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2.1. Group sequential trials

2.1 | Group sequential trials

2.1.1 | Hypothesis testing in group sequential

trials

Many clinical trials focus on survival as the primary endpoint. When this is the

case, it may take several years to observe enough events to make a statistically

sound decision about the null hypothesis. A possible solution to avoid a prolonged

trial is to look at, and assess, the accumulating data periodically. These looks are

formally known as interim analyses and create a type of group sequential trial. A

stopping rule is specified during the design of a group sequential trial and early

stopping is when a trial is terminated at an interim analysis because it meets the

stopping rule requirements. Stopping rules ensure that trials with negative results

are terminated and for trials with positive results, the drug may be brought to

market sooner. Some of the benefits of early stopping are categorised as ethical,

administrative or economic and often, a clinical trial with a small sample size is

desirable. An efficient group sequential design reduces sample sizes through early

stopping whilst controlling for type 1 error and without decreasing power. In some

cases, the group sequential design reduces the expected sample size to 60% of the

fixed sample trial.

The primary aim of a Phase 3 clinical trial is to show that the new treatment

is more effective than the standard treatment, which shall be done by hypothesis

testing. Throughout, assume that the model describing the relationship between

patient covariates and the clinical endpoint is known. Also assume that included

in the model is a parameter θ, that defines the difference in outcome distributions

between the treatment group and the control group. We are interested in testing the

null hypothesis H0 : θ ≤ 0 against the one-sided alternative hypothesis HA : θ > 0,

where a treatment difference θ > 0 means that the new treatment is superior.

To perform the hypothesis test in the fixed sample trial, it is necessary to first

find an estimate for the treatment effect, let this estimate be θ̂. We can calculate

the information level I = [V ar(θ̂)]−1, in order to define the standardised test

statistic Z = θ̂
√
I. Determining the distribution of θ̂ provides a distribution for

Z. Throughout this Thesis, we shall often prove that the treatment effect estimate

is normally distributed such that θ̂ ∼ N(θ, I−1), and therefore Z ∼ N(θ
√
I, 1).

Then, deciding upon a suitable type 1 error rate α, the constant c is calculated such

that Pθ=0{Z > c} = α. In the fixed sample trial, to perform the hypothesis test:

accept H0 if Z < c and reject H0 if Z > c.

3



2.1. Group sequential trials

Further, at the design stage, a power requirement is specified which is used to

determine the necessary sample size. Suppose that power is required to be 1− β at

a minimum clinically significant effect size θ = δ, and let If be the information level

required in a fixed sample trial in order that Pθ=δ{Z > c} = β. Then If is found to

be

If =

(
Φ−1(1− α) + Φ−1(1− β)

δ

)2

. (2.1)

Since information is a function of the number of patients n, Equation (2.1) can be

used to calculate sample size.

Hypothesis testing in the group sequential trial is more complicated due to the

dependency between data at different interim analyses and similarly to many other

multiple testing procedures, we wish to control the overall type 1 error rate. A

group sequential trial is made up of K analyses, each occurring at different points in

calendar time. At each of k = 1, . . . , K, the accumulated data at analysis k is used

to produce the parameter estimate θ̂k and its observed information level Ik, which

leads to the standardised test statistic at analysis k given by Zk = θ̂k
√
Ik. The group

sequential trial is designed so that at each interim analysis, the trial is either stopped

to accept H0, stopped to reject H0 or continued. Therefore, at analysis k there is

an interval (ak, bk) that splits the real line into three sections, each representing a

different option. A one-sided group sequential test with K analyses is defined by

Jennison and Turnbull (2000), Definition 4.2.1, and is summarised as:

After analysis k = 1, . . . , K − 1

if Zk ≥ bk stop, reject H0

if Zk ≤ ak stop, accept H0

otherwise continue to group k + 1,

after group K

if ZK ≥ bK stop, reject H0

if ZK ≤ aK stop, accept H0,

where aK = bK . This restriction applied at the final analysis is necessary to guarantee

that the trial terminates before, or at, analysis K.

In the same way that the constant c is calculated to achieve type 1 error of

α and power of 1 − β at θ = δ in the fixed trial, the constants a1, . . . , aK and

b1, . . . , bK are calculated to attain the same type 1 error and power requirements

in the group sequential trial. For this calculation in the group sequential setting,

the joint distribution of the sequence of successive estimates θ̂1, . . . , θ̂K must be

known. The constants a1, . . . , aK collectively are known as the lower boundary and

the constants b1, . . . , bK are the upper boundary. Figure 2.1 below represents a

typical group sequential trial with 5 analyses. The outcome in this example is that

4



2.1. Group sequential trials

the trial stops early at the fourth interim analysis and H0 is accepted.

Figure 2.1: Group sequential trial with 5 analyses. Upper boundary constants
are represented by red points, lower boundary constants by blue

points and black points represent the standardised statistic
trajectory Z1, . . . , Z4. H0 is accepted at analysis 4.

2.1.2 | Canonical joint distribution

To perform a group sequential trial, the distribution of the sequence of test statistics

Z1, . . . , ZK must be known. Thus far, the group sequential trial has been described

assuming that it is possible to calculate certain probabilities for events involving the

test statistics. It can be shown that many data types result in a group sequential

trial where the sequence of test statistics have a certain natural correlation structure.

This particular correlation is known as the canonical joint distribution and simplifies

the calculation for boundary constants.

5



2.1. Group sequential trials

Definition 2.1. Suppose that a group sequential trial yields standardised test

statistics Z1, . . . , ZK from data available at analyses 1, . . . , K respectively and

I1, . . . , IK are the associated observed information levels. The “canonical joint

distribution” for the sequence of statistics Z1, . . . , Zk is such that

1. (Z1, . . . , ZK) is multivariate normal

2. Zk ∼ N(θ
√
Ik, 1), 1 ≤ k ≤ K

3. Cov(Zk1 , Zk2) =
√

Ik1/Ik2 , 1 ≤ k1 ≤ k2 ≤ K.

Sequences of test statistics with the canonical distribution have a Markov

property; the distribution of Zk+1, . . . , ZK given Z1, . . . , Zk is the same as

the distribution of Zk+1, . . . , ZK given Zk. This property greatly simplifies the

calculation of the boundary constants and is therefore very useful for implementing

simulation studies. Jennison and Turnbull (1997) prove that the canonical joint

distribution holds for many different data types. The focus of Section 3.2 is the

proof that the canonical distribution holds for estimates of parameters in Cox’s

proportional hazards regression model for survival data, fitted by maximum partial

likelihood, and in Section 4.1 we show why the canonical joint distribution is an

appropriate assumption under the joint modelling framework.

We often refer to the canonical joint distribution of the sequence of treatment

effect estimates θ̂1, . . . , θ̂K as, in some situations, it may be more convenient to prove

that the canonical distribution holds under this parameterisation. The following

definition can easily be seen to be equivalent to Definition 2.1.

Definition 2.2. Let θ̂1, . . . , θ̂K be the sequence of treatment effect estimates in

a group sequential trial from data available at analyses 1, . . . , K respectively and

I1, . . . , IK are the associated observed information levels. The “canonical joint

distribution” for the sequence of estimates θ̂1, . . . , θ̂K is such that

1. (θ̂1, . . . , θ̂K) is multivariate normal

2. θ̂k ∼ N(θ, I−1
k ), 1 ≤ k ≤ K

3. Cov(θ̂k1 , θ̂k2) = I−1
k2

, 1 ≤ k1 ≤ k2 ≤ K.

We can define a range of group sequential trials for a given sequence I1, . . . , IK

of information levels and compute properties of these tests, such as expected number

of patients. For all sequences, there is not a unique solution for the calculation of

boundary constants. Therefore one can define a group sequential test with a chosen

shape of boundary that has a given property, for example a conservative early interim
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analysis. The shape of the boundary, or the type of test, should be decided upon

before the trial commences. The Pocock boundary designed by Pocock (1977) and

the P&T by boundary Pampallona and Tsiatis (1994) are popular choices for group

sequential trials with known information levels. These kinds of parametric tests

may not be appropriate if the information levels I1, . . . , IK are unpredictable, hence

in the upcoming Section 2.1.3 we present a test incorporating varying information

levels.

2.1.3 | Error spending tests

This project focuses on survival data where the randomness of event times results

in variable numbers of observed events at planned interim analyses. In turn, this

results in unpredictable sequences of information levels which motivates using an

error spending design. Different group sequential designs give rise to different

properties of a trial; some designs are best suited to particular data types and

some are designed to have particular properties. For this project, we focus on the

“error spending test”, a group sequential trial design that uses a flexible method for

dealing with unpredictable sequences of information levels.

The underlying idea for an error spending test is to spend error according to the

amount of information that has been observed. We focus on a particular method,

which requires specifying the maximum target information, which is Imax, and unless

early stopping occurs, the trial continues until Imax is reached. The value of Imax is

chosen to meet a given power requirement and we shall expand on this choice shortly.

A trial is designed with K analysis planned and the calculation of Imax is based on a

design with K planned analyses. If we observe IK < Imax, then additional analyses

are performed. The trial can be extended by recruiting more patients or extending

the trial’s duration to increase follow-up time.

The cumulative amount of type 1 error to spend is given by the function f(·)
whose input is the fraction of the target information that has been observed. At

or before analysis k, there will be type 1 error f(Ik/Imax) spent. Similarly, the

function g(·) denotes the cumulative amount of type 2 error that is spent and by

analysis k there will be type 2 error g(Ik/Imax) spent. These functions should be

chosen to spend error cumulatively with information and should protect the overall

type 1 error rate, so that the amount of cumulative type 1 error spent does not

exceed α. Therefore, the functions f(·) and g(·) must be such that:

� f(t) and g(t) are non-decreasing in t

� f(0) = g(0) = 0

7
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� f(t) = α for t ≥ 1 and g(t) = β for t ≥ 1.

The ρ-family of functions are an example of error spending functions and are given

by:

f(t) = min{αtρ, α}

g(t) = min{βtρ, β}.

Throughout this report, when error spending functions are implemented, we shall

use the ρ-family with ρ = 2.

The sequence of information levels I1, . . . , IK does not need to be known before

commencing the trial. A decision upon early stopping and the null hypothesis can

be made at analysis k knowing the values I1, . . . , Ik and this does not depend on

the future values Ik+1, . . . , IK . Therefore, at analysis k it is possible to calculate

boundary constants ak and bk without knowing what the future information levels

will be. At the first interim analysis the boundary constants a1 and b1 are calculated

to satisfy

Pθ=0{Z1 > b1} = f(I1/Imax)

Pθ=δ{Z1 < a1} = g(I1/Imax).

The trial is stopped if either Z1 < a1 or Z1 > b1 and continued otherwise. Further,

if the trial is terminated at the first interim analysis, H0 is accepted if Z1 < a1

and rejected if Z1 > b1. To preserve type 1 error, the errors allocated to each

analysis create a partition of α. Therefore given that f(Ik/Imax) and g(Ik/Imax)

are cumulative type 1 and type 2 errors spent up to and including analysis k, the

constants ak and bk are calculated such that

Pθ=0{a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk > bk} = f(Ik/Imax)− f(Ik−1/Imax)

Pθ=δ{a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk < ak} = g(Ik/Imax)− g(Ik−1/Imax)

and a decision upon termination and H0 is made in accordance with the boundary

constants.

In the fixed sample trial, the information level If is calculated to satisfy a power

requirement. In a similar manner, Imax in an error spending design is calculated to

achieve power of 1− β under HA with θ = δ. During the design stage of the group

sequential trial, we may assume that there are K fixed information levels equally

8
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spaced so that for k = 1, . . . , K

Ik =
k

K
Imax.

Under this assumption, there is a unique solution for Imax such that the restriction

aK = bK is satisfied and the design obtains the correct significance level and power.

Having equally spaced information levels and reaching Imax exactly at the final

analysis is a design assumption. However, following the error spending design in

practice, by placing boundaries to meet overall error rates, is unlikely to result in

boundaries meeting at the final analysis and there must be suitable amendments

planned to conclude with the correct type 1 error. Overrunning occurs when the

final analysis has a higher information level than expected so that IK > Imax and

solving for aK and bK will result in the boundaries crossing and aK > bK . This may

also happen if Imax is reached but information levels are not equally spaced so that

IK = Imax but I1, . . . , IK−1 are not at Ik = k
K
Imax. It is important to retain type

1 error, so a suitable solution is to reduce aK to match bK and the trial has power

greater than the planned 1− β. As previously mentioned, the trial continues unless

early stopping occurs so that IK ≥ Imax however some sequences of information

levels which are unequally spaced result in aK < bK . Again, preserving type 1 error

is of most importance, so aK is increased to match bK which results in a loss of

power.

To conclude, error spending tests provide a flexible method for dealing

with sequences of unequally spaced information levels that may occur due to

unpredictable data types such as survival data with unknown event times. These

methods are particularly useful for controlling type 1 error and ensuring type 2 error

is close to the design requirements.
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2.2 | Introduction to survival analysis

2.2.1 | Time-to-event data

A time-to-event observation measures the amount of time that passes between entry

to a study and the event of interest. In many clinical trials, the event of interest is

death and when this is the case, we refer to the analysis as survival analysis.

It may be the case that the event of interest is not observed but the time until

another event is recorded. For example when a patient in a clinical trial with survival

as the primary endpoint leaves the study before death and their follow-up is ceased

upon departure. This is recorded as a (right) censored observation and the time

recorded is from entering the study until leaving the study. Censored observations

still provide useful information about the primary endpoint as it is known that the

event time is at least as great as the censored time. For each patient i = 1, . . . , n,

let Fi be the time-to-failure random variable for patient i and let Ci be the potential

censoring time random variable. The random variable Ti = min(Fi, Ci) is known as

the event time and ti is the observed event time for patient i. Also, the censoring

indicator δi = I{Fi ≤ Ci} is observed. We shall focus on the case where the random

variables Fi and Ci are independent for each patient i = 1, . . . , n. This implies

that censoring is non-informative. Lagakos (1979) presents other options for right-

censored data.

Figure 2.2 shows example data from a sample of patients in a clinical trial where

the primary endpoint is survival. Patients arrive with staggered entry to the study

and are assigned to either the control or the new treatment. The patients’ event

times are either exact, δi = 1, or censored, δi = 0.
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2.2. Introduction to survival analysis

Figure 2.2: Example of a clinical trial using survival data.

The framework for dealing with censored observations is useful in group

sequential trials as patients that have survived past an interim analysis will be

temporarily marked as censored. Figure 2.3 shows the data from a group sequential

trial at the interim analysis which occurs at calendar time 3 years. For the patients

who are still alive and not yet censored, their interim observation is marked as

censored at 3 years.

11



2.2. Introduction to survival analysis

Figure 2.3: Interim analysis for a group sequential clinical trial using survival
data.

2.2.2 | Survival functions

In many time-to-event studies, the object of primary interest is called the survival

function. With Fi as the time-to-event random variable for patient i, the survival

function is defined as

Si(t) = P(Fi > t).

It is often of interest to compare the survival curves for patients on different

treatment arms. Let Zi = I(patient i is on new treatment) be the indicator that

patient i receives the experimental drug, then we may wish to compare Si(t|Zi = 1)

and Si(t|Zi = 0). Figure 2.4 shows an example of the survival curves. In this example

it is clear that the treatment is working effectively as Si(t|Zi = 1) > Si(t|Zi = 0)

for all values of t.

12
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Figure 2.4: Survival functions.

The survival function is a smooth function of time t. In general, the true survival

function will not be known. We can use the observed data to estimate survival

functions. The Kaplan-Meier estimator, introduced by Kaplan and Meier (1958),

estimates the survival probability at time t by considering the proportion of patients

that have not yet had an event or been censored at time t. Let t′1, . . . , t
′
m be

the observed event times (whether censored or observed) in order of increasing

magnitude. Let di be the number of deaths at time t′i and let ri be the number

of patients at risk just before time t′i. Then the Kaplan-Meier estimator is defined

as

Ŝ(t) =
∏
i:t′i≤t

ri − di
ri

.

The Kaplan-Meier estimator for a data set with n = 50 patients on each treatment

arm is shown in Figure 2.5 below.
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Figure 2.5: Kaplan-Meier estimator.

To model time-to-event data, it is necessary to associate a probability density to

the event at any given point in time. Since time is treated as a continuous variable,

this probability is for an instantaneous moment in time and the information is

summarised by a hazard function. For each patient i = 1, . . . , n, let Fi be the

time-to-failure random variable, then the hazard for individual i at time t is defined

as

hi(t) = limδt↓0
P(t ≤ Fi < t+ δt|Fi ≥ t)

δt
. (2.2)

We can specify specific forms for the hazard rate. For example, we may wish to

include covariates that are known to affect survival in the model. Let xi be a p× 1

vector of covariates for patient i, let θ be a p× 1 vector of coefficients and let h0(t)

be a baseline hazard function, then we may wish to specify that

hi(t) = h0(t) exp{θTxi}.
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This particular model is called the Cox proportional hazards model. This will be

explored in Section 3.2.1.

The cumulative hazard function for patient i is defined as Hi(t) =
∫ t

0
hi(u)du

and the relationship between the hazard rate and the survival function is given by

Si(t) = exp{−Hi(t)}.

This relationship is useful for simulating survival data. Note that Si(t) = P(Fi > t),

so the cumulative distribution of the time-to-event random variable Fi is therefore

P(Fi ≤ t) = 1 − Si(t). Therefore, using the inverse transform theorem, let ui ∼
U(0, 1) be sampled from a uniform distribution, then the time-to-event observation

Fi is the solution to

Hi(Fi) = − log(1− ui).

For each of our examples, Ci and Fi are independent. Therefore, these values can

be simulated independently and then the value Ti = min{Fi, Ci} is observed.

The survival function can also be used to find the likelihood function of the

survival data. For uncensored data, where Ti = Fi, the contribution of patient i to

the likelihood is given by d/dt(1− Si(t)), which is the derivative of the cumulative

hazard function with respect to t. For censored data, the contribution is Si(ti).

Suppose that each of these functions depends on a vector of parameters θ, and that

the model is specified through the hazard rate hi(t,θ). Let t1, . . . , tn be the observed

censored or exact event times and δ1, . . . , δn be the observed censoring indicators,

then the likelihood function is defined as

L(θ) =
n∏

i=1

fi(ti,θ)
δiSi(ti,θ)

1−δi .
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2.3 | Longitudinal data analysis

2.3.1 | Random effects models

Longitudinal data is comprised of repeated measurements of the same variable at

different points in time. In a clinical trial, this is particularly useful for tracking

trends and changes in patient covariates and risk factors over time. For example,

levels of the biomarker, prostate specific antigen (PSA), are monitored in patients

with prostate cancer at different points in time using blood tests. In this Section, we

shall discuss methods for dealing with longitudinal data, specifically random effects

models which allow for within-patient correlations.

Let W (t) be the measurement of the biomarker at time t and let ϵ(t) be the

measurement error at time t. Then a longitudinal data model is given by

W (t) = βTρ(t) + ϵ(t)

where β = (β0, β1, . . . , βp)
T is a p× 1 vector of coefficients and ρ(t) is a p× 1 vector

of functions in t. In general, ρ(t) is not constrained to linear functions in t. The

simple example which we shall use throughout this report is the case

W (t) = β0 + β1t+ ϵ(t).

Therefore β = (β0, β1)
T and ρ(t) = (1, t)T .

For model fitting, it is often necessary to assume a distribution for the

measurement error. Suppose that the longitudinal observations are measured

at times t1, . . . , tm, then it is a common assumption that ϵ(tj) ∼ N(0, σ2) for

j = 1, . . . ,m and that ϵ(tk) and ϵ(tl) are independent for k ̸= l.

A random effects model is a statistical model where the parameters are random

variables. This is useful in a clinical trial as we can model each patient’s trajectory

separately. Therefore, the global trend in risk factors can be studied while accounting

for the correlation of the repeated measurements.

For patients i = 1, . . . , n let Wi(t) be the biomarker measurement at time t for

patient i. The random effects model is given by

Wi(t) = bi0 + bi1t+ ϵi(t).

Let bi = (bi0, bi1)
T be a vector of patient-specific random effects and let ρ(t) = (1, t)T

be a vector of functions in t. Again, in general, bi and ρ(t) are vectors of length p
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and more general functions of t are possible for ρ(t).

In this model, the random effects are random variables with b1, . . . ,bn

distributed according to the density function fb(·). Similarly to the simple

longitudinal data model, it is sometimes useful or necessary to assume a distribution

for both the measurement error and the random effects, e.g make an assumption

about the form of fb(·). The following are commonly imposed assumptions. Let µ

be a 2× 1 vector for the mean of the random effects and let Σ be a 2× 2 symmetric

matrix for the variance matrix of the random effects. Then we suppose that, for

each patient i = 1, . . . , n, the biomarker is measured at times ti1, . . . , timi
and

bi
i.i.d∼ N(µ,Σ) for i = 1, . . . , n

ϵ(tij)|bi
i.i.d∼ N(0, σ2) for j = 1, . . . ,mi.

These assumptions specify that the distribution of the measurement error is common

across all patients and time, and that the random effects are independent and

identically distributed normal random variables. There are two methods considered

in this thesis for analysing joint models. The first method in Section 4.1 does not

require any distributional assumptions about the random effects, however for the

second model in Section 5.2 we must assume a distribution for the random effects

and have chosen this to be a normal distribution.

We now present a likelihood function for the random effects model. For each

patient i = 1, . . . , n, biomarker measurements Wi(ti1), . . . ,Wi(timi
) are observed

at times ti1, . . . , timi
. Let θ be a vector of all parameters in the model, including

parameters in the distribution function fb(·). Then the contribution to the likelihood

from patient i can be found by integrating over the random effects, this is

Li(θ) =

mi∏
j=1

∫ ∫
P(Wj(tij)|bi,θ)fb(bi|θ) dbi0 dbi1.

The full likelihood function is then

L(θ) =
n∏

i=1

Li(θ). (2.3)

2.3.2 | Gauss-Hermite integration

Gauss-Hermite Quadrature is a numerical method for evaluating definite integrals.

This numerical method is particularly useful for integration of functions which

include the density function of Gaussian random variables. Hence, this quadrature
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rule will prove particularly useful for evaluating the likelihood function of models

which include normally distributed random effects, such as in Equation (2.3).

Further, in Section 5.1 we introduce a function called the restricted mean survival

time and this function involves integrating over normally distributed random effects.

Gauss-Hermite integration is specifically for evaluating functions of the form∫ ∞

−∞
e−x2/2g(x)dx

where g(·) is a smooth deterministic function. It is clear that when we wish to

integrate over normally distributed random effects then we will have a function of

the above form since the density function includes the term e−x2/2.

The quadrature rule approximates the integral by the sum

k∑
i=1

wig(ζi)

with nodes ζ1, . . . , ζk and weights w1, . . . , wk. Liu and Pierce (1994) give details

of this calculation. The nodes are given by the roots of the Hermite polynomial

function, and the weights also include the Hermite polynomial function. The nodes

and weights can be calculated using computer programs or by looking these up in

standard tables such as in Shao et al. (1964).

The advantage of this quadrature rule is that calculation of this integral is

computationally efficient. When g(·) is a polynomial function of degree 2k − 1

or less, the Gaussian quadrature rule is exact. Further, for an accurate calculation,

the number of nodes required is usually very small. To demonstrate this, consider

approximating the double integral∫ ∞

−∞

∫ ∞

−∞
exp

{
b0
b1

}
f(b0, b1)db0db1 (2.4)

where f(·) is the density function of the random variable

b =

[
b0

b1

]
∼ N

([
1

3

]
,

[
1.22 0

0 0.252

])
.

This example represents a simplified version of the restricted mean survival time

calculation that we shall see in Section 5.1.

Table 2.1 shows the calculation of Equation (2.4) using Gauss-Hermite

integration with differing numbers of nodes k. The Gauss-Hermite quadrature rule
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for this double integral example is accurate in the 6th decimal place with k = 4

nodes. This approximation is much more accurate than calculating the integral by

Monte Carlo simulation and is also computationally efficient.

k Gauss-Hermite integral

2 1.519241

3 1.519439

4 1.519447

5 1.519447

6 1.519447

Table 2.1: Gauss-Hermite quadrature rule example for different numbers of
nodes.

The example integral in Equation (2.4) has a similar structure to the likelihood

function for a random effects model in Equation (2.3). Both equations include

double integrals over the probability density function for bivariate normal random

effects. The likelihood function for a random effects model can be evaluated using

Gauss-Hermite integration. This is useful because we need an efficient integration

method as there are n double integrals in one calculation of the likelihood. Further,

maximum likelihood estimation requires a sequence of such likelihood evaluations.

Note that for this example, the random variables b0 and b1 are independent

so the double integral can be evaluated by performing the Gauss-Hermite rule on

each dimension separately. In the more general setting, bivariate normal random

variables can be transformed to the independent case. Consider random variables

X1 and X2 which have the bivariate normal distribution[
X1

X2

]
∼ N

([
µ1

µ2

]
,

[
σ2
1 ρ

ρ σ2
2

])
.

Let

Y1 = X1

Y2 = X1 −
σ2
1

ρ
X2.

Then it can be shown that Y1 and Y2 are independent and their joint distribution is

given by [
Y1

Y2

]
∼ N

([
µ1

µ1 − σ2
1

ρ
µ2

]
,

[
σ2
1 0

0 σ2
1(

σ2
1σ

2
2

ρ2
− 1)

])
.
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The Gauss-Hermite integral can be manipulated for correlated normal random

variables by creating independent normal random variables.
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CHAPTER 3

SURVIVAL ANALYSIS
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3.1 | General asymptotic theory

In this section, we introduce and prove a key result in asymptotic distribution theory.

The result concerns an estimator which is the root of an “estimating equation”, in

which a function with expectation zero is set equal to zero. The theorem states that

such an estimator is asymptotically normally distributed. Many estimators, such

as the maximum likelihood estimate, fit naturally into this category of estimator.

Alternatively, if asymptotic normality is thought to be a desirable property, one may

construct an estimator to be the solution to an estimating equation. This theorem

will be used in Section 3.2 to derive asymptotic normality of the estimator that arises

from analysing survival data using partial likelihood. The theorem is used again in

Section 4.1 for analysing the joint model. Therefore, the aim of this section is to

present and prove asymptotic normality for a broad class of estimators. In doing so,

some conditions are presented which are sufficient to prove asymptotic normality of

the estimators in later sections.

This general asymptotic theory is well known throughout frequentist statistics.

The proof we present was largely developed using Section 2.3 of the book “Bayesian

and Frequentist Regression Methods” by Wakefield (2013), Section 9.2 of the book

“Theoretical Statistics” by Cox and Hinkley (1979) and Section 4 of Jennison and

Turnbull (1997). In Section 2.3 of the book, Wakefield introduces an estimating

equation which is the formal definition for an equation where a function with

expectation zero is set equal to zero. The author gives an outline derivation of

the proof of our Theorem 3.1 in one dimension. We have filled in some details,

particularly for multiple dimensions. In Section 2.9 of “Theoretical Statistics”,

Cox and Hinkley prove that the maximum likelihood estimate is consistent and

asymptotically normal. We have adapted this proof to a broader class of estimators,

which are solutions to estimating equations. The regularity conditions presented by

Cox and Hinkley are given for maximum likelihood estimation but we shall use these

conditions with the likelihood function fY (y; θ) replaced by a more general function

G(θ,x). Jennison and Turnbull (1997) prove asymptotic normality of estimates in a

general parametric regression model in a group sequential trial. Here, the parameter

θ is multidimensional and the result concerns the joint distribution of estimates

θ̂
(1)

n , . . . , θ̂
(K)

n across analyses in the group sequential trial. We shall follow similar

theory and present the corresponding result for group sequential trials where the

sequence of estimates are solutions to estimating equations.

In this Chapter, we shall begin with some asymptotic distribution theory for

general statistical models in Section 3.1. In Section 3.1, we present the theoretical
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results for a fixed sample trial and then extend this result to group sequential trials.

We aim to apply these distributional results to both survival models and the joint

model. We are then equipped to present the asymptotic distributional results for

survival data in Section 3.2 for both a fixed sample trial and a GST.

Some notation is needed before presenting and proving Theorem 3.1. Suppose

that X1, . . . , Xn are random variables and that x1, . . . , xn are observations of these

random variables. The collections of these objects are labelled asXn = (X1, . . . , Xn)

and xn = (x1, . . . , xn) respectively. Let θ be a p × 1 column vector parameter in

a statistical model and let θ0 be the true value of the parameter. The parameter

space will therefore be Θ ⊂ Rp. The parameter estimate based on x1, . . . , xn will be

denoted by θ̂n to show dependence on the number of observations and to highlight

that the limits are defined as n → ∞. An “estimating function” is a p × 1 column

vector

Gn(θ,xn) =
n∑

i=1

G(θ, xi) =
n∑

i=1


G1(θ, xi)

...

Gp(θ, xi)


such that Eθ(Gn(θ,Xn)) = 0 for all θ. The “estimating equation” is then a set of

p equations given by

Gn(θ̂n,xn) = 0.

If there are multiple roots to the above estimating equation, we suppose estimates

θ̂n, n = 1, 2, . . . , are chosen such that the sequence {θ̂n} is consistent and

Theorem 3.1 shall be applied to this particular consistent sequence.

In applying Theorem 3.1, we shall assume that the following conditions are

satisfied.

Conditions 3.1.

1. θ̂n is a consistent estimator for θ0, that is as n → ∞, θ̂n converges in

probability to θ0, written

θ̂n
p−→ θ0

2. n− 1
2Gn(θ0,Xn) converges in distribution to a zero-mean Gaussian random

variable with finite-valued, positive-definite covariance matrix B, specifically

n− 1
2Gn(θ0,Xn)

d−→ N(0,B)

3. For all θ∗
n such that θ∗

n

p−→ θ0, n
−1 ∂

∂θ
Gn(θ,xn)

∣∣
θ=θ∗

n
converges in probability
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to a finite-valued, positive-definite matrix A. That is

n−1 ∂

∂θ
Gn(θ,xn)

∣∣∣∣
θ=θ∗

n

p−→ A

4. The parameter space Θ is closed and compact and the true parameter value θ0

is an interior point of Θ

5. For all xn, the derivatives ∂
∂θ
Gn(θ,xn) and ∂2

∂θ2Gn(θ,xn) exist in a

neighbourhood of θ0

6. n−1 ∂
∂θ
Gn(θ,xn) is uniformly continuous in θ in a neighbourhood of θ0.

In Section 3.2 and Section 4.1 where we apply Theorem 3.1, the conditions 1–3

will be checked. Conditions 4–6 will be assumed to hold in order to avoid technical

distractions during the proof of Theorem 3.1. We can now prove that the solution

to an estimating equation is asymptotically normally distributed.

Theorem 3.1. Let the estimate θ̂n be a solution to the equation Gn(θ,xn) = 0

and let θ0 be the true value of the parameter θ. Suppose that Conditions 3.1 hold.

Then n
1
2 (θ̂n−θ0) is asymptotically normal, converging in distribution to a Gaussian

random variable, given by

n
1
2 (θ̂n − θ0)

d−→ N(0,A−1B(A−1)T ).

Proof. To derive the asymptotic distribution of n
1
2 (θ̂n − θ0) we begin by applying

a Taylor expansion to each element of Gn(θ,xn). Let G
j
n(θ,xn) be the jth element

of the p× 1 column vector Gn(θ,xn). Then,
∂
∂θ
Gj

n(θ,xn) is a 1× p row vector and

θ−θ0 is a p×1 column vector. Regularity conditions 4 and 5 allow us to perform the

following Taylor expansion. For each j = 1, . . . , p the Taylor expansion of Gj
n(θ,xn)

around θ0 is

Gj
n(θ̃,xn) = Gj

n(θ0,xn) +
∂

∂θ
Gj

n(θ,xn)

∣∣∣∣
θ=θ∗

n,j

· (θ̃ − θ0)

where θ∗
n,j lies on the line segment between θ0 and θ̃. Each row of Gn(θ,xn)

represents a dimension, so different rows are differing functions of θ and hence each

θ∗
n,j is specific to the row j.

Given the definition of the estimate θ̂n, we recognise that Gn(θ̂n,xn) = 0.
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Therefore by substituting θ̂n for θ, and stacking the rows, we have

0 =


G1

n(θ̂n,xn)
...

Gp
n(θ̂n,xn)

 = Gn(θ0,xn) +


∂
∂θ
G1

n(θ,xn)
∣∣
θ=θ∗

n,1

...
∂
∂θ
Gp

n(θ,xn)
∣∣
θ=θ∗

n,p

 · (θ̂n − θ0)

where each θ∗
n,j lies on the line segment between θ0 and θ̂n.

The matrix A by definition is finite valued, symmetric and positive definite.

Therefore A is invertible with inverse A−1 which is also finite valued, symmetric

and positive definite. Multiplying the above equation by A−1 and a simple

rearrangement gives

−n− 1
2A−1Gn(θ0,x) = A−1


n−1 ∂

∂θ
G1

n(θ,x)
∣∣
θ=θ∗

n,1

...

n−1 ∂
∂θ
Gp

n(θ,x)
∣∣
θ=θ∗

n,p

n
1
2 (θ̂n − θ0). (3.1)

Let

Wn = −n− 1
2A−1Gn(θ0,x)

Yn = A−1


n−1 ∂

∂θ
G1

n(θ,x)
∣∣
θ=θ∗

n,1

...

n−1 ∂
∂θ
Gp

n(θ,x)
∣∣
θ=θ∗

n,p


Zn = n

1
2 (θ̂n − θ0).

Then Equation (3.1) becomes

Wn = YnZn. (3.2)

We now consider the limiting distribution of the objects Wn, Yn as n → ∞ in

order to determine the limiting distribution of Zn. We must also consider whether

or not the inverse of Yn exists and and the limiting distribution of this matrix.

For Wn, regularity condition 2 states that n− 1
2Gn(θ0,xn)

d−→ N(0,B) and

multiplication by a finite matrix implies

Wn = −n− 1
2A−1Gn(θ0,xn)

d−→ N(0,A−1BA−1).

Given that θ̂n is a consistent estimator for θ0 by regularity condition 1,

n−1 ∂
∂θ
Gn(θ,xn) is uniformly continuous in θ by regularity condition 6 and θ∗

n,j

lies on the line segment between θ and θ̂n, the difference between θ∗
n,j and θ0 for
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3.1. General asymptotic theory

each j = 1, . . . , p is asymptotically negligible. Let Aj denote row j of the matrix A,

then by regularity condition 3,

n−1 ∂

∂θ
Gj

n(θ,xn)
∣∣
θ=θ∗

n,j

p−→ n−1 ∂

∂θ
Gj

n(θ,xn)
∣∣
θ=θ0

= Aj for each j = 1, . . . , p.

Hence 
n−1 ∂

∂θ
G1

n(θ,x)
∣∣
θ=θ∗

n,1

...

n−1 ∂
∂θ
Gp

n(θ,x)
∣∣
θ=θ∗

n,p

 p−→


A1

...

Ap

 = A

and since A−1 is finite-valued, we can conclude that

Yn
p−→ A−1A = Ip

where Ip is the p× p identity matrix.

The limiting distribution of Zn can be determined by considering the cases when

Y−1
n exists and when Y−1

n does not exist. To do so, define a new matrix

Cn =

Y−1
n if Y−1

n exists

Ip otherwise

We now show that Cn
p−→ Ip. Note that since Yn

p−→ Ip, as n → ∞ then the

determinant |Yn|
p−→ 1 as n → ∞ and hence P(Y−1

n exists) → 1 as n → ∞. Given

small ϵ > 0, we can find a K such that ∥Yn − Ip∥ < ϵ
K

implies that Y−1
n exists

and ∥Y−1
n − Ip∥ < ϵ. Now take n0 such that if n > n0 then P(∥Yn − Ip∥ > ϵ

K
) < ϵ.

Then, for n > n0, P(Y−1
n exists and ∥Y−1

n − Ip∥ < ϵ) > 1 − ϵ and this implies that

Cn
p−→ Ip.

Now we have

Zn =

CnWn if Y−1
n exists

Zn otherwise
(3.3)

To determine the limiting distribution of Zn, we shall use the Continuous

Mapping Theorem. Given that Cn
p−→ Ip and Wn

d−→ N(0,A−1BA−1), then

CnWn
d−→ N(0,A−1BA−1). This, together with definition (3.3) and the fact that

P(Y−1
n exists) → 1 as n → ∞ gives that

Zn
d−→ N(0,A−1BA−1).
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3.1. General asymptotic theory

Finally, by the definition of Zn, we have

n
1
2 (θ̂n − θ0)

d−→ N(0,A−1BA−1).

We shall now display the corresponding result for the group sequential trial

(GST) version. To do so, we define the data that is available at the analyses of the

GST and adapt the regularity conditions to take into account that there will be a

parameter estimate at each analysis.

