, 1610 and 2010m above sea level) and times (00:00, 06:00, 12:00, 18:00)

on the day of the event’s occurrence. The altitudes were selected to coincide with

the expectation of moisture pathways generally existing in the lower 2000m of the

atmosphere (McIntosh 1978). The length of the backwards trajectories was fixed to

48 hours before the given initiation time and resulted in a total of 331,728 successfully

extracted storm tracks, five examples of the output from HYSPLIT are presented in

Figure 2-3. Each of these trajectories consists of 49 points identifying the position of

the air parcel at each hour interval. Each point has the following information associated

with it: Latitude, longitude, altitude, specific humidity and atmospheric pressure. For

the purposes of this study only latitude, longitude and altitude are used as the goal is

to identify the spatial origin of these events.

Trajectory classification

The SOM approach was adopted to classify these trajectories, due to a significant

number of successful hydrological applications (Kalteh, Hjorth, and Berndtsson 2008;

Fahimi, Yaseen, and El-shafie 2017; Tan, Gan, and Chen 2018). A self-organised map

is a type of neural network architecture used for classifying or reducing the dimensions

on input data. It does this through the unsupervised learning of a data set to produce

its discretised representation, which is often referred to as a ‘map’. The purpose of

which is to describe the relationships between the clusters. An example of a SOM is

given in Figure 2-4. SOMs create this map through competitive learning where each

output (or class) competes to represent a given input vector (Kohonen and Honkela

2007). For each input vector the closest node is selected and moved closer to the given

input vector; a neighbourhood function is then applied such that the neighbours of
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Figure 2-3: Five backwards trajectories from a single AMAX event starting from the
northern most point.

the node are also moved although to a lesser extent. This then trickles through the

network until the movement is next to none. For a full and detailed description of how

the SOM method works please see Kohonen and Honkela (2007).

The key benefit of SOMs is the assurance that inputs which are close in the original

high dimensional input space are close in the classified low dimensional space (output),

which is not guaranteed by other procedures such as k-means. This works through for

each training item (or in our case trajectory) updating both the closest matching output

node and its neighbouring nodes. Further to this, although the SOM approach requires

a determined number of output nodes or clusters it does not require an assumption on

the distribution of the data such as would be required by, for example a Gaussian

mixture method (Yang, Kong, and Liu 2004).

Classifier selection

A classification model accepts many inputs and reduces them into a single class. Com-

mon approaches to classifying trajectories rely on the development of a single classifier,

such as in Tan et al. (2017) who trained a single model and did not consider varying

the SOMs parameters such as map size and data sampling. However, such approaches

fail to capture the relationship between variables in the dataset and the classifications.

Our approach will explore the differences which occur when varying two key parame-
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Figure 2-4: A sample SOM architecture with 98 input nodes representing the 49 latitude
and longitude points of a trajectory. All input nodes are connected via weighted edges
to the four output nodes (classifications). These output nodes are arranged into a
neighbourhood grid before training which results in classifications being similar to
their neighbours. For example, classes 2 and 3 contain trajectories which are closer to
class 1 than those contained in class 4.

Code Name No. Classes Altitude Date Filtering No. Inputs No. Trajectories

PR-4 4 No None 98 331,728
PR-9 9 No None 98 331,728
3D-9 9 Yes None 147 331,728

SUM-9 9 No May-Sep 98 88,776
WIN-9 9 No Oct-Apr 98 242,952

Table 2.1: Characteristics of the five classifiers used; here date filtering is inclusive.
Number of inputs is defined as the size of each input vector before it is classified, and
the number of classes is the number of output nodes available to the SOM.

ters, the subset of data used for training and the size of the map. Further to this the

separation of the dataset into two training sets for distinct summer/winter classifiers

is used to aid in the identification of seasonal variation in the classifications generated.

Here we define summer and winter to cover the warm (May-September) and cool (Oc-

tober – April) seasonal variations, following a similar pattern to that used in previous

work (Tan, Gan, and Chen 2018). Table 2.1 describes the training data set for the four

classifiers chosen and identifies which parts of the input vectors are included as well as

any filtering on the trajectories.
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Classifier optimisation

To ensure a numerically stable solution is reached each classifier is first trained with

10 different map sizes. A map size refers to the number of nodes in a square grid,

for example a 2x2 map size would result in four output classifications and a 3x3 map

size results in nine output classifications. These maps indicate how the output nodes

(clusters) are arranged. The example given in Figure 2-4 shows four clusters arranged

in a 2x2 map with Class 1 having neighbours 2 and 3, Class 3 having neighbours 1 and

4 etc. An alternative approach would be to use a 4x1 map. This structure enables the

SOM architecture to identify clusters which may be related, such as classes 1 and 2 from

Figure 2-4 are much more similar than classes 1 and 4. A batch processing approach

is used for training because it has been shown to be an order of magnitude faster than

the alternative linear training approach (Kohonen and Honkela 2007). In addition,

two error metrics are calculated for each classifier. The quantisation error calculates

the root-mean squared Euclidean distance between each training sample and its best

matching node (BMN). The best matching node is defined as the output node with the

highest level of activation when a given input is used. The topological error calculates

the percentage of training samples which have a first and second BMN which are not

adjacent on the output map, ensuring topological consistency (Khalilia and Popescu

2014).

Figure 2-5 shows the errors produced for each of the four classifiers. Each graph gives

the squared dimension (map size) of each model on the x-axis, such that a value of

two equates to a 2x2 output map which contains four classifications. As is expected

in any clustering procedure the quantisation error decreases with the increase in the

number of potential classifications as illustrated in all three quantisation error graphs.

Despite this there is still clear indication of the numerically superior classifiers as the

magnitude of the errors vary significantly.

The large difference in quantisation error could be the curse of dimensionality, an

umbrella term for the disadvantages caused by having large input vectors which do

not occur when using lower dimensional vectors (Kohonen and Honkela 2007). The

3D classifier uses 147 input variables whereas the other only use 98 and it is known

that increasing the number of input variables in already high-dimensional problems can

cause a decrease in search performance such as when selecting the BMN (Marimont

and Shapiro 1979). These differences are not replicated in the topological errors which

tend to increase with an increase in map size. For instance, the primary classifier shows

a consistently lower error indicating a better topological fit of the data. Due to the

increasing nature of the topological error it is concluded that the smaller maps are
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Figure 2-5: This figure shows both the quantisation (top) and topological (bottom)
errors for each of the three classifiers.

more numerically accurate. Therefore, this study will utilise a 2x2 map and 3x3 map

for the primary and both seasonal models to present any differences between having

either a high topological or quantisation error.

2.2.5 Results

This section discusses the resulting classifications for each of the five models presented

in Table 1. It highlights the key moisture pathways as well as their prominence in

the data set. This section concludes on an analysis of the rainfall magnitudes for each

cluster.

Classifications

Beginning with the Primary classifiers, Figure 2-6 shows the classifications generated in

the SOM with a 2x2 map size, which is referred to as the Primary 4-SOM classifier (PR-

4) indicating it has four output classifications. The results show four patterns: Class

1 contains a mid/western Atlantic originating path, Class 2 includes those coming

from the north Atlantic, Class 3 contains the storm tracks coming from the south

Atlantic. Class 4 contains the continental or recirculation pathways. The proportion of

trajectories falling into each classification is provided in Table 2.2. The two dominant

pathways are the recirculation and mid/western Atlantic classes which contain 46.5%
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(Class 4) and 35.2% (Class 1) of the sample trajectories respectively. The least common

class was the north Atlantic class (Class 2), which only contained 6.7% of the sample;

however, this was only slightly lower than the 11.6% of storm tracks classified as south

Atlantic storms (Class 3).

Figure 2-6: A sample of trajectories for each cluster in the primary 4-SOM classifier
(PR-4). The classifications plot shows 50 randomly selected trajectories for each class
(coloured grey) with a mean trajectory across all relevant trajectories coloured in black.
The proportion of trajectories within each class is given in Table 2.2.

Class

1 2 3 4

% 35.2 6.7 11.6 46.5

Table 2.2: Proportion of trajectories which are classified under each of the four classes
within PR-4.

Comparing the results of PR-4 with those of a larger map size, reaffirms the key path-

ways identified. Figure 2-7 shows the classifications produced from the SOM with a 3x3

map size in the Primary classifier (PR-9). Here the classifications appear to be more

refined versions of the ones present in PR-4. For example, Classes 7, 4, 1 and 5 appear

to be subclasses of the mid/western Atlantic class (Class 1) from PR-4. The same can

be seen with the continental class (Class 4) in PR-4 which is broken down into Classes

3 and 6 in the PR-9. Moreover, the north Atlantic classification (Class 2) from PR-4

appears unchanged in the PR-9 (again Class 2). The proportions for each class in PR-9

are expectedly lower due to the greater spread amongst the range of classes as shown

in table 2.3. Despite this, the same pattern appears with continental and mid/western

Atlantic classes (Class 1 and Class 4) containing the higher proportions of the sample.
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Figure 2-7: A sample of trajectories for each cluster in the 9-SOM primary classifier
(PR-9). The classifications plot shows 50 randomly selected trajectories for each class
(coloured grey) with a mean trajectory across all relevant trajectories coloured in black.
The proportion of trajectories within each class is given in Table 2.3.

Class

1 2 3 4 5 6 7 8 9

% 18.6 5.7 19.4 5.7 2.8 16.2 13.8 7.6 10.2

Table 2.3: Proportion of trajectories which are classified under each of the nine classes
within PR-9.

The 3D classifier (3D-9) tended to have the highest numerical errors in comparison

to the other classifiers, and on inspection the tracks appear to have a higher visual

variance. The two prominent classes shown in Figure 2-8 Classes 1 and 3 differ only in

general length and cannot be linked back to classifications in PR-4 or PR-9. However,

the spread of trajectories highlighted in table 2.4 shows there is a preference towards

classes 1 and 3.

Class

1 2 3 4 5 6 7 8 9

% 35.4 4.9 20.9 7.6 3.0 4.8 6.7 5.7 10.8

Table 2.4: Proportion of trajectories which are classified under each of the nine classes
within 3D-9.

Regarding the seasonal classifiers, they produced the lowest errors during the training

phase with the winter classifier producing errors slightly higher than the summer clas-
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Figure 2-8: A sample of trajectories for each cluster in the 3D 9-SOM classified (3D-9).
The classifications plot shows 50 randomly selected trajectories for each class (coloured
grey) with a mean trajectory across all relevant trajectories coloured in black. The
proportion of trajectories within each class is given in Table 2.4.

sifier. One possible reason for this disparity could be the quantity of the samples used.

Winter trajectories accounted for 73.2% of the sample with the remaining 26.8% being

summer trajectories. An expected side effect of this is that the seasonal classifiers show

consistently lower errors due to the reduced variation in the samples they are trained

with.

Figure 2-9 shows the 9-SOM trained on the summer data set (SUM-9), in this classifier

there is one Atlantic pathway (Class 1) and two visually smaller Atlantic pathways

(Classes 4 and 7). The other classes making up this classifier all visually appear as

more refined continental storms, as discussed regarding PR-9 above. However, this

classifier also presents three dominant pathways for the summer storms as given by

Table 2.5, the mid-Atlantic (Class 1), northern-continental (Class 3) and south eastern

Mediterranean tracks (Class 9). These pathways account for 16.8%, 17.5% and 20.7%

(55% of the total pathways) of the summer tracks as shown in table 5, reinforcing

the conclusion from PR-9 that the dominant summer pathways are continental (or

recirculatory) and east-Atlantic originating tracks. These results also compare well

with those found by Jorba et al. (2004) who as stated earlier identified recirculatory

tracks as the dominant summer pathways; by separating these summer tracks we have

further reinforced these results and shown that Atlantic tracks still play a key role in
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summer extremes.

Figure 2-9: A sample of trajectories for each class in the summer 9-SOM classified
(SUM-9). The classifications plot shows 50 randomly selected trajectories for each
class (coloured grey) with a mean trajectory across all relevant trajectories coloured in
black. The proportion of trajectories within each class is given in Table 2.5.

Class

1 2 3 4 5 6 7 8 9

% 16.8 7.0 17.5 4.8 5.3 10.7 9.2 8.0 20.7

Table 2.5: Proportion of trajectories which are classified under each of the nine classes
within SUM-9.

The winter 9-SOM classifier (WIN-9) is shown in Figure 2-10 and appears visually

similar to PR-9 which can be attributed to the winter storms comprising 73.2% of

the sample. Dominant pathways in this classifier consist of deep-Atlantic (Class 1),

continental (Class 3) and southern-Atlantic (Class 7) paths; similarly, to SUM-9 these

can be identified in earlier results such as Classes 1 and 7 in PR-9 and Class 1 in PR-4.

These classes consist of 18.4%, 18.7% and 13.7% (50.8% of the total pathways) of the

sample, which are significantly higher than Classes 2, 4 and 5 which only hold 6.3%,

6.8% and 3.6%. Further to this, 38.9% of winter events were classified (classes 1, 4

and 7 in WIN-9) as deep-Atlantic compared to only 16.8% of summer events (class 1

in SUM-9). This shows deep-Atlantic storm trajectories have a seasonal dependence

and generate at least twice as many AMAX events during the winter than during the

summer.
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Figure 2-10: A sample of trajectories for each cluster in the winter 9-SOM classifier
(WIN-9). The classifications plot shows 50 randomly selected trajectories for each class
(coloured grey) with a mean trajectory across all relevant trajectories coloured in black.
The proportion of trajectories within each class is given in Table 2.6.

Class

1 2 3 4 5 6 7 8 9

% 18.4 6.3 18.7 6.8 3.6 12.5 13.7 8.2 11.8

Table 2.6: Proportion of trajectories which are classified under each of the nine classi-
fication within the 9-SOM winter classifier.

Distributions of rainfall magnitude

A final analysis of the classifiers concerns the distributions of each cluster. Figure 2-11

shows the empirical distributions for each cluster in both PR-4 (left) and PR-9 (right).

In both classifiers the classes which are most likely to result in above average magnitude

extreme events are from the southern Atlantic. For example, Class 3 from PR-4 and

Class 7 from PR-9 have 21.7% and 23.4% relatively of their tracks above this threshold.

Both PR-4 and PR-9 also show similar results for the classes which are least likely to

produce events above the threshold, with Class 2 (northern-Atlantic) from both the

PR-4 and PR-9 only having 18.7% and 18.6% respectively. As these trajectories are

similar this further reinforces the case that trajectories from the north Atlantic are

less likely to cause the highest/lowest magnitude AMAX values but trajectories from

the south Atlantic being more likely to cause these same events. Further to this the

proportions given in Tables 2.2 and 2.3 indicate that these north and south Atlantic
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trajectories are also the most uncommon.

Figure 2-11: Rainfall distributions for each cluster in PR-4 (left) and PR-9 (right). In
each case the line’s number corresponds to the class of storm track represented.

Figure 2-12 shows the rainfall distributions for the classifications of both the summer

(left) and winter (right) classifiers. The summer distributions show a separation into

two groups most prominent at a normalised magnitude of 0.35. This separation occurs

between the Atlantic tracks (Classes 1, 4 and 7) and the continental tracks (Classes 2,

3, 5, 6 and 8); Class 9 is different in that it doesn’t join a group and instead holds a

middle ground between the two. Taking a magnitude of 0.5 as a threshold there is a

maximum difference of 7.3% in the number of tracks with a magnitude which exceed

this threshold between the two groups (Classes 1,2 and 6), the closest difference is 4.5%

between Classes 7 and 8. This separation indicates during the summer months it is

continental tracks that are more likely to cause higher magnitude events.

In contrast, the winter distributions appear more varied with no dominant group sep-

aration as in the summer classifier. Taking the same experiment as above, using a

magnitude threshold of 0.5 the lower-Atlantic classes (Class 7 and Class 5) have 23.8%

and 24.0% of their samples exceeding this threshold. This indicates the lower-Atlantic

storms have a higher likelihood of causing above average magnitude AMAX events in

the winter and the continental storms have a higher likelihood of causing these same

events in the summer.
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Figure 2-12: Rainfall distributions for SUM-9 (left) and WIN-9 (right) classifiers. In
each case the line’s number corresponds to the class of storm track represented.

2.2.6 Conclusions

This paper demonstrates the use of self-organising maps for improving the current un-

derstanding of rainfall frequency analysis through classification of the moisture path-

ways leading to an AMAX rainfall event. Five classification models were generated

using different subsets of the trajectory data in northern Spain, each provided insight

into the applicability of the SOMs and the causes of extreme rainfall in this region.

Here we define extreme rainfall events as the annual maximum of one-day precipitation

measurements from a series of gauging stations.

1. Clustering on latitude/longitude (2D) trajectories for all rainfall events with four

clusters (PR-4) and nine clusters (PR-9).

(a) Two prominent classes identified in PR-4 represent 81.7% of the sample

trajectories; Class 1 from the mid/Western Atlantic Ocean (35.2%) and

Class 4 containing recirculation patterns (46.5%).

(b) The prominent classes from PR-4 are verified by PR-9 in which the Atlantic

pathways (Classes 1, 4 and 7) account for 38.0% of the sample trajectories.

(c) The Southern Atlantic and mid/Western Atlantic pathways classes (Class 1

and 3:PR-4) contained events which had 4.0% more high magnitude extreme

events than the shorter Atlantic Class 2 as illustrated in Figure 2-11. A
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similar pattern is present in PR-9.

2. Clustering on altitude, latitude & longitude (3D) trajectories for all rainfall

events.

(a) This model (3D-9) showed the highest numerical errors and produced clus-

ters with little visual difference; this is due to the larger number of input

variables required. This is often referred to as the curse of dimensionality.

3. Clustering on longitude & latitude (2D) trajectories for summer events (SUM-9).

(a) Three prominent pathways are responsible for 55% of summer extremes,

these originate from: the mid-Atlantic (Class 1), northern-Europe (Class 3)

and the south-eastern Mediterranean (Class 9).

(b) The three Atlantic clusters (Classes 1, 4 and 7) contained at least 4.5% more

high magnitude events than the other clusters, in some cases this raised to

7.3%.

4. Clustering on longitude & latitude (2D) trajectories for winter events (WIN-9).

(a) The three dominant pathways in this model are similar to the primary mod-

els (PR-9 and PR-4) but only represent 50.8% of the trajectories: western-

Atlantic (Class 1: 18.4%), continental (Class 3: 18.7%) and southern At-

lantic (Class 7: 13.7%).

(b) Southern Atlantic classes (Classes 5 and 7) are the most likely pathways to

produce above average magnitude extremes at 24.0% and 24% respectively.

These results show that clustering can provide improved insight into components of

rainfall distributions. The SOM approach has proved capable of spatial-clustering of

trajectory patterns in 2D; however, we have also shown why care must be taken when

considering 3D trajectories to minimise both numerical errors and visual difference.

Finally, the results revealed differences in the origins of winter and summer extreme

rainfall in the Douro region of northern Spain as detailed above. This work has opened

up new questions in the use of alternative input variables to the clustering algorithm; for

example, instead of normalising station data a station type could be added as an input

variable. Future studies could also investigate the development of a new clustering

error metric accounting for both numerical errors and number of clusters to limit the

scope of training procedures.
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2.3.2 Abstract

This study extracts and classifies the storm trajectories of extreme rainfall events ac-

cross the UK using a trajectory dispersion model (HYSPLIT). The trajectories are

classified using three unsupervised classification techniques which were compared using

a similarity measure. This resulted in the selection and application of the k-means

method for identifying six moisture pathways responsible for extreme rainfall. The

most frequent subset of these pathways originate from the Atlantic and led to 60.58%

of the extreme rainfall events, while the remainder originate from the North Sea. Fur-

ther to this, we identify the North Sea storms are the more likely to cause above average

extreme events especially in Wales. A final comparison is made with the North-Atlantic

Oscillation index where storm types which originate from the north and western At-

lantic are more frequent during a positive NAO phase where as storms originating near

the British Isles are more common in a negative phase.

52



2.3.3 Introduction

The impacts of extreme weather across the UK continue to have severe economic and

social consequences. One key mechanism which can lead to a disaster is flooding often

caused by extreme rainfall. A prime example of the costs associated with flooding

can be seen in December, 2015 where record breaking levels of precipitation caused

extensive flooding in Cumbria leading to at least 16,000 homes being flooded (Cumbria

County Council 2018). Traditionally, design floods are calculated by fitting a statistical

distribution to a sample of annual maximum events, assuming this distribution to be

constant and that all observed events originate from the same underlying population.

However, recent research has highlighted the importance of better understanding the

underlying processes associated with individual events in order to: 1) build more robust

models representing the existence of mixed populations (Kjeldsen et al. 2018), and 2)

better understand how global climate change is likely to affect the type, magnitude and

frequency of more localised distributions of extreme rainfall and floods (Blöschl et al.

2017).

In this context it is important to develop new methods that will allow an objective

classification of event types. For example, Lavers et al. (2011, 2013) highlights the

role of large plumes of water rising from the tropics in the form of atmospheric rivers

(ARs) which cause extreme levels of precipitation across the west coast of the UK.

Recent literature has shown the application of atmospheric trajectory generation and

classification as a potential tool for identifying the pathways of extreme events (Santos

et al. 2018; Tan, Gan, and Chen 2018; Gimeno, Drumond, et al. 2010) which would

allow for the identification of atmospheric river type pathways to be identified as well

as alternative pathways which cannot be classified as AR. This study extracts and

classifies the atmospheric trajectories for storms resulting in extreme rainfall across 42

cities in the UK. These classifications are then compared in terms of both magnitude,

frequency, spatial dependency and their relation to the North Atlantic Oscillation.

