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Abstract

A reservoir computer is a special type of neural network, where most of the weights

are randomly fixed and only a subset are trained.

In this thesis we prove results about reservoir computers trained on deterministic dy-

namical systems, and stochastic processes. We focus mostly on a special type of reser-

voir computer called an Echo State Network (ESN).

In the deterministic case, we prove (under some assumptions) that if a reservoir com-

puter has the Echo State Property (ESP), then there is a C1 generalised synchroni-

sation between the input dynamical system and the dynamics in the reservoir space.

Furthermore, we prove that a reservoir computer with the local ESP in several disjoint

subsets of the reservoir space will admit several distinct generalised synchronisations.

In the special case that the reservoir map is linear, and has the ESP, we prove that the

generalised synchronisation is generically an embedding. This result admits Takens’

embedding Theorem as a special case.

We go to show that ESNs trained on scalar observations of an ergodic dynamical system

can approximate an arbitrary target function, including the next step map used in time

series forecasting. This universal approximation property holds despite the training

process being entirely linear.

We prove analogous results for ESNs trained on observations of a stochastic process,

which are not be Markovian in general. We use these results to develop supervised

learning, and reinforcement learning algorithms supported by an ESN.

In the penultimate chapter of this thesis, we use a reservoir computer to numerically

solve linear PDEs. In the final chapter, we conclude and discuss directions for future

work.
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Nomenclature

Stochastic Dynamical Systems

(RN )Z The set of bi-infinite RN valued sequences, i.e. the set of maps

Z 7→ RN

γ ∈ [0, 1) Discount factor

R : (Rd)Z → R Reward functional

T : (RN )Z → (RN )Z Time shift operator T (z)k := zk+1

V : (Rd)Z → R Value functional

Deterministic Dynamical Systems

ω : M → Rd Observation function

φ : M →M Evolution operator on M

Diffn(M) Diffeomorphism of order n ∈ N on M

Cn(M,RN ) The n-times differentiable maps from M to RN

Dω(m) : Tm → Rd The differential of ω at m ∈M

m ∈M Point on M

M q-dimensional manifold

q ∈ N Dimension of the manifold M

Tm Tangent space at m ∈M

Tmφ : Tm → Tφ(m) Tangent map for φ at m ∈M .

u : M → R Target function
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Echo State Networks and reservoir maps

` ∈ N Number of sample points

F Class of linear universal approximators

σ : RN → RN Activation function

A ∈MN×N (R) Reservoir matrix

b ∈ RN Bias vector

C ∈MN×d(R) Input matrix

d ∈ N Number of input channels / dimension of the input

F : RN × Rd → RN reservoir map

f(φ,ω,F ) : M → RN Generalised Synchronisation

N ∈ N Number of neurons / dimension of the reservoir

W ∈ RN Output vector / linear readout layer

xk ∈ RN Reservoir state at time k ∈ Z

zk ∈ Rd Input at time k ∈ Z

Partial Differential Equations

∆ The Laplace operator ∆ : C2(Rd,R)→ C0(Rd,R)

φ : Ω→ R Solution to the boundary value problem

h : ∂Ω→ R Boundary data

Z ∈ Ω Random interior point

Z ′ ∈ ∂Ω Random boundary point
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Chapter 1

Introduction

1.1 Preamble

A single layer feedforward neural network f : Rd → R is a map the form

f(z) =
N∑
k=1

Wkσ(C>k z + bk)

paramatrised by weights Ck ∈ Rd, Wk ∈ R and biases bk ∈ R (Higham & Higham

2019). The map σ : R → R is called the activation function. Usual choices of the

activation function include

• the rectified linear unit (ReLU) defined coordinate wise σ(z)i = max(zi, 0)

• the hyperbolic tangent also defined coordinate wise σ(z)i = tanh(zi).

A multilayer (or deep) neural network can be created by composing several feedforward

layers together. A composition of n feedforward neural networks is called an n-layer

neural network (Higham & Higham 2019). Both deep and shallow (single-layer) neural

networks are dense in some appropriate function space so that for a function g in

the appropriate space, and given sufficiently many neurons N , we can choose weights

Wk, Ck and biases bk such that the feedforward neural network f approximates g. This

is made formal in the universal approximation theorem for feedforward neural networks

(discussed in Chapter 5).

We can use feedforward neural networks to solve supervised learning problems. These

problems involve a supervisor, an agent and a collection of data. The data are labelled
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by the supervisor, and the agent is tasked with learning the relationship between the

data and its labels, in such a way that the relationship can be generalised to unlabelled

data. Learning this relationship is called training. The success of the training is

measured by how accurately the agent can correctly label a set of unlabelled data.

There are 2 major categories of supervised learning: regression and classification. In

the former, the agent seeks a map from the data (observations) to the labels (targets)

such that any unlabelled datum (observation) on a continuum can be assigned a label

(target) also on a continuum. The problem of time series forecasting is often formulated

as a regression problem. Classification is similar, except that the labels do not lie on a

continuum but instead lie in a finite set of categories. A classification algorithm may

for example classify a set of images as either being cats or dogs.

When we use a feedforward neural network to solve a supervised learning problem, the

data are denoted {zi ∈ Rd}i∈I for some finite index I. We assume the existence of a

relationship g : Rd → R from the data to the targets {g(zi)}i∈I . Then our goal is to find

weights Wk, Ck and biases bk such that the feedforward neural network f approximates

g by finding Wk, Ck, bk that minimise the so called loss L (sometimes) defined

L =

|I|∑
i=1

‖f(zi)− g(zi)‖2.

We can view the loss L as a smooth function of the weights Wk, Ck and biases bk, so we

can try to minimise the loss with smooth optimisation techniques like gradient descent

or stochastic gradient descent. This optimisation problem is generally non-convex, so

finding a global minimum is generally difficult.

Many supervised learning problems involve data drawn from a time series where the

data has an important temporal structure. Such problems encompass speech recog-

nition, the forecasting of chaotic systems, and decision making in robotics. For such

problems, it is often better to replace the feedforward neural network with a reservoir

computer.

In this thesis we focus on mathematical results that hold for reservoir computers. We

focus on reservoir computers trained on a discrete, equally spaced time series that is

either:

1. A (partial) observation of a system of ODEs, or

2. A realisation of a stochastic process.

10



A reservoir computer is a pair of maps (F, h) where F : RN × Rd → RN is called

the reservoir map and takes as input a reservoir state vector x ∈ RN and observation

vector z ∈ Rd, then returns a new reservoir state vector x ∈ RN . Given an initial

state x0 ∈ RN and a time series of observations z1, z2, . . . ∈ Rd the reservoir computer

creates a sequence of states x1, x2, . . . ∈ RN like so

xk+1 = F (xk, zk).

The state xk+1 then depends on all observations . . . , zk−2, zk−1, zk prior to and including

timestep k. The second part of the reservoir computer is a map h : RN → Rs which

takes a reservoir state x ∈ RN and returns an output. The map h could be a feedforward

neural network or simply a row vector W>. The maps F and h together form a reservoir

computer, which takes a time series z1, z2, . . . ∈ Rd of observations and computes an

output. We can define a reservoir computer formally as follows:

Definition 1.1.1. (Reservoir Computer) We call F : RN ×Rd → RN a reservoir map,

h : RN → Rs a readout map, and the pair (F, h) a reservoir computer.

Reservoir computing (RC) exploded in popularity at the start of the early 2000s af-

ter the seminal papers of Jaeger (2001) and Maass et al. (2002). RC has since been

applied to both signal processing and machine learning, and has captured the interest

of researchers in computer science and robotics (Plöger et al. 2004), physics (Inubushi

& Yoshimura 2017) (Grigoryeva, Hart & Ortega 2021a), mathematics (Grigoryeva &

Ortega 2018), (Ceni et al. 2020), and electrical engineering (Tanaka et al. 2019). Fur-

thermore, there is some biology and neuroscience literature suggesting that a sensory

input stimulating a nervous system can be described as a reservoir computer driven by

a time series (Izhikevich 2007), (Tanaka et al. 2019). Rather ambitious applications of

reservoir computing include “building by 2050, a team of fully autonomous humanoid

robots to beat the human winning team of the FIFA Soccer World Cup” (Plöger et al.

2004), predicting magnetic storms (Kataoka & Nakano 2021), and forecasting electricity

sales (Li et al. 2020).

Reservoir computing can be performed on an ordinary digital computer, which is often

referred to reservoir computing in silico. Alternatively, reservoir computing can be

performed on purpose build hardware; often known as reservoir computing in materio.

Reservoirs have been physically built from magnets, photonic node arrays (Tanaka

et al. 2019), and field programmable gate arrays (Canaday et al. 2021) (Apostel et al.

2021), and (possibly) occur naturally in the form of biological brains. In this thesis,

all reservoir computing experiments are performed in silico, though the mathematical
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results hold more generally. Some authors have argued that there is potential to develop

extremely efficient reservoir computers in materio, which could eventually outperform

ordinary computers (Special Issue on New Frontiers in Extremely Efficient Reservoir

Computing 2020).

The goal in this thesis is to further develop a rigorous mathematical description of

reservoir computing on time series, which we hope will serve the highly multidisciplinary

reservoir computing community.

1.2 ESNs and dynamical systems

In this section we will go through a numerical experiment which was undertaken at the

start of the PhD. The outcome of the experiment is illuminating, and motivates many

of the results that appear in subsequent chapters in this thesis.

Suppose we have a dynamical system, but we do not know its governing equations, and

instead have access only to a low dimensional observation of a trajectory. We could

have for instance the celebrated Lorenz system (Lorenz 1963)

ξ̇ = 10(υ − ξ)

υ̇ = ξ(28− ζ)− υ (1.1)

ζ̇ = ξυ − (8/3)ζ

(where we have fixed the parameters to their ‘usual values’) and have access to only

the ξ component, at regularly spaced time points t0, t1, . . . t`−1. Given this finite time

series, the key question is: can we predict the future trajectory without knowledge of

the underlying equations? We note that the observation at time t` is not determined

from the observation at time t`−1 alone, so we will need to use many observations from

the past . . . , t`−2, t`−1 to have any hope of estimating the observation at t`.

We approach this time series forecasting problem with a reservoir computer called an

Echo State Network (ESN). An ESN takes a time series of observations z0, z1, . . . ∈ Rd

and produces a sequence of reservoir state vectors x0, x1, . . . ∈ RN defined like so:

xk+1 = F (xk, zk) := σ(Axk + Czk + b) (1.2)

where

• σ : RN → RN is the activation function defined to act coordinate-wise: σi(x) =

tanh(xi) for i = 1, . . . N

12



• A ∈MN×N (R) is the N ×N real reservoir matrix

• C ∈MN×d(R) is the N × d real input matrix

• b ∈ RN is the real bias vector.

We will sometimes call the Lorenz system the drive system and the dynamics of the

reservoir states the response system.

The recursive nature of (1.2) ensures that the reservoir state xk+1 depends on all

past observations . . . , zk−1, zk. The ESN therefore has a sort of memory, because its

representation of the world at time step k is xk which depends on everything it has

previously seen. Equation (1.2) is sometimes called a single layer (or shallow) ESN in

contrast to multilayer (or deep) ESNs studied by Gallicchio et al. (2018) and others.

It seems natural that observations far in the past should have less impact on the

reservoir state xk than those observations in the near past. This is called the Fading

Memory Property (FMP) defined in Grigoryeva & Ortega (2018). The FMP is closely

related to the Echo State Property (ESP) presented by Jaeger (2001) and is introduced

and discussed in Chapters 3 and 6. We can ensure that an ESN has the ESP by

demanding that the activation function σ and reservoir matrix A are contracting. The

matrixA is called the reservoir matrix (and the field called reservoir computing) because

the entries of A are fixed and represent a sort of computational reservoir that is capable

of encoding a rich variety of inputs with a reservoir state vector x.

ESNs are often used to approximate the relationship between a time series of observa-

tions z0, z1, . . . ∈ Rd and a time series of targets u0, u1, . . . ∈ R. In the special case that

d = 1 and the targets uk = zk then the problem is time series forecasting. There is

substantial numerical evidence in the literature suggesting that ESNs are very good at

this. They have performed remarkably well on problems ranging from seizure detection,

to robot control, handwriting recognition, and financial forecasting, where ESNs have

won competitions (Lukoševičius & Jaeger 2009), (Lukoševičius et al. 2012, Rodan &

Tino 2011, Triefenbach et al. 2010). Impressively, ESNs outperformed recurrent neural

networks (RNNs) and long short term memory networks (LSTMs) at a chaotic time

series prediction task by a factor of over 2400 (Jaeger & Haas 2004). ESNs have also

proved themselves competitive in reinforcement learning (Szita et al. 2006) and control

(Peitz & Bieker 2021).

To approximate the relationship between the observations and the targets, we seek a

readout vector W ∗ that minimises (over W ) the regularised least squares difference
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between the reservoir states (which represent observations) and targets, so

W ∗ = arg min
W∈RN

( `−1∑
k=0

‖W>xk − uk‖2+λ‖W‖2
)

where λ > 0 is the Tikhonov regularisation parameter. We can find the optimal W ∗

easily using linear regression.

1.3 Training an ESN on the Lorenz system

1.3.1 Creating the reservoir states

To demonstrate everything we have discussed in section 1.2, we will present two nu-

merical experiments. In section 1.3.2, we use an ESN to learn a mapping from the

discrete time series of values of the ξ component of a trajectory in the Lorenz attractor

(observations) to the ζ component (targets). In section 1.3.3, we learn a mapping from

the ξ component of the same discrete trajectory in the Lorenz attractor (observations)

to the next value of the discretely-sampled ξ component (targets). We then use this

next step map to generate a future trajectory for the ξ components. To this end, let

φ : R3 → R3 denote a discretisation of the Lorenz system (1.1) with time step τ i.e. a

discrete-time map of the form

φ(ξ, υ, ζ) = (ξ, υ, ζ) +

∫ τ

0
(ξ̇, υ̇, ζ̇) dt.

We set the timestep τ = 0.01 and initial condition (ξ0, υ0, ζ0) = (0, 1.0, 1.05). The

timestep is small in comparison to the maximal Lyapunov exponent (see Section 2.2)

of the Lorenz system, λmax ≈ 0.9056 (Sprott 2003) and the initial condition is close

to the attractor. For these initial conditions and the parameter values as in (1.1), we

computed a trajectory for a 200 time units (i.e. ` = 20000 timesteps), illustrated in

Figure 1-1.

The observation and target functions are the first and third components of the Lorenz

system ξ and ζ i.e. we have an observation function ω(ξ, υ, ζ) = ξ so that the obser-

vations zk are the ξ components of the trajectory at the sampled time points kτ , so

that

zk = ω ◦ φk(ξ0, υ0, ζ0).

The target function is u(ξ, υ, ζ) = ζ so the targets uk are the ζ components of the

14
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Figure 1-1: A typical trajectory of the Lorenz system (1.1) computed for 4000 timesteps,
represented by the individual dots at time intervals τ = 0.01. Colour indicates the
direction of travel along the trajectory: darkest colours (blue) at the earliest times and
lightest colours (yellow) at the most recent times.
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(a) The ξ-component of the Lorenz trajectory (vertical axis) plotted against time (hori-
zontal axis).
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(b) The ζ-component of the Lorenz trajectory (vertical axis) plotted against time (hori-
zontal axis). The black line at the kth timestep indicates the approximation to this target
time series given by W ∗>xk.

Figure 1-2: Observations zk and targets uk drawn from the Lorenz trajectory.

trajectory:

uk = u ◦ φk(ξ0, υ0, ζ0).

The trajectories of these two components of observations and targets are shown in

Figure 1-2(a) and (b), respectively.

Our goal is to use an ESN to predict the targets based on the observations. So, we set

up an ESN with the following parameters:

• Reservoir size: N = 300,

• Input matrix C and bias vector ζ: i.i.d uniform random variables∼ U [−0.05, 0.05],

• Reservoir matrix A: i.i.d uniform random variables rescaled so that the matrix

2-norm ‖A‖2 = 1,
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Figure 1-3: Illustration of the reservoir states of the ESN driven by inputs zk being
the discrete-time samples observed from a trajectory of the Lorenz system. The figure
shows the projection of the reservoir states onto their first 3 principal components.

• Regularisation parameter λ = 10−9,

which we obtained by hand tuning so that the experiment went smoothly. We have (so

far) little theory for choosing the parameters.

Iterating the ESN with observations zk creates a discrete-time sequence of reservoir

states xk, illustrated in Figure 1-3, which shows a projection of the reservoir states onto

their first 3 principal components. To compute the components, we created a matrix

X> ∈MN×`(R) with kth column xk, and took the singular value decomposition (SVD)

X = UΣV >. The first 3 principal components are the first 3 columns of V which we

denote V1, V2, V3. Then (V >1 X,V >2 X,V >3 X) is the projection of the reservoir states

onto the first 3 principal components.

The Lorenz system in Figure 1-1 and reservoir dynamics in Figure 1-3 look rather

similar. It appears that the ESN has mapped the Lorenz attractor A directly into

the reservoir space via a map f : (A ⊂ R3) → RN . The smoothness of the Lorenz

system, ESN, and reservoir dynamics together suggest that f is at least continuously

differentiable (C1). We show in Chapter 3 that f is a continuously differentiable map-

ping of the Lorenz system into the reservoir space. Consequently, the Lorenz dynamics
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are synchronised to the reservoir dynamics, via the map f , which is called a gener-

alised synchronisation (GS), in the sense of Kocarev & Parlitz (1996). The map f is

essentially ‘learned’ during training, and this is discussed in detail in Chapter 3.

The image of the GS f appears to smoothly and injectively reproduce the Lorenz

dynamics. This suggests that properties such as Lyapunov spectra, eigenvalues of fixed

points, and homology groups may be preserved under f and replicated in the reservoir

dynamics. We explore these claims numerically using computational methods detailed

in Chapter 2. From a purely mathematical perspective, we know these properties are

preserved under diffeomorphism. A map which is diffeomorphic to its image is called

an embedding. Since the GS f appears to preserve these properties we propose that f

is an embedding, and analyse this claim in Chapter 4.

These observations appear to hold over many different realisations of the ESN (which

has random weights and biases) suggesting the properties hold with probability close

to 1 or perhaps exactly 1. This possibility is studied in Chapter 4.

1.3.2 Learning the targets ζ from the observations ξ

Having made our observations about the reservoir dynamics, we proceed to solve the

least squares problem

arg min
W∈RN

`−1∑
k=0

‖W>xk − uk‖2 + λ‖W‖2 (1.3)

to determine the output layer W ∗ using the SVD once again. In particular, if we denote

the kth singular value by σk, the kth column of U by Uk and define a vector Y ∈ R`

with `th component u` then it is a standard calculation (Hansen et al. 2006) that

W ∗ =
N∑
k=1

σkU
>
k Y

σ2
k + λ

. (1.4)

With this W ∗, we found a good approximation of a mapping from the ξ component to

the ζ component, and the results are shown in Figure 1-2.

The good fit of the nonlinear relationship between the observations and the targets

suggests that the ESN has a sort of universal approximation property, despite the

fitting process being entirely linear. This remarkable feature of ESNs is analysed in

Chapter 5.

18



1.3.3 Predicting the future

Having found a mapping from ξ to ζ, we are now interested in finding the next step

map for time series forecasting. We can feed our predicted next step back into the

ESN to recursively generate a trajectory into the future. To make this more explicit

we define the ESN autonomous phase

xk+1 = σ(Axk + C(W ∗>xk) + b) (1.5)

and recognise that if the ESN is ‘well trained’ (i.e. we have made a good choice of W ∗)

then W ∗>xk ≈ uk = zk for some sufficiently long future time, yielding a good forecast

for the time series. So we define the target function

u(ξ, υ, ζ) := ω ◦ φ(ξ, υ, ζ)

where the observation function remains ω(ξ, υ, ζ) = ξ. We solve the least squares

problem (1.3) using the SVD (1.4) once again, then generated a 4000 timestep (40 time

units) future trajectory, starting at t = 40, using the ESN autonomous phase (1.5).

The future ξ components and reservoir states generated by the autonomous ESN are

shown in Figures 1-4b and 1-4a respectively.

The ESN autonomous dynamics appear to have replicated a trajectory that is diffeo-

morphic to the Lorenz dynamics, even as the trajectories diverge in absolute value.

This diffeomorphism is not guaranteed by a universal approximation result, which

does not rule out the possibility of small errors accumulating until the autonomous

dynamics no longer resemble the Lorenz dynamics at all. We explore in Chapter 5 how

the structural stability of the Lorenz system ensures that qualitative features of the

dynamics are preserved even as the trajectories diverge.

1.4 The remainder of the thesis

Predicting the future trajectory of the Lorenz system is a supervised learning problem.

In almost all real applications of supervised learning, the data is noisy and there is

uncertainty. This is in contrast to the deterministic evolution of the Lorenz system we

considered in the previous sections. Thus, in Chapter 6 we develop stochastic analogues

for many of the deterministic results that appear in Chapters 3-5 and that were touched

on here.

In Chapter 6 we extend the stochastic set-up to encompass reinforcement learning
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(a) ξ component of the Lorenz system (vertical axis) evolves in time (horizontal axis) up until
time t = 40. After this point, the autonomous ESN predicts a future trajectory (multicoloured),
which is compared to the true future trajectory (black).

(b) Illustration of the reservoir dynamics of the autonomous ESN, projected onto the first
3 principal components of the (non-autonomous) reservoir dynamics.

Figure 1-4: ESN autonomous phase.
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problems. In the reinforcement learning paradigm an agent explores its environment by

executing actions and collects rewards influenced by the environment and its actions.

The goal of the agent is to learn the impact of its actions on the environment, and

develop a policy that maximises its expected sum of future rewards. Learning about

the environment and refining the policy often happen at the same time. We prove

that ESNs are especially well suited to reinforcement learning problems where the

environment evolves randomly, in a generally non-Markovian manner, and the ESN’s

memory of the past is crucial for making good decisions.

In Chapter 7, we use reservoir computers to solve linear PDEs. The assumptions made

in this Chapter are rather different to those made in the preceding Chapters, where we

imagine that our agent does not know the equations that govern the environment. In

previous chapters, the agent must learn a model from scratch using a reservoir computer

trained on data. However in Chapter 7 we allow the agent access to the PDE explicitly,

and use a reservoir computer to approximate the solution.
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Chapter 2

Computational Methods

The numerical results in Chapter 1 suggests that under appropriate conditions the

ESN autonomous dynamics are diffeomorphic to the dynamics of the drive system.

In this case, the autonomous dynamics should inherit qualitative properties of the

drive system, for example the existence of fixed points, eigenvalues of linearisations

around them, and for chaotic attractors, their Lyapunov spectra and homology groups.

Properties like these can be constructed from a time series using an assortment of

techniques. In particular the computation of homology groups is a central idea in

the field known loosely as computational topology also known as algorithmic topology

or applied topology. We will demonstrate some of these methods by recovering the

topological properties of the Lorenz system using an ESN. The presentation in this

chapter closely follows the numerical experiments in Hart et al. (2020). To demonstrate

these computational methods, we set up an ESN with the following parameters:

• Reservoir size: N = 300,

• Elements of the input matrix C and bias vector ζ: i.i.d uniform Gaussian variables

∼ N (0, 0.12),

• Reservoir matrix A: Erdős-Rényi matrix with mean 6 and connection weights

(where they are non-zero) i.i.d Gaussian, re-scaled such that the spectral radius

ρ = 1.

• Regularisation parameter λ = 10−6.
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2.1 Fixed Points

If the Generalised Synchronisation (GS) f is an embedding, then f will embed the

fixed points of the Lorenz system into the reservoir space. Moreover if the autonomous

ESN approximates the embedded Lorenz dynamics sufficiently well, the autonomous

dynamics will have fixed points with the same linearisation as the Lorenz system. To

verify this, we searched for the autonomous ESN’s fixed points using Newton’s method.

In particular, we found the fixed point of

ψ(x) := σ(Ax+ C(W>x) + b) (2.1)

using Newton iterations

xk+1 = xk − (J(xk)− I)−1(ψ(xk)− xk)

where J(xk) is the Jacobian of ψ evaluated at xk. To reduce numerical instability and

computational time we do not find (J(xk)− I)−1 explicitly but instead solve

(J(xk)− I)(xk+1 − xk) = −ψ(xk) + xk

for (xk+1 − xk). The iterates are shown in Figure 2-1, and it appears by eye the

algorithm was successful and a fixed point was found.

Further, if the GS f is a C1 embedding of the original dynamics, we expect f to preserve

the stability of fixed points, i.e. we expect the eigenvalues of the linearisation of the

autonomous phase to be preserved at every fixed point. Now, comparing the eigenvalues

of the linearisation of the Lorenz system and autonomous phase at the respective fixed

points requires some subtlety, because the Lorenz system is a continuous time flow,

while the autonomous phase is a discrete time map. So, we began by considering one

of the known fixed points found in the Lorenz attractor’s wings

m∗ = (6
√

2, 6
√

2, 27)

and noted the Jacobian J of the continuous time Lorenz system evaluated at the fixed

point m∗ is therefore

J
∣∣∣
m∗

=

−10 10 0

1 −1 −6
√

2

6
√

2 6
√

2 −8/3

 .
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Figure 2-1: The driven reservoir dynamics are plotted in blue and autonomous dynam-
ics are plotted in red. Both were projected onto the first three principal components
of the driven dynamics, then the axes are rotated such that the projection appears on
the first 2 components. The black line indicates the iterates of Newton’s method, used
to locate a fixed point - the method eventually converges to a fixed point in the middle
of the right wing of the figure. We can see by eye that the reservoir dynamics appear
by eye to be diffeomorphic to the Lorenz system.
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So the discretised Lorenz system

φ(ξ, υ, ζ) = (ξ, υ, ζ) +

∫ τ

0
(ξ̇, υ̇, ζ̇) dt.

admits a linearisation φ∗ about the fixed point m∗

φ∗(ξ, υ, ζ) = exp

(
J
∣∣∣
m∗
τ

)ξυ
ζ

 ,
where exp : M3×3(R)→M3×3(R) denotes the matrix exponential defined

exp(Q) =
∞∑
n=0

Qn

n!
.

The matrix exp(J |m∗τ) has 3 eigenvalues, which we have compared with the ESN

autonomous eigenvalues in Figure 2-2.

If the GS f is indeed a C1 embedding, the dynamics of the autonomous phase are

diffeomorphic to the discrete time Lorenz system on some three dimensional submani-

fold. This manifold (linearised at the fixed point m∗) is spanned by three eigenvectors,

each with an associated eigenvalue, which will coincide with the eigenvalues of the lin-

earisation of the Lorenz system at the fixed point. Figure 2-2 appears to show three

overlapping eigenvalues, suggesting that the autonomous phase is diffeomorphic to the

Lorenz system (at least in a neighbourhood of m∗). This is particularly remarkable

because m∗ is distant from the training data. It appears that the ESN has inferred

the existence, position and eigenvalues of a fixed point from training data which con-

tains no fixed points. In machine learning parlance, we might say that the ESN has

generalised patterns in the training data to an unseen region of the phase space. The

remaining 297 eigenvalues of the ESN autonomous system have absolute value less than

1, suggesting that the fixed point is attractive with respect to them.

2.2 Lyapunov Spectra

Another invariant of the Lorenz system preserved under diffeomorphism is the Lya-

punov spectrum, which captures how quickly very close trajectories diverge from ea-

chother, and is used as a measure of chaos. To define the spectrum, let J be the

Jacobian of the evolution operator of a continuous time dynamical system. Let Y be

the solution of the ODE Ẏ = JY with initial condition Y (0) = m0. Then the Lyapunov
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Figure 2-2: Comparison of the eigenvalues of the discrete time evolution operator for
the Lorenz system and the autonomous ESN (2.1). The three eigenvalues of the lineari-
sation of the Lorenz system on the fixed point inside one of the Lorenz attractor’s wings
are represented by blue crosses. The 300 eigenvalues of the linearisation of the ESN
autonomous system at the fixed point found with Newton’s method are represented by
red dots. The concentric grey circles have radius 1/2 and 1 respectively.
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spectrum of the invariant set containing m0 is the spectrum of the matrix Λ defined

Λ = lim
t→∞

1

2t
Y Y >.

Each eigenvalue in the spectrum is called a Lyapunov exponent to signify that two ini-

tially close trajectories diverge or converge exponentially fast with exponentiation con-

stant in the direction of each eigenvector of J given by a Lyapunov exponent. Further

details and discussion is given in Darbyshire & Broomhead (1996). The Lyapunov spec-

trum for the Lorenz system was estimated by Sprott (2003) as {0.9056, 0,−14.5723}.
In order to compare the Lorenz spectrum to the spectrum of the autonomous ESN, we

computed the autonomous system’s spectrum using the discrete time QR method dis-

cussed in Darbyshire & Broomhead (1996) and plotted each Lyapunov exponent against

the known exponents of the Lorenz system in Figure 2-3. The method is described by

the following algorithm

Algorithm 1 Compute the Lyapunov spectrum

1: Let Q0 be an arbitrary N ×N orthogonal matrix
2: Let J |m0 be the Jacobi matrix of the autonomous ESN evaluated at m0

3: for each j from 0 to n

4: Take the QR decomposition Qj+1Rj+1 = QjJ |φj(m0)

5: Compute Λj+1 = log(diag(Rj+1)) where diag(A) creates a vector from the di-
agonal entries of A)

6: Compute Λ = 1
n

∑n
j=1 Λj . The exact spectrum is obtained as n→∞

We found that the largest 2 exponents of the Lorenz system and the ESN map are in

good agreement with each other while there was a significant difference between the

next-largest in each case. This problem was also noted and encountered by Pathak

et al. (2017), and we do not have a satisfactory explanation for this.

In the next section we will consider a somewhat different invariant that is preserved

under the embedding f : the homology groups of the attractor (for a finite length of

time intergration). We note that the true attractor has a fractal structure, and that

the closure of the true attractor contains the fixed points at the origin and those in the

middle of each wing. We therefore proceed carefully in the upcoming sections. We will

compute the these groups using persistent homology.
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Figure 2-3: The Lyapunov spectrum of the autonomous phase as the iterates increases
is shown. The true Lyapunov exponents of the autonomous phase is given by the limit
of these exponents as the iterations tend to infinity. These autonomous exponents are
compared to the black dotted lines representing the 3 exponents of the Lorenz system.
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2.3 Persistent homology

2.3.1 Introduction

The objective of an unsupervised learning algorithm is to reveal the hidden relations and

structures within a dataset, without the use of a training set. A classic unsupervised

learning algorithm is principal component analysis (PCA), which reveals linear relations

in high dimensional data. Another is k-means clustering which partitions a data set

into k clusters. In this section, we will explore a completely different kind of structure

that a data set might have: homology.

Roughly speaking, homology is the study of objects under continuous deformation,

which preserves their connected components, holes and voids. The sphere is made up

of 1 connected component, and encloses a 3 dimensional void. The torus is also made

up of 1 connected component, and also encloses a 3 dimensional void, but unlike the

sphere contains a 2 dimensional hole, or tunnel. It is this distinction between the sphere

and the torus that distinguish their homology. Given a constellation of data points

then, what does it mean to say it has a hole or encloses a void? Astronomers have for

thousands of years looked into the night sky, and in their minds’ eye, connected the stars

to create shapes with holes and voids. The emerging field of persistent homology offers

a mathematical formalism for obtaining similar results. This subsection will outline

the main results of persistent homology and explain how to practically compute the

homology of a real data set. We draw heavily on the work of Ghrist (2008) and Ghrist

(2014).

2.3.2 Theory

Simplicial complexes

A data set can be transformed into a geometric object called a simplicial complex with

computable homology. Every singleton set containing a single point is a point, also

known as a 0-simplex. Any pair of points in the data set can be connected together to

form a line, or 1-simplex. Any triple of points can be collected to form a triangular face,

also known as a 2-simplex. Any quadruple of points can together form a tetrahedron,

(a 3-simplex) and so on. A set of simplices form a simplicial complex. To make this

idea rigorous we will introduce a few definitions.

Definition 2.3.1. (Closed under restriction) A collection of sets S is closed under

restriction if any subset of a set in S is also in S.

Definition 2.3.2. (Simplicial Complex) Let X be a finite set. A simplicial complex S
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is a set of subsets of X that is closed under restriction.

Definition 2.3.3. (Simplex) Let S be a simplicial complex. Then a non-empty σ ∈ S
containing k elements is called a k − 1 simplex.

Given a data set, how do we decide whether a pair of points ought to be connected

to form a 1-simplex? Or indeed how do we decide whether some set of k points ought

to be brought together to form a k − 1 simplex? One method developed by Leopold

Vietoris (1927) and Eliyahu Rips supposes every data point is the centre of a ball of

radius ε. If a set of k points are each contained in the ball of every other, then they

form a k − 1 simplex, otherwise they do not.

Definition 2.3.4. (Data set) A data set X is a finite list of elements in Rn.

Definition 2.3.5. (Vietoris-Rips Complex) The Vietoris-Rips (Rips for short) complex

Rε of a data set X is the set of subsets of X defined as those subsets σ ⊂ X with

members whose pairwise distance (in the Euclidean metric) is less than ε.

Another method of connecting the dots is called the C̆ech Complex, and supposes every

data point is the centre of a ball of radius ε/2. The division by 2 is a useful convention

for reasons that will soon be made clear. This time, we say a set of k data points form

a k − 1 simplex if and only if their balls have a common intersection.

Definition 2.3.6. (C̆ech Complex) The C̆ech complex Cε of a data set X is a set of

subsets of X defined by the statement that σ ⊂ X is in Cε if and only if⋂
x∈σ

Bε/2(x) 6= ∅.

Remark 2.3.7. The Rips complex and C̆ech Complex are clearly closed under restric-

tion and are therefore simplicial complexes.

The C̆ech Complex has the elegant feature of being homotopy equivalent to the union

of ε/2 balls centred at each data point.

Definition 2.3.8. (Homotopy) Let X,Y be topological spaces and f, g : X → Y

continuous maps. A homotopy between f, g is a continuous function H : X× [0, 1]→ Y

such that H(x, 0) = f(x) and H(x, 1) = g(x).

Definition 2.3.9. (Homotopy Equivalent) Two topological spaces X, Y are homotopy

equivalent if there is a pair of continuous maps f : X → Y and g : Y → X such that

f ◦ g is homotopic to the identity idY and g ◦ f is homotopic to the identity idX .
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Figure 2-4: The C̆ech complex is homotopic to the union of ε-balls, which in this figure,
is a genus 2 surface.

One could say the C̆ech Complex is the nervous system found inside a muscular sub-

space of Rn composed of ε-balls. To put this more formally we introduce homotopy

and the Nerve Lemma. An example is shown in Figure 2-4.

Lemma 2.3.10. (Nerve Lemma) The C̆ech Complex Cε of a data set X is homotopic

to ⋃
x∈X

Bε/2(x) ⊂ Rn.

Proof. Alexandroff (1928).

Persistence complexes

Given a data set and a particular ε, we can create a Rips or C̆ech complex with holes

and voids, and therefore a homology we can scrutinise. But the question remains as

to how to chose ε. A sufficiently small ε will not connect any points and result in a

boring list of 0 dimensional simplices, while a sufficiently large ε will connect every

point to every other forming a single gigantic simplex. In persistent homology we

consider all values of ε, and observe which homological features of the data persist over

long intervals of ε and which flutter rapidly in and out of existence. Those features

which persist are considered real, while their more transient companions are dismissed

as noise.

To make this idea concrete, we consider a data set X and create a sequence of complexes

called a persistence complex as follows. The first complex Rε0 is a set of 0-simplices;

no data point is connected to any other. Starting from ε = 0 we let ε grow until some

pair of points become connected to form a 1-simplex, giving rise to the next complex

in the sequence Rε1 . We let ε grow some until a new pair of points become connected,

giving rise to the third complex in the sequence Rε2 . We continue to add terms to

the sequence until ε is large enough that every point in the data set belongs to the
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same simplex. Whether some set of k points are connected and form a k − 1 simplex

depends of course on whether we are considering a sequence of Rips complexes or C̆ech

complexes. The following definitions formalise these ideas

Definition 2.3.11. (Filtration) A filtration is a collection of sets Xi with the property

that if i < j, then Xi ⊂ Xj .

Definition 2.3.12. (Rips Persistence complex) Let X be a data set and notice that

the subsets of {Rε|ε > 0} form a filtration Rε0 ⊂ Rε1 ⊂ Rε2 ⊂ . . . ⊂ Rεm for ε0 < ε1 <

. . . < εm. The sequence of inclusion maps

Rε0
ι1
↪−→ Rε1

ι2
↪−→ Rε2

ι3
↪−→ . . .

ιm
↪−→ Rεm

is called the Rips persistence complex.

Definition 2.3.13. (C̆ech Persistence complex) Let X be a data set and consider that

the subsets of {Cε|ε > 0} form a filtration Cε0 ⊂ Cε1 ⊂ Cε2 ⊂ . . . ⊂ Cεm . The sequence

of inclusion maps

Cε0
ι1
↪−→ Cε1

ι2
↪−→ Cε2

ι3
↪−→ . . .

ιm
↪−→ Cεm

is called the C̆ech persistence complex.

For a given data set X the Rips and C̆ech chain complexes are not the same in general,

but we can always squeeze a C̆ech complex between two Rips complexes as follows.

Lemma 2.3.14. (Squeezing Lemma) For any ε > 0 there is a chain of inclusion maps

Rε ↪−→ Cε√2 ↪−→ Rε√2.

Proof. de Silva & Ghrist (2007)

It follows from this Lemma that any homological feature of the Rips complex that

persists from ε to ε
√

2 is also a feature of the C̆ech complex Cε√2. An illustration of

this squeezing phenomenon is shown in Figure 2-5.