Suppose that we wish to perform a GST with K analyses and that the trial

is planned with interim analyses occurring at times τ1, . . . , τK . Define the random

variable X
(k)
n = (X

(k)
1 , . . . , X

(k)
n ) where X

(k)
n is the data available at time τk. The

value n represents the total recruited sample size, which remains constant across

analyses, and we aim to determine the asymptotic distribution as n → ∞. The

times τ1, . . . , τK are fixed and the rate of recruitment is proportional to n, so the

number of observations at each analysis increases with n.

For each analysis k = 1, . . . , K, the same method is employed to estimate the

p × 1 vector of parameters θ of the statistical model, but using different sets of

data. For each k = 1, . . . , K, let θ̂
(k)

n be the solution to the estimating equation

Gn(θ,x
(k)
n ) = 0. We therefore have that the pK×1 vector (θ̂

(1)T

n , . . . , θ̂
(K)T

n )T is the

solution to the set of pK equations
G
(
θ,x

(1)
n

)
...

G
(
θ,x

(K)
n

)
 =


0
...

0

 .

The regularity conditions have been adapted for the GST version of results. We

also introduce an extra condition requiring the estimating function to have a certain

structure for the asymptotic covariance matrix, which is the main condition that

will be checked when we apply this theorem. In Section 3.2 and Section 4.1, where

Theorem 3.2 below is applied, we shall check conditions 1–4 of these conditions and

the remaining conditions 5–7 will be assumed to hold.

Conditions 3.2.

1. For each k = 1, . . . , K, θ̂
(k)

n is a consistent estimator for θ0, that is as n → ∞,

θ̂
(k)

n converges in probability to θ0, written

θ̂
(k)

n

p−→ θ0.
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3.1. General asymptotic theory

2. For each k = 1, . . . , K, n− 1
2Gn

(
θ0,X

(k)
n

)
converges in distribution to a zero-

mean Gaussian random variable with finite-valued, positive-definite covariance

matrix B(k), specifically

n− 1
2Gn

(
θ0,X

(k)
n

) d−→ N
(
0,B(k)

)
3. For all θ∗

n such that θ∗
n

p−→ θ0, n
−1 ∂

∂θ
Gn(θ,x

(k)
n )
∣∣
θ=θ∗

n
converges in probability

to a finite-valued, positive-definite matrix A(k) for each k = 1, . . . , K. That is

n−1 ∂

∂θ
Gn

(
θ,x(k)

n

) ∣∣∣∣
θ=θ∗

n

p−→ A(k), for k = 1, . . . , K.

4. For 1 ≤ k1 ≤ k2 ≤ K, we require

Cov
(
n− 1

2Gn

(
θ0,X

(k1)
n

)
, n− 1

2Gn

(
θ0,X

(k2)
n

)) p−→ B(k1).

5. The sequence of random variables n− 1
2Gn

(
θ0,X

(1)
n

)
, . . . , n− 1

2Gn

(
θ0,X

(K)
n

)
is asymptotically multivariate normally distributed.

6. The parameter space Θ is closed and compact and the true parameter value θ0

is an interior point of Θ.

7. For all x
(k)
n , the derivatives ∂

∂θ
Gn(θ,x

(k)
n ) and ∂2

∂θ2Gn(θ,x
(k)
n ) exist in a

neighbourhood of θ0 for each k = 1, . . . , K.

8. n−1 ∂
∂θ
Gn(θ,x

(k)
n ) is uniformly continuous in θ in a neighbourhood of θ0.

We now prove that for a group sequential trial with K analyses, when estimating

equations are used as a method for estimating the treatment effect, the sequence of

treatment effect estimates is asymptotically multivariate normal. The proof for this

Theorem closely follows the proof of Theorem 3.1, and we often refer back to the

details of steps in Theorem 3.1.

Theorem 3.2. For each k = 1, . . . , K let the estimate θ̂
(k)

n be a solution to the

estimating equation Gn(θ,x
(k)
n ) = 0 and let θ0 be the true value of the parameter

θ. Suppose that Conditions 3.2 hold. Then the sequence of estimates θ̂
(1)

n , . . . , θ̂
(K)

n

is asymptotically normal, converging in distribution to a Gaussian random variable,
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3.1. General asymptotic theory

given by

n
1
2


θ̂
(1)

n − θ0

θ̂
(2)

n − θ0

...

θ̂
(K)

n − θ0

 d−→ N



0

0
...

0

 ,Σ =


Σ11 Σ12 · · · Σ1K

Σ12 Σ22 · · · Σ2K

...
...

. . .
...

Σ1K Σ2K · · · ΣKK




where

Σk1k2 = (A(k1))−1B(k1)((A(k2))−1)T .

Proof. Following the proof of Theorem 3.1 up to Equation (3.1), we have for each

k = 1, . . . , K,

−n− 1
2 (A(k))−1Gn(θ0,x

(k)) = (A(k))−1


n−1 ∂

∂θ
G1

n(θ,x
(k))
∣∣
θ=θ

∗(k)
n,1

...

n−1 ∂
∂θ
Gp

n(θ,x
(k))
∣∣
θ=θ

∗(k)
n,p

n
1
2 (θ̂

(k)

n − θ0)

where θ
∗(k)
n,j lies on the line segment between θ0 and θ̂

(k)

n .

Let Ā be the block diagonal matrix whose kth diagonal matrix is the p×p matrix

A(k). Then, aggregating the above equation for k = 1, . . . , K, we have that

−n− 1
2 Ā−1


Gn(θ0,x

(1))
...

Gn(θ0,x
(K))

 = Ā−1



n−1 ∂
∂θ
G1

n(θ,x
(1))
∣∣
θ=θ

∗(1)
n,1

...

n−1 ∂
∂θ
Gp

n(θ,x
(1))
∣∣
θ=θ

∗(1)
n,p

...

n−1 ∂
∂θ
G1

n(θ,x
(K))

∣∣
θ=θ

∗(K)
n,1

...

n−1 ∂
∂θ
Gp

n(θ,x
(K))

∣∣
θ=θ

∗(K)
n,p


· n

1
2


θ̂
(1)

n − θ0

θ̂
(2)

n − θ0

...

θ̂
(K)

n − θ0

 .

(3.4)

The remaining steps in this proof follow the final steps of Theorem 3.1 and the

details are omitted. We shall now summarise the final steps. We see that since

the estimates θ̂
(1)
, . . . , θ̂

(K)
are consistent, the difference between θ

∗(k)
n,j and θ0 is

asymptotically negligible for all k = 1, . . . , K and j = 1, . . . , p, and by condition 3,
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3.1. General asymptotic theory

we have 

n−1 ∂
∂θ
G1

n(θ,x
(1))
∣∣
θ=θ

∗(1)
n,1

...

n−1 ∂
∂θ
Gp

n(θ,x
(1))
∣∣
θ=θ

∗(1)
n,p

...

n−1 ∂
∂θ
G1

n(θ,x
(K))

∣∣
θ=θ

∗(K)
n,1

...

n−1 ∂
∂θ
Gp

n(θ,x
(K))

∣∣
θ=θ

∗(K)
n,p


p−→ Ā.

Condition 2 states that n− 1
2Gn(θ0,X

(k)
n ) is asymptotically multivariate normal for

each k = 1, . . . , K. Combining this with condition 4 and condition 5, we have that

n− 1
2


Gn(θ0,X

(1)
n )

Gn(θ0,X
(2)
n )

...

Gn(θ0,X
(K)
n )

 d−→ N



0

0
...

0

 ,


B(1) B(1) · · · B(1)

B(1) B(2) · · · B(2)

...
...

. . .
...

B(1) B(2) · · · B(K)


 .

Therefore, the left hand side of Equation (3.4) converges in distribution to a Gaussian

distribution given by

−n− 1
2 Ā−1


Gn(θ0,X

(1)
n )

Gn(θ0,X
(2)
n )

...

Gn(θ0,X
(K)
n )

 d−→ N



0

0
...

0

 , Ā−1


B(1) B(1) · · · B(1)

B(1) B(2) · · · B(2)

...
...

. . .
...

B(1) B(2) · · · B(K)

 Ā−1

 .

Finally, by matrix manipulation and noting the block-diagonal structure for Ā, we

have the result

n
1
2


θ̂
(1)

n − θ0

θ̂
(2)

n − θ0

...

θ̂
(K)

n − θ0

 d−→ N



0

0
...

0

 ,Σ =


Σ11 Σ12 · · · Σ1K

Σ12 Σ22 · · · Σ2K

...
...

. . .
...

Σ1K Σ2K · · · ΣKK




where

Σk1k2 = (A(k1))−1B(k1)((A(k2))−1)T .

We now note the relationship between Theorem 3.2 and the canonical joint
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distribution of Definition 2.2. Suppose that A(k) = B(k) for each k = 1, . . . , K,

then we have that

Cov
(
θ̂
(k1)

n , θ̂
(k2)

n

)
= Σk1k2 =

(
B(k2)

)−1
= V ar

(
θ̂
(k2)

n

)
and condition 3 of the canonical joint distribution holds. For many estimates that

are the solution to an estimating equation, this property and hence the canonical

joint distribution holds. Consider for example, the maximum likelihood estimate

(MLE), θ̂n. At analysis k of a GST with K analyses, θ̂
(k)

n is defined as the value of

θ which maximises the log-likelihood function ℓ(θ,x(k)). Alternatively, θ̂
(k)

n is defined

as the value of θ which is the solution to the equation

∂

∂θ
ℓ(θ,x(k)

n ) = 0 (3.5)

and the Fisher information matrix at analysis k is defined as

I(k)(θ) = −E
[
1

n

∂2

∂θ2 ℓ(θ,X
(k)
n )

]
. (3.6)

Proofs of the following results can be found in Section 2.4 of Wakefield (2013):

� For each k = 1, . . . , K, E
[

∂
∂θ
ℓ(θ,X

(k)
n )
]
= 0

� For each k = 1, . . . , K, n− 1
2

∂
∂θ
ℓ(θ0,x

(k)
n )

d−→ N(0, I(k)(θ0))

� For all θ∗
n such that θ∗

n

p−→ θ0, we have that n−1 ∂
∂θ
ℓ(θ,x

(k)
n )

∣∣∣∣
θ=θ∗

n

p−→ I(k)(θ0).

Comparing these results with the regularity Conditions 3.2, it is clear that for

the MLE, we have A(k) = I(k)(θ) = B(k) for each k = 1, . . . , K. Hence, the canonical

joint distribution holds for the sequence of MLEs, θ̂
(1)

n , . . . , θ̂
(K)

n .

In Section 3.2, we consider the Cox proportional hazards model. We shall

show that the canonical joint distribution holds for the sequence of treatment effect

estimates that are found using maximum partial likelihood. To do so, we prove that

Conditions 3.2 hold and also use the property thatA(k) = B(k) for each k = 1, . . . , K.

Theorem 3.2 also provides a basis for the theory that follows in Section 4.1. A

joint model for longitudinal and survival data is considered and an analysis method

called the conditional score is used to find a sequence of treatment effect estimates.

In this example, the canonical joint distribution does not hold because A(k) ̸= B(k),

however we show that Conditions 3.2 hold and hence we are able to derive the

asymptotic distribution for the sequence of treatment effect estimates.
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3.2. Survival models

3.2 | Survival models

3.2.1 | The cox proportional hazards model

In Section 2.1.1 it was noted that to perform a hypothesis test one must find a

statistical model for the endpoint, a method for estimating the parameters of the

model and the distribution of the parameter estimates. To model the survival

data we shall use the well-studied Cox proportional hazards model which naturally

leads to estimating parameters using partial likelihood. Finally, we shall introduce

counting processes which will then be used to derive the distribution of the parameter

estimates.

The paper “Regression models and life-tables” is very popular within medical

statistics. Cox (1972) elegantly formalises a model for survival data and introduces

a function called “conditional likelihood”. Later, Cox (1975) calls this function the

“partial likelihood” and proves some large sample properties of the the estimator

that maximises the partial likelihood function. In this section, we present some

definitions and results of Cox (1972) that are used in the set-up prior to proving

some asymptotic results.

We shall use a Cox proportional hazards model to specify how the covariates

are associated with the time-to-event endpoint. By allowing the hazard function to

include covariate information, we can specify which patient groups are at a higher

risk of the event at any given time. The Cox proportional hazards model assumes

that covariates have a multiplicative effect on the rate of death, which is an attractive

feature because the parameters have straightforward and useful interpretations. For

each patient i = 1, . . . , n, let Fi be the time-to-failure random variable for patient i

and let Ci be the potential censoring time random variable. The random variable

Ti = min(Fi, Ci) is known as the event time and ti is the observed event time for

patient i. Also, the censoring indicator δi = I{Fi ≤ Ci} is observed. The Cox

proportional hazard model allows us to specify our beliefs about survival through

the hazard function

hi(t) = h0(t) exp{θTZi(t)},

where h0(·) is the baseline hazard function which is left unspecified, Zi(t) is a p× 1

column vector of time-varying covariates for patient i and θ is a p × 1 vector of

regression parameters.
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3.2.2 | Cox’s partial likelihood

For analysis of survival data and parameter estimation in the Cox proportional

hazards model, the partial likelihood function has many benefits. Partial likelihood

plays a similar role to the full likelihood function and under certain regularity

conditions, estimates derived using partial likelihood are asymptotically as efficient

as those derived using full likelihood. However the difference is that the form and

parameters of the baseline hazard function are not included in the partial likelihood.

The baseline hazard function can be thought of as an infinite-dimensional nuisance

parameter and estimation of the parameters brings no statistical benefit. Cox (1975)

first presented partial likelihood with the title “conditional likelihood” because

the contribution to the partial likelihood of the ith individual is the conditional

probability of that individual failing given all individuals that are at risk of failing

at the time that individual i fails.

For i = 1, . . . , n, let ti be the time at which patient i fails or is censored, and let

R(ti) be the set of all individuals with event time greater than or equal to ti, known

as the at-risk set. If patient i is indeed observed to fail, then the contribution to the

partial likelihood from the failure at time ti is

Li(θ) =
hi(ti)∑

j∈R(ti)
hj(ti)

=
exp{θTZi(ti)}∑

j∈R(ti)
exp{θTZj(ti)}

.

The partial likelihood function is the product of these conditional probabilities for

all failure times, which is given by

L(θ) =
n∏

i=1

(
exp{θTZi(ti)}∑

j∈R(ti)
exp{θTZj(ti)}

)δi

. (3.7)

3.2.3 | Parameter estimation in survival analysis

In section 2.1.1, it was shown how the treatment effect estimate and the fixed sample

information level can be used to define a standardised test statistic which is needed

to perform a hypothesis test. For many statistical models, a convenient approach

for finding the parameter estimate and the information level is through the use

of a “score statistic”. Further, the score statistic is also essential for deriving the

asymptotic distribution of the parameter estimates. The score statistic is the first

derivative of the log-likelihood with respect to the parameter. We define a score

statistic for standard parametric models and then apply this definition to the Cox

partial likelihood to define the parameter estimate and information matrix.
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Definition 3.3. Suppose that L(θ) is a likelihood function for the statistical model

with observed data x = {x1, . . . , xn} and p×1 column vector θ. The “score statistic”

is the p× 1 column vector given by

U(θ) =
∂

∂θ
logL(θ).

Setting the score statistic set equal to zero defines an estimating equation. To

see this, we write the likelihood function as L(θ) = f(x; θ), and the sample space as

X . Then, by the assumption that the orders of integration and differentiation can

be exchanged, we assess the expectation of the score statistic.

E(U(θ)) =

∫
X

∂

∂θ
(log f(x; θ))f(x; θ)dx

=

∫
X

1

f(x; θ)

∂f(x; θ)

∂θ
f(x; θ)dx

=
∂

∂θ

∫
X
f(x; θ)dx

=
∂

∂θ
1

= 0.

The score statistic has expectation zero, which shows that U(θ) = 0 defines an

estimating equation and the asymptotic distributional results of Theorem 3.1 hold.

For the Cox proportional hazards model, an estimating function can be created

by taking the score of the partial likelihood, Equation (3.7). The log-partial

likelihood is a scalar function of the vector θ and the score statistic is a p × 1

column vector. These functions are given by

logL(θ) =
n∑

i=1

δi

θTZi(ti)− log
∑

j∈R(ti)

exp{θTZj(ti)}


U(θ) =

n∑
i=1

δi

(
Zi(ti)−

∑
j∈R(ti)

Zj(ti) exp{θTZj(ti)}∑
j∈R(ti)

exp{θTZj(ti)}

)
. (3.8)

Estimates for parameters of the Cox proportional hazards model are found as the

root of the equation that sets the score statistic equal to zero. The p-dimensional

estimate θ̂ for θ is the solution to the equation U(θ) = 0. It is not always true that

the solution is unique however it can be shown that the probability of a unique root

converges to one as n → ∞. Further, in practice we have not found multiple roots

and so do not discuss uniqueness further.
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The final object of importance is the information matrix, which is −1 times the

first derivative of the score statistic with respect to θ. For any column vector X

we use the shorthand notation X⊗2 = XXT . Differentiating (3.8), we see that the

information is a p× p dimensional matrix given by

I(θ) =
n∑

i=1

δi

∑j∈R(ti)
Zj(ti)

⊗2 exp{θTZj(ti)}∑
j∈R(ti)

exp{θTZj(ti)}
−

(∑
j∈R(ti)

Zj(ti) exp{θTZj(ti)}∑
j∈R(ti)

exp{θTZj(ti)}

)⊗2
 .

(3.9)

Later we shall see that asymptotically I(θ) = V ar(θ̂)−1 for score statistics and

maximum partial likelihood estimates in the Cox model.

3.2.4 | Counting processes

Commonly throughout the survival data literature, the Cox proportional hazards

model and partial likelihood are formulated under the framework of counting

processes. The aim of this section is to prove the asymptotic distribution of the

treatment effect estimate obtained from the Cox proportional hazards model and to

do so we shall introduce counting processes and some useful results about them.

A counting process is analysed under the martingale framework. Andersen et al.

(2012) present and prove many results for stochastic processes, martingales and

counting processes in their book “Statistical models based on counting processes”.

In an earlier paper, Andersen and Gill (1982) show how the Cox proportional hazards

model can be presented in the counting process framework. The authors present a

proof of the asymptotic normality and consistency of the estimator of interest which

we follow for our proof of Theorem 3.5. Our aim is to summarise the necessary

results providing the basis for new theory in a later section. An interested reader

should refer to Andersen et al. (2012) for further details and discussion of regularity

conditions.

As in section 2.2, for i = 1, . . . , n, Fi is the time-to-failure random variable for

patient i and the hazard function is given by

hi(t) = limδt↓0
P(t ≤ Fi < t+ δt|Fi > t)

δt

= h0(t) exp{θTZi(t)}.

The hazard function defines the probability of an event happening at time t given

that patient i has not yet experienced the event or been censored before time t.

Suppose that patient i has experienced the event or been censored before time t,
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3.2. Survival models

then the probability that the event is observed at time t is zero. To formalise this

idea, we introduce the “at-risk” process which is given by

Yi(t) = I{Ti ≥ t}. (3.10)

Then we can introduce the “intensity process” which gives the unconditional

probability of the event being observed to occur at time t. The intensity process is

given by

λi(t) = hi(t)Yi(t) = h0(t) exp{θTZi(t)}Yi(t). (3.11)

The intensity process is a measure of the rate of change of a counting process and

we shall shortly introduce the counting process to which Equation (3.11) relates. In

general, a counting process is an increasing stochastic process {N(t), t ≥ 0} taking

integer values. Andersen et al. (2012, Sec 11.4.1) present a formal definition. The

survival counting process is an object under the classification of counting process.The

restriction is that the survival counting process can only take values in {0, 1} where

0 means that the event has not yet happened and 1 means the event has happened.

Since our analysis only concerns survival data, we restrict our attention to the

survival counting process.

Definition 3.4. Let Fi and Ci be the time-to-failure and time-to-censoring random

variables respectively for patient i where censoring is non-informative and let Ti =

min(Fi, Ci) be the event time random variable. Let ti be the observed event time and

δi = I{Ti ≤ Ci} the censoring indicator for patient i. Then the survival counting

processes is the stochastic process

Ni(t) = I{ti ≤ t, δi = 1}.

A counting process, in the general definition, is a step-function increasing in

integer increments. For the survival counting process, Ni(t) is a step function

jumping from 0 to 1 at the failure time ti for an uncensored observation. The

intensity process measures the rate of change in the increments and can be

interpreted as the instantaneous probability of the jump. The intensity process

is defined by

λi(t)dt = P(Ni(t) jumps in the interval [t, t+ dt)|Ft−)

where Ft− denotes everything that has happened until just before time t and so

determines Yi(t). The object dt has a special meaning in stochastic calculus and is

required for the integration of a stochastic function, see for example Andersen et al.
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(2012) Section III.1. For the purpose of this thesis, the object dt can be interpreted

as an infinitesimally small value of time. This probability is best understood through

a function

dNi(t) = Ni(t+ dt)−Ni(t
−)

= I{t ≤ ti < t+ dt, δi = 1}.

It can now be seen that the intensity process is such that

λi(t)dt = P(dNi(t) = 1|Ft−). (3.12)

The above function dNi(t) also presents us with useful notation: for any function

or stochastic process f(·), the stochastic integral∫ ∞

0

f(u)dNi(u) = f(ti) (3.13)

is f evaluated at the place where Ni jumps from 0 to 1 if δi = 1, and 0 otherwise.

Further, the function dNi(t) is the increment of Ni(t) over a small interval dt and

the following relationship holds

Ni(t) =

∫ t

0

dNi(u).

A martingale is a sequence of random variables for which the conditional

expectation of a future value is equal to the current value of the sequence, and

a submartingale is a sequence of random variables for which the conditional

expectation at a future time point is greater than or equal to the current value

of the sequence. It can be seen that the counting process Ni(t) is a submartingale

and we can create an object Mi(t) called the “compensated counting process” which

will be a martingale. The compensated counting process is given by

Mi(t) = Ni(t)−
∫ t

0

λi(u)du. (3.14)

In a similar manner to the survival counting process, it is useful to define the

following function

dMi(t) = Mi(t+ dt)−Mi(t
−)

= dNi(t)− λi(t)dt. (3.15)
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This satisfies the relationship

Mi(t) =

∫ t

0

dMi(u).

In Lemma 3.3, we shall show that Mi(t) satisfies the defining feature of a

martingale in that the conditional expectation of a future observation of Mi(·) is

equal to the current value of Mi(·). To do so, we need to introduce the notion of a

predictable process. This is simply a stochastic process that is fixed at time t given

what has happened before time t. Note that Yi(t) and λi(t)dt are predictable. The

score statistic for partial likelihood can be seen to be a predictable process integrated

with respect to a martingale, so we shall show that integrating a predicable process

gives rise to a martingale.

The final object of importance for the proof of the asymptotic distribution of the

score for partial likelihood, is the predictable covariation process for martingales.

This is the covariance of two martingales evaluated at time t and conditional on

Ft− . We shall use the notation

⟨Mi,Mj⟩(t) = Cov(Mi(t),Mj(t)|Ft−).

We derive the predictable covariation process for Mi(t) and the predictable

covariation for predictable processes integrated with respect to martingales.

Lemma 3.3. Let Mi(t) be the compensated counting process given by

Equation (3.14) and let Hi(t) be a predictable process. Then the stochastic process

given by

M ′
i(t) =

∫ t

0

Hi(u)dMi(u)

is a martingale. Further, for independent martingales Mi(t) and Mj(t), the

covariance process is such that

⟨M ′
i ,M

′
i⟩(t) =

∫ t

0

H2
i (u)λi(u)du

⟨M ′
i ,M

′
j⟩(t) = 0 for i ̸= j.

Proof. To prove that the stochastic process M ′
i(t) is a martingale, we show the

defining property which is that E(M ′
i(v) − M ′

i(u)|Fu) = 0. The second line of the

proof below uses the facts that the processes Hi(t) and λi(t)dt are predictable and

so are fixed conditional on Ft− , and that dNi(t) is an indicator function. Then, the
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final line uses the definition of the intensity process given by Equation (3.12).

E(dM ′
i(t)|Ft−) = E(Hi(t)dMi(t)|Ft−)

= Hi(t) [P(dNi(t) = 1|Ft−)− λi(t)dt]

= Hi(t) [λi(t)dt− λi(t)dt] = 0

This is equivalent to the result that E(M ′
i(v)−M ′

i(u)|Fu) = 0 for v > u.

For the predictable covariance process, we compute ⟨dM ′
i , dM

′
j⟩(t) =

E(dM ′
i(t)dM

′
j(t)|Ft−). This is because E(dM ′

i(t)|Ft−) = E(dM ′
j(t)|Ft−) = 0. In

the second and third lines of the proof below, we use the fact that the processes

Hi(t), Hj(t), λi(t)dt and λj(t)dt are predictable and Equation (3.12) which is the

definition of the intensity process. Then, since dt is a small interval, in the final line

we restrict attention to terms up to order dt.

E(Hi(t)dMi(t)Hj(t)dMj(t)|Ft−)

=Hi(t)Hj(t)E(dNi(t)dNj(t)− λi(t)dNj(t)dt− λj(t)dNi(t)dt+ λi(t)λj(t)(dt)
2|Ft−)

=Hi(t)Hj(t)
[
E(dNi(t)dNj(t)|Ft−)− λi(t)λj(t)(dt)

2
]

≈Hi(t)Hj(t)E(dNi(t)dNj(t)|Ft−)

The function dNi(t) is an indicator function and event times have probability zero

of being tied, this implies that dNi(t)
2 = dNi(t) and also that dNi(t)dNj(t) = 0 for

i ̸= j. Therefore, we have that

E(Hi(t)
2dMi(t)

2|Ft−) = Hi(t)
2λi(t)dt

E(Hi(t)dMi(t)Hj(t)dMj(t)|Ft−) = 0 for i ̸= j.

This is equivalent to the result that

⟨M ′
i ,M

′
i⟩(t) =

∫ t

0

H2
i (u)λi(u)du

⟨M ′
i ,M

′
j⟩(t) = 0 for i ̸= j.

The above Lemma 3.3 with Hi(t) = 1 proves the result that the compensated

counting process Mi(t) is a martingale. This result will be called upon in the proof

of the asymptotic distribution of the score statistic for partial likelihood.
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3.2.5 | Partial likelihood under the counting

process framework

Using the definition of the survival counting process and the at-risk process, we can

reformulate the score statistic for partial likelihood and the associated information.

This is useful because we can appeal to the Martingale central limit theorem to

prove the distribution of the treatment effect estimate.

The following functions are notationally convenient in definitions of the score

statistic and information matrix. The main idea is that the summation over the

set of individuals at risk is replaced by a summation over the full set of individuals

with the at-risk indicator function giving zero weight to those no longer at risk. In

the asymptotic distribution theory we shall study these functions as n → ∞. The

object S(0)(θ, t) is a scalar and S(1)(θ, t) and E(θ, t) are column vectors of length p,

where p is the length of the covariate vector Zi(t). The objects S
(2)(θ, t) and V (θ, t)

are p× p dimensional matrices. The definitions of these terms are

S(0)(θ, t) =
1

n

n∑
i=1

Yi(t) exp{θTZi(t)}

S(1)(θ, t) =
1

n

n∑
i=1

Zi(t)Yi(t) exp{θTZi(t)}

S(2)(θ, t) =
1

n

n∑
i=1

Zi(t)Zi(t)
TYi(t) exp{θTZi(t)}

E(θ, t) =
S(1)(θ, t)

S(0)(θ, t)

V (θ, t) =
S(2)(θ, t)

S(0)(θ, t)
− S(1)(θ, t)S(1)(θ, t)T

[S(0)(θ, t)]2
.

The function E(θ, t) can be interpreted as the expectation of the covariate vector

Zi(t), if we select an individual with probability proportional to exp{θTZi(t)} from

the set of individuals at risk at time t and V (θ, t) is the variance of the covariate

vector Zi(t) in this case.

In section 3.2.4 it was noted that the function dNi(t) is used to replace a

summation with a stochastic integral. This feature is essential for formulating

the score statistic for partial likelihood in terms of counting processes. Applying
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Equation (3.13) to the summand in Equation (3.8), we have

δi

(
Zi(ti)−

∑
j∈R(ti)

Zj(ti) exp{θTZj(ti)}∑
j∈R(ti)

exp{θTZj(ti)}

)
=

∫ ∞

0

(
Zi(u)−

S(1)(θ, u)

S(0)(θ, u)

)
dNi(u)

=

∫ ∞

0

(Zi(u)− E(θ, u)dNi(u)).

Thus, Equation (3.8) is

U(θ) =

∫ ∞

0

n∑
i=1

(Zi(u)− E(θ, u)) dNi(u). (3.16)

Similarly Equation (3.9) can be written as

I(θ) =
∫ ∞

0

n∑
i=1

V (θ, u)dNi(u). (3.17)

It is not yet obvious that the asymptotic theory of section 3.1 can be applied

here. To do this we seek a function with expectation zero from which to construct an

estimating equation. In the following lemma, we show how the counting process in

the score statistic can be replaced with its compensated version, producing another

martingale.

Lemma 3.4.

U(θ) =

∫ ∞

0

n∑
i=1

(Zi(u)− E(θ, u)) dNi(u) =

∫ ∞

0

n∑
i=1

(Zi(u)− E(θ, u)) dMi(u).

Proof. By Equation (3.15), we have that dMi(t) = dNi(t)−λi(t)dt. Thus, the stated

result is equivalent to proving that∫ ∞

0

n∑
i=1

(Zi(u)− E(θ, u))λi(u)du = 0.
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For i = 1, . . . , n, let Ei(u) = exp{θTZi(u)}Yi(u). Then it is easily seen that∫ ∞

0

n∑
i=1

(Zi(u)− E(θ, u))λi(u)du

=

∫ ∞

0

n∑
i=1

(Zi(u)− E(θ, u))hi(u)Yi(u)du

=

∫ ∞

0

n∑
i=1

(
Zi(u)−

∑n
j=1 Zj(u)Ej(u)∑n

j=1Ej(u)

)
h0(u)Ei(u)du

=

∫ ∞

0

n∑
i=1

(∑n
j=1 Zi(u)Ei(u)Ej(u)−

∑n
j=1 Zj(u)Ei(u)Ej(u)∑n

j=1Ej(u)

)
h0(u)du

=

∫ ∞

0

(∑n
i=1

∑n
j=1 Zi(u)Ei(u)Ej(u)−

∑n
i=1

∑n
j=1 Zj(u)Ei(u)Ej(u)∑n

j=1 Ej(u)

)
h0(u)du

=

∫ ∞

0

(∑n
i=1

∑n
j=1 Zj(u)Ei(u)Ej(u)−

∑n
i=1

∑n
j=1 Zj(u)Ei(u)Ej(u)∑n

j=1Ej(u)

)
h0(u)du

=0.

By Lemma 3.4, we have

U(θ) =

∫ ∞

0

n∑
i=1

(Zi(u)− E(θ, u)) dMi(u).

Then, by application of Lemma 3.3, the process

Ut(θ) =

∫ t

0

n∑
i=1

(Zi(u)− E(θ, u)) dMi(u)

is a martingale. Therefore, this process has expectation 0 for all values of t, and

letting t → ∞, we see that E(U(θ)) = 0. Hence, we shall use this property to define

an estimating equation.
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3.3. Asymptotic theory for survival analysis

3.3 | Asymptotic theory for survival

analysis

3.3.1 | Fixed sample results

The parameter estimate θ̂ is a p-dimensional vector which is the solution to the set

of p equations U(θ) = 0 and θ̂ has information matrix I(θ). We shall denote these

objects by θ̂n, Un(θ) and In(θ) to show dependency on the number of patients n.

In this section we derive an asymptotic distribution for θ̂n which requires assessing

the behaviour of θ̂n as n → ∞. The asymptotic setting is that as n increases, the

rate of recruitment increases in the study and we have more survival observations

with the same hazard rate. In Section 3.1 we showed that an estimator that is the

solution to an estimating equation converges to a Gaussian distribution. We have

shown that E(Un(θ)) = 0, hence the conclusion of Theorem 3.1 applies to θ̂n if we

can establish that Conditions 3.1 hold in this case. From this list, we shall prove

that conditions 2 and 3 hold. We direct the reader to Andersen et al. (2012) Lemma

3.1 for the proof that condition 1 holds. The remaining conditions, 4, 5 and 6, are

assumed to hold.

Some further regularity conditions, which relate directly to survival data, are

needed for the proof of consistency and asymptotic normality of the estimate θ̂n.

Andersen and Gill (1982) present a list of conditions which we shall assume hold

and the purpose of these conditions is to avoid technical distractions. Similarly, we

shall assume that the following conditions are satisfied.

Conditions 3.5.

1.
∫ τ

0
h0(u)du < ∞ where τ is a censoring time applied to all observations.

2. There exists a neighbourhood Θ of θ0 and functions s(0)(θ, t), s(1)(θ, t) and

s(2)(θ, t) defined on Θ× [0,∞) such that

sup
t∈[0,∞),θ∈Θ

∥∥S(j)(θ, t)− s(j)(θ, t)
∥∥ p−→ 0 for j = 0, 1, 2.

Each s(j)(θ, t) is a continuous function of θ ∈ Θ uniformly in t ∈ [0,∞), and

bounded on Θ × [0,∞). Also, the function s(0) is bounded away from zero on

Θ× [0,∞).
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3. There exists δ > 0 such that

n−1/2 sup{|Zi(t)|I(θT0 Zi(t) > −δ|Zi(t)|); i = 1, . . . , n} p−→ 0 as n → ∞.

Asymptotic probabilistic limits of the score statistic and information matrix

are specified through limits of their components. Conditions 3.5 define probabilistic

limits of the functions S(j)(θ, t) for j = 0, 1, 2 and specify that these limits exist. It is

clear, given the definitions of S(j)(θ, t) for j = 0, 1, 2 that the following relationships

hold:

s(1)(θ, t) =
∂

∂θ
s(0)(θ, t),

s(2)(θ, t) =
∂2

∂θ2
s(0)(θ, t).

Further, the matrices E(θ, t) and V (θ, t) converge in probability to e(θ, t) and v(θ, t)

respectively which are given by

e(θ, t) =
s(1)(θ, t)

s(0)(θ, t)

v(θ, t) =
s(2)(θ, t)

s(0)(θ, t)
– e(θ, t)e(θ, t)T .

It is now possible to determine the asymptotic distribution of the parameter

estimate θ̂n. We shall call upon results in Section 3.1 to show that the estimate

is asymptotically normally distributed. The following is a heuristic sketch of the

proofs given by Andersen et al. (2012) who prove consistency in their Lemma 3.1

and asymptotic normality in their Theorem 3.2.

Theorem 3.5. Let the estimate θ̂n be the solution to the equation Un(θ) = 0 with

Un(θ) defined in Equation (3.16). Suppose that θ0 is the true value of the parameter

θ and that Conditions 3.5 hold. Then θ̂n converges in distribution to a Gaussian

random variable, specifically

n
1
2 (θ̂n − θ0)

d−→ N(0,Σ)

where the covariance matrix Σ is given by

Σ =

∫ ∞

0

v(θ0, u)s
(0)(θ0, u)h0(u)du.

Proof. In this Theorem, the score statistic Un(θ) plays the role of the estimating
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function Gn(θ,xn). In applying Theorem 3.1, we show the following conditions are

satisfied:

A1 θ̂n is consistent for θ, written θ̂n
p−→ θ0

A2 n− 1
2Un(θ0)

d−→ N(0,Σ) where Σ is a finite valued semi-definite matrix

A3 n−1 ∂
∂θ
Un(θ)|θ=θ∗ = n−1In(θ

∗)
p−→ Σ for all θ∗ consistent for θ.

Note that these conditions are the first three requirements in Conditions 3.1 with

A = B = Σ. We shall focus on the proof that conditions A2 and A3 are satisfied

since we shall later build upon this proof in the group sequential case. Andersen

et al. (2012) prove consistency in their Lemma 3.1.

Condition A2 can be shown by applying Rebolledo’s Central Limit Theorem for

square integrable martingales. For each j = 1, . . . , p, define

W
(n)
j (θ, t) =

∫ t

0

n∑
i=1

H
(n)
ij (u)dMi(u)

where

H
(n)
ij (u) = n− 1

2 (Zij(u)− Ej(θ, u)).

Then H is an n × p matrix of locally bounded predictable processes. Thus,

n− 1
2Un(θ) = W (n)(θ,∞). For Rebolledo’s Central Limit Theorem to hold, we must

demonstrate two conditions:

⟨W (n)
j1

(θ0),W
(n)
j2

(θ0)⟩(t)
p−→ Σj1j2

and∫ ∞

0

n∑
i=1

H
(n)
ij (u)2λi(u)I{|H(n)

ij (u)| > ϵ}du p−→ 0 for j = 1, . . . , p and all ϵ > 0.