2.3.4 Storm Track Extraction

Forty-two cities spread across the UK were selected as the initiation points for the

identification of extreme rainfall events. The cities, as shown in Figure 2-13, were

selected to cover all 10 hydroclimatic regions of Great Britain. For each city the daily

annual maximum rainfall series (AMAX) was extracted from the CEH-GEAR dataset

(Tan, Gan, and Chen 2018). This data consists of gridded daily and monthly rainfall

estimates between 1890-2017. Extracting the AMAX series from each of the 42 cities

between 1960-2014 resulted in a total of 2598 extreme rainfall events to be analysed.
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Figure 2-13: Location of 42 cities accross the UK selected for this study.

Next, the AMAX series were normalised between 0 and 1 to remove the dependency

of each series on the local geographical and climatological features. The normalisation

equation used is as given in Eq. 2.2, where AMAXc is the series of annual maximums

for city c and NAMAXc is the series of normalised annual maximums for city c

NAMAXc =
AMAXc −min(AMAXc)

max(AMAXc)−min(AMAXc)
, c = 1, ..., 42 (2.2)

and c = 1, ..., 42 For each of the 2598 AMAX events, the relevant atmospheric tra-

jectories are generated from a trajectory dispersion model called HYSPLIT (Draxler

and Hess 1997) which requires an initial: longitude, latitude, altitude, extraction time,

date and start time. The system also requires access to meteorological files covering

the relevant dates. The extraction time indicates how many hours the model should

trace the trajectory back through time from the starting location. A 48 hour extraction

time and NCEP/NCAR reanalysis data (Kalnay et al. 1996) were used in this study.

To generate these trajectories HYSPLIT uses a combined Lagrangian and Eulerian

approach which allow the relative calculation of the advection, diffusion and particle

concentrations (Draxler and Hess 1997; Draxler and Hess 1998; Stohl and James 2004).
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To extract the trajectories for each of the 2598 extreme events the HYSPLIT model

was initialised with two altitude starting points (500 and 1000m above sea level) and

two start times per event-day (09:00 and 18:00). This resulted in 10,392 trajectories.

All trajectories were standardised, thereby removing the dependency of the trajectory

on the initiation point as shown in Eq. 2.3.

NTn = Tn − T0 (2.3)

Each trajectory (T ) consists of 49, 2∗1 vectors representing the latitude and longitude

of T at each timestep n. These points are normalised according to the trajectories

initiation point T0 to produce a new 49-point normalised trajectory (NT ).

2.3.5 Pathway Classification

Three unsupervised classification methods are compared for their suitability. The three

methods chosen were k-means, Self-organising maps (SOMs) and a hierarchical method

using the Ward (D2) approach (Ward, 1963). For each of these methods a predeter-

mined number of intended output classifications is required, to optimise each method

a classification was carried out with a number of output classes ranging from 2 to 50.

It was considered that a number of classifications beyond this point would become

unwieldy for a qualitative analysis.

Next, to allow a comparison of the suitability of each method the Davies-Bouldin

(Davies and Bouldin 1979) index is used to both optimise the number of clusters for

each method and to compare the resulting optimum models. This index was used as it

provides an accurate indicator of cluster similarity and distance (Halkidi, Batistakis,

and Vazirgiannis 2001). An alternative to this is the Calinski-Harabasz (Caliñski and

Harabasz 1974) method. However this method performs better when clusters are well

separated, an assumption which cannot be imposed on the trajectory data. The Davies-

Bouldin index measures the average similarity between each cluster Ci where i =

1, ..., N and its most similar cluster Cj . The similarity measure Rij as defined in Eq.

2.4, where Si and Sj correspond to the cluster diameter (average distance of points to

the cluster center), and Mij is the distance between the centroid of cluster i and j.

Rij =
Si + Sj

Mij
(2.4)
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Using this similarity measure the Davies-Bouldin index is then defined as below:

DBindex =
1

N

N∑
i=1

max(Rij |i 6= j) (2.5)

where N is the number of clusters present. As DBindex increases the similarity be-

tween clusters is increasing, hence a lower DBindex indicates better cluster separation.

Figure 2-14 shows the resulting Davies-Bouldin indices and optimal number of clusters

(optimal value of N) for each of the three methods selected. Each optimal N values

identified are in the lower end of the possible values of N with N = 4 for SOMs, N = 5

for the linkage method and N = 6 for k-means. Consequently, it was decided to take a

single classifier from each of the three methods using their optimal number of output

classifications (clusters) namely SOM4, LNK5 and KME6.

Figure 2-14: Davies-Bouldin Index for each of the three selected clustering methods
with a varying number of initiation clusters. Lower values indicate better cluster sep-
aration.

2.3.6 Results

Storm types

A selection of extracted trajectories, including the centroid, is shown in Figure 2-15 for

each classification as defined by the three optimal models. In addition Table 2.7 gives

the proportion of the trajectories classified under each class. The proportions allocated

56



Classifier
Classification Proportions (%)

1 2 3 4 5 6
SOM4 36.19 10.58 7.53 45.70
LNK5 8.36 27.36 19.65 10.76 33.87
KME6 13.92 25.63 9.19 12.60 24.71 13.95

Table 2.7: Proportion of trajectories classified under each classification per model.

Figure 2-15: Examples of the trajectories classified under each class within the three
classifiers used: SOM4 (a), LNK5 (b) and KME6 (c) with the centroids shown in
bold.

to each classification appear to get lower when moving from a model with only four

output clusters (SOM4) to one with six (KME6). However, this is to be expected as

more clusters allow further separation of similar trajectories.

The storms originating from the southern Atlantic, such as clusters 4 and 5 in the

K-means model (KME4,5
6 ), cluster 1 in the linkage model (LNK1

5 ) and a small pro-

portion of cluster 1 in the SOM model (SOM1
4 ) tend to follow a similar trajectory

to those of atmospheric rivers as identified by Lavers et al. (2011, 2012), and hence

could potentially be attributed to the occurrence of such phenomena. Considering the

proportions of KME4,5
6 indicates that events caused by these atmospheric rivers could

make up 37.31% of the extreme events. The second most frequent sub-set of trajecto-

ries originate from the North Sea where classes such as SOM4
4 ,LNK5

5 and KME1,2
6 ,

contain 36.1%, 33.8% and 39.5% of all events. This further illustrates the reliance of

extreme events on both the Atlantic and North Sea atmospheric processes. Comparing

the length of the cluster centroids (as shown in bold in Figure 3) shows the Atlantic

based storms namely SOM1,2,3
4 , LNK1,2,3,4

5 and KME3,4,5,6
6 travel a much longer dis-

tance than their North sea counterparts (SOM4
4 ,LNK5

5 and KME1,2
6 ). This suggests

a stronger driving force moving the air parcels above the Atlantic Ocean at a much

higher speed than those travelling from the North Sea.
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Regional distribution of storm types

The spatial distribution of the classifications was considered using only KME6 as these

pathways are comparable to those in the other models, and this classifier had the lowest

DB index as discussed earlier. Shown in Figure 2-16 a contrast between the eastern and

western regions can be observed with regards to KME2
6 (Fig. 3: Class 2) pathways,

where the pathway leading from the North Sea westwards affect the eastern regions

more than those in the west. For comparison, 42% of the trajectories ending in the

North East of England belong to KME2
6 where as only 16% of the trajectories leading

to events in the North West belong to KME2
6 . One cause of this pattern could be the

existence of the Pennine Hills and the Peak District which prevent the storms from

the east carrying moisture to the western side of Great Britain. Furthermore, the

western regions have a larger portion of KME64 type trajectories; specifically North

West England, South West England and Wales have 21%, 19% and 24% of their samples

classified as KME6
6 . The East of England also shows a large proportion of KME4

6

trajectories which total 15% in the region. This further highlights the importance of

the geography of Great Britain, as these storms are unable to penetrate the elevated

terrain of the Pennines and the peak district as often as they are able to make it across

the mostly flat regions in the south. Finally, the most frequent pathway resulting in

extreme events in Wales appears to come from the South Atlantic (KME4
6). A similar

trend is seen in South West England which corresponds to findings by Svensson and

Jones (2004) who identified north-easterly moving storm tracks to have an association

with high-river flows in these areas.

Figure 2-16: Proportion of each KME6 storm classification per hydroclimatic region.
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Classifier
Classifications

1 2 3 4 5 6

SOM4 29.9 31.9 38.8 46.8

LNK5 30.0 42.3 33.2 30.1 46.2

KME6 47.1 47.6 30.1 38.3 41.1 30.9

Table 2.8: Percentage of events in each classification with a magnitude > 1.

Magnitude of classifications

Next, the proportion of above average extremes was investigated for each of the classes

in KME6. Table 2.8 shows for each class the proportion of events with a magnitude

greater than the normalised mean of 1 (normalised according to Eq. 2.2). The classes

identified as originating from the North Sea SOM4
4 , LNK5

5 and KME1,2
6 ) all contain

the highest proportion of above-mean events where as those from the deep-west Atlantic

(SOM4
4 , LNK4

5 and KME3
6) have the lowest proportions. Regional difference in these

magnitude variations are also matched within each region with a few key differences,

61.3% of KME2
6 trajectories cause above average extremes in Wales where as these

types only cause 38% of above average extremes in South West England.

Links to the NAO

By performing a linear regression between the magnitude of the trajectories in each

classification and their relevant NAO indices we have found no significant correlation

between these two variables. However, Figure 2-17 shows the empirical cumulative

distribution function (CDF) of events for each classification given the NAO indices of

each.

These results show KME3
6 has the highest proportion of events falling within a positive

NAO phase totalling 67% followed by KME6
6 at 59%. This indicates events caused

by pathways leading from the deep-west and North Atlantic become more frequent

during a positive NAO phase. Furthermore, during the negative NAO phase it is the

KME2
6 and KME5

6 pathways which are the most prominent with 63% and 60% of

their respective trajectories falling during this negative phase. On visual inspection

it appears pathways in KME2
6 , 5originate from close to the British Isles and form

circular patterns which could indicate the existence of cyclonic activity in the south.

Finally, inspecting the empirical CDF pattern of pathway KME3
6 it appears to spike

in frequency during an NAO index of 0 and 1 which could also indicate the triggering

of an atmospheric event at these levels.
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Figure 2-17: Empirical cumulative distribution function for the frequency of each tra-
jectories within each classification for a given NAO index.

2.3.7 Conclusions

This study has developed a new framework for identifying the key-moisture pathways

leading to extreme rainfall events in Great Britain through the classification of the

trajectories of the storms prior to the occurrence of extreme rainfall events. This is ac-

complished through the optimisation of three unsupervised classification methods using

the Davies-Bouldin index to select an optimal number of output nodes and analysing

the resulting trajectory classes. The key findings were as follows:

1. Atlantic and North Sea storms form two subsets of the resulting classifications

from all three models with 60.58% of the trajectories in the k-means classifier

( KME6) belonging to the Atlantic pathways and 39.42% originating from the

North Sea.

2. Classes in each of the three models match the pathways of atmospheric rivers, a

known cause of high levels of rainfall in Great Britain (Laverset al., 2011, 2012).

3. The North Sea storms cause a higher proportion of events across the easter re-

gions of Great Britain where as the South Atlantic storms are more commonly

associated with those across the west.

4. Westerly storms from the North Sea is the most likely pathway to cause above

average extreme events in Wales in comparison with the other surrounding re-

gions.
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5. A comparison of the magnitude of events in each class and the North Atlantic

Oscillation showed no significant relationship between these two variables.

6. The frequency of storm originating from the North and West Atlantic increases

with a positive NAO index whereas short storms originating near the British Isles

become more frequent with a negative NAO phase.

These results highlight the importance atmospheric pathways have on the temporal

and spatial distribution of extreme rainfall events across Great Britain. The resulting

classifications presented spatial and magnitude difference across all ten hydroclimatic

regions but have also opened new questions regarding the atmospheric processes which

lead to these events via the pathways identified.
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2.4 Postscript

This chapter presented two studies which characterise heavy rainfall events using their

preceding atmospheric trajectories in response to hypothesis Hypothesis 1. Firstly,

a methodological advance was made through the application of self-organising maps

using a case-study in Northern Spain. Following this, the self-organising maps method

was applied in Great Britain and compared to traditional clustering methods. In both

cases the frequency and magnitude of extreme events in each of the resulting clusters

were compared and contrasted.

The results presented indicate that although the self-organising maps clustering method

was able to produce a selection of trajectory clusters it did not perform as well as

traditional clustering methods. However, as shown in both studies all of the applied

clustering methods were capable of providing a set of trajectory clusters which indicate

causality for some seasonal extreme rainfall events. For example, in section 2.2 models

for summer and winter extreme events present significantly different trajectory shapes

with summer consisting of localised, slow moving convective systems where as the

winter events consist mostly of long, fast moving trajectories generally originating from

the Atlantic.

Both studies show minor differences in the magnitude or frequency distributions of the

trajectory clusters which indicates an important variable relating to extreme rainfall

events is either being abstracted during trajectory generation or is not included. The

primary variables in the generation of the trajectories are pressure, wind speed and

temperature (NOAA 2003); recent work has indicated the substantial effect mean sea-

level pressure has on both the distribution of rainfall events (Ummenhofer et al. 2017;

Baker, Shaffrey, and Scaife 2018; Richardson, Fowler, Kilsby, and Neal 2018 and ex-

treme rainfall events (Richardson, Fowler, Kilsby, Neal, and Dankers 2020; Champion,

Blenkinsop, et al. 2019; Allan, Blenkinsop, et al. 2020).

This has opened new avenues of questioning regarding the interplay between the studied

mean sea-level pressure variations and those of temperature which has also shown to

influence rainfall magnitudes (Blenkinsop et al. 2015) and is addressed in the next

chapter, addressing hypothesis Hypothesis 2. Further to this, while the sensitivity

of the results to the selection of the number of clusters is partially investigated in

this chapter several sensitivity questions remain. For example, the sensitivity of the

evaluation to the metrics chosen, how sensitive the results are to the length of the

trajectories used and finally, how well do these moisture pathways map to measurable

impact?
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Chapter 3

North Atlantic air pressure and

temperature conditions

associated with heavy rainfall in

Great Britain
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3.1 Preamble

In the previous chapter extreme rainfall events were clustered using their preceding

atmospheric trajectories. The findings indicated that the abstraction of preceding at-

mospheric conditions into atmospheric trajectories removes the sensitivity of the heavy

rainfall events on low priority variables such as air temperature. The present chapter

addresses the sensitivity of heavy rainfall events to the covariance of air temperature

and sea level pressure. This assesses hypothesis Hypothesis 2 using a study produced

in collaboration with the UK Centre of Ecology and Hydrology, which is currently

under review for the International Journal of Climatology.

The study presented in this chapter considers the covariance between mean sea-level

pressure and 2m air temperature with respect to extreme rainfall events in Great

Britain. To do this, previous extreme rainfall events are identified and their respective

concurrent mean sea-level pressure and 2m air temperature images are extracted. The

events are then clustered seasonally using the combined mean sea-level pressure and

2m air temperature images resulting in a set of weather patterns each represented by a

mean sea-level pressure and 2m air temperature image (Objective 2.1). The result-

ing clusters are then compared and contrasted using their relative spatial and temporal

distributions considering the effect of the large-scale atmospheric indices which were

found to have influence in the previous chapter (Objective 2.3). The covariance of

the mean-sea level pressure and 2m air temperature images is then analysed along with

the relative relationships with large-scale climatic indices (Objective 2.2).
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3.1.2 Abstract

Severe flooding in the United Kingdom is often linked to the occurrence of heavy rainfall

events, which can be characterized by the synoptic scale meteorological conditions over

the North Atlantic region. Seasonal heavy rainfall events (summer and winter 1-day

maxima) were extracted from 125 locations across Great Britain over the period 1950-

2017. For each event, anomaly sea-level pressure and 2m air temperature conditions

across the North Atlantic sector were extracted from the NCEP/NCAR Reanalysis

dataset. In contrast to earlier studies these two datasets were combined, and clustered

to identify how the pressure and temperature conditions co-vary within each half-year

to produce heavy rainfall events. Distinctly different spatial patterns were found for

four classes in summer and for three classes in winter. The frequency of occurrence for

two summer and one winter class show opposing correlations with the North Atlantic

Oscillation index (Summer class 1: r=-0.29; summer class 3: r=0.44, winter class 1:

r=0.35) and the Atlantic Multidecadal Oscillation (Summer class 1: r=0.37; summer

class 3: r=-0.54, winter class 1: r=-0.39), significant at the 1% level. The classes are

associated with distinctly different geographical distributions of heavy rainfall events

across Great Britain, and their association with large-scale circulation and temperature

drivers can find application in, for example, weather generators.
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3.2 Introduction

The impacts of extreme weather across the UK continue to have severe economic and

environmental consequences. The cost of flood damage, often a result of heavy rainfall,

is expected to increase significantly in the future, unless an average annual investment

of £1 bn is made (with a benefit to cost ratio of 9:1) to protect properties and infras-

tructure in England up to 2065 (Environment Agency 2019). The danger to life can be

shown by, for example, storms Dennis and Ciara which hit the UK during February of

2020 and resulted in at least 5 fatalities and more than £300mil in damages (Emerton

2020). Considering the risk to life and property, there is an inherent reason to try to

better understand the synoptic-scale mechanisms behind heavy rainfall. However, with

the climate also expected to change in future, and current climate models being better

at predicting large-scale circulation patterns rather than heavy rainfall magnitudes,

these patterns of large-scale forcings have received renewed attention as a research

topic. Specifically, the aim of this study is to identify the key types of synoptic-scale

meteorological patterns which cause heavy rainfall events in the UK.

Taylor and Yates (1967) reviewed several weather and climate classification schemes

based on the atmospheric pressure pattern in the region around the UK. They found

that the existing procedures were rather arbitrary and the methods almost indistin-

guishable from each other. Currently, the most popular weather typology, by Lamb

(1972), consists of manually classified weather records from 1861 to 1971 based on their

airflow patterns. Although Lamb’s types contain 27 categories in total, the bulk of the

records belong to one of seven main types of air flow classification: cyclonic, anticy-

clonic, northerly, easterly, westerly, north westerly and southerly (Lamb 1965; Lamb

1972). Originally these weather types were determined subjectively until Jenkinson

and Collison (1977) turned this into an objective classification scheme by using mean

daily grid-point sea-level pressure. More recently, researchers have extended the area of

influence and/or used objective methods for classification to try to capture the synop-

tic scale processes which create weather events in the UK. For example, Fereday et al.

(2008) use k-means clustering of sea level pressures (SLP) over the North Atlantic to

identify the SLP profiles for a set of 6 two-month seasons. However, they were unable

to identify any common circulation types. Neal et al. (2016) identified eight distinct

weather patterns which were reduced from an original set of 30 classes through cluster-

ing on the anomaly sea-level pressure patterns. Richardson et al. (2017) compared the

precipitation of events classified in each of the classes generated by Neal et al. (2016)

and found the reduced set of eight classes to show very high intra-class precipitation

variability. It may be that including information also of moisture availability could
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make for a more distinct classification scheme.

In a recent review, Gimeno et al. (2020) highlights that the key sources of European

moisture come from the North Atlantic through either atmospheric rivers or cyclonic

activity. Lavers et al. (2011) first identified atmospheric rivers by investigating the

source regions of the atmospheric moisture feeding heavy rainfalls in the UK. Lavers

et al. (2011) found that all ten of the largest floods in the UK co-occurred with an

atmospheric river. These atmospheric rivers are long plumes of high-concentrations of

water vapour in the atmosphere which originate from the tropics, moving northwards

into the mid-latitudes. However, the concept and definition of an atmospheric river

still does not provide clear evidence of the synoptic scale driving process, and further

to this these events generally only occur during the winter half year (Allan, Liu, et al.

2014) hence do not explain summer extremes.

Allan et al. (2019) investigated synoptic precursors of extreme short-duration (3-hour)

summer rainfall events in the UK, including dew point temperature, evaporation,

geopotential height at 200hPa and sea-level pressure (SLP) anomalies, geopotential

height anomalies, average moisture and evaporation patterns over northwest Europe

and the North Atlantic. Their results reveal different conditions associated with intense

rainfall events in different parts of the country. For example, intense rainfall events

in both the South East of England and western Scotland coincide with negative SLP

anomalies in the eastern Atlantic on the day prior to the event. However, for intense

rainfall events in the South East of England the centre of this negative SLP anomaly

is further south than for events in western Scotland. Their results highlight not only

the regional homogeneity of extreme events (e.g. Champion, Blenkinsop, et al. 2019;

Svensson and Hannaford 2019) in the UK but also their association with particular

synoptic scale atmospheric patterns. Similarly, Ummenhofer et al. (2017) clustered

SLP and precipitation patterns over Europe and identified a similar northwest and

southeast regional disparity across the British Isles.

Alternative methods for investigating moisture sources have included using small-scale

air parcel tracking to generalize the key moisture pathways leading to extreme events

(Barnes, McCullen, and Kjeldsen 2019; Barnes, Santos, et al. 2020; Santos et al. 2018;

Tan, Gan, and Chen 2018). These methods provide only the general movement of

moisture in the atmosphere, but Barnes et al. (2019b) identified six distinct groups

of moisture pathways leading to events in the UK. The key differences between the

pathways were length and direction of travel, but the results also showed that the dis-

tributions of rainfall intensity varied between groups, and spatially across the country.
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Several studies have found that temperature and circulation pattern influence rainfall

magnitude. For example, for southern Italy Greco et al. (2020) highlight the im-

portance of low-level (850hPa) temperature for the development of precipitation from

convective systems while synoptic system precipitation depend on the pressure pat-

tern. For the UK Blenkinsop et al. (2015) also found a positive relationship between

precipitation and (local land surface) temperature during summer, but note that such

relationships were weaker in the remaining seasons. Tramblay et al. (2013) built a

rainfall frequency model for southern France using temperature and pressure patterns

as co-variates for the model parameters.