Simplicial homology

We first seek the homology of a simplicial complex defined at a particular value of

ε. To this end, we note that a simplicial complex is composed of some m-simplices,

(m − 1)-simplices, (m − 2)-simplices and so on, until a final set of 0-simplices. Each
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Figure 2-5: A filtration of C̆ech complexes for increasing ε. We can see that for ε < 1
the C̆ech complex is a collection of 3 points, for 1 < ε <

√
2 the C̆ech complex forms

a 1 dimensional loop, and for ε > 1 the complex is a triangle. The Rips complex
for the same 3 points is 3 isolated points when ε < 1 and a triangle otherwise. The
one dimensional loop in the sequence of C̆ech complexes is squeezed between 2 Rips
complexes; 3 isolated points and a triangle.

k simplex has a boundary, which is composed of (k − 1)-simplices. The boundary of

a 1-simplex (line) is composed of the two 0-simplices (points) with one at each end.

The boundary of a 2-simplex (triangle) is composed of the three 1-simplices (lines)

that enclose it. The boundary of a 3-simplex (a tetrahedron) is composed of the four

2-simplices (triangles) that enclose it and so on. The boundary of a 0-simplex is the

empty set.

More generally, a set of k-simplices has a boundary composed of (k− 1)-simplices. For

example, a pair of triangles welded together along one side has a boundary composed

of four 1-simplices. A pair of squares welded together along one edge is shown in Figure

2-6. A pair of tetrahedra welded together along one face has a boundary comprised of

6 triangular faces. This operation of welding simplices together will be denoted with a

+. Under the operation + the k simplices form a group.

Definition 2.3.15. (Simplex Group) Let sk be the set of all k-simplices in a simplicial

complex. Let Sk = P (sk): the powerset of sk. Let + be a binary operation on the

elements of Sk defined

σ + τ = (σ ∪ τ)/(σ ∩ τ)

for H,G ∈ Sk. Under the operation + the set Sk forms an Abelian group with identity

1 2 3

456

Figure 2-6: The boundary of this 2-complex is the set of 1-simplices
{(12), (23), (34), (45), (56), (61)}
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∅ called the simplex group.

It therefore makes sense for each k to define a map ∂k which sends a set of k simplices

to the set of (k − 1) simplices which comprise its boundary. It turns out this map is a

group homomorphism.

Lemma 2.3.16. Let sk be the set of all k-simplices in a simplicial complex. Let Sk =

P (sk). Let ∂k : Sk → Sk−1 be defined

∂k(σ) = sk−1 ∩
∑
ς∈σ

ς

then ∂k is a homomorphism.

Proof. The proof proceeds directly

∂k(σ) + ∂k(τ) =
(
∂k(σ) ∪ ∂k(τ)

)
/
(
∂k(σ) ∩ ∂k(τ)

)
=

(
sk−1 ∩

∑
ς∈(σ∪τ)

ς

)/(
sk−1 ∩

∑
ς∈(σ∩τ)

ς

)

= sk−1 ∩
∑

ς∈(σ∪τ)/(σ∩τ)

ς

= sk−1 ∩
∑

ς∈(σ+τ)

ς

= ∂k(σ + τ).

A set of k simplices that have an empty boundary is called a cycle. For example a set of

1-simplices arranged in a pentagon form a loop, which has no 0 dimensional boundary.

Similarly a set of 2-simplices welded together to form a cube form a closed surface,

which has no 1D boundary. Formally, a set of k simplices is a cycle if the boundary

map ∂k sends the set to the empty set ∅. This motivates the following definition.

Definition 2.3.17. (Cycle Group) Let S be a simplicial complex. The group of k-

cycles of S is

Zk = ker(∂k).

Since the boundary map returns boundaries, the image of the (k + 1) boundary map
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is the group of boundaries among the group of k-simplices. This is formalised in the

following definition.

Definition 2.3.18. (Boundary Group) Let S be a simplicial complex. The group of

k-boundaries of S is

Bk = Im(∂k+1)

We say that 2 cycles are equivalent if we can weld them together to form a boundary.

Under this equivalence relation, the equivalence class of k-cycles can be interpreted as

a (k+ 1)-dimensional hole. For example an equivalence class of 1-cycles represents a 2

dimensional hole - exactly the type of hole that distinguishes the torus from the sphere.

An equivalence class of 2-cycles can be interpreted as a 3 dimensional void, like the

volume enclosed by the torus, or the volume enclosed by the sphere. The equivalence

classes of cycles form a group as defined below.

Definition 2.3.19. (Homology Group) The kth homology group is the quotient of the

cycles group by the boundary group:

Hk = ker(∂k)/Im(∂k+1) = Zk/Bk.

Definition 2.3.20. (Betti Numbers) The kth Betti number is

βk = rank(Hk).

The Betti numbers β0, β1, β2, ... of a simplicial complex characterise its homology. β0

is the number of connected components, β1 is the number of 2 dimensional holes, β2 is

the number of 3 dimensional voids, and the remaining βk represent higher dimensional

voids. The Betti numbers of a simplicial complex are the coefficients of a polynomial

called the Poincaré Polynomial.

Definition 2.3.21. (Poincaré polynomial) The Poincaré polynomial of a simplicial

complex S is defined

p[X] =
∑
i

βiX
i.
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Persistent homology

In the previous section we introduced the homology group of a single simplicial complex

- but we can do better! We will now present the persistent homology group which

characterises the homology of a persistence complex that persists over a range of ε.

Definition 2.3.22. (Induced homomorphism) Let i < j and Rεi , Rεj be a pair of

Rips complexes from the same Rips persistence complex. Let Zik and Zjk be the k-cycle

groups of the complex Rεi and Rεj respectively. Let ι : Zik → Zjk be the inclusion map.

Then ι∗ : H i
k → Hj

k is called the induced homomorphism of ι.

Lemma 2.3.23. Let x be a k-cycle in Rεi so x ∈ Zik. Let [x]i denote the equivalence

class of x under the quotient relation

H i
k = Zik/B

i
k.

Then the induced homomorphism ι∗ satisfies

[ι(x)]j = ι∗([x]i).

Proof. Ghrist (2014).

Definition 2.3.24. (Persistent Homology Group) LetR be a Rips persistence complex.

The (i, j) persistent k homology group of R is

H i→j
k = Im(ι∗).

We should take a moment to celebrate. The (i, j) persistent k homology group H i→j
k

represents exactly those (k+ 1) dimensional holes that persist over the interval [εi, εj ].

For example H1→2
2 contains all 3-dimensional voids that persist from ε = ε1 to ε = ε2.

This group is exactly what we want.

Computing the persistent homology

We have presented an algebraic derivation of the persistent homology group. This

section will provide some details about how to determine the group in practice. The

key observation is that we can convert the group theory problem into a linear algebra

problem. Let S be an n-simplex (and therefore a simplical complex). Let the kth

simplex in S be the kth canonical unit vector of the n dimensional vector space over the

field of 2 elements Fn2 . i.e. the first simplex is (1, 0, 0, ..., 0), the second is (0, 1, 0, ..., 0)
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and so on. It turns out the kth simplex group Sk is isomorphic to a subspace of Fn2 . The

boundary map ∂k : Sk → Sk−1 turns out to be a linear map between subspaces. The

cycle group Zk is isomorphic to a boundary space determined by computing ker(∂k)

using the standard techniques of linear algebra. The boundary group Bk is just the

column span of the matrix representation of ∂k. The quotient

Hk = Zk/Bk

is isomorphic to the column span of the vectors that are not in the span of the Bk. Using

this vector space representation, we are ready to outline an algorithm for computing the

persistent homology group. Suppose we have an n dimensional data set X comprising

m points. Then Algorithm 2 is pseudocode for computing the Rips persistent homology

groups of the data set X.

Algorithm 2 Compute H i→j
k

1: assign to every simplex in P (X) a unique natural number
2: compute the distance between every pair of points in X
3: list the distances in ascending order
4: create a filtration of Rips complexes
5: for each j indexing the jth Rips complex in the filtration

6: partition the simplices of the Rips complex into simplices of equal dimension k
7: for all dimensions k > 0

8: for each simplex in the set

9: retrieve the unique natural number ` of the simplex
10: set the `th column of matrix representing ∂k as the vector representing

the boundary of the `th simplex

11: find a basis for the vector space isomorphic to Zk = ker(∂k)
12: find a basis for the vector space isomorphic to Bk−1 = Im(∂k)
13: if k > 1

14: find a basis for the vector space isomorphic to Hj
k−1 = Zk−1/Bk−1

15: for all i < j

16: for each vector v in the basis of H i
k

17: if v is in the span of Bj
k

18: v is not in the (i, j) persistent k homology group

19: else
20: v is in the (i, j) persistent k homology group

This algorithm is näıve, and if properly implemented would surely run slower than

more efficient algorithms like Ripser developed by Tralie et al. (2018).
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Figure 2-7: A filtration of Rips complexes R0 ↪−→ R1 ↪−→ R√3 ↪−→ R2.

Computing the persistent homology group in practice is a confusing ordeal, so we will

offer a hopefully illustrative example. Consider 6 nodes arranged in a regular hexagon,

and contemplate the resultant Rips filtration. This is illustrated in Figure 2-7. Tables

2.1 and 2.2 show the matrix representations D2 and D1 of the boundary maps ∂2 and

∂1. We can find a basis for the column span of D2 and null space of D1 and determine

that the homology group

H2
1 = ker(∂1)/Im(∂2)

is isomorphic to the space spanned by those vectors in the null space of D1 not in the

column span of D2. We shall call this list of vectors α. We can similarly compute a basis

for a vector space isomorphic to H3
1 , which we will call β. The persistent homology

group H2→3
1 is isomorphic to the span of those vectors α not in the span of the vectors

in β.

At any Rips complex in the filtration, a basis element that has not featured in any

previous complex may appear in an associated homology group. This basis element

represents a hole or void. At some later point in the filtration, the element representing

the hole or void will disappear. We can record the ordered pair of ε-values at which the

void is born and dies. Then, for a particular k, we can take all birth-death pairs for

persistent homology groups of order k and plot them on a 2-dimensional plane, called

a persistence diagram.

2.3.3 Persistent homology of the Lorenz attractor

We compared the homology groups of the Lorenz attractor to the persistent homology

groups of the autonomous and driven attractors. We followed the lead of Garland et al.

(2016) who computed the persistent homology of the Lorenz system reconstructed from

a sequence of 1D observations of a Lorenz trajectory using the delay observation map
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(123) (234) (345) (456) (561) (612)

(12) 1 0 0 0 0 1
(23) 1 1 0 0 0 0
(34) 0 1 1 0 0 0
(45) 0 0 1 1 0 0
(56) 0 0 0 1 1 0
(61) 0 0 0 0 1 1
(13) 1 0 0 0 0 0
(35) 0 0 1 0 0 0
(51) 0 0 0 0 1 0
(62) 0 0 0 0 0 1
(24) 0 1 0 0 0 0
(46) 0 0 0 1 0 0

Table 2.1: For
√

3 < ε < 2, the Rips complex in Figure 2-7 has 6 traingular faces (2-
simplices) each denoted by listing the 3 nodes they contain, e.g. (123). The boundary
map ∂2 sends a face to a set of 3 edges (1-simplices). For example ∂2 sends the face
(123) to the set of edges { (12),(23),(13) }. We can therefore represent ∂2 as a matrix
with ijth entry the ijth entry of this table.

(12) (23) (34) (45) (56) (61) (13) (35) (51) (62) (24) (46)

(1) 1 0 0 0 0 1 1 0 1 0 0 0
(2) 1 1 0 0 0 0 0 0 0 1 1 0
(3) 0 1 1 0 0 0 1 1 0 0 0 0
(4) 0 0 1 1 0 0 0 0 0 0 1 1
(5) 0 0 0 1 1 0 0 1 1 0 0 0
(6) 0 0 0 0 1 1 0 0 0 1 0 1

Table 2.2: For
√

3 < ε < 2, the Rips complex in Figure 2-7 has 12 edges (1-simplices)
each denoted by listing the 2 nodes they contain, e.g. (12). The boundary map ∂1

sends an edge to a set of 2 nodes (0-simplices). For example ∂1 sends the face (12) to
the set of nodes { (1),(2) }. We can therefore represent ∂1 as a matrix with ijth entry
the ijth entry of this table.
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described in Takens’ Theorem. The authors used the open source software Javaplex

created by Tausz et al. (2014) to find the Witness Complex (outside the scope of

this thesis) for the delay embedded Lorenz attractor and computed the homology of

the complex. They discuss a few subtleties that arise, in particular that the Lorenz

attractor is a fractal, whose structure cannot be reconstructed exactly from any finite

number of sample points. The authors therefore satisfied themselves by approximating

the Lorenz attractor with a branched manifold model presented by Williams (1979)

which has the homology of the double loop (which is topologically a drawing of the

number 8). We made the same approximation, and expected to find that the application

of persistent homology to the Lorenz system, driven ESN dynamics, and autonomous

ESN dynamics would reveal that all three have the double loop homology groups.

In particular the persistence diagrams of these three systems would exhibit a pair of

H1 persistent homology groups floating well above the diagonal. To verify this, we

produced persistence diagrams using the open source software Ripser produced by

Tralie et al. (2018) and plotted the results in Figure 2-8.

In the Figure we plot the H1 persistence diagrams of the driven ESN dynamics, au-

tonomous ESN dynamics, and Lorenz dynamics as blue circles, red downward trian-

gles, and purple upward triangles. Each symbol represents a homology group. The

x-coordinate of the symbol represents the length ε at which a homology group appears

(is born) and the y-coordinate represents the length at which the homology group

vanishes (dies). All symbols are above the diagonal because all homology groups die

after they are born. Symbols close to the diagonal represent homology groups that die

shortly after they are born, and are the result of noise, or an artefact of finite data.

Symbols far above the diagonal represent homology groups that persist long after they

are born and therefore represent persistent homology groups.

We can see a pair of blue circles, red downward triangles, and purple upward trian-

gles floating well above the diagonal, suggesting the existence of 2 persistent homology

groups for the driven ESN dynamics, autonomous ESN dynamics, and Lorenz dynam-

ics. This is consistent with our expectation that the driven ESN dynamics, autonomous

ESN dynamics, and Lorenz dynamics all adopt the topology of the double loop, which

of course has 2 holes. The blue circles, red downward triangles, and purple upward

triangles are not exactly in the same location because the driven ESN dynamics, au-

tonomous ESN dynamics, and Lorenz dynamics are not isometric.

The reader may wonder why we would use persistent homology to show that the Lorenz

system, driven ESN dynamics, and autonomous ESN dynamics all have the homology

of the double loop when this can clearly be seen in Figure 2-1. The homology of a 3D
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system is usually apparent from a plot, but persistent homology can reveal the holes,

voids and higher dimensional hypervoids of high dimensional systems that cannot be

easily visualised. For example Muldoon et al. (1993) computed the homology of a delay

embedded time series from a fluid dynamics experiment, which could in general be of

much higher dimension.
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Figure 2-8: We have plotted the H1 persistence diagrams of the driven ESN dynam-
ics, autonomous ESN dynamics, and Lorenz dynamics as blue circles, red downward
triangles, and purple upward triangles. If a homology group appears (is born) at time
ε0 > 0 and then vanishes (dies) at time ε1 > ε0 > 0 then we plot this homology group at
the point (ε0, ε1) ∈ R2 on a so-called persistence diagram. Points that are close to the
diagonal die shortly after they are born, and are therefore transient homology groups,
which we view as artefacts. Points far from the diagonal die long after they are born
and are therefore persistent homology groups which we interpret as truly describing
the topology of the underlying object. We can see that each of these 3 objects has a
pair of points floating well above the diagonal, suggesting each has 2 holes. This is
consistent with our expectation that all three adopt the topology of the double loop.
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Chapter 3

Generalised Synchronisation

(GS)

3.1 Background

In this Chapter we will examine the generalised synchronisation (GS) i.e. the map f

from an underlying dynamical system (M,φ) to the reservoir space RN . GSs appear

in the seminal papers by Rulkov et al. (1995), Kocarev & Parlitz (1996), Pecora et al.

(1997), Stark (1999), Boccaletti et al. (2002), and a recent paper by Eroglu et al. (2017).

Work on GS appears broadly in mathematics and physics (Pecora & Carroll 1990),

(Pecora & Carroll 1991), (Eroglu et al. 2017), and extensively in reservoir computing

(Zimmermann & Parlitz 2018), (Verzelli et al. 2020), (Grigoryeva, Hart & Ortega

2021a), (Carroll 2020).

For the purpose of this thesis we will define the GS (in discrete time) in terms of a

drive and response system.

Definition 3.1.1. (Drive and response systems) Let M be a smooth manifold and

φ ∈ Diff1(M) a diffeomorphism. This is called the drive system. Let G : RN×M → RN ,

and define the system

xk+1 = G(xk, φ
k(m0)).

This is called the response system.

A reservoir computer is essentially a drive-response system where the underlying process

(M,φ) is the drive system, and the evolution of the reservoir states (the reservoir
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dynamics) is the response system. We are interested in finding a map f : M → RN

relating the drive to the response, and this is called a generalised synchronisation (GS).

Definition 3.1.2. (Generalised Synchronisation) Let V ⊆ RN . A generalised synchro-

nisation (GS) between the drive system and response system is a map f : M → RN

such that for any x0 ∈ V ⊆ RN and any m0 ∈M we have f ◦ φk(m0) = G(xk, φ
k(m0))

for all k ∈ Z. If V is a proper subset of RN then f is called a local GS, and if V = RN

then f is called a global GS.

We will see in section 3.2 that the concept of GS is closely related the Echo State

Property (ESP), which was coined by (Jaeger 2001), and is discussed extensively in the

reservoir computing world. The name evokes the image of past observations influencing

the present moment with a fading intensity - just as the intensity of an echo fades with

time.

3.2 Echo State Property

The existence of the GS f is closely related to the Echo State Property (ESP) first

introduced in the seminal paper by Jaeger (2001). There are several different formu-

lations of the ESP, including in Jaeger (2001), Yildiz et al. (2012), and Grigoryeva &

Ortega (2018). We will proceed with one inspired by Yildiz et al. (2012) for now. To

be as general as possible we introduce an arbitrary reservoir map F : RN × Rd → RN

which reduces to an ESN as a special case when

F (x, z) = σ(Ax+ Cz + b).

Definition 3.2.1. (Global Echo State Property) We say that a reservoir map F :

RN ×Rd → RN has the global ESP if, given any sequence of inputs (zk ∈ Rd)k∈N, and

initial reservoir states x0, y0 ∈ RN the sequences

xk+1 = F (xk, zk) and yk+1 = F (yk, zk)

satisfy ‖xk+1 − yk+1‖ → 0 as k →∞.

We can ensure that a reservoir map F has the global ESP if F is globally state con-

tracting.

Definition 3.2.2. A reservoir map F : RN × Rd → RN is called globally state con-
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tracting if there exists a c ∈ (0, 1) such that for any x, y ∈ RN and z ∈ Rd it follows

‖F (x, z)− F (y, z)‖ ≤ c‖x− y‖.

Theorem 3.2.3. If a reservoir map F : RN × Rd → RN is globally state contracting,

then F has the global ESP.

Proof. Consider that

‖xk+1 − yk+1‖ = ‖F (xk, zk)− F (yk, zk)‖ ≤ c‖xk − yk‖

so we can show by recursion that

‖xk+1 − yk+1‖ ≤ ck‖x0 − y0‖

so ‖xk+1 − yk+1‖ → 0 as k →∞.

With this, we are ready to introduce our first major result. Suppose the inputs are a

sequence of scalar observations from a dynamical system i.e. zk = ω ◦ φk(m0) where

• m0 ∈M is an initial point on a smooth compact q-manifold M .

• φ ∈ Diff1(M) is a smooth diffeomorphism on M

• ω ∈ C1(M,R) is a smooth observation function.

Suppose further that F is globally state contracting. Then, there is a continuously

differentiable GS f ∈ C1(M,RN ) synchronising the drive system system (represented

by φ) to dynamics in the reservoir space RN .

3.3 A theorem for global GS

Before we state the theorem, we will need some formalities. First we insist that the

manifold M is compact, connected, second countable and Hausdorff so that it can be

endowed with a Riemannian metric g (do Carmo 1992). Then for any f ∈ C1(M,RN )

we define

‖Df‖∞ = sup
m∈M

‖Df(m)‖2, ‖Df(m)‖2 = sup
v∈TmM/{0}

‖Df(m)v‖2√
g(m)(v, v)
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with TmM the tangent space of M at m and Df(m) the differential of f at m. Anal-

ogously for φ ∈ Diff1(M) we define

‖Tφ‖∞ = sup
m∈M

‖Tmφ‖, ‖Tmφ‖ = sup
v∈TmM/{0}

√
g(φ(m))(Tmφv, Tmφv)

g(m)(v, v)

where Tmφ is the tangent map for φ at m, and (v, w) is the inner product on Tm.

Theorem 3.3.1. (Grigoryeva, Hart & Ortega (2021a)) Let M be a compact, smooth,

q-manifold (i.e a q-dimensional manifold) and φ ∈ Diff1(M). Let ω ∈ C1(M,Rd) be

the observation function on M . Suppose that the reservoir map F ∈ C2(RN ×Rd,RN )

is globally state contracting. Furthermore, suppose that

cx := sup
(x,z)∈RN×Rd

‖DxF (x, z)‖2

(where Dx is the partial derivative with respect to x) satisfies

cx < 1, cx‖Tφ−1‖∞ < 1.

Then, there exists a unique solution f ∈ C1(M,RN ) of the equation

f = F (f ◦ φ−1, ω)

such that for all initial x0 ∈ RN and m0 ∈M the sequence

xk+1 = F (xk, ω ◦ φk(m0))

converges to f ◦ φk(m0) as k →∞.

The proof of Theorem 3.3.1 is omitted because the theorem is a special case of Theorem

3.5.5 (obtained by setting V = RN ) which we will state and prove in section 3.5. The

more general result proved in section 3.5 concerns the case where the reservoir map F

admits multiple generalised synchronisations. To build some intuition for this, we will

proceed with an example. Our example is closely related to the work by Grebogi et al.

(1984) which studies strange attractors that are not chaotic.
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3.4 Motivating example

Let F : R× R→ R be defined by

F (x, z) = tanh(2x+ z).

Under the constant driving input zk = 0 for all k, we have the autonomous system

F (x, 0) = tanh(2x), which has 3 fixed points at −x∗, 0, x∗ where x∗ ≈ 0.958 illustrated

in Figure 3-1 below. −x∗ and x∗ are stable nodes, while 0 is an unstable node. Multiple

equilibria prove that F does not have the global ESP for this input. Now, let us

consider the behavior of F under a more interesting driving input. Let φ ∈ Diff1(S1)

be a diffeomorphism on the circle defined by φ(m) = m + ε for some fixed ε > 0. Let

ω ∈ C1(S1,R) be defined to be ω(m) = 1
2 sin(m). Now suppose the driving input

uk = ω ◦ φk(m0) for some initial m0. Now, any GS f : S1 → R satisfies, ∀m ∈ S1,

f(m) = F (f ◦ φ−1(m), ω(m))

= tanh

(
2f(m+ ε) +

1

2
sin(m)

)
. (3.1)

Suppose we choose ε = 2π/100, and take an initial x0 ∈ R, then compute xk+1 =

F (xk, zk), and plot the pairs (φk(m0), xk) ∈ R2. It appears from numerical experiments,

that for any initial x0 in the vicinity of the fixed point −x∗, after a short transient

period, we arrive at the same graph G− of the pairs (φk(m0), xk) ∈ R2. Furthermore,

the graph plausibly satisfies the relation (3.1) of being a GS. Intriguingly, if we take

Untable NodeStable Node Stable Node

Figure 3-1: A graph of y = tanh(2x) intersecting y = x at 3 points. These 3 points are
fixed points of the map F (x, 0) = tanh(2x).
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Figure 3-2: The graphs G− and G+ of the points (φk(m0), xk).

any x0 in the vicinity of x∗ this time, then after a short transient period, we arrive at

a different graph G+ of the pairs (φk(m0), xk) ∈ R2. This suggests the existence of (at

least) two distinct (locally) stable GSs with respect to the input zk. The graphs G−

and G+ are shown in Figure 3-2.

3.5 Theorems for local GS

This numerical experiment suggests that there exist reservoir maps F that do not have

global ESP, and admit multiple GSs. To start to make sense of this, we will introduce

the concept of local ESP with admits the global ESP as a special case.

Definition 3.5.1. (Local ESP) Let V ⊂ RN be closed under the Euclidean topology.

We say that a reservoir map F : RN × Rd → RN has the (V,W )-local ESP if, given

any sequence of inputs (zk ∈W ⊂ Rd)k∈N, and initial reservoir states states x0, y0 ∈ V
the sequences

xk+1 = F (xk, zk) and yk+1 = F (yk, zk)

are contained in V and ‖xk+1 − yk+1‖ → 0 as k →∞.

We observe first of all that it is possible for F to have (Vi,W )-local ESP on disjoint sets

Vi with i = 1, ..., n. We can also ensure that a reservoir map F has the (V,W )-local

ESP by demanding that F has the (V,W )-local state contracting property.
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Definition 3.5.2. (Local state contracting) A reservoir map F : RN × Rd → RN is

called (V,W )-locally state contracting if there exists a c ∈ (0, 1) such that for any

x, y ∈ V and z ∈W ⊂ Rd it follows that

• ‖F (x, z)− F (y, z)‖ ≤ c‖x− y‖

• F (x, z) ∈ V .

Theorem 3.5.3. If a reservoir map F : RN × Rd → RN is (V,W )-locally state con-

tracting, then F has the (V,W )-local ESP.

Proof. First of all, since F (x, z) ∈ V , it follows that the sequence

xk+1 = F (xk, zk)

is contained by V . Next, for any x0, y0 ∈ V we have

‖xk+1 − yk+1‖ = ‖F (xk, zk)− F (yk, zk)‖ ≤ c‖xk − yk‖

so we can show by recursion that

‖xk+1 − yk+1‖ ≤ ck‖x0 − y0‖

so ‖xk+1 − yk+1‖ → 0 as k →∞.

Now we are ready to state two theorems for the existence of local GS. The first result

establishes the existence of a continuous GS f on a topological space, while the second

establishes a differentiable GS f on a smooth manifold. A less general version of these

results (with a less rigorous proof) appears in Hart et al. (2020) (Theorem 2.2.2) and

a fully rigorous more general version appears in Grigoryeva, Hart & Ortega (2021a)

(Theorem III).

Theorem 3.5.4. (Grigoryeva, Hart & Ortega (2021a)) Let M be a compact topological

space and φ ∈ Hom(M). Let ω ∈ C0(M,Rd) be the observation function on M . Let

V ⊂ RN be closed and suppose that the reservoir map F ∈ C0(V × ω(M),RN ) is

(V, ω(M))-locally state contracting with contraction coefficient c. Then, there exists a

unique solution f ∈ C0(M,V ) of the equation

f = F (f ◦ φ−1, ω)
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such that for all initial x0 ∈ V and m0 ∈M the sequence

xk+1 = F (xk, ω ◦ φk(m0))

converges to f ◦ φk(m0) as k →∞.

Proof. Define the map Ψ : C0(M,V )→ C0(M,V ) by

Ψ(h) = F (h ◦ φ−1, ω).

Notice that

‖Ψ(h)−Ψ(g)‖∞ = ‖F (h ◦ φ−1, ω)− F (g ◦ φ−1, ω)‖∞
≤ c‖h ◦ φ−1 − g ◦ φ−1‖∞ = c‖h− g‖∞

by the definition of c. So Ψ is a contraction mapping on the Banach space C0(M,V )

and therefore (by the Banach (1922) Fixed Point Theorem) admits a unique fixed point

f ∈ C0(M,V ) such that

Ψ(f) = F (f ◦ φ−1, ω) = f.

Furthermore, F is (V, ω(M))-locally contracting and therefore has the (V, ω(M))-local

ESP, so for all initial x0 ∈ V and m0 ∈M and y0 = f ◦ φ−1(m0) the sequences

xk+1 = F (xk, ω ◦ φk(m0)) and yk+1 = F (yk, ω ◦ φk(m0))

satisfy ‖xk+1 − yk+1‖ → 0 as k →∞. Since yk+1 = f ◦ φk(m0) it follows that xk+1 →
f ◦ φk(m0) and this completes the proof.

Theorem 3.5.5. (Grigoryeva, Hart & Ortega (2021a)) Let M be a compact, smooth, q-

manifold and φ ∈ Diff1(M). Let ω ∈ C1(M,Rd) be the observation function on M . Let

V ⊂ RN be closed and convex. Suppose that the reservoir map F ∈ C2(V ×ω(M),RN )

is (V, ω(M))-locally state contracting. Furthermore, suppose that

cx := sup
(x,z)∈V×ω(M)

‖DxF (x, z)‖2

(where Dx is the partial derivative with respect to x) satisfies

cx < 1, and cx‖Tφ−1‖∞ < 1.
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Then, there exists a unique solution f ∈ C1(M,V ) of the equation

f = F (f ◦ φ−1, ω)

such that for all initial x0 ∈ V and m0 ∈M the sequence

xk+1 = F (xk, ω ◦ φk(m0))

converges to f ◦ φk(m0) as k →∞.

The proof of the second result is rather more technical, but relies on a similar argument.

We will need to first introduce for each δ > 0 a norm ‖·‖C1(δ) on C1(M,V ) defined by

‖f‖C1(δ) := ‖f‖∞ + δ‖Df‖∞.

It is shown in Chapter 2 of Abraham et al. (1969) that each of these endows C1(M,V )

with a Banach space structure. Furthermore, Abraham et al. (1969) show that all of

these norms induce the same topology, and that these topologies coincide with the C1

topology described in Hirsch et al. (1977). With this, we will now prove 2 technical

lemmas which are used to prove Theorem 3.5.5.

Lemma 3.5.6. Let r > 0 and W ⊂ RN be closed in the Euclidean topology. Then, for

any δ > 0, the set

Ω(r,W ) = {f ∈ C1(M,W ) | ‖Df‖∞ ≤ r}

is closed in the topology induced by the ‖·‖C1(δ) norm.

Proof. Ω(r,W ) = Ω(r) ∩ C1(M,W ) where

Ω(r) = {f ∈ C1(M,RN ) | ‖Df‖∞ ≤ r}

so it suffices to the show that both Ω(r) and C1(M,W ) are closed. We will show Ω(r) is

closed by proving that the complement C1(M,RN )\Ω(r) is open. We will show that for

an arbitrary point in the complement f ∈ C1(M,RN )\Ω(r) there exists an ε > 0 such

that the ball of radius ε centred at f denoted BC1(δ)(f, ε) is a subset of the complement

C1(M,RN )\Ω(r). We fix

ε = δ(‖Df‖∞ − r)
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and then for any g ∈ C1(M,RN )/Ω(r)

‖Df‖∞ = ‖Df +Dg −Dg‖∞
≤ ‖Df −Dg‖∞ + ‖Dg‖∞

≤ ‖Df −Dg‖∞ +
1

δ
‖f − g‖∞ + ‖Dg‖∞

=
1

δ
‖f − g‖C1(δ) + ‖Dg‖∞

<
ε

δ
+ ‖Dg‖∞

= ‖Df‖∞ − r + ‖Dg‖∞

using the definition of the C1(δ) norm directly. So ‖Dg‖∞ > r hence BC1(δ)(f, ε) ⊂
C1(M,RN )\Ω(r). Next, we will show that C1(M,W ) is closed by showing that for an

arbitrary sequence (fn ∈ C1(M,W ))n∈N that converges to f∗ ∈ C1(M,RN ) it follows

that f∗ ∈ C1(M,W ). If (fn ∈ C1(M,W ))n∈N converges to f∗ ∈ C1(M,RN ) then for

all ε > 0 there exists N(ε) ∈ N such that, for any m ∈M

‖f(m)− f∗(m)‖ ≤‖f − f‖∞
≤‖f − f∗‖∞+δ‖Df −Df∗‖∞
= ‖f − f∗‖C1(δ) < ε

so f(m)→ f∗(m) and W is closed so f∗(m) ∈ W . This holds for arbitrary m ∈ M so

it follows that f∗ ∈ C1(M,W ).

In what follows we will use the notation DxF (x, z), DzF (x, z) to denote the partial

derivatives of the reservoir map F with respect to x and z, respectively.

Lemma 3.5.7. Let F ∈ C1(V ×ω(M),RN ) be a (V, ω(M))-locally contracting reservoir

map. Let

cx := sup
(x,z)∈V×ω(M)

‖DxF (x, z)‖2, cz := sup
(x,z)∈V×ω(M)

‖DzF (x, z)‖2,

and and choose r such that

r >
cz‖Dω‖∞

1− cx‖Tφ−1‖∞
. (3.2)
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Let Ψ : Ω(r, ω(M))→ C1(M,RN ) be defined by

Ψ(h) = F (h ◦ φ−1, ω).

Then Ψ(Ω(r, ω(M))) ⊂ Ω(r, ω(M)) and hence the map Ψ : Ω(r, ω(M)) → Ω(r, ω(M))

is well defined

Proof. Let h ∈ Ω(r, ω(M)). It suffices to show that Ψ(h)(m) ∈ ω(M) for all m ∈M and

that ‖D(Ψ(h))‖∞ ≤ r. We easily verify that Ψ(h)(m) ∈ ω(M) for all m ∈ M because

F is (V, ω(M))-locally contracting. Now, by direct computation of the derivative

‖D(Ψ(h))‖∞ = ‖DF (h ◦ φ−1, ω)‖∞
= sup

m∈M
‖DxF (h ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ

−1 +DzF (h ◦ φ−1(m), ω(m))Dω(m)‖2

≤ cx‖Dh‖∞‖Tφ−1‖∞ + cz‖Dω‖∞
= cxr‖Tφ−1‖∞ + cz‖Dω‖∞ < r. (by (3.2))

We are almost ready to prove the result. For what follows we let DxxF (x, z) and

DxzF (x, z) denote the second partial derivatives of F and let

cxx := sup
(x,z)∈V×ω(M)

‖DxxF (x, z)‖2, and cxz := sup
(x,z)∈V×ω(M)

‖DxzF (x, z)‖2.

Then it follows from the mean value theorem, which applies because V is convex, that

for any x, y ∈ V and z ∈ ω(M) that

‖Dx(F (x, z)− F (y, z))‖ ≤ cxx‖x− y‖, and ‖Dz(F (x, z)− F (y, z))‖ ≤ cxz‖x− y‖.

Proof. (Proof of Theorem 3.5.5) We have shown that Ψ : Ω(r, ω(M))→ Ω(r, ω(M)) is

a well defined map on a closed subset of the Banach space C1(M,RN ). We will now

show that for sufficiently small δ0 > 0 the map Ψ is a contraction in the ‖·‖C1(δ0) norm,

and therefore admits a unique fixed point f ∈ Ω(r, ω(M)) ⊂ C1(M,RN ) by the Banach

(1922) Fixed Point Theorem. The fixed point f satisfies

Ψ(f) = F (f ◦ φ−1, ω) = f.

Furthermore, F is (V, ω(M))-locally contracting and therefore has the (V, ω(M))-local
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ESP, so for all initial x0 ∈ V and m0 ∈M and y0 = f ◦ φ−1(m0) the sequences

xk+1 = F (xk, ω ◦ φk(m0)) yk+1 = F (yk, ω ◦ φk(m0))

satisfy xk+1 − yk+1 → 0 as k →∞. Now yk+1 = f ◦ φk(m0) so xk+1 → f ◦ φk(m0). All

that remains to show is that Ψ is a contraction in ‖·‖C1(δ0) for sufficiently small δ0. We

do this by considering the two parts of the C1(δ0) norm separately. First, we observe

that

‖Ψ(h)−Ψ(g)‖∞ = ‖F (h ◦ φ−1, ω)− F (g ◦ φ−1, ω)‖∞
≤ c‖h ◦ φ−1 − g ◦ φ−1)‖∞
= c‖h− g‖∞.
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Second, we compute directly that

‖DΨ(g)−DΨ(h)‖∞
= ‖DF (g ◦ φ−1, ω)−DF (h ◦ φ−1, ω)‖∞
= sup

m∈M
‖DxF (g ◦ φ−1(m), ω(m))(Dg) ◦ φ−1(m)Tmφ

−1 +DzF (g ◦ φ−1(m), ω(m))Dω(m)

−DxF (h ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ
−1 −DzF (h ◦ φ−1(m), ω(m))Dω(m)‖2

≤ sup
m∈M

‖DxF (g ◦ φ−1(m), ω(m))(Dg) ◦ φ−1(m)Tmφ
−1

−DxF (h ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ
−1‖2

+ sup
m∈M

‖DzF (g ◦ φ−1(m), ω(m))Dω(m)−DzF (h ◦ φ−1(m), ω(m))Dω(m)‖2

≤ sup
m∈M

‖DxF (g ◦ φ−1(m), ω(m))(Dg) ◦ φ−1(m)Tmφ
−1

−DxF (h ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ
−1‖2

+ ‖Dz(F (g ◦ φ−1, ω)− F (h ◦ φ−1, ω))‖∞‖Dω‖∞
≤ sup

m∈M
‖DxF (g ◦ φ−1(m), ω(m))(Dg) ◦ φ−1(m)Tmφ

−1

−DxF (h ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ
−1‖2

+ cxz‖g − h‖∞‖Dω‖∞
= sup

m∈M
‖DxF (g ◦ φ−1(m), ω(m))(Dg) ◦ φ−1(m)Tmφ

−1

−DxF (h ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ
−1

+DxF (g ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ
−1

−DxF (g ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ
−1‖2

+ cxz‖g − h‖∞‖Dω‖∞
≤ sup

m∈M
‖DxF (g ◦ φ−1(m), ω(m))(Dg) ◦ φ−1(m)Tmφ

−1

−DxF (g ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ
−1‖2

sup
m∈M

‖DxF (h ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ
−1

−DxF (g ◦ φ−1(m), ω(m))(Dh) ◦ φ−1(m)Tmφ
−1‖2

+ cxz‖g − h‖∞‖Dω‖∞
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≤ ‖DxF (g ◦ φ−1, ω)‖∞‖Dg −Dh‖∞‖Tφ−1‖∞
+ ‖Dx(F (h ◦ φ−1, ω)− F (g ◦ φ−1, ω))‖∞‖Dh‖∞‖Tφ−1‖∞
+ cxz‖g − h‖∞‖Dω‖∞

≤ cx‖Dg −Dh‖∞‖Tφ−1‖∞
+ cxx‖h− g‖∞‖Dh‖∞‖Tφ−1‖∞
+ cxz‖g − h‖∞‖Dω‖∞

≤ cx‖Dg −Dh‖∞‖Tφ−1‖∞
+ cxx‖h− g‖∞r‖Tφ−1‖∞
+ cxz‖g − h‖∞‖Dω‖∞

= (rcxx‖Tφ−1‖∞ + cxz‖Dω‖∞)‖g − h‖∞ + cx‖Tφ−1‖∞‖Dg −Dh‖∞.