For the first part, we note that patients are independent, so that the martingales

Mi1(t) and Mi2(t) are independent for i1 ̸= i2. By Lemma 3.3, we have

Cov

(∫ t

0

H
(n)
ij1

(u)dMi(u),

∫ t

0

H
(n)
ij2

(u)dMi(u)

∣∣∣∣Ft−

)
=

∫ t

0

H
(n)
ij1

(u)H
(n)
ij2

(u)λi(u)du

Cov

(∫ t

0

H
(n)
i1j1

(u)dMi1(u),

∫ t

0

H
(n)
i1j2

(u)dMi2(u)

∣∣∣∣Ft−

)
= 0 for i1 ̸= i2.

Therefore, summing over all patients, the predictable covariation process of the
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square-integrable martingales W
(n)
j (θ0, t) is

⟨W (n)
j1

(θ0),W
(n)
j2

(θ0)⟩(t) =
∫ t

0

n∑
i=1

H
(n)
ij1

(u)H
(n)
ij2

(u)λi(u)du

=

(∫ t

0

V (θ0, u)S
(0)(θ0, u)h0(u)du

)
j1j2

p−→
(∫ t

0

v(θ0, u)s
(0)(θ0, u)h0(u)du

)
j1j2

= Σj1j2 .

This is a direct result of the regularity conditions and definitions of s(j) for j = 0, 1, 2.

The second condition for Rebolledo’s Central Limit Theorem makes use of the

following simple inequality

|a− b|2I{|a− b| > ϵ} ≤ 4|a|2I
{
|a| > ϵ

2

}
+ 4|b|2I

{
|b| > ϵ

2

}
.

Substituting a = n− 1
2Zi(t) and b = n− 1

2E(θ0, u), it is then enough to show that for

each j and ϵ > 0∫ ∞

0

n∑
i=1

4|n− 1
2Zij(u)|2I

{
|n− 1

2Zij(u)| >
ϵ

2

}
λi(u)du

p−→ 0

∫ ∞

0

n∑
i=1

4|n− 1
2Ej(θ0, u)|2I

{
|n− 1

2Ej(θ0, u)| >
ϵ

2

}
λi(u)du

p−→ 0.

The proof of these statements is analytically simple and will not be proved here, for

further details, we refer the reader to Andersen and Gill (1982) Theorem 3.2.

For condition A3, the first derivative of the score statistic or the information

matrix, equation (3.17), we add and subtract common terms then use the triangle

inequality to obtain the following inequality:

∥∥n−1I(θ∗)− Σ
∥∥ ≤

∥∥∥∥∥n−1

∫ ∞

0

n∑
i=1

V (θ∗, u)dNi(u)−
∫ ∞

0

v(θ0, u)s
(0)(θ0, u)λ0(u)du

∥∥∥∥∥
=

∥∥∥∥∥n−1

∫ ∞

0

n∑
i=1

{V (θ∗, u)− v(θ∗, u)}dNi(u)

∥∥∥∥∥
+

∥∥∥∥∥n−1

∫ ∞

0

n∑
i=1

{v(θ∗, u)− v(θ0, u)}dNi(u)

∥∥∥∥∥
+

∥∥∥∥∫ ∞

0

v(θ0, u){S(0)(θ0, u)− s(0)(θ0, u)}λ0(u)du

∥∥∥∥ .
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Each term on the right can be shown to converge to zero in probability which proves

that In(θ)
p−→ Σ. The regularity conditions ensure that the matrix Σ is automatically

positive semi-definite.

3.3.2 | Group sequential results

The analysis of survival data in a fixed sample trial transfers nicely to the group

sequential trial. The aim for this section is to prove that the sequence of treatment

effect estimates obtained in a group sequential trial with survival as the primary

endpoint satisfy the canonical joint distribution of Definition 2.1. To do so, we

define a sequence of score statistics indexed by k the interim analysis number. We

show how the score statistic at analysis k uses all the available information at the

time of the analysis. The canonical joint distribution of the sequence of estimates

is then easily found after deriving the joint distribution of the sequence of score

statistics.

Jennison and Turnbull (1997) prove that the canonical joint distribution of

Definition 2.1 holds for for a variety of data types including survival data. We

shall explain how the proof by Jennison and Turnbull (1997) is derived so that we

can apply similar methods for the joint model in Section 4.1. The proof for the joint

model will be a new result and builds upon theory in this section.

There is an additional form of censoring in a group sequential trial. Patients

who have entered the trial but for whom the event of interest has not been observed

at an interim analysis are marked as censored. For patient i = 1, . . . , n with time-

to-failure random variable Fi, let Ci(k) be the time-to-censoring random variable

at analysis k, which is similar to end of study censoring in a fixed sample trial.

This value Ci(k) is the minimum of the usual censoring random variable Ci and the

follow-up time at the interim analysis for patient i. Then at analysis k the time-

to-event random variable is Ti(k) = min{Fi, Ci(k)} which has observed event time

ti(k) and the observed censoring indicator is δi(k) = I{Fi ≤ Ci(k)}.
Section 3.2.5 defined all objects needed to write the score statistic for partial

likelihood in terms of counting processes. It is necessary to define these objects for

a given interim analysis in order to create a group sequential version of the score

statistic. The at-risk process will now be an indicator for not yet observing the event,

non-informative censoring or being censored for an interim analysis. For patient i at

analysis k the at-risk process is Yi(k, t) = I{ti(k) ≥ t}. The corresponding counting
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process and compensated counting process for analysis k are

Ni(k, t) = I{ti(k) ≤ t, δi(k) = 1}

Mi(k, t) = Ni(k, t)−
∫ t

0

λ0(u) exp{θTZi(u)}Yi(k, u)du.

The functions S(j)(k, θ, t) for j = 0, 1, 2 along with E(k, θ, t) and V (k, θ, t) have

obvious definitions which follow from the fixed sample theory of subsection 3.2.5.

For completeness, these are

S(0)(k, θ, t) =
1

n

n∑
i=1

Yi(k, t) exp{θTZi(t)}

S(1)(k, θ, t) =
1

n

n∑
i=1

Zi(t)Yi(k, t) exp{θTZi(t)}

S(2)(k, θ, t) =
1

n

n∑
i=1

Zi(t)Zi(t)
TYi(k, t) exp{θTZi(t)}

E(k, θ, t) =
S(1)(k, θ, t)

S(0)(k, θ, t)

V (k, θ, t) =
S(2)(k, θ, t)

S(0)(k, θ, t)
− S(1)(k, θ, t)S(1)(k, θ, t)T

[S(0)(k, θ, t)]2
.

The group sequential score statistics and information matrices are to be calculated

during the clinical trial. Let τk be the time from the start of the study of interim

analysis k, so that all information recorded up to time τk is included in score statistic

k. Also note that the same reasoning in the proof of Lemma 3.4 can be used to replace

dNi(k, u) with dMi(k, u) in the score statistic. Therefore, at analysis k the score

statistic and information matrices are respectively

U(k, θ) =

∫ τk

0

n∑
i=1

(Zi(u)− E(k, θ, u))dNi(k, u)

=

∫ τk

0

n∑
i=1

(Zi(u)− E(k, θ, u))dMi(k, u)

I(k, θ) =
∫ τk

0

n∑
i=1

V (k, θ, u)dNi(k, u).

Some thought should be given as to why the at-risk process Yi(k, t) depends upon k.

This is because, with staggered entry, the maximum follow-up time for each patient

at analysis k is the difference between their time of entry to the trial and the time

of interim analysis k.
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In the proof of the asymptotic distribution of the sequence of treatment effect

estimates, we follow the work of Tsiatis et al. (1995) and create new counting

processes that allow the score statistic to be divided into distinct increments. For

k = 1, . . . , K the counting processes are

DNi(0, t) = 0

DNi(k, t) = Ni(k, t)−Ni(k − 1, t).

For k = 1, . . . , K, the equivalent compensated versions are

DMi(0, t) = 0

DMi(k, t) = DNi(k, t)−
∫ t

0

λ0(u) exp{θTZi(u)}(Yi(k, u)− Yi(k − 1, u))du.

Since the event for patient i can only happen once, we haveNi(k, t) =
∑k

l=1 DNi(l, t).

The score statistic at analysis k is the sum of increments up to and including

analysis k. Therefore, the score statistic is written:

Un(k, θ) =

∫ τk

0

n∑
i=1

k∑
l=1

(Zi(u)− E(k, θ, u))dDNi(l, u). (3.18)

Regularity conditions for the group sequential trial have few differences to the

regularity conditions of the fixed sample case. Similarly to the fixed sample case,

we present the conditions given by Andersen and Gill (1982) and we shall assume

that these conditions hold to avoid technical distractions.

Conditions 3.6.

1. For k = 1, . . . , K,
∫ τk
0

h0(u)du < ∞ where τk is the calendar time of analysis

k.

2. There exists a neighbourhood Θ of θ0 and for each k = 1, . . . , K there are

functions s(0)(k, θ, t), s(1)(k, θ, t) and s(2)(k, θ, t) defined on Θ × [0,∞) such

that

sup
t∈[0,∞),θ∈Θ

∥∥S(j)(k, θ, t)− s(j)(k, θ, t)
∥∥ p−→ 0 for j = 0, 1, 2.

Each s(j)(k, θ, t) is a continuous function of θ ∈ Θ uniformly in t ∈ [0,∞),

and bounded on Θ× [0,∞). For each k = 1, . . . , K, s(0) is bounded away from

zero on Θ× [0,∞).
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3. There exists δ > 0 such that

n−1/2 sup{|Zi(t)|I(θT0 Zi(t) > −δ|Zi(t)|); i = 1, . . . , n} p−→ 0 as n → ∞.

In a similar manner to the definition of the covariance matrix in the fixed sample

trial, the covariance matrix at analysis k denoted Σ(k) is derived by defining e(k, θ, t)

and v(k, θ, t) as products of s(0)(k, θ, t), s(1)(k, θ, t) and s(2)(k, θ, t). The definitions

of these functions are as follows:

e(k, θ, t) =
s(1)(k, θ, t)

s(0)(k, θ, t)

v(k, θ, t) =
s(2)(k, θ, t)

s(0)(k, θ, t)
–e(k, θ, t)e(k, θ, t)T .

Theorem 3.6. Let the vector of estimates (θ̂
(1)
n , . . . , θ̂

(K)
n )T be the solution to the

equation (Un(1, θ), . . . , Un(K, θ))T = 0. Suppose that θ0 is the true value of the

parameter θ and that Conditions 3.6 hold. Then (θ̂
(1)
n , . . . , θ̂

(K)
n )T converges in

distribution to a multivariate Gaussian random variable, specifically
n

1
2 (θ̂

(1)
n − θ0)

n
1
2 (θ̂

(2)
n − θ0)
...

n
1
2 (θ̂

(K)
n − θ0)

 d−→ N



0

0
...

0

 ,


Σ(1) Σ(2) · · · Σ(K)

Σ(2) Σ(2) · · · Σ(K)

...
...

. . .
...

Σ(K) Σ(K) · · · Σ(K)




where

Σ(k) =

∫ ∞

0

v(k, θ0, u)s
(0)(k, θ0, u)h0(u)du.

Proof. In Theorem 3.2, we proved that the sequence of estimates which are the

solution to estimating equations, are asymptotically normally distributed. We also

showed that the canonical joint distribution holds when the matrices A(k) and B(k)

of the regularity conditions are equal. Therefore, to prove that the canonical joint

distribution of Definition 2.2 holds for this sequence of estimates which are the

maximum partial likelihood estimates, we shall prove that the following conditions

are satisfied:

1. For each k = 1, . . . , K, θ̂
(k)
n

p−→ θ0.

2. For each k = 1, . . . , K, n− 1
2Un(k, θ0)

d−→ N(0,Σ(k)).
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3. For all θ∗(k) such that θ∗(k)
p−→ θ0,

n−1 ∂

∂θ
Un(k, θ)|θ=θ∗(k) = n−1In(k, θ

∗(k))
p−→ Σ(k)

for each k = 1, . . . , K.

4. For 1 ≤ k1 ≤ k2 ≤ K,

Cov
(
n− 1

2Un(k1, θ0), n
− 1

2Un(k2, θ0)
)

p−→ Σ(k1)

.

The fixed sample results given in Theorem 3.5 are enough to prove that conditions

1–3 hold in this group sequential version.

It remains to show that condition 4 holds. Following the work of Tsiatis et al.

(1995), we can split the counting process into distinct increments. We shall use the

form of the score statistic at analysis k given by Equation (3.18). This is

Un(k, θ) =

∫ τk

0

n∑
i=1

k∑
l=1

(Zi(u)− E(k, θ, u))dDNi(l, u).

Similarly to the fixed sample proof, we can write the score statistic in martingale

form. The jth element of the martingale version of the score statistic times n− 1
2 with

dependence on t is

W
(n)
j (k, θ, t) =

∫ t

0

n∑
i=1

k∑
l=1

H
(n)
ij (k, u)dDMi(l, u)

where

H
(n)
ij (k, u) = n− 1

2 (Zij(u)− Ej(k, θ, u)).

Then H is an n × p matrix of locally bounded predictable processes. Thus,

n− 1
2Un(k, θ) = W (n)(k, θ, τk).

To assess the asymptotic limit of the predictable covariation process of the

score statistic, we must first determine the range over which two processes are

orthogonal; DMi1(l1, t) and DMi2(l2, t) are orthogonal for i1 ̸= i2 because patients

are independent and these processes are also orthogonal if l1 ̸= l2 because the jump is

unique for each patient and so cannot happen in in two different analyses. Therefore,

51



3.3. Asymptotic theory for survival analysis

the predictable covariation process for k1 ≤ k2 is

⟨W (n)
j1

(k1, θ0),W
(n)
j2

(k2, θ0)⟩(t)

=

∫ t

0

n∑
i=1

k1∑
l=1

H
(n)
ij1

(k1, u)H
(n)
ij2

(k2, u)h0(u) exp{θTZi(u)}(Yi(l, u)− Yi(l − 1, u))du

=

∫ t

0

n∑
i=1

H
(n)
ij1

(k1, u)H
(n)
ij2

(k2, u)h0(u) exp{θTZi(u)}Yi(k1, u)du

=

∫ t

0

n∑
i=1

H
(n)
ij1

(k1, u)H
(n)
ij2

(k1, u)h0(u) exp{θTZi(u)}Yi(k1, u)du

=

(∫ t

0

V (k1, θ0, u)S
(0)(k1, θ0, u)h0(u)du

)
j1j2

p−→ Σ
(k1)
j1j2

.

Therefore we have the result that for k1 ≤ k2

Cov
(
n− 1

2Un(k1, θ0), n
− 1

2Un(k2, θ0)
)

p−→ Σ(k1).

The second condition for Rebolledo’s central limit theorem for martingales can be

proven using the same reasoning as for the fixed sample case.

Theorem 3.6 shows that the sequence of estimates θ̂(1), . . . , θ̂(K) follow the

multivariate version of the canonical joint distribution. The ingredients of this

known result are what we shall use in Chapter 4 to obtain the asymptotic

distribution for the sequence of treatment effect estimates which are obtained using

the “conditional score method”. The conditional score method is used to obtain

estimates for parameters in a joint model for longitudinal and survival data.

52



CHAPTER 4

JOINT MODEL WITH TREATMENT

DIRECTLY AFFECTING SURVIVAL
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4.1. Joint modelling

4.1 | Joint modelling

4.1.1 | Motivation for combining survival and

longitudinal information

The focus of this Chapter is to develop methods for designing and analysing a group

sequential trial based on a joint model for longitudinal and survival data. We may

believe that a trend in the trajectory of the biomarker is predictive of survival, and

we would like to know whether this additional longitudinal data can be used in

monitoring the trial, leading to early stopping.

Interest in joint modelling is motivated by clinical trials where the biomarker is

predictive of survival. For example, Goldman et al. (1996) use CD4 lymphocyte cell

counts as a surrogate endpoint for survival in a clinical trial comparing the efficacy

and safety of two antiviral drugs for HIV-infected patients. Taylor et al. (2013) use

a joint model to predict survival times of patients with prostate cancer based on

prostate specific antigen (PSA) levels measured by blood tests at multiple hospital

visits.

Suppose that the biomarker observations are available but have not been used

in the analysis. The topic of this Chapter is to assess the change in efficiency of

the trial when these observations are included in the analysis. We shall focus on

efficiency measured in terms of the number of patients that need be recruited to

achieve a certain power, and we show that, in some scenarios, the trial using the

longitudinal data is up to 1.67 times as efficient as the trial which discards the

longitudinal data. That is, when the longitudinal data is not used, 1.67 times as

many patients are recruited to achieve the same power as the trial which does use

the longitudinal data. We shall present these results in Section 4.5.

Tsiatis and Davidian (2001) present the joint model that we shall use here.

Then, Tsiatis and Davidian (2004) give an overview of possible methods of inference.

Rizopoulos (2012) gives further detailed theory for some of the inference options. We

focus on a method called the “conditional score” method. This was first introduced

by Tsiatis and Davidian (2001), who present the asymptotic theory for a fixed

sample trial. Lu and Tsiatis (2008) use the theory of semiparametrics to find an

estimator for the treatment effect in a survival model when there are auxiliary

covariates incorporated. In this case, the auxiliary variables are known to be

correlated with the time-to-event outcome and the information for these covariates

is collected at baseline and throughout the trail. The authors derive an estimator

that is more efficient than the maximum partial likelihood estimator for the model
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4.1. Joint modelling

where information arises solely from time-to-event observations. We seek a similar

result for the estimator of the conditional score method for analysing the joint model.

The conditional score function is seen to have similar properties to the Estimating

Equation (11) of Lu and Tsiatis (2008) where the biomarker observations play a

similar role to the auxiliary variables. However, the reason why these results cannot

be directly applied is because of the measurement error in the longitudinal data.

The conditional score requires an understanding of survival analysis because it

is an analogy to partial likelihood. The ideas and methodology for survival analysis

which appeared in Section 3.2 are extended upon in this section. The novel aspect

of the research in this chapter is the design and analysis of group sequential trials

based on a joint model for longitudinal and time-to-event data. Our main result,

given by Theorem 4.4, determines the asymptotic distribution of the sequence of

treatment effect estimates in a group sequential test based on the joint model.

4.1.2 | Joint model

The joint model that we consider is given in Equation (2) of Tsiatis and Davidian

(2001). There are two processes in this model which represent the survival and

longitudinal parts separately, and these processes are linked through the hazard

rate of the survival process. First we consider the longitudinal data. Suppose that

Xi(t) is the true value of the biomarker at time t for subject i and that Wi(t) is the

observed value of the biomarker at time t for patient i. Then the longitudinal model

takes the form

Xi(t) = b0i + b1it (4.1)

Wi(t) = Xi(t) + ϵi(t) (4.2)

where bi = (bi0, bi1) is a vector of patient specific random effects and ϵi(t) is the

measurement error. In general, the vector bi can have dimension p and the function

Xi(t) need not be constrained to linear functions in t. However, we shall concentrate

on the case given in Equations (4.1) and (4.2). We consider a random effects model

where each bi is a random variable with density function f(·). The measurement

errors are assumed to be independent and if the biomarker for patient i is measured

at times ti1, . . . timi
, then ϵi(tij)|bi ∼ N(0, σ2) for j = 1, . . . ,mi and ϵ(t) and ϵ(t′)

are independent for t ̸= t′.

The model for the survival endpoint is a Cox proportional hazards model in which

the longitudinal variable Xi(t) acts as a time-varying covariate with coefficient γ.

The remaining covariates for patient i at time t are given by the p × 1 column
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vector Zi which has corresponding coefficient vector η of length p. In the upcoming

examples, we only consider the case where p = 1 so that Zi and η are scalars, hence

we do not use bold notation for these parameters. Then the hazard function is given

by

hi(t) = h0(t) exp{γXi(t) + ηTZi}, (4.3)

where h0(·) is the baseline hazard function. Note that it is the true underlying

trajectory Xi(t) that is included as a covariate in the proportional hazards

model, whereas the measurements Wi(t) with added error are observed. Together,

Equations (4.1), (4.2) and (4.3) define the joint model.

It is surprising, perhaps, to assume treatment has no effect on the biomarker.

However, this model appears to be widely accepted and there are many results

for the more simple model presented above. Hence, we shall build upon existing

literature to develop the group sequential methodology for the model (4.1)-(4.3).

The data collected for each individual i = 1, . . . , n are the vector

(Wi(t), Zi(t), ti, δi) where

� Wi(tij) are biomarker measurements at times ti1, . . . , timi

� Zi are known covariates,

� ti is the observed event time,

� δi = I{Fi ≤ Ci} is the indicator function for censoring, so that δi = 1 implies

an exact observation.

4.1.3 | Model likelihood

An expression for the full likelihood for the joint model is now presented. The full

likelihood is not used in the analysis of the joint model, however understanding the

structure reveals the difficulties with maximum likelihood based analyses for the

joint model.

Tsiatis and Davidian (2004) derive an expression for the full likelihood function

for a general joint model presented in their Section 3, Equation (7). We build upon

this result and derive the likelihood function for our model Equations (4.1)—(4.3)

as

n∏
i=1

∫
h0(ti) exp{γ(b0i + b1iti) + ηTZi}δi exp

[
−
∫ ti

0

h0(u) exp{γ(b0i + b1iu) + ηTZi}du
]

× 1

(2πσ2)mi/2
exp

[
−

mi∑
j=1

(Wi(tij)− (bi0 + bi1tij))
2

2σ2

]
f(bi)dbi.
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Analytic expressions for calculation of the above likelihood are rarely available,

so we rely on numerical integration techniques. The vector bi has length p = 2 and

hence this likelihood is a product of n 2-dimensional integrals. Calculation of the

maximum likelihood estimate requires a series of these computationally expensive

calculations. Further, note that calculation of this likelihood function requires that

the baseline hazard function h0(t) is known.

To overcome these computational challenges, we shall introduce the conditional

score method which is an analogy to maximising the partial likelihood in survival

analysis. The similarity with maximum likelihood is that the analysis is “semi-

parametric” and does not require specification of the form of h0(t). In Section 5.3.1

we discuss some of the complications of using a fully parametric approach with

regards to parameter identifiability and robustness. For example, we specify that

the model has a piecewise constant baseline hazard function and we must ensure

that there are a sufficient number of events occurring between analysis times and

knot points. Further, using the conditional score method, there is no integration

over the distribution of the random effects which means that we do not need to

make any assumptions about the distribution of the random effects.

In comparison with the fully parametric maximum likelihood estimation, the

conditional score method has the disadvantage that the resulting estimator is not

efficient. This has the consequence that the canonical joint distribution does not

hold for the sequence of estimates in the group sequential test. However, we believe

that the advantages of a semi-parametric estimator and being able to bypass any

assumptions about the random effects outweigh the relative disadvantage of the

conditional score estimator not being efficient.

4.1.4 | Counting processes for the joint model

In Section 3.2.5, it was shown how counting processes can be used to formulate the

partial likelihood for the Cox proportional hazards model. The re-parameterisation

of the data into the counting process framework allowed martingale results to be

used in the derivation of the asymptotic distribution of the treatment effect estimate.

We now show the analogous counting process for the joint model.

With our choice of model Xi(t) = b0i+ b1it for longitudinal data, the joint model

counting process is defined by the following functions:

Ni(t) = I(t ≤ ti, δi = 1, ti2 ≤ t)

dNi(t) = I(t ≤ ti ≤ t+ dt, δi = 1, ti2 ≤ t).
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Note that here ti is the time of the exact or censored event for patient i while ti2

is the second term in the sequence of times ti1, ti2, . . . , timi
at which we observe the

biomarker. The difference between this counting process and the counting process

for standard partial likelihood is the inclusion criterion ti2 ≤ t. This ensures that

there are a sufficient number of longitudinal observations to perform linear regression

of the longitudinal data at a time t where the process Ni(t) jumps. Note that this

criterion would be modified for a different longitudinal model. This gives rise to a

modified at-risk function. The criterion for inclusion in the risk set is now dependent

on having enough longitudinal measurements, so the at-risk function is given by

Yi(t) = I{ti ≥ t, ti2 ≤ t}.

By analogy to survival analysis, we seek a compensated counted process with

expectation zero. This property leads us to define an estimating equation from

which we can obtain treatment effect estimates that are asymptotically normally

distributed. In the usual survival analysis setting, we can calculate the compensated

counting process by subtracting the intensity process of the counting process. In the

joint modelling setting, this is not as simple because the randomness of the nuisance

parameters b mean that the intensity process will not be predictable. To overcome

this, Tsiatis and Davidian (2001) introduce a “conditional intensity process” which is

conditional on a certain “sufficient statistic”. The origins of the conditional intensity

process and sufficient statistic are not crucial for our purpose. What we actually use

are the definitions and properties that are derived from these. In what follows, we

shall introduce these two functions, given by Tsiatis and Davidian (2001), and the

compensated counting process. We shall then show that this compensated counting

process has expectation zero.

For patient i, let ti(u) be set of all time points for measurements of the biomarker,

up to and including time u. Let X̂i(u) be the ordinary least squares estimate of

Xi(u) for patient i based on the set of measurements taken at times ti(u). That

is, calculate b̂0i(u) and b̂1i(u) based on measurements taken at times ti(u), then

X̂i(u) = b̂0i(u) + b̂1i(u)u. As we pass time tij, a new observation Wij is included

and the formula for X̂i(u) is updated for larger values of u. This seems strange

since at early time points, not all of the available data is used for calculation of

X̂i(u) however this is necessary for the martingale property to hold in later results.

Suppose that σ2θi(u) is the variance of the estimator X̂i(u) at time u. Tsiatis and
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Davidian (2001) define the sufficient statistic to be the function

Si(t, γ, σ
2) = X̂i(t) + γσ2θi(t)dNi(t)

= b̂0i(t) + b̂1i(t)t+ γσ2θi(t)dNi(t)

which is defined for all t ∈ (ti2, ti) for patient i. The authors give details for the

derivation of the conditional intensity process in their appendix, which is given by

λC
i (t) = limdt↓0

P(dNi(t) = 1|Si(t, γ, σ
2), ti(t), Zi, Yi(t))

dt
(4.4)

= h0(t) exp{γSi(t, γ, σ
2)− γ2σ2θi(t)/2 + ηTZi}Yi(t). (4.5)

The superscript c here is to show that this intensity process is conditional on the

sufficient statistic and also to reflect that this is not the same intensity process as

Equation (3.11) for the survival counting process. The proof that Equations (4.4)

and (4.5) are equal is found in the appendix of Tsiatis and Davidian (2001) where

the authors derive this conditional intensity process.

For convenience we shall define

E0i(t, γ, η, σ
2) = exp{γSi(t, γ, σ

2)− γ2σ2θi(t)/2 + ηTZi} (4.6)

which mirrors the exponential function in the intensity process for the survival data

model. In Section 3.2.4 we saw how the Doob Meyer decomposition theorem is used

to create a martingale that is the intensity process subtracted from its submartingale

counting process. Although for the joint model, the compensated counting process

will not be a martingale, because of the unknown nature of the random effects, it is

still useful to define:

Mi(t) = Ni(t)−
∫ t

0

h0(u)E0i(u, γ, η, σ
2)Yi(u)du (4.7)

dMi(t) = dNi(t)− h0(t)E0i(t, γ, η, σ
2)Yi(t)dt. (4.8)

The important property for the asymptotic distribution derivation, is that the

compensated counting process has expectation zero conditional on the sufficient

statistic. The following lemma proves this result which shall be used in the proof of

the asymptotic distribution of the parameter estimates in the joint model.

Lemma 4.1. The function dMi(t) which is the compensated counting process for

the joint model defined in equation (4.8) has expectation zero conditional on the
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sufficient statistic, that is

E(dMi(t)|Si(t, γ, σ
2), ti(t), Zi, Yi(t)) = 0.

Proof. First, by equations (4.4) and (4.5), the conditional expectation of the

counting process is

E(dNi(t)|Si(t, γ, σ
2), ti(t), Zi(t), Yi(t)) = P(dNi(t) = 1|Si(t, γ, σ

2), ti(t), Zi(t), Yi(t))

= h0(t)E0i(t, γ, η, σ
2)Yi(t)dt.

Then the conditional expectation of the compensated counting process is

E(dMi(t)|Si(t, γ, σ
2), ti(t), Zi(t), Yi(t))

=E(dNi(t)− h0(t)E0i(t, γ, η, σ
2)Yi(t)dt|Si(t, γ, σ

2), ti(t), Zi(t), Yi(t))

=E(dNi(t)|Si(t, γ, σ
2), ti(t), Zi(t), Yi(t))− h0(t)E0i(t, γ, η, σ

2)Yi(t)dt

=0.

Following the work of Tsiatis and Davidian (2001), we have presented definitions

for the functions Si(t, γ, σ
2), λC

i (t), E0i(t, γ, η, σ
2) and Mi(t). We have then shown

that Mi(t) conditional on Si(t, γ, σ
2), ti(t), Zi(t), Yi(t), has expectation zero and this

result will be used in the proof of the asymptotic distribution for the parameter

estimates in the joint model.

4.1.5 | Conditional score

It remains to define the conditional score function. This is the function we are

seeking with a root that defines unbiased and asymptotically normal parameter

estimates for the joint model. We introduce the conditional score before proving the

distributional results for the treatment effect estimates in the upcoming Section 4.2.1

and Section 4.2.2. The conditional score is an analogue to the score for partial

likelihood in survival analysis. The score for partial likelihood is a function of

counting processes and their intensity functions. The conditional score is different

because the intensity process is conditional on the sufficient statistic.

In the score statistic for partial likelihood, the function E(θ, t) is the expectation

of the covariates at time t weighted by the intensity process λi(t). This function is

the main aspect of the score for partial likelihood and this concept motivates the
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conditional score approach. The underlying idea for the conditional score is to create

the expectation of the covariates in the joint model weighted by the conditional

intensity process λC
i (t). However, the joint model includes the true, longitudinal

trajectory as a covariate, and so this is replaced by the sufficient statistic. Therefore,

we construct a function that is the expectation of the vector {Si(t, γ, σ
2), ZT

i }T

weighted with probability λC
i (t). With E0i(t, γ, η, σ

2) given in Equation (4.6), we

define functions

S(0)
c (t, γ, η, σ2) =

1

n

n∑
i=1

Yi(t)E0i(t, γ, η, σ
2)

S(1)
c (t, γ, η, σ2) =

1

n

n∑
i=1

{
Si(t, γ, σ

2)

Zi

}
Yi(t)E0i(t, γ, η, σ

2)

S(2)
c (t, γ, η, σ2) =

1

n

n∑
i=1

{
Si(t, γ, σ

2)

Zi

}{
Si(t, γ, σ

2)

Zi

}T

Yi(t)E0i(t, γ, η, σ
2)

Ec(t, γ, η, σ
2) =

S
(1)
c (t, γ, η, σ2)

S
(0)
c (t, γ, η, σ2)

.

The notation for this section reflects that of Jennison and Turnbull (1997) and

Section 3.2.5 and the analogy to partial likelihood can be seen, in each case the

subscript c indicates that these functions are conditional on the sufficient statistic.

For comparison with Tsiatis and Davidian (2001), the functions S
(0)
c , S

(1)
c and Ec

are equivalent to E0, E1 and S̄ respectively. These functions are the basis of the

conditional score function. The score statistic for partial likelihood is a sum over

patients of covariate vectors minus the weighted expectation of the covariate vector.

By this interpretation, it is clear the expectation must be zero. Similarly, we define

the conditional score to be a sum over patients of the vector {Si(t, γ, σ
2), ZT

i }T minus

its weighted expectation. Let p be the length of the vector Zi for all i = 1, . . . , n,

then the conditional score statistic will be a (p+ 1)× 1 column vector given by

Uc(γ, η, σ
2) =

∫ ∞

0

n∑
i=1

(
{Si(u, γ, σ

2), ZT
i }T − Ec(u, γ, η, σ

2)
)
dNi(u) (4.9)

=

∫ ∞

0

n∑
i=1

(
{Si(u, γ, σ

2), ZT
i }T − Ec(u, γ, η, σ

2)
)
dMi(u). (4.10)

Our conditional score Equation (4.9) is equivalent to Equation (6) of Tsiatis and

Davidian (2001) and Equation (4.10) is equivalent to Equation (7) of Tsiatis and

Davidian (2001). The equivalence of these two equations holds by a similar result

to Lemma 3.4, which states that the compensated counting process can replace the
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counting process in the score statistic.

Tsiatis and Davidian (2001) write the conditional score statistic Uc(γ, η, σ
2) as∫ ∞

0

n∑
i=1

(
{Si(u, γ, σ

2), ZT
i }T − ec(u, γ, η, σ

2)
)
dMi(u) (4.11)

+

∫ ∞

0

n∑
i=1

(
ec(u, γ, η, σ

2)− Ec(u, γ, η, σ
2)
)
dMi(u), (4.12)

where ec(u, γ, η, σ
2) is the probabilistic limit of Ec(u, γ, η, σ

2). We shall later present

a set of regularity conditions which imply that this limit exists and that the function

Ec(u, γ, η, σ
2) converges pointwise to ec(u, γ, η, σ

2). This regularity condition is

assumed to hold. Expressions (4.11) and (4.12) are equivalent to (8a) and (8b)

of Tsiatis and Davidian (2001) respectively. The authors prove that n−1 times our

Expression (4.12) converges in probability to zero in a neighbourhood of (γ0, η0)

and deduce that the behaviour of the estimators which are solutions to the equation

Uc(γ, η, σ
2) = 0 will be dictated by Expression (4.11). In the proofs to follow, we

therefore focus on Expression (4.11) when determining the asymptotic distribution.

We shall now show that Expression (4.11) has expectation zero. Hence the

conditional score statistic defines an estimating function and if we let the parameter

estimate be the root of the equation where the conditional score is set equal to zero,

then the parameter estimate will be asymptotically normally distributed.

Lemma 4.2. Expression (4.11) has expectation zero. That is

E

[∫ ∞

0

n∑
i=1

(
{Si(u, γ, σ

2), ZT
i }T − ec(u, γ, η, σ

2)
)
dMi(u)

]
= 0.

Proof. We define some notation that mimics the martingale notation in the proof of

Theorem 3.5. For each j = 1, . . . , p+1 where p is the length of the vector Zi, define

W
(n)
j (t, γ, η, σ2) =

∫ t

0

n∑
i=1

H
(n)
ij (u)dMi(u)

where

H
(n)
ij = n− 1

2 ({Si(u, γ, σ
2), ZT

i }Tj − ec(u, γ, η, σ
2)j).

Then H is a (p + 1) × (p + 1) matrix. Thus n− 1
2Uc(γ, η, σ

2) = W (n)(∞, γ, η, σ2).

To determine the expectation of W (n)(∞, γ, η, σ2) we use the i.i.d nature of

the vectors
∫∞
0

H
(n)
1 (u)dM1(u), . . . ,

∫∞
0

H
(n)
n (u)dMn(u) and restrict attention to∫∞

0
H

(n)
1 (u)dM1(u). The expectation of

∫∞
0

H
(n)
1 (u)dM1(u) is shown below. The
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first equality follows since orders of integration can be exchanged under suitable

regularity conditions, the second equality is an application of the law of total

expectation, and the third equality is obtained by taking out known factors. Finally,

Lemma 4.1 gives that the inner conditional expectation is zero, showing the result.

E
(∫ ∞

0

H
(n)
1 (u)dM1(u)

)
=

∫ ∞

0

E(H(n)
1 (u)dM1(u))

=

∫ ∞

0

E(E[H(n)
1 (u)dM1(u)|S1(u, γ, σ

2), Z1, t1(u), Y1(u)])

=

∫ ∞

0

E(H(n)
1 (u)E[dM1(u)|S1(u, γ, σ

2), Z1, t1(u), Y1(u)])

=0.

Combining Lemma 4.2 with the fact that Expression (4.12) converges in

probability to zero, we have that Uc(γ, η, σ
2) is an estimating function.

4.1.6 | Differentiation of the conditional score

Another object of importance is the first derivative of the conditional score function,

Equation (4.9), with respect to parameters γ and η. This matrix plays a key role in

the definition of the covariance matrix for the estimates γ̂ and η̂ and has a likeness

to the Fisher information matrix which is the derivative of the score statistic for

general statistical models. Tsiatis and Davidian (2001) describe that the variance

matrix can be found, however they do not present an equation for such an object.

The derivation of the derivative of the conditional score function in this section is

original work.

First we consider differentiating the function E0i(t, γ, η, σ
2) with respect to γ
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and η separately. These are

∂

∂γ
E0i(t, γ, η, σ

2) =
∂

∂γ
exp{γSi(t, γ, σ

2)− γ2σ2θi(t)/2 + ηZi}

=
∂

∂γ
exp{γ2σ2θi(t)dNi(t) + γX̂i(t)− γ2σ2θi(t)/2 + ηZi}

= (2γσ2θi(t)dNi(t) + X̂i(t)− γσ2θi(t))E0i(t, γ, η, σ
2)

= (2Si(t, γ, σ
2)− X̂i(t)− γσ2θi(t))E0i(t, γ, η, σ

2)

∂

∂η
E0i(t, γ, η, σ

2) =
∂

∂η
exp{γSi(t, γ, σ

2)− γ2σ2θi(t)/2 + ηZi}

= ZiE0i(t, γ, η, σ
2).