The present study investigates the combined effects of synoptic 2m air temperature and

sea level pressure patterns in the North Atlantic region on heavy rainfall occurrence

across Great Britain. Temperature is used instead of moisture, as initial investigations

suggested a strong relationship between the two over the ocean. By using such a proxy,

both moisture over the ocean as well as temperature over the land can be captured

by a single variable, which simplifies our large-scale analysis. We use a technique to

simultaneously cluster both 2m air temperature and sea level pressure patterns across

the North Atlantic sector during heavy rainfall events. As far as the authors are aware,

this combined clustering expands on all earlier weather typing studies for the area.

The clustering results in a range of combined synoptic patterns, instead of a single

composite pattern for each driver separately as in, for example, the detailed sub-daily

summer rainfall studies of Allan et al. (2019) and Champion et al. (2019). Further, we

investigate winter as well as summer, but look at the coarser resolution of 1-day rather

than 3-h rainfall events. An advantage of using daily rather than sub-daily rainfall

data is the higher confidence in the data quality. In contrast to e.g. Ummenhofer

et al. (2017), the synoptic patterns are used to identify differences in geographical

extreme rainfall distribution, as opposed to including the spatial rainfall pattern as

part of the clustering. The average wind speeds/directions and 500hPa geopotential

height pattern for each class are also investigated. Finally, the present study relates the

synoptic patterns to time and climatic indices such as the North Atlantic Oscillation

(NAO) and the Atlantic Multidecadal Oscillation (AMO), to investigate how long-

term oscillations may influence what synoptic temperature and pressure patterns cause

heavy rainfalls in different parts of Great Britain.

3.3 Data

Two types of data were used in this study: (1) individual time series of seasonal (half-

year) maximum 1-day rainfalls at 125 locations in Great Britain, and (2) large-scale
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gridded daily values of sea level pressure and air temperature data over the North

Atlantic sector.

3.3.1 Historical Heavy Rainfall Events

Time series of heavy rainfall were extracted at 125 locations as shown in Figure 3-1,

chosen at equal 0.5◦ latitude and longitude spacing, this equates to ≈ 35km dependent

on latitude/longitude. This equates to 35km, depending on latitude. Although gridded

rainfalls are likely to lose some variability compared with using station observations,

they enable us to extract rainfalls on an even grid across Great Britain. Seasonal

maximum daily rainfall (SMAX) series for both summer (May-Oct) and winter (Nov-

Apr) seasons were retrieved for each location from the CEH-GEAR (Centre of Ecology

and Hydrology - Gridded Estimates of Areal Rainfall) (Keller et al. 2015) dataset

for the years 1950 up to and including 2017. The CEH-GEAR data uses a nearest

neighbour interpolation method on observed precipitation data from the Met Office,

to create a 1km×1km cell grid of daily (09:00 UTC to 09:00 UTC) total precipitation

across the United Kingdom. This grid is then normalized using average annual rainfall

and subsequently adjusted by monthly rainfall averages as described by Keller et al.

(2015).

Figure 3-1: The 125 locations in Great Britain at which series of seasonal rainfall
maxima are extracted.

Combining the seasonal maximum series results in a total of (68 years * 125 locations=)

8500 seasonal heavy rainfall events. The first winter of the study period is only 4-
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months long (Jan-Apr), and Nov-Dec 2017 is not included in the analysis. Of the 8500

summer heavy events there are 2282 unique dates on which they occur. Similarly, for

the 8500 winter heavy events there are 2010 unique dates. This is expected as locations

within the same hydrometeorological region are influenced by the same atmospheric

circumstances (Champion, Blenkinsop, et al. 2019; Keef, Svensson, and Tawn 2009)

and therefore spatial dependence will lead to a level of co-occurrence on the same day.

The rest of the analysis is carried out using the series of unique dates, to ensure that

a single widespread event does not disproportionately influence the results.

3.3.2 Meteorological Data

Daily (00:00 UTC to 00:00 UTC) mean sea level pressure (SLP) and 2m air tem-

perature (AT) data were extracted from the 2.5° gridded NCEP/NCAR Reanalysis 1

dataset (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html) (Kalnay et al.

1996). This means the daily meteorological data precede the rainfall days by several

hours, but we consider the data sufficiently overlapping for our purpose. The study

area is limited to the region defined by 10 – 70°N and -100 – 20°E, which covers the

North Atlantic sector and part of the neighbouring land areas (see e.g. Figures 2 and

3). We chose to include Greenland and part of North America to see if the temperature

patterns within the polar regions influenced the resulting winter classes. Similarly, we

included part of North Africa to see if the temperature there would result in a sepa-

rate summer cluster for a Spanish Plume mechanism. This means our study region is

slightly larger than the one considered by, for example, Allan et al. (2019).

For each heavy rainfall date a SLP and AT pattern were generated, each with a reso-

lution of 48x24 grid cells. Following this, each cell’s daily value was then standardized

by subtracting the monthly mean and subsequently dividing by the standard deviation

of that cell’s SLP or AT, respectively, with the mean and standard deviation calcu-

lated over all the daily values in all years for the calendar month in which the event

occurred. Identical fields were extracted from the NCEP/NCAR Reanalysis 1 dataset

also for wind components and 500hPa geopotential heights, which were used to help

with the interpretation of the resulting SLP and AT patterns.

To enable comparisons with larger scale climatic oscillations, the North-Atlantic Oscil-

lation (NAO) (NOAA National Weather Service, 2005) and Atlantic Multi-decadal Os-

cillation (AMO) (Enfield, Mestas-Nuñez, and Trimble 2001) indices are extracted sea-

sonally for both summer and winter, 1950-2017. The NAO provided by NOAA (https:

//www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml) is generated

using a rotated principal components analysis as described by Barnston and Livezey

71



(1987), which allows the location of the pressure centres to differ slightly from one

season to another. The AMO, which is also provided by NOAA (https://psl.noaa.

gov/data/timeseries/AMO/), is calculated using the weighted average over the North

Atlantic sea-surface temperature of the Kaplan SST V2 dataset (https://psl.noaa.

gov/data/gridded/data.kaplan\_sst.html) (Kaplan et al. 1998).

3.4 Meteorological Clustering

Clustering on a combination of the anomaly SLP and AT patterns is conducted to iden-

tify a set of distinct meteorological conditions associated with seasonal heavy rainfall

events.

3.4.1 Feature Set Pre-Processing

For each unique heavy rainfall day extracted from the CEH-GEAR dataset, a single

data array is generated by flattening and concatenating the anomaly SLP and AT

matrix for that date. Each pixel in the meteorological dataset have a size of 2.5◦x2.5◦,

equating to an image of size 24 by 48 = 1152 individual pixels. Because there are

two meteorological images, this results in each heavy rainfall day being represented

by a single vector of size (2*1152=) 2304, referred to as the event’s feature vector.

An illustration of this procedure is shown in Figure 3-2, and an example is given for

flattening in equation (3.1) and combination in equation (3.2).

Figure 3-2: Example of feature set generation for a given heavy rainfall event. This
procedure takes the SLP and AT patterns, flattens them into a single dimensional array
and finally concatenates them into a final single dimensional array.
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Flatten



x1,1 · · · xi,1

... xi,j
...

x1,j · · · x48,24


 = [x1,1, · · · , x48,1, · · · , xi,j , · · · , x1,24, · · · , x48,24]

(3.1)

Combine([x1, · · · , xm, · · · , x1152], [y, · · · , yn, · · · , y1152])

= [x1, · · · , xm, · · · , x1152, y1, · · · , yn, · · · , y1152]
(3.2)

Combining the event feature vectors, separately for each season, results in two two-

dimensional matrices where each row represents the date of a heavy rainfall event in

the given season. These matrices are referred to as the training sets. The dimensions of

the training set matrices are [N × 2304] where 2304 is the number of elements present

in each heavy rainfall event feature set and N is the number of unique heavy rainfall

days in the given season.

3.4.2 Pattern Clustering

The procedure used to class the feature sets defined in section 3.1 is k-means (Lloyd

1982) which requires a set number of output classes (k) to be pre-specified. Class

models were generated for both summer and winter with k ranging from 2 to 15 which

are limits based on the number of classes used by Neal et al. (2010) to allow for

differences in the data. However, Richardson et al. (2017) show that only about four

of Neal et al. (2016)’s 30 patterns relate to heavy rainfall events, which indicates that

this may be a suitable number to consider. We found that scree plots of root-mean

squared error (RMSE) versus number of clusters were not helpful for cluster selection in

our case (not shown). As expected the RMSE drops with increasing number of clusters,

but there is no clear break point, possibly because using the distance metrics on such

high-dimensional data produce results which are often noisy (Aggarwal, Hinneburg,

and Keim 2001). Instead we subjectively selected 3 classes for winter and 4 classes for

summer.

3.4.3 Statistical Analysis

We used correlation analysis to explore if the frequency of occurrence of the identified

classes is related to the NAO and AMO climate indices. For this, we used seasonally
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averaged indices of the NAO and AMO, and seasonal counts of the number of events in

each class. Before the correlation analysis was undertaken, each series was detrended.

That is, the correlation analysis was undertaken on the residuals from linear regressions

of each variable separately on time. Significance levels were estimated using a two-sided

Student’s t-test.

3.5 Results

This section presents the results of the class analysis of the daily anomaly sea-level

pressure and 2m air temperatures across the North Atlantic sector, for the dates which

coincide with heavy rainfall events in Great Britain. Presented below are the mean

anomaly sea-level pressures and 2m air temperatures for each cluster, shown separately

for summer and winter. The average wind speeds/directions and 500hPa geopotential

height pattern for each class are also discussed. The relationship between the frequency

of occurrence of the events in each class and indices of the NAO, AMO and time are

then investigated. Finally, the classes are compared for their spatial distribution of the

heavy rainfall events across Great Britain.

3.5.1 Summer Classes

Meteorological Conditions

Figure 3-3 shows both the anomaly and raw SLP patterns for the four summer classes

generated using k-means. Each class is represented by the mean of all patterns which are

classified under the respective cluster. Common across all four classes is an area of low

pressure anomaly centred on, or to the north of, the British Isles. In addition, Classes

1, 2 and 4 share a dominant high SLP anomaly through Greenland and the Norwegian

sea, with Classes 1 and 4 also showing a low SLP anomaly from the subtropical North

Atlantic to northwest Europe. In contrast, Classes 2 and 3 present a dominant high

SLP anomaly pattern across the sub-tropical Atlantic. Classes 1 and 3 largely reflect

the expected anomaly patterns of the negative and positive phases of the summer NAO,

respectively, with one anomaly centre over Iceland and another to the southeast over

the North Atlantic/Europe (Figure 3a). Compared with the north-south gradient of the

winter NAO (e.g. Jones, Jonsson, and Wheeler 1997), the gradients of Classes 1 and 3

are slightly rotated counter-clockwise, which is typical of the summer NAO as described

by e.g. Folland et al. (2009). The two classes for which an NAO interpretation is less

obvious (Classes 2 and 4), seem to be associated with a northward extension of the

positive anomalies of the subtropical high pressure. This is shown as a north-south
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band of high SLP anomalies in the mid-Atlantic in Figure 3-3a.

Figure 3-3: Sea level pressure patterns for the four summer classes, showing both the
anomaly SLP (a) and raw SLP (b) patterns. The percentages indicate the proportion
of events in each class, and the dots provided in (a) denote anomalies significant at the
2% level based on a two-sided Student’s t-test.

Considering the 2m air temperature anomalies as shown in Figure 3-4, the classes can

be split into anomalously warm and cool patterns with Classes 1 and 2 presenting a

generally warm North Atlantic region and Classes 3 and 4 showing a predominantly

cool pattern. Common to all four classes is that there is an area of cold anomalies

to the west or northwest of the UK, which contrasts with a warmer anomaly to the

southeast. This could signify the temperature contrast over a cold front, which would

typically result in heavy rainfall as it passes eastwards across the UK.

The average wind vectors (superimposed in Figure 3-4) of the relevant classes show

the presence of cyclonic activity near the British Isles, along with the indication of

anti-cyclonic activity in the subtropical North Atlantic. The winds associated with

the northward extended subtropical high pressure for Classes 2 and 4 presumably con-

tributes to the development of the warm (cold) anomaly in the west (east) mid-latitude

Atlantic. The direction of flow for the low temperature zones to the west and/or north-

west of the British Isles has a northerly component for all four classes and is sometimes

directed towards the British Isles.

The 500hPa geopotential height fields shown in Figure 3-5 indicate the directions of the

paths travelled by the mid-latitude cyclones that cause the heavy rainfall events, even
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Figure 3-4: Sea-level wind speeds for summer classes. The sea-level wind speeds are
overlaid on the anomaly temperature patterns for each of the four summer classes,
and the opacity illustrates the strength of wind between 2 and 8 m/s. Anomaly 2m
air temperature patterns are shown without wind speeds, but with points denoting
significance, in supplementary information S1.

though they do not show the exact location of the jet stream. Cyclones are steered by

the airflow aloft, which is parallel to the isolines of the geopotential heights. The strong

north-south contrast and zonal pattern for Class 3 suggest storms are fast-moving on

a straight, westerly track across the Atlantic, turning northeastward in the vicinity of

the UK. Classes 2 and 4 suggest strongly meandering storm tracks (as also suggested

by the northward extension of the subtropical high pressure in Figure 3-3), whereas

Class 1 storm tracks seem more weakly meandering.

Figure 3-5: 500hPa Geopotential Heights for each summer class.

Class Variability

The top row of Figure 3-6 shows how the frequency of occurrence of the events in

each summer class varies with time, while the lower two rows show how the detrended

frequencies of occurrence vary with the detrended indices of the NAO and AMO. The

frequencies of Classes 1 and 2 both increase with time, whereas the frequency of Class

4 decreases and Class 3 shows no temporal trend.

The events in Class 3, whose pressure pattern resembles the positive phase of the sum-
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Figure 3-6: Seasonal frequency of occurrence of heavy rainfall events in the four summer
classes as function of time (top row), and detrended seasonal frequencies as a function
of detrended NAO index (middle row) and AMO index (bottom row). The figure also
shows the correlation coefficient, R, and the significance level (P).

mer NAO, show directly opposite relationships with the NAO and the AMO to those

of Class 1. This suggests that heavy rainfalls associated with the positive (negative)

phase of the NAO is exacerbated by cold (warm) temperatures in the North Atlantic.

A possible explanation for this would be the different tracks that storms associated

with the positive and negative phases of the NAO track along, and the development

of different rainfall-exacerbating sea surface temperature anomalies in the vicinity of

Britain. The sea surface temperature anomaly will in turn modify the temperature of

the overlying airmass.

The location of the low pressure centre for Class 3 in Figure 3-3 suggests a more

northward location of storms for the positive NAO Class 3 than for the negative NAO

Class 1. Cyclones tracking eastward to the north of Scotland will drive cold waters

behind themselves towards Britain (and warmer waters ahead of themselves northward,

where they will not affect Britain), and the aggregated action of a succession of cyclones
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following a similar path may exacerbate a developing sea surface temperature anomaly.

Hence, when the Atlantic is anomalously cold and the NAO is positive, the cold anomaly

to the northwest of Britain will be exacerbated, and this will also be reflected in the

air temperature anomaly.

In contrast, storms tracking along a path further to the south will drive warm surface

waters ahead of themselves towards Britain, while a cold sea surface anomaly will be

generated behind the low-pressure centres. Therefore, when the Atlantic is anomalously

warm and the NAO is in its negative phase, the warm anomaly to the south of Britain

will be exacerbated. There is some support for this in Figure 3-7, when contrasting

the temporal evolution of the temperature anomaly patterns for Class 1 (negative

NAO) with those for Class 3 (positive NAO). For Class 1, and to some extent also for

Class 2, the warm anomaly off North Africa and western Europe intensifies and moves

northward towards Britain in the days prior to the heavy rainfall event occurring,

while a weak cold anomaly forms to the northwest, behind the cyclone. However, for

Class 3 the cold anomaly that develops to the northwest of Britain is more intense

than the anomaly over and around Britain. In this case the cold anomalies west of

North Africa and western Europe seem to be unchanging in the days prior to the heavy

rainfall. Supplementary information S3 shows the corresponding development of sea

level pressure anomalies in the days prior to the heavy rainfall event.

Both Classes 2 and 4 seem to be associated with a northward extension of the sub-

tropical high pressure in the North Atlantic (Figure 3-3), and the 500hPa geopotential

height patterns in Figure 5 support the suggestion of highly meandering storm tracks.

Cyclones following such paths are likely to be slow-moving, which enables the accumu-

lation of very large rainfall amounts. Figure 8 suggests that storms in these two classes

result in heavy rainfall mainly in the south and east of Britain, which is consistent with

cyclones tracking across southern Britain. Mesoscale convective systems, such as asso-

ciated with the Spanish Plume (e.g. Lewis and Gray 2010), mainly occur in southern

Britain. However, although some classes have a warmer average temperature anomaly

in western Europe and/or North Africa than others, the rarity of these events make it

difficult to link them to any particular class.

The geographical distribution of heavy rainfall events associated with Class 3, whose

spatial SLP pattern reflects the positive NAO, is concentrated to the north and west

of the country (Figure 3-5). Here, heavy rain is likely produced along the fronts of

cyclones travelling eastward, or northeastward, along a path to the north, between

Scotland and Iceland, as suggested by the location of the low pressure anomaly in

Figure 4 and the direction of the upper-level airflow in Figure 3-5.
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Figure 3-7: 2m air temperature anomalies in the North Atlantic region in the 1, 3, 5,
7 and 9 days prior to the heavy rainfall event occurring, for the four summer classes.

Heavy rainfall for Class 1 events, which are closely associated with the negative NAO,

are more evenly spread across Britain (Figure 3-8). For this class, the location of the

low pressure anomaly in Figure 3-3 suggests a track slightly further to the south of

those in Class 3.

Figure S5 shows box-and-whisker plots of the standardized summer rainfall maxima

for the 13 regions, separately for each of the four classes. There is not much difference

in the magnitude of the standardized rainfall maxima between the regions, but rather,

as shown in Figure 3-8, the difference is in the frequency of occurrence. Because we

have not extracted a seasonal maximum for each class, we are unable to do a formal

frequency analysis.
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Figure 3-8: Geographical distribution of heavy rainfall events for each of the four
summer classes, for each of 13 administrative regions of Great Britain (regions as in
Hollis et al. (2019)). A high opacity indicates a higher proportion of event occurrence.

3.5.2 Winter Classes

Meteorological Conditions

The anomaly and raw SLP patterns for the three winter classes are shown in Figure 9.

Both the anomaly and raw SLP patterns show a low SLP value on, or northwest of, the

British Isles. In the raw patterns (Figure 3-9b) Class 1 shows a considerably stronger

low SLP between Scotland and Iceland than any of the other classes, a pattern which

is replicated in summer Class 3. The corresponding pressure anomalies in Figure 3-9a

show a similar pattern, with strong negative anomalies between Scotland and Iceland

and positive anomalies over the Azores in the subtropical North Atlantic. In contrast,

the pressure anomaly pattern for Class 2 shows positive anomalies over Iceland and

negative anomalies to the south. The spatial patterns formed by the pressure anomalies

in Classes 1 and 2 are consistent with the positive and negative phases of the NAO,

respectively (e.g. Barnston and Livezey 1987). Class 3 has similarities to the positive

NAO pattern, but it is less pronounced than the Class 1 pattern, and the centre of

the subtropical high pressure anomaly is shifted northeastwards, extending onto the

Iberian peninsula and making it more reminiscent of the rotated summer NAO pattern.

For all three winter classes, the large-scale temperature patterns shown in Figure 3-10

are reminiscent of the Atlantic SST tripole pattern, with centres east of Newfoundland,

80



Figure 3-9: Sea-Level Pressure patterns for the three winter classes, showing both the
anomaly SLP (a) and raw SLP (b) patterns. The percentages indicate the proportion
of events in each class and the dots provided in (a) show the anomalies with a 2%
significance value using a two-sided Student’s t-test.

near the southeastern coast of the United States, and in the tropical eastern Atlantic

(e.g. Fan and Schneider 2012). In addition, there is an area north of the UK (sometimes

extending southwards) with a temperature anomaly of the same sign as the centre off

the southeastern United States. The land areas near the Newfoundland and tropical

east Atlantic tripole centres support the SST anomaly, but for the other two centres

the temperature of the neighbouring land areas may differ. The wind pattern shown in

Figure 10 confirms a northeastward shift of the subtropical high pressure for Class 3.

Locally near the UK, all three classes show warm temperature anomalies either across

the UK and/or to the south, and southwesterly or southerly winds transporting warm

air towards the UK (Figure 3-10). For all three classes there are cold temperature

anomalies to the west and/or northwest of the UK. The resulting temperature contrast

between these air masses provides ideal conditions for heavy rainfall at the cold front

or low-pressure centre of a mid-latitude cyclone. Figure 3-9 suggests that for Class 2

the low pressure is located over Great Britain, whereas for Classes 1 and 3 it is centred

further to the north and it may be the trailing cold front that is mainly responsible

81



for the heavy rainfall event. A difference between Classes 1 and 3 is the strength and

location of the cold anomaly, which is relatively weak and centred over Iceland for

Class 3 but is very strong and located to the southwest of Iceland for Class 1. The

temporal evolution of the temperature anomalies (Figure 3-11) suggests that for Class

3 the anomaly develops within the last few days before the heavy rainfall event occurs,

but for Class 1 the cold anomaly has existed in the same location for at least the past

10 days. Supplementary information S4 shows the corresponding development of sea

level pressure anomalies in the days prior to the heavy rainfall event.

Figure 3-10: As Figure 3-6, but for the three winter classes. Anomaly 2m air temper-
ature patterns are shown without wind speeds, but with points denoting significance,
in supplementary information S2.

Figure 3-12 shows the 500 hPa geopotential heights for the three classes. For Class 2

the figure suggests a meandering storm track which is consistent with a negative NAO.