Now we choose

δ0 <
1− c

rcxx‖Tφ−1‖∞ + cxz‖Dω‖∞

so that, combining the two estimates above we obtain

‖Ψ(g)−Ψ(h)‖C1(δ0) = ‖Ψ(g)−Ψ(h)‖∞ + δ0‖DΨ(g)−DΨ(h)‖∞
= (c+ δ0(rcxx‖Tφ−1‖∞ + cxz‖Dω‖∞))‖g − h‖∞

+ δ0cx‖Tφ−1‖∞‖Dg −Dh‖∞
≤ (c+ δ0(rcxx‖Tφ−1‖∞ + cxz‖Dω‖∞))‖g − h‖C1(δ0).

By our choice of δ0 the constant (c + δ0(rcxx‖Tφ−1‖∞ + cxz‖Dω‖∞)) ∈ (0, 1), so we

have shown that Ψ is a contracting map and the proof is complete.

3.6 Curious examples

To create some further intuition for Theorem 3.5.5, we present four more examples

of reservoir maps F which are locally state contracting and admit local GSs. These

examples are related to the work by Grebogi et al. (1984). In the first example (which

appears in Grigoryeva, Hart & Ortega (2021a)) we consider the Lorenz system (1.1)

once again. This time we feed the ξ observations into a reservoir map that admits 8

distinct GSs.
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Figure 3-3: A trajectory of the Lorenz system. (u, v, w) correspond to the variables
(ξ, υ, ζ) used in equations (1.1).

1. Finitely many GSs

We simulated a 4000 point (40 time units) trajectory of the Lorenz system originating

from the initial point m0 = (0, 1, 1.05) with time-step h = 0.01. Figure 3-3 shows this

trajectory for times t ∈ (20, 40). If we observe only the ξ-component of this trajectory,

then the observation function is ω(ξ, υ, ζ) = ξ. The corresponding observed trajectory

is illustrated in Figure 3-4.

We now define the reservoir map F : R3 × R→ R3 given by

F (u, v, w; z) = (sgn(u)|u|α, sgn(v)|v|α, sgn(w)|w|α) + λ(sin(kz), cos(kz), sin2(kz))

with λ, k ≥ 0 and α ∈ (0, 1). If we set λ = 0 then the reservoir map is autonomous and

has 8 stable fixed points at (±1,±1,±1) taking all sign combinations. A cross section

of the phase portrait of this autonomous system at the w = 1 plane is shown in Figure

3-5.

If we now choose λ = 0.009, k = 0.1 and α = 0.9, then we can construct a box

V1 = [0.9, 1.1]× [0.9, 1.1]× [0.9, 1.1] containing the fixed point (1, 1, 1). We can create a

similar box about each of the other seven fixed points and denote them V2, V3, . . . , V8.

We have by construction for each i = 1, . . . , 8 that F (Vi, ω(R3)) ⊂ Vi and that F is state
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Figure 3-4: ξ-component of a trajectory of the Lorenz system. The horizontal axis is
time t ∈ (20, 40).
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Figure 3-5: A phase portrait of the autonomous system F (u, v, w; z) = (uα, vα, wα) at
the cross section w = 1. The four stable fixed points in this cross section are shown.
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contracting on each box Vi. Thus, by Theorem 3.5.5 the reservoir map F : RN ×Rd →
RN is (Vi, ω(M))-locally state contracting for each i, so there exist GSs fi ∈ C1(M,Vi)

for each i.

To observe the images of the GSs fi ∈ C1(M,Vi) we computed the states

xk+1 = F (xk, ω(φk(m0))), yk+1 = F (yk, ω(φk(m0))), (3.3)

from two different initial states x0 = (1, 1, 1) ∈ V1 and y0 = (−1, 1, 1) ∈ V2. For any

other initial points x′0 ∈ V1 and y′0 ∈ V2 we expect that the sequences (3.3) will converge

to f1◦φk(m0) and f2◦φk(m0) respectively. Figure 3-6 illustrates the states (3.3) after a

burn-in time t = (0, 20) so that the state sequences very closely approximate f1◦φk(m0)

and f2 ◦ φk(m0) respectively.

2. Uncountably many GSs

Suppose F : R2 × R→ R2 is defined by

F (ρ, θ; z) = (
√
ρ+ z, θ + δ)

where (ρ, θ) is the polar coordinate representation of the state vector x ∈ R2, and

δ ∈ R. Under the constant driving input zk = 0 the state space system has a unstable

node at the origin, and admits an attracting invariant set {ρ = 1}. A phase portrait

of the dynamics is shown in Figure 3-7a.

Once again, suppose the driving input arises from φ ∈ Diff1(S1) a diffeomorphism on

the circle defined by φ(m) = m + ε for ε > 0. This time, let the observation function

ω ∈ C1(S1,R) be defined ω(m) = 1
5 sin(m). Suppose first of all that δ = 0. For each

θ0 ∈ [−π, π) let

V (θ0) = {(ρ, θ) | ρ ≥ 1/2 , θ = θ0}.

Note that V (θ0) ⊂ R2 is closed and that for all x, y ∈ V (θ0) and z ∈ ω(S1)

1. ∃ c ∈ (0, 1) such that ‖F (x, z)− F (y, z)‖ ≤ c‖x− y‖

2. F (x, z) ∈ V (θ0)

so we have the (V (θ0), ω(S1))-local state contraction property. Hence, by Theorem

59



u 0.951.001.05 v
1.05

w

1.00

1.05
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(b) Image of the GS that contains the point (−1, 1, 1) in its image.

Figure 3-6: Image of the Lorenz solution under two different GSs.
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(a) F (ρ, θ; z) = (
√
ρ+ z, θ + δ).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(b) F (ρ, θ; z) = (ρ2 + z, θ + δ).

Figure 3-7: Phase portraits of 2 reservoir maps F : R2 × R → R2 under the constant
driving input zk = 0 for all k.

3.5.5, there exists a unique solution fθ0 ∈ C1(S1, V (θ0)) of the equation

fθ0 = F (fθ0 ◦ φ−1, ω)

such that for all initial x0 ∈ Vθ0 and m0 ∈ S1 the sequence

xk+1 = F (xk, ω ◦ φk(m0))

converges to fθ0 ◦ φk(m0) as k → ∞. This holds for each θ0 ∈ [π, π), so there is an

uncountable set of GSs parametrised by θ0.

3. A bounded trajectory that does not admit a GS

Let n ∈ N, ε = 2π/n and δ = 1. Notice φn(m0) = m0. If x0 represents the polar angle

of an initial reservoir state x0, and proceeding states are defined in the usual manner

xk+1 = F (xk, ω ◦ φk(m0))

then the polar angle of the nth reservoir state xn is θn = θ0 + nδ.

We will show that no GS f exists for initial points on {ρ = 1}. Suppose for contradiction

that such a GS does exist. Then f(m0) = f ◦ φn(m0) for all m0, so the polar angles θ0

and θn of f(m0), and f ◦ φn(m0) must be equal. This leaves us with a contradiction,
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because nδ is not a multiple of 2π. We can see however that the trajectory {xk}k∈N
remains bounded.

4. Some initial conditions converge to the image of a GS

Suppose F : R2 × R→ R2 is defined by

F (ρ, θ; z) = (ρ2 + z, θ + δ)

where δ > 0. A phase portrait of this system under the constant driving input zk = 0

for all k is shown in Figure 3-7b. Once more, suppose the driving input arises from

φ ∈ Diff1(S1) a diffeomorphism on the circle defined by φ(m) = m + ε for ε > 0, and

let the observation function ω ∈ C1(S1,R) be defined by ω(m) = 1
5 sin(m). Let

V = {(ρ, θ) | ρ ≤ 1/2}.

Note that V ⊂ R2 is closed and that for all x, y ∈ V and z ∈ ω(S1)

1. ∃ c ∈ (0, 1) such that ‖F (x; z)− F (y; z)‖ ≤ c‖x− y‖,

2. F (x; z) ∈ V ,

so we have the (V, ω(M))-local state contracting property. Hence, by Theorem 3.5.5,

there exists a unique solution f ∈ C1(S1, V ) of the equation

f = F (f ◦ φ−1, ω)

such that for all initial x0 ∈ V and m0 ∈ S1 the sequence

xk+1 = F (xk, ω ◦ φk(m0))

converges to f ◦ φk(m0) as k →∞. This f is a GS. Now suppose we choose an initial

reservoir state x0 such that

ρ0 := ‖x0‖ > 2.

Then, for any initial point m0, the reservoir states xk that satisfy

xk+1 = F (xk, ω ◦ φk(m0))
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grow without bound. Thus any GS with image intersecting

V = {(ρ, θ) | ρ > 2}

must be unbounded. But this is impossible, as the GS is continuous and defined on the

compact manifold S1. Thus we must conclude that any GS that exists cannot have an

image that intersects V . In other words, a sequence of states originating in V will not

converge to the image of a GS.

3.7 Relationship between GS and the Echo Index

We were inspired to generalise the results surrounding global GSs to local GSs after

reading a paper by Ceni et al. (2020). The authors present uniformly attracting entire

solution (UAES) to reservoir maps and introduce the echo index, which is closely related

to local GSs. We will present just enough theory to link the GS to the Echo Index and

recommend the interested reader consult Ceni et al. (2020) for further details.

Ceni et al. (2020) consider reservoir maps

F : X × U → X (3.4)

that satisfy 3 assumptions

1. F is continuously differentiable i.e. F ∈ C1(X × U,X).

2. For all z ∈ Rd the map F (·, z) : X → X is a local diffeomorphism onto its image.

3. U ⊂ Rd is compact and X ⊂ RN is usually the compact closure of a N -

dimensional Cartesian product of real intervals.

The authors introduce the shift map T : UZ → UZ defined T (z)k = zk+1 for k ∈ Z, the

canonical projection π : UZ → U defined by π(z) = z0, and the cocycle mapping which

we define below.

Definition 3.7.1. (Cocycle mapping) The reservoir map (3.4) can be described using

a cocycle mapping Φ : Z+
0 × UZ ×X → X defined by

Φ(0, z, x0) := x0 ∀z ∈ UZ, x0 ∈ X,

Φ(n, z, x0) := F (Φ(n− 1, z, x0), π ◦ Tn(z)) ∀z ∈ UZ, x0 ∈ X,n ≥ 1.

Definition 3.7.2. (Entire Solutions) An entire solution for the reservoir map (3.4)
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with input z ∈ Z is a bi-infinite sequence of states x ∈ XZ that satisfies (3.4). In other

words

Φ(s, Tm(z), xm) = xm+s (3.5)

for all m ∈ Z and s ∈ Z+
0

Definition 3.7.3. (Positively Invariant Nonautonomous Sets) A family of nonempty

compact subsets B is called a positively invariant nonautonomous set for input z ∈ UZ

(or simply a z-positively invariant set) if

Φ(s, Tm(z), Bm) ⊂ Bs+m

for all m ∈ Z and s ∈ Z+
0 .

Definition 3.7.4. (Uniformly Attracting Entire Solution) Consider a fixed input se-

quence z ∈ UZ, and entire solution x, and a z-positively invariant nonautonomous set

B composed of compact sets.

1. If

lim
k→∞

(
sup
j∈Z

h(Φ(k, T j(z), Bj), xj+k)

)
= 0

(where h is the Hausdorff semi-distance) then we say B is uniformly attracted to

x.

2. We say that x is a UAES if there is a neighbourhood B of x that is uniformly

attracted to x.

Definition 3.7.5. (Decompositions) We say that the reservoir map (3.4) with input

z ∈ UZ admits a decomposition into n ≥ 1 UAESs if there are n UAESs x1, . . . , xn such

that for all η > 0 and i = 1, . . . , n there are neighbourhoods Bη
i uniformly attracted

by x and

µ

(
RN −

n⋃
i=1

(Bη
i )k

)
< η ∀k ∈ Z

where µ is the Lebesgue measure. We say this is a proper decomposition if in addition

inf
k∈Z
‖xik − x

j
k‖ > 0 ∀i 6= j.
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Definition 3.7.6. (Echo Index) We say that the reservoir map (3.4) driven by input

z ∈ UZ has echo index n ≥ 1 and write

I(z) = n

if it admits a proper decomposition into n UAESs. In this case we say (3.4) has the

n-ESP for input z.

We can see that the work in Ceni et al. (2020) does not reference an underlying dynam-

ical system φ : M → M and therefore holds for a larger class of input sequences than

those generated by observations of φ. GSs on the other hand are defined explicitly

in terms of the dynamical system φ and observation function ω, so we will need to

introduce these in order to connect GSs to the Echo Index.

Theorem 3.7.7. Let M be a compact topological space and φ ∈ Hom(M). Let ω ∈
C0(M,Rd) be the observation function on M . Suppose that (3.4) admits a GS f : M →
V ⊂ X ⊂ RN . Then for each m0 ∈ M , the sequence (xk)k∈Z = (f ◦ φk(m0))k∈Z is a

UAES attracted by the constant sequence Bk = V for all k.

Proof. For any m0 ∈M , let (zk)k∈Z = (ω ◦φk(m))k∈Z. The constant sequence Bk = V

for all k is uniformly attracted to (xk)k∈Z = (fηi ◦ φk(m))k∈Z by Theorem 3.5.4.

Theorem 3.7.8. Let M be a compact topological space and φ ∈ Hom(M). Let ω ∈
C0(M,Rd) be the observation function on M . Suppose there are exactly n GSs fi :

M → fi(M) ⊂ RN , such that, for all η > 0, there exist n sets V η
i ⊃ fi(M) such that

fηi : M → V η
i is a GS and

µ

(
RN −

n⋃
i=1

V η
i

)
< η, (3.6)

where µ is the Lebesgue measure. Then for any m0 ∈ M , the sequence (zk)k∈Z =

(ω ◦ φk(m0))k∈Z has echo index I[z] = n.

Proof. Fix m0 ∈ M . For each GS fηi : M → V η
i the sequence (xik)k∈Z = (f iη ◦

φk(m0))k∈Z is a UAES attracted by the constant sequence (Bη
i )k = V η

i for all k.

This follows from Theorem 3.7.7. Now, with respect to the input sequence (zk)k∈Z =

(ω ◦ φk(m0))k∈Z, the reservoir map clearly admits a decomposition into n UAESs, so

all that remains is to show that this decomposition is proper. The images fi(M) are

disjoint compact manifolds and each sequence (xik)k∈Z = (fi◦φk(m0))k∈Z lies in exactly
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one of these images. Consequently

inf
k∈Z
‖xik − x

j
k‖ > 0 ∀ i 6= j.

which is precisely the requirement for the decomposition to be proper in the sense of

definition 3.7.5.

3.8 Biological interpretation

These results about GSs admit a biological interpretation. We use the ESN reservoir

sequence

xk+1 = σ(Axk + Czk + b) (3.7)

to represent the dynamics of a brain, composed of neurons, that are connected to-

gether by dendrites and axons. Neuron n has dendrites, which receive information

from neighbouring neurons, causing neuron n to fire a sequence of action potentials,

thus influencing the other neurons (Izhikevich 2007). We (over)simplify this complex

interaction by representing the neurons with nodes, and the connections between them

with arcs. We represent the connection strength between neurons i and j with the

entry Aij of the reservoir matrix A. If neurons i and j are not directly connected then

Aij = 0. Furthermore, the connections need not be symmetric, so Aij 6= Aji in general.

The ith neuron has an excitation level at time k given by the ith component of the

reservoir state xk. The excitation level of neuron i governs the frequency of action

potentials fired by neuron i. It therefore follows from (3.7) that the excitation of each

neuron depends on the excitation of its neighbours. If σ = tanh or some other sat-

urating/squashing/sigmoidal function, then the contribution of a neuron’s neighbours

obeys a law of diminishing returns.

We view the inputs zk as electrical signals induced in the brain from an external source.

These signals could arise in the body or from external sensory organs. The inputs

interact with the neurons via connections C, and influence the excitation levels of the

neurons in the brain. The results we have presented in this chapter suggest that, as

long as the source of the inputs zk evolves deterministically (and the ESN has ESP)

then the state of the brain (represented by the state vectors xk) evolves in synchrony

with the source system. We illustrate this interplay between the input connections and

reservoir connections in Figure 3-8 which illustrates an ESN with 3 neurons.
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Figure 3-8: An ESN driven by input z. The input communicates to three nodes with
states x1, x2, and x3 via connections C1, C2, and C3. The nodes communicate with
eachother via the three by three connectivity matrix A with connection between node i
and j given by Aij . The direction of the arrows denotes the direction of communication.
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Interestingly, if the ESN does not have ESP then the vectors xk may evolve erratically,

and fail to synchronise with the source system. Some authors (Manjunath 2017) have

suggested that this loss of the ESP describes an epileptic seizure, triggered by an input

process zk that is outside a tolerated range (e.g rapidly flashing lights). We might

imagine that a brain with (V,W )-local ESP undergoes an epileptic seizure if exposed

to inputs outside of W . The existence of multiple GSs for different sets of inputs W

and sets of initial reservoir states V suggests that the brain may adopt qualitatively

different states under different conditions, that are each locally stable. This is all very

speculative, but in future, it would be intriguing to explore these ideas in the context

of careful neuroscience.
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Chapter 4

Embeddings

4.1 Background

Theorems 3.5.4 and 3.5.5 establish conditions under which an evolution operator φ ∈
Diff1(M), observation function ω : M → Rd and reservoir map F : RN × Rd → RN

admit an associated GS f(φ,ω,F ). Theorem 3.5.5 establishes conditions under which the

GS f(φ,ω,F ) is continuously differentiable. In this chapter we will establish additional

conditions, which ensure that f(φ,ω,F ) is a continuously differentiable embedding. When

f(φ,ω,F ) is an embedding, the dynamics in the image of f(φ,ω,F ) (the response system)

replicate the dynamics of the drive system (M,φ) so that we have a chance of learning

arbitrary target functions g : M → Rs from observations alone. Out of the collection

of all possible target maps, a target map in which we are particularly interested is the

next step map g := ω ◦φ which is well defined when s = d. For the rest of this chapter

we assume for simplicity, and without loss of generality, that d = 1 so we have scalar

observations. This chapter is based on Grigoryeva, Hart & Ortega (2021b), which

builds on the earlier work in Hart et al. (2020).

We will now define what it means for a map to be an embedding, and the closely related

property of being an immersion.

Definition 4.1.1. (Immersion) A map f : M → N between smooth manifolds M,N

is called an immersion at the point m ∈ M if the tangent map at m denoted Tmf :

TmM → Tf(m)N is injective. If f is an immersion at all points m ∈M then f is called

an immersion.

Definition 4.1.2. (Embedding) A map f : M → N between smooth manifolds M,N
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is called an embedding if f is an injective immersion and a diffeomorphism onto its

image.

Notably, if M is compact and f : M → N is an injective immersion then f is an em-

bedding. Hence we restrict ourselves to compact manifolds and consider the conditions

on φ, ω, F ensure that f(φ,ω,F ) is an injective immersion. This problem is difficult in

general, so we will start by recalling some fundamental theorems. The first is Whitney’s

embedding theorem.

Theorem 4.1.3. (Whitney 1944). Let M be a compact q-manifold (i.e a manifold of

dimension q) and N ∈ N such that N > 2q. Then a generic f ∈ C1(M,RN ) is an

embedding.

To make sense of this theorem, we need to understand the term generic. Roughly

speaking, a property is generic in some topological space if it holds for most elements,

but excludes a small subset of exceptions. The concept of genericity is a topological

one, which is analogous to (but not identical to) the concepts of almost everywhere and

prevalence that appear in measure theory.

Ghrist (2014) provides some examples of genericity. In the appropriate topology:

• a generic smooth curve γ : R→ R2 self-intersects countably many times,

• a generic smooth curve γ : R→ R3 does not self-intersect,

• a generic square matrix is invertible.

We state the formal definition of genericity below.

Definition 4.1.4. (Generic property) Let (X, τ) be a topological space. A property

that holds on a countable intersection of dense open subsets of X is called a generic

property of (X, τ).

Notably if X is compact, then a property that holds on a dense open subset of X is

generic. We can now see that Whitney’s embedding theorem implies that if we set

N > 2q, where M is a q dimensional manifold, and we impose conditions on φ, ω, F

such that f(φ,ω,F ) ∈ C1(M,RN ), then f(φ,ω,F ) is either an embedding, or very close to

an embedding. Heuristically, we expect that f(φ,ω,F ) is very likely to be an embedding

unless φ, ω, F are deviously (or unfortunately) chosen such that the resulting GS f(φ,ω,F )

is an exceptional map in C1(M,RN ) that is not an embedding. This heuristic is quite

compelling, but is not a proof that f is an embedding for generic choices φ, ω, F . To

progress toward this result, we will recall Takens’ celebrated embedding theorem. The
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specific formulation and proof of the result is by Huke (2006), and it is this formulation

which we will use in great detail in this Chapter.

Theorem 4.1.5. (Takens 1981), (Huke 2006). Let M be a compact manifold of di-

mension q. Suppose φ ∈ Diff2(M) has the following two properties:

(1) φ has only finitely many periodic points with periods less than or equal to 2q.

(2) For each period point m ∈ M with period n < 2q then the eigenvalues of the

derivative Tmφ
n at m are distinct. φn denotes the n-fold composition of φ with

itself.

Then for a generic C2 observation function ω ∈ C2(M,R) the (2q+1) delay observation

map Φ(φ,ω) : M → R2q+1 defined by

Φ(φ,ω)(m) := (ω(m), ω ◦ φ(m), ω ◦ φ2(m), . . . , ω ◦ φ2q(m))

is an embedding.

Takens Theorem essentially states that: if we take equally spaced (in time) scalar ob-

servations from a dynamical system of dimension q, and the system (M,φ) satisfies

conditions (1) and (2), then a vector formed from 2q+ 1 (or more) sequential observa-

tions fully captures the state of the dynamical system.

4.2 Summary of novel results

The connection between reservoir computing and Takens’ Theorem becomes clear when

we observe that the reservoir map F : RN × R→ RN defined by

F (x, z) = Ax+ Cz

admits as a GS the Takens delay map

f(φ,ω,F ) = Φ(φ,ω)
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in the special case that A ∈MN×N (R) is the lower shift matrix

A =



0 0 0 . . . 0

1 0 0 . . . 0

0 1 0 . . . 0
...

...
. . .

...
...

0 0 0 1 0


and C ∈ RN is defined to be C = (1, 0, . . . , 0). This has been observed by Shi & Han

(2007), Hart et al. (2020), Bollt (2021), Grigoryeva, Hart & Ortega (2021b) and others.

It therefore seems natural to consider more general conditions on A and C for which the

associated GS f(φ,ω,F ) is an embedding for generic observation functions ω ∈ C2(M,R).

Such conditions are established in the next result.

Theorem 4.2.1. Let M be a compact manifold of dimension q. Suppose φ ∈ Diff2(M)

has the following two properties:

(1) φ has only finitely many periodic points.

(2) For each periodic point m ∈ M with period n the eigenvalues of the derivative

Tmφ
n at m are distinct.

Let F : RN × Rd → RN be defined by

F (x, z) = Ax+ Cz

for A ∈MN×N (R) and C ∈ RN satisfying the following properties:

(A) N > max{2q, `} where ` ∈ N is the lowest common multiple of the periods of all

periodic points.

(B) λmax ρ(Anmin) < 1 where nmin is the minimal period over all periodic points and

λmax is the maximal absolute value over all eigenvalues of all derivatives Tmφ
n.

(C) For each periodic point m ∈M with period n the set of vectors{
(I − λjAn)−1(I −A)−1(I −A)nC

}
j=1,...,q

where {λj}j=1,...q are the eigenvalues of Tmφ
n, are linearly independent.

(D) The vectors {AjC}j=0,...N−1 are linearly independent.

72



Then there exists an associated GS f(φ,ω,F ) ∈ C2(M,RN ) with explicit form

f(φ,ω,F )(m) =

∞∑
k=0

AkCω ◦ φ−k(m).

Furthermore, for generic ω ∈ C2(M,R) the GS f(φ,ω,F ) is an embedding.

Remark 4.2.2. Condition (1) appearing in Theorem 4.2.1 is stronger than condition

(1) appearing in Takens Theorem, so it may be possible to relax the former condition.

Remark 4.2.3. Condition (D) appears to have interesting connections to controlla-

bility (Katsuhiko 2010) and Krylov spaces (Nevanlinna 1993).

The proof proceeds in three major stages, and closely follows the proof of Takens

Theorem presented by Huke (2006). We prove first of all that

1. The associated GS f(φ,ω,F ) ∈ C2(M,RN ) exists and has explicit form

f(φ,ω,F )(m) =

∞∑
k=0

AkCω ◦ φ−k(m).

2. Next, we show that the set of ω ∈ C2(M,R) for which the associated GS f(φ,ω,F )

is an embedding is an open subset of C2(M,R).

3. Then all that remains is to show that a dense subset of the observation functions

C2(M,R) yields an embedding. This process is split into 4 substages.

• We show that for arbitrary ω ∈ C2(M,R) we can take an arbitrarily small

perturbation ω′ ∈ C2(M,R) such that the perturbed GS f(φ,ω′,F ) is an im-

mersion on the periodic points. It immediately follows that f(φ,ω′,F ) is also

an immersion on some neighbourhood of the periodic points by the immer-

sion theorem (Theorem 4.4.6).

• Immersions form an open subset of C1(M,RN ), so we can create a second

perturbation ω′′ ∈ C2(M,R) sufficently small that the open neighbourhood

of the periodic points remains immersed, while immersing all remaining

points. Then we have that f(φ,ω′′,F ) is a global immersion. All that remains

is to establish injectivity.

• We take another perturbation ω′′′ sufficiently small that the immersion is

preserved while ensuring that f(φ,ω′′′,F ) is injective on the periodic points.
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By continuity of f(φ,ω′′′,F ), it follows that there is a neighbourhood of the

periodic points on which f(φ,ω′′′,F ) is injective.

• We take one final perturbation ω′′′′ sufficiently small that the immersion is

preserved and f(φ,ω′′′′,F ) is globally injective. This completes the proof.

The full proof is detailed in Grigoryeva, Hart & Ortega (2021b) and section 4.4 of

this thesis. It is also shown in Grigoryeva, Hart & Ortega (2021b) and in section

6.2 of this thesis that conditions (A) − (D) are invariant under system isomorphism.

Roughly speaking, we say that two reservoir systems with the echo state property are

system isomorphic if when given the same input sequence the two reservoir systems

(asymptotically) produce the same output sequence. This result is expressed in terms

of filters and functions in Theorem 6.2.2 which appears in Chapter 6.

In practice, the reservoir matrix A and input vector C are randomly generated, so

we are interested in random variables A,C that yield an embedding almost surely.

We establish this in the following theorem. Before we state the result, we recall the

following definition: that a real-matrix-valued random variable X is non-singular if

P[X ∈ {A}] = 0 for all real matrices A.

Theorem 4.2.4. If A ∈MN×N (R) and C ∈ RN are randomly drawn from non-singular

distributions then conditions (C), (D) in Theorem 4.2.1 hold almost surely.

We thank Friedrich Philipp for answering this 1 question we posted on https://math.

stackexchange.com, which made the proof possible. The proof uses standard tech-

niques in random matrix theory, and proceeds in three stages.

1. We show that a polynomial in n variables, which is not identically zero, is non-zero

almost everywhere.

2. This implies that for linearly independent polynomials p1, p2, . . . , pn the random

vectors

p1(A)C, p2(A)C, . . . , pn(A)C

are linearly independent almost surely.

3. Then the vectors described in (C) and (D) are manipulated until we can apply

item 2. to yield the result.

1Click the word this to follow a link to the question
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The proof of this result is detailed in Grigoryeva, Hart & Ortega (2021b) and section

4.4 of this thesis.

Remark 4.2.5. The results in this chapter apply to linear reservoir maps of the form

F (x, z) = Ax+Cz; and we can easily extend the results to affine reservoir maps of the

form F (x, z) = Ax+ Cz + b.

A natural question is now: can prove similar results for more general reservoir maps

like ESNs with nonlinear activations F (x, z) = σ(Ax + Cz + b)? We believe such a

result exists by the weight of numerical evidence. For now, the answer is no. The

techniques used is this present Chapter exploit the linearity of the reservoir map, as

well as the explicit form of the GS

f(φ,ω,F )(m) =
∞∑
k=0

AkCω ◦ φ−k(m)

which we have not obtained for reservoir maps in general. To prove that a more general

reservoir map admits an embedding GS, a different line of attack is required.

4.3 An embedding allows for learning

We have stated conditions under which a reservoir maps of the form

F (x, z) = Ax+ Cz

with randomly generated A,C admits a GS f(ω,φ,F ) which is an embedding. If an

embedding is achieved, then we have sufficient conditions for learning. We recall that

an embedding on a compact manifold is injective and immersive, and both of these

properties have an interpretation in the context of learning. Verzelli et al. (2020)

identified that when the GS f(ω,φ,F ) is injective the reservoir map has learned the

pointwise properties of the system, which allows pointwise approximation of target

functions, such as the next step map for forecasting. We observe in this chapter that

if the GS f(ω,φ,F ) is immersive, then the reservoir map will learn deeper properties of

the system, such as the eigenvalues of the linearisation of fixed points.

Having achieved an embedding with a linear reservoir map, we are now in a position to

approximate an arbitrary target function, for example, the next step map used to fore-

cast the future time series of observations. We could, for example, train a feedforward

neural to map the reservoir states {xk}k=1,...,`−1 onto the observations {zk+1}k=1,...,`.

Training a feedforward neural network is a nonlinear optimisation problem, which is
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undesirable in the reservoir computing paradigm where training is usually linear re-

gression. To avoid nonlinear training we can pass the reservoir states {xk}k=1,...,`−1

through a nonlinear function g : RN → RT (called a nonlinear kernel) and then find

W ∗ ∈ RT that solves the linear least squares problem

W ∗ = arg min
W∈RT

`−1∑
k=0

‖W>g(xk)− zk+1‖2 + λ‖W‖2.

This is exactly the approach taken by Bollt (2021) and Gauthier et al. (2021) in what the

authors call next generation reservoir computing. The authors demonstrate empirically

that a polynomial kernel g is suitable for forecasting the future trajectory of chaotic

dynamical systems.

4.4 Novel results in detail

4.4.1 Existence of C2 GS

In this section we will prove Theorems 4.2.1 and 4.2.4. The proofs closely follow those

in Grigoryeva, Hart & Ortega (2021b). The proofs involve calculus on manifolds so we

will start by reviewing some relevant theory of calculus on manifolds. Recall that if

f ∈ Cr(M,RN ) then Df : TM → T (RN ) is the differential of f , and TM is the tangent

bundle of M , and T (RN ) = RN × RN is the tangent bundle of RN . Furthermore, if

φ ∈ Diffr(M) then Tφ : TM → TM is the tangent map of φ.

The differential Df and tangent map Tφ are generalisations of the first derivative.

Since the tangent bundle TM of M and the tangent bundle of RN are themselves

manifolds, we can define the second order differential

D2f := D(Df) : T (TM)→ T (T (RN )),

as the differential of the differential Df . Here T (TM) is the tangent bundle of the

tangent bundle of M , and T (T (RN )) is the tangent bundle of the tangent bundle of

RN . Likewise, we can define the second order tangent map

T 2φ := T (Tφ) : T (TM)→ T (TM)

as the tangent map of the tangent map. We can proceed recursively to define for

each i ∈ {1, . . . , r} the differential and tangent map of order i denoted Dif and T iφ

respectively.
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We are now ready to establish a lemma stating that the GS f(φ,ω,F ) associated to the

linear reservoir map exists, is C2, and, for an open subset of observations functions, is

an embedding.

Lemma 4.4.1. Let φ ∈ Diff1(M) be a dynamical system on the smooth manifold

M (not necessarily compact) and consider the observation map ω ∈ C1(M,R). Let

F : RN×R→ RN be a linear state map given by F (x, z) := Ax+Cz with A ∈MN,N (R),

C ∈ RN , N ∈ N.

(i) If the spectral radius of A satisfies that ρ(A) < 1 and ω maps into a bounded subset

of R then the GS f(φ,ω,F ) : M → RN associated to F exists and is continuous.

(ii) Additionally, let r ∈ N and suppose that φ ∈ Diffr(M) and that there exist con-

stants k1, . . . , kr ∈ N such that
∥∥Aki∥∥∥∥T iφ−ki∥∥∞ < 1,

∥∥T iφ−1
∥∥
∞ < ∞ for all

i ∈ {1, . . . , r}. Then for any ω ∈ Cr(M,R) such that
∥∥Diω

∥∥
∞ < ∞, for all

i ∈ {1, . . . , r}, the map f(φ,ω,F ) belongs to Ci(M,RN ) and the higher order deriva-

tives are given by:

Dif(φ,ω,F )(m) =
∞∑
j=0

AjCDi
(
ω ◦ φ−j

)
(m), for all i ∈ {1, . . . , r}. (4.1)

(iii) Suppose now that M is compact. Under the hypotheses of points (i) and (ii)

above, the map

Θ(φ,F ) : Cr(M,R) → Cr(M,RN )

ω 7−→ f(φ,ω,F )

(4.2)

is continuous. Moreover, the subsets Ωimm and Ωemb of Cr(M,R) for which the

corresponding GSs are immersions and embeddings, respectively, are open.

Proof. (i) This statement is obtained by combining the Weierstrass M-test and Gelfand’s

formula for the spectral radius, that is, lim
k→∞

∥∥Ak∥∥1/k
= ρ(A). Since by hypothesis

ρ(A) < 1, we can guarantee the existence of a number k0 ∈ N such that
∥∥Ak0∥∥ < 1,

for all k ≥ k0. Consider now the series
∑∞

j=0A
jCω(φ−j(m)) that defines f(φ,ω,F )(m).

Given that for any j ∈ N there exist l(j) ∈ N and i ∈ {0, . . . , k0 − 1} such that

Aj = Al(j)k0+i, we then have that,

∥∥AjCω(φ−j(m))
∥∥ ≤ ∥∥∥Ak0∥∥∥l(j) ‖C‖KAKω, (4.3)

with KA = max
{

1, ‖A‖ , . . . ,
∥∥Ak0−1

∥∥} and Kω ∈ R a constant that satisfies ‖ω(m)‖ ≤
Kω for any m ∈M and is available by the boundedness hypothesis on ω(M).
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The inequality (4.3) and the Weierstrass M-test guarantee that the series
∑∞

j=0A
jCω(φ−j(m))

converges absolutely and uniformly on M and that

∥∥f(φ,ω,F )(m)
∥∥ =

∥∥∥∥∥∥
∞∑
j=0

AjCω(φ−j(m))

∥∥∥∥∥∥ ≤
∞∑
j=0

∥∥∥Ak0∥∥∥l(j) ‖C‖KAKω

= k0

∞∑
l=0

∥∥∥Ak0∥∥∥l ‖C‖KAKω =
k0 ‖C‖KAKω

1− ‖Ak0‖
.

Finally, since each of the summands in the series is a continuous function then so is

f(φ,ω,F ).

(ii) The result that we just proved guarantees that if the differentials Dif(φ,ω,F )(m), i ∈
{1, . . . , r}, exist then they are given by the series

∑∞
j=0A

jCDi
(
ω ◦ φ−j

)
(m) that, using

again the Weierstrass M-test and the hypotheses in the statement, will be now shown

to uniformly converge to a continuous map. Indeed, using again the decomposition

Aj = Al(j)ki+s in terms of the element ki ∈ N such that
∥∥Aki∥∥∥∥T iφ−ki∥∥∞ < 1 we can

conclude that each summand of this series satisfies that

∥∥AjCDi
(
ω ◦ φ−j

)
(m)

∥∥ ≤ (∥∥∥Aki∥∥∥∥∥∥T iφ−ki∥∥∥
∞

)l(j)
‖C‖Ki

AKT iφ−1

∥∥Diω
∥∥
∞ , (4.4)

with

Ki
A := max

{
1, ‖A‖ , . . . ,

∥∥∥Aki−1
∥∥∥} , and KT iφ−1 := max

{
1,
∥∥T iφ−1

∥∥
∞ , . . . ,

∥∥T iφ−1
∥∥ki−1

∞

}
,

hence

∥∥Dif(φ,ω,F )(m)
∥∥ =

∥∥∥∥∥∥
∞∑
j=0

AjCDi
(
ω ◦ φ−j

)
(m)

∥∥∥∥∥∥ ≤ ki ‖C‖Ki
AKT iφ−1

∥∥Diω
∥∥
∞

1− ‖Aki‖ ‖T iφ−ki‖∞
. (4.5)

which proves the desired convergence and thatDif(φ,ω,F )(m) =
∑∞

j=0A
jCDi

(
ω ◦ φ−j

)
(m).