Derivatives of E0i(t, γ, η, σ
2) are needed for differentiating the function

S
(0)
c (t, γ, η, σ2). Similarly for differentiation of the function S

(1)
c (t, γ, η, σ2) we now

calculate derivatives for Si(t, γ, η, σ
2)E0i(t, γ, η, σ

2) and ZiE0i(t, γ, η, σ
2). These are

∂

∂γ
Si(t, γ, η, σ

2)E0i(t, γ, η, σ
2) =

[
Si(t, γ, σ

2)2 + Si(t, γ, η, σ
2)(Si(t, γ, σ

2)− X̂i(t)

− γσ2θi(t)) + σ2θi(t)dNi(t)

]
E0i(t, γ, η, σ

2)

∂

∂γ
ZiE0i(t, γ, η, σ

2) = Zi(2Si(t, γ, σ
2)− X̂i(t)− γσ2θi(t))E0i(t, γ, η, σ

2)

∂

∂η
Si(t, γ, η, σ

2)E0i(t, γ, η, σ
2) = Si(t, γ, η, σ

2)ZiE0i(t, γ, η, σ
2)

∂

∂η
ZiE0i(t, γ, η, σ

2) = ZT
i ZiE0i(t, γ, η, σ

2).

We will display the relationship between the matrices S
(0)
c (t, γ, η, σ2), S

(1)
c (t, γ, η, σ2)

and S
(2)
c (t, γ, η, σ2) and their derivatives. In the simple survival model in Section 3.2,

we have that S(1) = ∂S(0)/∂θ and S(2) = ∂S(1)/∂θ. This is not true for the

conditional score, but a similar relationship holds. To make this clear, it convenient

to derive additional functions. Let

Ji(t, γ, σ
2) = {Si(t, γ, σ

2)− X̂i(t)− γσ2θi(t), 0, . . . , 0}T
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be a (p+ 1)× 1 column vector and define functions

C(1)(t, γ, η, σ2) =
1

n

n∑
i=1

Ji(t, γ, σ
2)Yi(t)E0i(t, γ, η, σ

2)

C(2)(t, γ, η, σ2) =
1

n

n∑
i=1

{
Si(t, γ, σ

2)

Zi

}
Ji(t, γ, σ

2)TYi(t)E0i(t, γ, η, σ
2)

C(3)(t, γ, η, σ2) =
1

n

n∑
i=1


σ2θi(u)dNi(u) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

Yi(t)E0i(t, γ, η, σ
2)

V (1)
c (t, γ, η, σ2) =

S
(2)
c (t, γ, η, σ2)

S
(0)
c (t, γ, η, σ2)

− S
(1)
c (t, γ, η, σ2)S

(1)
c (t, γ, η, σ2)T

[S
(0)
c (t, γ, η, σ2)]2

V (2)
c (t, γ, η, σ2) =

C(2)(t, γ, η, σ2)

S
(0)
c (t, γ, η, σ2)

− S
(1)
c (t, γ, η, σ2)C(1)(t, γ, η, σ2)T

[S
(0)
c (t, γ, η, σ2)]2

V (3)
c (t, γ, η, σ2) =

C(3)(t, γ, η, σ2)

S
(0)
c (t, γ, η, σ2)

.

The function S
(0)
c is a scalar and its derivative will be a (p+ 1)× 1 column vector.

The matrices S
(1)
c and C(1) are both (p+1)× 1 column vectors. For differentiation,

entry (∂S
(1)
c /∂(γ, η)T )i,j represents the i

th element of S
(1)
c differentiated with respect

to the jth element of the vector (γ, η)T . The functions S
(2)
c , C(2), C(3), V

(1)
c , V

(2)
c and

V
(3)
c are all (p + 1) × (p + 1) matrices. Using the above calculation, we find the

following relationships hold

∂

∂(γ, η)T
S(0)
c (t, γ, η, σ2) =

∂

∂(γ, η)T

[
1

n

n∑
i=1

E0i(t, γ, η, σ
2)Yi(t)

]

=
1

n

n∑
i=1

{
2Si(t, γ, σ

2)− X̂i(t)− γσ2θi(t)

Zi

}
E0i(t, γ, η, σ

2)Yi(t)

=
1

n

n∑
i=1

{
Si(t, γ, σ

2)

Zi

}
E0i(t, γ, η, σ

2)Yi(t) +
1

n

n∑
i=1

Ji(t, γ, σ
2)E0i(t, γ, η, σ

2)Yi(t)

=S(1)
c (t, γ, η, σ2) + C(1)(t, γ, η, σ2)

A similar calculation is performed for the differentiation of S
(1)
c (t, γ, η, σ2).

Temporarily removing dependence of all functions on parameters t, γ, η and σ2,
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we have

∂

∂(γ, η)T
S(1)
c (t, γ, η, σ2) =

∂

∂(γ, η)T

[
1

n

n∑
i=1

{
Si(t, γ, σ

2)

Zi

}
E0i(t, γ, η, σ

2)Yi(t)

]

=
1

n

n∑
i=1

{
S2
i + Si(Si − X̂i − γσ2θi) + σ2θidNi SiZi

Zi(2Si − X̂i − γσ2θi) ZT
i Zi

}
E0iYi

=
1

n

n∑
i=1

{
Si

Zi

}{
Si

Zi

}T

E0iYi +
1

n

n∑
i=1

{
Si

Zi

}{
Si − X̂ − γσ2θi

0

}T

E0iYi

+
1

n

n∑
i=1


σ2θi(u)dNi(u) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

E0iYi

=S(2)
c (t, γ, η, σ2) + C(2)(t, γ, η, σ2) + C(3)(t, γ, η.σ2).

We are now able to differentiate the function Ec(t, γ, η, σ
2). By the quotient rule

and the relationships derived above, we have

∂

∂(γ, η)T
Ec(t, γ, η, σ

2) =
∂

∂(γ, η)T

[
S
(1)
c (t, γ, η, σ2)

S
(0)
c (t, γ, η, σ2)

]

=

∂
∂(γ,η)T

S
(1)
c (t, γ, η, σ2)

S
(0)
c (t, γ, η, σ2)

−
S
(1)
c (t, γ, η, σ2) ∂

∂(γ,η)T
S
(0)
c (t, γ, η, σ2)[

S
(0)
c (t, γ, η, σ2)

]2
=

S
(2)
c (t, γ, η, σ2)

S
(0)
c (t, γ, η, σ2)

+
C(2)(t, γ, η, σ2)

S
(0)
c (t, γ, η, σ2)

+
C(3)(t, γ, η, σ2)

S
(0)
c (t, γ, η, σ2)

− S
(1)
c (t, γ, η, σ2)S

(1)
c (t, γ, η, σ2)T[

S
(0)
c (t, γ, η, σ2)

]2 − S
(1)
c (t, γ, η, σ2)C(1)(t, γ, η, σ2)T[

S
(0)
c (t, γ, η, σ2)

]2
= V (1)

c (t, γ, η, σ2) + V (2)
c (t, γ, η, σ2) + V (3)

c (t, γ, η, σ2).
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Finally, we can differentiate the conditional score of Equation (4.9). This is

∂

∂(γ, η)T
Uc(γ, η, σ

2)

=
∂

∂(γ, η)T

[∫ ∞

0

n∑
i=1

(
{Si(u, γ, σ

2), ZT
i }T − Ec(u, γ, η, σ

2)
)
dNi(u)

]

=
n∑

i=1

∫ ∞

0


σ2θi(u) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 dNi(u)

−
n∑

i=1

∫ ∞

0

[
V (1)
c (u, γ, η, σ2) + V (2)

c (u, γ, η, σ2) + V (3)
c (u, γ, η, σ2)

]
dNi(u). (4.13)

4.2 | Asymptotic theory for the joint

model

4.2.1 | Fixed sample results

In this section, we show that the estimates which are the root of the conditional score

function are asymptotically normally distributed. The conditional score function is

Uc(γ, η, σ
2) =

∫ ∞

0

n∑
i=1

(
{Si(u, γ, σ

2), ZT
i }T − Ec(u, γ, η, σ

2)
)
dNi(u)

and we have so far shown that the conditional score function is an estimating

function. Therefore, we shall make use of Theorem 3.1 to derive the asymptotic

distribution of the resulting parameter estimates. Further, we then describe how to

perform a hypothesis test making use of this distributional result.

In what follows we shall treat σ2 as known and later we discuss consistent

estimation of σ2. Let γ̂n and η̂n be the values of γ and η respectively which are the

solution to the equation U
(n)
c (γ, η, σ2) = 0. Dependence on the number of patients n

is to clarify that we assess asymptotic results as n → ∞. We follow the proof given

by Tsiatis and Davidian (2001), who show that the estimates γ̂n and η̂n converge in

distribution to a Gaussian random variable and we go beyond this proof by finding

a specific form for the variance matrices and their probabilistic limits.

For the proof of the asymptotic distribution of the parameter estimates in the

joint model, we require asymptotic limits of elements of the score statistic and
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variance matrices to exist. The definitions of these limits are specified through the

following regularity conditions:

Conditions 4.1.

1. There exist neighbourhoods Γ of γ0 and N of η0 and functions

s
(1)
c (t, γ, η, σ2), s

(2)
c (t, γ, η, σ2), s

(3)
c (t, γ, η, σ2), c(1)(t, γ, η, σ2), c(2)(t, γ, η, σ2) and

c(3)(t, γ, η, σ2) defined on [0,∞)× Γ×N such that

sup
t∈[0,∞),γ∈Γ,η∈N

∥∥S(j)
c (t, γ, η, σ2)− s(j)c (t, γ, η, σ2)

∥∥ p−→ 0 for j = 0, 1, 2

sup
t∈[0,∞),γ∈Γ,η∈N

∥∥C(j)(t, γ, η, σ2)− c(j)(t, γ, η, σ2)
∥∥ p−→ 0 for j = 0, 1, 2.

2. For each j = 0, 1, 2, s
(j)
c (t, γ, η, σ2) and c(j)(t, γ, η, σ2) are continuous functions

of γ ∈ Γ and η ∈ N uniformly in t ∈ [0,∞), and bounded on [0,∞) × Γ ×
N . Also, s

(0)
c (t, γ, η, σ2) and c(0)(t, γ, η, σ2) are bounded away from zero on

[0,∞)× Γ×N .

It is clear that the following relationships hold: s
(1)
c and s

(2)
c are the first and

second derivatives of s
(0)
c with respect to the vector (γ, ηT )T ; c(1) and c(2) are the

first and second derivatives of c(0).

The probabilistic limits ec(t, γ, η, σ
2) of Ec(t, γ, η, σ

2), v
(1)
c (t, γ, η, σ2) of

V
(1)
c (t, γ, η, σ2) and v

(2)
c (t, γ, η, σ2) of V

(2)
c (t, γ, η, σ2) are define by the following:

ec(t, γ, η, σ
2) =

s
(1)
c (t, γ, η, σ2)

s
(0)
c (t, γ, η, σ2)

v(1)c (t, γ, η, σ2) =
s
(2)
c (t, γ, η, σ2)

s
(0)
c (t, γ, η, σ2)

− s
(1)
c (t, γ, η, σ2)s

(1)
c (t, γ, η, σ2)T

[s
(0)
c (t, γ, η, σ2)]2

v(2)c (t, γ, η, σ2) =
c(2)(t, γ, η, σ2)

s
(0)
c (t, γ, η, σ2)

− s
(1)
c (t, γ, η, σ2)c(1)(t, γ, η, σ2)T

[s
(0)
c (t, γ, η, σ2)]2

.

We now prove that Theorem 3.1 applies to the conditional score estimating

equation by proving that 1–3 of Conditions 3.1 hold. The remaining conditions are

assumed to hold to avoid technical distractions.

Theorem 4.3. Suppose that γ0, η0 and σ2
0 are the true values of the parameters

γ, η, σ2 respectively. Let γ̂n and η̂n be the values of γ and η which are the solution to

the equation U
(n)
c (γ, η, σ2

0) = 0 and suppose that the regularity conditions of 4.1 hold.
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Then the vector (γ̂n, η̂n)
T converges in distribution to Gaussian random variable,

specifically

√
n

[(
γ̂n

η̂n

)
−

(
γ0

η0

)]
d−→ N(0,Σ)

where

Σ = A−1B(A−1)T

and the matrices A and B are defined by

A =

∫ ∞

0


σ2
0E(θi(u)) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 s(0)c (u, γ0, η0, σ
2
0)h0(u)du

−
∫ ∞

0

(
v(1)c (u, γ0, η0, σ

2
0) + v(2)c (u, γ0, η0, σ

2
0)
)
s(0)c (u, γ0, η0, σ

2
0)h0(u)du (4.14)

B =

∫ ∞

0

v(1)c (u, γ0, η0, σ
2
0)s

(0)
c (u, γ0, η0, σ

2
0)h0(u)du. (4.15)

Proof. In this theorem, the conditional score function, U
(n)
c (γ, η, σ2), plays the role

of the estimating function Gn(θ,xn) and the vector of parameters (γ, η, σ2)T is

represented by θ in Theorem 3.1. In applying Theorem 3.1, we show the following

conditions are satisfied:

A1 γ̂n
p−→ γ0 and η̂n

p−→ η0.

A2 n− 1
2U

(n)
c (γ0, η0, σ

2
0)

d−→ N(0, B).

A3 For all γ∗
n and η∗n such that γ∗

n

p−→ γ0 and η∗n
p−→ η0,

1

n

∂

∂(γ, ηT )T
U (n)
c (γ, η, σ2

0)|γ=γ∗,η=η∗
p−→ A.

We shall focus on the proof that conditions A2 and A3 are satisfied since we shall

later build upon this proof in the group sequential case. The condition A1, the proof

of consistency is given by Van der Vaart (2000) in their Section 5.2, who prove that

consistency holds for any estimator which is the root of an estimating equation.

For the remainder of the proof, we follow the argument by Tsiatis and Davidian

(2001), that the asymptotic distribution of the conditional score function is dictated

by the following function:

Uc(γ, η, σ
2) =

∫ ∞

0

n∑
i=1

(
{Si(u, γ, σ

2), ZT
i }T − ec(u, γ, η, σ

2)
)
dMi(u).
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Further, we shall use the same set-up as Lemma 4.2. As a reminder, for each

j = 1, . . . , p+ 1, let

W
(n)
j (t, γ, η, σ2) =

∫ t

0

n∑
i=1

H
(n)
ij (u, γ, η, σ2)dMi(u)

where

H
(n)
ij (u, γ, η, σ2) = n− 1

2 ({Si(u, γ, σ
2), ZT

i }Tj − ec(u, γ, η, σ
2)j).

Thus n− 1
2Uc(γ, η, σ

2) = W (n)(∞, γ, η, σ2).

For condition A2, we have shown that E
(
n− 1

2U
(n)
c (γ0, η0, σ

2
0)
)
= 0 by Lemma 4.2.

The vectors∫ ∞

0

H
(n)
1 (u, γ0, η0, σ

2
0)dM1(u), . . . ,

∫ ∞

0

H(n)
n (u, γ0, η0, σ

2
0)dMn(u)

are independent and identically distributed (i.i.d). This is because patients are

independent and there is an underlying population wide distribution for the

covariates, meaning that each vector has the same probability density function.

Therefore, by the central limit theorem, W (n)(∞, γ0, η0, σ
2
0) converges in distribution

to a normal random variable.

The covariance matrix of the limiting distribution of the function

W (n)(∞, γ0, η0, σ
2
0) is now determined. For all j = 1, . . . , p + 1 we have that

E
(
W

(n)
j (∞, γ0, η0, σ

2
0)
)

= 0 by Lemma 4.2. Further, because patients are

independent the covariance between elements j1 and j2 is

Cov
(
W

(n)
j1

(∞, γ0, η0, σ
2
0),W

(n)
j2

(∞, γ0, η0, σ
2
0)
)

=E

(
n∑

i=1

∫ ∞

0

H
(n)
ij1

(u, γ0, η0, σ
2
0)dNi(u)

∫ ∞

0

H
(n)
ij2

(u, γ0, η0, σ
2
0)dNi(u)

)
.

In the calculation for the covariance below, the first equality uses the fact that

dNi(u) is an indicator function so that dNi(u)
2 = dNi(u). Then, using a similar

method to the calculation of the expectation, we use the law of total expectation to
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derive the following expression for covariance

E

(
n∑

i=1

∫ ∞

0

H
(n)
ij1

(u, γ0, η0, σ
2
0)dNi(u)

∫ ∞

0

H
(n)
ij2

(u, γ0, η0, σ
2
0)dNi(u)

)

=E

(
n∑

i=1

∫ ∞

0

H
(n)
ij1

(u, γ0, η0, σ
2
0)H

(n)
ij2

(u, γ0, η0, σ
2
0)dNi(u)

)

=E

(
n∑

i=1

∫ ∞

0

E
[
H

(n)
ij1

(u, γ0, η0, σ
2
0)H

(n)
ij2

(u, γ0, η0, σ
2
0)dNi(u)|Si(u, γ0, σ

2
0), Zi, ti(u), Yi(u)

])

=E

(
n∑

i=1

∫ ∞

0

H
(n)
ij1

(u, γ0, η0, σ
2
0)H

(n)
ij2

(u, γ0, η0, σ
2
0)E

[
dNi(u)|Si(u, γ0, σ

2
0), Zi, ti(u), Yi(u)

])

=E

(
n∑

i=1

∫ ∞

0

H
(n)
ij1

(u, γ0, η0, σ
2
0)H

(n)
ij2

(u, γ0, η0, σ
2
0)h0(u)E0i(u, γ0, η0, σ

2
0)Yi(u)du

)
.

For the following calculation, dependency on parameters γ0, η0 and σ2
0 is removed

from the functions S
(0)
c (t), S

(1)
c (t) and S

(2)
c (t) for notational purposes. Further, the

dependency on parameters γ0, η0 and σ2
0 is also removed from the probabilistic limits

s
(0)
c (t), s

(1)
c (t), s

(2)
c (t) and ec(t). Then following calculation holds

n∑
i=1

H
(n)
ij1

(u,γ0, η0, σ
2
0)H

(n)
ij2

(u, γ0, η0, σ
2
0)h0(u)E0i(u, γ0, η0, σ

2
0)Yi(u)du

=
n∑

i=1

n−1

(
{Si(u, γ0, σ

2
0), Z

T
i }Tj1 − ec(u)j1

)
×
(
{Si(u, γ0, σ

2
0), Z

T
i }Tj2 − ec(u)j2

)
h0(u)E0i(u, γ0, η0, σ

2
0)Yi(u)

=

(
[S(2)

c (u)]j1j2 −
[s

(1)
c (u)]j1

s
(0)
c (u)

[S(1)
c (u)]j2 −

[s
(1)
c (u)]j2

s
(0)
c (u)

[S(1)
c (u)]j1

+
[s

(1)
c (u)]j1

s
(0)
c (u)

[s
(1)
c (u)]j2

s
(0)
c (u)

S(0)
c (u)

)
h0(u)

p−→
(
[s

(2)
c (u)]j1j2

s
(0)
c (u)

− [s
(1)
c (u)]j1 [s

(1)
c (u)]j2

s
(0)⊗2
c (u)

)
s(0)c (u)h0(u)

= [v(1)c (u)]j1j2s
(0)
c (u)h0(u).
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4.2. Asymptotic theory for the joint model

Therefore, combining the above results, it can be seen that

Cov
(
W

(n)
j1

(∞, γ0, η0, σ
2
0),W

(n)
j2

(∞, γ0, η0, σ
2
0)
)

p−→
∫ ∞

0

[v(1)c (u, γ0, η0, σ
2
0)]j1j2s

(0)
c (u, γ0, η0, σ

2
0)h0(u)du

p−→
(∫ ∞

0

[v(1)c (u, γ0, η0, σ
2
0)]s

(0)
c (u, γ0, η0, σ

2
0)h0(u)du

)
j1j2

=Bj1j2

and by the central limit theorem we have

n− 1
2U (n)

c (γ0, η0, σ
2
0) = W (n)(∞, γ0, η0, σ

2
0)

d−→ N(0, B).

To prove condition A3, we can write

1

n

∂

∂(γ, ηT )T
U (n)
c (γ, η, σ2

0)|γ=γ∗,η=η∗ − A = −D0 +D1 +D2 +D3

where

D0 =
1

n

n∑
i=1

∫ ∞

0


σ2
0θi(u) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 dNi(u)

−
∫ ∞

0


σ2
0E(θi(u)) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 s(0)c (u, γ0, η0, σ
2
0)h0(u)du

D1 =
1

n

n∑
i=1

∫ ∞

0

V (1)
c (u, γ∗, η∗, σ2

0)dNi(u)−
∫ ∞

0

v(1)c (u, γ0, η0, σ
2
0)s

(0)
c (u, γ0, η0, σ

2
0)h0(u)du

D2 =
1

n

n∑
i=1

∫ ∞

0

V (2)
c (u, γ∗, η∗, σ2

0)dNi(u)−
∫ ∞

0

v(2)c (u, γ0, η0, σ
2
0)s

(0)
c (u, γ0, η0, σ

2
0)h0(u)du

D3 =
1

n

n∑
i=1

∫ ∞

0

V (3)
c (u, γ∗, η∗, σ2

0)dNi(u),

and it remains to show that each of the terms D0, D1, D2 and D3 converge in

probability to zero. For the terms D0, D1 and D2, analogous results are presented

by Andersen and Gill (1982) for survival data and the heuristic sketch for this was

shown in our Theorem 3.5. For the term D3, we make use of the relationship
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dNi(u)dNj(u) = 0 for i ̸= j and dNi(u)
2 = 1 since dNi(u) is an indicator function.

The function V (3) is a (p+ 1)× (p+ 1) matrix where all entries are zero apart from

the top left. Therefore we shall only consider entry (1, 1). We have that

[D3]11 =
1

n

n∑
i=1

∫ ∞

0

[
V (3)(u, γ, η, σ2)

]
11
dNi(u)

=
1

n

n∑
i=1

∫ ∞

0

[
C(3)(u, γ, η, σ2)

]
11∑n

j=1 E0j(u, γ, η, σ2)Yj(u)
dNi(u)

=
1

n

n∑
i=1

∫ ∞

0

∑n
j=1 σ

2θj(u)dNj(u)E0j(u, γ, η, σ
2)Yj(u)∑n

j=1E0j(u, γ, η, σ2)Yj(u)
dNi(u)

=
1

n

n∑
i=1

∫ ∞

0

σ2θi(u)E0i(u, γ, η, σ
2)Yi(u)∑n

j=1E0j(u, γ, η, σ2)Yj(u)
dNi(u). (4.16)

A single element in the summand in Expression (4.16) can be written∫ ∞

0

1
n
σ2θi(u)E0i(u, γ, η, σ

2)Yi(u)dNi(u)

n 1
n

∑n
j=1 E0j(u, γ, η, σ2)Yj(u)

and it is clear that [D3]11
p−→ 0 as n → ∞. Therefore, we have the result

1

n

∂

∂(γ, ηT )T
U (n)
c (γ, η, σ2

0)|γ=γ∗,η=η∗
p−→ A.

In the above derivation of the distribution of the estimates γ̂n and η̂n, we have

assumed that σ2
0, the variance of measurement error, is known. However, this is

rarely the case and we proceed to find an estimator for σ2. Suppose we are interested

in the referral example where the longitudinal model takes the formXi(t) = bi0+bi1t,

then Tsiatis and Davidian (2001) suggest replacing σ2 with the pooled estimator

σ̂2 =

∑n
i=1 I{mi > 2}Ri∑n

i=1 I{mi > 2}(mi − 2)
, (4.17)

where Ri is the residual sum of squares for the least squares fit to all mi observations

for patient i. The inclusion requirement for more than two longitudinal observations

is due to design of the longitudinal model. Tsiatis and Davidian (2001) prove that

σ̂2 is consistent for σ2 and by arguments in Carroll et al. (2006) Section A.3.3, this

estimator can replace σ2
0 in the conditional score function.

In the joint model Equation (4.1)–(4.3), the treatment effect is the parameter
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4.2. Asymptotic theory for the joint model

η and for this model, η is a scalar. Let γ0, η0 and σ2
0 be the true values of the

parameters γ, η and σ2 respectively, then the hypothesis test in this case is

H0 : η0 ≤ 0, HA : η0 > 0.

To make inferences about the individual parameter η, we consider the vector of

parameters (γ, η)T . Using the conditional score method, we can find estimates γ̂

and η̂ and using Theorem 4.3 we can determine the asymptotic joint distribution

for these estimates. Further, Equation (4.17) is used to find an estimate σ̂2. The

marginal asymptotic distribution for the parameter η̂ is therefore

√
n(η̂ − η0)

d−→ N(0,Σ22)

where

Σ = A−1B(A−1)T

and the matrices A and B are defined in Equations (4.14) and (4.15). The subscript

on the covariance matrix Σ represents that η is the second parameter in the vector

(γ, η)T . The matrices A and B are estimated using

Â =
1

n

n∑
i=1

∫ ∞

0



σ̂2θi(u) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

− V (1)
c (u, γ̂, η̂, σ̂2)− V (2)

c (u, γ̂, η̂, σ̂2)

 dNi(u)

(4.18)

B̂ =
1

n

n∑
i=1

∫ ∞

0

[
V (1)
c (u, γ̂, η̂, σ̂2)

]
dNi(u). (4.19)

The information matrix for η̂ in the fixed sample trial is therefore

I =
1

n

[
Â−1B̂(Â−1)T

]−1

22

and a standardised statistic is given by

Z = η̂
√
I.
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4.2. Asymptotic theory for the joint model

4.2.2 | Group sequential results

It is now desirable to extend the fixed sample theory for the joint model to group

sequential trials. To perform a group sequential trial we need to know the joint

distribution of the sequence of treatment effect estimates that will be obtained at

each analysis. To determine this distribution, we shall define the conditional score

and information matrix for each analysis which are calculated using data obtained

at that analysis. The theoretical work in this section and the proof of asymptotic

normality in the upcoming Theorem 4.4 builds upon the fixed sample joint modelling

results of Section 4.2.1 and the group sequential survival results of Section 3.3.2. All

the work presented in this section is original work, including Theorem 4.4 and its

proof.

For the conditional score at each analysis, we shall define group sequential

versions of all objects included in the fixed sample conditional score. Similarly

to the group sequential version of the score for partial likelihood, the censoring

mechanism is used to keep patients in the at-risk set who have yet to experience

an event. For patient i with time-to-failure random variable Fi, let Ci(k) be the

time-to-censoring random variable at analysis k. This censoring event includes “end

of study” censoring for the total follow-up time of patient i at analysis k, then at

analysis k the event time random variable is Ti(k) = min{Fi, Ci(k)}. The observed

event time is ti(k) and the observed censoring indicator is δi(k) = I{Fi ≤ Ci(k)}.
In the conditional score approach, to be included in the at-risk set at time t

the patient must have at least two longitudinal observations to fit the longitudinal

regression model. The at-risk process at analysis k is an indicator for not yet

observing the event, not yet censored, or having enough longitudinal observations.

Therefore for patient i at analysis k the at-risk process and counting process for the

joint model are

Yi(k, t) = I{ti(k) ≥ t, ti2 ≤ t}

Ni(k, t) = I{ti(k) ≤ t, δi(k) = 1, ti2 ≤ t}.

The corresponding conditional intensity process and compensated counting process
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are defined by

λC
i (k, t) = limdt↓0

P(dNi(k, t) = 1|Si(t, γ, σ
2), ti(t), Zi, Yi(k, t))

dt
(4.20)

= h0(t) exp{γSi(t, γ, σ
2)− γ2σ2θi(t)/2 + ηTZi}Yi(k, t)

= h0(t)E0i(t, γ, η, σ
2)Yi(k, t)

Mi(k, t) = Ni(k, t)−
∫ t

0

h0(u)E0i(u, γ, η, σ
2)Yi(k, u)du.

The following functions are needed to define the group sequential conditional

score at analysis k. These functions are

S(0)
c (k, t, γ, η, σ2) =

1

n

n∑
i=1

Yi(k, t)E0i(t, γ, η, σ
2)

S(1)
c (k, t, γ, η, σ2) =

1

n

n∑
i=1

{
Si(t, γ, σ

2)

Zi

}
Yi(k, t)E0i(t, γ, η, σ

2)

S(2)
c (k, t, γ, η, σ2) =

1

n

n∑
i=1

{
Si(t, γ, σ

2)

Zi

}{
Si(t, γ, σ

2)

Zi

}T

Yi(k, t)E0i(t, γ, η, σ
2)

Ec(k, t, γ, η, σ
2) =

S
(1)
c (k, t, γ, η, σ2)

S
(0)
c (k, t, γ, η, σ2)

.

The function Ec(k, t, γ, η, σ
2) has the interpretation of the expectation of the vector

{Si(t, γ, σ
2), ZT

i }T at analysis k weighted by the conditional intensity process. Let τk

be the maximum follow-up time at analysis k, then the conditional score for analysis

k is

Uc(k, γ, η, σ
2) =

∫ τk

0

n∑
i=1

(
{Si(u, γ, σ

2), ZT
i }T − Ec(k, u, γ, η, σ

2)
)
dNi(k, u) (4.21)

=

∫ τk

0

n∑
i=1

(
{Si(u, γ, σ

2), ZT
i }T − Ec(k, u, γ, η, σ

2)
)
dMi(k, u).

This equality follows by the same reasoning as Lemma 3.4, which states that the

compensated counting process can replace the counting process.

We now follow a similar structure to the partial likelihood function for survival

data in Section 3.3.2 and we create a new counting process that allows the conditional

score statistic to be written as the sum of distinct increments. This counting process
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is

DNi(0, t) = 0

DNi(k, t) = Ni(k, t)−Ni(k − 1, t) for k = 1, . . . , K.

The corresponding compensated counting process is therefore given by

DMi(0, t) =0

DMi(k, t) =DNi(k, t)−
∫ t

0

h0(u)E0i(t, γ, η, σ
2)(Yi(k, u)− Yi(k − 1, u))du

for k = 1, . . . , K.

The event for patient i can only occur in one interval, and therefore we have

Ni(k, t) =
∑k

l=1DNi(l, t) and the conditional score statistic at analysis k is

Uc(k, γ, η, σ
2) =

∫ τk

0

n∑
i=1

k∑
l=1

(
{Si(u, γ, σ

2), ZT
i }T − Ec(l, u, γ, η, σ

2)
)
dDNi(k, u)

=

∫ τk

0

n∑
i=1

k∑
l=1

(
{Si(u, γ, σ

2), ZT
i }T − Ec(l, u, γ, η, σ

2)
)
dDMi(k, u).

By the same argument as for the fixed sample case, we shall write the conditional

score at analysis k, Uc(k, γ, η, σ
2), as

∫ τk

0

n∑
i=1

k∑
l=1

(
{Si(u, γ, σ

2), ZT
i }T − ec(l, u, γ, η, σ

2)
)
dDMi(l, u) (4.22)

+

∫ τk

0

n∑
i=1

k∑
l=1

(
ec(l, u, γ, η, σ

2)− Ec(l, u, γ, η, σ
2)
)
dDMi(l, u) (4.23)

where ec(l, u, γ, η, σ
2) denotes the probabilistic limit of Ec(l, u, γ, η, σ

2). In

Conditions 4.2, we shall assume that this limit exists and that Ec(l, u, γ, η, σ
2)

converges pointwise to ec(l, u, γ, η, σ
2). Further, by the same argument as the fixed

sample case, we see that n−1 times Expression (4.23) converges in probability to

zero in a neighbourhood of (γ0, η0) and deduce that the behaviour of the estimators

of γ and η, which are solutions to the equation Uc(k, γ, η, σ
2) = 0, will be dictated

by Expression (4.22). Therefore, we now restrict our attention to Expression (4.22).

By a similar argument to Lemma 4.2 we have the expectation of Expression (4.22)
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is

E

(∫ τk

0

n∑
i=1

k∑
l=1

(
{Si(u, γ, σ

2), ZT
i }T − ec(l, u, γ, η, σ

2)
)
dDMi(l, u)

)
= 0 (4.24)

for each k = 1, . . . , K. To see this, we substitute ec(l, u, γ, η, σ
2) for ec(u, γ, η, σ

2)

in Lemma 4.2 and the proof follows. Therefore combined with the fact that

Expression (4.23) converges in probability to zero, we have that setting the group

sequential conditional score function equal to zero defines a set of estimating

equations. For each k = 1, . . . , K, let γ̂
(k)
n and η̂

(k)
n be the values of γ and η

respectively such that Uc(k, γ, η, σ
2) = 0, then the estimates γ̂

(k)
n and η̂

(k)
n will be

asymptotically multivariate normal.

We derived the first derivative of the fixed sample conditional score with respect

to the vector (γ, η)T . This derivative function was seen to play a similar role to the

Fisher information matrix in a general statistical model using maximum likelihood

theory. Previously, we defined the (p+ 1)-dimensional vector

Ji(t, γ, σ
2) = {Si(t, γ, σ

2)− X̂i(t)− γσ2θi(t), 0, . . . , 0}T

. Then, functions that are needed for the variance matrix of the group sequential

conditional score are

C(1)(k, t, γ, η, σ2) =
1

n

n∑
i=1

Ji(t, γ, σ
2)Yi(k, t)E0i(t, γ, η, σ

2)

C(2)(k, t, γ, η, σ2) =
1

n

n∑
i=1

Ji(t, γ, σ
2)

{
Si(t, γ, σ

2)

Zi

}T

Yi(k, t)E0i(t, γ, η, σ
2)

C(3)(k, t, γ, η, σ2) =
1

n

n∑
i=1


σ2θi(u) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

Yi(k, t)E0i(t, γ, η, σ
2)

V (1)
c (k, t, γ, η, σ2) =

S
(2)
c (k, t, γ, η, σ2)

S
(0)
c (k, t, γ, η, σ2)

− S
(1)
c (k, t, γ, η, σ2)S

(1)
c (k, t, γ, η, σ2)T

[S
(0)
c (k, t, γ, η, σ2)]2

V (2)
c (k, t, γ, η, σ2) =

C(2)(k, t, γ, η, σ2)

S
(0)
c (k, t, γ, η, σ2)

− S
(1)
c (k, t, γ, η, σ2)C(1)(k, t, γ, η, σ2)T

[S
(0)
c (k, t, γ, η, σ2)]2

V (3)
c (k, t, γ, η, σ2) =

C(3)(k, t, γ, η, σ2)

S
(0)
c (k, t, γ, η, σ2)

.

The first derivative of the group sequential conditional score function with respect
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to (γ, η)T at analysis k is

∂

∂(γ, η)T
Uc(k, γ, η, σ

2)

=
n∑

i=1

∫ ∞

0


σ2θi(u) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 dNi(k, u)

−
n∑

i=1

∫ ∞

0

[
V (1)
c (k, u, γ, η, σ2) + V (2)

c (k, u, γ, η, σ2) + V (3)
c (k, u, γ, η, σ2)

]
dNi(k, u).

(4.25)

To ensure the existence of the asymptotic covariance matrix, we require the

probabilistic limits of S
(j)
c (k) and C(j)(k) to exist. The limits are defined through

the following conditions.

Conditions 4.2.

1. There exist neighbourhoods Γ of γ0 and N of η0 and for each k = 1, . . . , K

there are functions s
(0)
c (k, t, γ, η, σ2), s

(1)
c (k, t, γ, η, σ2), s

(2)
c (k, t, γ, η, σ2),

c(1)(k, t, γ, η, σ2) and c(2)(k, t, γ, η, σ2) defined on [0,∞)× Γ×N such that

sup
t∈[0,∞),γ∈Γ,η∈N

∥∥S(j)
c (k, t, γ, η, σ2)− s(j)c (k, t, γ, η, σ2)

∥∥ p−→ 0 for j = 0, 1, 2

sup
t∈[0,∞),γ∈Γ,η∈N

∥∥C(j)(k, t, γ, η, σ2)− c(j)(k, t, γ, η, σ2)
∥∥ p−→ 0 for j = 1, 2.

Each s
(j)
c (k, t, γ, η, σ2) and c(j)(k, t, γ, η, σ2) is a continuous function of γ ∈ Γ

and η ∈ N uniformly in t ∈ [0,∞), and bounded on [0,∞)× Γ×N . For each

k = 1, . . . , K s
(0)
c and c(0) are bounded away from zero on [0,∞)× Γ×N .