In contrast, the storms for Classes 1 and 3 have travelled along a nearly straight path

from a westerly to southwesterly direction.

Class Variability

The top row of Figure 3-13 shows how the frequency of occurrence of the events in

each winter class varies with time, while the lower two rows show how the detrended

frequencies of occurrence vary with the detrended indices of the NAO and AMO. The

frequency of Class 1 increases with time, whereas the frequency of Class 2 decreases and

Class 3 shows no temporal trend. The detrended event frequencies of Classes 1 and 2

show a moderately strong dependence (significant at the 1-6% level) with the detrended

NAO index, with Class 1 events occurring more frequently during the positive NAO

phase and Class 2 events occurring more frequently during the negative phase. This is

consistent with the spatial SLP anomaly patterns in Figure 3-9a. In contrast, for Class

3 there is no significant correlation with either time or the two climate indices.
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Figure 3-11: 2m air temperature anomalies in the North Atlantic region in the 1, 3, 5,
7 and 9 days prior to the heavy rainfall event occurring, for the three winter classes.

Somewhat unexpectedly for winter, we find a significant negative association with the

AMO for Class 1. The cold temperature anomaly in the northwest Atlantic for winter

Class 1 has persisted for at least 10 days (Figure 3-11), and it is possible that it may

be so long-lasting and widespread that it influences the estimate of the AMO index for

the season. The negative correlation with the AMO, and the positive correlation with

the NAO, for Class 1 in winter is similar to the correlations for Class 3 in summer.
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Figure 3-12: 500hPa Geopotential Heights for each summer class.

The pressure patterns for these classes are also similar (Figures 3-3 and 3-9).

Comparing the frequency of occurrence regionally across Great Britain (Figure 3-14)

reveals different distributions for each of the three classes. Heavy rainfall events in Class

2 show a preference for occurring in the south and east, as can be expected for a SLP

pattern reflecting the negative phase of the NAO. The location of the SLP anomaly in

Figure 9 suggests cyclones are tracking across Britain, and prolonged rainfall in eastern

Britain often occurs in onshore winds on the northern side of depressions (e.g. Wheeler

2013).

Class 1 events cause heavy rainfalls mainly in western Britain, with their low-pressure

centres located further north compared with events in Class 2 (Figure 3-9). Class 3

events are concentrated in the far northwest, and the spatial rainfall distribution is

rather similar to that for the summer Class 3 events. The SLP patterns for both

summer Class 3 (Figure 3-9) and winter Class 3 (Figure 3-14) display a slight counter-

clockwise rotation of the high pressure centre (shifted northeastwards from the North

Atlantic onto the Iberian peninsula) compared with the more standard winter NAO

pattern of Class 1. This seems to shift the low pressure, and the main rainfall area,

slightly further north for Class 3 compared with Class 1.

Again, similarly to summer, there is not much difference in the magnitude of the

standardized winter rainfall maxima for the 13 regions, for the three winter classes

(Figure S6). The difference is in the regional frequency of occurrence (Figure 3-14).

3.6 Discussion

Including 2m air temperature across the North Atlantic sector as an extra feature set to

the meteorological clustering, which is traditionally done only on atmospheric pressure
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Figure 3-13: As figure 3-6, but for the three winter classes.

patterns, has provided a new view of the conditions leading to heavy rainfall events in

Great Britain. The four identified classes in summer, and the three classes in winter, are

each associated with different geographical distributions of heavy rainfall events. The

temperature and circulation patterns identified in this study indicate local areas whose

temperature and/or pressure has the potential to be used as additional predictors for

weather generators such as for example described by Serinaldi & Kilsby (2012). Future

work could also involve investigating the large-scale temperature and pressure patterns

predicted by global climate models, and the expected effect these would have on heavy

rainfall characteristics in different parts of Britain.

In this context we compare the circulation patterns derived in the present study using
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Figure 3-14: Geographical distribution of heavy rainfall events for each of the three
winter classes for each of 13 administrative regions of Great Britain. A high opacity
indicates a higher proportion of event occurrence.

both the SLP and 2m air temperature anomalies, with the classes from previous studies

which are based on atmospheric circulation only, but for which the associated UK

rainfall has also been assessed (sections 5.1 and 5.2). We then discuss the sensitivity

of the results to the choices of data and methods (section 5.3).

3.6.1 Summer

Neal et al. (2016) present 30 circulation patterns over the North Atlantic – European

region, for which Richardson et al. (2017) calculate regional UK median rainfall and

rainfall variability (inter-quartile range). Our summer Classes 1, 2, 3 and 4 show

some similarities in SLP anomalies (Figure 4) and wind directions (Figure 5), with

circulation patterns number N28, N29, N21 and N11, respectively, identified by Neal

et al. (2016) (an “N” has been inserted before the pattern number to distinguish them

from our Classes). Richardson et al. (2017) show that patterns N29 and N21 are both

associated with high rainfalls in most of the country, but for N29 particularly in the

south and east, and for N21 particularly in the north and west. This is in general
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agreement with the rainfall distributions for our Classes 2 and 3, respectively (Figure

8). For patterns N28 and N11 Richardson et al. (2017) find that rain mainly falls in

the south and east (similar to our Classes 1 and 4), but the median rainfall is only

moderate. However, the rainfall variability is rather high, which suggests that the

patterns include both wet and dry events. Since the Classes in our study are by design

associated with high rainfall events, a contributing factor to distinguishing between the

wet and dry events in Neal et al.’s patterns may be the temperature patterns associated

with our Classes (Figure 3-5).

3.6.2 Winter

Despite the significant correlation with the NAO, the winter Class 1 seems to have more

similarities with Neal et al. (2016)’s pattern N21 than with the six patterns they label

typical of the positive NAO phase; Class 1 has a southwesterly, rather than westerly,

wind direction over the UK. The winter Class 2 has similarities to Neal et al. (2016)’s

pattern N11, and Class 3 to pattern N2 (which is similar to N21, but has a weaker low

pressure). The principal rainfall areas largely overlap for Class 1 and N21 (north and

west) and Class 2 and N11 (south and east). The rainy regions for Class 3 and N2 are

both mainly in the north and west of the country, and for pattern N2 Richardson et al.

(2017) again suggest a combination of a moderate rainfall median and a higher rainfall

variability.

For winter, further comparisons can be made between our classes and those found

by Ummenhofer et al. (2017), who show circulation patterns and associated rainfall

patterns over Europe. However, these comparisons are less clear due to the fewer and

more generalised classes used by Ummenhofer et al., and the disparity in spatial rainfall

domain. The circulation patterns (Figures 3-10 and 3-11) of our Classes 1 and 3 both

show similarities to UB and UE, and Class 2 to UC, where Ui indicates pattern i in

Ummenhofer et al. (2017). The strongest similarities are between Class 2 and UC,

which is also reflected in the regional distribution of rainfall which favours eastern and

southern Britain (Figure 3-14). Classes 1 and 3, and UB and UE, all occur mainly in

the north and west of Britain.

3.6.3 Methodology

The results of the study are sensitive to the selection of data and methods. Non-

stationarity of the data means that the period of record used will influence the clas-

sification results, including the derived quantities such as rainfall magnitude and geo-

graphical distribution associated with each class. Figures 3-6 and 3-13 show how the
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number of events in each class vary with time. We have explored two potential co-

variates that are known to influence the region, the NAO and AMO climate indices,

but other oscillations and phenomena have not been investigated.

Some subjective choices have been made regarding the clustering algorithm, initial-

ization conditions and the preselection of atmospheric variables. The algorithm used

(k-means) will tend to generate clusters of roughly equal size, and the results depend

heavily on the initial number of clusters chosen, k. In this study we chose a k-value

based on subjective analysis of the clustering results, and the results of earlier studies

as discussed in Section 3.2.

Other factors which influence the sensitivity of the analysis include the spatial domain

and the product from which the meteorological data was extracted. As we wanted

to investigate also the influence of temperature on land areas neighbouring the North

Atlantic, we selected a larger domain than used in some earlier studies (e.g. Richardson,

Fowler, Kilsby, and Neal 2018; Ummenhofer et al. 2017), and this will have affected the

results compared with those studies. We used the NCEP/NCAR Reanalysis 1 product

for the meteorological data, but different results may have been found if, for example,

a similar reanalysis product from the European Centre for Medium range Weather

Forecasts (ECMWF) had been used, or if moisture rather than temperature data had

been used.

3.7 Summary and Conclusions

Meteorological conditions over the North Atlantic were extracted from NCEP/NCAR

Reanalysis Data (Kalnay et al. 1996) for seasonal heavy rainfall events (summer and

winter 1-day maxima) at 125 locations across Great Britain. The anomaly sea level

pressure and 2m air temperature patterns associated with each event were clustered

jointly to find how the meteorological conditions over the North Atlantic sector co-vary

to produce heavy rainfall events.

Four classes were identified for summer. Two of them suggest that heavy rainfalls are

affected by opposing combinations of the seasonal NAO and AMO: negative (positive)

NAO and positive (negative) AMO for Class 1 (Class 3). The remaining Classes 2 and

4 are both associated with a northward extension of the subtropical high pressure in

the North Atlantic, highly meandering storm tracks, and heavy rainfall predominantly

in southeast Britain. Although these classes are associated with opposing North At-

lantic temperatures (Figure 3-4), only the event frequency for Class 2 is borderline

significantly (6%) correlated with the seasonal AMO.
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Whereas in summer the temperature patterns show either predominantly cold or warm

anomalies over most of the North Atlantic, in winter two phases of a smaller-scale

four-pole temperature pattern emerges. This resembles the SST tripole pattern (e.g.

Fan and Schneider 2012), plus a centre north of the UK with a temperature anomaly

of the same sign as the centre off the southeastern United States.

The number of events in winter Class 1 shows significant positive correlation with the

NAO and negative correlation with the AMO. There is a strong, widespread and per-

sistent cold anomaly in the SST centre off Newfoundland, which may influence the

seasonal AMO index. Heavy rainfall events mainly occur in western Britain. In con-

trast, the number of Class 2 events is borderline significantly (6%) negatively correlated

with the NAO, and the meandering storm tracks result in heavy rainfall mainly in the

south and east.

The pressure pattern for winter Class 3 shows some similarity with that typical of the

positive phase of the NAO, but with the subtropical high-pressure anomaly shifted

eastwards onto western Europe. There is no correlation with either the NAO or AMO.

The pressure pattern is similar to the summer Class 3 pattern, and both these classes

result in a strong focus of heavy rainfall events in the far northwest of Great Britain.

The cold temperature anomaly to the northwest of the UK develops over a matter of

days prior to the heavy rainfall occurring, similar to the events in summer, and in

contrast to the longer-lasting cold anomaly of winter Class 1.
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3.9 Postscript

The study presented in this chapter used cluster analysis on the concurrent mean sea-

level pressure and 2m air temperature fields of the North Atlantic during extreme

rainfall events in the UK in response to Hypothesis 2. The study clusters extreme

rainfall events in Great Britain using their relative mean sea-level and air temperature

fields across the North Atlantic.

The results showed strong contrasts between the mean sea-level pressure and air tem-

perature patterns for each of the clusters. Specifically, the results highlight the spatial

and temporal variability between the clusters; this indicates the role of mean sea-level

pressure and air temperature fields in the generation of the extreme rainfall events are

interdependent and that the variability of these fields can result in very different spatial

and temporal impact distributions.

Previously studies have focused on the interpretation of extreme or heavy rainfall events

using the mean sea-level pressure patterns (Allan, Blenkinsop, et al. 2020; Champion,

Blenkinsop, et al. 2019; Richardson, Fowler, Kilsby, and Neal 2018; Ummenhofer et al.

2017. However, the ability to distinguish between regular and extreme rainfall events

using these patterns is left unattended. The study presented in this chapter highlights

the importance of this question which is addressed through Hypothesis 3 in the next

chapter.

While this work shows potential application to weather generators however there are

also opportunities to further study the relationships between other meteorological vari-

ables by clustering these different variables in various combinations. For example,

clustering GpH and integrated water vapour, or specific humidity and wind vector

fields and then performing regression analysis between the resulting clusters and rain-

fall metrics. Moreover, the sensitivity of these atmospheric variables to the clustering

methods and similarly to Chapter 4 the sensitivity of the results to the number of

cluster are also open avenues for investigation. Further work in this area could enable

the advancement of current weather generators and improve the current understanding

of how and when extreme events occur.
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Chapter 4

Identifying and interpreting

extreme rainfall events using

image classification
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4.1 Preamble

In the previous chapter the covariance of both mean sea-level pressure and air tem-

perature fields relevant to heavy rainfall events is evaluated using a cluster analysis of

combined atmospheric fields. This chapter seeks to answer whether extreme and reg-

ular rainfall events can be distinguished based on their mean sea-level pressure fields

through addressing hypothesis Hypothesis 3.

To do this, a study was carried out which extracted extreme and regular rainfall events

for two hydrologically diverse regions of the UK (Objective 3.1) and developed a set

of neural network based classification models (Objective 3.2) to differentiate between

the following subsets of the rainfall events:

1. Extreme and regular rainfall events in the North West of England.

2. Extreme and regular rainfall events in the South East of England.

3. Extreme rainfall events in the North West of England and extreme rainfall events

in the South East of England.

The neural networks used the mean sea-level pressure fields of the North Atlantic

to distinguish between the events in each experiment. Following this, the resulting

classifiers were evaluated for their accuracy in correctly identifying the relative events

(Objective 3.3). Finally, a sensitivity analysis of the models was carried out to identify

the regions of the North Atlantic that were most responsible for resulting classifications.
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4.1.2 Abstract

This study presents the first attempt to identify extreme rainfall events based on sur-

rounding sea-level pressure anomalies, using neural network-based classification. Sensi-

tivity analysis was also performed to identify the spatial importance of sea-level pressure

anomalies. Three classification models were generated: the first classifies the patterns

between extreme and regular rainfall events in the north west of England, the second

classifies the patterns between extreme and regular rainfall events in the south east of

England, and the third classifies between the patterns of extreme events in the north

west and south east of England. All classifiers obtain accuracies between 60-65%, with

precision and recall metrics showing that extreme events are easier to identify than reg-

ular event. Finally, a sensitivity analysis is performed to identify the spatial importance

of the patterns across the North Atlantic, highlighting for all three classifiers the local

anomaly sea-level pressure patterns around the British Isles is key in determining the

difference between extreme and regular rainfall events. In contrast the pattern across

the mid and western North Atlantic shows no contribution to the overall classifications.
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4.2 Introduction

Flooding caused by extreme rainfall events can have severe social, environmental and

economic consequences. Although variations in yearly flood trends have been studied

extensively (e.g. Robson 2002; Prosdocimi et al. 2019) such trends do not help in

identifying the processes which lead to the extreme cases. For example, in February

2020 storms Ciara and Dennis passed over the United Kingdom (UK), resulting in up

to 177mm of rainfall in a single 24-hour period (Met Office, 2020) and is estimated to

have resulted in insured losses of up to £200 million (Finch 2020). To provide improved

risk analysis and support flood management, the processes which cause these extreme

rainfall events need to be better understood and differentiated from those of regular

rainfall events.

The occurrence of extreme rainfall events in the UK has a strong dependence on the

concurrent and prior meteorological conditions across north western Europe and the

North Atlantic. For example, Brown (2017) shows the dependence of extreme daily

rainfall in the UK on large-scale meteorological indices: North Atlantic Oscillation

(NAO), Pacific Decadal Oscillation (PDO), El Niño – Southern Oscillation (ENSO)

and Atlantic Multidecadal Oscillation (AMO). These indices represent the difference

in either sea-level pressure (NAO, PDO) or sea-surface temperature (ENSO, AMO)

across their specified regions. Brown found the biggest impact was made by the NAO

(the difference in sea-level pressure between Iceland and the Azores), a positive NAO

increases the likelihood of extra-tropical cyclones developing over the North Atlantic.

This relationship is further demonstrated by Richardson et al. (2017) and Schillereff

et al. (2019) which both show a negative NAO correlates strongly with increased

high-river flows.

Extra-tropical cyclones are known to be the main contributors to extreme precipitation

across the globe (Pfahl and Wernli 2012) and have also been linked to the development

of atmospheric rivers (ARs) (Gimeno, Vázquez, et al. 2020). ARs are long plumes of

highly concentrated water vapour in the atmosphere which originate from the mid to

lower latitudes, with those affecting the UK moving upwards towards North Western

Europe from the Caribbean. Lavers et al. (2011) found ARs occurred during the

ten largest floods in the UK. Following this, Lavers and Villarini (2013) analysed the

frequency and intensity of ARs with several climate change scenarios, concluding that

both the intensity and frequency of the strongest ARs is expected to increase in the

future. In contrast, Champion et al. (2015) found that less than 35% of winter and of

15% of summer ARs are associated with an extreme rainfall event. This highlights the
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need to be able to determine the difference between atmospheric phenomenon which

cause extreme rainfall events and those which produce more moderate rainfall events

of little or no interest in flood management.

Attempts to address this need have focussed on the identification of key meteorologi-

cal patterns across the North Atlantic relating to extreme rainfall events derived from

large-scale climate data. Neal et al. (2016) presents 30 sea-level pressure anomaly

(SLPA) patterns (MO-30) identified through the application of the k-means clustering

algorithm (Lloyd, 1957). These patterns represent the types of SLPA patterns which

can be present over the North Atlantic on any day. The patters were then combined

subjectively into 8 SLPA patterns (MO-8), some of which are shown to strongly cor-

relate with the NAO. Richardson et al. (2018) investigated the applicability of these

cluster sets for identifying regional precipitation and drought climatology throughout

the UK, finding that the smaller set of 8 clusters do not aid in explaining precipitation

variability. However, magnitude variation between patterns was observed, with some

patterns producing consistently higher levels of median daily rainfall across all regions

of the UK. However, this does not allow easy distinction between extreme and regular

rainfall SLPA patterns in the various regions.

Ummenhofer et al. (2017) attempted to cluster SLPA patterns using the anomaly

precipitation spatial variation across Europe and found a dipole in SLPA across the

UK can determine whether precipitation anomalies in the UK will be positive in the

north west or south east. This relates to the findings by Champion et al. (2019), who

found that summer extreme rainfall events in the north west are typically associated

with a positive SLPA region over the UK. However, no such relationship was found

when analysing extremes in the south east.

The large-scale meteorological patterns being considered by the studies above are rep-

resented by images, 2D matrices with pixel colour representing the numerical value

of the meteorological variable in question (for example, SLPA). Neural networks have

proven to be effective at image classification across various domains, from the classifi-

cation of YouTube videos (Karpathy et al. 2014) to tumour feature extraction (Yang,

Yang, et al. 2019) but, up until now, they have not been used effectively to classify

meteorological patterns such as distinguishing between SLPA of extreme events. This

study SLPA applies neural networks to identify the differences in SLPA patterns across

the North Atlantic for extreme and regular rainfall events, applied to both the north

west and south east of England. In particular, the study demonstrates the differences

in SLPA between:
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1. Daily extreme and regular rainfall events in the north west of England.

2. Daily extreme and regular rainfall events in the south east of England.

3. Daily extreme rainfall events in the north west and south east of England.

Following this, a sensitivity analysis was conducted to compare which regions of the

North Atlantic are most important to determining between the above classifications.

4.3 Data

4.3.1 Rainfall Events

Extreme and regular daily rainfall series were extracted from the administrative regions

of north west and south east of England. The rainfall series used was the UK Centre

of Ecology and Hydrology’s CEH-GEAR dataset (Tanguy et al. 2015). This dataset

combines data from the Met Office database of observed precipitation data using a

natural neighbour interpolation method to generate a regular grid of rainfall based

covering the British National Grid with daily rainfall values from 1890-2017. The

application of the natural neighbour interpolation allows grid cells to be generated based

on the closest viable rainfall monitors. To extract representative rainfall for each region

(north west and south east England), a regular grid of coordinates is generated for each

region at 30km intervals, bounded by the North West and South East administrative

regions. Figure 4-1 shows the position of these points in both the North West (a) and

the South East (b). For each day, the rainfall magnitude for a region is given by the

total rainfall at each of the points identified. The days on which the rainfall total is

greater than that of a trace level (¿0.5mm at each location) is considered a rainfall day

and is added to the non-trace rainfall series for the region. Following this, each non-

trace event is standardized based on the mean and standard deviation of the month in

which it occurs, using the following equation:

rl,m =
rl,m − rl,m
std(rl,m)

, l = 1, ..., 12 (4.1)

Here, rl,m represents the non-trace rainfall series for region l for all non-trace rainfall

events in month m, rl,m is the mean and std(rl,m) is the standard deviation of the

series. Following standardization, the magnitude of each event represents the deviation

of that event’s magnitude from the mean of its respective location and month. Select-

ing extreme rainfall days from a rainfall series can be achieved by taking the maximum
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rainfall day in each time-period (e.g annual maximum rainfall); alternatively, a thresh-

old can be applied such that all days with a daily rainfall quantity greater than the

threshold are selected. In this study the later approach is used as maxima approaches

require a rainfall day to be selected in each time-period which can lead to the selection

of rainfall days which in the context of the rainfall series are not extreme events such

as in a particularly dry year. Selecting the events with the highest 10% of standard

deviations from the mean provides a set of extreme rainfall events, the 10% of events

closest to 0 can then be chosen as the regular rainfall dataset as these represent the

expected or mean amounts of rainfall in a given month for a given location.

Figure 4-1: Locations of the regions and points from which rainfall is extracted for
both the north west region (b) and south east region (c).

This extraction resulted in 3008 individual events (1504 extreme and regular rainfall,

respectively) in the North West and 2290 events (1145 extreme and regular events) in

the South East. The disparity here is due to there being fewer non-trace rainfall days

in the South East, with the North West having 15,046 non-trace rainfall days and the

South East having only 11,450.