Moreover,

(iii) We start by noting that if the map (4.2) is continuous then the subsets Ωimm and

Ωemb are open because by Theorems 1.1 and 1.4 in Hirsch (1976) the immersions and

the embeddings in Cr(M,RN ) are open and hence Ωimm and Ωemb are the preimages

of those open sets by the continuous map Θ(φ,F ). We establish now the continuity

of Θ(φ,F ) by showing that if the sequence {ωn}n∈N in Cr(M,R) converges to some

element ω ∈ Cr(M,R) then so does
{

Θ(φ,F )(ωn)
}
n∈N ⊂ Cr(M,RN ) with respect to
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Θ(φ,F )(ω) ∈ Cr(M,RN ). Indeed, if ωn → ω then, using the notation introduced in

(4.5), we have that for a given ε > 0 and for n sufficiently large

ki ‖C‖Ki
AKT iφ−1

1− ‖Aki‖ ‖T iφ−ki‖∞

∥∥Diωn −Diω
∥∥
∞ < ε/r.

Then,

∥∥Θ(φ,F )(ωn)−Θ(φ,F )(ω)
∥∥
Cr(M,RN )

=
r∑
i=0

∥∥Dif(φ,ωn,F ) −Dif(φ,ω,F )

∥∥
∞

=
r∑
i=0

∥∥∥∥∥∥
∞∑
j=0

AjCDi
(
(ωn − ω) ◦ φ−j

)
(m)

∥∥∥∥∥∥ ≤
r∑
i=0

ki ‖C‖Ki
AKT iφ−1

1− ‖Aki‖ ‖T iφ−ki‖∞

∥∥Diωn −Diω
∥∥
∞

<
ε

r
+ · · ·+ ε

r
= ε,

as required.

4.4.2 Immersive GS

Next we will prove that for generic observation functions ω the GS f(φ,ω,F ) is an im-

mersion.

Theorem 4.4.2. Let φ ∈ Diff2(M) be a dynamical system on a compact manifold M of

dimension q that has only finitely many periodic orbits. Let F : RN ×R→ RN be a lin-

ear state map with N ≥ 2q whose connectivity matrix satisfies that ρ(A) < 1 and such

that for any observation map ω ∈ C2(M,R) the corresponding generalized synchroniza-

tion f(φ,ω,F ) ∈ C2(M,RN ) and, moreover, the map Θ(φ,F ) : C2(M,R) → C2(M,RN )

introduced in (4.2) is continuous. Suppose also that the two following conditions hold:

(i) For each periodic orbit m of φ with period n ∈ N, the derivative Tmφ
−n has q

distinct eigenvalues λ1, λ2, . . . , λq. Let λmax be the eigenvalue with the highest

absolute value among the eigenvalues of all those linear maps and let nmin be the

smallest period. Suppose that λmaxρ(Anmin) < 1 and that for any periodic point

m, the vectors{
(I − λjAn)−1 (I −A)−1 (I −An)C

}
j∈{1,...,q}

, with λj eigenvalue of Tmφ
−n

(4.6)

form a linearly independent set.

(ii) The vectors
{
AjC

}
j∈{0,1,...,N−1} form a linearly independent set.
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Then, for generic ω ∈ C2(M,RN ) the generalized synchronization f(φ,ω,F ) ∈ C2(M,R)

is an immersion.

Proof. We proceed in two steps. In the first one we show that f(φ,ω,F ) ∈ C2(M,R) is

an immersion at periodic points and in the second one we take care of the remaining

points. We emphasize that equilibria can be seen as periodic points with period 1.

Step 1. Immersion at periodic points. We start this part with three preparatory

lemmas.

Lemma 4.4.3. Consider a connectivity matrix that satisfies the conditions ρ(A) < 1

and also that ρ(λmaxA
nmin) < 1 as in part (i) of the statement of the theorem. Then,

for any periodic point m with period n and any eigenvalue λj of Tmφ
−n, we have that

ρ(λjA
n) < 1 and

(I − λjAn)−1 =
∞∑
k=0

λkjA
nk. (4.7)

Proof. Firstly, recall that for any square matrix B such that ρ(B) < 1 then (I −B)−1 =∑∞
j=0B

j . Let now m be a periodic point with period n and let λj be an eigenvalue

of Tmφ
−n. This implies that in order for (4.7) to hold we just need to show that

ρ(λjA
n) < 1. This is indeed true since any element in the spectrum of λjA

n can

be written as λjµ
n
k with µk ∈ C an eigenvalue of A. Moreover, let c < 1 such that

|λj | = c |λmax|. Then

|λjµnk | = c
∣∣λmaxµ

nmin
k

∣∣ ∣∣µn−nmin
k

∣∣ < 1,

as required. Notice that in the last inequality we used that ρ(λmaxA
nmin) < 1 and that

ρ(A) < 1.

Lemma 4.4.4. In the hypotheses of the statement of the theorem, let m ∈ M be a

periodic point of φ ∈ Diff2(M) with period n ∈ N. Let {v1, . . . ,vp} be a basis of

eigenvectors associated to the distinct eigenvalues λ1, λ2, . . . , λq. Suppose that the set{
(I − λjAn)−1

n−1∑
k=0

AkCD(ω ◦ φ−k)(m)vj

}
j∈{1,...,q}

(4.8)

is linearly independent. Then f(φ,ω,F ) is an immersion at the periodic point m for

generic ω ∈ C2(M,RN ).
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Proof. Since the eigenvalues λj are distinct and the eigenvectors vj are hence linearly

independent, it is enough to show that the set
{
Df(φ,ω,F )(m)vj

}
j∈{1,...,q} is linearly

independent in order to conclude that Df(φ,ω,F )(m) is injective. Now, by the expression

(4.1):

Df(φ,ω,F )(m)vj =

∞∑
l=0

AlCD(ω ◦ φ−l)(m)vj

=

∞∑
l=0

n−1∑
k=0

Aln+kCD(ω ◦ φ−(ln+k))(m)vj

=
∞∑
l=0

n−1∑
k=0

Aln+kCD(ω ◦ φ−k)(m)[Tφ−n(m)]lvj

=

∞∑
l=0

n−1∑
k=0

Aln+kCD(ω ◦ φ−k)(m)λljvj

=
∞∑
l=0

(λjA
n)l

n−1∑
k=0

AkCD(ω ◦ φ−k)(m)vj

= (I − λjAn)−1
n−1∑
k=0

AkCD(ω ◦ φ−k)(m)vj ,

and so, since by assumption the set of vectors of the form of the RHS are linearly

independent, so are the vectors of the form of the LHS, which proves the statement.

Lemma 4.4.5. Let A and B two square matrices of the same size such that det(A) = 0

and det(B) 6= 0. Then, there exists ε > 0 such that

det(A− εB) 6= 0.

Proof. Consider the singular matrix B−1A and let λ0 be its non-zero eigenvalue that

has the smallest absolute value. Then, for any 0 < ε < |λ0| we necessarily have that

det
(
B−1A− εI

)
6= 0 because otherwise ε would be an eigenvalue of B−1A which is

impossible by the minimality of λ0. This implies that C := B−1A−εI is invertible and

hence so is BC = A− εB, as required.

As a corollary of this lemma we can conclude that if V := {v1, . . . ,vn} and W :=

{w1, . . . ,wn} are two sets of vectors in Rn, then there exists ε > 0 such that the set
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{v1 + εw1, . . . ,vn + εwn} is made of linearly independent vectors. This fact is used at

the end of the proof of Step 1 of Theorem 4.4.2.

We now use this result to show that, for generic ω ∈ C2(M,RN ), the generalized

synchronization f(φ,ω,F ) ∈ C2(M,R) is an immersion at the periodic points of φ. Let

m1, . . . ,mP ∈ M be the distinct periodic points of φ, having periods n1, . . . , nP ∈ N,

respectively (the equilibria of φ are included in this list with periods equal to one).

The term distinct means that none of those points are in the orbits of the others. We

now choose P disjoint open neighborhoods Bi that contain each of the distinct periodic

points mi. Since there is a finite number of periodic points, the open sets Bi can be

chosen small enough so that, additionally, all the open sets

φ−t(Bi) for all t ∈ {0, . . . , ni} and i ∈ {1, . . . , P}

are disjoint.

Now, given any of the distinct periodic points mi ∈M on the list, we show that f(φ,ω,F )

for generic ω ∈ C2(M,RN ), that is, the set of observation maps ω for which f(φ,ω,F ) is

an immersion at mi is open and dense in C2(M,RN ). The openness is a consequence

of the hypothesis on the continuity of the map Θ(φ,F ) and of an argument identical to

the beginning of the proof of part (iii) of Proposition 4.4.1. Regarding the density, we

show that if f(φ,ω,F ) is not an immersion at mi, then there is a perturbation ω′ of ω in

C2(M,R) for which f(φ,ω′,F ) is an immersion at mi. Indeed, set

ω′ = ω +

ni−1∑
l=0

ψil (4.9)

where ψil ∈ C∞(M,R) are bump functions whose supports are contained in φ−l(Bi)

and, additionally, are chosen to satisfy

D(ψil ◦ φ−l)(mi) = εv>, l ∈ {0, . . . , ni − 1},

for some small constant ε > 0 and v ∈ Rp the unique vector that solves the linear

system 
v>1
...

v>p

v =


1
...

1

 , (4.10)

with {v1, . . . ,vp} a basis of eigenvectors of Tmiφ
−ni . Note that by construction and
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for any l ∈ {0, . . . , ni − 1},

D(ω′ ◦ φ−l)(mi) = D(ω ◦ φ−l)(mi) +D(ψil ◦ φ−l) = D(ω ◦ φ−l)(mi) + εv>. (4.11)

We now consider the vectors (4.8) in Lemma 4.4.4 with respect to the perturbed ob-

servation map in (4.9). Indeed, by (4.11) and the way in which the vector v has been

constructed in (4.10):

(I − λjAni)−1
ni−1∑
k=0

AkCD(ω′ ◦ φ−k)(mi)vj

= (I − λjAni)−1
ni−1∑
k=0

AkCD(ω ◦ φ−k)(mi)vj + ε(I − λjAni)−1
ni−1∑
k=0

AkCv>vj

= (I − λjAni)−1
ni−1∑
k=0

AkCD(ω ◦ φ−k)(mi)vj + ε(I − λjAni)−1(I −A)−1(I −Ani)C.

Given that when we vary j ∈ {1, . . . , p} in the previous expression the vectors in the sec-

ond summand form by hypothesis a linearly independent set, we can use Lemma 4.4.5 to

choose ε > 0 so that the family
{

(I − λjAni)−1
∑ni−1

k=0 AkCD(ω′ ◦ φ−k)(mi)vj

}
j∈{1,...,p}

forms a linearly independent set and, at the same time, ω′ is as close to ω in C2(M,R)

as desired. This shows by Lemma 4.4.4 that f(φ,ω′,F ) is an immersion at mi.

The choice of the open sets Bi implies that we can keep perturbing ω in order to make

f(φ,ω′,F ) immersive at the other periodic points without spoiling that condition for the

previous ones. This shows in particular that a perturbation of the type

ω′ = ω +
P∑
i=1

ni−1∑
l=0

ψil (4.12)

can be constructed so that f(φ,ω′,F ) is immersive at all the periodic points of φ, as

required.

Before we continue, we will state the Immersion Theorem, which will be used several

times in the proofs that follow.

Theorem 4.4.6. (Abraham et al. 1988, Immersion Theorem, Theorem 3.5.7) Let

M,M ′ be smooth manifolds, and f ∈ Cr(M,M ′) for r ≥ 1. Then the following are

equivalent:

• f is an immersion at m ∈M ;

83



• there is a neighbourhood U of m such that f(U) is a submanifold of M ′ and f

restricted to U is a diffeomorphism of U onto f(U).

Step 2. Immersion at the remaining points. Having just proved that for generic

ω ∈ C2(M,RN ) the generalized synchronization f(φ,ω,F ) ∈ C2(M,R) is an immersion

at the periodic points of φ, the Immersion Theorem (Theorem 4.4.6) guarantees that

the same holds for the open set formed by the union of certain open neighborhoods

around those points.

Now we letM⊂M be the compact subset of M obtained by removing that immersed

open set. Our goal is now to show that f(φ,ω,F ) ∈ C2(M,R) is also an immersion atM
for generic ω ∈ C2(M,RN ).

The hypotheses that we imposed on M in Chapter 3 imply that M can be endowed

with a Riemannian metric which makes M a complete metric space by the Hopf and

Rinow Theorem (see (Boothby 2003, Theorem 7.7)). This implies in turn that the

compact subsetM⊂M is also a complete metric space which allows us to define open

balls Br(m) of radius r > 0 around each point m ∈M. Using this notation, in the next

paragraphs we show that for any ω ∈ C2(M,RN ) and m ∈M we can find a n(m) ∈ N
and a perturbation ω′ ∈ C2(M,RN ) as close to ω as desired such that the restriction

of f(φ,ω′,F ) to B2−n(m)(m) is an immersion.

Indeed, take an arbitrary m ∈M and define a collection of balls B2−n(m) centered at

m with radius 2−n, n ∈ N. For a fixed n consider the infinite trajectory φ−t(B2−n(m)),

t ∈ N. Choose now n1 ∈ N large enough so that, for any n > n1 the balls φ−t(B2−n(m))

are disjoint for t = 0, . . . , N − 1 and B2−n(m) ⊂ U where (U, h) is an admissible chart

of M . Given that φ ∈ Diff2(M), we note that the family (Ut, ht), t ∈ N, defined by

Ut = φ−t(U) and ht := h◦φt is made of admissible charts and that φ−t(B2−n(m)) ⊂ Ut,
for all n > n1. Let T (n) denote the largest integer such that φ−t(B2−n(m)) are disjoint

for t = 0, . . . , T (n)− 1.

Now, for each n > n1 and t = 0, . . . , N − 1 we define functions ψtn ∈ C∞(M,R) that

have their support included in φ−t(B2−n(m)) and satisfy

∂(ψtnh
−1
t )

∂uj
= 1 (4.13)

on ht
(
φ−t(B2−(n+1)(m))

)
= h (B2−(n+1)(m)). We impose further that ψtn = ψt(n+1) on

φ−t(B2−(n+2)(m)) for all n > n1, and that there is some κ > 0 independent of n and t
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such that ‖ψtnh−1
t ‖C1 ≤ κ. These functions can be constructed by setting

ψtn(m) = λtn(m)

q∑
j=1

ξj(m)

where ξj is the j-th coordinate map for the chart ht and λtn ∈ C∞(M,R) are bump

functions that have support included in φ−t(B2−n(m)) and satisfy λtn|φ−t(B
2−(n+1) (m)) =

1. Define now the perturbation ωn of ω by

ωn = ω +

N−1∑
t=0

εtψtn, (4.14)

where εt are the components of a vector ε ∈ RN with positive entries. By construction,

for any m′ ∈ B2−n(m) and t = 0, . . . , N − 1, we have that

ωnφ
−t(m′) = ωφ−t(m′) + εtψtn(m′)

and moreover by (4.13) and for any m′ ∈ B2−(n+1)(m):

∂(ωnφ
−th−1)

∂uj
(h(m′)) =

∂(ωφ−th−1)

∂uj
(h(m′)) + εt. (4.15)

Let Φ : M → RN be a backwards version of the Takens delay map, that is,

Φ(m) :=
(
ω(m), ω ◦ φ−1(m), . . . , ω ◦ φ−(N−1)(m)

)>
,

and let Φn : M → RN be its perturbed version defined by

Φn(m) :=
(
ωn(m), ωn ◦ φ−1(m), . . . , ωn ◦ φ−(N−1)(m)

)>
.

Using these objects, we can rewrite (4.15) in vector form as

∂(Φnh
−1)

∂uj
(h(m′)) =

∂(Φh−1)

∂uj
(h(m′)) + ε, (4.16)

for any m′ ∈ B2−(n+1)(m) and where ε ∈ RN . Next, for any t = N, . . . , T (n)− 1 notice

that

ωnφ
−t(m) = ωφ−t(m). (4.17)
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Finally, if t ≥ T (n) then

ωnφ
−t(m) = ωφ−t(m) +

N−1∑
τ=0

ετψτnφ
−t(m). (4.18)

We now consider the perturbed generalized synchronization f(φ,ωn,F ) : M → RN given

by

f(φ,ωn,F ) =
∞∑
t=0

AtCωnφ
−t =

N−1∑
t=0

AtCωnφ
−t +

∞∑
t=N

AtCωnφ
−t = QΦn +

∞∑
t=N

AtCωnφ
−t

where Q is the N ×N real matrix with (t+1)-th column AtC. Now we take the partial

derivatives with respect to uj at points in h(B2−(n+1)(m)) and observe that by (4.16),
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(4.17), and (4.18):

∂(f(φ,ωn,F )h
−1)

∂uj

= Q
∂(Φnh

−1)

∂uj
+
∞∑
t=N

AtC
∂(ωnφ

−th−1)

∂uj

= Q
∂(Φh−1)

∂uj
+Qε+

∞∑
t=N

AtC
∂(ωnφ

−th−1)

∂uj

= Q
∂(Φh−1)

∂uj
+Qε+

T (n)−1∑
t=N

AtC
∂(ωnφ

−th−1)

∂uj
+

∞∑
t=T (n)

AtC
∂(ωnφ

−th−1)

∂uj

= Q
∂(Φh−1)

∂uj
+Qε+

T (n)−1∑
t=N

AtC
∂(ωφ−th−1)

∂uj
+

∞∑
t=T (n)

AtC
∂(ωnφ

−th−1)

∂uj

= Q
∂(Φh−1)

∂uj
+Qε+

T (n)−1∑
t=N

AtC
∂(ωφ−th−1)

∂uj
+

∞∑
t=T (n)

AtC
∂(ωφ−th−1)

∂uj

+

∞∑
t=T (n)

AtC

(N−1∑
τ=0

ετ
∂(ψτnφ

−th−1)

∂uj

)

= Q
∂(Φh−1)

∂uj
+Qε+

∞∑
t=N

AtC
∂(ωφ−th−1)

∂uj
+

∞∑
t=T (n)

AtC

(N−1∑
τ=0

ετ
∂(ψτnφ

−th−1)

∂uj

)

=
N−1∑
t=0

AtC
∂(ωφ−th−1)

∂uj
+Qε+

∞∑
t=N

AtC
∂(ωφ−th−1)

∂uj
+

∞∑
t=T (n)

AtC

(N−1∑
τ=0

ετ
∂(ψτnφ

−th−1)

∂uj

)

=
∞∑
t=0

AtC
∂(ωφ−th−1)

∂uj
+Qε+

∞∑
t=T (n)

AtC

(N−1∑
τ=0

ετ
∂(ψτnφ

−th−1)

∂uj

)

=
∂(f(φ,ω,F )h

−1)

∂uj
+Qε+

∞∑
t=T (n)

AtC

(N−1∑
τ=0

ετ
∂(ψτnφ

−th−1)

∂uj

)
. (4.19)

In order to prove that f(φ,ω,F ) is an immersion at the points in h(B2−(n+1)(m)) for a

generic observation ω, we shall find an arbitrarily small vector ε for which the vectors

corresponding to the ε-perturbed observation ωn{
∂
(
f(φ,ωn,F )h

−1
)

∂uj

}
j∈{1,...,q}

are a linearly independent family. We will proceed inductively by showing that if we
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assume for some s satisfying 1 ≤ s < q that the vectors{
∂
(
f(φ,ω,F )h

−1
)

∂uj

}
j∈{1,...,s}

(4.20)

are linearly independent, then we can choose an arbitrarily small vector ε such that the

family corresponding to the perturbed observation ωn defined in (4.14) satisfies that{
∂
(
f(φ,ωn,F )h

−1
)

∂uj

}
j∈{1,...,s+1}

is a linearly independent family. To this end, we define the map Ψ : Rs × h(U)→ RN

as

Ψ(α,u) =

s∑
j=1

αj
∂
(
f(φ,ω,F )h

−1
)

∂uj
−
∂
(
f(φ,ω,F )h

−1
)

∂us+1
.

The hypothesis on the statement of the theorem about f(φ,ω,F ) ∈ C2(M,RN ) for any

observation map ω ∈ C2(M,R) implies that Ψ is of class C1 and maps a manifold of

dimension s+q to a manifold of dimension N . Since by hypothesis s+q < 2q ≤ N , then

the set RN \Ψ(Rs×h(U)) is dense in RN (see (Hirsch 1976, Chapter 3, Proposition 1.2)).

This implies that we can choose an arbitrarily small vector δ ∈
(
RN \Ψ(Rs × h(U))

)
such that if we set ε := Q−1δ then we have that the vector

∂(f(φ,ω,F )h
−1)

∂us+1
+Qε

is independent of the vectors in (4.20) when evaluated at any point in h(U). Since the

linear independence is stable under small perturbations we can choose ε small enough

so that it is actually the family{
∂
(
f(φ,ω,F )h

−1
)

∂uj
+Qε

}
j∈{1,...,s+1}

that is linearly independent. Now, in view of the identity (4.19) we note that the value

n ∈ N can be chosen large enough so that the residual terms

∞∑
t=T (n)

AtC

(N−1∑
τ=0

ετ
∂(ψτnφ

−th−1)

∂uj

)
, j ∈ {1, . . . , s+ 1},
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are small enough so that the family∂
(
f(φ,ω,F )h

−1
)

∂uj
+Qε+

∞∑
t=T (n)

AtC

(N−1∑
τ=0

ετ
∂(ψτnφ

−th−1)

∂uj

)
j∈{1,...,s+1}

=

{
∂
(
f(φ,ωn,F )h

−1
)

∂uj

}
j∈{1,...,s+1}

is linearly independent, as required. Notice that this equality is a consequence of (4.19).

The possibility to shrink the residual term comes from the convergence of the series

∞∑
t=0

AtC

(N−1∑
τ=0

ετ
∂(ψτnφ

−th−1)

∂uj

)
, j ∈ {1, . . . , s+ 1},

which is guaranteed by the hypothesis on the differentiability of f(φ,ω,F ) for any obser-

vation map ω ∈ C2(M,R) and the expression (4.1). In this case the bump functions

play the role of the observations for which we assumed the existence of a uniform bound

κ over τ and n such that ‖ψτn‖C1 < κ.

If we recursively apply this procedure, we can conclude the existence of a small per-

turbation ωn of ω obtained as a sequence of perturbations of the type (4.14) for which

the family {
∂
(
f(φ,ωn,F )h

−1
)

∂uj

}
j∈{1,...,q}

is linearly independent when evaluated at m ∈ M, which proves that f(φ,ωn,F ) ∈
C2(M,RN ) is an immersion at m ∈M.

Finally, observe that we just showed that for any m ∈ M, there exists an n(m) ∈ N
such that the restriction of the perturbation f(φ,ωn(m),F ) to B2−n(m)(m) is an immersion.

We note that the union ⋃
m∈M

B2−n(m)

is clearly an open cover of M. Since M is compact, it admits a finite subcover. The

finite subcover comprises sets for which, one at a time, we can construct an immersion

using the procedure described earlier in this proof. For each set, we ensure that the

perturbation is sufficiently small not to spoil the immersion on any other set.

This argument completes the proof of the immersion of the GS at the points of M

89



and therefore, together with the Step 1, shows that there exists a small perturbation

of f(φ,ωn,F ) ∈ C2(M,RN ) of f(φ,ω,F ) that is an immersion at all the points in M , as

required.

4.4.3 Embedding GS

Now that we have established immersivity, we can complete the proof of Theorem 4.2.1

by establishing injectivity.

Proof. As in the previous theorem, we proceed in two steps.

Step 1. Injectivity around the periodic set. We start by showing that the ob-

servations corresponding to the globally immersive generalized synchronizations whose

existence we proved in Theorem 4.4.2 can be slightly perturbed in C2(M,R) so that

the resulting GS is injective in an open subset VP that includes all the periodic points

of φ. We start this part of the discussion with a preparatory lemma.

Lemma 4.4.7. In the hypotheses of the theorem, let m1, . . . ,mP ∈ M be the distinct

periodic points of φ, each of which have periods n1, . . . , nP ∈ N, respectively. Let ` ∈ N
be the lowest common multiple of all the periods and denote by MP the set of all periodic

points of φ (that is, the set that comprises {m1, . . . ,mP } and all the corresponding

orbits). Then, the restriction f(φ,ω,F )

∣∣
MP

of a generalized synchronization f(φ,ω,F ) ∈
C2(M,RN ) to MP is injective if and only if the map g(φ,ω,F ) : MP → RN defined by

g(φ,ω,F ) =
`−1∑
k=0

AkC
(
ω ◦ φ−k

)
is injective.

Proof. Let m1,m2 ∈ MP be such that f(φ,ω,F )(m1) = f(φ,ω,F )(m2). This equality is

equivalent to the following expressions:

∞∑
t=0

AtCωφ−t(m1) =

∞∑
t=0

AtCωφ−t(m2),

∞∑
t=0

`−1∑
k=0

At`+kCωφ−(t`+k)(m1) =
∞∑
t=0

`−1∑
k=0

At`+kCωφ−(t`+k)(m2),

∞∑
t=0

(A`)t
`−1∑
k=0

AkCωφ−k(m1) =

∞∑
t=0

(A`)t
`−1∑
k=0

AkCωφ−k(m2).
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Given that ρ(A) < 1 then ρ(A`) < 1 necessarily and hence this equality can be rewritten

as

(I −A`)−1
`−1∑
k=0

AkCωφ−k(m1) = (I −A`)−1
`−1∑
k=0

AkCωφ−k(m2),

which is equivalent to
∑`−1

k=0A
kCωφ−k(m1) =

∑`−1
k=0A

kCωφ−k(m2) and hence, by def-

inition, to g(φ,ω,F )(m1) = g(φ,ω,F )(m2), which proves the statement.

If we now define Φ(`,ω) : M → Rl as

Φ(`,ω)(m) :=
(
ω(m), ω ◦ φ−1(m), . . . , ω ◦ φ−(`−1)(m)

)>
,

we note that the map g(φ,ω,F ) can be rewritten as g(φ,ω,F ) = QΦ(`,ω), where Q ∈ MN,`

is a matrix whose (k + 1)th-column is set to the vector AkC. The hypotheses on

the vectors
{
AjC

}
j∈{0,1,...,N−1} forming a linearly independent set and that N > `

guarantee that rankQ = N and hence that the associated linear map Q : R` → RN is

injective. With this notation we now show that if g(φ,ω,F ) is not injective in MP then a

perturbation ω′ ∈ C2(M,RN ) of ω can be chosen so that g(φ,ω′,F ) is. More specifically,

define

ω′ := ω +
P∑
i=1

ni∑
j=1

εijΨij , (4.21)

where Ψij are bump functions with non-intersecting supports Uij such that mij :=

φ−(j−1)(mi) ∈ Uij and, moreover, Ψij

(
φ−(j−1)(mi)

)
= Ψij(mij) = 1/L(i, j). The

symbol L(i, j) ∈ N denotes the ordinal of the pair (i, j) in lexicographic order.

We now show that the constants εij can be chosen so that ω′ is as close as we want

to ω and, at the same time, g(φ,ω′,F ) is injective. Firstly, it is easy to see that, by

construction,

Φ(`,ω′)(m) := Φ(`,ω)(m) +

P∑
i=1

ni∑
j=1

εij

(
Ψij(m),Ψij ◦ φ−1(m), . . . ,Ψij ◦ φ−(`−1)(m)

)>
.

Second, if mi1j1 and mi2j2 are two different periodic points then

g(φ,ω′,F )(mi1j1)−g(φ,ω′,F )(mi2j2) = g(φ,ω,F )(mi1j1)−g(φ,ω,F )(mi2j2)+Q (εi1j1vi1j1 − εi2j2vi2j2) ,

(4.22)

where the vectors vi1j1 ∈ RCardMP have entries equal to zero except at the slots that

are multiples of the period of the corresponding periodic point. More specifically, if the
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periodic point mij has period nij , then

(vij)i :=

{
1/L(i, j) when i = 1 or i− 1 is a multiple of nij ,

0 otherwise.
(4.23)

Using the injectivity of Q and Lemma 4.4.7, we now show that we can choose the

perturbation constants εij so that the restriction of g(φ,ω′,F ) to MP is injective. Let

εij := ε‖g(φ,ω,F )(mij)‖, for some constant ε > 0. (4.24)

We now show that if ε > 0 is chosen so that

ε max
(i1,j1),(i2,j2)

{∥∥Q (∥∥g(φ,ω,F )(mi1j1)

∥∥vi1j1 −
∥∥g(φ,ω,F )(mi2j2)

∥∥vi2j2
)∥∥}

< min
(i1,j1),(i2,j2)

{∥∥g(φ,ω,F )(mi1j1)− g(φ,ω,F )(mi2j2)
∥∥} (4.25)

then the injectivity of g(φ,ω′,F ) |MP
is guaranteed. Indeed, consider first the case of two

distinct periodic points mi1j1 and mi2j2 for which g(φ,ω,F ) fails to be injective, that is,

g(φ,ω,F )(mi1j1) = g(φ,ω,F )(mi2j2). In that case, by (4.22) and (4.24) we have that

g(φ,ω′,F )(mi1j1)− g(φ,ω′,F )(mi2j2) = ε
∥∥g(φ,ω,F )(mi1j1)

∥∥Q (vi1j1 − vi2j2) . (4.26)

Given that vi1j1 − vi2j2 6= 0 (notice, for instance, that (vi1j1 − vi2j2)1 = 1/L(i1, j1) −
1/L(i2, j2) 6= 0) andQ is injective thenQ (vi1j1 − vi2j2) 6= 0 and hence g(φ,ω′,F )(mi1j1) 6=
g(φ,ω′,F )(mi2j2) necessarily by (4.26). In the case g(φ,ω,F )(mi1j1) 6= g(φ,ω,F )(mi2j2) the

same conclusion can be drawn because the choice of ε > 0 in (4.25) guarantees that

‖Q (εi1j1vi1j1 − εi2j2vi2j2)‖ <
∥∥g(φ,ω,F )(mi1j1)− g(φ,ω,F )(mi2j2)

∥∥
which by (4.22) ensures that, again, g(φ,ω′,F )(mi1j1) 6= g(φ,ω′,F )(mi2j2), as required.

We now show that if f(φ,ω,F )

∣∣
MP

is injective then there exists an open set VP such that

MP ⊂ VP and f(φ,ω,F )

∣∣
VP

is also injective. By the Immersion Theorem, we know that

there exists n ∈ N such that the balls B2−n(mij) do not intersect and that the restriction

of f(φ,ω,F ) to each of them is a collection of injective maps. It could still be, however,

that the images of different balls intersect. The continuity of f(φ,ω,F ) and the fact that

f(φ,ω,F )

∣∣
MP

is injective implies that n can be chosen sufficiently large so that this does

not happen. Indeed, if this was not the case for the balls around the periodic points, say,

mi1j1 and mi2j2 , then it would be possible to construct two sequences {mi1j1,l}l∈N and

{mi2j2,l}l∈N with limits mi1j1 and mi2j2 for which f(φ,ω,F )(mi1j1,l) = f(φ,ω,F )(mi2j2,l)
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for each l ∈ N. By continuity this implies that f(φ,ω,F )(mi1j1) = f(φ,ω,F )(mi2j2) which

is in contradiction with the injectivity of f(φ,ω,F )

∣∣
MP

and hence proves the injectivity

of f(φ,ω,F ) restricted to VP =
⋃
ij B2−n(mij), with n chosen so that the properties of

the corresponding balls designed above are satisfied. Notice that by doubling n, if

necessary, it is also easy to ensure the injectivity of f(φ,ω,F )

∣∣
VP

.

Step 2: Global injectivity. This final step is quite involved and appeals to several

results in differential topology. We will state the results here:

Lemma 4.4.8. If M is a compact differentiable manifold endowed with a metric d and

f : M → RN is an immersion, then there exists a constant r > 0 such that for any

m ∈M the restriction f |Br(m) of f to the open ball Br(m) ⊂M of radius r and center

m is injective.

Proof. The Immersion Theorem ((Abraham et al. 1988, Theorem 3.5.7)) implies that

each m ∈ M has an open neighborhood Um ⊂ M such that f |Um is injective. The

collection of sets {Um}m∈M forms an open cover of M . Then, by Lebesgue’s number

lemma (Munkres 2014, Lemma 27.5), there exists a δ > 0 such that every set of

diameter δ is contained in some set in the family {Um}m∈M . The lemma is proved by

choosing r = δ/2.

Definition 4.4.9. (Abraham et al. 1988, Regular Value, Definition 3.5.3) Suppose M

and M are smooth manifolds and f ∈ Cr(M,M ′) for r ≥ 1. A point m′ ∈M ′ is called

a regular value of f if for each m ∈ f−1{m′}, the tangent map Tmf is surjective with

split kernel.

Theorem 4.4.10. (Abraham et al. 1988, Submersion Theorem, Theorem 3.5.4) Let

M,M ′ be smooth manifolds and f ∈ C∞(M,M ′). Let m′ be a regular value. Then the

level set

f−1(m′) = {m ∈M | f(m) = m′}

is a closed submanifold of M .

Theorem 4.4.11. (Hirsch 1976, Chapter 3, Proposition 1.2) Let M,M ′ be smooth

manifolds with dim(M) < dim(M ′). If f ∈ C1(M,M ′) then M ′\f(M) is dense in M ′.
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We are now ready to prove global injectivity, and complete the proof. Since M is

compact and f(φ,ω,F ) : M → RN is an immersion, Lemma 4.4.8 implies the existence

of a constant r > 0 such that for any m ∈M the restriction f(φ,ω,F )|Br(m) of f(φ,ω,F ) to

the open ball Br(m) is injective. We now define the set W ⊂M ×M as follows using

the open set VP whose existence we proved in Step 1.

W := {(m1,m2) ∈ (M ×M) \ (VP × VP ) | d(m1,m2) ≥ r}.

The set W comprises pairs (m1,m2) ∈M whose entries satisfy one of two conditions:

1. Neither m1 nor m2 are in VP .

2. One of m1 and m2 is in VP and the other is not.

In view of this, the injectivity of f(φ,ω,F )|VP proved in the Step 1 together with Lemma

4.4.8 imply that if we show that f(φ,ω,F )(m1) 6= f(φ,ω,F )(m2) for all (m1,m2) ∈W then

f(φ,ω,F ) is globally injective and the proof is concluded.

We start the proof of this fact by first defining, for each m ∈M , a collection of nested

balls {B2−n(m) | n ∈ N} centered at m with radius 2−n. Let (m1,m2) ∈ W , and

assume from now on without loss of generality that m1 ∈ W \ Vp. Let T (n,m1,m2)

denote the largest integer such that the following two properties hold. Firstly, the sets

{B2−n(φ−t(m1))}t=0,...,T (n,m1,m2)−1

are disjoint and secondly

B2−n(φ−t(m1)) ∩B2−n(φ−s(m2)) = ∅ for all t, s ∈ {0, . . . , T (n,m1,m2)− 1}.

Notice now that by the continuity of φ, for each n ∈ N and pair (m1,m2) ∈ W there

is an open neighbourhood U(m1,m2) ⊂ M ×M of (m1,m2) such that T (n,m′1,m
′
2) =

T (n,m′′1,m
′′
2) for all (m′1,m

′
2), (m′′1,m

′′
2) ∈ U(m1,m2). The collection {U(m1,m2) | (m1,m2) ∈

W} covers W and since it is a compact set we can extract a finite subcover {Ua | a ∈ A},
where A is a finite set. Then we can choose one pair (ma

1,m
a
2) ∈ Ua for each a ∈ A and

notice that

min
(m1,m2)∈W

{T (n,m1,m2)} = min
{(ma1 ,ma2) | a∈A}

{T (n,ma
1,m

a
2)}.

The importance of this equality is that, since A is a finite set, the minimum on the

right hand side is realized by a pair (m∗1,m
∗
2) ∈ W . Let T (n) = T (n,m∗1,m

∗
2) =
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min(m1,m2)∈W T (n,m1,m2). Observe that as n→∞ the families {B2−n(φ−t(m∗1))}t∈N
and {B2−n(φ−t(m∗2))}t∈N converge to {φ−t(m∗1)}t∈N and {φ−t(m∗2)}t∈N respectively.

The point m∗1 is not periodic so the infinite orbit {φ−t(m∗1)}t∈N of singletons is dis-

joint, and furthermore does not intersect any point in {φ−t(m∗2)}t∈N. This allows us to

conclude that T (n)→∞ as n→∞.

The fact that we just proved guarantees the existence of a ν ∈ N such that T (ν) = N .

Thus for all pairs (m1,m2) ∈W , the collection

{B2−ν (φ−t(m1))}t=0,...,N−1

is disjoint and

B2−n(φ−t(m1)) ∩B2−n(φ−s(m2)) = ∅ for all t, s ∈ {0, . . . , N − 1}.

Now for any n > ν the collection

Cn = {B2−(n+1)(m) | m ∈M}

forms on open cover of M from which we can extract a finite subcover {Bi | i ∈ Jn} for

J a finite set with cardinality `(n) ∈ N. Now define a partition of unity {λi | i ∈ Jn}
subordinate to {Bi | i ∈ Jn}. We impose on this partition of unity the special property

that for each m ∈M there exists an i ∈ Jn such that λi(m) ≥ 1/2. Now we define the

perturbed observation function

ωn = ω +

`(n)∑
i=1

εiλi

where εi ∈ R is the ith component of a vector ε ∈ R`(n) with positive entries. Then we

define Ψn : M ×M × R`(n) → RN by

Ψn(m1,m2, ε) = f(φ,ωn,F )(m1)− f(φ,ωn,F )(m2). (4.27)

Let ∆ = {(m,m) ∈ M ×M | m ∈ M} be the diagonal set. Given an arbitrary open

neighborhood N ⊂ C1(M,R) of the observation function ω ∈ C2(M,R) our goal is to

find ε ∈ R`(n) such that ωn ∈ N and that for all (m1,m2) ∈ (M ×M) \∆ we have that

Ψn(m1,m2, ε) 6= 0.