It is clear that the probabilistic limits ec(k, t, γ, η, σ
2) of Ec(k, t, γ, η, σ

2),

v
(1)
c (k, t, γ, η, σ2) of V

(1)
c (k, t, γ, η, σ2) and v

(2)
c (k, t, γ, η, σ2) of V

(2)
c (k, t, γ, η, σ2) exist

and can expressed in terms of s
(j)
c (k, t, γ, η, σ2) and c(j)(k, t, γ, η, σ2) for j = 0, 1, 2
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and these are

ec(k, t, γ, η, σ
2) =

s
(1)
c (k, t, γ, η, σ2)

s
(0)
c (k, t, γ, η, σ2)

v(1)c (k, t, γ, η, σ2
0) =

s
(2)
c (k, t, γ, η, σ2

0)

s
(0)
c (k, t, γ, η, σ2

0)
− s

(1)
c (k, t, γ, η, σ2)s

(1)
c (k, t, γ, η, σ2)T

[s
(0)
c (k, t, γ, η, σ2)]2

v(2)c (k, t, γ, η, σ2) =
c(2)(k, t, γ, η, σ2)

s
(0)
c (k, t, γ, η, σ2)

− s
(1)
c (k, t, γ, η, σ2)c(1)(k, t, γ, η, σ2)T

[s
(0)
c (k, t, γ, η, σ2)]2

.

We shall now prove that the estimates γ̂
(1)
n , η̂

(1)
n , . . . , γ̂

(K)
n , η̂

(K)
n are asymptotically

multivariate normally distributed and we shall derive an explicit form for the

covariance matrix of this vector of parameters. To do so, we shall prove that 1–4 of

Conditions 3.2 hold and hence apply Theorem 3.2. The remaining conditions and

the additional Conditions 4.2 are assumed to hold to avoid technical distractions.

Theorem 4.4. Suppose that γ0, η0 and σ2
0 are the true values of the parameters

γ, η and σ2 respectively. For each k = 1, . . . , K, let γ̂
(k)
n and η̂

(k)
n be the values of

γ and η which are the solution to the equation (U
(n)
c (k, γ, η, σ0) = 0 and suppose

that Conditions 4.2 hold. Then the vector (γ̂
(1)
n , η̂

(1)
n , . . . , γ̂

(K)
n , η̂

(K)
n )T converges in

distribution to a Gaussian random variable, specifically

n
1
2



γ̂
(1)
n − γ0

η̂
(1)
n − η0

γ̂
(2)
n − γ0

η̂
(2)
n − η0

...

γ̂
(K)
n − γ0

η̂
(K)
n − η0


d−→ N



0

0
...

0

 ,Σ =


Σ11 Σ12 · · · Σ1K

Σ12 Σ22 · · · Σ2K

...
...

. . .
...

Σ1K Σ2K · · · ΣKK




where

Σk1k2 = (A(k1))−1B(k1)((A(k2))−1)T
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4.2. Asymptotic theory for the joint model

and the matrices A(k) and B(k) are defined by

A(k) =

∫ ∞

0


σ2
0E(θi(u)) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 s(0)c (k, u, γ0, η0, σ
2
0)h0(u)du (4.26)

−
∫ ∞

0

(
v(1)c (k, u, γ0, η0, σ

2
0) + v(2)c (k, u, γ0, η0, σ

2
0)
)
s(0)c (k, u, γ0, η0, σ

2
0)h0(u)du

(4.27)

B(k) =

∫ ∞

0

v(1)c (k, u, γ0, η0, σ
2
0)s

(0)
c (k, u, γ0, η0, σ

2
0)h0(u)du. (4.28)

Proof. In Theorem 3.2, we proved that the sequence of estimates which are the

solutions to estimating equations, are asymptotically normally distributed. In

applying Theorem 3.2, the group sequential conditional score function Uc(k, γ, η, σ
2)

plays the role of the estimating function Gn(θ,x
(k)
n ). Therefore, we show that the

following conditions are satisfied:

B1 For each k = 1, . . . , K, γ̂
(k)
n

p−→ γ0 and η̂
(k)
n

p−→ η0.

B2 For each k = 1, . . . , K, n− 1
2U

(n)
c (k, γ0, η0, σ

2
0)

d−→ N(0, B(k)).

B3 For each k = 1, . . . , K, and for all γ∗
n, η

∗
n such that γ∗

n

p−→ γ0, η
∗
n

p−→ η0,

n−1 ∂

∂(γ, ηT )T
U (n)
c (k, γ, η, σ2

0)

∣∣∣∣
γ=γ∗

n,η=η∗n

=
p−→ A(k)

.

B4 For 1 ≤ k1 ≤ k2 ≤ K, we require

n− 1
2Cov(U (n)

c (k1, γ0, η0, σ
2
0), U

(n)
c (k2, γ0, η0, σ

2
0))

p−→ B(k1).

The proof that conditions B1–B3 hold, follow directly from the fixed sample case

and we shall focus on the proof that condition B4 holds. For the remainder of this

proof, we shall use the argument that the asymptotic behaviour of the estimates

γ̂
(k)
n and η̂

(k)
n is dictated by Expression (4.22) and we shall therefore focus on the

following form for the group sequential conditional score

Uc(k, γ, η, σ
2) =

∫ τk

0

n∑
i=1

k∑
l=1

(
{Si(u, γ, σ

2), ZT
i }T − ec(l, u, γ, η, σ

2)
)
dDMi(l, u).
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4.2. Asymptotic theory for the joint model

For consistency, we shall use the martingale notation. For each j = 1, . . . , p + 1

where p is the length of the vector Zi, let

W
(n)
j (k, t, γ, η, σ2) =

∫ t

0

n∑
i=1

k∑
l=1

H
(n)
ij (l, u, γ, η, σ2)dDNi(l, u)

=

∫ t

0

n∑
i=1

k∑
l=1

H
(n)
ij (l, u, γ, η, σ2)dDMi(l, u)

where

H
(n)
ij (l, u, γ, η, σ2) = n− 1

2 ({Si(u, γ, σ
2), Zi}Tj − ec(l, u, γ, η, σ

2)j).

Thus n− 1
2U

(n)
c (k, γ, η, σ2) = W (n)(k, τk, γ, η, σ

2). We have previously shown in

Equation (4.24) that Uc(k, γ, η, σ
2) has expectation zero for all k = 1, . . . , K. Hence

we deduce that for for all j = 1, . . . , p,

E
(
W

(n)
j (k, τk, γ, η, σ

2)
)
= 0.

In the following, we shall drop the dependency of the function H(n) on the

parameters γ, η and σ2. This is for notational simplicity. The covariance is therefore

given by

Cov

(
W

(n)
j1

(k1, τk1 , γ0, η0, σ
2
0),W

(n)
j2

(k2, τk2 , γ0, η0, σ
2
0)

)
= E

(∫ τk1

0

n∑
i=1

k1∑
l1=1

H
(n)
ij1

(l1, u)dDNi(l1, u)

∫ τk2

0

n∑
i=1

k2∑
l2=1

H
(n)
ij2

(l2, u)dDNi(l2, u)

)

= E
( n∑

i=1

[ k1∑
l1=1

∫ τk1

0

H
(n)
ij1

(l1, u)dDNi(l1, u)

k2∑
l2=1

∫ τk2

0

H
(n)
ij2

(l2, u)dDNi(l2, u)

])
.

This second equality holds because patients are independent and the orders of

summation and integration can be interchanged.

Further, the event for each patient can only happen in one analysis so that if

l1 ̸= l2 then dDNi(l1, u)dDNi(l2, u) = 0 and because dDNi(l, u) is an indicator
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4.2. Asymptotic theory for the joint model

function, we have that dDNi(l, u)2 = dDNi(l, u). Thus for k1 ≤ k2,

E
( n∑

i=1

[ k1∑
l1=1

∫ τk1

0

H
(n)
ij1

(l1, u)dDNi(l1, u)

k2∑
l2=1

∫ τk2

0

H
(n)
ij2

(l2, u)dDNi(l2, u)

])

= E
( n∑

i=1

k1∑
l=1

∫ τ1

0

H
(n)
ij1

(l, u)H
(n)
ij2

(l, u)dDNi(l, u)

)
.

For the following, note that we have

E(dNi(k, u)|Si(t, γ, σ
2), ti(t), Zi, Yi(k, u) = h0(u)E0i(u, γ, η, σ

2)Yi(k, u)du

which follows by definition of the conditional intensity process, λC
i (k, t), in

Equation (4.20). The following calculations use the law of total expectation and the

expectation of the counting process dNi(k, u) in a similar way to the fixed sample

case.

E
( n∑

i=1

k1∑
l=1

∫ τ1

0

H
(n)
ij1

(l, u)H
(n)
ij2

(l, u)dDNi(l, u)

)

= E
( n∑

i=1

k1∑
l=1

∫ τ1

0

E[H(n)
ij1

(l, u)H
(n)
ij2

(l, u)dDNi(l, u)|Si(u, γ0, σ
2
0), Zi, ti(u), Yi(l, u)]

)

= E
( n∑

i=1

k1∑
l=1

∫ τ1

0

H
(n)
ij1

(l, u)H
(n)
ij2

(l, u)E[dNi(l, u)− dNi(l − 1, u)|Si(u, γ0, σ
2
0), Zi, ti(u), Yi(l, u)]

)

= E
( n∑

i=1

k1∑
l=1

∫ τ1

0

H
(n)
ij1

(l, u)H
(n)
ij2

(l, u)h0(u)E0i(u, γ0, η0, σ
2
0)(Yi(l, u)− Yi(l − 1, u))du

)
= E

( n∑
i=1

∫ τk1

0

H
(n)
ij1

(k1, u)H
(n)
ij2

(k1, u)h0(u)E0i(u, γ0, η0, σ
2
0)Yi(k1, u)du

)
.

For the following calculation, dependency on parameters γ0, η0 and σ2
0 is removed

from the functions S
(0)
c (k, t), S

(1)
c (k, t) and S

(2)
c (k, t) for notational purposes. Further,

the dependency on parameters γ0, η0 and σ2
0 is also removed from the probabilistic
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4.2. Asymptotic theory for the joint model

limits s
(0)
c (k, t), s

(1)
c (k, t), s

(2)
c (k, t) and ec(k, t). Then following calculation holds

n∑
i=1

H
(n)
ij1

(k, u)H
(n)
ij2

(k, u)h0(u)E0i(u, γ0, η0, σ
2
0)Yi(k, u)du

=
n∑

i=1

n−1
(
{Si(u, γ0,σ

2
0), Z

T
i }Tj1 − ec(k, u)j1

)
×
(
{Si(u, γ0,σ

2
0), Z

T
i }Tj2 − ec(k, u)j2

)
h0(u)E0i(u, γ0, η0, σ

2
0)Yi(k, u)

=

(
[S(2)

c (k, u)]j1j2−
[s

(1)
c (k, u)]j1

s
(0)
c (u)

[S(1)
c (k, u)]j2

− [s
(1)
c (k, u)]j2

s
(0)
c (k, u)

[S(1)
c (k, u)]j1 +

[s
(1)
c (k, u)]j1

s
(0)
c (k, u)

[s
(1)
c (k, u)]j2

s
(0)
c (k, u)

S(0)
c (k, u)

)
h0(u)

p−→
(
[s

(2)
c (k, u)]j1j2

s
(0)
c (k, u)

− [s
(1)
c (k, u)]j1 [s

(1)
c (k, u)]j2

s
(0)⊗2
c (k, u)

)
s(0)c (k, u)h0(u)

= [v(1)c (k, u)]j1j2s
(0)
c (k, u)h0(u).

Therefore, combining the above, it can be seen that for 1 ≤ k1 ≤ k2 ≤ K,

Cov
(
W

(n)
j1

(k1, τk1 , γ0, η0, σ
2
0),W

(n)
j2

(k2, τk2 , γ0, η0, σ
2
0)
)

p−→
∫ ∞

0

[v(1)c (k1, u, γ0, η0, σ
2
0)]j1j2s

(0)
c (k1, u, γ0, η0, σ

2
0)h0(u)du

p−→
(∫ ∞

0

v(1)c (k1, u, γ0, η0, σ
2
0)s

(0)
c (k1, u, γ0, η0, σ

2
0)h0(u)du

)
j1j2

=B
(k1)
j1j2

We have the result, for 1 ≤ k1 ≤ k2 ≤ K

n− 1
2Cov(U (n)

c (k1, γ0, η0, σ
2
0), U

(n)
c (k2, γ0, η0, σ

2
0))

p−→ B(k1).

Similarly to the fixed sample case, we have assumed that σ2
0 is known in the

derivation of the distribution of γ̂
(k)
n and η̂

(k)
n . This is not generally the case but by

arguments in Carroll et al. (2006) Section A.3.3, we can find a consistent estimate

to replace σ2
0 with in the group sequential conditional score function. At analysis k

this estimate is given by

σ̂(k)2 =

∑n
i=1 I{mi(k) > 2}Ri(k)∑n

i=1 I{mi(k) > 2}(mi(k)− 2)
, (4.29)
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4.2. Asymptotic theory for the joint model

where Ri(k) is the residual sum of squares for the least squares fit to all mi(k)

observations for patient i available at analysis k.

We shall use Theorem 4.4 to create a group sequential trial based on the joint

model. Let γ0, η0 and σ2
0 be the true values of the parameters γ, η and σ2 respectively

in the joint model Equation (4.1)–(4.3). We shall test the hypothesis

H0 : η0 ≤ 0, HA : η0 > 0.

Using the group sequential conditional score method, let γ̂(k), η̂(k) be the values of

the parameters γ and η such that Uc(k, γ, η, σ
2) = 0 where the conditional score

function is calculated using Equation (4.21). Further, let σ̂(k)2 be the estimate for

σ2
0 given in Equation (4.29). By Theorem 4.4, for each k = 1, . . . , K, the marginal

distribution of the parameter η̂(k) is

√
n(η̂(k) − η0)

d−→ N(0,Σ
(k)
22 )

where

Σ(k) = (A(k))−1B(k)((A(k))−1)T

and the matrices A(k) and B(k) are defined by Equations (4.26)–(4.28). Note that

the subscript notation in the covariance matrix represents that the parameter η is

the second parameter in the vector (γ, η). The matrices A(k) and B(k) are estimated

using

Â(k) =
1

n

n∑
i=1

∫ ∞

0


σ̂(k)2θi(u) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 dNi(k, u)

− 1

n

n∑
i=1

∫ ∞

0

[
V (1)
c (k, u, γ̂(k), η̂(k), σ̂(k)2) + V (2)

c (k, u, γ̂(k), η̂(k), σ̂(k)2)
]
dNi(k, u)

(4.30)

B̂(k) =
1

n

n∑
i=1

∫ ∞

0

[
V (1)
c (k, u, γ̂(k), η̂(k), σ̂(k)2)

]
dNi(k, u). (4.31)

The information matrix at analysis k of the group sequential trial is given by

Ik =
1

n

[
(Â(k))−1B̂(k)((Â(k))−1)T

]−1

22
.
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4.2. Asymptotic theory for the joint model

Further, a standardised test statistic at analysis k is given by

Zk = η̂(k)
√
Ik.

In Section 4.4.1 we shall investigate the covariance structure for the joint

distribution of the estimates η̂(1), . . . , η̂(K).
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4.3. Simulation study of the parameter estimates

4.3 | Simulation study of the parameter

estimates

4.3.1 | Parameter values for simulation studies

We have so far provided a distribution for the treatment effect estimate in the joint

model for both a fixed sample clinical trial and a group sequential trial. These results

are proved theoretically and in the asymptotic setting. In this section, we shall

perform some simulation studies to confirm these distributional results. Further,

we assess the impact of having a small sample size when following an asymptotic

assumption.

For convenience, the joint model, Equations (4.1)-(4.3) of Section 4.1 is presented

again below. Longitudinal observations, Wi(t) for patients i = 1, . . . , n follow the

random effects model

Wi(t) = bi0 + bi1t+ ϵi(t)

where [
bi0

bi1

]
∼ N

([
µ0

µ1

]
,

[
ϕ2
0 0

0 ϕ2
1

])
ϵi(t)|bi ∼ N(0, σ2).

The model for the hazard function hi(t) for the survival endpoint is given below

with baseline hazard function h0(t). In this model, for simplicity, the only covariate

included is the treatment indicator Zi = I{patient i receives the new treatment}.
The hazard function for patient i is given by

hi(t) = h0(t) exp{γ(bi0 + bi1t) + ηZi}.

Finally, we are assuming non-informative censoring and the distribution of the

censoring random variable for patient i is given by Ci ∼ exp{λ}. In all cases, we shall

simulate data to reflect that roughly 10% of patients will be censored for reasons

other than end-of-study censoring. To do so, we have used the value λ = 0.022 and

chosen this by trial and error.
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4.3. Simulation study of the parameter estimates

We shall simulate data in the case

(µ0, µ1) = (6, 3), ϕ0 = 3.5, ϕ1 = 2.5, σ2 = 10, (4.32)

h0(t) = 5.5, γ = 0.03, λ = 0.022 and η = −0.5.

Figure 4.1 shows the biomarker trajectory of four randomly generated patients.

The value σ2 = 10 produces trajectories with a clear trend that is still subject to

measurement error. In later sections we shall consider how properties of the model

are affected by a change in σ2. For example, when the longitudinal data is extremely

noisy, there may not be any gain from including it in the model.

Figure 4.1: Longitudinal observations of four randomly selected patients with
parameter values (4.32).
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The variance-covariance matrix for the random effects b1, . . . ,bn has been chosen

so that the longitudinal data and the treatment effect have a roughly equal impact

on the hazard function. This is demonstrated by Figure 5.3.2 below, which shows

the survival function at the mean of each random effect for each treatment arm, and

also at one standard deviation of each random effect above and below the mean.

For example, the upper dashed blue line is for patient i with b0i = µ0 + ϕ0 = 9.5

and b1i = µ1 + ϕ1 = 5.5. At the median survival time t ≈ 3.25 years, differences

in the survival function between treatment arms are roughly equal to differences

in the survival function between at the mean and at the mean plus or minus one

standard deviation of random effects on the same arm. For comparison, we have

also included a similar plot for the AIDS data set found in the JM R package written

by Rizopoulos (2010). This plot shows that the biomarker observations dominate

the hazard function and that treatment has little effect on survival. Therefore, the

parameter values that we have chosen are conservative with respect to the amount

of information that comes through the biomarker.

Figure 4.2: Survival function for the simulated data and from AIDS data set
with dashed lines showing survival function at 1 standard deviation

of random effects above and below mean.

In the hazard rate formula, the coefficient of the longitudinal variable, γ, affects

the contribution of the longitudinal data to the hazard ratio. Therefore, in later

sections we shall assess the effect of varying γ. This is because we would like to

see how properties of the clinical trial vary when the longitudinal data has differing

levels of influence.

For completeness, Figure 4.3 gives a histogram of 1000 randomly generated
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4.3. Simulation study of the parameter estimates

survival times under the joint model. The histogram shows that at the time of

the final analysis, 5 years, not all of the events have occurred. The trial is designed

with to observe 60% of events at the time of an analysis after 5 years.

Figure 4.3: Histogram of survival times generated using the parameter
values (4.32).

4.3.2 | Fixed sample simulations

Using the parameter values (4.32) for the joint model, we can now simulate clinical

trials to find the distribution of the treatment effect estimate, η̂, using a Monte Carlo

method and compare this to the asymptotic theoretical result. For completeness

we shall also check the distribution of γ̂ which is the estimate of the longitudinal

data coefficient. In Theorem 4.3 we proved that for a fixed sample, the parameter
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estimates γ̂ and η̂ of the joint model found using the conditional score method had

the following distribution:

√
n

[
γ̂

η̂
−
γ0

η0

]
d−→ N

([
0

0

]
,Σ

)

where

Σ = A−1B(A−1)T

and the matrices A and B of the covariance matrix are defined by equations (4.14)

and (4.15). The covariance matrix Σ found using the sandwich method is estimated

in practice using estimates Â and B̂ given by Equations (4.18)–(4.19), and is also

data dependent. Therefore, for a true distributional comparison, we shall simulate

standardised parameter estimates. These are

Zγ =

√
n(γ̂ − γ0)√

Σ11

, Zη =

√
n(η̂ − η0)√

Σ22

. (4.33)

Then, it is clear that theory implies

Zγ ∼ N(0, 1) and Zη ∼ N(0, 1).

Suppose that we consider an alternative approach. For example, let Zγ =
√
nγ̂/

√
Σ11, then Zγ ∼ N(

√
nγ0/

√
Σ11, 1). The true value of Σ11 is unknown and it

is therefore difficult to evaluate the true theoretical mean of Zγ. For this reason, we

have chosen to use the formulation of Zγ and Zη given in Equation (4.33), which

center these statistics on zero.

To choose a suitable sample size n, we follow the method outlined in Section 2.1.1

and calculate n based on a power requirement. For this trial type 1 error is chosen

to be α = 0.025 and power is required to be 1− β = 0.9 when η = −0.5. Therefore,

by Equation (2.1), the information needed in the fixed sample study is

If =

(
Φ−1(0.975) + Φ−1(0.9)

−0.5

)2

= 42.03.

For survival data Jennison and Turnbull (2000) show, in their Chapter 13, that

information is approximately proportional to the number of events divided by 4.

We use this assumption to calculate the required sample size. The fixed sample trial

is designed with 2 years recruitment and 3 years follow up, where the trial is designed

to achieve 60% of events upon termination of the study at time 5 years. In addition,

we expect to see 10% of patients leave the study due to censoring other than end-
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of-study-censoring, and we simulate censoring observations from the distribution

Ci ∼ Exp(λ) where λ is chosen to achieve this 10%. We therefore choose the sample

size

n =
4 If

0.9× 0.6
≈ 311.

Figures 4.4 and 4.5 show the outcome of this simulation study for a fixed sample

trial with 104 Monte Carlo replicates. Figure 4.4 shows the outcome when simulating

under H0 with η = 0 and Figure 4.5 shows the corresponding plot when simulating

under HA using η = −0.5. The Q-Q plots for the standardised parameter estimates

calculated by Equation (4.33) show that N(0, 1) is a good fit for Zγ and Zη. Further,

the histograms show that Zγ ∼ N(0, 1) and Zη ∼ N(0, 1) since they closely follow

the red line which is the true probability density function of a N(0, 1) distribution.
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Figure 4.4: Histogram and QQ plots for simulated Zγ and Zη in the fixed sample
joint model with parameter values (4.32), η = 0 and 104 replicates.
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Figure 4.5: Histogram and QQ plots for simulated Zγ and Zη in the fixed
sample joint model with parameter values (4.32), η = −0.5 and 104

replicates.

4.3.3 | Group sequential simulations

In a similar manner to the fixed sample simulations, we would like to asses the

distribution of the sequence of treatment effect estimates in the group sequential

trial. We shall use a Monte Carlo method in which for each replicate we simulate a

clinical trial and calculate a sequence of treatment effect estimates. For each analysis

we can then compare the Monte Carlo distribution of the standardised parameter

estimates to the theoretical distribution. The trial design that we have chosen has

the first analysis occurring during recruitment and so the first analysis is likely to
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4.3. Simulation study of the parameter estimates

have a much smaller observed number of events than other analyses. We shall give

particular focus to the first analysis to check that the asymptotic results still hold

for small sample sizes.

For the design of the group sequential trial, our example will have K = 5

analyses. All of the parameter values in the joint model are chosen as in Section 4.3.1

and we shall update the sample size calculation to adjust from fixed sample to

group sequential. The calendar analysis times are chosen to be 19, 28, 37, 47 and

60 months. These analysis times are chosen so that we have roughly evenly spaced

information levels and roughly 60% of subjects have events observed by the final

analysis, which occurs at 5 years. Similarly to the fixed sample trial, we choose type

1 error α = 0.025 and power 1−β = 0.9. For the group sequential trial we shall use

an error-spending test as described in Section 2.1.3 with error spending functions

f(t) = min{αt2, α} and g(t) = min{βt2, β}.

Then, by the method described in Section 2.1.3, assuming 5 equally spaced

information levels, we calculate that at the final analysis we require information

Imax = 46.36.

Given that we expect to see 10% of patients leave the study due to censoring other

than end-of-study or interim analysis censoring, and 60% of events happen by the

final analysis, we therefore choose the following sample size:

n =
4Imax

0.6× 0.9
≈ 343.

In Theorem 4.4 we proved that for each k = 1, . . . , 5, the parameter estimates of

the joint model at analysis k are distributed such that

√
n

[
γ̂(k)

η̂(k)
−

γ0

η0

]
∼ N

([
0

0

]
,Σ(k)

)

where

Σ(k) = (A(k))−1B(k)(A(k))−1

and the matrices A(k) and B(k) are given by equations (4.26) and (4.28) respectively.

To check this distribution for the η̂(k)s, we shall consider the standardised treatment
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effect estimates at each analysis

Zk =

√
n(η̂(k) − η0)√

Σ
(k)
22

for k = 1, . . . , 5.

Then we can compare these estimates to the theoretical distribution

Zk ∼ N(0, 1).

Figures 4.6 and 4.7 show the result of this group sequential simulation study

with 104 Monte Carlo replicates. Figure 4.6 was simulated under H0 with η = 0 and

Figure 4.7 was simulated under HA with η = −0.5.
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Figure 4.6: Histogram and QQ plots for simulated parameter estimates in the
joint model under H0 using η = 0 for each analysis of a group

sequential trial using 104 replicates.
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Figure 4.7: Histogram and QQ plots for simulated parameter estimates in the
joint model under HA using η = −0.5 for each analysis of a group

sequential trial using 104 replicates.

The Q-Q plots and histograms confirm that the marginal distributions of the

standardised treatment effect estimates are such that Zk ∼ N(0, 1) for each

k = 1, . . . , 5. The simulation results for the first analysis do not match the theoretical

distribution as closely as for the other analyses, which is seen at the tails of the QQ-

plot. This problem is common for both cases η = 0 and η = −0.5. The first analysis

happens during recruitment and has a small sample size and, with limited follow-up,

a small number of events. The mean number of events at the first analysis was 37.6

when η = 0 and 37.2 when η = −0.5

At this stage, we have considered the marginal distributions of the treatment

effect estimate at each analysis. We shall check that the sequence of treatment effect

estimates has the covariance structure given in Theorem 4.4. For 1 ≤ k1 ≤ k2 ≤ K

we have that

Cov(η̂(k1), η̂(k2)) = (Ak1)−1B(k1)(A(k2))−1

which implies that

Cov(Zk1 , Zk2) = Cov

√
n(η̂(k1) − η0)√

Σ
(k1)
22

,

√
n(η̂(k2) − η0)√

Σ
(k2)
22


=

n(Ak1)−1B(k1)(A(k2))−1√
Σ

(k1)
22 Σ

(k2)
22

.

For each k = 1, . . . , K, the matrices A(k), B(k) and Σ(k) can be calculated for each

clinical trial. Hence, a value of Cov(Zk1 , Zk2) can be obtained for each clinical trial.

We can find the value of E(Cov(Zk1 , Zk2)) using Monte Carlo methods, and compare
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this to the empirical value of Ĉov(Zk1 , Zk2) which is found by taking the covariance

of all the Zk1 and Zk2 from the simulations. Tables 4.3 and 4.6 show these results.


1.000 0.774 0.627 0.543 0.487
0.774 1.000 0.811 0.703 0.631
0.627 0.811 1.000 0.867 0.779
0.543 0.703 0.867 1.000 0.899
0.487 0.631 0.779 0.899 1.000


Table 4.1: Under H0, η = 0


1.000 0.767 0.615 0.527 0.467
0.767 1.000 0.804 0.689 0.611
0.615 0.804 1.000 0.858 0.761
0.527 0.689 0.858 1.000 0.887
0.467 0.611 0.761 0.887 1.000


Table 4.2: Under HA, η = −0.5

Table 4.3: Matrix of E(Cov(Zk1, Zk2)) for group sequential trial with K = 5
analyses with 104 replicates.


0.957 0.663 0.540 0.479 0.430
0.663 0.975 0.783 0.686 0.617
0.540 0.783 0.967 0.843 0.760
0.479 0.686 0.843 0.984 0.886
0.430 0.617 0.760 0.886 0.989


Table 4.4: Under H0, η = 0


0.967 0.682 0.549 0.467 0.415
0.682 0.991 0.799 0.692 0.611
0.549 0.799 0.994 0.861 0.760
0.467 0.692 0.861 1.004 0.887
0.415 0.611 0.760 0.887 0.996


Table 4.5: Under HA, η = −0.5

Table 4.6: Matrix of Ĉov(Zk1 , Zk2) for group sequential trial with K = 5
analyses with 104 replicates.

We can see that, in general, there is little difference in these matrices and the

small deviations are consistent with sampling error. There are small differences

between E(Cov(Zk1 , Zk2)) and Ĉov(Zk1 , Zk2) whenever k1 = 1 which may be

explained by the small number of events at the first analysis. The simulation

studies for both the fixed sample and group sequential trials confirm the asymptotic

distributional results of the parameter estimates in the joint model. Therefore, we

may have confidence to perform a clinical trial based on the joint model using the

conditional score method. Care should be taken to avoid small numbers of observed

events, which may occur due to early first interim analyses in group sequential trials.

This could be adjusted for by making the first analysis later in the recruitment stage

or by increasing the total sample size.
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4.4 | Designing group sequential trials

when the canonical joint

distribution does not hold

4.4.1 | Deviation of the parameter estimates

from the canonical joint distribution

In Section 4.1 we saw that asymptotically the sequence of treatment effect estimates

in a group sequential trial obtained from the joint model is multivariate normally

distributed. Further, each of these estimates is asymptotically unbiased. The first

two conditions of Definition 2.2 for the canonical distribution of the sequence of test

statistics are satisfied. However, for the joint model, we have shown that

V ar(η̂(k)) =
[
(A(k))−1B(k)(A(k))−1

]
22

for k = 1, . . . , K (4.34)

and

Cov(η̂(k1), η̂(k2)) =
[
A(k1))−1B(k1)(A(k2))−1

]
22

for k1 < k2. (4.35)

This implies that the third condition for the canonical joint distribution is not

satisfied. In this section, we discuss the implications of performing a group sequential

trial when the assumption of a canonical joint distribution fails. We first show that

there are some small differences between the matrices (A(k))−1B(k) and the identity

matrix I and describe why this difference is important. Then, we present some

alternative methods which aim to correct for this violation of the canonical joint

distribution. In method 1, the trial is performed acting as though the canonical

joint distribution holds, and we present some theory that this method controls the

type 1 error rate conservatively when a non-binding futility boundary is used. This

theoretical result acts as good evidence that the trial will be conservative with

respect to type 1 error when binding futility boundaries are used. For method 2, we

create a new estimate which is a linear combination of the treatment effect estimates

at previous analyses and the current analysis and we show how this estimate has the

canonical joint distribution asymptotically. For method 3, the estimated covariance

structure is used to calculate the boundaries of the group sequential trial. For each

of these 3 methods, we display properties of the trial through simulation studies.
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We saw in Section 4.2.1, that

A(k) =

∫ ∞

0


σ2E(θi(u)) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 s(0)c (k, u, γ, η, σ2)h0(u)du

−
∫ ∞

0

(
v(1)c (k, u, γ, η, σ2) + v(2)c (k, u, γ, η, σ2)

)
s(0)c (k, u, γ, η, σ2)h0(u)du (4.36)

B(k) =

∫ ∞

0

v(1)c (k, u, γ, η, σ2)s(0)c (k, u, γ, η, σ2)h0(u)du. (4.37)

and these can be estimated by

Â(k) =
n∑

i=1

∫ ∞

0


σ̂(k)2θi(u) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 dNi(k, u)

−
n∑

i=1

∫ ∞

0

[
V (1)
c (k, u, γ̂(k), η̂(k), σ̂(k)2) + V (2)

c (k, u, γ̂(k), η̂(k), σ̂(k)2)
]
dNi(k, u)

(4.38)

B̂(k) =
n∑

i=1

∫ ∞

0

[
V (1)
c (k, u, γ̂, η̂, σ̂2)

]
dNi(k, u). (4.39)

If the relationship A(k) = B(k) holds for each k = 1, . . . , K, then

Cov(η̂(k1), η̂(k2)) =
[
(A(k2))−1

]
p+1,p+1

= V ar(η̂(k2))

and the third condition of Definition 2.2 holds. Therefore, we shall assess the

magnitude of the problem by considering the matrix (A(k))−1B(k) and to what extent

it differs from the identity matrix.

We can find estimates Â(k) and B̂(k) from simulated data. We have done

this using a large sample size of 4800 patients to reduce noise in these estimates.

This is appropriate because, although both matrices depend on the sample size n,

they can each be written in the form Â(k) = (1/n)
∑n

i=1 Xi(k, γ, η) and B̂(k) =

(1/n)
∑n

i=1 Yi(k, γ, η) for some functions Xi(k, γ, η) and Yi(k, γ, η). Therefore, in the

formula (Â(k))−1B̂(k), the value of n cancels out, and we are left with a function that

converges in distribution to (A(k))−1B(k) as n → ∞. Further, to reduce simulation

error, the true values of γ and η are used in this calculation, which is appropriate

because of consistency of the estimates γ̂ and η̂.
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γ = 0 γ = 0.03 γ = 0.06 γ = 0.09

σ2 = 0

1.00 0.00

0.00 1.00


1.00 0.00

0.00 1.00


1.00 0.00

0.00 1.00


1.00 0.00

0.00 1.00


σ2 = 1

1.00 0.00

0.00 1.00


1.01 0.00

0.00 1.00


1.01 0.00

0.00 1.00


1.02 0.00

0.00 1.00


σ2 = 10

1.03 0.00

0.01 1.00


1.06 0.00

0.00 1.00


 1.12 0.00

−0.02 1.00


1.22 0.00

0.00 1.00


σ2 = 100

 1.28 0.00

−0.10 1.00


 1.63 0.00

−0.47 1.00


 2.32 0.00

−0.01 1.00


3.49 0.00

1.00 1.00


Table 4.7: Matrix (Â(1))−1B̂(1) for parameter values γ = 0, 0.03, 0.06, 0.09 and

σ2 = 0, 1, 10, 100 of the joint model for the null hypothesis η = 0
simulated with 4800 patients.

In Section 4.3 we discussed how varying the parameters γ and σ2 in the joint

model may alter the properties of the trial, and in a similar way, altering the

magnitude of these parameters affects the value of the matrix (A(k))−1B(k). This is

also clear from Equations (4.36) and (4.37), which give formulas for A(k) and B(k)

that are dependent on γ and σ2.

Table 4.7 below shows the matrix (Â(1))−1B̂(1) for η = 0 and different values

of γ and σ2. We have chosen to investigate the properties of this matrix at

the first analysis because we see that the majority of problems occur at early

interim analyses. We simulated a data set of 4800 patients with parameter values

γ = 0, 0.03, 0.06, 0.09, σ2 = 0, 1, 10, 100 and η = 0.

The matrices A(k), Â(k), B(k) and B̂(k) are each of dimension 2× 2. The function

V (2)(k, u, γ, η) is such that
[
V (2)(k, u, γ, η)

]
12

=
[
V (2)(k, u, γ, η)

]
22

= 0, and hence

by Equations (4.38) and (4.39) it can be shown that [Â(k)]12 = [B̂(k)]12 and

[Â(k)]22 = [B̂(k)]22. Further simple algebraic manipulation gives [(Â(k))−1B̂(k)]12 = 1

and [(Â(k))−1B̂(k)]22 = 0 exactly, which is shown in Table 4.7. By definition, the

variance of the estimate η̂(k) is found in the bottom right entry of the matrix

(Â(k))−1B̂(k)(Â(k))−1 and hence, the bottom row of (Â(k))−1B̂(k) is of interest here.

The fact that [(Â(1))−1B̂(1)]11 is a long way from 1 for σ2 = 10 and σ2 = 100

is therefore not a problem. As σ2 increases, the absolute value of [(Â(1))−1B̂(1)]21

increases, but the value of γ has a small impact on the value of [(Â(1))−1B̂(1)]21.
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Thus, we may expect large values of σ2 to affect the achieved type 1 error rate.

Table 4.8 provides a rough estimate for the standard deviation of [(Â(1))−1B̂(1)]21

in Table 4.7 above. Calculation of a single value of [(Â(1))−1B̂(1)]21 with 104 patients

is computationally expensive and hence we cannot calculate the standard deviation

by Monte Carlo. The alternative approach, which we have employed, is to estimate

the standard deviation of [(Â(1))−1B̂(1)]21 for 1600 patients, using 10 Monte Carlo

replicates each, and use the relationship

√
V ar(η̂

(1)
n ) ∝ 1/

√
n to calculate the

standard deviation of η̂
(1)
n for a sample size of n = 4800. Table 4.8 shows that

the none of the values of [(Â(1))−1B̂(1)]21 are significantly different from zero.