4.3.2 Meteorological Patterns

To classify each event the anomaly sea level pressure (SLPA) pattern is required across

the North Atlantic. For each of the regular and extreme rainfall days for both the north

west and south east regions SLPA patterns are extracted across the North Atlantic.

The patterns are extracted from the 2.5° gridded NCEP/NCAR Reanalysis 1 dataset

(Kalnay et al. 1996), with each pattern bounded between 15-70 latitude and -80-15

longitude.
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Pi,m =
Pi,m −Pm

std(Pm)
,m = 1, ..., 12 (4.2)

Here Pi,m represents the 2D pattern for event i in month m which is standardized using

element-wise operations using Pm and std(Pm). The monthly mean Pm and standard

deviation std(Pm) are defined using all daily patterns in month m, each resulting in a

2D matrix with each cell representing a single pixel across the North Atlantic.

4.4 Classification

To classify the rainfall events a neural network-based classification method is used, the

classifiers are trained using the anomaly sea-level pressure patterns for each event over

the North Atlantic. Three classifiers are required; the first classifies the north western

extreme and regular event patterns, the second classifies the south eastern extreme and

regular patterns, finally the third classifier classifies the extreme event patterns from

both the north west and south east. The exclusion of a fourth model distinguishing

between north west and south east regular events is intentional as the focus of this

paper is on the identification and comparison of extreme events. Table 1 describes

each of these classifiers (MNW , MSE , Mcomp) and indicates which data sets are used in

each model and which class they represent. This section introduces the neural-network

classification method and the optimisation procedure including how the data is split

for training.

Model Description
North West South East
Extreme Regular Extreme Regular

MNW Distinguishes between North Western extreme and regular events. 1 0

MSE Distinguishes between South Eastern extreme and regular events. 1 0

Mcomp Distinguishes between North Western and South Eastern Extremes. 1 0

Table 4.1: This table indicates the purpose of each model and the datasets which are
used. The numbers indicate the class of the given dataset in the given model.

4.4.1 Neural Network Architecture

A neural network consists of at least two layers of nodes connected through edges.

Figure 4-2 shows an example architecture with three layers: an input layer, a hidden

layer and an output layer. Assigned to each edge in the graph is a weight which is

optimised through training and is indicated by Wx where x = 1, ..., 8 is the edge label.

When propagating an input vector the input nodes in the neural network take on the

values of their relevant features, in the case of figure 4-2 there are only two input nodes
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Figure 4-2: An example neural network structure consisting of three layers where each
node is connected via weights (as given by wx) to the nodes in the layers both before
and after.

and hence two features in the input vector. Following this, the value propagated out

of each edge can then be calculated by multiplying the value of the input node by the

weight assigned to the edge, in the case of the edge 1 the value can be calculated as:

C = max(0, edge1 + edge3) = max(0, Aw1 + Bw3) (4.3)

A similar calculation can be done for node D and then the values at nodes C and D can

be propagated forwards in the same manner to nodes E and F along their respective

edges. In figure 4-2 two output nodes are given, indicating a binary classification, a

choice of two class nodes: either E or F . For classifiers MNW and MSE the outputs

nodes will represent whether the input pattern is an extreme event or a regular event

and in case of Mcomp these will indicate whether the pattern is a south eastern or north

western extreme. To make the process of selection easier a soft-max function is applied

to the output nodes such that the output from node E is,

softmax(E) =
exp(E)

exp(E) + exp(F )
(4.4)

where E is the output from node E, F is the output from node F and exp(. . . ) is

the exponential function. Softmax forces the output to be between 0 and 1 giving a

probability of the given pattern being in classes E and F .

4.4.2 Classifier Training

Each of the three models introduced at the beginning of this section (MNW , MSE and

Mcomp) require different datasets and hence three datasets are produced consisting of a

labelled set of input vectors. Each dataset is represented by a matrix of n rows and m

columns where n is determined by the number of events and m is the number of cells
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(or pixels) in a given pattern. The row which represents a given pattern is generated

through the flattening of its matrix, which is done through the concatenation of each

row in the matrix to each other resulting in a vector. Through this operation each

22x38 cell pattern is converted to a single vector of size 836. Each set of events is then

split into two subsets: a training and a test set. The training set consists of 80% of the

input vectors and is used to train the neural network, the remaining 20% is the testing

dataset and is used to validate the accuracy of the network on unseen data. The actual

selection of events as belonging to either the training or testing datasets is randomised.

Training the network involves the optimisation of the weights between the nodes in

the network, this optimisation is done using stochastic gradient descent (Bottou 1998)

and the backpropagation algorithm (Rumelhart, Hinton, and Williams 1986). Back

propagation is a way to propagate the error calculated at the output nodesback through

the weights of a neural network (Leung and Haykin 1991). To do this, an objective

function is required, in this study the cross-entropy loss function (Courville, Bengio,

and Aaron 2016) is used to determine the error between the output nodes and the

intended classification label (extreme or regular). The cross-entropy error will take the

log difference between the true label and its calculated probability, resulting in the two

output nodes containing the probability of each class being correct.

To further provide refinements to the final model we trial models with a varying number

of hidden nodes. In the example given in figure 2 only two hidden nodes are used;

however, in the SLPA classifiers the number of hidden nodes is trialled from 10 to 100

in increments of 10. This will enable the selection of a suitable number of hidden nodes

for the final representative model.

4.5 Results

The accuracy and interpretation of the three-anomaly sea-level pressure (SLPA) clas-

sifiers are given in this section. The first part of this section discusses the accuracy of

each classifier and then the sensitivity of the classifiers to regions of the north Atlantic’s

SLPA.

4.5.1 Model Accuracy

North West Classifier (model MNW )

The results presented in Figure 4-3 (c) show that the testing accuracies during training

plateau at approximately 60%, in contrast the training accuracies continue to increase

101



close to 100% for classifiers with 90 and 100 hidden nodes. The classifier with 30 hidden

nodes ends the 100 epochs of training with the highest testing accuracy of 62% and

hence is selected for further investigation.

Figure 4-3: Loss and accuracies for models classifying between SLPA patterns relating
to north west extreme and regular rainfall events.

Investigating the MNW,30 classifier, precision between the extreme and regular event

classifications differ at 68% and 55% respectively. This indicates the classifier is better

at identifying only extreme events, with fewer false positives. However, when comparing

the recall scores of each classification, which are 60% for extremes and 63% for regular

events, this shows the classifier is equally good at labelling positive extreme and regular

events alike.

South East Classifier (model MSE)

Similarly to the north west classifier a plateau occurs when attempting to train a

neural network to classify between south eastern extreme and regular rainfall event

SLPA patterns across the North Atlantic. As presented in figure 4-4, the training

accuracy increases as the training error of these classifiers decreases; however, as found

in the training for MNW , the testing accuracy remains consistent at around 60%.

For MSE the optimal classifier contains 10 hidden nodes (MSE,10), this classifier finishes

the 100 epochs with a 60% testing accuracy and 84% training accuracy. Breaking this

into the precision and recall values a similar trend again is seen to MNW ,30 with

precision values for both regular and extreme events being similar at 55% and 59%

respectively. Further to this, the recall values also show a similar trend with the

extreme event patterns having a recall higher than that of the regular event patterns

(61% and 53% respectively).
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Figure 4-4: Loss and accuracies for classifiers classifying between the SLPA patterns
relating to south east extreme and regular rainfall events.

Extreme event classifier (model Mcomp)

The final classifier (Mcomp) looked to distinguish between extreme event patterns for

north west and south east, similarly again to MNW and MSE a plateau of testing

accuracy occurs, as shown in figure 4-5, but with a slight variability depending on the

number of hidden nodes used. The spread of training accuracies and training errors is

also marginally lower than those presented in the previous classifiers.

Figure 4-5: Loss and accuracies for models classifying between SLPA patterns relating
to extreme events in the north west and south east.

Despite this, the most accurate classifier has 10 hidden nodes (Mcomp,10) and gives a

testing accuracy of 65% and a training accuracy of 81%. In contrast to the MNW,30 and

MSE,10 models, the precision and recall values of identifying south eastern extremes

(66%, 67%) are both higher than those of identifying north western extremes (55%,

54%). This is counter intuitive as the model was trained using 31% more examples of
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north western extremes indicating the model would have more experience classifying

these types of extremes.

4.5.2 Spatial Sensitivity

To identify the regions of interest to each classifier a saliency map is created, represent-

ing the relative contribution of each cell (input feature) to the overall classification. To

calculate the contribution of each cell to the overall classification the back-propagation

algorithm is used on a baseline image which is a pattern consisting of only 0s and a

given classification, for example an extreme event in MNW . The error generated by the

network is then propagated back through the network, the weights of edges will show a

stronger difference if they are important to the given classification where as those with

little relevance will not change by a comparatively large amount (Simonyan, Vedaldi,

and Zisserman 2014). When the errors reach the input nodes, they can be rank or-

dered to identify which pixels were contributing the most to the given classification,

in this study this is achieved by normalizing between 0 and 1 the contribution values

calculated.

Figure 6 shows the spatial contribution patterns for both MNW,30 (left) and MSE,10

(right). Both maps show little contribution from cells in the mid and western regions

of the North Atlantic, however a strong contribution is present closer to the British

Isles. MNW,30 presents higher levels of contribution from both the Irish and North Seas

whereas MSE,10 relatively weak contributions from these regions but a higher level

of contribution from coast of Brittany in north western France. Ummenhofer et al.

(2017) shows the difference in SLPA across the North Atlantic for various precipitation

anomaly patterns; the key difference in the patterns presented is the SLPA just west

and south west of the British Isles (a positive SLPA leads to negative precipitation

anomalies in the north west and negative SLPA indicates positive precipitation anoma-

lies). Similarly, MSE,10 shows interest over the south west of the UK which continues

to match the findings of Ummenhofer et al. (2017).

Next, the saliency map for Mcomp,10, which distinguishes between extreme events in the

north west and extreme events in the south east, is shown in figure 4-7 and presents

high level of contributions across the North of England, the Irish Sea and the coast

of Brittany. This reinforces the case of local meteorological conditions creating the

difference not only between extremes and regular rainfall events but also the difference

between north west and south east extreme events. Further to this, both Figures 4-6

and 4-7 indicate on the day of occurrence the conditions across the rest of the North

Atlantic are not contributing to the resulting classifications. This raises the question
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Figure 4-6: Saliency map showing the spatial contributions of SLPA patterns to clas-
sifying extreme and regular rainfall events for both MNW,30 (left) and MSE,10 (right).

of how these contributions could change if the classifiers were trained using patterns of

the days prior to an event, as it is known that certain prior meteorological conditions

are common to some extreme rainfall events (Allan, Blenkinsop, et al. 2020)).

Figure 4-7: Spatial contributions of SLPA patterns in determining the difference be-
tween north west and south east extreme events.

4.5.3 4.3 Limitations

The neural network based approach used in this study relies heavily on the data used

to train and test the models. As neural networks were trained to differentiate between

extreme/regular rainfall events hence the training process is sensitive to how extreme

events were selected. In this study a threshold method is used, which selects the top

10% of standardised rainfall days in each region to represent extreme events. The

reasons for this selection are outlined in section 2.1; however, the use of an alternative

threshold (e.g. 5%) or maxima based method would result in a set of models which

vary greatly from the models presented here.
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Furthermore, the method used for calculating the representative daily rainfall total

for each region and day is the result of a trade-off, between computational time and

accuracy. As presented in section 2.1 the representative sample for each day is collated

from a regular grid of points at 30km intervals, the CEH-GEAR dataset is provided at

1km intervals; however, increasing the resolution of the regular grid would substantially

increase the computational time required to calculate the average daily regional rainfall

total. This trade-off was considered reasonable as the present study only uses the

magnitudes to determine the extreme and regular events within each region. If, however

we were to compare the magnitudes between regions then a different approach using

higher resolution representations would be necessary.

Finally, the sensitivity analyses shown in section 4.2 highlights some interesting dispar-

ities between regular and extreme events in both regions. However, the interpretability

and reliability of the sensitivity analysis are tied to the how effective the optimisation

of the neural network’s parameters was during training. Hence with further fine tun-

ing of the network’s parameters the resulting sensitivity analyses should reveal clearer

disparities and offer further insight into the differences.

4.6 Conclusions

Neural network-based image classification was used to identify the concurrent, anomaly

sea-level pressure (SLPA) differences across the North Atlantic between the following

types of daily rainfall events for two homogenous rainfall regions in the UK:

1. Extreme and regular rainfall events in the north west of England.

2. Extreme and regular rainfall events in the south east of England.

3. Extreme rainfall events in the north west and south east of England.

Through the generation and optimisation of several neural network classifiers to repre-

sent each of the above scenarios the following conclusions can be drawn:

1. The differences in SLPA for extreme and regular rainfall events in both the north

west and south east of England are close enough to make numerical classification

difficult.

(a) Classifying between north western extremes and regular rainfall events has

an accuracy 2% higher than classifying between south eastern extremes and

regular events (62% and 60% respectively).
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(b) In both regional classifiers the precision and recall of extreme events are

higher than those of the regular rainfall patterns, indicating extreme event

SLPA patterns are more defined than regular events.

(c) In determining the differences between extreme events in the north west and

those in the south east both recall and precision are higher for south eastern

extremes, indicating the patterns relating to these events are more defined

than those in the north west.

2. Saliency maps have been used to identify the spatial regions of SLPA which

contribute to the classifications.

(a) The local SLPA patterns across the British Isles is key to determining the

difference between extreme and regular rainfall events in both the north west

and south east.

(b) The mid and western North Atlantic however has been shown not to provide

any substantial contribute to any of the classifications developed in this

study.

Finally, the patterns presented in the sensitivity analysis indicate the potential for this

method to be used to identify the spatial importance of meteorological variables in the

days prior to extreme or regular events. This will aid meteorologists target the regions

of importance without the need to incorporate global data, reducing computational

requirements. Furthermore, opening this method to the application to other meteoro-

logical variables such as precipitable water, sea-surface temperature and geopotential

height may enable further inference to be gained on why extreme events are different.
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4.8 Postscript

This chapter presented a study which addresses Hypothesis 3. To do this a new

neural network based classification scheme was developed to distinguish between heavy

and regular rainfall events for two hydrologically diverse regions of the UK. Three

classification models were developed to distinguish between the following subsets of

rainfall data from the two regions:

1. Heavy and regular rainfall events in the North West of England.

2. Heavy and regular rainfall events in the South East of England.

3. Heavy rainfall events in the North West of England and heavy rainfall events in

the South East of England.

The models were trained to make this distinction using the mean sea-level pressure

fields of the North Atlantic. The resulting models for each of these experiments were

then compared using their accuracy in distinguishing between the event types. Finally,

a sensitivity analysis was carried out to identify which regions of the mean sea-level

pressure fields used were important in the models’ classification.

The results of these experiments highlight that although the neural network models

were capable of distinguishing between the heavy and regular rainfall events they are

only able to achieve mild improvement on random guessing achieving 60-62% accuracy.

The sensitivity analysis however did reveal that for all three experiments the localised

mean sea-level pressure fields to the west of the UK contribute the most to the resulting

classifications with little to no influence being given by the mid to western Atlantic.

Although these results indicate the neural network architecture used in this chapter

is not practically capable of providing useful distinctions between the MSLP patterns

responsible for extreme rainfall events in different regions of Great Britain. However,

they do indicate that neural network do have potential in interpreting the atmospheric

fields. Considering the approach in this chapter methodologically the process used to

define heavy and regular rainfall events would have a substantial impact on the model’s

ability to differentiate them. Further to this, Richardson et al. (2020a, 2020b) indicates

the pressure fields surrounding the UK can be used for sub-seasonal forecasting of both

drought and flood conditions.

Future work, could investigate the sensitivity to the classifcation procedure to the archi-

tecture and other hyper-pararmeters of the neural network. Moreover, the inclusion of

other meteorological variable combinations could be used to identify a high-performing
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classifcation model while providing further inference as to what makes extreme events

different. This leads to the question of whether alternative neural networks would be

able to improve forecasting potential through the analysis of these fields instead of dis-

tinguishing between heavy and regular events. This question is answered in the next

chapter which addresses Hypothesis 4.
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Chapter 5

Forecasting sub-seasonal rainfall

in Great Britain using

convolutional-neural networks
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5.1 Preamble

Chapters 3 and 4 have shown how atmospheric patterns across the North Atlantic can

be used to identify and distinguish rainfall events; chapter 3 specifically highlighted the

dependence of mean sea-level pressure and air temperature. In the present chapter new

neural network based methodology id developed for forecasting sub-seasonal rainfall

events hence addressing Hypothesis 4.

This chapter reports on a study currently in review for Meteorological Applications.

The study begins by extracting regional, monthly rainfall values for all administrative

regions of Great Britain. For each of the rainfall events both the mean sea-level pres-

sure and air temperature patterns from across the North Atlantic were extracted using

ECMWF SEA5 hindcasts at 1, 3 and 6-month leadtimes (Objective 4.1). A new neu-

ral network model is produced for each leadtime which accept a mean sea-level pressure

and air temperature pattern as input to produce a regional series of rainfall values for

the representative month (Objective 4.2). Finally, these models are evaluated both

in terms of accuracy and bias, with a comparison made to the original ECMWF SEAS5

precipitation hindcasts (Objective 4.3).
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5.1.2 Abstract

Traditional weather forecasting approaches use various numerical simulations and em-

pirical models to produce a gridded estimate of rainfall, often spanning multiple regions

but struggling to capture extreme events. The approach presented here combines mod-

ern meteorological forecasts from the ECMWF SEAS5 seasonal forecasts with convo-

lutional neural networks (CNNs) to improve the forecasting of total monthly regional

rainfall across Great Britain. The CNN is trained using mean sea-level pressure and

2m air temperature forecasts from the ECMWF C3S service using three lead-times:

one month, three months and six months. The training is supervised using the equiv-

alent benchmark rainfall data provided by the CEH-GEAR (Centre for Ecology and

Hydrology, gridded estimates of areal rainfall). Comparing the CNN to the ECMWF

predictions shows the CNN out-performs the ECMWF across all three leadtimes. This

is done using an unseen validation dataset and based on the root-mean square error

(RMSE) between the predicted rainfall values for each region and benchmark values

from the CEH-GEAR dataset. The largest improvement is at a one-month leadtime

where the CNN model scores a RMSE 6.89mm lower than the ECMWF. However, these

differences are exacerbated at the extremes with the CNN producing, at a one-month

leadtime, RMSEs which are 28.19mm lower than the corresponding predictions from

the ECMWF. Following this, a sensitivity analysis shows the CNN model predicts

increased rainfall values in the presence of a low sea-level pressure anomaly around

Iceland, followed by a high sea-level pressure anomaly south of Greenland.
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5.2 Introduction

Rainfall variation plays a significant role in the UK’s long-term investment strategy

and this variation takes two forms. The first is the effect of droughts, or prolonged pe-

riods of lower-than expected rainfall, such as the dry summer of 2012, which resulted in

farmers struggling to grow and harvest crops and a heightened risk of wildfires (Hunt-

ingford et al. 2014). The second effect is flooding from high levels of precipitation, with

two prominent examples of this being storms Ciara and Dennis from February 2020,

which resulted in over £300 million worth of damage and costing the lives of five people

(Emerton 2020). However, these are not isolated events but form an increasingly ap-

parent change in rainfall intensity, with increasingly wetter winters and drier summers

(e.g., Murphy et al. 2020). Therefore, it is important to increase our understanding of

how and why these extremes occur.

Previous research has demonstrated that the magnitude and spatial distribution of

rainfall are tied to the patterns of atmospheric circulation (Utsumi, Kim, et al. 2017;

Baker, Shaffrey, and Scaife 2018; Gimeno, Vázquez, et al. 2020). This is especially

true during winter, when the precipitation variability over the British Isles is heavily

influenced by the North Atlantic Oscillation (NAO), an index which is characterized by

the pressure difference between the Azores and Iceland (Brown, 2018). The NAO has

been found to exert a strong influence on the storm track and strength of extra-tropical

cyclones crossing the North Atlantic Ocean (Huntingford et al. 2014). These storms

which originate over the North Atlantic are the main contributors to European rainfall

(Gimeno, Vázquez, et al. 2020). Other studies have identified links between NAO and

flood levels (e.g. Hannaford and Marsh 2008; Macdonald, Phillips, and Mayle 2010).

Neal et al. (2016) created two classification models to investigate the synoptic atmo-

spheric conditions leading to dry and wet periods, respectively, across the entire United

Kingdom. The classification models grouped daily atmospheric conditions into either

one of thirty or one of eight types depending on which model was being used. These

models were developed by using daily sea-level pressure patterns across northern Eu-

rope and the North Atlantic and clustering them using a simulated annealing variant

of the k-means clustering algorithm. Neal’s models use the mean sea-level pressure

anomalies across the North Atlantic to classify every day into one of thirty different

circulation types. Subsequently, the set of 30 circulation types was reduced to a smaller

set consisting of eight circulation types; the most prominent of which represent the pos-

itive and negative phases of the NAO. Using these eight patterns, Richardson et al.

(2017) were able to show how certain patterns such as a negative NAO with a blocking
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pattern or anticyclonic conditions over the UK result in drier conditions than aver-

age. Furthermore, Richardson et al. (2017) also showed how a positive NAO pattern

or a strong cyclonic pattern to the south west of the UK can result in wetter than

average conditions. Similarly, Ummenhofer et al. (2017) used clustering techniques

to group the precipitation rates across Europe into five types. The average sea-level

pressure anomalies for each of these types were grouped together and showed strong

relationships between the dominant pressure systems over the Arctic and Europe to

the precipitation variability over the UK. None of the studies listed above appear to in-

clude temperature as a covariate despite the key relationship between temperature and

rainfall via the Clausius-Clepyeron (CC) relation which states a warmer atmosphere

can hold more water than a cooler one (Blenkinsop et al. 2015). The relationship be-

tween temperature and rainfall via the CC relation is evident but vary across a spatial

domain even as small as the UK (Blenkinsop et al. 2015). Further studies also show a

stark contrast in synoptic temperature conditions related to heavy or intense rainfall

events (Allan, Blenkinsop, et al. 2020).