First of all, we observe that for any pair (m1,m2) ∈ (M ×M)\W either d(m1,m2) < r

or both m1,m2 ∈ VP . In the former case, Ψn(m1,m2,0) 6= 0 unless (m1,m2) ∈ ∆
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by Lemma 4.4.8, and in the latter case, Ψn(m1,m2,0) 6= 0 unless (m1,m2) ∈ ∆

because f(φ,ω,F )|VP is injective by the Step 1. Now Ψn is continuous so there is an open

neighbourhood U0 ⊂ R`(n) of 0 ∈ R`(n) such that for all ε ∈ U0 we have Ψn(m1,m2, ε) 6=
0 for all (m1,m2) ∈ (M ×M) \W unless (m1,m2) ∈ ∆. So all that remains is to find

ε ∈ U0 ⊂ R`(n) such that Ψn(m1,m2, ε) 6= 0 for all (m1,m2) ∈W .

We start by noting that if 0 ∈ RN is not in the image of Ψn|W×{0} then we are done

so we shall assume the opposite. In that case we proceed by showing that Ψn|W×{0}
is a submersion. If that is the case, then for some open set X ⊂ (M ×M × R`(n))

containing W × {0} then the restriction Ψn|X is also a submersion. Then by the

Submersion Theorem 4.4.10 the inverse image Ψn|−1
X (0) is a closed submanifold of

dimension 2q + `(n)−N of the open submanifold X ⊂M ×M × R`.

Moreover if π : M×M×R`(n) → R`(n) is the canonical projection defined by π(m1,m2, ε) :=

ε, in these circumstances the complement R`(n) \ π
(
Ψn|−1

X (0)
)

is a dense subset of

R`(n). Indeed, since π is a continuously differentiable map, then so is its restriction

π|Ψn|−1
X (0)×R` : Ψn|−1

X (0) → R` which by Theorem 4.4.11 guarantees the density of

R`(n) \ π
(
Ψn|−1

X (0)
)
. This implies that we can choose ε ∈

(
R`(n) \ π

(
Ψn|−1

X (0)
))

as

small as we want so that ε ∈ U0 and ωn ∈ N . We fix this ε and see that for any

(m1,m2) ∈W the map Ψn(m1,m2, ε) 6= 0, as required. Consequently, all that remains

to be done is to find n sufficiently large so that Ψn|W×{0} is a submersion, and then

the proof will be complete.

We start by observing that by (4.27)

ωn ◦ φ−t = ω ◦ φ−t +

`(n)∑
i=1

εiλi ◦ φ−t

hence
∂(ωn ◦ φ−t)

∂εj
= λj ◦ φ−t.

Now we consider an arbitrary (m1,m2) ∈ W assuming once again without loss of

generality that m1 ∈ M \ Vp. For each point in the orbit {φ−t(m1)}t=0,...,T (n)−1 there

exists a j(t) ∈ Jn such that λj(t)
(
φ−t(m1)

)
≥ 1/2 by the special property that we

imposed earlier on the partition of unity {λi | i ∈ Jn}. Now the support of λj(t) is a ball

Bj(t) of radius 2−(n+1) which contains φ−t(m1). Hence the ball Bj(t) ⊂ B2−n(φ−t(m1)).

Now since the sets in the family {B2−n(φ−t(m1))}t=0,...,T (n)−1 are disjoint then so are

{Bj(t)}t=0,...,T (n)−1. Furthermore, since B2−n(φ−t(m1)) ∩ B2−n(φ−s(m2)) = ∅ for all
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t, s ∈ {0, . . . , T (n)− 1} hence λj(t)(φ
−t(m2)) = 0 for t ∈ {0, . . . , T (n)− 1}. Thus

∂(ωn ◦ φ−t)
∂εj(t)

(m2) = 0.

Now,

Ψn(m1,m2, ε) =

T (n)−1∑
t=0

AtC(ωn(φ−t(m1))− ωn(φ−t(m2)))

+
∞∑

t=T (n)

AtC(ωn(φ−t(m1))− ωn(φ−t(m2)))

hence for t = 0, . . . , T (n)− 1

∂Ψn

∂εj(t)
(m1,m2, ε) = AtC(λj(t)(φ

−t(m1)))

+

∞∑
t=T (n)

AtC(λj(t)(φ
−t(m1))− λj(t)(φ−t(m2))).

By assumption {AtC}t=0,...,N−1 are linearly independent, hence the vectors

{AtC(λj(t)(φ
−t(m1)))}t∈{0,...,T (n)−1}

necessarily span RN because since n > ν then T (n) ≥ N . Crucially, for any n the

property λj(t)(φ
−t(m1)) ≥ 1/2 holds and therefore, the residual term

∞∑
t=T (n)

AtC(λj(t)φ
−t(m1)− λj(t)φ−t(m2))

may only spoil the spanning property of the vectors {AtC(λj(t)φ
−t(m1))}t=0,...,N−1 if

it is sufficiently large. Since by hypothesis ρ(A) < 1, the residual term converges uni-

formly over (m1,m2) ∈W to 0 as n grows. We choose consequently n large enough so

that for all (m1,m2) ∈W the residual term is too small to spoil the spanning property

of {AtC(λj(t)φ
−t(m1))}t∈{0,...,N−1}. With this choice of n we have that Ψn|W×{0} is a

submersion and the proof is complete.

4.4.4 An embedding almost surely

In this subsection we will prove Theorem 4.2.4.
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Proof. First we will establish two lemmas about random matrices.

Lemma 4.4.12. Let X1, . . . , Xn be independent real-valued non-singular random vari-

ables and let p be a non-constant polynomial in n complex variables. Then

P (p(X1, . . . , Xn) = 0) = 0.

Proof. Define µj(·) := P(Xj ∈ ·), j = 1, . . . , n, and let Z = {x ∈ Cn | p(x) = 0} be

the set of complex roots of the polynomial p. Then, since X1, . . . , Xn are independent

we have that

P (p(X1, . . . , Xn) = 0) = P ((X1, . . . , Xn) ∈ Z) = (µ1 . . . µn)(Z).

We now proceed by induction over n. For n = 1 we have that P (p(X1) = 0) = µ1(Z) =

0 since Z is finite and X1 is non-singular. Let the claim be true for n − 1. For fixed

x1 ∈ C set px1(x2, . . . , xn) := p(x1, . . . , xn) and let

Zx1 := {(x2, . . . , xn) ∈ Cn−1 | px1(x2, . . . , xn) = 0}.

The set F := {x1 ∈ R | px1 ≡ 0} is a finite set, so

P (p(X1, . . . , Xn) = 0) =

∫
C

(µ2 . . . µn)(Zx1)dµ1(x1) =

∫
C−F

(µ2 . . . µn)(Zx1)dµ1(x1) = 0,

since we assumed that X1 is non-singular and (µ2, . . . , µn)(Zx1) = 0 for x1 /∈ F by the

induction hypothesis.

Lemma 4.4.13. Let N ∈ RN , let A be a real N ×N matrix, and let C be a random

vector in RN . Assume the entries of A and C have been drawn using independent

non-singular real valued random variables. Moreover, let p1, . . . , pn ∈ C[x] be linearly

independent polynomials in one variable of degree at most n− 1. Then

P(det (p1(A)C, p2(A)C, · · · , pn(A)C) = 0) = 0.

Equivalently, the vectors p1(A)C, p2(A)C, . . . , pn(A)C are linearly independent almost

surely.

Proof. The expression det (p1(A)C, · · · , pn(A)C) is a polynomial p in the n2 + n vari-
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ables aij and bj , i, j ∈ {1, . . . , n} that constitute the entries of A and C, respectively,

and which in turn are by hypothesis non-singular random variables. As long as the

polynomial p is not identically zero, the result follows directly from the Lemma 4.4.12.

So all that remains is to show that p is not identically zero, that is, that there exist

particular choices of A and C such that det (p1(A)C, · · · , pn(A)C) is non-zero. So, we

choose C = (1, . . . , 1)> and A = diag(a1, . . . , an) with distinct real numbers a1, . . . , an.

We expand the polynomials pj in terms of their coefficients γj1, . . . , γjn so

pj(x) =

n−1∑
k=0

γjkx
k.

The vectors γj = (γj1, . . . , γjn)>, j ∈ {1, . . . , n}, are by hypothesis linearly indepen-

dent. We now show that with these choices, the vectors p1(A)C, p2(A)C, . . . , pn(A)C

are linearly independent and hence det (p1(A)C, p2(A)C, · · · , pn(A)C) 6= 0, as required.

Indeed, let c1, . . . , cn ∈ R and suppose that
∑n

j=1 cjpj(A)C = 0. Additionally, we can

write

n∑
j=1

cjpj(A)C =

n∑
j=1

cj

n−1∑
k=0

γkjA
kC =

n−1∑
k=0

( n∑
j=1

cjγjk

)
ak1
ak2
...

akn

 = V x

where

V =


1 a1 a2

1 . . . an−1
1

1 a2 a2
2 . . . an−1

2
...

...
...

. . .
...

1 an a2
n . . . an−1

n

 and x =
n∑
j=1

cjγj .

Since the diagonal entries of A are all different and the determinant of the Vandermonde

matrix V is given by

det(V ) =
∏

1≤i<j≤n
(ai − aj)

we can conclude that V is invertible and hence the identity
∑n

j=1 cjpj(A)C = V x = 0

implies that x = 0. By the linear independence of the vectors γ1, . . . , γn we have that

c1, . . . , cn = 0 necessarily. It follows that the vectors p1(A)C, p2(A)C, . . . , pn(A)C are

linearly independent, as required.

Now we may complete the proof of Theorem 4.2.4. The vectors C,AC,A2C, . . . , AN−1C
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are linearly independent if and only if

det
(
C,AC,A2C, · · · , AN−1C

)
= 0

which, in the notation of Lemma 4.4.13, can be written as

det (p0(A)C, p1(A)C, p2(A)C, . . . , pN−1(A)C) = 0

using the linearly independent polynomials pj(A) := Aj , j ∈ {0, . . . , N − 1}. Part (i)

of the statement hence follows directly from Lemma 4.4.13. Now we turn our attention

to part (ii). First of all, λj is an eigenvalue of A if and only if λj is a root of the

characteristic polynomial of A. This event has probability 0 by Lemma 4.4.12 and

hence 1, λ1, . . . , λq /∈ σ(A) almost surely. On this event, the inverses (I − λjA)−1 and

(I −A)−1 exist. Furthermore, the product

q∏
i=1

(I − λiA)

is an invertible matrix. Therefore, the vectors

(I − λjA)−1(I −A)−1(I −AN )C, with j = 1, ...,m,

are linearly independent if and only if

q∏
i=1

(I − λiA)(I − λjA)−1(I −A)−1(I −AN )C, with j = 1, ...,m, (4.28)

are linearly independent. We can now rewrite the vectors in (4.28) as

q∏
i=1

(I − λiA)(I − λjA)−1(I −A)−1(I −AN )C =

q∏
i 6=j

(I − λiA)(I −A)−1(I −AN )C

=

q∏
i 6=j

(I − λiA)

N−1∑
k=0

AkC,

where we used the relation

(I −AN ) = (I −A)

N−1∑
k=0

Ak and hence that (I −A)−1(I −AN ) =

N−1∑
k=0

Ak.
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Now, if we are able to show that the family

pj(x) =

q∏
i 6=j

(1− λix)
N−1∑
k=0

xk, with j ∈ {1, . . . ,m}

is linearly independent, then we can conclude by Lemma 4.4.13 that the vectors (4.28)

are linearly independent almost surely, which would complete the proof. This is indeed

the case because if µ1, . . . , µn ∈ R are such that

n∑
j=1

µjpj(x) = 0 then

(
N−1∑
k=0

xk

) n∑
j=1

µj

q∏
i 6=j

(1− λix)

 = 0.

Given that the polynomial
∑N−1

k=0 xk is non-zero, the previous equality is equivalent to∑n
j=1 µj

∏m
i 6=j(1− λix) = 0 which, evaluated at x = 1/λk, implies that

0 =
n∑
j=1

µj

q∏
i 6=j

(
1− λi

1

λk

)
= µk

q∏
i 6=k

(
1− λi

1

λk

)
.

Given that, by hypothesis, the values λ1, . . . , λq ∈ C are all different, we can conclude

that
∏q
i 6=k

(
1− λi

λk

)
6= 0 and hence µk = 0, necessarily. Since procedure can be repeated

to obtain that µ1, . . . , µn = 0, the result follows.

After all this work, the proofs are complete. In summary: we have shown that reservoir

maps of the form

F (x, z) = Ax+ Cz + b

with randomly generated weights A,C and biases b admit a GS f(φ,ω,F ) when driven

by observations of a discrete time dynamical system (M,φ). If the dynamical system

(M,φ) is well behaved at the fixed points, then for generic observation functions ω ∈
C2(M,R), the GS f(φ,ω,F ) is an embedding almost surely.
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Chapter 5

Universal Approximation

We saw in Chapter 1 that an ESN does a good job predicting the future trajectory of

the Lorenz system, whose evolution is nonlinear. Furthermore, there is a large litera-

ture attesting to the performance of ESNs when tasked with learning highly nonlinear

relationships between datasets and targets (Tanaka et al. 2019). This suggests that

ESNs may have some sort of universal approximation property. There is recent litera-

ture analysing the universal approximation of ESNs and reservoir maps more generally

- with different authors taking different approaches. One strand of work developed in

Grigoryeva & Ortega (2018), Gonon et al. (2020b), Gonon et al. (2020a), and Gonon

& Ortega (2021) presents universal approximation results in terms of filters and func-

tionals (which are presented in this thesis in Chapter 6). This builds upon the work

by Matthews (1993) who establishes the universal approximation of fading memory

systems supported by neural networks. Many of these results hold for arbitrary input

sequences, without any reference to the process that generated them. This is in con-

trast to the results that will appear in this chapter, which will hold for input sequences

generated by an ergodic and determinstic dynamical system. Many of the results pre-

sented here also hold for stationary and ergodic random processes - and this is explored

in Chapter 6. The presentation of this present chapter closely follows Hart et al. (2020)

and Hart, Hook & Dawes (2021).

5.1 Universal Approximation Theorems

Many (perhaps all) of the major approximation results for Echo State Networks and

similar reservoir maps are built upon Hornik’s (1990) universal approximation theorem

for feedforward neural networks. The result states, under mild assumptions on the
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activation function σ, that feedforward neural networks are dense in the set of differ-

entiable functions. To make this formal, we’ll first introduce the mild assumption on

σ.

Definition 5.1.1. (`-finite) Let ` ∈ N0. Then we say an `-times differentiable scalar

function σ ∈ C`(R) is `-finite if

0 <

∫
R

∣∣∣∣d`σdx`
∣∣∣∣dx <∞.

Theorem 5.1.2. (Universal Approximation Theorem, Hornik et al. (1990)) Let K ⊂
Rn be a compact subset. If the activation function σ is `-finite, W1, . . .WN ∈ R and

C1, . . . , CN ∈ Rn, and b1, . . . , bN ∈ R then, for all 0 ≤ r ≤ `, the set of functions

g : K → R of the form

g(x) =
N∑
j=1

Wjσ(C>j x+ bj)

are dense in Cr(K,R).

There are many other universal approximation theorems found throughout the liter-

ature (Cybenko 1989, Lu et al. 2017) which typically show that neural networks (of

some variety) equipped with an activation function (that satisfies mild conditions) are

dense in some set of functions (with certain regularity conditions) between topologi-

cal spaces (that satisfy reasonable conditions - usually subsets of Rn). There are many

novel results (Gonon et al. 2020a, Kratsios 2020, Kratsios & Bilokopytov 2020, Kratsios

& Papon 2021, Gonon 2021) which determine approximation bounds for the number

of neurons required to approximate a sufficiently regular function. The bounds are

often explicit up to a constant, which is sometimes computed exactly. Throughout this

thesis we do not work with approximation bounds. This simplifies the presentation

considerably, but comes at the cost of leaving us with no idea how many neurons are

required for a given task.

For the results that follow we use Hornik’s seminal result because it allows the pointwise

approximation of a function g in addition to its derivatives up to any order. This smooth

approximation is of crucial importance for the topological results to come; but it is over-

engineered for others. The first result we will present states that, if the internal weights

Cj and biases bj are randomly generated, there exists a choice of outer weights Wj so

that the network g will approximate the target function as closely as is required. This
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result and preliminary lemmas appear in Hart et al. (2020). A variant of the result

with approximation bounds appears in Gonon et al. (2020a).

Lemma 5.1.3. Let (Xj)j∈N be a sequence of i.i.d. random variables and S1, . . . , S` be

a list of ` events, and suppose that for each i (and for any j since they are i.i.d.) there

exists θi such that P(Xj ∈ Si) = θi > 0. Then for all α ∈ (0, 1) there exists N ∈ N
such that

P
(
∃ injective φ : {1, . . . , `} → {1, . . . , N} : Xφ(i) ∈ Si, ∀ i ∈ {1, . . . , `}

)
> α.

Proof. First, fix α ∈ (0, 1). Then define the set {n0, . . . , n`} as follows. Set n0 = 0 and

for any i ∈ {1, ..., `} let

ni − ni−1 := ceil

(
log(1− α1/`)

log(1− θi)

)
+ 1.

Finally, set N = n`. Then we can calculate that

P
(
∃ injective φ : Xφ(i) ∈ Si ∀i ∈ {1, . . . , `}

)
> P

(
∀ i ∈ {1, . . . , `} ∃ j ∈ {1 + ni−1, . . . , ni} : Xj ∈ Si

)
=

∏̀
i=1

P
(
∃j ∈ {1 + ni−1, . . . , ni} : Xj ∈ Si

)
=

∏̀
i=1

1− P
(
Xj /∈ Si ∀j ∈ {1 + ni−1, . . . , ni}

)
≥

∏̀
i=1

1− (1− θi)ni−ni−1

=
∏̀
i=1

1− (1− θi)ceil
(

log(1−α1/`)/ log(1−θi)
)

+1

>
∏̀
i=1

1− (1− θi)
(

log(1−α1/`)/ log(1−θi)
)

=
∏̀
i=1

1− exp

(
log(1− α1/`)

log(1− θi)
log(1− θi)

)

=
∏̀
i=1

1− (1− α1/`) =
∏̀
i=1

α1/` = α.
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Theorem 5.1.4. (Random Universal Approximation Theorem) Let K ⊂ Rn be a

compact subset and f ∈ C`(K,R). Let σ ∈ C`(R) be `-finite, and let (bj ∈ R)j∈N,

(Cj ∈ Rn)j∈N be sequences of i.i.d. random variables with full support. Then for any

0 ≤ r ≤ `, and α ∈ (0, 1) and ε > 0 there exists some natural number N ∈ N such that,

with probability greater than α, there exist real numbers W1, . . . ,WN ∈ R such that the

random neural network g : K → R defined by

g(x) =
N∑
j=1

Wjσ(C>j x+ bj)

satisfies

‖f − g‖Cr < ε.

Proof. First, fix r ≥ 0. Then by the Universal Approximation Theorem we know that

for any ε > 0 there exists a neural network ĝ : K → R with N ′ neurons defined by

ĝ(x) =

N ′∑
i=1

Ŵiσ(Ĉ>i x+ b̂i)

such that

‖f − ĝ‖Cr <
ε

2
. (5.1)

Now, consider two sequences of i.i.d. random variables (bj)j∈N and (Cj)j∈N with full

support, and let Xj := (bj , Cj). Fix ε > 0 and define a collection of N ′ events S1, ..., SN ′

by

Si :=

{
(b, C) ∈ R× Rn : ‖σ(Ĉ>i ·+b̂i)− σ(C> ·+b)‖Cr <

ε

2N ′maxk(Ŵk)

}
,

where the weights Ŵk are given by the form of the network ĝ. Observe that each of the

Si have strictly positive measure, so there exists θi > 0 such that P(Xj ∈ Si) > θi >

0 ∀j ∈ N. Hence it follows by Lemma 5.1.3 that for all α ∈ (0, 1) there exists N ∈ N
such that

P
(
∃ injective φ : {1, . . . , N ′} → {1, . . . , N} : Xφ(i) ∈ Si ∀i ∈ {1, . . . , N ′}

)
> α.
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Now, assuming the event

∃ injective φ : {1, . . . , N ′} → {1, . . . , N} : Xφ(i) ∈ Si ∀i ∈ {1, . . . , N ′}

occurs, we define

Wj :=

Ŵi if φ(i) = j

0 otherwise

for all j ∈ {1, . . . , N}, and define the random neural network g : K → R by

g(x) =
N∑
j=1

Wjσ(C>j x+ bj).

Now observe that

‖ĝ − g‖C1 =

∥∥∥∥ N ′∑
i=1

Ŵiσ(Ĉ>i ·+b̂i)−
N∑
j=1

Wjσ(C>j ·+bj)
∥∥∥∥
Cr

=

∥∥∥∥ N ′∑
i=1

Ŵi

(
σ(Ĉ>i ·+b̂i)− σ

(
C>φ(i) ·+bφ(i)

))∥∥∥∥
Cr

≤
N ′∑
i=1

Ŵi

∥∥∥∥(σ(Ĉ>i ·+b̂i)− σ
(
C>φ(i) ·+bφ(i)

))∥∥∥∥
Cr

<

N ′∑
i=1

Ŵiε

2N ′maxk(Ŵk)
<
ε

2
.

Combining this with (5.1) and using the triangle inequality we obtain

‖f − g‖C1 ≤ ‖f − ĝ‖Cr + ‖ĝ − g‖Cr <
ε

2
+
ε

2
= ε,

which completes the proof.

The above result states that if we randomly generate the internal weights of a feed-

forward neural network with sufficiently many neurons, then there exists a choice of

outer weights W ∈ RN that will yield a sufficiently good approximation. This existence

result is non constructive in the sense that

1. We do not know how many neurons N are required for a given error ε or for a

given probability α.
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2. We do not know how to choose the output weights W ∈ RN .

Gonon et al. (2020a) have made significant progress on item 1., so in what follows,

we will focus on items 2. In particular, we will consider an input sequence arising

from the scalar observations of an ergodic dynamical system evolving on a manifold

M . We will prove that for W ∈ RN obtained by linear regression, as in Chapter 1,

the approximation can be made arbitrarily good by increasing the number of neurons

N ∈ N and data points ` ∈ N. The presentation in this chapter closely follows Hart,

Hook & Dawes (2021). The results rely on ergodic theory - which we will introduce

next.

5.2 Ergodic Theory

We can view an ergodic process, whether it is deterministic or random, as a process

where the time average of some feature through phase space converges toward the

spatial average of that feature throughout the phase space, almost surely.

For example, one could imagine a room that is heated to some constant, spatially

inhomogeneous temperature. Perhaps the top of the room is warmer than the bottom

as a consequence of heat rising, and one side, perhaps with single glazed windows, is

cooler than the other. Nevertheless, the room has a well defined, constant, spatial

average temperature. Now, we can view, under idealised assumptions, the average

temperature of the room as proportional to root mean square velocity of the particles

the room. If the particle dynamics are ergodic, we may observe a single arbitrary

particle and track its velocity as it traverses the room. We expect the particle to

explore the whole room, moving with greater velocity in the warm areas, and lower

velocity in cool areas, such that the particle’s root mean square velocity over time

converges toward the spatial temperature average of the room. This convergence of

the time average of the particle’s velocity to the space average over all particles in the

room is the crucial property of ergodic systems that we will exploit. In this chapter we

are interested in deterministic ergodic systems, and in Chapter 6 we will extend the

results the stationary and ergodic random processes.

We require that the underlying dynamical system is ergodic so that minimising the

mean square differences between observations and targets closely approximates the

mapping between the observation space and target space. The ergodicity ensures that

that training data generated from a trajectory initialised at almost any point m0 ∈M
will represent all dynamics on M . To make this formal, we will introduce the definition

of ergodicity and the celebrated Ergodic Theorem.
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Definition 5.2.1. (µ-generic point, Hochman (2013), Definition 4.4.1) Suppose φ :

M →M is a measure preserving map with respect to the probability space (M,Σ, µ).

We say that m0 is a µ-generic point in M if

lim
`→∞

1

`

`−1∑
k=0

s ◦ φk(m0) =

∫
M
s dµ

for all s ∈ C0(µ).

Remark 5.2.2. A µ-generic point is not to be confused with a generic property defined

in Definition 4.1.4. The overlap in terminology is indeed annoying.

Definition 5.2.3. (Ergodic) Let φ : M →M be a measure preserving transformation

on the probability space (M,Σ, µ). Then φ is ergodic if for every σ ∈ Σ with φ−1(σ) = σ

either µ(σ) = 0 or µ(σ) = 1.

Theorem 5.2.4. (Ergodic Theorem (Birkhoff 1931)) Suppose φ : M → M is ergodic

with respect to the probability space (M,Σ, µ) and s ∈ L1(µ). Then µ-almost all m0 ∈
M are µ-generic hence for µ-almost all m0 ∈M

lim
`→∞

1

`

`−1∑
k=0

s ◦ φk(m0) =

∫
M
s dµ. (5.2)

The left hand side of (5.2) is called the time average taken from the initial point

m0 ∈ M , and the right hand side is called the space average. The Ergodic Theorem

then states that the time average taken from almost all initial points equals the space

average.

5.3 A Training Theorem for Echo State Networks

5.3.1 Regularised Least Squares Regression

Suppose we have have an ergodic dynamical system φ : M → M , and we observe

the dynamics via an observation map g : M → RP for some fixed P ∈ N and target

map u : M → R. A trajectory originating from a µ-generic point m0 ∈ M will

ergodically explore the space M and yield a sequence of observations g ◦ φk(m0) and

targets u ◦ φk(m0) for k = 0, 1, 2, ..., `.

Suppose we compute the vectors W` ∈ RP minimising the regularised least squares

difference between the mapping of the observations W>g ◦ φk(m0) and the targets
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u ◦ φk(m0). We prove in the next lemma that as the number of data points ` grows

large, the least squares solution W` minimises the ergodic average difference between

the mapping on the observations W>g ◦ φk(m0) and the targets u ◦ φk(m0).

Lemma 5.3.1. Let (M,Σ) be a measurable space, and suppose that φ : M → M

is ergodic with invariant measure µ. Let m0 be a µ-generic point in M . Let g ∈
L2(µ)(M,RP ) be an observation function and suppose that u ∈ L2(µ)(M,R) is a target

function we wish to approximate.

Let Λ ∈ MP×P (R). Define the sequence (W`)`∈N such that, for each ` ∈ N, the vector

W` ∈ RP is the unique minimiser of the regularised least squares difference

1

`

( `−1∑
k=0

‖W>g ◦ φk(m0)− u ◦ φk(m0)‖2+‖ΛW‖2
)
.

Then, the sequence (W`)`∈N converges to

W ∗ =

(∫
M
g(m)g(m)> dµ(m) + ΛΛ>

)−1 ∫
M
u(m)g(m) dµ(m)

which is the unique minimiser (over W ∈ RP ) of

‖W>g − u‖2L2(µ) + ‖ΛW‖2.

Proof. Consider the map Ψ : RP → R defined by

Ψ(W ) = ‖W>g − u‖2L2(µ) + ‖ΛW‖2 =

∫
M
‖W>g(m)− u(m)‖2 dµ(m) + ‖ΛW‖2.
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The minimiser of Ψ satisfies DΨ = 0 where D is the derivative operator, so we consider

0 = (DΨ)(W )

= D

(∫
M
‖W>g(m)− u(m)‖2 dµ(m) + ‖ΛW‖2

)
=

∫
M
D‖W>g(m)− u(m)‖2 dµ(m) +D‖ΛW‖2

=

∫
M

2(W>g(m)− u(m))g(m)> dµ(m) + 2W>ΛΛ>

=

∫
M

(W>g(m)− u(m))g(m)> dµ(m) +W>ΛΛ>

= W>
∫
M
g(m)g(m)> dµ(m)−

∫
M
u(m)g(m)> dµ(m) +W>ΛΛ>

= W>
(∫

M
g(m)g(m)> dµ(m) + ΛΛ>

)
−
∫
M
u(m)g(m)> dµ(m),

which upon rearrangement yields

W =

(∫
M
g(m)g(m)> dµ(m) + ΛΛ>

)−1 ∫
M
u(m)g(m) dµ(m).

Since this is the unique solution to 0 = DΨ(W ), this stationary point is unique, and

we will denote it W ∗. We can see it is a minimum because the Hessian HΨ is positive

definite. Next, define the map

Φ : {y ∈ C1(RP ,R) | y is strictly convex} → RP

as the mapping on the strictly convex C1 functions that returns their unique min-

imum. We can see that Φ is continuous with respect to the C1 topology and Eu-

clidean topology on R respectively. We consider the family of functions y` ∈ {y ∈
C1(RP ,R) | y is strictly convex} defined by

y`(W ) =
1

`

( `−1∑
k=0

‖W>g ◦ φk(m0)− u ◦ φk(m0)‖2+‖ΛW‖2
)
,
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so that by definition W` = Φ(y`(W )) and hence

lim
`→∞

W` = lim
`→∞

Φ(y`(W ))

= Φ

(
lim
`→∞

y`(W )

)
= Φ

(
‖W>g − u‖2L2(µ) + ‖ΛW‖2

)
= W ∗

where we have used, respectively, continuity of Φ and the Ergodic Theorem.

Remark 5.3.2. The expression

W ∗ =

(∫
M
g(m)g(m)> dµ(m) + ΛΛ>

)−1 ∫
M
u(m)g(m) dµ(m)

is reminiscent of the Gauss normal equations for least squares regression.

5.3.2 Linear Universal Approximators

In order to approximate the arbitrary dynamics of φ via the observation function ω

using state space systems, we require that the state space maps F possess some sort

of universal approximation property. Thus, we will define a class of linear universal

approximators with respect to an arbitrary complete norm ‖·‖. Every class of linear

universal approximators contains maps, which after composition with another suitable

map, forms a state map.

Definition 5.3.3. Let F be a sequence of maps {FP } : RN × Rd → RP . Let C ⊂ RN

and K ⊂ Rd be vectors and let Ω(C×K,R) be a Banach space of real valued functions

on C ×K, with norm denoted ‖·‖Ω. If, for any g ∈ Ω(C ×K,R) and any ε > 0 there

exists an P0 ∈ N such that for any P > P0 there exists a W ∈ RP such that

‖W>FP − g‖Ω< ε

then we say that F is a class of linear universal approximators on Ω(C ×K,R)

A widely used class of linear universal approximators is the class of Echo State Networks

with randomly initialised internal weights, as shown by the following result.

Theorem 5.3.4. Let F denote the sequence of maps {FP } : RN ×Rd → RP defined by

FP (x, z) = σ(Ax+ Cz + b)
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where

• σ ∈ C1(R) is 1-finite

• A is a P ×N random matrix, where P > N and the first N rows of A form an

N ×N random submatrix with 2-norm less than 1 almost surely. The jth row of

A (where j > N), denoted Aj, is a random variable with full support on (RN )>

• C is a P × d random matrix with jth row Cj, a random variable with full support

on (Rd)>

• b is a random P -vector with jth entry bj, a random variable with full support on

R.

Let C × K be an arbitrary compact subset of RN × Rd. Then, almost surely, F is a

class of linear universal approximators on L2(C ×K,R).

Proof. Fix g ∈ L2(C ×K,R) and ε > 0. Then for any α ∈ (0, 1), it follows from the

Random Universal Approximation (Theorem 5.1.4) that there exists a P0 ∈ N such

that for any T > T0 there exists a W ∈ RP such that with probability at least α,

‖W>FP − g‖L2< ε,

hence F is a class of linear universal approximators. Since F is a class of linear

universal approximators for any α ∈ (0, 1), F is almost surely a class of linear universal

approximators.

To construct such an ESN in practice, we create a reservoir map F : RP × Rd → RP

by defining

F (x, z) = σ
(
[A, 0]x+ Cz + b

)
where [A, 0] is the P ×P matrix where the first N columns form the matrix A and the

remaining P −N columns are 0. Suppose we truncate at N the state vectors x ∈ RP

by applying the canonical projection π : RP → RN onto the first N coordinates,

ignoring the remainder, and denote the truncation π(x) = x̄ ∈ RN . The dynamics

of the truncated vectors x̄ are given by the (state contracting) state space system

π ◦ FP : RN × Rd → RN , which is also an ESN and is defined by

π ◦ FP (x̄, z) = σ(Āx̄+ C̄z + b̄).
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Here, the N×N reservoir matrix Ā is created by truncating at N the rows and columns

of A. The N × d input matrix C̄ is created by truncating at N the rows of C. The

N -vector b̄ is created by truncating at N the entries of b. We conclude that Echo State

Networks with (appropriately chosen) randomly generated internal weights are a class

of linear universal approximators that each give rise to a state synchronisation map.

We demanded that the P ×P reservoir matrix take the form [A, 0], whereas in practice,

the reservoir matrix does not have this structure. We imposed this condition to simplify

the proofs, but we believe, based on numerical evidence in the literature, that this choice

of shape is not necessary.

There is one more technical lemma we will include here before presenting the main

theorem (Theorem 5.3.6) of this section. Recall that topological spaces have a natural

Borel sigma algebra and are therefore measurable spaces. On such spaces we can

integrate real valued functions. If A and B are homeomorphic topological spaces, then

integration on A is essentially the same as integration on B. We use this observation in

Theorem 5.3.6 to move between integration on the topological space M to integration

on the image f(M). This demands the highly non-trivial assumption that the GS f is

a homeomorphism. The observation is made formal in the following lemma.

Lemma 5.3.5. (Change of variables) Let A,B be homeomorphic topological spaces and

suppose y ∈ Hom(A,B). The topologies on A,B induce Borel sigma algebras A ,B on

A,B respectively. Let µA be a measure on A and µB a measure on B (called the

pushforward measure) defined by µB(b) = µA(y−1(b)) for all b ∈ B. Then for any

µB-measurable function g : B → R it follows that∫
A
g ◦ y dµA =

∫
B
g dµB.

Proof. This is a special case of Theorem 3.6.1 in Bogachev (2007).

5.3.3 Linear Universal Approximators Trained by Least Squares

Before we finally plunge into the statement and proof of the main theorem, we will

describe the result in words. Suppose we have an ergodic dynamical system φ : M →
M , which we observe via the function ω : M → Rd and that our goal is to approximate

a target function u : M → R. Suppose we have at our disposal a class F of linear

universal approximating state maps. For example, F could be a collection of arbitrarily

high dimensional ESNs. Make the additional (and non trivial) assumption that the
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state maps give rise to a GS that is homeomorphic onto its image. Suppose then that

the state map F is driven with observations of a trajectory zk = ω ◦φk(m0) originating

from a µ-generic point m0. This creates a sequence of reservoir states xk that satisfy

xk+1 = F (xk, zk).

We also have a sequence of scalar targets u ◦ φk(m0), which are called labels in the

supervised learning parlance.

Suppose we use regularised least squares regression to minimise the difference between

the linear mapping on the reservoir statesW>xk (which are effectively our observations)

and the targets u ◦ φk(m0). Then we can conclude that the ergodic average difference

between the mapping on the data and the target map u can be made smaller than

the arbitrary threshold ε. This requires that the trajectory length ` and state map

dimension P are sufficiently large, while ensuring the regularisation parameter λ > 0

is sufficiently small.

Lastly, before stating the theorem (Theorem 5.3.6), we remark that a notable weakness

of the result is its non-constructive nature; the actual values for `, P and λ are not

computed in terms of ε.

In the remainder of this subsection we state and prove the theorem itself.

Theorem 5.3.6. Let M be a topological space, and suppose that φ ∈ Hom(M) is ergodic

with invariant measure µ. Let m0 be a µ-generic point in M . Let ω ∈ C0(M,Rd) be

the observation function and suppose that u ∈ L2(µ)(M,R) is the target function we

wish to approximate.

Suppose that F = {FP }P∈N is a class of linear universal approximators on L2(C×K,R)

on every compact C ⊂ RN ,K ⊂ Rd. Let (sP )P∈N : RP → RN be a sequence of maps.

Suppose (for each large enough P ) that the reservoir map sP ◦ FP : RN × Rd → RN

admits a GS f ∈ Hom(M,f(M)). For each P, ` ∈ N, let Λ ∈ MP×P (R), let λ > 0,

and let W` ∈ RP be the vector obtained by minimising the regularised least squares

difference

`−1∑
k=0

‖W>FP (f ◦ φk−1(m0), ω ◦ φk(m0))− u ◦ φk(m0)‖2+λ‖ΛW‖2.

Then, for any ε > 0, there exists λ∗ > 0 and `0, P0 ∈ N such that for all λ ∈ (0, λ∗)
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and ` > `0, P > P0

‖W>` FP (f ◦ φ−1, ω)− u‖2L2(µ) < ε.

Proof. Let y : M → y(M) ⊂ RN × Rd be defined by

y(m) = (f ◦ φ−1(m), ω(m)) ∀m ∈M

and note that FP (f ◦ φ−1, ω) = FP ◦ y and that y ∈ Hom(M,y(M)) because f ∈
Hom(M,f(M)). Now fix ε > 0. Let µ′ be a measure defined on y(M) ⊂ RN × Rd by

µ′(σ) = µ(y−1(σ)) for all measurable subsets σ of f(M). Using the assumption that F
is a class of linear universal approximators, we can choose P0 sufficiently large that for

any P > P0 there exists W̄ ∈ RP such that

‖W̄>FP − u ◦ y−1‖2L2(µ′) <
ε

3
,

hence (by lemma 5.3.5)

‖W̄>FP ◦ y − u‖2L2(µ) = ‖W̄>FP − u ◦ y−1‖2L2(µ′) <
ε

3
.