γ = 0 γ = 0.03 γ = 0.06 γ = 0.09

σ2 = 0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

σ2 = 1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

σ2 = 10 0.01 (0.02) 0.00 (0.02) -0.02 (0.04) 0.00 (0.05)

σ2 = 100 -0.10 (0.25) -0.47 (0.37) -0.01 (0.54) 1.00 (0.56)

Table 4.8: Mean and standard deviation of the estimate for [(Â(1))−1B̂(1)]21 to 2
decimal places, for parameter values γ = 0, 0.03, 0.06, 0.09 and

σ2 = 0, 1, 10, 100 of the joint model under the null hypothesis η = 0.

Similarly, Table 4.9 below shows the matrix (Â(1))−1B̂(1) under the alternative

hypothesis when η = −0.5. The absolute value of [(Â(1))−1B̂(1)]21 increases as

γ increases and also increases as σ2 increases and hence, we expect the power

calculation to be affected by large values of γ and σ2.
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γ = 0 γ = 0.03 γ = 0.06 γ = 0.09

σ2 = 0

1.00 0.00

0.00 1.00


1.00 0.00

0.00 1.00


1.00 0.00

0.00 1.00


1.00 0.00

0.00 1.00



σ2 = 1

1.00 0.00

0.00 1.00


1.01 0.00

0.00 1.00


 1.01 0.00

−0.01 1.00


 1.02 0.00

−0.03 1.00



σ2 = 10

 1.03 0.00

−0.01 1.00


 1.05 0.00

−0.11 1.00


 1.10 0.00

−0.19 1.00


 1.17 0.00

−0.25 1.00



σ2 = 100

 1.22 0.00

−0.38 1.00


 1.48 0.00

−1.08 1.00


 1.97 0.00

−1.84 1.00


 2.92 0.00

−2.94 1.00


Table 4.9: Matrix (Â(1))−1B̂(1) for parameter values γ = 0, 0.03, 0.06, 0.09 and

σ2 = 0, 1, 10, 100 of the joint model for the alternative hypothesis
η = −0.5 simulated with 4800 patients.

Table 4.10 shows the standard deviations of the estimates [(Â(1))−1B̂(1)]21 of

Table 4.9. These standard deviation estimates are calculated in the same way

as those in Table 4.8, by fitting standard deviation estimates 1600 patients and

using the relationship

√
V ar(η̂

(1)
n ) ∝ 1/

√
n to find the standard deviation for η̂

(1)
n

when the sample size is n = 4800 patients. The values of [(Â(1))−1B̂(1)]21 are

significantly different from zero whenever σ2 = 100. Hence, the matrix (Â(k))−1B̂(k)

is significantly different from the identity matrix when σ2 = 100.
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γ = 0 γ = 0.03 γ = 0.06 γ = 0.09

σ2 = 0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

σ2 = 1 0.00 (0.00) 0.00 (0.01) -0.01 (0.03) -0.03 (0.01)

σ2 = 10 -0.01 (0.03) -0.11 (0.06) -0.19 (0.10) -0.25 (0.13)

σ2 = 100 -0.38 (0.29) -1.08 (0.31) -1.84 (0.71) -2.94 (0.86)

Table 4.10: Mean and standard deviation of the estimate for [(Â(1))−1B̂(1)]21 to 2
decimal places, for parameter values γ = 0, 0.03, 0.06, 0.09 and

σ2 = 0, 1, 10, 100 of the joint model for the alternative hypothesis
η = −0.5.

The value σ2 = 100 implies incredibly noisy data and this value is so high that

we would not expect to use the longitudinal data in a clinical trial. In Figure 4.1

we showed a sample of longitudinal data simulated using σ2 = 10 and this data was

already quite noisy. Hence, the fact that [(Â(1))−1B̂(1)]21 is significantly different

from zero for σ2 = 100 is not a concern.

4.4.2 | Method 1: Canonical distribution

assumed

We consider three methods for creating a group sequential trial when the canonical

joint distribution of Definition 2.1 does not hold. In the first method, we construct

the group sequential test by estimating V ar(η̂(k)), k = 1, . . . , K from the data

and supposing Cov(η̂(k1), η̂(k2)) for k1 < k2 are as specified in the canonical joint

distribution. We show, through simulation, that this method performs satisfactorily

in practice using binding futility boundaries, with error rates diverging minimally

from planned significance and power. As further evidence, we shall later show that

this method is conservative with respect to type 1 error when we use non-binding

futility boundaries. This method is simple to perform and computationally efficient.

We shall follow two approaches to find type 1 and type 2 error rates. In the

first approach, a single large sample is generated and theoretical probabilities for

accepting or rejecting H0 are calculated. Calculating theoretical probabilities for

accepting or rejecting H0 requires knowing the true variance-covariance matrix Σ,

and hence, using a (very) large sample of patients is a convenient way to estimate
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the entries of Σ with minimal noise. During the large sample approach, we scale

the information levels to match a clinical trial which recruits 343 patients and has

planned Imax = 46.36 as described in Section 4.3.3. This is to ensure that deviations

from planned power 1−β = 0.9 are not due to sample size. The steps below describe

a method for calculating error rates for a clinical trial with a large sample size.

1. Choose parameter values γ and σ2 and set η = 0. Simulate a clinical trial with

4800 patients.

2. Using this data set, calculate the covariance matrix

V = Cov((η̂(1), . . . , η̂(K))T , (η̂(1), . . . , η̂(K))T )

for the sequence of treatment effect estimates using equations (4.30) and (4.31)

and Theorem 4.4. The true values of the parameters η and γ, which are used

to simulate the data, can be used in the calculation of the matrices Â(η, γ)

and B̂(η, γ) because of the consistency of the estimates γ̂ and η̂.

3. To scale the covariance matrix to the correct sample size, let

Σ =
V I−1

max

Vkk

.

4. Let Σ̃ be the covariance matrix under the assumption that the canonical joint

distribution holds. That is, let

Σ̃kk = Σkk for k = 1, . . . , K

Σ̃k1k2 = Σk1k1 for k1 < k2.

5. Calculate the boundaries of the group sequential trial assuming that the

canonical joint distribution holds. This process was described in Section 2.1.3

for the Z-statistic. For an error spending test with error spending functions

f(t) = min{αt2, α} and g(t) = min{βt2, β}, information levels Ik = Σ̃−1
kk and

vinding futility boundary, let the boundaries points ã1, . . . , ãK and b̃1, . . . , b̃K
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be defined as the solutions to the equations

Pη=0{η̂(1) >b̃1} = f(I1/Imax)

Pη=δ{η̂(1) <ã1} = g(I1/Imax)

Pη=0{ã1 < η̂(1) < b̃1, . . . , ãk−1 < η̂(k−1) < b̃k−1, η̂
(k) > b̃k}

= f(Ik/Imax)− f(Ik−1/Imax) for k = 2, . . . , K

Pη=δ{ã1 < η̂(1) < b̃1, . . . , ãk−1 < η̂(k−1) < b̃k−1, η̂
(k) < ãk}

= g(Ik/Imax)− g(Ik−1/Imax) for k = 2, . . . , K.

6. Find the type 1 error as the probability of crossing any of the upper boundaries

b̃1, . . . , b̃K before crossing a lower boundary using the true distribution of

η̂(1), . . . , η̂(K) according to the covariance matrix Σ. This calculation can be

performed in R using the package “mvtnorm” by Genz et al. (2020).

7. Repeats steps 1–5 but with η = −0.5 used to simulate the data, obtaining new

estimates for V , Σ, Σ̃ and boundary points ã1, . . . , ãK and b̃1, . . . , b̃K .

8. Calculate the type 2 error as the probability of crossing any of the lower

boundaries ã1, . . . , ãK before crossing an upper boundary using the true

distribution of η̂(1), . . . , η̂(K) according to the covariance matrix Σ.

As an example, let the parameters be chosen as γ = 0.03, σ2 = 10 and η = 0.

The matrices Σ and Σ̃ calculated in steps 3 and 4 above, are shown below.


0.110 0.059 0.040 0.029 0.024
0.059 0.053 0.035 0.026 0.021
0.040 0.035 0.035 0.026 0.022
0.029 0.026 0.026 0.026 0.022
0.024 0.021 0.022 0.022 0.022


Table 4.11: Matrix Σ.


0.110 0.053 0.035 0.026 0.022
0.053 0.053 0.035 0.026 0.022
0.035 0.035 0.035 0.026 0.022
0.026 0.026 0.026 0.026 0.022
0.022 0.022 0.022 0.022 0.022


Table 4.12: Matrix Σ̃.

Table 4.13: Covariance matrices Σ and Σ̃ for group sequential trial with K = 5
analyses and parameter values γ = 0.03, σ2 = 10 and η = 0.

The columns of Table 4.14 headed “Large sample” show the computational

results for the error rates, calculated using the steps outlined above. In each case, the

type 1 error is very close to 0.025 and is always conservative. The difference between

the large sample type 1 error and the planned significance level α is nominally small.

Further, the large sample power is always close to 0.9. This trial was designed with
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equally spaced information levels however in practice, these information levels are

not exactly equally spaced and this is the reason why power is not exactly equal to

0.9. The fact that asymptotic theory does not lead to the canonical joint distribution

is not a problem because the distribution that does arise is so close to the canonical

joint distribution that the impact on type 1 error is negligible. Therefore, the effect

is a small degree of conservatism.

γ σ2 Type 1 error Power

Large sample Simulation Large sample Simulation

0 0 0.0249 0.0224 0.9026 0.8918

0 1 0.0249 0.0240 0.9024 0.8926

0 10 0.0249 0.0229 0.9035 0.8897

0 100 0.0249 0.0228 0.9030 0.8887

0.03 0 0.0249 0.0221 0.9015 0.8911

0.03 1 0.0249 0.0247 0.9019 0.8912

0.03 10 0.0249 0.0236 0.9019 0.8949

0.03 100 0.0249 0.0277 0.9019 0.8914

0.06 0 0.0249 0.0221 0.9006 0.8937

0.06 1 0.0249 0.0259 0.9006 0.8913

0.06 10 0.0249 0.0228 0.9009 0.8941

0.06 100 0.0249 0.0265 0.9009 0.8911

0.09 0 0.0249 0.0230 0.8995 0.8931

0.09 1 0.0250 0.0229 0.8995 0.8837

0.09 10 0.0249 0.0250 0.8996 0.8898

0.09 100 0.0250 0.0242 0.8996 0.8725

Table 4.14: Method 1: Type 1 and error and power calculated using large sample
theory and a simulation study with 343 patients and 104 replicates
for parameter values γ = 0, 0.03, 0.06, 0.09 and σ2 = 0, 1, 10, 100.

The columns headed “Simulation” of Table 4.14 also show estimates obtained by

our second approach for calculating type 1 and 2 error rates. This was by simulating

104 data sets, each with a sample size n = 343. For each data set, we calculate the

estimates η̂(1), . . . , η̂(K) and estimates of the covariance matrices Σ(1), . . . ,Σ(K) using

estimates Â(1), . . . , Â(K), B̂(1), . . . , B̂(K) given by Equations (4.38) and (4.39). The

boundary points ã1, . . . , ãK and b̃1, . . . , b̃K are then calculated under the assumption

that the canonical joint distribution holds and the error is calculated as the

proportion of replicates that accept or reject the null hypothesis. The choice and
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calculation of n is discussed in Section 4.3 and is chosen to attain power of 0.9.

This sample size calculation is approximate and is one of the reasons why the power

estimate is not 0.9 exactly. This simulation study is particularly computationally

expensive and with 104 replicates, there is noise in the simulation results. Taking

this into account, the simulation results support the relevance of asymptotic theory

since all empirical type 1 error rates are within 2 standard deviations of 0.025.

In summary, method 1 is convenient to use when the canonical joint distribution

does not hold because type 1 error is conservative. There may be a slight loss of

power relative to the specified target, however if the parameter values γ and σ2 are

not extreme, then this loss of power is minimal.

4.4.3 | Proof that type 1 error rates are

conservative under the canonical joint

distribution assumption

We now consider how a clinical trial is affected when the canonical joint distribution

does not hold and we use a non-binding futility boundary. We shall discuss the case

Cov(η̂(k1), η̂(k2)) ≥ V ar(η̂(k2)) since this is the case suggested by simulation results.

We consider performing the group sequential trial proceeding as if the canonical

joint distribution does hold and assess how this affects the error rates. In particular,

we shall prove that we have type 1 error less than α, where α is the planned type

1 error. This means that the trial is conservative with respect to type 1 error. In

Section 4.4.2, we showed by simulation, that the magnitude of the deviances from

planned type 1 error α and planned power 1 − β were very small when a binding

futility boundary is used.

We are considering the weaker case where the futility boundary is non-binding.

This is where stopping for futility at an interim analysis is not mandatory. The

calculation of the type 1 error therefore only depends on the upper boundary

b1, . . . , bK . Alternatively we can think of setting a1 = · · · = aK = −∞. This

limitation ensures that the theoretical result holds, however we believe that this

scenario is a popular design choice and is therefore useful to present. Further, this

result is good evidence that the canonical joint distribution holds for a trial which

uses a binding futility function and we have shown motivating numerical evidence

for such a trial in Section 4.4.1.

To prove that the type 1 error rates are conservative, we shall compare the

probabilities of crossing the boundaries of a group sequential trial for two sequences
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of treatment effect estimates; one where the canonical joint distribution does not

hold and one where this assumption does hold. Suppose that η̂1, . . . , η̂K are the

sequence of treatment effect estimates in a group sequential trial, with K analyses,

that are calculated using the conditional score method. Let the true variance-

covariance matrix for this sequence of estimates be Σ. Under H0 we have
η̂1

η̂2
...

η̂K

 ∼ NK




0

0
...

0

 ,


Σ11 Σ12 . . . Σ1K

Σ12 Σ22

...
. . .

...

Σ1K . . . ΣKK


 . (4.40)

Proceeding using method 1, we let the information levels be calculated as Ik =

(Σkk)
−1 and the Z−statistic is given by Zk = η̂k

√
Ik for k = 1, . . . , K. Under H0 the

sequence of Z−statistics therefore has the following distribution
Z1

Z2

...

ZK

 ∼ NK




0

0
...

0

 ,


1 ρ12 . . . ρ1K

ρ12 1
...

. . .
...

ρ1K . . . 1


 (4.41)

where entries of the covariance matrix are given by

ρk1k2 = Cov(Zk1 , Zk2) =
Σk1k2√

Σk1k1Σk2k2

for 1 ≤ k1 < k2 ≤ K. (4.42)

Suppose instead, that we have a different sequence of treatment effect estimates

η̂∗1, . . . , η̂
∗
K with the following distribution:

η̂∗1

η̂∗2
...

η̂∗K

 ∼ NK




0

0
...

0

 ,


Σ11 Σ22 . . . ΣKK

Σ22 Σ22

...
. . .

...

ΣKK . . . ΣKK




where Σ11, . . . ,ΣKK are the same as in (4.40). Using the same information levels

given by Ik = (Σkk)
−1, we define the standardised statistics Z∗

k = η̂∗k
√
Ik for
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k = 1, . . . , K. The distribution of these Z−statistics is therefore given by
Z∗

1

Z∗
2
...

Z∗
K

 ∼ NK




0

0
...

0

 ,


1 ρ∗12 . . . ρ∗1K
ρ∗12 1
...

. . .
...

ρ∗1K . . . 1


 (4.43)

where entries of the covariance matrix are given by

ρ∗k1k2 = Cov(Z∗
k1
, Z∗

k2
) =

√
Σk2k2

Σk1k1

for 1 ≤ k1 < k2 ≤ K. (4.44)

This sequence of treatment effect estimates η̂∗1, . . . , η̂
∗
K therefore has the canonical

joint distribution given by Definition 2.1 and Z∗
1 , . . . , Z

∗
K has the canonical joint

distribution for a sequence of Z-statistics, with information levels Ik = 1/Σkk for

k = 1, . . . , K, given by Definition 2.1.

The upper boundary points b1, . . . , bK are calculated under the assumption that

the canonical joint distribution holds and as to give a group sequential test with the

correct type 1 error rate α. Full details of this calculation are given in Section 2.1.

Hence, for planned type 1 error α and using the fact that the canonical joint

distribution holds for Z∗
1 , . . . , Z

∗
K , we have that

P(Z∗
1 > b1 ∪ Z∗

2 > b2 ∪ · · · ∪ Z∗
K > bK) = α. (4.45)

We consider the probability of rejecting H0 when we apply this boundary to the

sequence Z1, . . . , ZK . We aim to prove that

P(Z1 > b1 ∪ Z2 > b2 ∪ · · · ∪ ZK > bK) ≤ α.

The following conditions are needed for the proof that type 1 error is conservative.

Conditions 4.3.

1. The upper boundary of a group sequential trial, on the Z−scale, given by

b1, . . . , bK is such that

b1 ≥ b2 ≥ · · · ≥ bK ≥ 0.

2. For all k1 < k2,

Σk1k2 ≥ Σk2k2 .
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3. The futility boundary is non-binding. We have

a1 = a2 = · · · = aK = −∞.

Condition 1 of Conditions 4.3 appears to be common in practice, for example,

the O’Brien and Fleming (1979), Haybittle (1971) and Pocock (1977) boundaries

all satisfy this condition. Condition 2 of Conditions 4.3 should be checked by

simulation before proceeding with the analysis. To do so, the investigator would

choose sensible values for all the parameters in the joint model, simulate a large

dataset of 4800 patients using these parameter values, and calculate an estimate for

the variance-covariance matrix Σ for the sequence of estimates η̂(1), . . . , η̂(K). This

process was described in steps 1–2 for calculating the large sample sample type 1

error when applying method 1. We have found that calculations for various examples

has always lead to condition 2 being satisfied. Further, the scenarios that we have

checked span a 3-dimensional grid of η, γ and σ2 values each ranging from small to

large and hence, we believe that the scenarios we have checked span a suitable range

of the parameter values. In the rare event that this condition is checked and does

not appear to hold, a solution is to employ method 2, which will be described in

Section 4.4.4, and this ensures that type 1 error will not be inflated. It can also be

seen by simple algebraic manipulation that condition 2 implies

ρk1k2 ≥ ρ∗k1k2 for k1 < k2.

The following theorem shows that type 1 error is lower than the required

significance level α.

Proposition 4.5. Let Z1, . . . , ZK be the standardised statistics of a group sequential

trial with distribution given by (4.41) and let Z∗
1 , . . . , Z

∗
K be the statistics with

distribution given by (4.43). Let α be the planned type 1 error and suppose that

b1, . . . , bK are the upper boundary points on the Z-scale such that

P(Z∗
1 > b1 ∪ Z∗

2 > b2 ∪ · · · ∪ Z∗
K > bK) = α.

Suppose that Conditions 4.3 hold. Then the Type 1 error when applying the boundary

for Z∗
1 , . . . , Z

∗
K to Z1, . . . , ZK is

P(Z1 > b1 ∪ Z2 > b2 ∪ · · · ∪ ZK > bK) ≤ α.

We shall prove that Proposition 4.5 holds for the case K = 2 and we present a
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heuristic argument for K = 3. Proving Proposition 4.5 is equivalent to proving that

P(Z1 > b1 ∪ Z2 > b2 ∪ · · · ∪ ZK > bK) ≤ P(Z∗
1 > b1 ∪ Z∗

2 > b2 ∪ · · · ∪ Z∗
K > bK).

First, note another representation for the above probabilities. For example, the

probability on the left hand side can be written as

P(Z1 > b1) + · · ·+ P(ZK > bK)

− P(Z1 > b1 ∩X2 > b2)− · · · − P(ZK1 > bK−1 ∩ ZK > bK)

...

+ P(Z1 > b1 ∩ · · · ∩ ZK > bK).

(4.46)

Theorem 4.6. Proposition 4.5 holds for the case K=2.

Proof. By the formulation in equation (4.46), the problem is equivalent to proving

that

P(Z1 > b1) + P(Z1 > b2)− P(Z1 > b1 ∩ Z2 > b2) ≤ P(Z1 > b1 ∩ Z2 > b2)

≤P(Z∗
1 > b1) + P(Z∗

1 > b2)− P(Z∗
1 > b1 ∩ Z∗

2 > b2) ≤ P(Z1 > b1 ∩ Z2 > b2).

For simplicity, the subscripts of ρ12 and ρ∗12 are dropped so ρ = Corr(Z1, Z2) and

ρ∗ = Corr(Z∗
1 , Z

∗
2). The marginal distributions of Z1, Z2, Z

∗
1 and Z∗

2 are equivalent

and are all N(0, 1) random variables and hence the probabilities are such that

P(Zk > bk) = P(Z∗
k > bk) for each k = 1, 2. Therefore, the problem is reduced

to showing that

P(Z∗
1 > b1 ∩ Z∗

2 > b2) ≤ P(Z1 > b1 ∩ Z2 > b2). (4.47)

when ρ∗ ≤ ρ.

In the below calculations, we appeal to the fact that for two random variables

which are bivariate normally distributed, the conditional distribution of one normal

random variable on the other normal random variable is also normal. Specifically,

we have that Z2|Z1 = z1 ∼ N(ρz1, 1− ρ2). Let ϕ(·) and Φ(·) denote the probability

density function and cumulative distribution function of a standard normal random

variable respectively, then the probability on the left hand side in Equation (4.47)
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is

P(Z1 > b1 ∩ Z2 > b2) = P(Z2 > b2|Z1 > b1)P(Z1 > b2)

=

∫ ∞

b1

P(Z2 > b2|Z1 = z1)ϕ(z1)dz1

=

∫ ∞

b1

[
1− Φ

(
b2 − ρz1√
1− ρ2

)]
ϕ(z1)dz1.

The corresponding calculation where Z∗
1 and Z∗

2 replace Z1 and Z2 yields the

following

P(Z∗
1 > b1 ∩ Z∗

2 > b2) =

∫ ∞

b1

[
1− Φ

(
b2 − ρ∗z1√
1− ρ∗2

)]
ϕ(z1)dz1

and since Φ(·) is strictly increasing, it suffices to show that whenever z1 > b1, then

b2 − ρz1√
1− ρ2

≤ b2 − ρ∗z1√
1− ρ∗2

. (4.48)

We have by assumption that ρ∗ ≤ ρ. Further note that by definition 0 ≤ ρ ≤ 1

and 0 ≤ ρ∗ ≤ 1. The following steps show some simple algebraic manipulation of

this inequality, which gives

ρ∗ ≤ ρ ⇐⇒ 1 + ρ∗

1− ρ∗
≤ 1 + ρ

1− ρ

⇐⇒
√

1− ρ∗2

1− ρ∗
≤
√
1− ρ2

1− ρ

⇐⇒
√
1− ρ∗2 −

√
1− ρ2

ρ
√
1− ρ∗2 − ρ∗

√
1− ρ2

≤ 1.

Finally, using the above inequality and Conditions 4.3 that 0 ≤ b2 ≤ b1, we have

for z1 ≥ b1 that

b2

√
1− ρ∗2 −

√
1− ρ2

ρ
√

1− ρ∗2 − ρ∗
√

1− ρ2
≤ b2 ≤ b1 ≤ z1

and a simple rearrangement shows that Equation (4.48) is satisfied.

The result forK = 2 covers many trials since just 1 interim analysis is common in

practice. We now give a heuristic argument for the proof of this theorem for the case

K = 3. We follow a similar approach to the proof of the case K = 2. The marginal

distributions are equivalent, that is we have that P(Zk > bk) = P(Z∗
k > bk) for each

k = 1, 2, 3. Let the remaining probabilities of Equation (4.46) be summarised by the
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functions f(·) and g(·), which are given by

f(ρ12, ρ13, ρ23) = f12(ρ12) + f13(ρ13) + f23(ρ23)

= P(Z1 > b1 ∩ Z2 > b2) + P(Z1 > b1 ∩ Z3 > b3) + P(Z2 > b2 ∩ Z3 > b3)

g(ρ12, ρ13, ρ23) = P(Z1 > b1 ∩ Z2 > b2 ∩ Z3 > b3).

Then we need to show that

g(ρ12, ρ13, ρ23)− g(ρ∗12, ρ
∗
13, ρ

∗
23) ≤ f(ρ12, ρ13, ρ23)− f(ρ∗12, ρ

∗
13, ρ

∗
23). (4.49)

The right had side of Equation (4.49) is greater than or equal to zero. This can be

seen by a similar argument as for the case K = 2, it is clear that

P(Z∗
1 > b1 ∩ Z∗

2 > b2) ≤ P(Z1 > b1 ∩ Z2 > b2)

PZ∗
1 > b1 ∩ Z∗

3 > b3) ≤ P(Z1 > b1 ∩ Z3 > b3)

P(Z∗
2 > b2 ∩ Z∗

3 > b3) ≤ P(Z2 > b2 ∩ Z3 > b3)

and this implies that f(ρ∗12, ρ
∗
13, ρ

∗
23) ≤ f(ρ12, ρ13, ρ23). Suppose that g(ρ

∗
12, ρ

∗
13, ρ

∗
23) >

g(ρ12, ρ13, ρ23), then Equation (4.49) holds so it is sufficient to consider the case

g(ρ∗12, ρ
∗
13, ρ

∗
23) ≤ g(ρ12, ρ13, ρ23).

Both sides of Equation (4.49) are greater than or equal to zero, and we know

by Conditions 4.3 that ρ∗12 ≤ ρ12, ρ
∗
13 ≤ ρ13 and ρ∗23 ≤ ρ23. For Equation (4.49) to

hold, we need that the function f(·) is increasing at a greater rate than g(·) as each
parameter ρ12, ρ13 and ρ23 increases.

We shall check that Equation (4.49) holds graphically for each parameter ρ12, ρ13

and ρ23 individually. First note that f(ρ12, ρ13, ρ23) only depends on ρ12 through the

function f12(ρ12) = P(Z1 > b1 ∩ Z2 > b2) and so plotting this probability as a

function of ρ12 is sufficient for checking the rate of change of f(ρ12, ρ13, ρ23) with

respect to ρ12. We cannot check this for every combination of the parameters and

so we follow the steps below to check the condition in a systematic way.

� Choose values of ρ12, ρ13, ρ23, ρ
∗
12, ρ

∗
13 and ρ∗23

� Check that f(ρ12, ρ13, ρ23) increases in ρ12 at a greater rate than g(ρ12, ρ13, ρ23).

Do this by plotting f12(ρ12) and g(ρ12, ρ13, ρ23) against ρ12

� Check that f(ρ∗12, ρ13, ρ23) increases in ρ13 at a greater rate than g(ρ∗12, ρ13, ρ23).

Do this by plotting f13(ρ13) and g(ρ∗12, ρ13, ρ23) against ρ13

� Check that f(ρ∗12, ρ
∗
13, ρ23) increases in ρ23 at a greater rate than g(ρ∗12, ρ

∗
13, ρ23).
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Do this by plotting f23(ρ23) and g(ρ∗12, ρ
∗
13, ρ23) against ρ23.

We shall consider three combinations of the parameters ρ12, ρ13, ρ23, ρ
∗
12, ρ

∗
13 and

ρ∗23. The first scenario is based on equally spaced information levels and the ρ

parameters are divided by a factor of 1.2 to get the ρ∗ parameters. The second

scenario is where the two interim analyses have higher information levels (than if

information was equally spaced) and the ρ parameters are divided by 1.1. The

final scenario is where the two interim analyses have lower information levels (than

if information was equally spaced) and the ρ parameters are divided by 1.3. The

parameter values for the three cases are presented in Table 4.15.

ρ12, ρ13, ρ23 ρ∗12, ρ
∗
13, ρ

∗
23

Case 1 0.849, 0.693, 0.980 0.707, 0.577, 0.816

Case 2 0.850, 0.765, 0.990 0.772, 0.695, 0.900

Case 3 0.751, 0.531, 0.919 0.577, 0.408, 0.707

Table 4.15: Parameter choices for three cases to compare rate of change of
objects P(Zk1 > bk1 ∩ Zk2 > bk2) and

P(Zk1 > bk1 ∩ Zk2 > bk2 ∩ Zk3 > bk3) for a group sequential trial with
K = 3 analyses .
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Figure 4.8: Comparison of rate of change of f(ρ12, ρ13, ρ23) and g(ρ12, ρ13, ρ23) for
a group sequential trial with K = 3 analyses. Fixed values of

ρ12, ρ13, ρ23, ρ
∗
12, ρ

∗
13 and ρ∗23 given by Table 4.15.

Figure 4.8 compares the pairwise probabilities with the probability of crossing

all three boundaries for each of the three cases in Table 4.15. In cases 1 and 3,

as the parameter ρ13 → 1, it is not clear whether f13(ρ13) increases at a greater

rate than g(ρ∗12, ρ13, ρ23). We have checked this numerically and found it to be true.

Further the case ρ13 = 1 is the very rare case where all three analyses have the same

information levels. This is not a scenario of concern. Therefore, it is clear that the

function f(ρ12, ρ13, ρ23) increases at a greater rate than the function g(ρ12, ρ13, ρ23)

in each parameter ρ12, ρ13 and ρ23 and hence we have shown convincing evidence to

prove that Equation (4.49) holds.

At the interim analyses of a group sequential test, estimates of the correlations

ρ12, ρ13, ρ23, ρ
∗
12, ρ

∗
13 and ρ∗23 become available. Hence, this check can be repeated as

we learn about actual parameter values. In the rare event that the results are not in

the right direction, the second method for performing a group sequential test when

the canonical joint distribution does not hold should be employed. The three cases

given in Table 4.15 represent the cases where information levels are equally spaced,
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information accruing earlier than equally spaced and also information accruing later

than equally spaced and therefore these presented cases are representative of all

possible scenarios.

4.4.4 | Method 2: Use an estimate of the true

covariance structure

The second method for dealing with estimates from the joint model does not rely

on the canonical joint distribution assumption. Instead, we calculate the group

sequential boundaries using the complete structure of the variance-covariance matrix

for the sequence of treatment effect estimates across analyses. This differs from when

the canonical joint distribution is assumed because in such a case, only the variances

are required and the covariances are ignored. We shall see that this method poses

some practical difficulties; for example, a trial may yield a non-positive-definite

estimate for the variance-covariance matrix and hence, calculation of the boundaries

cannot be performed.

Suppose that a group sequential trial with K analyses yields the sequence of

treatment effect estimates θ̂1, . . . , θ̂K . The distribution of the sequence of treatment

effect estimates is

(θ̂1, . . . , θ̂K)
T ∼ N((θ, . . . , θ)T ,Σ).

To estimate the variance-covariance matrix Σ, the matrices Â(1), . . . , Â(K) and

B̂(1), . . . , B̂(K) are calculate using Equations (4.38) and (4.39), then elements of

the estimate Σ̂ are given by

Σ̂kk =
[
(Â(k))−1B̂(k)((Â(k))−1)T

]
22

for k = 1, . . . , K

Σ̂k1k2 =
[
(Â(k1))−1B̂(k1)((Â(k2))−1)T

]
22

k1 < k2.

The information levels for θ̂1, . . . , θ̂K are given by Ik = 1/Σ̂kk which is the

same as in method 1. Under H0, the amount of type 1 error spent at analysis k

is α(k) = Pθ=0(Continue to analysis k and cross the upper boundary at analysis k).

Under HA, when θ = δ, the amount of type 2 error spent at analysis k is β(k) =

Pθ=δ(Continue to analysis k and cross the upper lower boundary at analysis k).

Using error spending functions f(t) = min{αt2, α} and g(t) = min{βt2, β}, at
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analysis k, we design the trial with

α(1) = f(I1/Imax)

β(1) = g(I1/Imax)

α(k) = f(Ik/Imax)− f(Ik−1/Imax) for k = 2, . . . , K

β(k) = g(Ik/Imax)− g(Ik−1/Imax) for k = 2, . . . , K.

For this method, we calculate the boundary values for the group sequential trial

using the full structure of Σ̂. Let Σ̂k denote the k× k matrix that is the first k rows

and columns of Σ̂. The boundary points, ãk and b̃k are therefore calculated as the

solutions to the following equations:

α(k) =

∫ ∞

bk

∫ bk−1

ak−1

· · ·
∫ b1

a1

exp{−1
2
xT Σ̂−1

k x}√
(2π)k|Σ̂k|

dx1 . . . dxk

β(k) =

∫ ak

−∞

∫ bk−1

ak−1

· · ·
∫ b1

a1

exp{−1
2
(x− (δ, . . . , δ)T )T Σ̂−1

k (x− (δ, . . . , δ)T )}√
(2π)k|Σ̂k|

dx1 . . . dxk.

This integration calculation can be performed numerically using the R package

mvtnorm by Genz et al. (2020). In an earlier paper, Genz (1992) describes the

numerical algorithm and shows that for 10 variables or fewer, this calculation is

computationally efficient.

It is also possible to calculate boundary constants based on the standardised

statistics Zk = θ̂k
√
Ik. The boundary points on the Z-scale are given by ak = ãk

√
Ik

and bk = b̃k
√
Ik for k = 1, . . . , K where ãk, b̃k are boundary points for θ̂k.

During the conditional score method, the matrix Σ is estimated with error

which can sometimes result in a non positive-definite estimate Σ̂. In particular,

suppose that we have reached analysis 2 and find that Σ̂2 is not invertible, then the

boundary calculations cannot be performed. We have found, through simulation,

that problems do not occur after analysis 2. This is because if the matrix Σ̂2 is

invertible, then Σ̂3, . . . , Σ̂K are also likely to be invertible. Therefore, we shall only

consider this problem at the second analysis. We have performed a check for when

this computation is not possible due to the covariance matrix being non-invertible.

We are unable to invert Σ̂k when the determinant is less than or equal to 0. In

Table 4.16 we have counted the number of times, out of 104 simulations, which have

terminated because we have determinant d = det(Σ̂2) ≤ 0. This is shown in the

column headed “d ≤ 0”. For extremely noisy longitudinal data with σ2 = 100 this

problem occurs roughly 50% of the time. However, for small measurement error of
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the longitudinal data, when σ2 is small, this problem occurs infrequently.

γ σ2 η= 0 η= −0.5

d ≤ 0 d > 0 P(reject H0) d ≤ 0 d > 0 P(reject H0)

0 0 0 10000 0.0224 0 10000 0.8917

0 1 0 10000 0.024 4 9996 0.8924

0 10 0 10000 0.023 1 9999 0.8893

0 100 4914 5086 0.0225 4408 5592 0.8886

0.03 0 0 10000 0.0221 0 10000 0.891

0.03 1 0 10000 0.0246 0 10000 0.8912

0.03 10 0 10000 0.0235 0 10000 0.8946

0.03 100 3736 6264 0.0276 4306 5694 0.8915

0.06 0 0 10000 0.0221 0 10000 0.8936

0.06 1 0 10000 0.026 0 10000 0.8912

0.06 10 1 9999 0.0228 0 10000 0.8941

0.06 100 3595 6405 0.0264 4240 5760 0.8912

0.09 0 0 10000 0.023 0 10000 0.8931

0.09 1 0 10000 0.0229 0 10000 0.8837

0.09 10 0 10000 0.025 0 10000 0.8898

0.09 100 4042 5958 0.029 4416 5584 0.8723

Table 4.16: Method 2: Simulation results for paramater values
γ = 0, 0.03, 0.06, 0.09 and σ2 = 0, 1, 10, 100 using 104 replicates.
Counts out of 104 cases of problematic simulations. P(reject H0)

calculated as the proportion out of the counts d > 0.

We now investigate the error rates using a simulation study for a group sequential

trial using method 2. We have performed 104 replicates of a trial each with sample

size n = 343 and in each case we have found boundary points and analysed the trial

using method 2 described above. Out of these 104 replicates, we take the proportion

of replicates that reject H0 out of the cases where d = det(Σ̂2) > 0. This is given by

the column headed “P(reject H0)” in Table 4.16. For the rows of the table where

the counts of d > 0 are equal to 104, the value of P(reject H0) is equal to the type 1

error when η = 0 or power when η = −0.5. We see that none of the simulation type

1 errors are significantly different from α = 0.025. Further, all simulation type 2

errors are close to 1−β = 0.9. The sample size calculation in Section 4.3.3 resulting

in n = 343 is only approximate here which explains the deviation from power 1−β.

In summary, this method makes no assumption about the covariance structure of
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the sequence of treatment effect estimates and therefore the type 1 error is preserved.

However, this method is problematic for large longitudinal measurement error σ2,

where roughly 50% of trials have a non-invertible covariance matrix Σ̂2. The trial

may have stopped at the first analysis before finding a problem at the second analysis

and hence, we cannot correct for this method. Comparing this with method 1, the

error in estimating the covariance matrix Σ creates problems for calculating the

boundary points. The benefit that occurs in method 1 from not having to estimate

covariances outweighs the small issue that the trial does not reach the planned

significance level α.

4.4.5 | Method 3: Create a new efficient

estimator

For the final method, we aim to create a new estimator that is asymptotically

efficient. The efficient estimate at analysis k is a linear combination of the original

estimates at analyses up to and including k. We choose the weights of the linear

combination using a Lagrange multiplier method in such a way that the variance

is minimised. We can easily prove theoretically that this new estimator has the

correct canonical distribution, and hence the methods in Section 2.1 can be used

without hesitation. However, we show that in practice there are limitations to this

method as it relies too heavily on accurately estimating the covariance matrix of the

parameter estimates.