Baker et al. (2018) used several linear regression models to explain up to 76% of re-

gional rainfall variability in the UK using a series of selected sea-level pressure metrics.

Richardson et al. (2020) further expanded the work on the original circulation pattern

analysis of Richardson et al. (2017), to show that weather patterns can be used to

inform both medium-range precipitation forecasting, highlighting that the use of the

weather patterns in forecasting increased the accuracy of the drought forecast. Recently

there has been a move towards the use of neural networks to predict future rainfall. A

review by Pham et al. (2020) found that neural networks can generally predict daily and

sub-daily rainfall to within 10mm or less. Kumar et al. (2019) used a neural network to

predict the monthly- rainfall totals across several hydrologically homogeneous regions in

India. However, the greatest success was reported by Haidar & Verma (2018), who de-

veloped a one-dimensional convolutional neural network (CNN) using climate variables

(including, but not limited to, max temperature, min temperature, southern oscilla-

tion index, dipole mode index and interdecadal pacific oscillation) to predict monthly

rainfall total in eastern Australia. They found that the resulting model showed higher

predictive performance than the recently released Australian Community Climate and

Earth System (Hudson et. al. 2017). Recently, CNNs have been shown as capable at

predicting gridded precipitation; first Larrando et al. (2019) uses Geopotential Height

fields across the North Atlantic to predict total 3-hourly precipitation across Western

Europe presenting more accurate results than alternative traditional machine learning

approaches such as regression. In contrast, Rasp and Thuerey (2021) used a large num-

ber of input variables including geopotential height, temperature, wind speeds, specific
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humidity and 6h accumulated precipitation to predict gridded rainfall estimates with

cells 5.625◦. Although both studies present promising results neither provided a true

sub-seasonal forecast. An image-based CNN would allow the interpretation of images,

such as those used by Neal et al. (2016) but using the powerful inference offered by

the CNN architecture shown by Haidar & Verma (2018), Larrando et al. (2019) and

Rasp and Thuerey (2021).

The present work fills this gap by producing a novel sub-seasonal rainfall forecasting

methodology which uses image-based convolutional neural networks along with the me-

teorological forecasts from the ECMWF. The convolutional neural networks used are

a novel deep learning approach, which combine both high-resolution sea-level pressure

and 2m air temperature forecast patterns across the North Atlantic to produce re-

gional, monthly rainfall predictions. These models are then compared to the ECMWF

SEAS5 precipitation forecasts (Johnson et al., 2019) using three different lead times

(one month, three months and six months). To begin with, this study describes the

datasets and pre-processing carried out (section 2), before introducing CNNs in section

3, detailing the architecture and training progress of the selected model in section 3.

The forecasts from the CNN are then compared with those from the SEAS5 system

(section 4), before making concluding remarks regarding the potential for CNNs to be

used to predict regional rainfall.

5.3 Data

Training the CNNs requires three key datasets: (1) the benchmark (observed) regional

precipitation, (2) the forecasted mean-sea level pressure, and (3) 2m air temperature

(2AT) patterns across the North Atlantic. Forecast precipitation is then also required

to allow a comparison between the accuracy of the CNN model and that of the ECMWF

SEAS5 model. This section begins by describing the extraction of the observed and

forecasted regional rainfall before describing the process of extracting forecasted North

Atlantic mean sea-level pressure (MSLP) and North Atlantic 2AT data. Finally, this

section concludes by describing the separation of the dataset into training, testing and

validation.

5.3.1 Regional Precipitation

Regional, series of observed monthly precipitation totals (mm) covering the land surface

of Great Britain are extracted from the CEH-GEAR (Tanguy et al. 2015) and the

forecasted precipitation totals (mm) extracted from the ECMWF SEA5 (Johnson et
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al. 2019). The CEH-GEAR dataset represents the benchmark precipitation and is used

to train the CNN model. The predictions made by the CNN are then compared to the

precipitation hindcasts made by the ECMWF SEA5 service. Both datasets are used to

produce average cumulative monthly rainfall between 1993 and 2017 for the 13 regions

administrative regions of Great Britain (Figure 5-1).

Figure 5-1: The 13 regions of Great Britain (a) and the corresponding 20km by 20km
points (b) used to aggregate monthly rainfall totals (mm).

Benchmark regional rainfall

The CEH-GEAR dataset is a daily-mean rainfall dataset provided on a 1km×1km grid

covering the British Isles. The dataset spans the years 1950 to 2017, however only data

from 1993 to 2017 were used in this study due to the more limited range of the ECMWF

hindcasts dataset as described in the section 2.1.2. First, the daily CEH-GEAR data

were aggregated to monthly values (mm). Next, the monthly rainfall data were further

aggregated spatially to represent rainfall in each of the 13 regions. This was achieved

by defining 598 points at 20km intervals across the UK as shown in Figure 5-1 (a).

For each region, a representative monthly rainfall value is represented by the average

monthly cumulative total of all points within the region’s boundaries.

ECMWF SEAS5 forecast regional rainfall

Forecast of bias-corrected rainfall data provided by the ECMWF SEA5 model was

retrieved through the for three different lead times, one month, three months and

six months. As the ECMWF SEA5 results are provided as an ensemble of 52 model

realisations, the ensemble mean is used. Rainfall data for each lead time variant is

provided in cumulative monthly values (mm) at a global resolution of 1°×1° cells, the
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data used in this study is bound between [100°W, 70°N] and [20°E, 10°N]. This data

is then aggregated for each region to produce a total monthly rainfall value for each

region for the months available. To do this for a given region and month, the month’s

rainfall data is first retrieved and is represented by a matrix of 1°×1° cells. Next, each

point within the selected region takes the value of the CEH-GEAR cell which contains

it. Finally, the values for each point can be averaged to produce a total monthly rainfall

value for the given region during the given month. Completing this operation for each

month and each region produces a rainfall data matrix of size [13, 288] ([N-Regions,

N-Months]).

5.3.2 Meteorological Data

Similarly to the rainfall data discussed in section 2.1.2, the large-scale atmospheric

dataset used in this study is provided at a 1°×1° resolution and is obtained from the

ECMWF SEA5 system and provided bias-corrected (Johnson et al. 2019). The variables

of interest are the bias-corrected MSLP and bias-corrected 2AT. Both variables are

provided globally and are forecasted using multiple lead times, with the MSLP provided

in units of Pascal and the 2AT provided in Kelvin, as discussed above the ensemble

mean is taken for both the MSLP and 2AT patterns. As this study is focussing on the

synoptic conditions in the North Atlantic Ocean, a subset of the data between -100°
–20° longitude and 10°– 70° latitude was extracted for each of the three chosen lead

times (one month, three months and six months). For each lead time, each month is

then represented by two matrices of size 121×61, one for the 2AT and the second for the

MSLP with each entry representing a 1°×1° spatial cell. The resulting dataset consists

of 288 matrices for AT and 288 matrices for MSLP, one for each month covering the

24-year study period (1993 – 2017).

5.3.3 Data Separation

The final step in data preparation is to distinguish the data used for training, testing

and validation. The training data will be used to train and optimise the network, the

testing data will be used in a hold-out testing scheme to ensure the models are not

overfitting and final the validation data will be used to evaluate model performance

after development. To begin, the validation dataset is set to contain the data from the

years 2013 to 2017, then the remaining months are split randomly between training

(70%) and testing (30%).
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5.4 Forecasting Method

Three convolutional neural networks (defined below) were developed to forecast the

monthly regional rainfall values across Great Britain using three different lead times,

the inputs and outputs of each CNN are shown in Figure 5-2. This section introduces

convolutional neural networks, their components and the architecture of the network

followed by an outline of the training method including details on the data standard-

ization procedure used prior to training. CNNs are selected due to their capabilities of

interpreting image data where traditional neural networks would fail, covering a wide

variety of applications from tumour identification (Yang, Yang, et al. 2019) to video

classification (Karpathy et al. 2014).

Figure 5-2: The three forecast models showing their inputs and outputs.

5.4.1 Network Structure

Convolutional neural networks (CNNs) are a type of neural network that specialise in

interpreting data that are in image form, which in the present case are images consisting

of two matrices: the 2AT and the MSLP patterns. The resulting input matrix for each

month is a 3D matrix of size [2×121×61], the first [121×61] slice containing the MSLP

and the second containing the 2AT. During training this matrix is fed through the

layers in the CNN with each layer performing a unique matrix transformation, the

layers used in the models for this study are detailed below.

The name (CNN) is derived from the networks’ use of convolutional (i.e., a layer which

performs many different operations on the input) layers. An example convolutional

layer is provided in Figure 5-3. Here the layer accepts a [3×3] matrix as its input
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matrix, it then passes a predefined kernel (mask) over the image in increments (also

known as the step-size) of one pixel. At each step the kernel is multiplied by the pixels

underneath it, then summing the resulting values to produce the output of this step.

The outputs of each step are put back together to form a new lower-resolution image. In

this case the kernel (defined here as a 2x2 block with a row of two 1s above a row of two

0s, indicating the kernel is looking for a horizontal line) has identified a horizontal line

at the top of the image and no horizontal lines below this. This can be seen in Figure

5-3 where a 2 is produced for both the top left and top right hand corners indicating

both of these contain some or all of a horizontal line. In practice it is common to use

multiple kernels at each layer such that each layer can capture many different features.

These result in an output matrix larger than that of the input matrix; for example,

if three kernels of size [2×2] were used on a [3×3] matrix input the resulting output

would be 3×[2×2] (three kernels of size [2×2]).

Figure 5-3: A convolution applied to a 3-by-3 image using a 2-by-2 kernel. The kernel
is moved over the image by one pixel at a time, calculating the value of the subsection
by multiplying the kernel by the pixels highlighted.

Using multiple kernels in a single layer then presents a problem of complexity, increasing

the size of the data as it moves through the convolutional layer further increases the

computational resources needed for processing. To counteract this the implementation

of max-pooling layers are used, which also reduce the dimensionality of the data. Max-

pooling layers look through a kernel but instead of multiplying the pixels under it, the

patch simply takes the maximum pixel value and uses this to represent its output. This

process is illustrated in Figure 5-4 using a variation of the [3×3] matrix present in Figure

5-3. As the max pooling layers generally follow a convolutional layer the input they

receive is a multi-dimensional matrix, in the example described in the above paragraph

the output provides 3×[2×2] matrices (one [2×2] for each kernel). Each kernel’s output

is processed independently, such that the number of matrices outputted by max pooling

layers stays the same as the number which are given to them. However, these matrices
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will have reduced dimensions. Take for example an output from a convolutional layer

of 5×[3×3] matrices, feeding this into a max pooling layer as shown in Figure 5-4 will

produce 5×[2×2] matrices.

Figure 5-4: A max-pooling operation applied to a 3-by-3 image using a patch of size
2-by-2. As the patch moves across the image it extracts the maximum pixel value at
each timestep.

Max-Pooling layers enables the CNN to reduce the dimensionality of the data. Relating

this back to the datasets described in section 5.3, the input is a 3D matrix ([variables,

latitude, longitude]=[2, 61, 121]) but the output is a vector of length 13 (a monthly

rainfall value for each of the 13 regions), so a final set of layers is needed to convert the

multi-dimensional outputs of the convolutional/max-pooling layers to a 1D matrix. To

do this, a linear layer is used; an example of which is shown in Figure 5-5. The linear

layer consists of several nodes each of which is connected by a weighted edge to every

pixel in the output of the layer before it (also referred to as fully connected layers).

The output (y) for all nodes in the linear layer can then be calculated as:

y = xWT + b, (5.1)

where x is an array containing the output of the previous layer and the weights matrix

WT is of size [|x| × |y|] and b is a randomly initialised bias term (of size [1 × |y|]).
The resulting vector y is then passed through an activation function, which in this case

is a rectified linear unit function on each element, this activation function applies an

absolute function to the values, ensuring all output values in y are positive.

The architecture of the CNNs produced for this experiment is shown in Figure 5-

6. Figure 5-6 also shows how the size of the data moving through the network is

changing, in the first convolutional layer for example the original input image is split

into a 16×[30×60] matrices. This indicates that in the first convolutional layer there
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Figure 5-5: A linear layer example following a max pooling layer. This example shows
a max pooling layer with output dimensions [8, 3, 7] feeding into a linear layer of size
[1, 100]. The max-pooling output is first flattened into a 1D vector. Each value in
this vector is then connected to every node in the linear layer via a weighted edge
which results in a weights matrix of size [8×3×7,100]. The linear layer then uses these
weights and the flatened max-pooling vector to calculate the layer’s output as described
by Equation 5.1.

are 16 randomly generated kernels (all kernels used are of size (2, 2)), the kernels are

randomly generated to enable to identification of features which may not have been

previously known. An activation layer then follows each convolutional layer using the

ReLU function (max(x,0)). These are then reduced in size through the first max-

pooling layer before being fed into the second convolutional and max-pooling layers.

Following these the output is passed through two linear layers, the first containing 100

neurons and the second containing 13. This final linear layer of 13 neurons outputs the

monthly rainfall predictions for each of the 13 regions.

Figure 5-6: Architecture of the convolutional neural network model. Each layer is
provided with the number of dimensions of its output matrix. For example, the first
convolutional layer has an output size of [16, 30, 60], this also indicates the number of
filters used in the layer (16). These are followed by max-pooling layers and finally two
dense linear layers.
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5.4.2 Training

As two separate variables with different scales and units are used for the input, they are

standardized separately, such that both the 2AT matrix and mean sea level pressure

were standardized by the mean and standard deviation of each of their individual

matrix elements. Once standardized these images were recombined into the [2×61×121]

matrices required for training. Next, to reduce the potential for overfitting the data

are split randomly into two groups; a training and a validation dataset. The training

dataset was used for training the weights of the CNN, whereas the validation data

was used to compare the model predictions to those of the ECMWF system. Hence,

of the data available, the months between 2013 and 2017 were retained for validation

purposes and the remaining months between 1993 –2012 were used for training. To

train the weights of the CNN the Adam optimisation (Kingma and Ba 2015) method

is used along with the root mean-squared error (MSE) defined as,

RMSE(x, y) =

√∑n
i=1(yi − xi)2

n
. (5.2)

Finally, to ensure the models are optimal a stopping condition is used through a hold-

out testing scheme, on each epoch the testing data is used to calculate a testing loss.

If after 5 epochs the testing loss does not reduce the training scheme will revert the

parameters to the epoch with the lowest testing error.

5.5 Validation Results

This section details first a comparison between the forecasting capability of the trained

CNN model developed in this study and the existing ECMWF model using only the

validation dataset which was not used during training, then breaks down the CNN

model to identify what features have been identified in the large-scale data as being

most influential for informing the predictions (section 5.5.2).

5.5.1 Model Comparisons

To ensure a fair comparison only validation data is used to compare the ECMWF and

the CNN models. Figure 5-7 shows both the CNN and ECMWF predictions against

the benchmark rainfall for the validation dataset. For all three lead times the CNN

shows wider spread in its predictions, especially when predicting the lower rainfall

values. Decreasing the lead time from six months to three months appears to make

little difference to the distribution of the predictions. However, at a one month lead
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time the ECMWF predictions present a smaller range of predicted rainfall which comes

at the cost of constant over prediction of the lower rainfall values and under-prediction

of the higher rainfall values. Contrary to this, the CNN model yields a larger variation

in the predictions of very low and very high rainfall amounts but appear to be less

biased.

Figure 5-7: Validation rainfall predictions against benchmark rainfall for both the CNN
and ECMWF methods in all three lead times: (a) one month, (b) three months and
(c) six months.

As shown in Table 5.1 the three-month variants of both models perform the best, with

the lowest RMSE scores. This trend is found in both the validation RMSE scores and

the overall dataset RMSE scores. In all leadtimes and in both dataset variants the

CNN outperforms the ECMWF model, this is to be expected in the overall dataset

(training, testing and validation) as the CNN was specifically trained using the data

being evaluated. However, this does not explain the increased accuracy the CNN has

in the validation dataset which was not available during training.

Further investigating the bias in the models towards the central range of rainfall values

Figure 5-8 shows a summation of the residuals (differences between the benchmark and

predicted rainfall) against the benchmark rainfall values for a three-month lead time.
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Model Leadtime
RMSE

Validation Overall

CNN
1 46.47 38.09
3 43.27 37.99
6 48.53 39.02

ECMWF
1 53.36 47.50
3 48.65 45.86
6 49.60 52.26

Table 5.1: The RMSE scores for both the CNN and ECMWF models covering all three
leadtimes given the validation dataset, the top 5% of all events in each region and the
complete, overall dataset are given.

This illustrates the strong under prediction of the higher rainfall values in both the

CNN and ECMWF predictions; moreover, this highlights a weaker bias in the CNN

model with approximately half the final cumulative residual compared to the ECMWF

predictions. Following this, a weaker bias can be seen in the rainfall values leading up

to 100mm with a general trend of over prediction in both models, of which the CNNs

bias appears stronger. A similar trend is seen for both one-month and six-month lead

time predictions.

Figure 5-8: Cumulative residual of both methods using a three-month lead time against
the actual regional rainfall.

Following this, it is important to identify any regional or seasonal bias in the predictions,

to do this proportional errors are generated for each of the 13 regions across Great

Britain and for each of the 12 months of the year. Figure 5-9 (top row) shows the

proportional error for each region and each month of the year. To do this, the mean-

absolute error (MAE) is used to calculate the differences between the two series, the

general equation for the MAE is defined as,

MAE(x, y) =

∑n
i=1 |yi − xi|

n
. (5.3)
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Subsequently, the MAE can then be used to calculate the proportional regional error

(PRE) for a given region i,

PREi =
MAE(pi, p̂i)

p̄i
. (5.4)

Here the mean-absolute error between the benchmark rainfall series (pi) and predicted

rainfall series (p̂i) is divided by the mean benchmark rainfall (p̄i) for the given region i.

This indicates how far away the predictions are based on the region’s average rainfall

value. Similarly, the proportional monthly error (PME) can be calculated as:

PMEm =
MAE(pm, p̂m)

p̄m
. (5.5)

As with equation 3, the difference between the benchmark series (pm) and predicted

rainfall series (p̂m) is divided by the mean benchmark rainfall (p̄m) for month m where

m = 1, · · · , 12.

The values of PREs are below 52% for all lead times and all regions; despite this,

at a one-month lead time there is a disparity between the CNN and the ECMWF

predictions. The CNN errors at a one-month lead time are highest for regions in the

south east of Great Britain (London, South East England and East of England) whereas

the ECMWF errors are higher for the west of Great Britain (Wales, South West England

and North West England). This can be attributed to the known rainfall gradient

across the UK, where western regions are likely to receive higher levels of rainfall and

geographic effects produce a rain-shadow over the east (Mayes and Wheeler 2013). As

described above and shown in Figure 5-8, the ECMWF model produces larger errors

for the higher rainfall values which are those occurring more in the west and north west

regions where as, the CNN provides more accurate predictions for the higher rainfall

values which according to Figure 5-9 comes at the cost of predicting east and south

eastern rainfall. However, due to the different drivers of rainfall across the UK (Baker,

Shaffrey, and Scaife 2018) this error could be representing the CNN identifying one

rainfall driver and discounting the others.

The bottom row of Figure 5-9 shows values of PME and highlights significant bias in

the forecasted precipitation between month of the year. First, the CNN across all three

lead times produces high errors for April, June and September, whereas the ECMWF

forecasts have the largest proportional errors for April, September and October. How-

ever, the magnitude of these errors is different, with the CNN mis-predicting June
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rainfall by 100% of June’s average rainfall whereas the ECMWF forecasts only mis-

predicts June by 47.5%. September is shown to be difficult to predict with both models

producing an error of 91.1% of the average September rainfall.

Figure 5-9: Regional and monthly rainfall areas as a proportion of the average rainfall
for the given month or region. This is given for both methods and all three lead times:
(a) one month, (b) three months and (c) six months.

5.5.2 Sensitivity Analysis

The benefit of using a convolutional neural network is that the weights between each

layer can be used to identify the pixels of the input matrix which attribute the most

to a given region’s rainfall prediction. To do this the integrated gradients method is

employed (Sundararajan, Taly, and Yan 2017). Integrated gradients determines the

importance of each pixel in the original image for, in this case, increasing the predicted

rainfall value. For example, a negative attribution value indicates a pixel lowered

the resulting rainfall prediction whereas a positive attribution increases the resulting

rainfall value. Figure 5-10 shows the normalized attribution of each MSLP (a) and

2AT (b) pixel for both North West England (top) and South East England (bottom).

Figure 5-10(a) shows three dominant areas of interest for both NW and SE England;

firstly, a strong negative attribution can be seen south west of Iceland, stretching
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towards the south west of the UK. This negative attribution will increase the magnitude

of the rainfall prediction for both NW and SE England if the meteorological patterns

contains a negative MSLP anomaly. Should the region instead contain a positive MSLP

anomaly the rainfall values will decrease. In contrast the second and third areas of

interest as shown by the positive attribution values to the east of Newfoundland and

surrounding Cape Verde, west of Africa. These regions of positive attribution will

amplify the rainfall predictions if they contain positive MSLP anomalies and decrease

the prediction if they contain negative MSLP anomalies.