Now let

λ∗ =
ε

3‖W̄‖2

and fix λ ∈ (0, λ∗). Define the sequence (W`)`∈N such that, for each ` ∈ N, the vector

W` ∈ RP is the unique minimiser of the regularised least squares difference

1

`

( `−1∑
k=0

‖W>FP (f ◦ φk−1(m0), ω ◦ φk(m0))− u ◦ φk(m0)‖2+λ‖ΛW‖2
)
.

By lemma 5.3.1, (W`)`∈N converges as `→∞ to W ∗ which minimises

‖W>FP (f ◦ φ−1, ω)− u‖2L2(µ) + λ‖ΛW‖2.

Now we choose `0 such that for all ` > `0

‖W>` FP (f ◦ φ−1, ω)−W ∗>FP (f ◦ φ−1, ω)‖2L2(µ)<
ε

3
.
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Now the proof proceeds directly

‖W>` FP (f ◦ φ−1, ω)− u‖2L2(µ)

=‖W>` FP (f ◦ φ−1, ω)−W ∗>FP (f ◦ φ−1, ω) +W ∗>FP (f ◦ φ−1, ω)− u‖2L2(µ)

≤‖W>` FP (f ◦ φ−1, ω)−W ∗>FP (f ◦ φ−1, ω)‖2L2(µ) + ‖W ∗>FP (f ◦ φ−1, ω)− u‖2L2(µ)

<
ε

3
+ ‖W ∗>FP (f ◦ φ−1, ω)− u‖2L2(µ)

≤ ε
3

+ ‖W ∗>FP (f ◦ φ−1, ω)− u‖2L2(µ) + λ‖ΛW ∗‖2

≤ ε
3

+ ‖W̄>FP (f ◦ φ−1, ω)− u‖2L2(µ) + λ‖ΛW̄‖2

<
ε

3
+
ε

3
+ ‖W̄>FP (f ◦ φ−1, ω)− u‖2L2(µ)

=
ε

3
+
ε

3
+ ‖W̄>FP ◦ y − u‖2L2(µ)

<
ε

3
+
ε

3
+
ε

3
= ε.

5.3.4 Convergence rate of the time average to the space average

Theorem 5.3.6 guarantees, under appropriate conditions, that with sufficiently many

neurons P and a sufficiently many training data ` we can obtain an arbitrarily good

L2(µ) approximation of a target function u. It is natural to wonder how many training

data are required to achieve a given L2(µ) approximation. To answer this, we turn our

attention to the convergence rate of the time average to the space average

lim
`→∞

1

`

`−1∑
k=0

s ◦ φk(m0) =

∫
M
s dµ (5.2)

as the timespan over which training data is collected grows. We want a uniform estimate

for the rate of convergence for s over all ergodic maps φ. Unfortunately, no such

estimate exists. Kachurovskii (1996) presents negative results that (in the author’s

words) leave no hope that estimates of the rate of convergence depending only on

the averaged function s can be obtained in ergodic theorems. The negative results

presented by Kachurovskii (1996) prove that the amount of training data required is

strictly dependant on the dynamical system.

Though we cannot say exactly how many data points we need for a good L2(µ) approx-

imation, the central limit theorem for mixing dynamical systems suggests that for an

initial point chosen uniformly at random over the invariant measure of φ, the difference
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between the sum of random variables that is the finite time average and the space

average converges in distribution to normal distribution with mean zero and standard

deviation 1/
√
`. The notion of mixing is stronger than ergodicity, and defined in 5.4.1.

Before we state the theorem, we recall the definition of Hölder continuity.

Definition 5.3.7. (Hölder continuous) Let (M,d) be a metric space. A map s : M → R
is called Hölder continuous if there exist constants p ∈ (0, 1] and K > 0 such that

‖s(m)− s(m′)‖ ≤ Kd(m,m′)p

for all m,m′ ∈M .

Theorem 5.3.8. (Central limit theorem for ergodic dynamical systems) Let φ : M →
M be mixing (Definition 5.4.1) with respect to the probability space (M,Σ, µ). Let X0

be a uniform random variable with respect to the space (M,Σ, µ). Let s ∈ L1(µ)(M,R)

be Hölder continuous and denote the space average of s by

E[s] :=

∫
M
s dµ.

Let the random variables Xj := φj(X0) for j = 0, . . . , `− 1, and denote the partial sum

S` := s(X0) + · · · + s(X`−1). Then, for some β > 0, the partial sum S` satisfies the

central limit theorem:

lim
`→∞

µ

({
S` − `E[s]√

`
≤ z
})

=
1√
2πβ

∫ z

−∞
e
− τ2

2β2 dτ

almost surely, or in other words (S` − `E[s])/
√
` converges in law to N (0, β2).

Proof. Camı́ (2010).

To see the connection between the central limit theorem and the work in this paper,

we observe first of all that the CLT holds in higher dimensions. Then we consider the

map s that returns the matrix–vector pair

s(m0) =

([
f(m0)f>(m0) + ΛΛ>

]
, f(m0)u(m0)

)
=: (B0, v0),
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and define a sequence of pairs (B`, v`)`∈N with `th pair

(B`, v`) :=
1

`

`−1∑
k=0

s ◦ φk(m0).

Then it follows that

W` = B−1
` v`

is the linear readout layer obtained by regularised least squares regression using `

data points. Furthermore, it follows from the central limit theorem that for random

initial points m0 (distributed uniformly with respect to the invariant measure µ) the

sequence (B`, v`)`∈N converges in law to a (multivariate) normal distribution, with

standard deviation converging to 0 with order 1/
√
`, and mean (B, v) which satisfies

W ∗ = B−1v.

We note that the convergence of (B`, v`)`∈N to (B, v) with order 1/
√
` does not neces-

sarily imply that (W`)`∈N converges to W ∗ at the same rate.

5.4 The Lorenz attractor is stably mixing

We have shown that we can approximate, in the L2(µ) sense, any target function

on an ergodic dynamical system using an ESN and Tikhonov least squares. This

partially explains the success enjoyed by Jaeger (2001), Xi et al. (2005), Schrauwen

et al. (2007), Shi & Han (2007), Yong Song et al. (2010), Pathak et al. (2017), Løkse

et al. (2017), Yeo (2019), Chattopadhyay et al. (2019), Vlachas et al. (2019), and Hart

et al. (2020). Many authors including Chattopadhyay et al. (2019) successfully predict

the future observations of the Lorenz system, while Pathak et al. (2017), Vlachas

et al. (2019), and Hart et al. (2020) additionally recover invariants including Lyapunov

exponents, fixed point eigenvalues and homology groups. The authors are successful in

their numerical experiments because the Lorenz attractor is mixing which implies it is

ergodic, suggesting the conditions Theorem 5.3.6 hold and we can L2(µ) approximate

target functions on the Lorenz attractor.

The proof by Tucker (2002) that the Lorenz attractor is mixing was a tremendous

achievement, and resolved Smale’s 14th problem

‘Is the dynamics of the ordinary differential equations of Lorenz (1963) that of the
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geometric Lorenz attractor of Williams, Guckenheimer and Yorke? ’ (Smale 1998).

Tucker’s proof built upon the works of Afraimovich et al. (1977), Guckenheimer &

Williams (1979), Pesin (1992), Williams (1979), and Tucker (1999). The ideas discussed

in these papers go far beyond the scope of this thesis, and I will restrict attention to

simpler results about mixing dynamical systems that are directly relevant to the results

presented here.

Definition 5.4.1. (Mixing) Let φ : M → M be a measure preserving transformation

on the measure space (M,Σ, µ) with µ(M) = 1. Then φ is mixing if for any A,B ∈ Σ

lim
`→∞

µ
(
A ∩ φ−`(B)

)
= µ(A)µ(B).

Lemma 5.4.2. (Mixing implies ergodic) Let φ : M → M be a measure preserving

transformation on the measure space (M,Σ, µ) with µ(M) = 1. Suppose φ is mixing,

then φ is ergodic.

Proof. Suppose φ is mixing and A,B ∈ Σ. Then

lim
`→∞

µ
(
A ∩ φ−`(B)

)
= µ(A)µ(B)

=⇒ lim
`→∞

1

`

`−1∑
k=0

µ
(
A ∩ φ−k(B)

)
= µ(A)µ(B)

=⇒ lim
`→∞

1

`

`−1∑
k=0

µ
(
A ∩ φ−k(A)

)
= µ(A)2, (5.3)

where we have set A = B to derive the last line. Now suppose that A is φ-invariant, i.e.

A = φ−1(A). Then the left-hand side of (5.3) is precisely µ(A), and hence (5.3) reduces

to the statement that µ(A) = µ(A)2 hence µ(A) = 1 or µ(A) = 0, so any invariant set

has either full or zero measure, and so φ is ergodic.

Definition 5.4.3. (Stably mixing) Let φ : M → M be a measure preserving trans-

formation on the measure space (M,Σ, µ) with µ(M) = 1. Then φ is stably mixing if

sufficiently small C1 perturbations of φ are mixing.
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Theorem 5.4.4. The Lorenz (1963) system

ξ̇ = σ(υ − ξ)
υ̇ = ξ(ρ− ζ)− υ
ζ̇ = ξυ − βζ

(5.4)

with parameters σ = 10, β = 8/3, ρ = 28 admits a robust attractor that is stably

mixing.

Proof. Luzzatto et al. (2005)

Since the Lorenz attractor is stably mixing, so is any sufficiently good C1 approxi-

mation to the evolution operator φ, obtained by numerical methods. Consequently, a

numerically approximated Lorenz system is ergodic, by Lemma 5.4.2. Thus, we expect

that an ESN, trained using least squares fitting, with Tikhonov regularisation, on a

sequence of observations of a numerically integrated trajectory of the Lorenz attractor

will L2(µ)–approximate arbitrary target functions on the attractor.

5.5 Online Learning

Most ESN practitioners estimate the minimiser W ∗ by collecting a long trajectory of

reservoir states xk, then solve the regularised least squares problem to find W` using

their favourite numerical algebra package. This is an example of offline learning because

the learning happens after the training is collected. Offline learning requires that the

entire set of reservoir states xk are stored in memory, and subject to large matrix

computations.

An alternative approach is online learning, where learning occurs dynamically as new

data as comes in. Online learning methods typically do not require that the entire

training trajectory is stored in memory, nor do they require large (memory intensive!)

matrix operations. This gives them an obvious advantage over offline methods.

Furthermore, online learning algorithms are a more a realistic model of biological neu-

ral networks - because the connection strength between biological neurons varies in

real time in response to stimulus. Indeed, biologically speaking, offline learning is com-

pletely implausible, as this would entail the states of a biological brain being stored

somewhere ‘external’. Operations would be applied to these externally stored neuronal

states, and the results then be transmitted back into the brain. With this motivation,
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we will study the online learning algorithm

Wk+1 = (1− αkλ)Wk − αkg ◦ φk(m0)(W>k g ◦ φk(m0)− u ◦ φk(m0)) (5.5)

with (αk)k∈N a strictly positive real sequence, and remaining terms defined in lemma

5.3.1. The algorithm is essentially stochastic gradient descent and is discussed in nu-

merous works including Benveniste, Métivier & Prioure (1990), Melo & Ribeiro (2007),

Borkar (2009), and Chen et al. (2019). The behavior of the sequence (αk)k∈N often

called the learning rate or learning parameter. If (αk)k∈N = α > 0 is a constant se-

quence, then we call α the learning parameter. In the case that (αk)k∈N converges to

0 rapidly, the convergence is called a fast learning rate, and slow convergence is called

a slow learning rate. If (αk)k∈N diverges then something like the opposite of learning

is achieved.

In what follows we will show that if (αk)k∈N = α > 0 is a constant sequence, then

the algorithm does not converge in general, but in the limit as k → ∞ the algorithm

returns W ∗ on average (in the ergodic sense). Furthermore, we establish a bound on

the variance of the weights Wk as k → ∞. Next we show that if αk = 1/k then

algorithm (5.5) converges to W ∗. We will proceed with preliminary results in the case

where (αk)k∈N is a constant sequence.

5.5.1 Fixed learning parameter α

Lemma 5.5.1. Let V ⊂ RP be a bounded set, λ > 0 be the regularisation parameter,

and

0 < α <
1

λ+ supv∈V ‖v‖2
.

Then the reservoir map F : RP × (V × R)→ RP defined by

F (W ; v, z) = (1− αλ)W − αv(W>v − z)

is state contracting.

Proof. First, note that upon rearrangement

F (W ; v, z) = [I − α(vv> + λI)]W + αvz.
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Then we can see that

‖F (W ; v, z)− F (Y ; v, z)‖ =‖[I − α(vv> + λI)](W − Y )‖

≤ρ[I − α(vv> + λI)] ‖W − Y ‖

where ρ[·] denotes the spectral radius. Now the matrix [vv>+λI] has exactly 2 distinct

eigenvalues, λ and λ+‖v‖2. Therefore, the matrix α[vv>+λI] has exactly 2 eigenvalues

αλ and α(λ+‖v‖2). Both of these lie in (0, 1) by construction, so ρ[I−α(vv>+λI)] ∈
(0, 1) and we are done.

Theorem 5.5.2. Let (M,Σ) be a measurable space, and suppose that φ : M → M

is ergodic with invariant measure µ. Let m0 be a µ-generic point in M . Let g ∈
C0(M,RP ) be an observation function and suppose that u ∈ L2(µ)(M,R) is a target

function we wish to approximate. Suppose that

0 < α <
1

λ+ supm∈M‖g(m)‖2
.

Then there exists a unique GS h ∈ C0(M,RP ), such that for generic initial m0 ∈ M
and initial W0 ∈ RP the iteration (5.5) converges to h◦φk(m0) as k →∞. Furthermore

the GS h satisfies ∫
M

[gg> + λI](W ∗ − h) dµ = 0

and

‖W ∗ − h‖L2(µ) ≤
‖[gg> + λI]W ∗ − gu‖L2(µ)

λ
.

Proof. From Theorem 3.5.5 and Lemma 5.5.1 it follows that for generic initial states

m0 ∈M and W0 ∈ RP the iteration (5.5) converges to h ◦ φk(m0) as k →∞. Further-

more, in the limit k →∞ we have

h ◦ φ = (1− αλ)h− αg(h>g − u),

which upon rearrangement yields

h ◦ φ = h− α[(gg> + λI)]h+ αgu.
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Then integrating both sides we have∫
M
h ◦ φ dµ =

∫
M
h dµ− α

∫
M

[gg> + λI]h dµ+ α

∫
M
gu dµ

so, using the φ-invariance of the measure µ, we have∫
M
h dµ =

∫
M
h dµ− α

∫
M

[gg> + λI]h dµ+ α

∫
M
gu dµ

hence ∫
M

[gg> + λI]h dµ =

∫
M
gu dµ.

We now recall from Lemma 5.3.1 that∫
M
gu dµ =

∫
M

[gg> + λI]W ∗ dµ

so ∫
M

[gg> + λI]h dµ =

∫
M

[gg> + λI]W ∗ dµ

hence

0 =

∫
M

[gg> + λI](h−W ∗) dµ.

Now we recall

h ◦ φ = (1− αλ)h− αg(h>g − u),

which upon rearrangement yields

h ◦ φ−W ∗ = (I − α[gg> + λI])(h−W ∗)− α([gg> + λI]W ∗ − gu)

hence

‖h−W ∗‖L2(µ) = ‖h ◦ φ−W ∗‖L2(µ)

= ‖(I − α[gg> + λI])(h−W ∗) + α([gg> + λI]W ∗ − gu)‖L2(µ)

≤ ‖(I − α[gg> + λI])(h−W ∗)‖L2(µ) + α‖[gg> + λI]W ∗ − gu‖L2(µ)

≤ ρ(I − α[gg> + λI])‖(h−W ∗)‖L2(µ) + α‖[gg> + λI]W ∗ − gu‖L2(µ).
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where ρ(·) is the spectral radius. Now the eigenvalues of α[gg> + λI] are αλ and

α(λ+ ‖g‖2) which both lie in (0, 1) by construction, so

ρ(I − α[gg> + λI]) = 1− αλ.

Therefore we have

‖h−W ∗‖L2(µ) ≤ ‖(1− αλ)(h−W ∗)‖L2(µ) + α‖[gg> + λI]W ∗ − gu‖L2(µ)

= (1− αλ)‖(h−W ∗)‖L2(µ) + α‖[gg> + λI]W ∗ − gu‖L2(µ).

We consider the first and last lines together and then rearrange to yield

‖W ∗ − h‖L2(µ) ≤
‖[gg> + λI]W ∗ − gu‖L2(µ)

λ
.

We showed in theorem 5.5.2 that if (αk)k∈N is a sufficiently small constant sequence,

algorithm (5.5) converges to W ∗ in some ergodic average sense. We will show next

that if we replace all observations g ◦ φk(m0) and targets u ◦ φk(m0) with the ergodic

averages
∫
M g dµ and

∫
M u dµ then algorithm (5.5) converges to W ∗.

Theorem 5.5.3. Let (M,Σ) be a measurable space, and suppose that φ : M → M

is ergodic with invariant measure µ. Let m0 be a µ-generic point in M . Let g ∈
C0(M,RP ) be an observation function and suppose that u ∈ L2(µ)(M,R) is a target

function we wish to approximate. Let λ > 0 and choose α > 0 such that

ρ

(
I − α

∫
M
gg> + λI dµ

)
∈ (0, 1).

Then the map Φ : RP → RP defined by

Φ(W ) = W − α
[ ∫

M
gg> + λI dµ

]
W + α

∫
M
gu dµ

is contracting, and admits a unique fixed point

W ∗ =

[ ∫
M
gg> + λI dµ

]−1 ∫
M
gu dµ.
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Proof. The proof that Φ is contracting proceeds directly

‖Φ(W1)− Φ(W2)‖ =

∥∥∥∥[I − α ∫
M
gg> + λI dµ

]
(W1 −W2)

∥∥∥∥
≤
∥∥∥∥I − α ∫

M
gg> + λI dµ

∥∥∥∥
2

‖W1 −W2‖

= ρ

(
I − α

∫
M
gg> + λI dµ

)
‖W1 −W2‖

= c‖W1 −W2‖

where

c := ρ

(
I − α

∫
M
gg> + λI dµ

)
∈ (0, 1).

We have shown that Φ is contracting, and therefore admits a unique fixed point W ∗

which satisfies

W ∗ = Φ(W ∗) = W ∗ − α
[ ∫

M
gg> + λI dµ

]
W ∗ + α

∫
M
gu dµ

which is easily rearranged to

W ∗ =

[ ∫
M
gg> + λI dµ

]−1 ∫
M
gu dµ.

We can view theorem 5.5.3 as a result for the discrete time dynamical system given by

the proposed iterative scheme (5.5) for W . This result has a continuous time analogue

which we present next.

Theorem 5.5.4. Let (M,Σ) be a measurable space, and suppose that φ : M → M

is ergodic with invariant measure µ. Let m0 be a µ-generic point in M . Let g ∈
C0(M,RP ) be an observation function and suppose that u ∈ L2(µ)(M,R) is a target

function we wish to approximate. Let λ > 0.

Then the ODE

Ẇ = −
[ ∫

M
gg> + λI dµ

]
W +

∫
M
gu dµ
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has a globally asymptotic fixed point

W ∗ =

[ ∫
M
gg> + λI dµ

]−1 ∫
M
gu dµ.

Proof. The matrix −
[ ∫

M gg>+λI dµ

]
is symmetric negative definite. The eigenvalues

are therefore all real and strictly negative. The fixed point W ∗ is therefore a globally

asymptotic fixed point.

5.5.2 Learning rate αk = 1/k

If the learning rate in the iteration (5.5) is (αk)k∈N = 1/k then the algorithm converges

to exactly W ∗. Roughly speaking, this is because the choice of learning rate (αk)k∈N =

1/k is not too fast or too slow. If we choose a learning rate that is too fast, then the

algorithm converges before enough training data has been collected to a non-optimal

W ∈ RP . On the other hand if the learning rate is too slow, the continued influence

of the data prevents the algorithm from converging at all. The formal version of this

result follows almost immediately from a theorem by Györfi (1980) which we present

here.

Theorem 5.5.5. (Györfi (1980)) Let H be a real Hilbert space with norm ‖·‖H. Let

B : H → H be an invertible, bounded, linear, symmetric and positive operator. Let

(Bk)k∈N : H → H be a sequence of bounded linear operators and (vk ∈ H)k∈N a sequence

in H such that∥∥∥∥ lim
`→∞

1

`

`−1∑
k=0

Bk −B
∥∥∥∥
H

= 0,

∥∥∥∥ lim
`→∞

1

`

`−1∑
k=0

vk − v
∥∥∥∥
H

= 0

for some v ∈ H. Then for any initial W0 ∈ H the sequence

Wk+1 = Wk −
1

k
(BkWk − vk)

converges to

W ∗ = B−1v.

Corollary 5.5.6. Let (M,Σ) be a measurable space, and suppose that φ : M → M

is ergodic with invariant measure µ. Let m0 be a µ-generic point in M . Let g ∈
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C0(M,RP ) be an observation function and suppose that u ∈ L2(µ)(M,R) is a target

function we wish to approximate. Then, for any initial W0, the iteration (5.5) with

αk = 1/k

Wk+1 = (1− αkλ)Wk − αkg ◦ φk(m0)(W>k g ◦ φk(m0)− u ◦ φk(m0))

converges to

W ∗ =

[ ∫
M
gg> + λI dµ

]−1 ∫
M
gu dµ.

Proof. Let

B :=

[ ∫
M
gg> + λI dµ

]
, v :=

∫
M
gu dµ,

and

Bk :=

[
g ◦ φk(m0)(g ◦ φk(m0))> + λI

]
, vk := g ◦ φk(m0)u ◦ φk(m0),

and notice that∥∥∥∥ lim
`→∞

1

`

`−1∑
k=0

Bk −B
∥∥∥∥
RP

= 0, and

∥∥∥∥ lim
`→∞

1

`

`−1∑
k=0

vk − v
∥∥∥∥
RP

= 0,

by the ergodic theorem. Then the iteration (5.5) can be written as

Wk+1 = Wk + αk

([
g ◦ φk(m0)(g ◦ φk(m0))> + λI

]
Wk − g ◦ φk(m0)u ◦ φk(m0)

)
= Wk +

1

k
(BkWk − vk)

which converges to

W ∗ = B−1v =

[ ∫
M
gg> + Iλ dµ

]−1 ∫
M
gu dµ

by Theorem 5.5.5.

In summary: the online learning algorithm (iteration (5.5)) discussed in section 5.5

updates the weights Wk at each time step k according to the reservoir state xk and

observation zk made at time k. This is in contrast to offline methods, like the SVD,

where every past reservoir state xk is stored in memory, and the estimate for W ∗ is
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computed using a single matrix computation involving every past reservoir state. In

machine learning problems, offline methods are typically more time-efficient than online

methods, while online methods demand much less memory.

5.6 Value Functions and Control

In the preceding section we have shown that whether we use online or offline methods

we can find a W ∗ such that W ∗>g is a good approximation to the target function u.

If f is the GS associated to a reservoir map, we can choose g = f . Alternatively we

could choose g = f − γf ◦ φ where γ ∈ [0, 1). To understand the significance of this,

we consider the (so called) value function V : M → R defined by

V : =

∞∑
k=0

γku ◦ φk

which returns the present value of a collection of future observations, with a discount

factor γ which indicates that future observations further away in time are valued less

than observations nearer in the future. The value function satisfies the following func-

tional relationship

V =
∞∑
k=0

γku ◦ φk = u+
∞∑
k=1

γku ◦ φk = u+
∞∑
k=0

γk+1u ◦ φk+1

= u+ γ
∞∑
k=0

γku ◦ φk+1 = u+ γ

( ∞∑
k=0

γku ◦ φk
)
◦ φ = u+ γV ◦ φ.

Hence, the vector W , which we call W ∗, that minimises the following

‖W>g − u‖2L2(µ) + λ‖W‖2 =‖W>(f − γf ◦ φ)− u‖2L2(µ) + λ‖W‖2

=‖W>f − (γW>f ◦ φ+ u)‖2L2(µ) + λ‖W‖2

results in a function W ∗>f which is a good approximation to the value function V .

This value function V is intimately related to infinite horizon, discrete time control

theory. We do not develop the deterministic theory further here, but in Chapter 6 we

develop a stochastic analogue to control theory more detail.
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5.7 Biological interpretation

In this section we are interested in finding the learning paradigm that best describes

the information processing of neurons in biological organisms. The offline process is

a completely implausible model, as this would entail the states of a biological brain,

represented by the reservoir states xk being stored somewhere external to the brain.

These externally stored states would be subject to computations and the resulting

weights W ∗ then would be transmitted back into the brain.

The online process on the hand seems much more plausible. The connection weights,

which are the components of Wk, represent the connections strength between the reser-

voir neurons and an output neuron, which might influence motor function or some other

physiological output (Izhikevich 2007). The weights Wk change gradually in response

to connected neurons firing more or less frequently. This is consistent with the Hebbian

learning maxim that neurons that fire together wire together (Lowel & Singer 1992).

The states of the brain are represented by the reservoir states x, which influence the

output weights W connecting the brain A to the output neuron u.

This interpretation is highly speculative - and quite vague - and would certainly benefit

from further development with a careful application of neuroscience. That said, the

general results about reservoir computing suggest that, whatever the details, a biolog-

ical nervous system may satisfy the definitions of a reservoir map, and perform a type

of online learning which admits a universal approximation property.

5.8 Learning Diffeomorphic Dynamics

The results in previous sections explain our success in Chapter 1 in approximating the

ζ component of the Lorenz system. Building on this success in approximating ‘past’

values of the ζ component, we turn our attention to approximating the next step map

g := ω ◦φ in the L2(µ) norm, then feeding these predictions into the autonomous ESN

(1.5) in order to generate a future trajectory. Since the errors are bounded in L2(µ),

we can guarantee a good L2(µ) approximation over any finite time horizon.

That said, we cannot rule out the possibility that over a sufficiently long time horizons,

the L2(µ) errors will accumulate causing the predicted trajectory to diverge from the

true trajectory. The predicted trajectory could grow without bound, or even exhibit

blow up to infinity in a finite time.

These outcomes are undesirable, but remarkably, do not often occur in practice. In
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fact, we saw in Chapter 1 that the autonomous ESN dynamics appear to be diffeomor-

phic to the Lorenz dynamics, and the future components appear qualitatively similar

to the true trajectory, even though the predictions and truth do diverge after a tran-

sient period of close approximation, as we would expect from the existence of a positive

Lyapunov exponent. We will show that this qualitative similarity is a consequence of

the structural stability of the Lorenz system. A structurally stable dynamical system

is robust up to small C1 perturbations. Another way to phrase this is that a struc-

turally stable dynamical system is diffeomorphic to itself under sufficiently small C1

perturbations. Therefore if we use an ESN to approximate the dynamics very closely

in the C1 norm, the autonomous ESN is guaranteed to follow diffeomorphic dynamics

for all future time.

Theorem 5.3.6 guarantees that the W that we obtain through the linear least squares

minimisation yields an approximation in the L2(µ) norm, which is sadly weaker than

the C1 norm. That is to say, a sequence which converges in C1 also converges in

L2(µ), but the converse does not hold in general. Theorem 5.3.6 is therefore too weak

for the purpose of guaranteeing approximation by the ESN in the C1 norm. That

said, Theorem 5.1.4 does at least guarantee the existence of a set of weights W which

yields an arbitrarily good C1 approximation. With this motivation, we will prove an

existence result here, stating that if the evolution operator φ is structurally stable then

there exist weights W such that the autonomous ESN with this set of weights will

exhibit dynamics diffeomorphic to φ.

We will first prove preliminary results which are somewhat technical, so we now care-

fully explain their purpose before they are stated and proved. First, we assume that

the GS f ∈ C1(M,RP ) is an embedding. Then the dynamics on M described by

φ ∈ Diff1(M) are diffeomorphic to the dynamics on the image f(M) described by

f ◦ φ ◦ f−1. Now, we require readout weights W such that W>f closely approximates

the next step map ω ◦ φ in the C1 norm. Since we are dealing only with approxima-

tions, the vector W> will act on points in RP that are not strictly contained in the

embedded manifold f(M) ⊂ RP . In order to prevent an accumulation of errors causing

the autonomous ESN trajectory to fly away from the manifold f(M), we need that W>

sends points in RP that are close to f(M) back onto f(M). To achieve this, we define

a discrete time dynamical system η, i.e. a map, on an open set Ω ⊂ RP which admits

f(M) as a normally hyperbolic attracting submanifold, on which the dynamics of η

are equal to f ◦ φ ◦ f−1. Such a manifold attracts nearby points such that trajectories

originating near the manifold are attracted to it and move increasingly in directions

tangential to M . We will choose W so that the autonomous ESN closely approximates
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the dynamical system η in the C1 norm. To make this idea rigorous, we will first

introduce a normally hyperbolic attracting submanifold.

Definition 5.8.1. (Normally Hyperbolic Attracting Submanifold) Let φ ∈ Diff1(M).

A φ-invariant submanifold Λ ⊂ M is a normally hyperbolic attracting submanifold if

the restriction to Λ of the tangent bundle of M admits a splitting into a direct sum

of two Tφ-invariant sub-bundles, the tangent bundle of Λ, and the stable bundle Es.

Furthermore, with respect to some Riemannian metric on M , the restriction of Tφ to

Es must be a contraction, and must be relatively neutral on TΛ. Thus, there exist

constants 0 < λ < µ−1 < 1 and c > 0 such that

TΛM = TΛ⊕ Es

(Tφ)mE
s
m = Esφ(m) ∀ m ∈ Λ

‖Tφkv‖ ≤ cλk‖v‖ ∀ v ∈ Es, and ∀ k ∈ N

‖Tφkv‖ ≤ cµ|k|‖v‖ ∀ v ∈ TΛ, and ∀ k ∈ Z.

Next we will prove that there exists a C1 evolution operator η defined on RP that

admits a normally hyperbolic attracting submanifold on which the dynamics of η are

diffeomorphic to φ. The existence of this map η is guaranteed by standard topological

machinery which we recall briefly here, and which is presented in detail by Warner

(1971).

Definition 5.8.2. (Cubic centred chart) A chart (V, ϕ) belonging to a P -manifold is

called a cubic chart if ϕ(V ) is an open cube centred about the origin in RP . If x ∈ V
and ϕ(x) = 0, then the chart (V, ϕ) is centred at x.

Definition 5.8.3. (Slice coordinates) Suppose that (V, ϕ) is a chart on a P -manifold

N with coordinate functions ξ1, ..., ξP and that q is an integer 0 ≤ q ≤ P . Let a ∈ ϕ(V )

and let

S = {x ∈ V | ξi(x) = ai, i = q + 1, ..., P}.

The subspace S of N together with coordinate maps ξ|S for j = 1, ...,m forms a

submanifold of N , called a slice of the chart (V, ϕ).

Lemma 5.8.4. (Slice Lemma) Let M be a compact q-manifold, let f : M → RP be an

immersion, and let m ∈M . Then there exists a cubic centred chart (V, ϕ) about f(m)

and a neighbourhood U of m such that f |U is injective and f(U) is a slice of (V, ϕ).
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Proof. Warner (1971) page 28 prop 1.35.

Lemma 5.8.5. Let P > m and M be a compact q-manifold. Let φ ∈ Diff1(M).

Suppose f ∈ C1(M,RN ) is a C1 embedding. Then there is an open subset Ω ⊂ RP

and η ∈ Diff1(Ω) with f(M) a normally hyperbolic attracting submanifold such that

η|f(M)= f ◦ φ ◦ f−1 (where we have defined f−1 on the image of f).

Proof. We will make a similar argument to Warner (1971) in the proof of his Proposition

1.36, on page 29. First let m ∈ M . Then by the Slice Lemma there exists a cubic

centred chart (Vm, ϕm) about f(m) and a neighbourhood Um of m such that f(Um)

is a slice (Vm, ϕm). Let ξ1, . . . , ξq be the slice coordinates in the chart (Vm, ϕm) of

points in f(Um). Then we can define a map ηm ∈ Diff1(Vm,Rd) applying the map

f ◦ φ ◦ f−1 on the slice co-ordinates and dividing the remaining co-ordinates by 2. We

can make this argument for every m ∈M hence define a collection of maps {ηm} over

a collection of open sets {Vm} which cover f(M). Now we let {αj | j ∈ N} form a

partition of unity subordinate to the cover {Vm}. We take a subsequence {αk} such

that supp(αk)∩f(M) 6= ∅ and denote the collection of sets to which {αk} is subordinate

by {Vk}. We then define a map η on a neighbourhood Ω := ∪kVk of f(M) by

η =
∑
k

αkηm.

By construction, η|f(M) = f ◦ φ ◦ f−1 and η has a normally hyperbolic attracting

submanifold f(M).

Not only does the dynamical system η exist, but, importantly, its normally hyperbolic

attracting submanifold is preserved by any sufficiently good approximation. This is

made formal in the Invariant Manifold Theorem, which we will use in the proof of the

ESN Approximation Theorem.

Theorem 5.8.6. (Invariant Manifold Theorem) Let K be a compact manifold and

η ∈ Diff1(K) with normally hyperbolic attracting submanifold Λ. Then, ∃ ε > 0 such

that for any u ∈ Diff1(K) with ‖η − u‖C1 < ε, the diffeomorphism u has a normally

hyperbolic attracting submanifold U such that ‖U − Λ‖C1 < ε.

Proof. Hirsch et al. (1977).

Lemma 5.8.7. Let M be a smooth compact q-manifold and φ ∈ Diff1(M). Let ω, u ∈
C1(M,R) denote the scalar observation function and scalar target function respectively.
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Let F denote the sequence of maps FP : RN × R→ RP defined by

FP (x, z) = σ(Ax+ Cz + b)

where

• σ ∈ C1(R) is 1-finite

• A is a P ×N random matrix, where P > N and the first N rows of A form an

N ×N random submatrix with 2-norm less than 1 almost surely. The jth row of

A (where j > N), denoted Aj, is a random variable with full support on (RN )>

• C is a random P -vector with jth entry Cj a random variable with full support on

R

• b is a random P -vector with jth entry bj, a random variable with full support on

R.

Suppose further that the reservoir map πN ◦ FP : RN × R → RN admits a GS f ∈
C1(M,RN ) which is an embedding.

Then for all ε > 0 and α ∈ (0, 1) there exists a P0 ∈ N such that for all P > P0, there

exists a W ∈ RP such that

‖W>FP (f ◦ φ−1, ω)− u‖C1 < ε

with probability at least α.

Proof. Let y ∈ C1(M,RN × R) be defined by

y(m) = (f ◦ φ−1(m), ω(m)).

Note that y is an embedding because f is an embedding, and y therefore admits an

inverse on its image y(M) ⊂ RN × R. Let Φ : C1(RN+1,R)→ C1(M,R) be defined

Φ(s) = s ◦ y.

Now Φ is continuous at u ◦ y−1 so for all ε > 0 there exists a δ > 0 such that for any

v ∈ C1(RN+1,R)

‖v − u ◦ y−1‖C1 < δ =⇒ ‖Φ(v)− Φ(u ◦ y−1)‖C1 < ε.
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Now let g : RN+1 → RP be defined by

g(x) = σ([A,C]x+ b)

where [A,C] is the random matrix obtained by appending the vector C to the right of

A. Now we fix α ∈ (0, 1). Then by Theorem 5.1.4, for all δ > 0 there exists P0 ∈ N
such that for all P > P0 there exists a W ∈ RP such that

‖W>g − u ◦ y−1‖C1 < δ

with probability at least α. Then we proceed directly to estimate that

‖W>FP (f ◦ φ−1, ω)− u‖C1

=‖W>σ(Af ◦ φ−1 + Cω + b)− u‖C1

=

∥∥∥∥W>σ([A C
] [f ◦ φ−1

ω

]
+ b

)
− u
∥∥∥∥
C1

=‖W>σ([A,C]y + b)− u‖C1

=‖W>g ◦ y − u‖C1

=‖Φ(W>g)− Φ(u ◦ y−1)‖C1 < ε.

Theorem 5.8.8. Adopt the same assumptions as in lemma 5.8.7, and the further

assumption that φ is structurally stable. Let [A, 0] ∈MP×P (R) denote the matrix whose

first N columns are those of A and the remaining columns are 0. For all ε > 0 and

α ∈ (0, 1) there exists a P0 ∈ N such that for all P > P0, there exists with probability

at least α a W ∈ RP such that the autonomous ESN ψ ∈ C1(RP ) defined

ψ(x) = σ([A, 0]x+ C(W>x) + b)

admits a normally hyperbolic attracting submanifold V , of dimension q, such that ψ|V ∼=
φ. The symbol ∼= denotes equivalence under diffeomorphism.

Proof. For brevity, we will write for each P ∈ N

ϕP := FP (f ◦ φ−1, ω).

By lemma 5.8.5 there is an open Ω ⊂ RP that contains ϕP (M) such that the dynamical

134



system η ∈ Diff1(Ω) admits ϕP (M) as a normally hyperbolic invariant submanifold such

that η|ϕP (M) = ϕP ◦ φ ◦ ϕ−1
P .

Let K be a compact submanifold on RN that contains ϕP (M). By Theorem 5.8.6

(Invariant Manifold Theorem) there exists ε > 0 such that for any u ∈ Diff1(K) with

‖η−u‖C1 < ε, the diffeomorphism u has a normally hyperbolic attracting submanifold

V such that ‖V − ϕP (M)‖C1 < ε. Now let Φ : C1(M,RP ) → C1(RP ,RP ) and Σ :

C1(M,RP )→ C1(M,RP ) be defined by

Φ(s) = s ◦ ϕP , Σ(u) = σ ◦ s

Since Φ ◦ Σ is continuous at [A, 0]ϕP + Cω ◦ φ + b there exists a δ > 0 such that for

any v ∈ C1(M,RP )

‖v − [A, 0]ϕP + Cω ◦ φ+ b‖C1 < δ

=⇒ ‖Φ ◦ Σ(v)− Φ ◦ Σ([A, 0]ϕP + Cω ◦ φ+ b)‖C1 < ε.