Jennison and Turnbull (1997) prove a simple result, that all asymptotically

efficient estimators have the canonical joint distribution and this is the motivation

for this method. It is not intuitively obvious why taking linear combinations of

past estimates results in asymptotic efficiency, however because the canonical joint

distribution does not hold for our sequence of treatment effect estimates, there must

exist a more efficient estimate. Using the conditional score method, we obtain

estimates that are unbiased and asymptotically normally distributed and we appeal

to the closure properties of the multivariate normal distribution. It remains that

the most efficient estimate has the smallest variance and hence we seek to minimize

the variance of this linear combination.

We present the Lagrange multiplier method that takes a sequence of parameter

estimates θ̂1, . . . , θ̂K as input and returns a new sequence of estimates θ̂∗1, . . . , θ̂
∗
K .

This new sequence of estimates will have the canonical distribution. At analysis k,
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θ̂∗k will be a linear combination of θ̂1, . . . , θ̂k, given by

θ̂∗k =
k∑

i=1

c
(k)
i θ̂i (4.50)

where c
(k)
1 , . . . , c

(k)
k are scalars which are yet to be determined. The values of these

scalars are chosen to minimise the estimated variance of the new estimate, which by

definition is given by

V̂ ar(θ̂∗k) =
k∑

i=1

k∑
j=1

c
(k)
i c

(k)
j Ĉov(θ̂i, θ̂j)

=
k∑

i=1

k∑
j=1

c
(k)
i c

(k)
j Σ̂ij. (4.51)

Here, the matrix Σ is notation for the variance-covariance matrix of the vector

(θ̂1, . . . , θ̂K)
T and Σ̂ is an estimate of Σ which can be found using Equations (4.38)

and (4.39).

The new sequence of estimates must satisfy all three conditions of the canonical

distribution of definition 2.2. One property is that we must have E(θ̂∗k) = θ for each

k = 1, . . . , K. We can ensure this property holds by imposing the constraint that

c
(k)
1 + · · ·+ c

(k)
k = 1 for each k = 1, . . . , K. This is because expectation is linear and

we have by Theorem 4.4 that E(θ̂i) = θ for all i = 1, . . . , K. Therefore, the problem

is to minimise V̂ ar(θ̂∗k) subject to the constraint c
(k)
1 + · · ·+c

(k)
k = 1. The Lagrangian

function is then

L(θ̂1, . . . ,θ̂k, c(k)1 , . . . , c
(k)
k , λk) =

k∑
i=1

k∑
j=1

c
(k)
i c

(k)
j Σ̂ij + λk(c

(k)
1 + · · ·+ c

(k)
k − 1)

=2
k∑

i=1

∑
j ̸=i

c
(k)
i c

(k)
j Σ̂ij +

k∑
i=1

(
c
(k)
i

)2
Σ̂ii + λk(c

(k)
1 + · · ·+ c

(k)
k − 1)

where λk is the scalar Lagrange multiplier.

It remains to find the stationary points of L(θ̂1, . . . , θ̂k, c(k)1 , . . . , c
(k)
k , λk) as a

function of c
(k)
1 , . . . , c

(k)
k and λk. The partial derivatives are given by

∂

∂c
(k)
m

L(θ̂1, . . . , θ̂k, c(k)1 , . . . , c
(k)
k , λk) =

k∑
i=1

2c
(k)
i Σ̂mi + λk for m = 1, . . . , k

∂

∂λk

L(θ̂1, . . . , θ̂k, c(k)1 , . . . , c
(k)
k , λk) = c

(k)
1 + · · ·+ c

(k)
k − 1.
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Note that the function L(·) is quadratic in c
(k)
i and L(·) → ∞ as any c

(k)
i → ∞.

Therefore, the resulting stationary points will give a minimum of L(·).
Setting each of the partial derivatives equal to zero, we have a set of k + 1

equations which are linear functions of c
(k)
1 , . . . , c

(k)
k and λk. In matrix form this is

2Σ̂11 2Σ̂12 . . . 2Σ̂1k 1

2Σ̂21 2Σ̂22 2Σ̂2k 1
...

. . .
...

2Σ̂k1 2Σ̂k2 2Σ̂kk 1

1 1 . . . 1 0





c
(k)
1

c
(k)
2
...

c
(k)
k

λk


=



0

0
...

0

1


. (4.52)

To find the values of the scalars c
(k)
1 , . . . , c

(k)
k , one can then simply rearrange and

solve Equation (4.52). The constants c
(k)
1 , . . . , c

(k)
k are then used in Equation (4.50)

to find the efficient estimate at analysis k. This process is repeated for each

k = 1, . . . , K to build the sequence of estimates θ̂∗1, . . . , θ̂
∗
K .

The new sequence of efficient estimates θ̂∗1, . . . , θ̂
∗
K is easily seen to have the

canonical joint distribution of Definition 2.2. The first property follows by closure

under linear combinations of multivariate normal random variables. That is, if

(θ̂1, . . . , θ̂K) is multivariate normal, then θ̂∗k =
∑k

i=1 c
(k)
i θ̂i is normally distributed

for each k = 1, . . . , K. Then, the joint distribution (θ̂∗1, . . . , θ̂
∗
K) is multivariate

normal. For the second property, it is clear that the estimate θ̂∗ is unbiased for

θ for each k = 1, . . . , K. In the calculation below, the first line follows by linearity of

expectation and the second line is because the estimates θ̂1, . . . , θ̂K are each unbiased

for θ. Then, the result holds because of the constraint that c
(k)
1 + · · ·+ c

(k)
k = 1.

E(θ̂∗k) =
k∑

i=1

c
(k)
i E(θ̂i)

= θ
k∑

i=1

c
(k)
i = θ.

The information matrix for the new estimate θ̂∗k is given by I∗
k = 1/V̂ ar(θ̂∗),

and we define the second property as θ̂∗k ∼ N(θ, I∗
k). The final property follows

by construction of θ̂∗k. We have designed the estimate to have minimum possible

variance, which ensures that the estimates are asymptotically efficient for each

k = 1, . . . , K. Jennison and Turnbull (1997) show that all asymptotically efficient

estimates have the covariance structure in the canonical joint distribution. By these

arguments, we have that Ĉov(θ̂∗k1 , θ̂
∗
k2
) = V̂ ar(θ̂∗k2) = (I∗

k2
)−1 as required.

There are some numerical problems that can occur with this approach which
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must be considered; in some extreme cases, the new estimate obtained by the process

described above has
∑n

i=1

∑n
j=1 c

(k)
i c

(k)
j Σ̂ij < 0 and V̂ ar(θ̂∗k) appears to be negative.

We shall consider how this problem occurs through use of an example with

K = 2 analyses. Estimation of the covariance matrix is data dependent, so there

are many sequences Σ̂11, Σ̂12, Σ̂22 that are possible. We only consider cases such that

Σ̂11 ≥ Σ̂12 ≥ Σ̂22 as other sequences are extremely rare and have not occurred in

our simulations. The case Σ̂12 = Σ̂22 means that the estimates are asymptotically

efficient, and so we consider the affect as Σ̂12 becomes large and close to Σ̂11. To do

so, we consider the parameterisation

Σ̂12 = Σ̂p
11Σ̂

1−p
22 (4.53)

and assess the variance as a function of p. We can calculate the parameter p as

p =
log(Σ̂12)− log(Σ̂22)

log(Σ̂11)− log(Σ̂22)
.

It is clear that for the first analysis, we always have that c
(1)
1 = 1 and hence,

θ̂∗1 = θ̂1. For the second analysis, we shall temporarily drop the superscript notation

for simplicity so that ci replaces c
(2)
i . The constraint here is then c1 + c2 = 1.

Therefore, using some simple algebraic manipulation and equation (4.51), the

variance for the new estimate, in terms of c2, is given by

V̂ ar(θ̂∗2) = (Σ̂11 − 2Σ̂12 + Σ̂22)c
2
2 + 2(Σ̂12 − Σ̂11)c2 + Σ̂11.

The roots of this quadratic equation in c2 are

x1 =
Σ̂11 − Σ̂12 +

√
Σ̂2

12 − Σ̂11Σ̂22

Σ̂11 − 2Σ̂12 + Σ̂22

x2 =
Σ̂11 − Σ̂12 −

√
Σ̂2

12 − Σ̂11Σ̂22

Σ̂11 − 2Σ̂12 + Σ̂22

.

Using the constraints Σ̂11 ≥ Σ̂12 ≥ Σ̂22, the function V̂ ar(θ̂∗2) is always a positive

quadratic function of c2. Further, by assessing where the roots x1 and x2 take positive
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and real values, and using Equation (4.53), we find that

V̂ ar(θ̂∗2) ≥ 0 ⇐⇒ Σ̂2p
11Σ̂

2−2p
22 ≤ Σ̂11Σ̂22

⇐⇒ p ≤ 1

2

V̂ ar(θ̂∗2) < 0 ⇐⇒ p >
1

2
.

We find that, in practice, every problem occurs at the second analysis, which is

the first opportunity to find an estimate Σ̂12 for the covariance Σ12. This is likely

to be because of the estimation error in Σ̂11 and Σ̂12 due to the small number of

observed events at the first interim analysis.

The columns headed “p > 0.5” of Table 4.17 show the counts out of 104

simulations where method 3 is problematic because we obtain V̂ ar(θ̂∗2) < 0. These

counts are each for a group sequential trial with K = 5 analyses, where the problems

all occur at the second analysis. The table shows that problems occur for σ2 = 100.

This finding coincides with Tables 4.7 and 4.9 which show that for large σ2, the

matrix (Â(1))−1B̂(1) is far from the identity matrix.

We would also like to avoid implausible situations where the variance is positive

but close to zero. We see that as p ↑ 1
2
then V̂ ar(θ̂∗2) ↓ 0. Figure 4.9 shows an

example of the boundaries calculated in a group sequential with K = 5 analyses

when the value of p is very close to 0.5. The information levels, before the Lagrange

multiplier method is applied, and the information levels after correction, are

� (I1, . . . , I5) = (1.77, 11.04, 16.83, 23.98, 35.12)

� (I∗
1 , . . . , I∗

5 ) = (1.77, 63.09, 152.04, 399.07, 502.63).

The estimated covariance of the treatment effect estimates between the first two

analyses was Σ̂12 = 0.224 which results in a value p = 0.495. We have used an error

spending design and because I∗
2 > Imax, the trial stops and concludes at the second

analysis. Figure 4.9 shows the boundaries for this group sequential trial. Black lines

show the boundaries based on information levels I1, . . . , IK and red lines give the

boundaries using information levels I∗
1 , . . . , I∗

K .

We have found by inspection, that for values 0.49 < p < 0.5, the Lagrange

multiplier method creates estimates with implausibly small variance estimates. For

values p ≤ 0.49, this method is a reasonable solution to the problem that the

canonical joint distribution does not hold. The columns headed “0.49 < p ≤ 0.5” of

Table 4.17 show the counts out of of 104 simulations where method 3 is problematic

because it creates an estimate with implausibly small positive variance.
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γ σ2 η= 0 η= −0.5
p ≤ 0.49 0.49 < p > 0.5 P(reject p ≤ 0.49 0.49 < p > 0.5 P(reject

p ≤ 0.5 H0) p ≤ 0.5 H0)

0 0 10000 0 0 0.0278 10000 0 0 0.8895
0 1 10000 0 0 0.0280 9996 0 4 0.8910
0 10 10000 0 0 0.0289 9999 0 1 0.8893
0 100 9807 3 190 0.0240 9776 4 220 0.8876
0.03 0 10000 0 0 0.0239 10000 0 0 0.8913
0.03 1 10000 0 0 0.0261 10000 0 0 0.8882
0.03 10 10000 0 0 0.0254 10000 0 0 0.8955
0.03 100 9805 1 194 0.0278 9805 2 193 0.8911
0.06 0 10000 0 0 0.0227 10000 0 0 0.8930
0.06 1 10000 0 0 0.0270 10000 0 0 0.8895
0.06 10 10000 0 0 0.0231 10000 0 0 0.8925
0.06 100 9816 1 183 0.0270 9851 3 146 0.8910
0.09 0 10000 0 0 0.0231 10000 0 0 0.8929
0.09 1 10000 0 0 0.0233 10000 0 0 0.8836
0.09 10 10000 0 0 0.0258 10000 0 0 0.8916
0.09 100 9815 4 181 0.0295 9843 3 154 0.8716

Table 4.17: Method 3: Simulation results for parameter values
γ = 0, 0.03, 0.06, 0.09 and σ2 = 0, 1, 10, 100 using 104 replicates.
Counts out of 104 cases of problematic simulations. P(reject H0)

calculated as the proportion out of the counts p ≤ 0.49.

Table 4.17 shows the simulation results from using method 3 for a clinical trial

where the canonical joint distribution does not hold. All parameter values are chosen

as in Section 4.3.1. We have performed 104 replicates of a trial each with sample

size n = 343 which is calculated using methods described in Section 4.3.3 and in

each case we have found boundary points and analysed the trial using method 3

described above. Out of these 104 replicates, we take the proportion of replicates

that reject H0 out of the cases where p ≤ 0.49. This is given by the column headed

“P(reject H0)” in Table 4.16. For the rows of the table where the counts of p ≤ 0.49

are equal to 104, the value of P(reject H0) is equal to the type 1 error when η = 0

or power when η = −0.5. There are some signs in this method that type 1 error is

greater than 0.025. Major problems can occur from the inaccuracy in V̂ ar(θ̂1) and

Ĉov(θ̂1, θ̂2) and this casts doubts on the advisability of using these estimates for the

method 3 construction, even when you don’t see a negative variance estimate.
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Figure 4.9: Comparison of boundaries for methods 1 and 3 in a group sequential
trial with K = 5 analyses when 0.49 < p < 0.5. Black lines are the

boundaries from method 1 and red lines are boundaries from method
3.

4.4.6 | Comparison

We have presented three methods for creating a group sequential trial when the

canonical joint distribution does not hold. We have seen that each method results

in type 1 error close to the desired significance level α and (without accurately

identifying a sample size) power 1 − β. We now aim to compare these methods by

calculating the amount of error spent at each analysis and see whether this matches

the error spending designs.

We consider how the boundaries differ between designs. For each method we

determine estimates θ̂1, . . . , θ̂K and information levels I1, . . . , IK . Under H0, the

amount of type 1 error spent at analysis k is

α(k) = Pθ=0(Continue to analysis k and cross the upper boundary at analysis k).
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Under HA, when θ = δ, the amount of type 2 error spent at analysis k is

β(k) = Pθ=δ(Continue to analysis k and cross the upper lower boundary at analysis k).

Using error spending functions f(t) = min{αt2, α} and g(t) = min{βt2, β}, at

analysis k, we design the trial with

α(1) = f(I1/Imax)

β(1) = g(I1/Imax)

α(k) = f(Ik/Imax)− f(Ik−1/Imax) for k = 2, . . . , K

β(k) = g(Ik/Imax)− g(Ik−1/Imax) for k = 2, . . . , K.

The information levels are calculated in the same way for method 1 and method 2.

Therefore, the same values are passed into the error spending functions and both

methods aim to spend the same amount of error at each analysis. The location of the

boundary points will be different. The information levels are calculated differently

for methods 1 and 3, which affects the boundary positions.

Tables 4.18 and 4.19 show the amount of error that is spent at each analysis.

For 104 replicates, we simulate a data set with n = 343 patients, and can calculate

α(1), . . . , α(K) for each replicate. The average values of these over all the simulations

is shown in the column headed “E(α(k))” in Table 4.18. The columns headed

“Simulation” gives the proportion of trials which stop to reject H0 at analysis k.

Similarly in Table 4.19, the columns headed “E(β(k))” give the average amount of

type 2 error that is planned to be spent at analysis k. The parameter values here

are γ = 0.03, σ2 = 1 and the two tables show 104 Monte Carlo simulation study

results calculated using η = 0 and η = −0.5 respectively.
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Analysis Method 1 Method 2 Method 3

Simulation E(α(k)) Simulation E(α(k)) Simulation E(α(k))

1 0.0003 0.0012 0.0003 0.0012 0.0003 0.0012

2 0.0034 0.0038 0.0034 0.0038 0.0048 0.0040

3 0.0050 0.0064 0.0050 0.0064 0.0057 0.0065

4 0.0097 0.0087 0.0096 0.0087 0.0093 0.0088

5 0.0063 0.0050 0.0063 0.0050 0.0060 0.0046

Total 0.0247 0.0250 0.0246 0.0250 0.0261 0.0250

Table 4.18: Comparison of efficiency correction methods under the null
hypothesis η = 0 for paramater values γ = 0.03 and σ2 = 1.

Probability of crossing each boundary in a group sequential trial
with K = 5 analyses according to simulation and expected

probability of error spending test.

Analysis Method 1 Method 2 Method 3

Simulation E(β(k)) Simulation E(β(k)) Simulation E(β(k))

1 0.0025 0.0028 0.0025 0.0028 0.0025 0.0028

2 0.0112 0.0095 0.0114 0.0095 0.0146 0.0099

3 0.0215 0.0169 0.0214 0.0169 0.0216 0.0172

4 0.0243 0.0247 0.0244 0.0247 0.0257 0.0249

Table 4.19: Comparison of efficiency correction methods under the alternative
hypothesis η = −0.5 for parameter values γ = 0.03 and σ2 = 1.
Probability of crossing each boundary in a group sequential trial

with K = 5 analyses according to simulation and expected
probability of error spending test.

The tables show that each of the three methods perform adequately with respect

to the probability of crossing each boundary. The number of times each boundary is

crossed closely matches the desired amount of error to be spent for each boundary.

We have not included analysis 5 in Table 4.19 because it is common that the trials

either over-run or under-run and therefore the boundary is not placed in the correct

position for power to equal 1− β.

In method 1, we have shown that type 1 error is almost exactly equal to the

planned significance level α as the large sample results in Section 4.4.1 show that

Cov(θ̂(k1), θ̂(k2)) is very close to V ar(θ̂(k2)) for k1 < k2. The simulation results for

method 1 show that the impact of the difference on type 1 error and power is
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extremely small. Further, we showed theoretically that for trials with a non-binding

futility bounday, when there are differences in type 1 error and planned significance

α, the test is conservative. This is supported by simulation studies of the whole

process for moderately sized trials.

Given that Cov(θ̂(k1), θ̂(k2)) is very close to V ar(θ̂(k2)) for k1 < k2, there is not

a lot to be gained by the more complex methods 2 and 3. The calculations are

sensitive to errors in estimates of Cov(θ̂(k1), θ̂(k2)) and V ar(θ̂(k2)). In some cases, the

errors in these calculations lead to these methods simply not working. This raises

doubts about how well they work in less extreme cases. Despite these problems,

methods 2 and 3 perform adequately in simulation studies. However, this does not

change our view that method 1 is preferable.
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4.5 | Efficiency gain from including

longitudinal data in the joint

model

We aim to assess the efficiency gain when the longitudinal data is included in the

analysis compared to when this longitudinal data is available, yet ignored. In this

case, we believe that our joint model is true and therefore, we shall simulate clinical

trial data from the true joint model and analyse it in two separate ways. The first

way is to fit the data to the joint model using the conditional score method to find a

treatment effect estimate and the second way is to ignore the longitudinal data and

fit the survival observations to a Cox model without the longitudinal data and find

the maximum partial likelihood estimate of the treatment effect. We are interested

in comparing the sample sizes required in each method to achieve the same power.

A comparison of these sample sizes reflects the efficiency of the inclusion of the

longitudinal data.

For clarity, the joint model is given by

Wi(t) = b0i + b1it+ ϵi(t) (4.54)

hi(t) = h0(t) exp{γ(b0i + b1it) + ηJZi}. (4.55)

where

�

[
bi0

bi1

]
∼ N

([
µ0

µ1

]
,

[
ϕ2
0 0

0 ϕ2
1

])
� ϵi(t)|bi ∼ N(0, σ2).

To perform a fixed sample analysis using this model, we shall test the one-sided

hypothesis

H
(J)
0 : ηJ ≥ 0, H

(J)
A : ηJ < 0.

We fit the joint model using the conditional score method to find a treatment effect

estimate η̂J in order to perform this hypothesis test.

We first consider a fixed sample size trial design. Our aim is to find the sample

size, nJ , required using the conditional score method to achieve Type 1 error rate

α = 0.025 when the true treatment effect is ηJ = 0 and power 1 − β = 0.9 when

ηJ = −0.5. An estimate of the sample size is denoted by n̂J , and will be calculated

by simulating clinical trials. As laid out in Section 4.3, the trial is designed with 2

years recruitment and 3 years follow-up. When increasing the sample size, we do so
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by increasing the rate of recruitment so accrual and follow-up periods in the trial

design stay fixed. This is to ensure that differences in power are purely due to the

sample size and not changes in the trial design as sample size increases.

In Appendix 4.A we present a method for estimating the root of a function

which is measured with error, and we use this method to find an estimate n̂J for

the sample size as defined above. The parameter values for this algorithm are

also discussed and presented in Appendix 4.A. To perform this estimation, data is

simulated from this model with parameter values chosen and described in Section 4.3.

The common values used in simulations are (µ0, µ1) = (6, 3), ϕ0 = 3.5, ϕ1 = 2.5

and h0(t) = 5.5. We are interested in differences when we simulate using the

values γ = 0, 0.03, 0.06, 0.09 and σ2 = 0, 1, 10, 100. Further, these simulations are

performed under HA with the case ηJ = −0.5. Sample size estimates n̂J are given

in Table 4.20. The column “Naive model” will shortly be described.

σ2 = 0 σ2 = 1 σ2 = 10 σ2 = 100 Naive model

γ = 0 322 322 320 329 316

γ = 0.03 328 329 331 330 358

γ = 0.06 326 328 326 370 464

γ = 0.09 327 332 334 460 517

Table 4.20: Sample sizes required for power 0.9 in true and naive model for a
fixed sample clinical trial.

The sample size increases as σ2 increases. This reflects that noisy longitudinal

data is associated with high variance or small information levels. Sample sizes are

particularly high in each case where σ2 = 100, which has been chosen as an extreme

value. Further, sample sizes appear to increase slightly with γ.

We now consider the analysis when the longitudinal data is ignored. We believe

the joint model to be true and correct, however we shall fit the data to a Cox model.

To do so, we shall simulate data from the joint model and then fit this data to a

misspecified Cox proportional hazards model. The Cox model is given by:

λi(t) = λ̃0(t) exp{ηCZi}. (4.56)
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For this clinical trial, we test the hypothesis

H
(C)
0 : ηC ≥ 0, H

(C)
A : ηC < 0 (4.57)

and we find a treatment effect estimate η̂C using the maximum partial likelihood

method as described in Section 3.2.1.

Although this model is misspecified, type 1 error is not affected. This is because,

under H
(J)
0 we have ηJ = 0 and there is no difference between treatment groups

in overall survival. When fitting this data to the Cox model, the longitudinal data

trajectory is reflected in the function λ̃0(t) and we also have that ηC = 0. Hence,

H
(C)
0 is also true.

Let nC be the sample size such that we achieve type 1 error α = 0.025 when

ηJ = 0 and power 1−β = 0.9 when ηJ = −0.5 when we perform the hypothesis test

in (4.57). A sample size estimate for this model is denoted n̂C and is found using

a similar method to the calculation for n̂J . Note that data is simulated under H
(J)
A

with values (µ0, µ1) = (6, 3), ϕ0 = 3.5, ϕ1 = 2.5, h0(t) = 5.5 and ηJ = −0.5. Further,

the value of γ for simulation is varied. We do not need to worry about σ2 since

this plays no role in simulating survival times, and the longitudinal data, which

is affected by σ2, is ignored. The column “Naive model” of Table 4.20 displayed

estimates n̂C . As the value of γ increases, the sample size estimate n̂C increases.

This represents that as the longitudinal data has more weight in the survival hazard

rate, ignoring the longitudinal data results in an increasingly inefficient clinical trial.

When γ = 0, this represents the case where longitudinal data is available yet has no

influence on the survival function. In this case, n̂C < n̂J and it is more efficient to

fit the data to the simple Cox model.

To compare the sample sizes obtained using the joint model and the naive

misspecified Cox model, we define “relative efficiency” to be

RE =
nC

nJ

.

Using this definition, when RE > 1 we interpret this as the joint model analysis

being the more efficient model to use and similarly when RE < 1, the Cox model

analysis is the more efficient analysis method.

Table 4.21 shows the relative efficiency results for the fixed sample clinical trial.

We see that in general, RE > 1 and the joint model is performing more efficiently

than the analysis with the simple Cox model. In the most extreme case, 1.58 times as

many patients are required using the Cox model to achieve the same power as when

the joint modelling framework is used. Relative efficiency increases as γ increases,
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which is interpreted as the impact of the longitudinal data on the survival hazard

rate. We also see that when γ = 0, e.g when longitudinal data is available but has no

impact on the survival endpoint, we have RE < 1. Hence, when this is the case, it is

slightly more efficient to use the Cox model analysis. For small and sensible values

of σ2 relative efficiency is not affected by changes in σ2. However, relative efficiency

is lower when σ2 = 100. This reflects that using the joint model to analyse the data

is particularly efficient when the longitudinal measurement error is not extreme.

σ2 = 0 σ2 = 1 σ2 = 10 σ2 = 100

γ = 0 0.98 0.98 0.99 0.96

γ = 0.03 1.09 1.09 1.08 1.09

γ = 0.06 1.42 1.41 1.42 1.25

γ = 0.09 1.58 1.56 1.55 1.12

Table 4.21: Ratio of sample sizes required for power 0.9 in true and naive mode
for a fixed sample clinical trial.

We shall now extend these sample size and relative efficiency results to group

sequential trials. The parameter values remain the same as in Section 4.3.3. We

have chosen to use an error spending design with parameter ρ = 2 with 2 years

recruitment and 3 years follow up. Further details of the trial design can be found in

Section 4.3.3. Similarly to the fixed sample case, when the sample size is increased,

we increase the rate of recruitment so that the sample size is the only variable

affecting power. The root finding algorithm described in Appendix 4.A is used to

find the values in Table 4.22

Table 4.22 shows the maximum sample sizes required to achieve power 1−β = 0.9

when ηJ = −0.5 for the group sequential trial. The first analysis, at 19 months,

occurs just before the end of the recruitment period which is 2 years. Trials that

terminate at the first interim analysis may recruit less than nJ or nC patients,

however this occurs with very small probability. Hence, the expected sample size

will be very close to the maximum sample size for each model and therefore the

maximum sample size is a useful measure to compare methods. Clearly, a similar

pattern is seen to the fixed sample case; using the true model, sample sizes increase

with σ2 and γ. When the misspecified Cox model is used to analyse the data, the
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sample size increases with γ.

σ2 = 0 σ2 = 1 σ2 = 10 σ2 = 100 Naive model

γ = 0 363 364 364 373 363

γ = 0.03 365 365 364 374 421

γ = 0.06 364 365 365 420 528

γ = 0.09 365 369 375 522 607

Table 4.22: Maximum sample sizes required for power 0.9 in true and naive
model for a group sequential clinical trial.

Comparing Tables 4.20 and Table 4.22 we see that the maximum sample size

for the group sequential trial is roughly 1.1 times the sample size for the fixed

sample trial. This corresponds to the inflation factor R described by Jennison and

Turnbull (2000) for a group sequential test with K = 5 equally spaced analyses.

This inflation factor describes the increase in information, and therefore sample

size, when no early stopping occurs in the group sequential trial. The discrepancies

of these ratios from 1.1 is because the group sequential tests are designed to have

equally spaced information levels but in practice this will not be the case.

The maximum sample sizes needed to achieve power of 0.9 of these two analysis

methods for a group sequential trial is compared. Table 4.23 shows the relative

efficiency, RE = nC/nJ , results for this group sequential trial.

σ2 = 0 σ2 = 1 σ2 = 10 σ2 = 100

γ = 0 1.00 1.00 1.00 0.97

γ = 0.03 1.16 1.16 1.16 1.13

γ = 0.06 1.45 1.45 1.45 1.26

γ = 0.09 1.67 1.65 1.62 1.16

Table 4.23: Ratio of maximum sample sizes required for power 0.9 in true and
naive mode for a group sequential clinical trial.
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Similarly to the fixed sample analysis, we see that relative efficiency increases

with γ and remains constant with σ2 apart from the case where σ2 = 100 which

reflects extremely noisy data. Also, we see that RE = 0.97 when γ = 0 and σ2 = 100

which indicates that when the longitudinal data is not correlated with the survival

endpoint and the longitudinal data is noisy, the simple Cox model is a slightly more

efficient method for estimating the treatment effect. Apart from the case where

γ = 0, it is always more efficient to analyse the data using the joint modelling

approach. Even when γ = 0, fitting the data to the simple Cox model for survival

data is only marginally more efficient than fitting the data to the joint model. In the

extreme case, 1.67 times as many patients are required to analyse the data using the

Cox model as when the joint modelling framework is used. A reduction in sample

size of 67% is incredibly beneficial and the results are overwhelmingly conclusive

that when longitudinal observations are available, it is more efficient to fit the data

to the joint model than the simple Cox model for survival data. This is true even

for the case where the biomarker is only slightly correlated with survival.
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APPENDIX

4.A | Root finding algorithm for power

calculations

4.A.1 | Stochastic observations

In this Section, we introduce an algorithm for sample size calculations when power

is estimated using simulation. The power function can be measured with error at

different places along a curve, and we would like to find a best estimate for the

root of the true function. We shall introduce a two-step algorithm which aims

to accurately calculate the root of the true function, and we shall discuss how to

optimise the algorithm given a finite number of simulations. The accuracy in the

calculation of the stochastic function estimate increases with Monte Carlo sample

size, however, estimating the function is computationally expensive. Therefore, we

discuss where to sample along the curve when the number of Monte Carlo replicates

to be performed is limited.

The Robbins-Monro algorithm created by Robbins and Monro (1951) aims to

find the root of a function which can be measured with error at points along a

curve. The Robbins-Monro algorithm is an iterative method and the authors prove

the convergence of the sequence of estimates to the true value. We create a new

algorithm which places importance on the number of iterations that are performed

and the need for computational efficiency. Further, since we are interested in

power estimates only, we shall fit the power observations to a specified model. Our

algorithm takes influence from the Robbins-Monro algorithm, which converges to the

truth, however our algorithm takes advantage of at least partial knowledge about

the form of the power function.
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Let p(n) : R → [0, 1] be a strictly increasing continuous function. For this

analysis, we restrict attention to the case where the codomain of the function p(·) is
the closed set [0, 1], therefore p(·) represents a probability. Suppose that the form of

p(·) is unknown, but instead, p̂(n) can be calculated as an estimate of p(n) so that

p̂(n) = p(n) + ϵ(n)

where ϵ(n) is a random error term. Figure 4.A.1 gives a graphical representation of

the problem, where the red line is the unobservable function. The black dots show

the simulated estimates of the function at different values of n. These observations

can be used to estimate the function.

Figure 4.A.1: Stochastic approximation problem. Red line is true, unknown
function and red dotted line shows the root for p(n) = 0.9. Black

dots are simulated estimates of the function.

In the context of this Thesis, the function p(n) will be the power of a test for
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sample size n, and p̂(n) will be the Monte Carlo calculation that simulates clinical

trials and takes the power estimate as the proportion of times the null hypothesis

is rejected. In this sample size and power example, we are interested in finding the

value of n such that p(n) = 0.9, e.g the sample size that attains 90% power.

The information that n and p(n) represent sample size and power can be used

to specify a form for p(·). In clinical trials, it is often the case that the treatment

effect estimate is asymptotically normally distributed. This is shown for the joint

model in Section 4.2.1 for a fixed sample trial and also Section 4.2.2 for the group

sequential trial. Let θ be the treatment effect and suppose that, given θ = δ,

the treatment effect estimate is distributed as θ̂ ∼ N(δ, σ2/n) where σ2 is a

constant. Then, for significance level α, the power of a one-sided hypothesis test for

H0 : θ = 0, HA : θ > 0 is given by

p1(n;σ) = Φ

(
δ

σ

√
n− Φ−1(1− α)

)
. (4.58)

This result holds when the treatment effect is normally distributed, which we have

proven asymptotically. Hence, for small sample results we cannot be sure that this

is the correct form for the power curve. Power is known to be an increasing function

of n and another option for fitting the power curve is

p2(n; β0, β1) = β0 + β1n. (4.59)

Although this function may seem a poor approximation in general, we may apply

this approximation locally. For any function p(n), a Taylor expansion around the

point n shows that locally, this linear approximation is appropriate. We will show,

through simulation, that this function provides an accurate estimate for power when

we restrict attention to a small interval.

4.A.2 | Two-step algorithm

We shall now describe the root-finding algorithm in two stages. We would like to

find a value n∗ such that p(n∗) = y. The form of the stochastic function is unknown

and the outcome of this algorithm will be the estimate n̂∗ for n∗. The first step of

this algorithm is presented below:

1. Calculate p̂(n0) using N0 Monte Carlo simulations, where n0 is a starting guess

for n, and the choice for N0 is discussed later in this Section.

2. Using Equation (4.58), fit the point (n0, p̂(n0)) to the curve to get an estimate

140



4.A. Root finding algorithm for power calculations

σ̂ and a fitted curve p1(n; σ̂).

3. Find n1, n2 and n3 such that

p1(n1; σ̂) = y − r

p1(n2; σ̂) = y

p1(n3; σ̂) = y + r

where the choice for r is discussed later in this section.

Figure 4.A.2 represents the first stage of the algorithm. The red line shows

the true underlying function p1(n;σ). We choose n0 = 100 which results in

p̂(100) = 0.638. Then, the function p1(n; σ̂) is calculated and shown in black with

the dotted lines indicating where to place points n1, n2 and n3.

Figure 4.A.2: First stage of the stochastic root finding algorithm. p1(n, σ) given
by red line and p1(n; σ̂) given by black line. Dotted lines show

where to place n1, n2 and n3.
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The second stage of the algorithm is as follows:

1. Calculate p̂(n1), p̂(n2) and p̂(n3) using N Monte Carlo replicates at each point.

2. Check that p̂(n1) < y and p̂(n2) > y. If not

(a) Using Equation (4.58) fit the points (n1, p̂(n1)), (n2, p̂(n2)) and (n3, p̂(n3))

to obtain the fitted curve p1(n; σ̂).

(b) Find n1, n2 and n3 such that

p1(n1; σ̂) = y − r

p1(n2; σ̂) = y

p1(n3; σ̂) = y + r.

(c) Repeat steps 1 and 2.

3. Using Equation (4.59) fit the linear model to the points (n1, p̂(n1)), (n2, p̂(n2))

and (n3, p̂(n3)) to obtain the fitted line p2(n; β̂0, β̂1).

4. Calculate the final estimate for n∗ as the solution to p2(n
∗; β̂0, β̂1) = y.

The step of the algorithm that we have just described fits a curve to three points.

Suppose that the three points do not surround y so that either p̂(n1) > y and/or

p̂(n3) < y. Then, the final prediction for n̂∗ will be taken by extrapolating outside

of the data. This is particularly problematic when the points (n1, p̂(n1)), (n2, p̂(n2))

and (n3, p̂(n3)) are fitted to a straight line as extrapolation could result in a highly

inaccurate estimate, n̂∗. This is the reason why we have introduced a check between

steps 1 and 2 of the second stage of the algorithm which is repeated until the

condition is satisfied that p̂(n1) < y and p̂(n3) > y.

In Figure 4.A.3, there is a visual representation of the second stage of the root

finding algorithm. Starting with values n1 = 202.8, n2 = 214.5 and n3 = 228.0 given

by stage 1, the Monte Carlo approximation gives p̂(n1) = 0.892, p̂(n2) = 0.903 and

p̂(n3) = 0.908. The red line indicates the true underlying function p(·) and the black

line is the data fitted to Equation (4.59). The final estimate for n∗ is n̂∗ = 213.5.
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Figure 4.A.3: Second stage of the stochastic root finding algorithm. p1(n, σ)
shown in red, p2(n; β̂0, β̂1) shown in black. Dotted lines show

where to place n̂∗ with a comparison to the true value n∗ given by
the red dotted line.

The red line in Figure 4.A.3 represents the true underlying power curve. The

black points are simulated from this model and then the black line is the fitted linear

model for these points. It is apparent that a linear approximation for the power curve

Equation (4.58) is appropriate here because the red line appears straight in this

small interval. Further, it is clear that the difference between the true power curve

in red and the linear fitted line in black is due to large vertical distance between

the true power curve and the power observations. Hence, the difference between

these two lines is dominated by the simulation error and not the error in the linear

approximation. The points n1, n2 and n3 are far enough apart from each other so

that we have p̂(n1) < p̂(n2) < p̂(n3) and the slope β1 is accurately estimated (note

the small range on the y− axis). The distance between points is controlled using the
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parameter r and we will shortly discuss this choice in detail. It is also clear that the

value r has been chosen appropriately so that the true power curve appears linear

in this local interval. We see that the difference between n∗ and n̂∗ is very small and

is primarily because of the simulation error in calculating p̂(n1), p̂(n2) and p̂(n3).