The amplification of rainfall values due to a low-pressure anomaly to the west of the

British Isles as shown in Figure 5-10(a) agrees with the findings of previous studies

(Richardson, Fowler, Kilsby, and Neal 2018; Ummenhofer et al. 2017; Baker, Shaffrey,

and Scaife 2018; Richardson, Fowler, Kilsby, Neal, and Dankers 2020). However, Figure

10(a) also shows an extra region of higher pressure, south of Greenland, which further

amplifies rainfall magnitude. This extra high-pressure anomaly could aid in the creation

of a deep pressure gradient, increasing wind speeds between the centres and further

enhancing mixing of the cold polar air from the North and the warm moist air from

the south. This mixing of cold and warm air is further shown by Figure 10(b) which

presents a combination of both positive and negative 2AT attributions around the UK.

All leadtimes present a band of negative 2AT attributions stretching from the North

Atlantic Ocean in a north easterly direction across the south of Great Britain towards

Sweden and Norway. This band of negative 2AT is surrounded by mostly positive 2AT

attributions and indicates a strong 2AT gradient in the area. However, for increasing

the prediction for SE England the attributions show a less distinct characterisation

between the air masses indicating strong mixing of the cold and warm air masses.

Furthermore, the MSLP positive attributions around Cape Verde could indicate the

models are also enhancing rainfall when the MSLP anomaly differences between the

north and mid-Atlantic Ocean are highest. This agrees with the findings of Baker et

al. (2017), who also show that a pressure difference between a point between Scotland

and Iceland and a point near Africa correlates strongly to rainfall in the UK. These

MSLP differences appear to simulate the North Atlantic Oscillation index (NAO) which

determines the MSLP difference between Iceland and the Azores. A heightened NAO

is known to correspond to increased rainfall in the UK as highlighted by Brown (2018).
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Figure 5-10: Normalized attribution values for increasing rainfall predictions in both
NW England (top) and SE England (bottom) for both MSLP (a) and 2m air temper-
ature (b).

5.6 Conclusions

This paper has shown for the first time that convolutional neural networks (CNN)

can be used as a tool for enhancing monthly, regional rainfall forecasting in the UK

through the interpretation of forecasted mean sea-level pressure and 2m air temperature

patterns. Three CNN models were trained using monthly, regional rainfall from the

CEH-GEAR dataset and MSLP & 2AT anomaly patterns from the ECMWF monthly

hindcasts. Each model was trained using a different lead time – either one month, three

months or six months. A validation dataset was then used to compare the predicted

regional rainfall values with those of the ECMWF precipitation hindcasts given at the

same lead times. The CNN models were then analysed using an integrated gradients

technique to explore how it made its predictions. The key results are as follows:

1. The CNNs provided more accurate regional monthly rainfall totals than the

ECMWF SEAS5 model across all three leadtimes.

(a) The CNN predicts the validation regional monthly rainfall totals with a lower

RMSE than the ECMWF SEAS5 model for all three leadtimes. The RMSE
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improvements are as follows: 6.89mm (one-month), 5.38mm (three-months)

and 1.07mm (six months).

(b) Predicting the entire dataset including the training, testing and validation

data series the CNN models continue to outperform the ECMWF SEAS5

predictions by the following RMSE differences for each leadtime: 8.96 (one-

month), 7.87 (three-months) and 13.24 (six-months).

(c) The CNN model’s residuals indicate the CNN has higher accuracies when

predicting the heaviest rainfall events compared with the ECMWF SEA5

model.

2. The CNN models show spatial and seasonal bias in its predictions.

(a) The CNNs provide the most accurate results for northern and western re-

gions of Great Britain but do not perform as well for the eastern and south-

eastern regions.

(b) The CNNs perform well for some months of the year (December, July, Au-

gust, November and May) but produce very large errors for the months of

June, September and April (over double the average rainfall for the month

of June).

3. Sensitivity analysis was performed to identify how the CNNs were making their

predictions, resulting in the following findings:

(a) A strong negative MSLP anomaly to the west of Great Britain is a key

feature relating to increased rainfall predictions. However, a positive MSLP

anomaly to the west of Great Britain will decrease the amount of rainfall

predicted.

(b) A positive MSLP anomaly to the east of Newfoundland but to the west

of the negative MSLP anomaly identified in point 1, and another positive

MSLP anomaly over Cape Verde, will also enhance rainfall magnitudes over

Great Britain. If these regions were to contain negative MSLP anomalies

instead, the rainfall predictions would be reduced.

(c) A combination of positive and negative 2AT anomalies over the British Isles

will also increase the monthly rainfall total predictions made by the CNN

models.

While the study presented here was limited on the available data, future work could
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focus on the application of this forecasting method to provide higher-resolution forecast

in both time and space dimensions. There is also now the opportunity to explore

other meteorological variables using CNNs to identify where these variables may matter

using an integrated gradients analysis. Another potential option is to modify the

method presented in this paper to output a probabilistic forecast instead of a point-

forecast which could form a future body of methods capable of improving both rainfall

forecasting and our understanding of the processes which lead to rainfall.
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5.8 Postscript

This chapter addressed hypothesis Hypothesis 4 by showing the application of con-

volutional neural networks to forecast sub-seasonal rainfall across the 13 regions of

Great Britain. This study is the first attempt to use convolutional neural networks on

atmospheric patterns to predict rainfall.

The results of this study show the new neural network based methods provide higher

level of accuracy than the conventional ensemble based model. More specifically the

new method showed larger improvements for extreme/heavy rainfall events than it did

for lower levels of rainfall. This did however come with some seasonal and regional bias;

for example, at a one month leadtime the neural network method is more accurate for

northern and western regions of Great Britain and the months December, July and

August. However, the new model did provide substantial errors for the months June,

September and August. This indicates although the method does produce some biases

it is possible to to use the mean sea-level pressure and air temperature patterns of the

North Atlantic to forecast rainfall in the UK.

Following the comparison of the resulting rainfall values each model underwent a sen-

sitivity analysis to identify which regions of the north Atlantic mean sea-level pressure

and air temperature were responsible for increasing/decreasing the resulting forecasted

rainfall values. This sensitivity analysis confirmed that a strong negative mean sea-

level pressure to the north west of the UK is a key feature to increasing the amount of
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rainfall. Similarly, if this negative body is followed by a positive body of mean sea-level

pressure this rainfall amount will likely increase further. In all cases a strong contrasted

front of positive and negative air temperature contributions can be found around the

UK.

This highlights the capabilities of the new neural network architecture are not limited

to that of forecasting but also allow an understanding of how the forecast was made

and what meteorological patterns may be available to improve our understanding of

the processes involved. With results indicating that the neural networks are capable of

using single images to improve rainfall forecasts there is now the question of reducing

the time dimension of the inputs to further improve the rainfall predictions. This is

discussed in the next chapter.

However, alternative work could address the sensitivity of this method to not only other

meteorological variables but could also investigate the scale of improvements made by

such complex models. For example, a study could investigate how the current state-

of-the-art model, along with the models generated in this chapter compare to a linear

regression model. This would enable a quantification of the improvements made with

the increase in data and computational power required and ideally provide a useful

reference for operational forecasters to choose the right tool for their forecasts.
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Chapter 6

Video based forecasting of

regional, sub-seasonal rainfall
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6.1 Preamble

In partial answer to Hypothesis 4, chapter 5 investigated the use of static, synoptic

meteorological images for sub-seasonal rainfall forecasting. To expand on the answer to

Hypothesis 4 the present chapter expands on the work of chapter 5 to generate new

forecasting models which use a sequence of synoptic images rather than just a single

image. Specifically, this chapter describes a study which creates a series of CNN models

capable of regional monthly rainfall forecasting using a sequence of forecasted mean sea-

level patterns and 2m air temperature patterns (Objective 4.1 & 4.2). The resulting

models are first compared with the current state of the art MetOffice GloSEA5 model

and then combined with it to generate improved monthly rainfall forecasts (Objective

4.3).
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6.1.2 Abstract

This study presents a new methodology for improving forecasts of current monthly,

regional precipitation using video-based convolutional neural networks (CNNs). Using

13 administrative regions of Great Britain as a case study, three CNN architectures

are trained for each region to forecast monthly rainfall totals given forecasted mean

sea-level pressure and 2m air temperature videos from the MetOffice GloSEA5 model

and a benchmark rainfall data. The forecasts generated by the CNN and the GloSEA5

precipitation forecasts are both compared directly against a benchmark rainfall dataset

for each of the regions. Following this, the CNN models are combined with the GloSEA5

forecasts to generate a new ensemble for each region which is then compared to the

benchmark rainfall. The results show that the trained CNNs produce errors similarly

to the GloSEA5 model with RMSEs of 63mm (Single Frame), 44mm (Slow Fusion) and

37mm (Early Fusion) compared to the GloSEA5 error of 33mm. However, the CNN

models all outperform GloSEA5 in the prediction of extreme events. Furthermore,

treating the forecasts as an ensemble result in errors of 32mm (CNN ensemble) and

31mm (post-processing ensemble) both of which improve on the independent GloSEA5

forecasts.
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6.2 Introduction

Flooding is becoming more frequent and the number of global deaths and economic

losses due to flooding is on the rise; The World Meteorological Organization show

that in the first half of 2020 alone more than 9.8 million people were displaced due

to hydrometeorological events (World Meteorological Organisation 2021). Accurate

prediction of extreme rainfall is therefore a key challenge to science and engineering.

Modern datasets allow efficient interpretation of the large-scale (synoptic) conditions

and their relevance to the description and prediction of local rainfall; for example,

Richardson et al. (2017) uses a set of 30 weather patterns to explain regional rainfall

variation in the United Kingdom based on mean sea-level pressure (MSLP) patterns

across the North Atlantic. The weather patterns used by Richardson et al. (2017)

were originally defined by Neal et al. (2016) using MSLP data covering the North

Atlantic to evaluate the performance of forecast models under the different weather

conditions. Despite the regional variation between MSLP patterns observed in the

North Atlantic and the resulting impact on observed rainfall patterns across the UK

shown by Richardson et al. (2017) these approaches fail to consider temperature as

a key variable. The relationship between temperature and rainfall is captured by the

thermodynamic Clausius-Clapyeron relation can vary across a spatial domain as small

as the UK (Blenkinsop et al. 2015). Further studies also show a stark contrast in

synoptic temperature conditions related to heavy or intense rainfall events (Allan,

Blenkinsop, et al. 2020).

Weather patterns and synoptic conditions have also been used to directly predict fu-

ture climatological variables. In a review by Pham et al. (2020) neural networks were

shown to be capable at predicting both daily and sub-daily rainfall values to within

10mm across spatial domains varying from local station scales to state-scale such as

Florida. More advanced neural network structures have also been adopted to forecast

rainfall. For example, Haidar & Verma (2018) used a range of climatic indices such as

minimum and maximum temperature, the Southern Oscillation index (SO), the North

Atlantic Oscillation index (NAO) and many others with a convolutional neural net-

work (CNN) architecture to predict rainfall in a specific Australian suburb (Innisfail).

Haidar & Verma (2018) were able to achieve lower root-mean squared errors than both

the ACCESS-S1 hindcasts and a standard neural network architecture. More recently,

approaches have used CNNs to interpret synoptic-scale images comprising of multiple

meteorological variables. For example, Rasp and Thuerey (2021) used geopotential

height, temperature, wind speeds and specific humidity among others at multiple pre-
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ceding time steps to predict precipitation at lead-times of 6-hours and 1, 3 & 5 days

within 2-3mm on a 5.625◦ spatial resolution grid. Despite this, they highlight the

importance of higher resolution models and conclude that larger networks generally of-

fered higher accuracy scores. However, they used a single architecture neural network

(2015).

Karpathy et al. (2014) presented four options for including a time dimension in the

structure of a CNN for classification of videos. The first method takes a single frame

representation of the video (Single Frame), the second takes two images at either end

of the video, passing them through the network individually before combining them

at the end (Late Fusion). The third approach passes the entire video through the

network from start to finish (Early Fusion) and finally, the fourth approach passes

time0defined subsets of the video through the network separately, slowly merging them

through the network until they are eventually recombined at the end (Slow Fusion).

Their results highlight advantages of the different architectures however an ensemble

approach combining all architectures is found to be best in this domain.

This paper takes a different approach to current literature, rather than analyzing static

images of the preceding conditions (e.g. Neal et al. 2016) these conditions are charac-

terised by a sequence of images (i.e. ‘a video’) representing the temporal evolution of the

synoptic conditions. The meteorological videos are then interpreted by the video-based

CNN variants proposed by Karpathy et al. (2014). A case-study using the regional,

monthly rainfall of the 13 regions of Great Britain are used in this study. Regional

forecasting models are generated using each of the variants and are then combined into

two ensembles, the first is a combination of the CNN variants as shown by Karpathy

et al. (2014) and the second includes forecasts from the MetOffice’s GloSea5 model

(Maclachlan et al. 2015). These approaches are then compared and contrasted both

against each other and against a benchmark rainfall dataset.

6.3 Data

Two data sources are used to train and evaluate the CNN models. First, the Centre of

Ecology and Hydrology Gridded Estimate of Areal Rainfall (CEH-GEAR) (Tanguy et

al. 2015) is used to represent the benchmark rainfall totals, providing gridded monthly

rainfall across Great Britain between 1890 and 2017. Next, from the MetOffice GloSea5

hindcasts (MOS5) (Maclachlan et al. 2015) daily forecasted MSLP and 2AT patterns

are used to train the CNNs to predict the benchmark rainfall data from CEH-GEAR

using a 1-month lead-time. Also, from the MOS5 dataset monthly rainfall totals are
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extracted for each region. However, due to the temporal limits of the MOS5 data

(1994-2020) and the CEH-GEAR data (1890-2017) the temporal range of this study is

limited within 1994 to 2017.

6.3.1 Rainfall

Great Britain has been split into 13 administrative regions as indicated by Figure 6-

1, each of these regions is then further split into a set of points spaced equally at

30km×30km. The monthly rainfall total (mm) for a given region is calculated by

averaging the total monthly rainfall from each point within the region. Both the CEH-

GEAR and MOS5 datasets are provided in a gridded format and as such each point

assumes the value of the grid cell which contains the point. Following this each region’s

rainfall dataset is standardized as follows,

p̂i,t =
pi,t − pi
std(pi)

(6.1)

where pi,t is a regional series of monthly rainfall totals (mm) where i = 0, 1, ..., 12

indicating the region being standardized and t = 1, ..., 275 indicating which timestep

(month in the series) is currently being calculated. Standardizing the regional rainfall

in this way removes biases of regions with particularly high rainfall, for example the

North West of England compared to regions of low rainfall such as the South East of

England. The result of this extraction and standardization are two matrices of rainfall

events of size [275, 13] where 275 is the number of months available to forecast (275

instead of 276 because a one-month lead-time is required which removes 01-1994 as

available data) and 13 is the number of regions.

6.3.2 Meteorological Data

Synoptic patterns of MSLP and 2AT were extracted from the MetOffice GloSea5 Hind-

casts (Maclachlan et al. 2015), these patterns were extracted for the middle 28 days

of every month used in the study (02-1994 to 12-2017) and covered a synoptic extent

between [100◦W, 10◦N ] to [20◦E, 70◦N ]. The middle 28 days was chosen to represent

most of the month while ensuring all months had the same amount of data available.

The MOS5 data were available on a 2.5◦ × 2.5◦ grid-format, meaning each pattern is

represented by a matrix [121, 61] in size. Each pattern was extracted from the final day

of the preceding month; for example, patterns for days 01-02-1995 up to and including

28-02-1995 were extracted using forecasts ran on the 31-01-1995. Next, the resulting

sets of MSLP and 2AT patterns were standardized separately as follows:
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Figure 6-1: The 13 administrative regions of Great Britain.

︷︸︸︷
zvarx,y =

zvarx,y − zvarx,y

std(zvarx,y )
(6.2)

here zvarx,y represents the set of cells at a given position where, x = {1, ..., 121} and

y = {1, ..., 61} for the variable given by var = {MSLP, 2AT}. The resulting two sets

of matrices are of size [276, 121, 61, 28] ([Number of months, longitude cells, latitude

cells, number of days]) and are finally combined to give a single matrix of size [276,

121, 61, 28, 2] such that each dimension represents [Number of months, longitude cells,

latitude cells, number of days, variables].

6.3.3 Training, testing and validation

To reduce overfitting and provide a fair comparison between the developed CNN models

and the MOS5 predictions the dataset was split into training, testing and validation.

The training data was used to optimize the CNN, the testing data was used to ensure

overfitting does not occur and finally the validation dataset was be used to compare

the resulting CNN models to the MOS5 predictions. To ensure seasonal consistency

between both training and validation datasets the validation dataset consisted of all

data for years taken at a 4-year interval (1997, 2001, 2005, 2009, 2013, 2017) which

equates to 26% of the total data and the remaining years are allocated to training (74%

of total data). During the training process the training dataset was further split into

training (70%) and testing (30%).
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6.4 Forecasting Method

In this section the CNN variants used are followed by a description of the two ensemble

approaches which are used for evaluation.

6.4.1 CNN Variants

To forecast regional monthly rainfall totals using the videos representing the forecasted

meteorological images, as described in section 6.3.2, three CNN architecture variants

are trained for each region resulting in a total of 39 CNN models. Each of the three

models will incorporate the time dimension (number of days) into the CNN differently

and are based on the architectures proposed by Karpathy et al. (2014).

Figure 6-2: Three CNN architectures for including a temporal dimension, adapted from
Karpathy et al. (2014). Blue boxes indicate convolutional layers, red boxes indicate
max-pooling layers, and the yellow boxes indicate fully-connected linear layers.

Firstly, a single-frame (SF) approach is adopted which takes a mean across the time

dimension, creating a new matrix containing the average MSLP and 2AT patterns

across the 28 days. This in turn, reduces the number of dimensions from 4 ([longitude

cells, latitude cells, number of days, variables]) to 3 ([longitude cells, latitude cells,

variables]). This 3D matrix is then interpreted as a static image and used to train

the CNN. Next, an early-fusion (EF) approach processes the entire 4D matrix at once

without any pre-processing. This involves the convolutional and max-pooling layers

having 3D filters with kernels covering latitude, longitude and temporal dimensions.

Finally, a slow-fusion (SlowF) approach splits the initial 4D matrix along the temporal

dimension into four equally sized (weekly) matrices of [longitude, latitude, (28 / 4 =

7) 7, variables]. Each of these weekly matrices is then passed through the first level

of the network individually before being recombined into two bi-weekly matrices by

concatenating the results of the first across the temporal dimension. The ‘bi-weekly’
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matrices are then passed through a second level of the network, concatenated into a

single matrix and then passed through a final third level of the network. A summary

diagram of the architectures is shown in Figure 6-2.

At each layer kernels of size 2 were used such that the single frame model uses kernels

of size [2, 2] and the Early Fusion/Slow Fusion models use kernels of size [2, 2, 2]

to incorporate the temporal dimension convolutions. Both the single frame and early

fusion models were generated using 128 filters in each layer whereas the Slow Fusion

model uses 32, 64 and 128 filters in each respective layer. These sizes were chosen

following several trials which varied the number of filters in each architecture.

Each of the CNN models was trained using a learning rate of 0.0001 and the Adam

optimization method (Kingma and Ba 2015) As mentioned in section 2.3 the training

data is split into training and testing data with a split of 70% training to 30%. For

each region and architecture variant combination three training cycles were completed

and the model with the lowest final test error was selected to represent the region and

architecture combination, this is to provide an accurate representation of the architec-

ture/region selection which is not influenced by a poor training cycle.

6.4.2 Ensemble Forecasting

Regional forecasts of rainfall across the 13 regions were also made by combining the

outputs from the CNN and MOS5 into two ensemble means Firstly, the CNN Ensemble

(CNNE) is defined as the mean of the predictions made by all three CNN architecture

variants (Single Frame, Slow Fusion and Early Fusion). Karpathy et al. (2014) found

that an average of the outputs improved accuracy compared to the individual CNN

architectures alone; thus this ensemble approach was adopted in this study. The second

approach is a Post-Processing Ensemble (PPE) which is defined as the mean of the

CNNE and the MOS5 prediction. An overview of these ensembles for a given month is

given in Figure 6-3.

6.5 Results

This section first provides a comparison of the developed CNN models for each region

against the MOS5 predictions, followed by a discussion of the combined CNNE and

PPE ensemble predictions. All results presented in this section refer to a comparison

of the output from the models using a validation dataset as described in section 6.3.3,

this data was kept separate from training and testing to ensure the networks had not

been exposed to the validation data.
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Figure 6-3: Two ensemble approaches are presented. First the CNN Ensemble (CNNE)
is calculated through taking the mean of all three CNN Results for a given month.
Then, the mean of the CNNE and the MOS5 prediction is taken as the post-processing
ensemble (PPE).

Figure 6-4: Predicted rainfall against the benchmark rainfall value for all months in
the validation dataset.
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The average validation root-mean squared errors (RMSEs) for the CNN variants and

MOS5 predictions across all regions are as follows: 63mm (SF), 44mm (SlowF), 37mm

(EF), 33mm (MOS5). The MetOffice GloSea5 outperforms all three CNN variants on

the validation dataset across all regions. Despite this, the prediction patterns high-

lighted in Figure 6-4 show the MOS5 predictions never exceeded 200mm of rainfall

whereas all three CNN variants appear capable of doing so. This is especially true

regarding the EF and SlowF variants which show strong positive correlations between

predicted and benchmark rainfall, even though this comes with an increase in variance.

Figure 6-5 shows the contribution to the root mean-squared error (RMSE) values from

across the regions. The results show that the regional bias of the models remains

consistent with each model presenting a graph with broadly similar shapes with higher

RMSE errors produced for regions known for higher levels of rainfall such as the three

Scottish regions, Wales and North East England. Notably the SF variant producing a

larger error for Yorkshire and Humber which relate to a subset of predictions of 1mm

in (Figure 6-4 Single Frame) indicating a lack of convergence of the CNN.

Figure 6-5: Regional RMSEs for each model for the validation dataset.