Fix α ∈ (0, 1). Then by lemma 5.8.7 there exists P0 ∈ N such that for all P > P0, there

exists a W ∈ RP such that

‖W>ϕP − ω ◦ φ‖C1 < δ

with probability at least α. On this event we now have that

‖ψ|ϕP (M) − η|ϕP (M)‖C1 = ‖ψ|ϕP (M) − ϕP ◦ φ ◦ ϕ−1
P ‖C1

= ‖Φ(ψ ◦ ϕP )− Φ(ϕP ◦ φ)‖C1

= ‖Φ ◦ Σ([A, 0]ϕ+ C(W>ϕP ) + b)− Φ ◦ Σ([A, 0]ϕP + Cω ◦ φ+ b)‖C1

< ε.

Hence, there is an open set U ⊂ RP with ϕP (M) ⊂ U ⊂ K

‖ψ|U − η|U‖C1 < ε.

Furthermore, ψ|U admits a normally hyperbolic attracting submanifold V such that

‖V − ϕ(M)‖C1 < ε. Then by structural stability of φ, and therefore of η, there exists

h ∈ Diff1(ϕP (M), V ) such that

ψ|V = h ◦ η|ϕP (M) ◦ h−1| ∼= η|ϕP (M)
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hence

ψ|V = h ◦ η|ϕP (M) ◦ h−1 = h ◦ ϕP ◦ φ ◦ ϕ−1
P ◦ h

−1 ∼= φ.

The proof is now complete.

To conclude this chapter, we will summarise the major result. If (M,φ) is a structurally

stable discrete time dynamical system, and we take a trajectory of scalar observations,

and feed these into an ESN, then there exists a choice of weights W such that the

autonomous ESN dynamics are diffeomorphic to (M,φ). The diffeomorphism ensures

that the topological and geometrical features of (M,φ) like homology groups, Lyapunov

exponents, and linearisation of fixed points are learned by the ESN autonomous dy-

namics. This holds even if the ESN autonomous and (M,φ) trajectories diverge. We

note that the exponential divergence of trajectories is unavoidable for systems such as

the Lorenz system that have a positive Lyapunov exponent.
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Chapter 6

Stochastic Dynamical Systems

and Reinforcement Learning

In this chapter we consider ESNs, and reservoir maps more generally, which are trained

on a realisation of a stationary ergodic stochastic process. This is in contrast to previous

chapters where the inputs were deterministically generated. In the deterministic case

we defined a GS f : M → RN , and this was the fundamental object of study. It is

not clear how to define a GS in the stochastic context, so the fundamental objects in

the stochastic case are filters and functionals. The work in the chapter is based on the

paper by Hart, Olding, Cox, Isupova & Dawes (2021).

6.1 Filters and Functionals

We will first introduce filters and functionals. A filter U is a map that takes a bi-

infinite sequence of real vectors (that is, a sequence of real vectors indexed by Z) and

returns another bi-infinte sequence of real vectors (possibly of different dimension). A

functional H takes a bi-infinite sequence of real vectors and returns a single real vector.

Definition 6.1.1. (Filters and functionals) For any d,N ∈ N and Dd ⊂ Rd a filter is

a map U : DZ
d → (RN )Z and a functional is a map H : DZ

d → RN .

As we will soon see, an ESN can be viewed either as a filter from the space of input

sequences to the space of reservoir sequences, or as a functional from the space of input

sequences to the current reservoir state. An example of a filter, which we will use

extensively in this chapter, is the time shift operator which shifts a sequence one step

forward in time.
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Definition 6.1.2. (Time shift operator) The time shift operator TN : (RN )Z → (RN )Z

is defined by TN (z)k := zk+1 for all k ∈ Z.

In many realistic scenarios we require that the output of a filter depends only on

observations from the past and present, and not on the future. That is we require that

the filter or functional depends on terms indexed by k = . . . n − 2, n − 1, n and does

not depend on the terms indexed by k = n + 1, n + 2, . . .. A filter with this property

is called causal because the output is not influenced by the future observations; this

would violate the usual notion of causality.

Definition 6.1.3. (Causal) We say that a filter U : DZ
d → (RN )Z is causal if for all

v, w ∈ DZ

vk = wk ∀ k ≤ n =⇒ U(v)n = U(w)n.

Furthermore, we will work with filters that are time invariant.

Definition 6.1.4. (Time invariant) We say that a filter U : DZ
d → (RN )Z is time

invariant if it commutes with the time shift operator i.e. TN ◦ U = U ◦ Td.

If a filter is both causal and time invariant then we refer to the filter as a causal time

invariant (CTI) filter. It turns out that there is a bijection between the space of CTI

filters and the space of functionals.

Theorem 6.1.5. (Grigoryeva & Ortega 2019) There is a bijection between the space of

CTI filters U : DZ
d → (RN )Z and the space of functionals H : DZ

d → RN . In particular,

for any CTI filter U we can define the functional HU := p0 ◦U where p0 : (Rd)Z → RN

is the natural projection onto the 0th entry. For any functional H we can define the

filter UH by defining UH(z)k := H ◦ T k(z) for all k ∈ Z.

The local Echo State Property (ESP) has an important characterisation in terms of

CTI filters. This appears in Jaeger (2001) and in Yildiz et al. (2012).

Theorem 6.1.6. ((Yildiz et al. 2012), Theorem 2.1) Let V ⊂ RN and W ⊂ Rd

be compact. A continuous reservoir map F : RN × Rd → RN has the (V,W )-local

Echo State Property (ESP) if and only if, for any (zk)k∈Z ∈ WZ there exists a unique

(xk)k∈Z ∈ V Z that satisfies the equation

xk+1 = F (xk, zk).

The reservoir map F therefore has local ESP if and only if it has an associated CTI
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filter UF : WZ → V Z, and associated functional HF : WZ → V .

The purpose of this reformulation of the ESP is to recognise that an ESN with ESP can

be expressed as a functional. In the remainder of this chapter we will use the fact that

ESNs are universal approximators in the space of functionals (Grigoryeva & Ortega

2018, Gonon et al. 2020a) to show that ESNs trained by least squares on stationary

ergodic processes can learn arbitrary target functions; which are often in this context

called reward functions.

Definition 6.1.7. (ESN filter and functional) If an ESN

F (x, z) = σ(Ax+ Cz + b)

has the local ESP then we will write HA,C,b to denote the reservoir functional associated

to the ESN. We will also write HA,C,b
W to denote the output functional W>HA,C,b

(defined by left multiplication of HA,C,b by the linear readout layer).

6.2 System isomorphism

We will now take a slight detour and introduce the notion of a system isomorphism.

We do not use this explicitly in the remainder of this chapter, but system isomorphisms

are interesting in their own right, and have a curious connection to the linear reservoir

systems studied in Chapter 4. We say that two reservoir systems are system isomorphic

if they define the same input-output systems.

Definition 6.2.1. (System Isomorphic) A reservoir map F : RN × Rd → RN along

with output map h : RN → Rs is a pair (F, h) called a reservoir system. Two reservoir

systems (F, h) and (F̄ , h̄) both with local ESP have associated CTI filters UF , UF̄ . We

say that (F, h) and (F̄ , h̄) are system isomorphic if for any input sequence z ∈ (Rd)Z

h(UF (z)k) = h̄(UF̄ (z)k) ∀k ∈ Z

In the case of linear reservoir maps F : RN × R→ RN of the form F (x, z) = Ax+ Cz

for A ∈MN×N (R) and C ∈ RN the system isomorphisms admit an exact form.

Theorem 6.2.2. Two reservoir systems (F, h) and (F̄ , h̄) such that

F (x, z) = Ax+ Cz, F̄ (x, z) = Āx+ C̄z

where A, Ā ∈ MN×N (R) and C, C̄ ∈ RN are system isomorphic if and only if there
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exists an invertible P ∈MN×N (R) such that

A = PĀP−1, C = PC̄

and h = h̄ ◦ P−1.

Proof. The proof proceeds directly.

h(UF (z)k) = h

( ∞∑
k′=0

AkCzk−k′

)

= h̄ ◦ P−1

( ∞∑
k′=0

PĀP−1PC̄zk−k′

)

= h̄

( ∞∑
k′=0

ĀkC̄zk−k′

)
= h̄(UF̄ (z)k).

We can observe a connection with Chapter 3 by noting that conditions (A) − (D) in

Theorem 4.2.1 (repeated below in theorem 6.2.3) for ease of presentation are invariant

under system isomorphism.

Theorem 6.2.3. The conditions that appear in Theorem 4.2.1

(A) N > max{2q, `} where ` ∈ N is the lowest common multiple of the periods of all

periodic points,

(B) λmaxρ(Anmin) < 1 where nmin is the minimal period over all periodic points and

λmax is the maximal absolute value over all eigenvalues of all derivatives Tmφ
n,

(C) For each periodic point m ∈M with period n the vectors{
(I − λjAn)−1(I −A)−1(I −A)nC

}
j=1,...,q

where {λj}j=1,...q are the eigenvalues of Tmφ
n, are linearly independent,

(D) The vectors {AjC}j=0,...N−1 are linearly independent,

are invariant under system isomorphism.
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Proof. Condition (A) clearly invariant because A and Ā are both of size N , while con-

dition (B) is invariant because the transformation Ā = P−1AP preserves the spectral

radius. To show that (C) is invariant we observe that

(I − λjĀn)−1(I − Ā)−1(I − Ā)nC̄

=

( ∞∑
k=0

λkj Ā
kn

)( ∞∑
k=0

Āk
)

(I − Ā)nC̄

=P−1

( ∞∑
k=0

λkjA
kn

)
PP−1

( ∞∑
k=0

Ak
)
P (I − P−1AP )nP−1C

=P−1(I − λjAn)−1(I −A)−1(I −A)nC

and note that the vectors{
(I − λjAn)−1(I −A)−1(I −A)nC

}
j=1,...,q

are linearly independent if and only if the vectors{
P−1(I − λjAn)−1(I −A)−1(I −A)nC

}
j=1,...,q

are linearly independent. Finally we can see that if the vectors {ĀjC̄}j=0,...,N−1 are

linearly independent then so are the vectors

{PĀjC̄}j=0,...,N−1

and then noting that

PĀjC̄ = PĀjP−1PC̄ = AjC

completes the proof.

6.3 Supervised learning on stationary ergodic processes

For an ESN to successfully learn from a stochastic process, the process must satisfy

mild conditions. The following definition that appears in Gonon et al. (2020a) outlines

these conditions. For the remainder of this chapter, we will use boldface for random

variables.

Definition 6.3.1. (Admissible input process) A (Rd)Z-valued random variable Z is
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called an admissible process if for any T0 ∈ N there exists MT0 > 0 such that for all

k ∈ Z the d× (T0 + 1) random matrix [Zk−T0 ,Zk−T0+1, . . . ,Zk] satisfies

‖Zk−T0 ,Zk−T0+1, . . . ,Zk‖ ≤MT0 (6.1)

Lebesgue-almost surely.

Furthermore, to ensure the learning is successful the matrices A,C, b must be drawn

from appropriate distributions. In the following we describe the procedure introduced

by Gonon et al. (2020a) by which A,C, b are randomly generated.

Procedure 6.3.2. Let n, T0 ∈ N, R > 0 be the input parameters for the procedure.

Suppose that Z is an admissible input process. Consequently, for any T0 ∈ N there

exists MT0 such that (setting k = 0 in (6.1))

‖Z−T0 ,Z−T0+1, . . . ,Z0‖ ≤MT0

Lebesgue-almost surely. Then, for a given T0, we initialise the ESN reservoir matrix

A, input matrix C, and biases b according to the following procedure.

1. Draw n i.i.d. samplesA1, . . . ,An from the uniform distribution on BR ⊂ Rd(T0+1)

where BR is the ball of radius R and centre 0, and draw N i.i.d. samples b1, . . . bN

from the uniform distribution on [−max(MT0R, 1),max(MT0R, 1)].

2. Let S and c be shift matrices defined by

S =

[
0d,dT0 0d,d

IdT0 0dT0,d

]
c =

[
Id

0dT0,d

]

where IdT0 and Id denote the dT0× dT0 and d× d identity matrices, respectively,

and the dimensions of the other (rectangular or square) matrices are given by
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each pair of subscripts, and set

a =


A>1

A>2
...

A>n

 Ā =

[
S 0d(T0+1),n

aS 0n,n

]

C̄ =

[
c

ac

]
ζ̄ =


0d(T0+1)

b1

...

bn


so that we can define

A =

[
Ā −Ā
−Ā Ā

]
C =

[
C̄

−C̄

]
b =

[
b̄

−b̄

]
.

With everything set up we are ready to introduce a result by Gonon et al. (2020a)

which we will build on later in the chapter. The result roughly assumes that we have

an admissible process, and a target function we wish to approximate to a tolerance ε.

Then for large enough N , any randomly generated ESN of dimensional N admits an

output layer W ∈ RN with which we can approximate the target function to within

the tolerance ε.

Theorem 6.3.3 (Gonon et al. (2020a)). Suppose that Z is an admissible input process.

Let R : (Dd)
Z → R (where Dd is a compact subset of Rd) be causal and measurable

with respect to some measure µ such that Eµ[|R(Z)|2] <∞.

Then for any ε > 0 and δ ∈ (0, 1) there exist n, T0 ∈ N, and R > 0 such that with

probability (1− δ) the ESN with parameters A,C, b generated by procedure 6.3.2 (with

inputs n, T0, R) has the local ESP and admits a readout layer W ∈ R2(d(T0+1)+n) such

that(
Eµ
[∥∥∥HA,C,b

W (Z)−R(Z)
∥∥∥2
∣∣∣∣ A,C, b])1/2

:=

(∫
(Rd)Z

∥∥∥HA,C,b
W (z)−R(z)

∥∥∥2
dµ(z)

)1/2

< ε.

One observation we make about this result is that the output layer W ∈ RN , where

N := 2(d(T0 + 1) + n), is shown to exist, but is not constructed. Of course, we are in

practice often interested in the conditions under which the output layer obtained by
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regularised least squares is close the output layer W ∈ RN that approximates the target

functional. However, from the above result we cannot claim that the regularised-least-

squares-minimising output layer W does actually satisfy the criterion in the conclusion

of the theorem above.

In general, for the least squares solution to be accurate we necessarily require that

the sample trajectory is representative of the entire input process Z. We can ensure

that any sufficiently long sample trajectory is representative of the entire process Z by

insisting that Z is stationary and ergodic.

A stochastic process being stationary is analogous to a deterministic dynamical system

being autonomous, and is defined below.

Definition 6.3.4. (Stationary Process; McGoff et al. (2015)) A stochastic process

(Zk)k∈Z ≡ Z is stationary if for any k ∈ N and finite subset I ⊂ Z the joint distribution

(Zi)i∈I is equal to the joint distribution (Zi+k)i∈I .

Building on this definition, a stationary ergodic proccess is very much like an ergodic

deterministic system. The definition is stated below.

Definition 6.3.5. (Stationary Ergodic Process; McGoff et al. (2015)) A stationary

stochastic process (Zk)k∈Z ≡ Z is called ergodic if for every i ∈ N and every pair of

Borel sets A,B

lim
`→∞

1

`

`−1∑
k=0

P
(

(Z1, . . . ,Zi) ∈ A, (Zk, . . . ,Zi+k) ∈ B
)

=P
(

(Z1, . . . ,Zi) ∈ A
)
P
(

(Z1, . . . ,Zi) ∈ B
)
.

Every stationary ergodic processes Z satisfies the celebrated ergodic theorem, stating

that the sample average of a trajectory converges to the expectation of the invariant

distribution.

Theorem 6.3.6. (Ergodic Theorem) If (Zk)k∈Z ≡ Z is a stationary ergodic process

then for any i ∈ Z

Eµ[Zi] = lim
`→∞

1

`

`−1∑
k=0

Zi+k

almost surely.
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The ergodic theorem is the crucial ingredient for Theorem 6.3.7. The result roughly

assumes that we have an admissible stationary ergodic process, and a target function

we wish to approximate to a tolerance ε. Then for large enough N and `, any randomly

generated ESN of dimensional N trained by least squares regression on a sample tra-

jectory of length `, explicitly yields an output layer W ∈ RN which approximates the

target function to tolerance ε.

Theorem 6.3.7. (Hart, Olding, Cox, Isupova & Dawes 2021) Suppose that Z is an

admissible input process that is also stationary and ergodic, with invariant measure µ.

Let R : (Dd)
Z → R (where Dd is a compact subset of Rd) be causal, µ-measurable, and

satisfy Eµ[|R(Z)|2] <∞. Let z be an arbitrary realisation of Z.

Then for any ε > 0, and δ ∈ (0, 1) there exist

• constants n, T0 ∈ N, R, λ∗ > 0 and ` ∈ N,

• an ESN with parameters A,C, b generated by procedure 6.3.2 (with inputs n, T0, R),

• an output layer W ∗` ∈ R2(d(T0+1)+n) which minimises (over W ∈ R2(d(T0+1)+n))

the least squares problem

1

`

`−1∑
k=0

∥∥∥HA,C,b
W T−k(z)−RT−k(z)

∥∥∥2
+ λ ‖W‖2 ,

where λ ∈ (0, λ∗),

such that, with probability (1− δ), the inequality

Eµ
[∥∥∥HA,C,b

W ∗`
(Z)−R(Z)

∥∥∥2
∣∣∣∣A,C, b] < ε

is satisfied.

Proof. We state and prove a result later (Theorem 6.4.4) of which this present result

is the special case (in which γ = 0).

Though we have constructed W ∈ RN explicitly, the proof fails to be fully constructive

because we do not know how many neurons N or sample points ` are required to provide

an approximation with tolerance ε. We consider first how the error decreases as we

increase the number of sample points `. To this end we recall the central limit theorem

(CLT) for stationary ergodic processes which states that the error between the time
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average and expectation of the invariant measure converges to a normal distribution

with standard deviation 1/
√
` as the number of sample points ` grows to infinity.

Theorem 6.3.8. (Central Limit Theorem; McGoff et al. (2015)) If (Zk)k∈Z is a sta-

tionary ergodic process then there exists a covariance matrix Σ such that for any i ∈ Z
and Borel set A

lim
`→∞

P
(

1√
`

`−1∑
k=0

(Zi+k − Eµ[Zi]) ∈ A
)

= P
(
N (0,Σ) ∈ A

)
.

In other words, the random variables

1√
`

`−1∑
k=0

(Zi+k − Eµ[Zi])

converge in distribution to the multivariate normal N (0,Σ) as `→∞.

This suggests that the convergence of the error with ` is of order 1/
√
`, and the constant

factor in the convergence estimate is related to the mixing time and the variance of the

process Z. It could be a fruitful direction of future work to explore this in more detail.

We are also interested in the convergence of error as the number of neurons N grows.

There are several results (e.g. Gonon et al. 2020a) which establish explicit approxi-

mation bounds of order 1/
√
N using the CLT for i.i.d. random variables. Such an

approximation bound is likely to hold in this context too.

6.4 Reinforcement learning on stationary ergodic processes

In the previous section we considered a scenario where we use an ESN to learn a given

target functional given a sample trajectory of labelled data. This is a classic supervised

learning problem. In this current section we will extend these results to a reinforcement

learning (RL) setting.

In the RL paradigm we have an agent that explores its environment and at each mo-

ment in time k ∈ Z executes an action ak, makes an observation ωk of its surroundings,

and obtains a reward rk. So at every time point the agent records a (reward, action, ob-

servation) triple (rk, ak, ωk). The goal of the agent to choose a sequence of actions that

will maximise the present value
∑∞

k=0 γ
krk of its future rewards, discounting rewards

by a factors of γ ∈ [0, 1) when they occur further into the future.

For a given stochastic sequence of actions (Ak)k∈Z which depend on the random ob-

146



servations (Ωk)k∈Z and rewards (Rk)k∈Z we have a random process Z ≡ (Zk)k∈Z =

(Rk,Ak,Ωk)k∈Z. Now suppose an agent has a particular history of (reward, action,

observation) triples leading up to the present moment. It now makes sense to define

the value of that history as the expectation of the discounted sum of future rewards

conditional on the history of (reward, action, observation) triples. In particular we can

define a causal value functional V which takes a sequence of (reward, action, observa-

tion) triples z, and returns their value.

Definition 6.4.1. (Value functional) Let Dd be a compact subset of Rd and R :

(Dd)
Z → R a µ- measurable causal reward functional that satisfies E[R(Z)2] <∞. Let

T k : Rd → Rd denote the k-fold composition of the shift map with itself. We define the

causal value functional V : (Dd)
Z → R (with respect to the process Z) as

V (z) := Eµ
[ ∞∑
k=0

γkRT k(Z)

∣∣∣∣ Zj = zj ∀j ≤ 0

]
.

We will see in Theorem 6.4.3 that V is actually the unique fixed point of a contraction

mapping called the Bellman operator, which appears in reinforcement learning and in

stochastic control.

Definition 6.4.2. Let Z be a stationary ergodic process. Then we define the map TZ

as a CTI filter on the bi-infinite sequences (Dd)
Z, which returns the random variable:

TZ(z)k =

zk+1 if k < 0

Zk+1 | Zj = zj ∀j ≤ 0 if k ≥ 0.

Theorem 6.4.3. Let Z be a stationary ergodic process with invariant measure µ.

Consider the space of functionals H : (Dd)
Z → R that satisfy Eµ[H(Z)2] ≤ ∞. Now

equip this space with the norm

‖H‖µ =
√
Eµ[H(Z)2].

Let R : (Dd)
Z → R be a µ measurable causal reward functional that satisifes Eµ[R(Z)2] <

∞. Then for γ ∈ [0, 1) the operator

Φ(H)(z) = γEµ[HTZ(z)] +R(z) (6.2)

is a contraction mapping with Lipshitz constant γ and unique fixed point V , which is

the value functional in definition 6.4.1.
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Proof. We will first show that Φ is a contraction mapping with Lipschitz constant γ.

To see this observe that

‖Φ(H1)− Φ(H2)‖2µ = Eµ
[
(R(Z) + γEµ[H1TZ(Z)]−R(Z)− γEµ[H2TZ(Z)])2

]
= γ2Eµ

[
Eµ[H1TZ(Z)−H2TZ(Z)]2

]
= γ2Eµ

[
(H1T (Z)−H2T (Z))2

]
(by the law of total expectation)

= γ2Eµ
[
(H1(Z)−H2(Z))2

]
(by stationary ergodicity of Z)

= γ2‖H1 −H2‖2µ.

Then by Banach’s fixed point theorem the operator Φ admits a unique fixed point. We

will now show that the value function V is indeed this fixed point. Re-arranging the

definition of V (z), we have that:

V (z) = Eµ
[ ∞∑
k=0

γkRT k(Z)

∣∣∣∣ Zj = zj ∀j ≤ 0

]

= Eµ
[ ∞∑
k=1

γkRT k(Z)

∣∣∣∣ Zj = zj ∀j ≤ 0

]
+R(z)

= γEµ
[ ∞∑
k=0

γkRT k+1(Z)

∣∣∣∣ Zj = zj ∀j ≤ 0

]
+R(z)

= γEµ
[ ∞∑
k=0

γkRT k(Z)

∣∣∣∣ Zj = zj+1 ∀j < 0

]
+R(z)

where we have carried out straightforward relabellings of the indexing of terms in the

sum by k. Then by the law of total expectation we may write this last expression as

V (z) = γEµ
[
Eµ
[ ∞∑
k=0

γkRT k(Z)

∣∣∣∣ Zj = TZ(z)j ∀j ≤ 0

]]
+R(z)

= γEµ[V TZ(z)] +R(z) = Φ(V )(z),

which shows that V is indeed a fixed point of Φ, and so is the unique such, since Φ is

a contraction.

We are now ready to prove our next result, which generalises Theorem 6.3.7 and applies

to the following reinforcement learning context. We envision an agent that executes a

random sequence of actions (Ak)k∈Z which depend on the random observations (Ωk)k∈Z
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and rewards (Rk)k∈Z hence we have a random process Z ≡ (Zk)k∈Z = (Rk,Ak,Ωk)k∈Z

controlled by the actions (Ak)k∈Z. We assume that the controlled process Z is sta-

tionary and ergodic. Then for any tolerance ε > 0 if we train an ESN with sufficiently

many neurons N on a trajectory of sufficiently many sample points `, using regularised

least squares, then we can approximate the fixed point of Φ (and therefore the value

functional V ) to within the tolerance ε.

Theorem 6.4.4. (Hart, Olding, Cox, Isupova & Dawes 2021) Suppose that Z is an

admissible input process, that is also stationary and ergodic with invariant measure µ.

Let R : (Dd)
Z → R be causal, µ-measurable and satisfy E[|R(Z)|2] < ∞ and define

Φ using (6.2) on the µ-measurable functionals H that satisfy Eµ[|H(Z)|2] < ∞. Let

γ ∈ [0, 1). Let z be an arbitrary realisation of Z.

Then for any ε > 0, and δ ∈ (0, 1) there exist

• constants n, T0 ∈ N, R, λ∗ > 0 and ` ∈ N,

• an ESN with parameters A,C, b generated by procedure 6.3.2 (with inputs n, T0, R),

• an output layer W ∗` ∈ R2(d(T0+1)+n) minimising (over W ∈ R2(d(T0+1)+n)) the

least squares problem

1

`

`−1∑
k=0

∥∥∥W>(HA,C,bT−k(z)− γHA,C,bT 1−k(z))−R(z)
∥∥∥2

+ λ‖W‖2

where λ ∈ (0, λ∗),

such that, with probability (1− δ), the inequality

Eµ
[∥∥∥HA,C,b

W ∗`
(Z)− ΦHA,C,b

W ∗`
(Z)

∥∥∥2
∣∣∣∣A,C, b] < ε

is satisfied.

Proof. First let V be the unique fixed point of the contraction mapping Φ; the existence

and uniqueness of this fixed point is guaranteed by Banach’s fixed point theorem. Recall

the Lipschitz constant of Φ is γ. Fix ε > 0 and δ ∈ (0, 1). Then by Theorem 6.3.3 there

exists with probability (1− δ) a linear readout layer W ∈ R2(d(T0+1)+n) such that

Eµ
[∥∥∥HA,C,b

W (Z)− V (Z)
∥∥∥2
∣∣∣∣A,C, b] < ε

5(1 + γ)
. (6.3)
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Then it follows that

Eµ[‖HA,C,b
W − ΦHA,C,b

W ‖2|A,C, b]

= Eµ[‖HA,C,b
W (Z)− ΦHA,C,b

W (Z) + V (Z)− V (Z)‖2|A,C, b]

≤ Eµ[‖HA,C,b
W (Z)− V (Z)‖2|A,C, b] + Eµ[‖V (Z)− ΦHA,C,b

W (Z)‖2|A,C, b]

= Eµ[‖HA,C,b
W (Z)− V (Z)‖2|A,C, b] + Eµ[‖ΦV (Z)− ΦHA,C,b

W (Z)‖2|A,C, b]

≤ Eµ[‖HA,C,b
W (Z)− V (Z)‖2|A,C, b] + γEµ[‖V (Z)−HA,C,b

W (Z)‖2|A,C, b]

= (1 + γ)Eµ[‖V (Z)−HA,C,b
W (Z)‖2|A,C, b]

< (1 + γ)
ε

5(1 + γ)
by (6.3)

<
ε

5

which yields the estimate

Eµ[‖HA,C,b
W − ΦHA,C,b

W ‖2|A,C, b] < ε

5
. (6.4)

Now, we can choose λ∗ such that for any λ ∈ (0, λ∗)

λ‖W‖2 < ε

5
. (6.5)

Next we define a sequence of vectors (W ∗j )j∈N by

W ∗j = arg min
U∈R2(d(T0+1)+N)

(
1

j

j−1∑
k=0

‖HA,C,b
U T−k(z)− γHA,C,b

U T 1−k(z)−RT−k(z)‖2 + λ‖U‖2
)
.

We may view arg min as continuous map on the space of strictly convex C1 functions

that returns their unique minimiser. The regularised linear least squares problem is a

strictly convex C1 problem, so we may define W ∗∞ ∈ R2d(T0+1)+n by

W ∗∞ := arg min
U

(
Eµ[‖HA,C,ζ

U (Z)− γHA,C,b
U T (Z)−R(Z)‖2|A,C, b] + λ‖U‖2

)
= arg min

U
lim
j→∞

(
1

j

j−1∑
k=0

‖HA,C,b
U T−k(z)− γHA,C,b

U T 1−k −RT−k(z)‖2 + λ‖U‖2
)

= lim
j→∞

arg min
U

(
1

j

j−1∑
k=0

‖HA,C,b
U T−k(z)− γHA,C,b

U T 1−k −RT−k(z)‖2 + λ‖U‖2
)

= lim
j→∞

W ∗j
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where the second and third equalities hold by the Ergodic Theorem and continuity of

arg min respectively. Now, we may choose ` ∈ N sufficiently large that∣∣∣Eµ[‖W ∗>` (HA,C,b(Z)− γHA,C,bT (Z))−R(Z)‖2|A,C, b]

− Eµ[‖W ∗>∞ (HA,C,b(Z)− γHA,C,bT (Z))−R(Z)‖2|A,C, b]
∣∣∣ < ε

5
, (6.6)

and∣∣∣∣∣ lim
j→∞

(
1

j

j−1∑
k=0

‖W ∗>j (HA,C,bT−k(z)− γHA,C,bT 1−k(z))−RT−k(z)‖2 + λ‖W ∗j ‖2
)

− 1

`

`−1∑
k=0

‖W ∗>` (HA,C,bT−k(z)− γHA,C,bT 1−k(z))−RT−k(z)‖2 + λ‖W ∗` ‖2
∣∣∣∣∣ < ε

5
,

(6.7)

and by the Ergodic Theorem

∣∣∣∣∣1`
`−1∑
k=0

‖W>(HA,C,bT−k(z)− γHA,C,bT 1−k(z))−R(z)‖2

− lim
j→∞

1

j

j−1∑
k=0

‖W>(HA,C,bT−k(z)− γHA,C,bT 1−k(z))−R(z)‖2
∣∣∣∣∣ < ε

5
. (6.8)

Now the proof proceeds directly

Eµ[‖HA,C,b
W ∗`

(Z)− ΦHA,C,b
W ∗`

(Z)‖2|A,C, b]

= Eµ[‖HA,C,b
W ∗`

(Z)− γHA,C,b
W ∗`

T (Z)−R(Z)‖2|A,C, b]

= Eµ[‖W ∗>` (HA,C,b(Z)− γHA,C,bT (Z))−R(Z)‖2|A,C, b].

Then we apply (6.6) which yields

Eµ[‖HA,C,b
W ∗`

(Z)− ΦHA,C,b
W ∗`

(Z)‖2|A,C, b]

< Eµ[‖W ∗>∞ (HA,C,b(Z)− γHA,C,bT (Z))−R(Z)‖2|A,C, b] +
ε

5
.
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Then we apply the Ergodic Theorem

Eµ[‖W ∗>∞ (HA,C,b(Z)− γHA,C,bT (Z))−R(Z)‖2|A,C, b] +
ε

5

= lim
j→∞

(
1

j

j−1∑
k=0

‖W ∗>∞ (HA,C,bT−k(z)− γHA,C,bT 1−k(z))−RT−k(z)‖2
)

+
ε

5

≤ lim
j→∞

(
1

j

j−1∑
k=0

‖W ∗>∞ (HA,C,bT−k(z)− γHA,C,bT 1−k(z))−RT−k(z)‖2
)

+ λ‖W ∗∞‖2 +
ε

5

= lim
j→∞

(
1

j

j−1∑
k=0

‖W ∗>j (HA,C,bT−k(z)− γHA,C,bT 1−k(z))−RT−k(z)‖2 + λ‖W ∗j ‖2
)

+
ε

5

then apply (6.7)

<
1

`

`−1∑
k=0

‖W ∗>` (HA,C,bT−k(z)− γHA,C,bT 1−k(z))−RT−k(z)‖2 + λ‖W ∗` ‖2 +
2ε

5

≤ 1

`

`−1∑
k=0

‖W>(HA,C,bT−k(z)− γHA,C,bT 1−k(z))−RT−k(z)‖2 + λ‖W‖2 +
2ε

5

then apply (6.8)

< lim
j→∞

(
1

j

j−1∑
k=0

‖W>(HA,C,bT−k(z)− γHA,C,bT 1−k(z))−RT−k(z)‖2
)

+ λ‖W‖2 +
3ε

5

then apply (6.5)

< lim
j→∞

(
1

j

j−1∑
k=0

‖W>(HA,C,bT−k(z)− γHA,C,bT 1−k(z))−RT−k(z)‖2
)

+
4ε

5

Then apply the Ergodic Theorem again

= Eµ[‖W>(HA,C,b(Z)− γHA,C,bT (Z)−R(Z))‖2|A,C, b] +
4ε

5

= Eµ[‖HA,C,b
W − ΦHA,C,b

W ‖2|A,C, b] +
4ε

5

then apply (6.4)

< ε.

6.5 Online learning on stationary ergodic processes

Theorem 6.4.4 outlines an offline learning algorithm because the least squares training

occurs after all the data has been collection. In some reinforcement learning applica-
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tions, it is useful - or even essential - for the optimisation of W to occur dynamically as

new data comes in; such algorithms are called online learning algorithms. We analysed

a simple online learning algorithm driven by deterministic inpits in section 5.5. In

this present section, we will consider the same algorithm; this time driven instead by

stochastic inputs.

We will first introduce a lemma, stating that, under reasonable conditions, the ODE

d

dt
W = −h(W ) := −Eµ

[
HA,C,b(Z)

(
HA,C,b
W (Z)− ΦHA,C,b

W (Z)
)]

(6.9)

converges exponentially quickly to a globally asymptotic fixed point W ∗, for which the

associated ESN functional HA,C,b
W ∗ is as close as possible to the unique fixed point of Φ.

By as close as possible we mean that the orthogonal projection of ΦHA,C,b
W ∗ onto the

finite dimensional vector space of functionals {HA,C,b
W |W ∈ Rd} is HA,C,b

W ∗ . Unlike the

previous result (Theorem 6.4.4) we do not need to assume that the contraction mapping

satisfies Φ(H) = R + γE[HTZ ]. We could (possibly) choose a Bellman operator that

admits the optimal value function as the fixed point.

Lemma 6.5.1. (Hart, Olding, Cox, Isupova & Dawes 2021) Let Z be an admissible

input process. Let A,C, b be N ×N , N × d, and N × 1 dimensional random matrices

for the reservoir matrix, input matrix and bias vector, respectively. Let HA,C,b and

HA,C,b
W denote the associated ESN functionals. Let Φ be a contraction mapping, with

Lipschitz constant 0 ≤ γ < 1, on the space of functionals H : (Dd)
Z → R that are

µ-measurable and satisfy E[H(Z)2] <∞. Suppose further that 0 ≤ γ < κ−1 where κ is

the condition number of the autocorrelation matrix

Σ = Eµ
[
HA,C,b(Z)

(
HA,C,b(Z)

)> ∣∣∣∣ A,C, b] .
Then there exists a δ > 0 such that the ODE

d

dt
W = −h(W ) := −Eµ

[
HA,C,b(Z)

(
HA,C,b
W (Z)− ΦHA,C,b

W (Z)
) ∣∣∣∣ A,C, b]

satisfies

d

dt
‖W −W ∗‖ ≤ −δ‖W −W ∗‖ (6.10)

where W ∗ is a globally asymptotic fixed point. W ∗ enjoys the further property that

HA,C,b
W ∗ = PΦHA,C,b

W ∗
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where P denotes the L2(µ) orthogonal projection operator on the µ-measurable filters

H satisfying E[H(Z)2] <∞ and is defined

PH(z) :=
(
HA,C,b(z)

)>
Σ−1Eµ

[
HA,C,b(Z)H(Z)

∣∣∣ A,C, b] .

Proof. To show that W ∗ is a globally asymptotic fixed point it suffices to show that

there exists a δ > 0 such that

(W −W ∗) · (h(W ∗)− h(W )) ≤ −δ‖(W −W ∗)‖2

as this implies

d

dt
‖W −W ∗‖ ≤ −δ‖W −W ∗‖.