Next, the ensemble means are generated as described in section 6.3.2. Figure 6-6 shows

the validation dataset predictions for the CNNE (left) and PPE (right); the variation

of both plots highlight the similarity between the two prediction models. The RMSEs

for the CNNE and PPE are 32mm and 31mm respectively across all regions, comparing
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this with the 33mm RMSE found for MOS5 these results indicate an ensemble approach

with the CNN variants has the potential to provide more accurate rainfall forecasts.

These results also further confirm those of Karpathy et al. (2014) who also concluded

that an ensemble approach improved their results.

Figure 6-6: Ensemble predictions for the validation dataset compared to the benchmark
monthly rainfall totals (mm). Left: CNNE, and right: PPE.

Finally, Figure 6-7. Shows the cumulative residual of each CNN and ensemble variant

alongside GloSea5 for rainfall values increasing from 0mm to 350mm. This figure

illustrates that although the individual models appear less accurate at a high-level,

they do make significant improvement in the under prediction of heavy rainfall events

shown by the GloSea5 model. This is an important result as period of high rainfall are

often responsible for flooding.
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Figure 6-7: The cumulative residual for all forecasting methods including the MetOf-
fice’s GloSea5 model.

6.6 Conclusions

This paper introduces a new technique for sub-seasonal rainfall forecasting using video

based convolutional neural networks. Regional CNNs were constructed using three

different architecture variants and trained using forecasted daily mean sea-level pressure

and 2m air temperature patterns with a leadtime of one month. The forecasted images

occur throughout a given month and are used to predict the regional rainfall. Following

this, two ensemble models were produced, one of which used took the mean of the CNN

variants and the second took the mean of the CNN variants and the MetOffice GloSea5

(MOS5) model. All models were then compared with the MOS5 predictions with the

following findings:

1. Individually the CNN variants were able to provide regional rainfall predictions

based on forecasted MSLP and 2AT patterns.

2. No regional bias was found between the CNN variants. Higher errors were found

in regions with higher levels of rainfall however this was to be expected due to

the magnitude of the events.

3. The ensemble models both produced RMSEs lower than the MOS5 predictions.

4. All CNN and ensemble approaches showed increased accuracy for heavy rainfall

events in comparison to the MOS5 model.
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These findings highlight the applicability of video-based convolutional neural networks

to rainfall forecasting. This study was limited by the quantity of data used; however,

the results show the use of an ensemble of different CNN architectures could provide

invaluable post-processing to traditional numerical weather prediction models, espe-

cially focusing on improving the prediction of the most extreme events. To improve

the models further a cross-validation approach could be taken to increase the amount

of data used during training and to further increase the amount of data available data

augmentation techniques could be applied to create a synthetic data set, providing

more training examples.
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6.8 Postscript

The present chapter builds on chapter 5 to develop an enhanced answer to Hypothesis

4. This is achieved by expanding the architecture of the neural networks used in chapter

5 to include a temporal dimension. To do this three neural network architectures

capable of accepting videos as inputs are developed to forecast the regional monthly

rainfall across Great Britain. Following this, the models are compared with MetOffice

GloSEA5 predictions and later combined with the GloSEA5 predictions to produce

ensemble means.

The results of this chapter highlight the forecasting power of video enabled CNNs and

the increased accuracy available when making use of these techniques through ensem-

ble forecasts. Despite this, the final accuracies remained low and with the exception of

the ensemble methods none were able to achieve accuracies lower than the MetOffice’s

GloSEA5 forecast. However, All model architectures showed significant improvement

for the extreme rainfall values within each region which indicates the CNN Architec-

tures are less biased towards expected rainfall quantities.

Opportunities presented by this study include the retraining of higher resolution models
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using a larger architecture than the one trialled in the present study. Enhancing the size

of the network through increasing the number of layers and the number of filters within

each layer will result in higher accuracies and potentially could help further identify

synoptic patterns related to extreme rainfall events. Moreover, how the variation of

the video’s temporal window could affect resulting forecasts, reducing the window size

may enhance forecasts but come at the cost of higher computational complexity during

training. However, by investigating this further future work will be able to identify the

corresponding complexity/accuracy alignment.
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Chapter 7

Conclusions
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7.1 Thesis Summary

The overarching aim of this thesis is to develop new machine learning methods to

aid both our current understanding of extreme rainfall events and provide rainfall

forecasting improvements. This thesis achieves this aim by addressing four hypothesis

as given in Section 1.3. Starting with an introduction to extreme rainfall and current

analysis methods which builds a case for the hypotheses presented in section 1.3. These

hypotheses are then tested through Chapters 2 to 6. In this section an overview is given

of Chapters 2 to 6 and is followed.

Chapter 2 addresses Hypothesis 1 (Heavy rainfall events can be characterised by their

preceding atmospheric trajectories) by following two studies which cluster extreme rain-

fall events using atmospheric trajectories extracted using the HYSPLIT model (Draxler

and Hess 1997). The first study (section 2.2) presents a methodological advance in the

use of self-organising map (SOM) based neural networks for clustering atmospheric tra-

jectories related to extreme rainfall events in a case-study region of the Duoro catchment

in Northern Spain. The second study (section 2.3) evaluated: k-means, hierarchical,

and SOM based clustering methods on a case-study of the UK. The results of these

experiments show his form of clustering can provide inference into the distributions

of extreme rainfall and be used to seperate extreme rainfall events into subsets with

different magnitude distributions.

Chapter 3 then expands this analysis to evaluate the effect covariance between 2m air

temperature (2AT) and mean sea-level pressure (MSLP) has on heavy rainfall events

to address Hypothesis 2. Heavy rainfall events were identified across Great Britain

and their concurrent mean sea-level pressure and 2m air temperature synoptic patterns

were clustered using k-means. The resulting groups of heavy rainfall events were then

comparedto asses the existence of spatial and temporal trends. Next, these groups were

linked with large-scale climatic indices such as the NAO and AMO using detrended

correlation anaylsis. The results show that the spatial and temporal variability of

heavy rainfall events shows significant correlation to a co-variance between MSLP and

2AT which also present significant correlations with large-scale meteorological variables

such as the NAO and AMO.

Chapter 4 addresses Hypothesis 3 by reporting an experiment which uses the synoptic

MSLP patterns of both extreme and non-extreme rainfall events to distinguish between

the two using two hydrodynamically distinct regions (NW England and SE England).

Several deep neural networks were trained to distinguish between the patterns and

then undergo a sensitivity analysis to identify what differences in the synoptic patterns
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cause a pattern to be classified as ’extreme’ or ’non-extreme’. The results show that

despite the neural networks achieving an accuracy of 60% the initial selective decision on

what constitutes a extreme and non-extreme rainfall event is fundamentally subjective.

Despite this, the sensitivity analysis did revealed the most important regions of the

North Atlantic are the ocean around Ireland and the Irish Sea.

Chapter 5 combines the findings of Chapters 3 and 4 into a new method for developing

interpretable seasonal to sub-seasonal rainfall forecasts in answer to Hypothesis 4.

Using convolutional neural networks (CNNs) to simultaneously forecast monthly rain-

fall for all 13 regions in Great Britain. Differing from current approaches which focus

on using individual meteorological variables this study instead combines the synoptic

patterns of both MSLP and 2AT across the North Atlantic. The resulting models were

then compared to the ECMWF’s SEA5 forecasting model. Next, a sensitivity analysis

was performed to identify which areas of the synoptic patterns were attributing to the

resulting forecast rainfall quantities.

Finally, Chapter 6 builds on Chapter 5 by trialling multiple neural network based

forecasting architectures to expand on the answer to Hypothesis 4. Video based

CNNs were developed to use a series of forecasted MSLP and 2AT synoptic images to

predict regional monthly rainfall across Great Britain. The resulting models are then

compared to the current state of the art MetOffice GloSEA5 forecast model. Following

this, the models are combined with the MetOffice GloSEA5 model to produce a series

of ensembles which improve on the current state of the art model.

7.2 Results

This section provides an overview of the results from each hypothesis and chapter.

Beginning with Hypothesis 1, which states ”Heavy rainfall events can be characterised

by their preceding atmospheric trajectories”, Chapter 2 addresses this hypothesis with

two experiments. First, the preceding atmospheric trajectories for heavy rainfall events

in the Duoro catchment in northern Spain are clustered using SOMs. This clustering

procedure allowed the development of models which provided classification schemes

with varying number of classes (2 to 10). The study presented highlights four models

in particular:

1. 4-Class SOM using all latitude and longitude points

2. 9-Class SOM using all latitude and longitude points
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3. 9-Class SOM using all altitude, latitude and longitude points

4. 9-Class SOM using only summer latitude and longitude points

5. 9-Class SOM using only winter latitude and longitude points.

These four models highlight the variability in atmospheric trajectory available to the

small case-study region, the 4-class and 9-class models which used just the latitude

and longitude points produce a separation between short and long trajectories. In

both cases the shorter, slower trajectories account for the majority of extreme events

as also found by Jorba et al. (2004). However, in separating winter and summer by

using separate models the study shows that the majority of summer related events are

caused by the shorter, slower trajectories whereas in the winter model the majority of

the trajectories originate in the mid-Atlantic and are faster moving. Through analysis

of the magnitude of the rainfall events the study also showed that during summer the

trajectories which originate from the North Atlantic produce 4.5% higher magnitude

events than the recirculatory, continental patterns.

Next, in comparing the models which did not use altitude and the one which did the

study highlights altitude increases the error of the clustering and produced results which

did not provide clear separation in magnitude of events. However, in consideration of

this the study highlights the curse of dimensionality a known problem when dealing

with datasets with a large number of features (Kohonen and Honkela 2007; Marimont

and Shapiro 1979). Despite this, the study did successfully highlight the ability of

clustering techniques to identify meaningful differences in extreme rainfall distributions

using preceding atmospheric conditions.

Finally, Chapter 2 presents a second study which compares k-means, SOMs and linkage

based clustering methods in the clustering of atmospheric trajectories using Great

Britain as the casestudy. Here AMAX events were extracted from 42 cities across

Great Britain, their preceding atmospheric trajectories extracted and then clustered

using each of the methods mentioned previously. Each clustering method was trialled

using a variable number of clusters from 4 to 24, with a intra-cluster similarity (Davies-

Bouldin index (DB)) metric taken for each model run, the runs with the lowest DB

index are selected for analysis.

From the three models it was found that the lowest DB indices were found with a four

cluster SOM, 5 cluster linkage and a 6 cluster k-means model. The 6-cluster k-means

model was shown to have the lowest DB index and was then used in further analysis

to show that 60.58% of the extreme rainfall events used were attributable to the North
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Atlantic and 39.42% were attributable to the North Sea.

With a distinct dependence between the heavy rainfall events and the composite mete-

orological variables it then became necessary to identify to what extent the interdepen-

dence of the meteorological variables influences the heavy rainfall events. To do this

Chapter 3 addresses Hypothesis 2 through clustering the concurrent synoptic scale

mean sea-level pressure and 2m air temperature patterns of the North Atlantic during

heavy rainfall days in the UK.

The results from Chapter 3 indicate a strong interdependence of synoptic scale 2AT and

MSLP patterns. During summer three out-of four classes showed a strong anomalous

low pressure center west of the UK, the remaining class presented a strong negative

MSLP anomaly between Scotland and Iceland with a strong positive MSLP anomaly

over the Iberian peninsular. Despite this, all four MSLP patterns show similarities with

some identified by Neal et al. (2016), with common low pressure anomalies dominating

the western/north western UK. The frequency of each event class distribution across

the UK also revealed similarities with work by Richardson et al. (2017) who showed the

magnitude of Neal et al ’s (2016) event classes across various regions of the UK. However,

because the rainfall events used in this study are heavy rainfall events Richardson et al ’s

(2017) work shows more rainfall variability. Further regression analysis was conducted

using the NAO and AMO indices showing a strong relationship between the frequency

of each class’ occurrence and negative/positive variations of the indices. For example,

summer classes 1 and 3 had r = −0.29 and r = −0.44 respectively. Such relationships

were also found with the AMO in summer classes 1 and 3 with r = +0.37 and r = −0.54

respectively. Relationships which indicate strong reliance of the resulting clusters on

synoptic circulation patterns.

For winter three classes are generated. The first class correlates positively (r = 0.35)

with the NAO despite the closes matching class of Neal et al. (2016) not being one

of those labelled as being typically related to the NAO. The second class highlights

a strong high MSLP anomaly over Greenland and Iceland, with a low MSLP to the

south, as expected this class correlated negatively with the NAO (r = −0.23). These

first two winter classes also showed strong correlations with time which dissipated once

the dependence on the NAO index was removed. The final winter class showed no

significant correlation with the NAO or AMO but represented a eastwards shift in

the subtropical high-pressure. Similar to summer class three, winter class 3 showed a

dominance in frequency of occurrence for the North West of Great Britain.

The inclusion of temperature in the clustering mechanism presents patterns with a
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dependence between the MSLP and 2AT synoptic conditions. The resulting classes also

show distinguishing features in terms of frequency of occurrence across both the spatial

and temporal domain with some significant relationships with the NAO and AMO.

With a link found between MSLP and 2AT the next question raised in Hypothesis 3

is whether such patterns can be used to distinguish heavy rainfall events.

Chapter 4 reports on a study which uses neural networks to distinguish between extreme

and non extreme rainfall events using their concurrent synoptic MSLP patterns in

answer to Hypothesis 3. Using the UK as a case study this chapter generated three

classification models:

1. MNW distinguishes between extreme and regular rainfall events in the North

West of England.

2. MSE distinguishes between extreme and regular rainfall events in the South East

of England.

3. Mcomp distinguishes between extreme rainfall events in the North West and those

in the South East of England.

Each of the classification models is trained using a varying number of hidden nodes to

ensure an optimal architecture is achieved. Across all three model variants the optimal

parameter choice resulted in a testing accuracy of 62% (MNW ), 60% (MSE) and 65%

(Mcomp). The precision and recall of extreme events in both MNW and MSE are higher

than for regular rainfall events which indicates there are identifiable differences in the

extreme events patterns which are possibly obscured in the regular rainfall patterns.

Further to this a sensitivity analysis was conducted to identify the synoptic region

which was important for distinguishing between extreme and regular rainfall events.

For both MNW and MSE a strong attribution was found over Ireland and the Irish

Sea whereas the mid and western Atlantic did not provide any useful indication as to

whether events were extreme or regular. This indicates that the results from this study

show there may not be significant differences in the synoptic patterns involved with

extreme and regular rainfall events.

Following the theme of interpretable models, Chapter 5 reports the results of a study

which developed seasonal to sub-seasonal rainfall forecast models using convolutional

neural networks for the 13 regions of Great Britain. In comparing the resulting models

with the ECMWF’s SEA5 forecasting model the CNN models produced validation

errors 6.89mm lower than the ECMWF model using a one month lead time and this

improvement was exacerbated at the extremes with the CNN model producing errors
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28.19mm lower than the ECMWF model when predicting the top 5% of extreme events

for each region. Following this, an integrated gradients analysis was performed on the

CNN models to identify the level and type of attribution for both the MSLP and

2AT input patterns. This revealed a strong negative MSLP anomaly to the west of

the British Isles and a positive MSLP anomaly over Newfoundland provides a positive

influence to the resulting rainfall forecast. Further to this, a mixture of positive and

negative 2AT anomalies over souther Great Britain and north western France is another

indicator of heavy rainfall values.

The findings of Chapter 5 indicate that not only are CNNs capable of forecasting

seasonal and sub-seasonal rainfall to a higher standard than a modern forecasting

service but also offer insight into how and why the predictions are being made. The

benefits of using CNN models over traditional NWP models include the following:

1. Computational Power: The lower complexity architecture of the CNNs reduce

the computational load required when running the forecasting models. While

this is true when forecasting using a model it is important to note that this does

not reduce the computational requirements needed to train these models in the

first instance.

2. Reduced assumptions: The learning nature of CNNs allows the models to identify

trends, correlative and causal relationships where they may not have been identi-

fied and implemented in traditional mathematical models. Moving the burden of

identification and implementation of complex numerical systems onto the learn-

ing algorithm removes the burden of selecting and accounting for assumptions by

the operator. However, this will instead require careful analysis of the trained

model to ensure it has been considering appropriate combinations of inputs and

has not found a non-causal correlation within the training dataset.

3. Interpretability: One remedy to the point above is the increased interpretability

of the CNN models. Through sensitivity analysis one can attribute how changing

the inputs influences the resulting forecast. For example, Chapter 5 shows how

such models can be used to identify which areas of synoptic regions are important

for rainfall forecasting and in which way they are important (i.e. do they have a

positive or negative effect).

Combining these factors to answer Hypothesis 4 reveals that the interpretation of

concurrent, synoptic scale atmospheric forecasts can be used to improve both seasonal

and sub-seasonal rainfall forecasts. However, a final question remains as to whether

this could be expanded further to include a temporal dimension including multiple
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time-steps of the atmospheric conditions.

In answer to this question Chapter 6 used an additional temporal dimension on the im-

age input using architectures presented by Karpathy et al. (2014). In doing so, Chapter

6 highlights than video based CNNs are capable of providing accurate monthly rainfall

predictions when compared to a current state of the art numerical prediction model.

Specifically individual regional forecasting models presented errors close to those pro-

duced by the current state of the art model; however, all trialled CNN Architectures

improved upon the current state of the art model when considering the extreme rain-

fall events. Further to this, by averaging the predictions made by the state of the

art forecasting model with the CNN variants a new forecast was available which was

able to improve on the current state of the art model by several millimeters of rainfall.

Although chapter 6 only scratches the surface of the potential for video based CNNs

it does highlight the applicability of these techniques to the problem domain and fur-

ther highlights the ability of modern machine learning techniques to use forecasted

meteorological conditions to improve the current state of the art sub-seasonal rainfall

prediction models.

7.3 Future Opportunities

In Chapter 2 exploratory cluster analysis was performed to identify atmospheric tra-

jectory systems which produce different distributions of rainfall magnitudes, this was

then developed in Chapter 3 which used clustering to analyse the interdependence of

two meteorological variables. Although the choice of clustering algorithm is largely a

subjective choice, these chapters also highlight the importance of a subjective review

of the developed clusters. Simply using numerical errors is not enough to identify a

suitable number of cluster, instead the identification of new methods for empirically

evaluating cluster models related to physical processes. This is especially relevant when

the datasets concerned contain a large number of variables and result in models falling

foul to the curse of dimensionality (Kohonen and Honkela 2007). This can be due

to a large number of input features and is more prominent in datasets which contain

more features than observations. Further work could be conducted on meteorological

datasets to identify at what point clustering becomes no longer applicable due to this

phenomenon and to what extent the datasets can reasonably be used for cluster based

exploratory analysis.

Despite this, the exploratory clustering revealed interesting patterns throughout Chap-

ter 2 and Chapter 3 indicating the applicability of clustering as a useful tool for dis-
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tinguishing heavy rainfall events and it would be very interesting to explore further

different combinations of atmospheric variables such as geopotential height, evapora-

tion and dew point temperature which are all variables associated with intense rainfall

events (Allan, Blenkinsop, et al. 2020). Further to this, similar exploratory analysis

using clustering could focus on the identification of new meteorological variable com-

binations which could support forecast post-processing models such as those presented

in Chapter 5 and 6.

Chapter 5 introduced a new method for forecasting regional based precipitation using

forecast MSLP and 2AT synoptic conditions. Although the model presented does not

greatly improve upon the current ECMWF SEA5 model it does highlight the potential

in the use of CNNs for analysis of meteorological images. Conjoining this with future

exploratory analysis regarding the covariance of other meteorological variables future

work could create new images which can be used for prediction of both rainfall and other

meteorological variables such as wind speed. Further to this, as detailed in chapter 6

CNNs can be expanded to utilise a temporal dimension cross the datasets. In doing

so, higher resolution models could be developed to predict daily or even sub-daily

conditions.

The opportunities presented by this thesis offer new avenues of exploration regarding

the sensitivity of the methods to the inputs provided. For example, the length of

trajectories clustered in Chapter 2, the meteoroloigcal variables used for clustering in

Chapter 3 and forecasting in Chapters 4, 5 & 6. However, there is also the opportunity

to conduct a series of analyses using a range of techniques to identify the trade-off

between the data intensive methods (as used throughout this thesis), the state-of-the-

art mathematical models and simpler techniques such as regression models.Through

understanding the trade-offs at play more detailed recommendations can then be made

to operational meteorologists. Finally, with increasing data availability and new, big-

data sets becoming available there are new opportunities to further push the limits of

this work. This could be done through the application of these techniques on higher

spatial & temporal resolution data sets to further improve results.

In conclusion, this thesis has highlighted that the development of new state-of-the-

art machine learning techniques offers bountiful opportunities to improve our under-

standing of extreme rainfall and to provide more accurate results from which climate

resilience and understanding can be drawn.
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Appendices

Supplementary Information

Figure S1: Air temperature anomaly patterns for the four summer classes. Cells marked
with a dot denote that the anomaly is significantly different from zero at the 2%
significance level based on a two-sided Student’s t-test.

Figure S2: Air temperature anomaly patterns for the three winter classes. Cells marked
with a dot denote that the anomaly is significantly different from zero at the 2%
significance level based on a two-sided Student’s t-test.
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Figure S3: Sea-level pressure in the North Atlantic region in the 1, 3, 5, 7 and 9 days
prior to the extreme rainfall event occurring, for the four summer classes.
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Figure S4: Sea-level pressure in the North Atlantic region in the 1, 3, 5, 7 and 9 days
prior to the extreme rainfall event occurring, for the three winter classes.
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Figure S5: Box-and-whisker plots of standardized summer rainfall maxima for all study
regions, for each class. The box outlines the upper and lower quartiles with the median
as a red line, and the upper (lower) whisker shows the observation that is furthest away
from the upper (lower) quartile, but still within 1.5 times the interquartile range.
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Figure S6: Same as S5, but for winter.
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