To construct this δ, we first note that

h(W ) = ΣW − Eµ
[
HA,C,b(Z)ΦHA,C,b

W (Z)
) ∣∣∣∣ A,C, b]
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so, by a direct computation we have

(W −W ∗) · (h(W ∗)− h(W ))

= (W −W ∗) ·
(
Eµ
[
HA,C,b(Z)ΦHA,C,b

W (Z)
) ∣∣∣∣ A,C, b]− Eµ

[
HA,C,b(Z)ΦHA,C,b

W ∗ (Z)
) ∣∣∣∣ A,C, b])

− (W −W ∗) ·
(

ΣW − ΣW ∗
)

= (W −W ∗) ·
(
Eµ
[
HA,C,b(Z)ΦHA,C,b

W (Z)
) ∣∣∣∣ A,C, b]− Eµ

[
HA,C,b(Z)ΦHA,C,b

W ∗ (Z)
) ∣∣∣∣ A,C, b])

− (W −W ∗)>Σ
(
W −W ∗

)
≤ (W −W ∗) ·

(
Eµ
[
HA,C,b(Z)ΦHA,C,b

W (Z)
) ∣∣∣∣ A,C, b]− Eµ

[
HA,C,b(Z)ΦHA,C,b

W ∗ (Z)
) ∣∣∣∣ A,C, b])

− σ‖W −W ∗‖2 where σ > 0 is the smallest eigenvalue of Σ

= (W −W ∗) ·
(
Eµ
[
HA,C,b(Z)ΦHA,C,b

W (Z)
)
−HA,C,b(Z)ΦHA,C,b

W ∗ (Z)
) ∣∣∣∣ A,C, b])

− σ‖W −W ∗‖2

≤ (W −W ∗) ·
(
Eµ
[
HA,C,b(Z)HA,C,b

W (Z)
)
−HA,C,b(Z)HA,C,b

W ∗ (Z)
) ∣∣∣∣ A,C, b])γ

− σ‖W −W ∗‖2 because γ is the Lipschitz constant for Φ

= γ(W −W ∗)>Σ(W −W ∗)− σ‖W −W ∗‖2

≤ γρ‖W −W ∗‖2 − σ‖W −W ∗‖2 where ρ > 0 is the largest eigenvalue of Σ

= −(σ − γρ)‖W −W ∗‖2,

so we can set δ := σ − γρ and notice δ > 0 because 0 ≤ γ < κ−1 = σ/ρ. Next, to show

that

HA,C,b
W ∗ = PΦHA,C,b

W ∗

we observe that since W ∗ is an equilibrium point of the ODE

Ẇ = −h(W )
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it follows that h(W ∗) = 0 and therefore

0 = Eµ
[
HA,C,b(Z)

(
HA,C,b
W ∗ (Z)− ΦHA,C,b

W ∗ (Z)
) ∣∣∣∣ A,C, b]

=⇒ 0 = Eµ
[
HA,C,b(Z)

(
HA,C,b(Z)

)> ∣∣∣∣ A,C, b]W ∗
− Eµ

[
HA,C,b(Z)ΦHA,C,b

W ∗ (Z)

∣∣∣∣ A,C, b]
=⇒ 0 = ΣW ∗ − Eµ

[
HA,C,b(Z)ΦHA,C,b

W ∗ (Z)

∣∣∣∣ A,C, b]
so, ΣW ∗ = Eµ

[
HA,C,b(Z)ΦHA,C,b

W ∗ (Z)

∣∣∣∣ A,C, b]
so, W ∗ = Σ−1Eµ

[
HA,C,b(Z)ΦHA,C,b

W ∗ (Z)

∣∣∣∣ A,C, b]
so, HA,C,b

W ∗ = HA,C,b>Σ−1Eµ
[
HA,C,b(Z)ΦHA,C,b

W ∗ (Z)

∣∣∣∣ A,C, b]
= PΦ(HA,C,b

W ∗ ).

One rather restrictive condition of this lemma is that the Lipschitz constant γ of the

contraction Φ must be less than the reciprocal condition number κ−1. Now, we can

interpret κ as a measure of how orthonormal the columns of the autocorrelation matrix

Σ are. In particular, if the columns are indeed orthonormal, then κ = 1 and this condi-

tion ceases to be restrictive at all. If the columns are close to being linearly dependant,

then κ is large so the requirement that κ−1 is small could become troublesome. If in-

deed there is a linear dependence, the matrix Σ is not even invertible and the theorem

breaks down completely. If we interpret HA,C,b(Z) as a vector of features, then κ

grows with the correlation between features. Higher correlation between the features

imposes a greater constraint on the Lipschitz constant γ. If we have no inter-feature

correlation (e.g independent features) then κ = 1 and we have no restriction at all on

γ.

In the special case that Φ is the Bellman operator

Φ(H) = γEµ[HTZ ] +R (6.2)

the Lipschitz constant γ is the discount factor. So in this case, we conclude that high

interfeature correlation, which results in small κ−1, forces us to choose small γ, which
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strongly discounts the contributions of future rewards.

Now, to actually solve ODE (6.9) we would need to compute

h(W ) := Eµ
[
HA,C,b(Z)

(
HA,C,b
W (Z)− ΦHA,C,b

W (Z)
) ∣∣∣∣ A,C, b] (6.11)

which may, or may not, be practical. For example, if the process Z is ergodic, we can

approximate (6.11) by taking a sufficiently long time average of

HA,C,bT k(z)
(
HA,C,b
W T k(z)− ΦHA,C,b

W T k(z)
)
.

Alternatively, we may approach the problem of solving (6.9) by first considering the

explicit Euler method (with time-steps αk > 0)

Wk+1 = Wk − αkh(Wk)

= Wk − αkEµ
[
HA,C,b(Z)

(
HA,C,b
Wk

(Z)− ΦHA,C,b
Wk

(Z)
) ∣∣∣∣ A,C, b],

then we might (heuristically) expect the algorithm (highly reminiscent of the iteration

studied in section 5.5)

Wk+1 = Wk − αkHA,C,bT k(z)
(
HA,C,b
Wk

T k(z)− ΦHA,C,b
Wk

T k(z)
)

(6.12)

to converge to W ∗, where αk are positive definite real numbers that satisfy

∞∑
k=1

αk =∞
∞∑
k=1

α2
k <∞.

We believe this heuristic could be made rigorous under mild assumptions, because algo-

rithm (6.12) closely resembles the major algorithm extensively studied in (Benveniste,

Métivier & Prioure 1990) and (Borkar 2009) for which similar results hold. Theorems

17 and 2.1.1. appearing in (Benveniste, Métivier & Prioure 1990) and (Borkar 2009)

respectively suggest that an algorithm much like (6.12) converges almost surely to W ∗

if its associated ODE (reminiscent of (6.9)) satisfies condition (6.10), and the input

process Z is strongly mixing. The conjecture that algorithm (6.12) converges to W ∗

is also reminiscent of Theorem 3.1 by Melo & Ribeiro (2007), and related results by

Chen et al. (2019). These results are closely related to Q-learning and stochastic gra-

dient descent. We note that (sadly) finding the fixed point of the general contraction

mapping Φ renders the estimation of W a nonlinear problem.
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We will close this chapter with a brief summary of its contents. We showed in the su-

pervised learning context, that given a time series of observations and targets (rewards)

realised from a stationary ergodic process, an ESN trained by linear least squares will

learn the functional that relates the observations to the targets. Furthermore, in the

reinforcement learning context, we showed that if an agent explores its environment

using a given policy, such that the reward-action-observation triples are a stationary

ergodic process, then an ESN trained by least squares will learn the value functional

associated to that that policy. Learning the value functional of a given policy is a useful

first step in establishing a complete reinforcement learning algorithm, which iterative

improves policy, (ideally) until the optimal policy is found.
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Chapter 7

Partial Differential Equations

7.1 Introduction

In previous chapters we took the view that the governing equations of our system

were unknown, and that an agent must learn them using a sample trajectory. In this

chapter we take a different view. We assume that the governing equations, which are

partial differential equations (PDEs), are known, but that the solution is numerically

expensive to compute. We will use reservoir computing to approximate the solutions.

Though the setting is different, many of the ideas discussed in previous chapters apply

here.

For motivation, we seek a numerical solution to Laplace’s equation

∆φ = 0

on a domain Ω ⊂ Rd subject to the Dirichlet boundary condition φ = h on ∂Ω ⊂ Rd−1.

This is known as the (inhomogeneous) Dirichlet problem for φ.

We will approximate the solution φ(z) with a feedforward reservoir computerW>σ(Cz+

b). The weights and biases C ∈MN,d(R) and b ∈ RN are randomly generated, and only

W ∈ RN is trained. To lighten notation, we let f(z) := σ(Cz + b). Feedforward reser-

voir computers are universal approximators, so given sufficiently many neurons (i.e.

sufficiently large N) there exists a W such that W>f approximates φ to the required

precision. In particular, we seek W such that

• ∆(W>f) ≈ 0 on Ω
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• W>f ≈ h on ∂Ω.

We make the crucial observation here that ∆(W>f) = W>(∆f) by linearity of the

Laplacian. We begin by evaluating ∆f and f on a finite set of points in the interior Ω

and boundary ∂Ω respectively. We then seek W that minimises the (regularised) mean

square differences ‖W>(∆f)‖ and ‖W>f − h‖ over the points in the interior Ω and

boundary ∂Ω respectively.

In many practical applications, we want more samples in some regions of the domain

Ω ∪ ∂Ω = Ω̄ than others. This is because the solution may be less regular, or more

interesting, in some regions in comparison to others. So we define probability measures

µ and µ′ on the measurable subsets of Ω and ∂Ω. We then generate sample points

Z0, Z1, . . . Z`−1 ∈ Ω and Z ′0, Z
′
1, . . . Z

′
`′−1 ∈ ∂Ω on the interior and boundary from

stationary ergodic processes Z and Z ′ with invariant measures µ and µ′. The most

straightforward approach is to choose Z and Z ′ as collections of i.i.d. uniform random

variables with respect to µ and µ′. If this is computationally infeasible (which is

often the case for high dimensional problems) we can use Markov Chain Monte Carlo

(MCMC) to generate Z and Z ′.

The remainder of this chapter is laid out as follows: In Section 7.2 we lay out some

theory which formalises the ideas in the introduction. In Section 7.3 we demonstrate

the theory by numerically solving Laplace’s equation on the disc using a feedforward

reservoir computer, and compare this to the analytic solution. We then conclude the

chapter and consider directions for future work in Section 7.4.

7.2 Theory

The Dirichlet problem is posed on an open, bounded, and connected domain Ω ⊂ Rd

that satisfies the exterior ball property. This property ensures the boundary ∂Ω is

regular enough to support a unique solution to the Dirchlet problem.

Definition 7.2.1. (Exterior ball property) An open set Ω has the exterior ball property

at point p ∈ ∂Ω if there exists a ball B ⊂ Rd\Ω such that p ∈ ∂B. If Ω has the exterior

ball property at every p ∈ ∂B then we say that Ω has the exterior ball property.

Theorem 7.2.2. (Existence and Uniqueness for the Dirichlet Problem) Let Ω ⊂ Rd

be open, bounded, connected, and satisfy the exterior ball property. Let h ∈ C0(∂Ω).
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Then the Dirichlet problem

∆φ = 0 on Ω

φ = h on ∂Ω

has a unique solution φ ∈ C2(Ω) ∪ C0(Ω̄). Further if h ∈ C2(∂Ω) then φ ∈ C2(Ω̄)

Now, suppose that the samples Z0, Z1, . . . , Z`−1 and Z ′0, Z
′
1, . . . , Z

′
`′−1 on the interior Ω

and boundary ∂Ω are drawn from stationary ergodic processes Z and Z ′.

Lemma 7.2.3. Consider the Dirichlet problem defined in Theorem 7.2.2. Let Z,Z ′ be

stationary ergodic procesess on Ω and ∂Ω with invariant measures µ and µ′ respectively.

Let f ∈ L1(∂Ω,RN ) and g ∈ L1(Ω,RN ). Let Λ ∈ MN×N (R) be an invertible matrix.

Let W ∗``′ be the unique minimiser (over W ∈ RN ) of

1

`

`−1∑
k=0

‖W>g(Zk)‖2 +
1

`′

`′−1∑
k=0

‖W>f(Z ′k)− h(Z ′k)‖2 +
2

`+ `′
‖ΛW‖2.

Then (W ∗``)`∈N converges (almost surely) as `→∞ to

W ∗ :=

(∫
Ω
gg> dµ+

∫
∂Ω
ff> dµ′ + ΛΛ>

)−1 ∫
∂Ω
hf dµ′.

which is the unique minimiser (over W ) of

‖W>g‖2L2(µ) + ‖W>f − h‖2L2(µ′) + ‖ΛW‖2.

Proof. Consider the map Ψ : RN → R defined

Ψ(W ) := ‖W>g‖2L2(µ) + ‖W>f − h‖2L2(µ′) + ‖ΛW‖2

=

∫
Ω
‖W>g‖2 dµ+

∫
∂Ω
‖W>f − h‖2 dµ′ + ‖ΛW‖2.
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The minimiser of Ψ satisfies DΨ = 0 where D is the derivative operator, so we consider

0 = (DΨ)(W )

= D

(∫
Ω
‖W>g‖2 dµ+

∫
∂Ω
‖W>f − h‖2 dµ′ + ‖ΛW‖2

)
=

∫
Ω
D‖W>g‖2 dµ+

∫
∂Ω
D‖W>f − h‖2 dµ′ +D‖ΛW‖2

=

∫
Ω

2W>gg> dµ+

∫
∂Ω

2(W>f − h)f> dµ′ + 2Λ>ΛW

=

∫
Ω
W>gg> dµ+

∫
M

(W>f − h)f> dµ′ +W>ΛΛ>

= W>
(∫

Ω
gg> dµ+

∫
∂Ω
ff> dµ′ + ΛΛ>

)
−
∫
∂Ω
hf> dµ′

which upon rearrangement yields

W =

(∫
Ω
gg> dµ+

∫
∂Ω
ff> dµ′ + ΛΛ>

)−1

×
∫
∂Ω
hf dµ′.

Since this is the unique solution to 0 = DΨ(W ), this stationary point is unique, and we

will denote it by W ∗. We can see it is a minimum because the Hessian HΨ is positive

definite. Next, define the map

Φ : {y ∈ C1(RN ,R) | y is strictly convex} → RN

as the mapping on the strictly convex C1 functions that returns their unique min-

imum. We can see that Φ is continuous with respect to the C1 topology and Eu-

clidean topology on R respectively. We consider the family of functions y``′ ∈ {y ∈
C1(RN ,R) | y is strictly convex} defined by

y``′(W ) =
1

`

`−1∑
k=0

‖W>g(Zk)‖2 +
1

`′

`′−1∑
k=0

‖W>f(Z ′k)− h(Z ′k)‖2 +
2

`+ `′
‖ΛW‖2,

so that by definition W`` = Φ(y``(W )) and hence

lim
`→∞

W`` = lim
`→∞

Φ(y``(W )) = Φ

(
lim
`→∞

y``(W )

)
= W ∗.

almost surely, where we have used, respectively, continuity of Φ and the Ergodic The-

orem.
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Definition 7.2.4. Let σ : RN → RN be `-finite, with ` = 2. Let C be an MN×d(R)-

valued random variable with full support, and b a RN -valued random variable with full

support. Then we define the random neural network f : Rd → RN by

f(z) := σ(Cz + b).

Lemma 7.2.5. Consider the Dirichlet problem defined in Theorem 7.2.2 with boundary

data h ∈ C2(∂Ω). Let f be the random neural network defined in Theorem 7.2.4. Then

for all α ∈ (0, 1) and ε > 0 there exists N0 ∈ N such that, with probability at least α,

for all N > N0 there exists a vector W̄ ∈ RN such that

‖∆(W̄>f)‖L2(µ) + ‖W̄>f − h‖L2(µ′) < ε.

Proof. Fix ε > 0. Now the Laplacian ∆ is continuous at φ (the unique solution of the

Dirichlet problem) so there is a δ > 0 such that for all s ∈ C2(Ω̄)

‖s− φ‖C2 < δ =⇒ ‖∆s−∆φ‖∞ < ε/2.

Fix α ∈ (0, 1). Then by Theorem 5.1.4 there exists N0 ∈ N such that, with probability

at least α, for all N > N0 there is a vector W̄ ∈ RN such that

‖W̄>f − φ‖∞ < min(ε/2, δ).

Then we can see on the boundary that

‖W̄>f − h‖L2(µ′) ≤ ‖W̄>f − h‖∞ = ‖W̄>f − φ‖∞ < ε/2.

Furthermore we have in the interior that

‖W̄>(∆f)‖L2(µ) ≤ ‖W̄>(∆f)‖C2 = ‖∆(W̄>f)−∆φ‖C2 < ε/2.

Then it follows that

‖∆(W̄>f)‖L2(µ) + ‖W̄>f − h‖L2(µ′) < ε/2 + ε/2 = ε.

Lemma 7.2.6. Consider the Dirichlet problem defined in Theorem 7.2.2 with boundary
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data h ∈ C2(∂Ω). Let Z,Z ′ be stationary ergodic processes on Ω and ∂Ω with invariant

measures µ and µ′ respectively. Then φ ∈ C2(Ω̄) is the unique solution to the Dirichlet

problem if and only if

‖∆φ‖L2(µ) + ‖φ− h‖L2(µ′) = 0

Proof. First, suppose that φ ∈ C2(Ω̄) solves the Dirichlet problem, then

∆φ = 0 on Ω and φ− h = 0 on ∂Ω.

so clearly

‖∆φ‖L2(µ) + ‖φ− h‖L2(µ′) = 0 + 0 = 0.

Conversely, suppose that

0 = ‖∆φ‖L2(µ) + ‖φ− h‖L2(µ′)

= ‖∆φ‖2L2(µ) + ‖φ− h‖2L2(µ′)

=

∫
Ω

(∆φ)2 dµ+

∫
∂Ω

(φ− h)2 dµ′.

Now we observe that (∆φ)2 ≥ 0 and (φ− h)2 ≥ 0 are continuous, so

(∆φ)2 = 0 on Ω (φ− h)2 = 0 on ∂Ω

hence

∆φ = 0 on Ω φ− h = 0 on ∂Ω

so φ is the unique solution of the Dirichlet problem.

Theorem 7.2.7. Consider the Dirichlet problem defined in Theorem 7.2.2 with bound-

ary data h ∈ C2(∂Ω). Let Z,Z ′ be a stationary ergodic processes with invariant mea-

sures µ and µ′ defined on Ω ⊂ Rd and ∂Ω respectively. Let f ∈ L1(Ω,RN )(µ) be the

feedforward random neural network in Definition 7.2.4. Let Λ ∈ MN×N (R) be the in-

vertible regularisation matrix and λ > 0. Suppose that W ∗``′ minimises (over W ∈ RN )

1

`

`−1∑
k=0

‖W>∆f(Zk)‖2 +
1

`′

`′−1∑
k=0

‖W>f(Z ′k)− h(Z ′k)‖2 +
2λ

`+ `′
‖ΛW‖2.
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Then, for all α ∈ (0, 1) and ε > 0 there exist constants `0, λ0, N0 such that, with

probability at least α, for all ` > `0, λ > λ0, N > N0

‖∆(W ∗>`` f)‖L2(µ) + ‖W ∗>`` f − h‖L2(µ′) < ε.

Proof. Fix ε > 0. Then, by Theorem 5.1.4 there exists a N0 ∈ N such that, with

probability at least α, for all N > N0 the vector W̄ ∈ RN satisfies

‖∆(W̄>f)‖L2(µ) + ‖W̄>f − h‖L2(µ′) <
ε

3
.

Let λ0 > 0 be sufficiently small that for any λ ∈ (0, λ0)

λ‖ΛW̄‖ < ε

3
.

Now let

W ∗ =

(∫
Ω

(∆f)(∆f)> dµ+

∫
∂Ω
ff> dµ′ + ΛΛ>

)−1 ∫
∂Ω
hf dµ′.

Then W ∗`` →W ∗ so we choose `0 ∈ N sufficiently large that for any ` > `0

‖∆(W ∗>`` f)‖L2(µ) + ‖W ∗>`` f − h‖L2(µ′) + λ‖ΛW ∗>`` ‖

<‖∆(W ∗>f)‖L2(µ) + ‖W ∗>f − h‖L2(µ′) + λ‖ΛW ∗‖+
ε

3
.

Now the proof proceeds directly

‖∆(W ∗>`` f)‖L2(µ) + ‖W ∗>`` f − h‖L2(µ′)

≤‖∆(W ∗>`` f)‖L2(µ) + ‖W ∗>`` f − h‖L2(µ′) + λ‖ΛW ∗>`` ‖

<‖∆(W ∗>f)‖L2(µ) + ‖W ∗>f − h‖L2(µ′) + λ‖ΛW ∗‖+
ε

3

≤‖∆(W̄>f)‖L2(µ) + ‖W̄>f − h‖L2(µ′) + λ‖ΛW̄‖+
ε

3

<‖∆(W̄>f)‖L2(µ) + ‖W̄>f − h‖L2(µ′) +
ε

3
+
ε

3

<
ε

3
+
ε

3
+
ε

3
= ε.

We have shown that with a reservoir computer, and least squares regression, we can
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obtain W`` such that W ∗>`` f closely approximates the boundary data, and closely ap-

proximates the derivative condition on the interior. But does this imply that W ∗>`` f

closely approximates the unique solution φ of the Dirichlet problem i.e. can we ensure

that ‖W ∗>`` f −φ‖L2(µ) < ε? We are not sure. This difficulty has likely emerged because

we are working in C2(Ω̄), and could probably be avoided by working in the Sobolev

space H1. Analysing the problem in H1 could be a fruitful direction of future work.

Theorem 7.2.7 is an offline learning result where the reservoir computer is trained using

least squares regression, once all the data has been collection. We can prove a similar

online result where the weights Wk are updated as new data comes in.

Theorem 7.2.8. Consider the Dirichlet problem defined in Theorem 7.2.2 with bound-

ary data h ∈ C2(∂Ω). Let Z,Z ′ be a stationary ergodic processes with invariant mea-

sures µ and µ′ defined on Ω ⊂ Rd and ∂Ω respectively. Let f ∈ L1(Ω,RN )(µ) be

the feedforward random neural network in Definition 7.2.4. Let Λ ∈ MN×N (R) be the

invertible regularisation matrix. Then for αk = 1/k and any initial W0 ∈ RN the

algorithm

Wk+1 = (I − αkΛΛ>)Wk − αk
(

(∆f)(Zk)W
>
k (∆f)(Zk) + f(Z ′k)(W

>
k f(Z ′k)− h(Z ′k))

)
(7.1)

converges to

W ∗ =

(∫
Ω

(∆f)(∆f)> dµ+

∫
∂Ω
ff> dµ′ + ΛΛ>

)−1

×
∫
∂Ω
fh dµ′

almost surely.

Proof. Using that αk = 1/k and rearranging algorithm (7.1) we have

Wk+1 = Wk −
1

k

([
(∆f)(Zk)(∆f)(Zk)

> + f(Z ′k)f(Z ′k)
> + ΛΛ>

]
Wk − f(Z ′k)h(Z ′k)

)
= Wk −

1

k
(BkWk − vk)

where

Bk = (∆f)(Zk)(∆f)(Zk)
> + f(Z ′k)f(Z ′k)

> + ΛΛ>, vk = f(Z ′k)h(Z ′k).
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Now it follows from the ergodic theorem that

∥∥∥∥ lim
`→∞

1

`

`−1∑
k=0

Bk −B
∥∥∥∥
RN

= 0,

∥∥∥∥ lim
`→∞

1

`

`−1∑
k=0

vk − v
∥∥∥∥
RN

= 0

for

B =

∫
Ω

(∆f)(∆f)> dµ+

∫
∂Ω
ff> dµ′ + ΛΛ>, v =

∫
∂Ω
fh dµ′

almost surely. Then it follows from Theorem 5.5.5 that algorithm (7.1) converges to

W ∗ = B−1v =

(∫
Ω

(∆f)(∆f)> dµ+

∫
∂Ω
ff> dµ′ + ΛΛ>

)−1 ∫
∂Ω
fh dµ′

almost surely.

7.3 Laplace’s equation on the disc

7.3.1 Analytic solution

We will demonstrate the theory presented in this chapter so far by solving a Dirichlet

problem on the unit disc, first analytically, then with a reservoir computer. We let

Ω = {(r, θ) | 0 ≤ r < 1} and ∂Ω = {(r, θ) | r = 1}

and seek φ ∈ C2(Ω,R) that satisfies

• ∆φ = 0 on Ω

• φ = h on ∂Ω.

The general solution is

φ(r, θ) = α0 +

∞∑
n=1

αn cos(nθ)rn +

∞∑
n=1

βn sin(nθ)rn
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Figure 7-1: The analytic solution φ(r, θ) = r4 cos 4θ to the Dirichlet problem on the
disc, taking the boundary data h(θ) = cos 4θ.

with

α0 =
1

2π

∫ 2π

0
h(θ) dθ,

αn =
1

π

∫ 2π

0
h(θ) cos(nθ) dθ,

βn =
1

π

∫ 2π

0
h(θ) sin(nθ) dθ.

We will set the boundary data h(θ) := cos(4θ). The orthonormality of the Fourier basis

implies that α4 = 1 and all other coefficients αn and βn vanish so

φ(r, θ) = r4 cos(4θ).

A plot of the solution is shown in Figure 7-1.

7.3.2 Reservoir computer solution

We define processes Z and Z ′ on the interior Ω and boundary ∂Ω of the unit disc. The

terms in Z and Z ′ are i.i.d uniform distributions on the unit disc and unit circle. We

take ` = 50 samples on the disc, and `′ = 50 samples on the circle respectively. We
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have maps f, ∆f : Ω → RN , with N = 50, with ith components fi, (∆f)i : Ω → R
defined by

fi(z) = tanh(C>i z + bi), (∆f)i(z) = −2 tanh(C>i z + bi) sech2(C>i z + bi)

respectively. The input matrix C and bias vector b are i.i.d uniform random variables

∼ U [−0.05, 0.05]. We set the Tikhonov regularisation parameter λ to take the value

λ = 10−6.

We seek W ∗ ∈ RN that minimises

`−1∑
k=0

‖W>∆f(Zk)‖+
`′−1∑
k=0

‖W>f(Z ′k)− h(Z ′k)‖+ λ‖W‖.

We can recast this as a matrix equation, with X> an N × (`+ `′) real matrix with kth

column

X>k =

∆f(Zk) if 1 ≤ k ≤ `

f(Z ′k−`) if ` < k ≤ `+ `′

and Y > a real (`+ `′)-vector with kth component

Y >k =

0 if 1 ≤ k ≤ `

h(Z ′k−`) if ` < k ≤ `+ `′

so that

W ∗ = arg min
W∈RN

[∥∥∥∥W>([∆f(Z1)
]
. . .
[
∆f(Z`)

] [
f(Z ′1)

]
. . .
[
f(Z ′`′)

])
−
([

0
]
. . .
[
0
] [
h(Z ′1)

]
. . .
[
h(Z ′`′)

])∥∥∥∥+ λ‖W‖
]

= arg min
W∈RN

[
‖W>X> − Y >‖+ λ‖W‖

]
.

Then we obtain W ∗ by taking the singular value decomposition (SVD) of X

X = UΣV >.

We denote the singular values by σk, and the columns of U by Uk. Then the solution
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W ∗ has the explicit form

W ∗ =
N∑
k=1

σkU
>
k Y

σ2
k + λ

.

The approximate solution to the Dirichlet problem W ∗>f : Ω→ R is computed twice,

each time under a different choice of parameters:

• Number of interior points ` = 50 or ` = 500

• Number of boundary points `′ = 50 or `′ = 500

• Number of neurons N = 50 or N = 500

• Regularisation parameter λ = 10−6 or λ = 0

• For both runs the input matrix C and bias vector ζ are i.i.d uniform random

variables ∼ U [−0.05, 0.05].

The outcomes are shown in Figures 7-2 and 7-3. We can see that increasing the number

of sample points `, `′ and neurons N dramatically improves the quality of the solution.

7.4 Future Work and Open Questions

In this chapter we showed that we can approximate the solution to the Dirichlet problem

φ using a feedforward reservoir computer W>f , which can be trained by offline or online

methods. Our analysis exploits the linearity of the Laplacian, but does not exploit much

else. This suggests that the results could be extended to the more general boundary

value problem

• L(φ) = s on Ω

• φ = h on ∂Ω

for continuous functions s ∈ C0(Ω,R), h ∈ C0(∂Ω,R) where L is an arbitrary linear

differential operator. The results could also be extended to time dependent linear

PDEs like the heat or wave equation, which need not even be posed on a bounded

domain. For any such extension, the well posedness of solutions would have to be

established. Moreover, the operator L could be an integral operator such as convolution,

or the Radon transform, that appears in problems like de-blurring or medical image

reconstruction.
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(a) Approximate solution using a reservoir computer
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(b) Difference between the analytic solution and approximate solution

Figure 7-2: Reservoir computer solution for ` = 50, `′ = 50, N = 50, λ = 10−6. The
red points are the sample points.
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(b) Difference between the analytic solution and approximate solution

Figure 7-3: Reservoir computer solution for ` = 500, `′ = 500, N = 500, λ = 0. The
red points are the sample points.
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It would be extremely powerful to generalise these linear results to the case of non-

linear PDEs, but this is much more complicated. We can rule out the offline method

immediately because it relies explicitly on the linearity of the derivative operator. On

the other hand the online method described by algorithm (7.1) could be modified to

yield the iteration

Wk+1 = (I − αkΛΛ>)Wk

− αk
(
L[f ](Zk)(L[W>k f ](Zk)− s(Zk)) + f(Z ′k)(W

>
k f(Z ′k)− h(Z ′k))

)
for L a nonlinear operator. This is highly reminiscent of the major algorithm studied

in Borkar (2009), which is essentially stochastic gradient descent. Using stochastic

gradient descent to train a neural network to solve (nonlinear) PDEs is not new, and is

discussed in Han et al. (2018) and Deveney et al. (2019). These authors train both the

external weights W and internal weights C, b of a (deep) neural network, in contrast

to the reservoir computing paradigm where only W is trained.

Furthermore, Berner et al. (2020), Grohs et al. (2018), Jentzen et al. (2018) have pro-

vided an excellent reason to use deep neural networks to solve PDEs, namely that they

can overcome the curse of dimensionality. The complexity of classic grid based meth-

ods like finite element and finite differences grows exponentially with the dimension

of the PDE, while neural network based methods have polynomial complexity. These

results are likely to hold in the case of reservoir computing; especially given the re-

cent results by Gonon (2021). The results by Gonon show that a feedforward reservoir

computer (called a random neural network by the author) trained on observations of

a Black-Scholes type PDE overcomes the curse of dimensionality. The error on the

approximation is shown to converge with order 1/
√
N , and the bounding constant is

computed explicitly. This suggests that random feedforward neural networks are well

suited to solving very high dimensional linear PDEs, and the problem is amenable to

mathematical analysis.

Another idea for future work is perhaps to establish (more easily in the linear case)

uniform bounds on the number of sample points ` and neurons N required for the

solution of a PDE to be approximated to a given tolerance. This could be achieved

using arguments inspired by Gonon et al. (2020a) or Gonon (2021). Such bounds could

be compared to empirical plots for the quality of the solution as the number of sample

points `, `′ and neurons N grows.

The results that appear in this chapter could perhaps be generalised to domains Ω
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that are not so well behaved. The infamous L-shaped domain (imagine a square with a

smaller square cut out of the top right hand corner) does not have the exterior ball prop-

erty on the point at the inside crease of the L-shaped domain. The solutions to some

boundary value problems are singular at this point, and cause numerical problems. It

may be fruitful to explore how reservoir computing methods fare at the approximating

the solutions to PDEs on domains such as these.
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Chapter 8

Conclusions and Future Work

In this final chapter we will review all previous chapters, and discuss directions for

future work as we go. We started in Chapter 1 with a brief introduction to neural

networks, machine learning and how these are connected to reservoir computing. We

then described an experiment undertaken at the start of the PhD which yielded results

that motivated much of the work that appears in this thesis. This experiment was to

take a trajectory of scalar observations of the Lorenz system, feed these observations

into an ESN, and attempt to learn the future dynamics of the Lorenz system using

least squares regression. We observed that the autonomous ESN was successful at

forecasting the future, and furthermore that the autonomous ESN appeared to have

learned topological and geometrical invariants of the Lorenz system.

To verify this, we spent Chapter 2 describing computational methods to obtain the

linearisations of fixed points, Lyaponov exponents, and homology groups. This is all

part of a larger field called computational topology which is slightly peripheral to the

main focus of this PhD, but which could form an interesting area for future work. For

example if a practitioner is interested in the geometrical or topological properties of

a dynamical system, but is deprived of the equations, and limited only to trajectories

of scalar observations, then their primary goal is obtain a good quality embedding,

perhaps with reservoir computing, and then apply the tools of computational topology.

In Chapter 3, we proved that a state contracting reservoir map trained on observations

of a deterministic system adopts dynamics that are synchronised to the drive system

via a continuously differentiable generalised synchronisation (GS) f : M → RN . We

assumed that the drive system evolves on a compact manifold M , but we can likely relax

this assumption by imposing suitable bounds on the observation function ω : M → R
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and evolution operator φ : M → M . It may be interesting in future to contemplate

how the smoothness of the GS influences the quality of learning phase. The results

by Mhaskar (1996), Poggio et al. (2017) establish that the number of neurons required

to approximate a given target map decreases as the smoothness of the target map

increases. These results strongly suggest that for many practical purposes a smoother

GS is a better GS.

In Chapter 4, we showed that in the special case of a linear reservoir map

F (x, z) = Ax+ Cz

the associated GS f : M → RN is an embedding for generic observation functions

ω : M → R and almost all matrices A,C. This result admits the Takens (1981) embed-

ding theorem as a special case when A is the lower shift matrix and C = (1, 0, . . . , 0).

Numerical experiments suggest that for a much broader class of reservoir maps, includ-

ing ESNs with nonlinear activation functions

F (x, z) = σ(Ax+ Cz + b)

the associated state synchronisation map f : M → RN is an embedding. Generalising

this result to hold for nonlinear reservoir systems such as the ESN appears difficult

because the proof in the linear case relies extensively on the linearity. In order to exploit

the linearity as much as possible, we could perhaps linearise a nonlinear reservoir map

at the fixed points of φ, and prove some partial results in that regime.

The synchronisation and embedding results in Chapters 3 and 4 are set in discrete

time, and it is likely possible to develop analogous results in continuous time. To see

this, suppose that {φt ∈ Diff1(M) | t ∈ R} forms a group under composition such that

φt1+t2 = φt1 ◦ φt2 . Then we can define for each m ∈ M the continuous time reservoir

ODE

ẋ(t) = F (x(t), ω ◦ φ−t(m)). (8.1)

In the special case that F (x, z) = Ax+ Cz we have

ẋ(t) = Ax(t) + Cω ◦ φ−t(m)
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which admits for any initial x0 ∈ RN the unique solution

x(t) =

∫ ∞
0

e−AτCω ◦ φ−τ+t(m) dτ + e−Atx0. (8.2)

Now, for any point on the manifold m ∈ M and initial reservoir state x0 ∈ RN the

solution x(t) converges to f ◦ φt(m) for f : M → RN defined by

f(m) =

∫ ∞
0

e−AτCω ◦ φ−τ (m) dτ. (8.3)

The map f is therefore a continuous time GS highly analogous to the discrete time

GSs discussed in this thesis. We proved in Chapter 4 that the discrete analogue of the

continuous time GS in (8.3) is an embedding, so it may be possible to prove that f in

(8.3) is an embedding using similar techniques. Furthermore, the continuous time GS

defined in (8.3) necessarily satisfies

d

dt
(f ◦ φt) = F (f ◦ φt, ω ◦ φt). (8.4)

This observation suggests, though we have not proved anything, that for a large class

of generally nonlinear, and suitably contracting, state systems F ∈ C0(RN × R,RN )

there is a unique continuous time GS f : M → RN that satisfies (8.4). Furthermore,

for any m ∈M and x(t) that solves (8.1) it follows x(t)→ f ◦φt(m). Bridging the gap

between discrete and continuous time could be a intriguing direction of future work.

In Chapter 5, we discussed the universal approximation capabilities of the special reser-

voir map called an ESN. Several results in the literature including those by Grigoryeva

& Ortega (2018), Gonon et al. (2020a), and Gonon & Ortega (2021) have shown that

ESNs are universal approximators, in the sense that for a given target function, there

exist a set of optimal weights which will approximate the target function as closely as

required. Though the existence of the weights is established, the weights themselves

are not explicitly constructed. We show that if the observations are drawn from an

ergodic dynamical system, and the output weights W ∈ RN are obtained using regu-

larised least squares regression, then a sufficiently good L2(µ) approximation will be

obtained. This is analogous to the stochastic setting, where we prove in Chapter 6

that if the observations are drawn from a stationary ergodic stochastic process, and

the output weights W ∈ RN are obtained using regularised least squares regression,

then a sufficiently good L2(µ) approximation will also be obtained.

In both the deterministic and stochastic case, we analysed the convergence of the
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approximation error as the number of data points ` grows. The convergence is likely of

the order 1/
√
` as a result of the central limit theorem for ergodic systems. The constant

factor in the convergence estimate is related to the mixing time of the dynamical system

(M,φ) or process Z respectively in the deterministic or stochastic setting. It could be

a fruitful direction of future work to explore this in more detail, and establish bounds

in certain cases.

In both the deterministic and stochastic case, we discussed an online learning algorithm

for finding the least squares solution W . The online learning algorithms do not require

every reservoir state be stored in memory, and they are therefore less memory intensive

then offline analogues like the SVD. Furthermore, the online methods are much more

plausible descriptions of learning in biological nervous systems. The online learning

algorithm is essentially stochastic gradient descent, and can therefore be applied to

non-convex optimisation problems that linear regression procedure cannot solve at all.

Though it is much harder to guarantee convergence to an optimal solution in the non-

convex case, the online algorithms are promising methods for solving nonlinear PDEs

(discussed in Chapter 7) or finding the optimal value functional for control problems

(discussed in Chapter 6)

An interesting field related to this thesis is transfer learning, which was discussed in

the context of reservoir computing recently by Inubushi & Goto (2020). In the transfer

learning paradigm, one has limited real data, which is supplemented by data produced

by a toy model. Another related idea is the physics informed neural network, where the

physical properties of the system are integrated with the machine learning paradigm.

For example Greydanus et al. (2019) demonstrate that a neural network trained to learn

a system’s Hamiltonian will adopt solutions that closely conserve energy. This approach

is in contrast with most of the results in this thesis where there is almost no modelling

of the drive system. Developing ideas like transfer learning or physics informed neural

networks within the reservoir computing framework seems like a fruitful and interesting

strand of future work. These connections between reservoir computing, physics, and

mechanical systems, enable greater applications of reservoir computing to fields like

robotics and engineering.
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