4.A.3 | Optimising the root finding algorithm

Some elements of the algorithm design contribute to the efficiency and accuracy

of the algorithm. We simulate data from a distribution where the true curve p(·)
is known, so that n∗ is known and compare to the results of the algorithm that

generate an estimate n̂∗.

The parameters in the algorithm to be chosen are: N0 and N , the number of

Monte Carlo simulations at the starting guess n0, and points n1, n2, n3, and r, the

distance from y which determines where to place the points n1 and n3.

The smaller the value of r, the more likely that the conditions p̂(n1) > y and

p̂(n3) < y are true, so that the values of n1, n2 and n3 must be re-calculated. This

re-calculation will result in further simulations being performed, which decrease the

efficiency. However, when a straight line is fitted to the data with an underlying

concave function, the resulting estimate (along the x-axis) will be an overestimate

of the truth. The level of over-estimation varies with the range of the data, as the

approximation of a curve to a linear becomes more accurate as localisation increases.

Therefore, a small r value reduces the bias in n̂∗ and we see that there is a bias-

variance trade-off associated with the choice of r.

Since the number of possible simulations is restricted, our choice forN is constant

at 30,000. High accuracy in the estimate p̂(n0) allows n1, n2 and n3 to be chosen

with accuracy, but we expect this to be insignificant in comparison to the accuracy

in the estimates p̂(n1), p̂(n2) and p̂(n3). Hence, N0 is chosen to be small compared

to N .

We generate data where the treatment effect estimate is distributed by

θ̂ ∼ N

(
0.6,

2.52

n

)
. (4.60)

By Equation (4.58), for power equal to 0.9, n∗ = 214.1 is required. Table 4.A.1

shows the results of the stochastic approximation method when the algorithm is

performed 105 times for each combination of n0, N0 and r. “Total simulations” gives

the mean number of simulations that occur due to extrapolation plus N0 + 3N for

the initially allocated number of simulations.
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n0 N0 r Total Linear method Normal method

simulations n̂∗ MSE n̂∗ MSE

175 10000 0.0075 102515.5 214.2 (0.93) 0.87 214.1 (0.83) 0.69

175 10000 0.01 100299.7 214.3 (0.90) 0.87 214.1 (0.83) 0.69

175 10000 0.0125 100015.3 214.5 (0.89) 0.92 214.1 (0.84) 0.70

175 15000 0.0075 106006.2 214.2 (0.92) 0.85 214.1 (0.83) 0.69

175 15000 0.01 105066.6 214.3 (0.90) 0.86 214.1 (0.84) 0.70

175 15000 0.0125 105001.8 214.5 (0.88) 0.91 214.1 (0.84) 0.70

175 20000 0.0075 110515.7 214.2 (0.91) 0.85 214.1 (0.83) 0.69

175 20000 0.01 110026.1 214.3 (0.89) 0.84 214.1 (0.83) 0.70

175 20000 0.0125 110000.9 214.5 (0.87) 0.90 214.1 (0.83) 0.70

200 10000 0.0075 102734.2 214.2 (0.93) 0.87 214.1 (0.83) 0.69

200 10000 0.01 100349.2 214.3 (0.91) 0.87 214.1 (0.83) 0.69

200 10000 0.0125 100019.8 214.5 (0.88) 0.91 214.1 (0.83) 0.70

200 15000 0.0075 106094.4 214.2 (0.92) 0.86 214.1 (0.83) 0.69

200 15000 0.01 105071.1 214.3 (0.90) 0.86 214.1 (0.84) 0.70

200 15000 0.0125 105001.8 214.5 (0.88) 0.91 214.1 (0.84) 0.70

200 20000 0.0075 110554.4 214.2 (0.92) 0.85 214.1 (0.83) 0.70

200 20000 0.01 110025.2 214.3 (0.89) 0.84 214.1 (0.84) 0.70

200 20000 0.0125 110000.9 214.5 (0.87) 0.91 214.1 (0.84) 0.70

225 10000 0.0075 102943.0 214.2 (0.92) 0.87 214.1 (0.83) 0.68

225 10000 0.01 100371.7 214.3 (0.91) 0.88 214.1 (0.84) 0.70

225 10000 0.0125 100027.0 214.5 (0.89) 0.92 214.1 (0.84) 0.71

225 15000 0.0075 106242.0 214.2 (0.92) 0.85 214.1 (0.83) 0.69

225 15000 0.01 105099.9 214.3 (0.90) 0.86 214.1 (0.84) 0.70

225 15000 0.0125 105004.5 214.5 (0.88) 0.91 214.1 (0.84) 0.70

225 20000 0.0075 110638.1 214.2 (0.91) 0.85 214.1 (0.83) 0.69

225 20000 0.01 110029.7 214.3 (0.89) 0.85 214.1 (0.84) 0.70

225 20000 0.0125 110000.0 214.5 (0.87) 0.90 214.1 (0.84) 0.70

Table 4.A.1: Root finding algorithm results for normally distributed treatment
effect estimate.

The column “Normal method” in Table 4.A.1 is included for comparison. This

shows the results when the function Equation (4.58) is fitted in step 2 of the

algorithm. This is the model in which the data has been simulated from and so

the estimate will be unbiased.

The results in Table 4.A.1 show that Equation (4.58) should be used in the root

finding algorithm to find the sample size for a given power requirement when the

treatment effect estimate is known to be normally distributed. This is obvious since
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4.A. Root finding algorithm for power calculations

Equation (4.58) defines the power of a test for a normally distributed estimate.

This is because the mean squared error (MSE) is smaller for the normal method

than the linear method in all cases. The starting point n0 has very little impact on

the accuracy and efficiency of the algorithm. This is because the true, known model

is used to fit the curve to the starting point. Also, we can see that increasing the

number of starting Monte Carlo simulations, N0, has little impact on the MSE, but

increases the total number of simulations. We believe that the gain in accuracy

at the starting point is not worth the increase in computation time. Finally,

the value of r has an impact on the total number of simulations, with a smaller

value of r corresponding to larger simulation times. Larger values of r also imply

higher MSE when Equation (4.58) is used in step 2 of the algorithm, however when

Equation (4.59) is used in setup 2 of the algorithm, we see that overall, the MSE is

smallest for r = 0.01.

We now consider an example where the treatment effect estimate is not normally

distributed. In most clinical trial scenarios, it is possible to show that the treatment

effect estimate is asymptotically normally distributed, however the true distribution

in small samples is unknown. Therefore, it is desirable to find the optimum

parameters for this algorithm for a case where the treatment effect estimate follows

a distribution other than normal. The distribution of the estimate is given by

θ̂ ∼ t
(
1.25, θ

√
n
)
. (4.61)

Table 4.A.2 shows the results of using this algorithm when the treatment effect

estimate θ̂ has the distribution in Equation (4.61). In this example, although we

known the true function p(·), we shall still use the Equations (4.58) and (4.59) and

assess the results, as this is what would happen if the form of p(·) was unknown.

Using the true distribution of θ̂ given by Equation (4.61), we can calculate that to

obtain significance α = 0.025 and power 1 − β = 0.9 when θ = 0.5, we require

n∗ = 676.2.
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n0 N0 r Total Linear method Normal method

simulations n̂∗ MSE n̂∗ MSE

200 10000 0.0125 280525.6 677.1 (4.08) 17.47 671.1 (2.74) 33.22

200 10000 0.015 279681.4 677.5 (4.05) 18.06 670.8 (2.85) 37.37

200 10000 0.0175 275868.1 677.5 (4.55) 22.41 669.9 (3.83) 54.02

200 15000 0.0125 285493.2 677.1 (4.08) 17.47 671.1 (2.73) 33.06

200 15000 0.015 284733.6 677.5 (4.05) 18.02 670.8 (2.83) 37.32

200 15000 0.0175 281216.4 677.5 (4.54) 22.34 669.9 (3.79) 53.34

200 20000 0.0125 290484.2 677.1 (4.11) 17.69 671.1 (2.73) 33.16

200 20000 0.015 289748.0 677.5 (4.02) 17.82 670.8 (2.83) 37.35

200 20000 0.0175 286292.9 677.5 (4.55) 22.50 669.9 (3.77) 53.17

400 10000 0.0125 203112.1 675.9 (4.00) 16.13 669.1 (3.36) 61.42

400 10000 0.015 191944.0 676.9 (4.20) 18.08 668.3 (2.85) 70.44

400 10000 0.0175 190105.3 677.5 (4.13) 18.89 667.9 (2.77) 76.36

400 15000 0.0125 207766.5 675.8 (3.98) 15.97 669.1 (3.34) 61.81

400 15000 0.015 196808.1 676.9 (4.20) 18.17 668.3 (2.85) 70.22

400 15000 0.0175 195087.3 677.5 (4.14) 19.00 667.9 (2.75) 76.27

400 20000 0.0125 212477.6 675.8 (3.99) 16.01 669.1 (3.32) 61.78

400 20000 0.015 201627.2 676.9 (4.18) 17.90 668.3 (2.80) 70.36

400 20000 0.0175 200081.0 677.5 (4.13) 18.95 667.9 (2.74) 76.14

600 10000 0.0125 110031.4 676.4 (4.12) 17.01 670.3 (3.45) 46.48

600 10000 0.015 102380.5 677.1 (4.08) 17.52 669.7 (3.36) 53.91

600 10000 0.0175 100367.2 677.7 (3.96) 18.11 669.3 (3.32) 58.74

600 15000 0.0125 112716.6 676.4 (4.10) 16.89 670.1 (3.27) 47.20

600 15000 0.015 106323.9 677.2 (4.08) 17.65 669.6 (3.14) 53.26

600 15000 0.0175 105127.8 677.8 (3.98) 18.41 669.3 (3.13) 57.48

600 20000 0.0125 116443.1 676.5 (4.10) 16.90 670.0 (3.17) 47.89

600 20000 0.015 110864.9 677.2 (4.10) 17.89 669.6 (3.03) 52.87

600 20000 0.0175 110050.4 677.8 (3.96) 18.28 669.3 (3.01) 57.12

Table 4.A.2: Root finding algorithm results for non-normally distributed
treatment effect estimate.

Table 4.A.2 shows that for this example, the linear method has a smaller MSE

than the normal method in all cases and is less biased since the estimates n̂∗ are

closer to the true n∗. The starting point n0 is crucial because a large difference in

total simulations is seen when the starting point approaches the true value n∗. When

this is the case, further effort should be giving to choosing a suitable n0. This could

be by performing simulations at multiple values of n0 and choosing the one with

p̂(n0) closest to 0.9. Similarly to the previous example, the value of N0 has little
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impact on the accuracy of the algorithm and simply contributes to the total number

of simulations. Finally, the value of r is influential since increasing r decreases the

average number of simulations however the MSE for the linear method decreases.

In Section 4.5, this root finding algorithm is implemented to find the required

sample size for a test based on the joint model. We present an example

implementation of this root finding algorithm for the case γ = 0.03, σ2 = 100. Using

the results of Tables 4.A.1 and 4.A.2 we have chosen to useN0 = 104 since an increase

in N0 results in very little gain on the accuracy of the algorithm. Some thought

should be given to the starting point n0, especially for trials where the sample

size is small and the normality of the treatment effect estimate is questionable. In

Section 4.3.2 we describe a method for calculating a suitable starting value, which

uses a very large dataset to accurately estimate the variance of the treatment effect.

We show that a suitable initial sample size estimate is given by by n0 = 311. When

θ̂ is not normally distributed, the linear method out-performs the normal method

with respect to the bias of the estimate, and when θ̂ is normally distributed, there

is nominal increase in the MSE when using the linear method compared to the

normal method. We have chosen to use r = 0.015 since this provides a compromise

between accuracy of the estimate n̂∗ and computational efficiency of the algorithm.

We obtain an initial power estimate of p̂(311) = 0.8853. The first stage of the

algorithm suggests placing the points at n1 = 311, n2 = 327, n3 = 345. The results

of simulations under these values with N = 104 Monte Carlo simulations at each

point result in a sample size calculation of n̂∗ = 322.8. In practice, this sample size

is then rounded up to n̂∗ = 323.
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CHAPTER 5

JOINT MODEL WITH BOTH LONGITUDINAL

AND SURVIVAL TREATMENT EFFECTS
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5.1. Analysis of clinical trials using the restricted mean survival time

5.1 | Analysis of clinical trials using

the restricted mean survival time

5.1.1 | Motivation for designing tests for a

joint model with both longitudinal and

survival treatment effects

The joint model in Section 4.1 adjusts for the longitudinal data in the survival

model by considering the biomarker trajectory as a covariate. This does not cover

the case where the biomarker may also be influenced by treatment. The US Food

and Drug Administration (2019) cautions against adjusting for “covariates measured

after randomisation because they could be affected by the treatments.” In this

chapter, we shall present a joint model for longitudinal and survival data where there

is a treatment effect acting through the biomarker and another directly affecting

survival. The causal effect diagram in Figure 5.1.1 represents this directional effect

of treatment.

Treatment

Biomarker

Survival

Figure 5.1.1: Causal effect diagram for the treatment effects in the joint model.

In this chapter, we introduce a joint model with both a longitudinal treatment

effect and a survival treatment effect, therefore taking into account both treatment

effect pathways. Model fitting is straightforward. However, the challenge arises

in creating a group sequential trial which combines two treatment effect estimates.

We shall us the Restricted Mean Survival Time (RMST) framework in order to

summarise the treatment effect as a single variable. RMST, described by Royston

and Parmar (2013), is a popular method for analysing survival data when it

is expected that the proportional hazards assumption does not hold. We shall

investigate general use of RMST methods. However, it is important to remember
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that the motivation for using RMST is because of the complex nature of the model

which we believe to be true.

RMST methods have recently become popular for designing and analysing fixed

sample clinical trials. The novel aspect of the research in this Chapter is the design of

group sequential clinical trials using RMST. Further, we show, through simulation,

that this design is more efficient than the fixed sample trial which uses RMST. The

efficiency is with respect to the stopping time of the group sequential trial. In some

cases, the trial stops 1.5 years early on average when using the group sequential

design compared to the fixed sample trial which lasts for a total of 5 years. We also

show that the group sequential version of this clinical trial results in fewer hospital

visits by patients and shorter patient follow-up times.

5.1.2 | Restricted mean survival time

To perform a clinical trial based on the joint model, we require a single one

dimensional summary statistic that summarises the treatment effect. We propose

using the Restricted Mean Survival Time (RMST) method to combine the

longitudinal and survival treatment effects into a single useful parameter. RMST

has recently become a widely accepted method for dealing with survival data when

the proportional hazards assumption does not hold. In our case, the motivation for

using RMST is because of the complex nature of the model with multiple pathways

for the treatment effect. In this section we introduce and define RMST and provide

some results and examples for designing and analysing fixed and group sequential

trials under this framework.

Royston and Parmar (2013) define RMST as the area under the survival curve

up to time t∗. This value of t∗ is fixed at the design stage. The choice of t∗ may

have an impact on some properties of the analysis and we shall discuss this choice

in Section 5.1.6. Let F be the time-to-failure random variable and let S(t;θ) be the

survival function, integrated over any patient-specific random effects. Here θ is a

vector of parameters in the model. Then RMST is defined as

RMST =

∫ t∗

0

S(t;θ)dt

= E[min(F, t∗)].

Since we are interested in a statistic that summarises the effect of treatment, we

are interested in the difference in RMST between treatment arms. Suppose that

F0 and F1 are time-to-failure random variables for patients on the control and
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treatment arms respectively, and that S0(t;θ) and S1(t;θ) are the corresponding

survival functions integrated over any patient specific random effects. Then the

parameter of interest, ∆, is

∆(t∗;θ) =

∫ t∗

0

[S1(t;θ)− S0(t;θ)] dt (5.1)

= E[min(F1, t
∗)]− E[min(F0, t∗)]. (5.2)

Restricted mean survival time is popular within fixed sample clinical trials. We

shall show that a group sequential trial can also be created using RMST as the

analysis approach, however many design aspects must be carefully and thoughtfully

chosen.

5.1.3 | Parametric and non-parametric models

To find an estimate for ∆(t∗;θ), there are many available methods. It is most

common to analyse RMST using non-parametric methods. Zhao et al. (2016)

describe a method for finding the confidence band for RMST and apply this result to

a data set from a cardiovascular clinical trial. Some options for estimating ∆(t∗;θ)

include integration under the Kaplan-Meier survival curve and bootstrap methods

for estimating the variance. One design aspect of each of these methods is that

the value of t∗ must be smaller than the final observation time to ensure that the

estimate is identifiable. Chen and Tsiatis (2001) compare parametric and non-

parametric RMST methods when the model includes confounding covariates with

the treatment effect. The authors conclude that the non-parametric Kaplan-Meier

estimator is severely biased in the presence of confounding variables.

Murray and Tsiatis (1999) show that it is possible to create a group sequential

trial using non-parametric RMST estimates by proving the independent increments

property, which is required in order for the canonical joint distribution to hold.

Further, Lu and Tian (2020) consider some of the practical design challenges for

group sequential trials using non-parametric RMST estimates. This non-parametric

analysis uses a Kaplan-Meier estimator. If the final observation is censored, then the

Kaplan-Meier estimator is non-identifiable after the final follow-up time. As a result,

the authors change the value of the truncation time t∗ between analyses of a group

sequential trial. An estimand describes what is to be estimated based on the trial

objectives and Akacha et al. (2017) discuss the potential impact that an estimand

can have on the design of a clinical trial. Research into estimands was motivated

by the National Research Council (2010) highlighting a need to more clearly define
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the measurement of interest in a clinical trial. We seek a group sequential design

in which the definition of the estimand remains constant between analyses and the

truncation time t∗ is clinically motivated rather than data-dependent.

We have chosen to use a fully parametric approach to estimating ∆(t∗;θ). The

parameters θ of the model are estimated using maximum likelihood and these

estimates are substituted into Equation (5.1) to find an estimate ∆(t∗; θ̂). The

advantage of this approach is that as long as the parameters are identifiable, ∆(t∗; θ̂)

can be calculated even for t∗ greater than the final follow-up time. This requires

extrapolation which is not desirable but has the advantage of giving accurate results

if the model is correct. Further, using this parametric approach means that a

group sequential trial can be created where the truncation time t∗ remains the same

across analyses. It is also important to remember that the motivation for using

RMST in this instance is to summarise the multi-directional treatment effect as a

single parameter. If the model is regarded as correct, the parametric approach is

appropriate.

A consideration with the parametric modelling approach is that the model must

be fully specified, including the the form of the baseline hazard function. This is

to ensure that the difference in RMST values, in Equation (5.1), can be calculated.

Common choices for baseline hazard functions include Weibull, piecewise constant

and spline functions.

5.1.4 | The delta method

An estimate for the difference in RMST between treatment arms, ∆(t∗; θ̂), is found

by calculating parameter estimates θ̂ using maximum likelihood and substituting

these into Equation (5.1). To perform a group sequential trial, we need a method

for estimating the variance of the estimate (and hence information) and also its

distribution. We shall use the Delta method to find this distribution and also

prove that this distribution has the canonical distribution in Definition 2.2, which

is important for creating a group sequential trial.

The Delta method can be used whenever a transformation is to be made to a set

of multivariate normally distributed parameters.

Theorem 5.1. Let θ̂n be a p × 1 vector which is a consistent estimate for the

parameter vector θ and suppose that the vector θ̂n has the following asymptotic

distribution
√
n(θ̂n − θ)

d−→ N(0,Σ) as n → ∞.
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Then for a scalar function f : Rp → R,

√
n(f(θ̂n)− f(θ))

d−→ N

(
0,

[
∂f(θ)

∂θ

]T
Σ

[
∂f(θ)

∂θ

])
as n → ∞.

The proof of Theorem 5.1 is given by Doob (1935). This reasoning is based on

a Taylor approximation to the function f(·) around θ.

Suppose that the estimates θ̂n are found using maximum likelihood, then we

know that these estimates are asymptotically normally distributed. Therefore, we

can apply the Delta method to the estimate for the difference in restricted mean

survival times. Let the covariance matrix of the parameter estimates be given by

V ar(θ̂n) = 1
n
Σ, then using Theorem 5.1, the estimate ∆(t∗; θ̂n) has the following

distribution

√
n
(
∆(t∗; θ̂n)−∆(t∗;θ)

)
d−→ N

(
0,

[
∂∆(t∗;θ)

∂θ

]T
Σ

[
∂∆(t∗;θ)

∂θ

])
.

It is often necessary in clinical trials to find a standardised statistic for the test

statistic, that is a statistic with unit variance. This is found by dividing the test

statistic by its standard deviation. The variance must be estimated and this is done

by substituting the estimate θ̂n for θ. Following this method of standardisation the

statistic of interest is given by

Z(t∗; θ̂n) =

√
n∆(t∗; θ̂n)√[

∂∆(t∗;θ)
∂θ

]T
Σ
[
∂∆(t∗;θ)

∂θ

] . (5.3)

This method for standardisation results in a statistic Z which is distributed

approximately as N(µ, 1) for some constant µ. Under the null hypothesis, when

∆(t∗;θ) = 0, the distribution gives a more accurate fit and we show this through

examples in Section 5.1.7 and Section 5.1.8.

5.1.5 | Sample size calculation

We shall present a method for calculating sample sizes for a hypothesis test based

on the difference in parametric RMST estimates. To do so, we make use of the

structure of the standardised statistic Z(t∗; θ̂n). Let θ̂n be the maximum likelihood

estimate for the vector of parameters θ in the statistical model. Both θ̂n and θ are

p× 1 vecots. Suppose that the p× p matrix Σ is the variance-covariance matrix for

θ̂n. The difference in parametric RMST estimates is given by ∆(t∗; θ̂n). A one-sided
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clinical trial based on the difference in RMST estimates can be constructed in terms

of the statistic Z(t∗; θ̂n) in Equation (5.3). We shall test

H0 : ∆(t∗;θ) ≤ 0 versus HA : ∆(t∗;θ) > 0

and we shall reject H0 if Z(t∗; θ̂n) > c for some constant c. Using Theorem 5.1,

the estimate ∆(t∗; θ̂n) is normally distributed and its expectation and variance are

used in the sample size calculation. For significance level α and power 1 − β at

∆(t∗;θ) = δ, the fixed trial sample size calculation is given by

n =

[
∂∆(t∗;θ)

∂θ

]T
Σ
[
∂∆(t∗;θ)

∂θ

]
(Φ−1(1− α) + Φ−1(1− β))

2

δ2
. (5.4)

This calculation requires differentiation of the difference in restricted mean

survival times, ∆(t∗;θ). We can often perform this differentiation analytically or if

this is not possible then numerical differentiation methods can be applied. Also,

the covariance matrix Σ must be known for this sample size calculation. It is

rare that the theoretical true value of Σ is known. If this matrix is not known

or difficult to calculate, then we suggest simulating a large sample of patients under

a set of parameter values chosen to represent a likely scenario, and using maximum

likelihood methods to estimate Σ.

5.1.6 | Choice of t∗

At the design stage of a clinical trial which uses RMST, a suitable value of t∗ must be

chosen. In their paper, Royston and Parmar (2013) suggest choosing t∗ as the value

that minimises the sample size in the calculation shown in Equation (5.4). The data

motivated approach suggests choosing t∗ as a trade-off between maximising ∆ and

minimising V ar(∆̂). Royston and Parmar (2013) further explain that the value of t∗

should ideally not exceed the maximum censored or uncensored event time to avoid

extrapolation of RMST estimates. Combining these two ideas of minimising the

sample size but avoiding extrapolation of estimates, we suggest choosing t∗ based

on its “clinical meaning” and then adjusting the time of analysis to avoid excessive

extrapolation. The clinical meaning will typically be at least as great as the expected

median survival time which allows for possible changes in the shape of the treatment

and control survival curves early in the study. This idea will be expanded upon in

Section 5.3 where we show an example of designing a trial using RMST.

In the following sections, we show examples of fixed sample clinical trials which

155



5.1. Analysis of clinical trials using the restricted mean survival time

use the difference in RMST as an endpoint. We shall give details about the sample

size calculation and also show how the sample size changes with t∗. For these

examples, the differences in sample size are only very small and we suggest that the

choice of t∗ should be based on clinical meaning with some consideration given to

how this choice affects the design of the trial.

5.1.7 | Example: Exponential survival

distributions

We shall now consider a simple parametric model in which we can see the

effect of the choice of t∗ on the sample size. This simple survival model is

characterised by constant hazard rates for each treatment arm. For patient i, let

Zi = I{patient i receives the treatment} be the treatment indicator and let λ0 and

λ1 be hazard rates for patients on the control and treatment arms respectively.

For patient i, the time-to-event random variable, Fi, therefore has the following

distribution

Fi|Zi = 0 ∼ Exp{λ0}

Fi|Zi = 1 ∼ Exp{λ1}.

We shall compare three methods; the hypothesis test based on the difference

in estimated hazard rates, the parametric RMST analysis and the non-parametric

RMST analysis. The first method is included because it is known to be the most

efficient hypothesis test by the Neyman-Pearson Lemma and we would like to

compare the efficiency that is lost when using the RMST method.

Define the parameters θ0 = log(λ0) and θ1 = log(λ1) and suppose that the

parameter estimates λ̂0 and λ̂1 are fitted by maximum likelihood and therefore

θ̂0 = log(λ̂0) and θ̂0 = log(λ̂0) are also MLEs. In this example, with n patients on

each treatment arm and with no censoring, it is possible to show that

√
n

[
θ̂0 − θ0

θ̂1 − θ1

]
d−→ N

([
0

0

]
,Σ =

[
1 0

0 1

])
as n → ∞. (5.5)

We can easily create a test of the null hypothesis that the hazard ratio is equal

to one, or equivalently the difference in the log-hazard rates is equal to zero. We

shall test

H
(1)
0 : θ0 − θ1 = 0 versus H

(1)
A : θ0 − θ1 > 0
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and we shall reject H
(1)
0 whenever θ̂0 − θ̂1 > c1 for some constant c1. For this

hypothesis test with significance level α and power 1 − β when θ0 − θ1 = D1,

we require the total sample size n(1) given by

n(1) =
2V1 (Φ

−1(1− α) + Φ−1(1− β))
2

D2
1

(5.6)

where V1 = 2. This form for n(1) will be useful for a comparison between the three

analysis methods. For each method i = 1, 2, 3 we shall present the form of the

variance Vi and the mean of the treatment effect under HA, given by Di.

We now consider a hypothesis test based on RMST for this exponential example.

The corresponding survival functions, S0(t) and S1(t), for patients on the control

and treatment arm respectively are given by

S0(t) = exp{−λ0t}

S1(t) = exp{−λ1t}

and by integrating the difference between survival functions, up to t∗, we find the

difference in restricted mean survival times for this model to be

∆(t∗;λ0, λ1) =
1− exp{−λ0t

∗}
λ0

− 1− exp{−λ1t
∗}

λ1

.

We estimate this function by substituting λ̂0 and λ̂1 for λ0 and λ1 respectively to

obtain ∆(t∗; λ̂0, λ̂1).

For the asymptotic distribution of the estimate ∆(t∗; λ̂0, λ̂1), we shall apply

the Delta method of Theorem 5.1. The estimates θ̂0 = log(λ̂0) and θ̂1 = log(λ̂1)

are asymptotically normally distributed and hence, we apply the Delta method

under this parameterisation. Therefore, we shall take derivatives with respect to

the parameters θ0 and θ1. These are

∂

∂θ0
∆(t∗;λ0, λ1) =

∂

∂λ0

∆(t∗;λ0, λ1) ·
dλ0

dθ0

=
exp{−λ0t

∗}(λ0t
∗ + 1)− 1

λ0

(5.7)

∂

∂θ1
∆(t∗;λ0, λ1) =

∂

∂λ1

∆(t∗;λ0, λ1) ·
dλ1

dθ1

=
1− exp{−λ1t

∗}(λ1t
∗ + 1)

λ1

. (5.8)

Note that the parameter estimates θ̂0 and θ̂1 are independent. In applying
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Theorem 5.1 and using the form of the variance matrix Σ given by Equation (5.5),

the variance of the RMST estimate V ar(∆(t∗; λ̂0, λ̂1)), with n patients on each

treatment arm, is given by

V ar(∆(t∗; λ̂0, λ̂1))

=V ar(∆(t∗; θ̂0, θ̂1))

=
1

n

[
∂

∂θ0
∆(t∗;λ0, λ1)

∂
∂θ1

∆(t∗;λ0, λ1)

]T [
1 0

0 1

][
∂

∂θ0
∆(t∗;λ0, λ1)

∂
∂θ1

∆(t∗;λ0, λ1)

]

=
1

n

[(
exp{−λ0t

∗}(λ0t
∗ + 1)− 1

λ0

)2

+

(
1− exp{−λ1t

∗}(λ1t
∗ + 1)

λ1

)2
]
. (5.9)

Now consider a test based on the difference in RMST estimates between control

and treatment arms. We shall test

H
(2)
0 : ∆(t∗;λ0, λ1) = 0 versus H

(2)
A : ∆(t∗;λ0, λ1) > 0

and we shall reject H
(2)
0 when ∆(t∗; λ̂0, λ̂1) > c2 for some constant c2.

For this test with significance level α and power 1− β when ∆(t∗;λ0, λ1) = D2,

we require the total sample size n(2) given by

n(2) ≤ 2V2 (Φ
−1(1− α) + Φ−1(1− β))

2

D2
2

where V2 = nV ar(∆(t∗; λ̂0, λ̂1)) given in Equation (5.9).

Finally, we describe a method for performing an analysis using a non-parametric

RMST estimate. The estimate ∆̂(t∗;λ0, λ1) is the Kaplan-Meier estimate for

∆(t∗;λ0, λ1). One should note the difference in notation between the parametric

estimate ∆(t∗; λ̂0, λ̂1) and the non-parametric estimate ∆̂(t∗;λ0, λ1). The non-

parametric estimate for the difference in RMST and the variance of the estimate are

given by

∆̂(t∗;λ0, λ1) = E[min(Fi|Zi = 1, t∗)]− E[min(Fi|Zi = 0, t∗)]

V ar
(
∆̂(t∗;λ0, λ1)

)
= E[min(Fi|Zi = 1, t∗)2]− E[min(Fi|Zi = 0, t∗)2]−∆(t∗;λ0, λ1)

2.

The estimates ∆̂(t∗;λ0, λ1) and V ar(∆̂(t∗;λ0, λ1) are found using simulation with a

large sample of patients. It is possible to calculate these expressions using simulation

because, in this example, there is no censoring.
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For this non-parametric Kaplan-Meier analysis, we shall test

H
(3)
0 : ∆(t∗;λ0, λ1) ≤ 0 versus H

(3)
A : ∆(t∗;λ0, λ1) > 0

and we shall reject H
(3)
0 when ∆̂(t∗;λ0, λ1) > c3 for some constant c3.

The total sample size n(3) required for this test with significance level α and

power 1− β when ∆(t∗;λ0, λ1) = D3 is given by

n(3) =
2V3 (Φ

−1(1− α) + Φ−1(1− β))
2

D2
3

where V3 = nV ar(∆̂(t∗;λ0, λ1).

In summary, we have proposed three hypothesis tests and found an expression

for the sample size for each of these tests. Each sample size calculation has the

following structure

n(i) =
2Vi (Φ

−1(1− α) + Φ−1(1− β))
2

D2
i

.

In Table 5.1.1, a comparison of these sample sizes is made. For all calculations

we have chosen significance level α = 0.025 and power 1 − β = 0.9. The range

of t∗ values from 0.8 to 3.2 represents the 50th and 95th percentiles of the survival

distributions under HA when D1 = θ0−θ1 = 0.3. For the case t∗ = ∞, the restricted

mean survival time is equivalent to the mean survival. It is important to note that

the calculation of the non-parametric RMST estimate with t∗ = ∞ is only possible

because there is no censoring in this example. Further, in some clinical trials it

might also not be possible to calculate the Kaplan-Meier estimate ∆̂(t∗;λ0, λ1) for

t∗ = 3.2 in the presence of censoring. This is because the maximum uncensored

event time might be less than the value t∗ = 3.2.
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t∗ θ0 θ1 D1 V1 n(1) D2 V2 n(2) D3 V3 n(3)

0.8 0 -0.35 0.35 2 171.5 0.06 0.06 173.1 0.06 0.15 420.9

1.6 0 -0.35 0.35 2 171.5 0.16 0.42 169.6 0.16 0.65 262.5

2.4 0 -0.35 0.35 2 171.5 0.25 0.99 168.7 0.25 1.24 212.4

3.2 0 -0.35 0.35 2 171.5 0.31 1.56 169.5 0.31 1.78 191.4

Inf 0 -0.35 0.35 2 171.5 0.42 3.01 180.3 0.42 3.00 181.0

0.8 0 -0.30 0.30 2 233.5 0.05 0.06 234.9 0.05 0.15 565.9

1.6 0 -0.30 0.30 2 233.5 0.14 0.43 231.4 0.14 0.65 354.0

2.4 0 -0.30 0.30 2 233.5 0.21 0.99 230.7 0.21 1.23 286.6

3.2 0 -0.30 0.30 2 233.5 0.26 1.54 231.6 0.27 1.74 260.0

Inf 0 -0.30 0.30 2 233.5 0.35 2.82 242.3 0.35 2.82 235.3

0.8 0 -0.25 0.25 2 336.2 0.04 0.06 337.5 0.04 0.15 806.2

1.6 0 -0.25 0.25 2 336.2 0.12 0.43 334.1 0.12 0.64 490.5

2.4 0 -0.25 0.25 2 336.2 0.18 0.99 333.5 0.17 1.22 419.7

3.2 0 -0.25 0.25 2 336.2 0.22 1.52 334.5 0.22 1.70 365.5

Inf 0 -0.25 0.25 2 336.2 0.28 2.65 345.0 0.28 2.65 344.0

0.8 0 -0.20 0.20 2 525.4 0.04 0.07 526.5 0.04 0.15 1239.5

1.6 0 -0.20 0.20 2 525.4 0.09 0.44 523.1 0.09 0.64 781.2

2.4 0 -0.20 0.20 2 525.4 0.14 0.99 522.6 0.14 1.20 614.1

3.2 0 -0.20 0.20 2 525.4 0.17 1.50 523.8 0.18 1.65 566.7

Inf 0 -0.20 0.20 2 525.4 0.22 2.49 534.1 0.22 2.50 539.7

Table 5.1.1: Comparing the efficiency of three methods for the proportional
hazards model.

For this example we know, by the Neyman-Pearson Lemma, that the test based

on maximum likelihood estimates θ̂0 and θ̂1 (or the equivalent test based on λ̂0 and

λ̂1) is optimal. For the test based on differences in parametric RMST estimates,

the sample size n(2) does not change much with t∗ and is not often much higher

than n(1). This shows that this test is efficient. Surprisingly, for some values e.g

t∗ = 2.4, we have that n(2) < n(1). This is because the Delta method is approximate

and a test with n(2) < n(1) will be under-powered. The sample size n(3) is heavily

influenced by the choice of t∗, and much higher than the value of n(1) especially

when t∗ is small. This indicates that non-parametric methods are much less efficient

for moderate values of t∗. However, there are fewer model assumptions made when

using non-parametric analyses.
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5.1.8 | Example: Non-proportional hazards

We now perform a similar analysis for a parametric model that does not follow the

proportional hazards assumption. This is a common reason for using the restricted

mean survival time as an analysis method. For this model we will consider a

test based on the maximum likelihood estimate compared with the tests based on

parametric and non-parametric RMST. The analysis shows that the sample size

required for an RMST analysis is largely dependent on the value of t∗ chosen.

Consider a survival model where Zi is the treatment indicator that patient i

receives the new treatment. The hazard rate is given by

h(t|Zi) = exp{β0 + (β1 − β2Zi)t}. (5.10)

We shall follows the steps in Section 2.2 to derive the survival function for this

model. The cumulative hazard function is

H(t|Zi) =

∫ t

0

exp{β0 + (β1 − β2Zi)t}

=
exp{β0}
β1 − β2Zi

[exp{(β1 − β2Zi)t} − 1] .

This leads to the survival function

S(t|Zi) = exp (−H(t|Zi))

= exp

(
exp{β0}
β1 − β2Zi

[1− exp{(β1 − β2Zi)t}]
)
. (5.11)

In this parametric model, β2 is the parameter that governs the treatment effect

as this parameter describes how survival differs between the two treatment arms.

Clearly, the hazards are not proportional as the hazard ratio for the treatment group

versus control group is equal to exp{β2t} which is a function of time t. However,

for β2 = 0 we have equivalence in survival curves between treatment and control

groups. Let β̂2 be the maximum likelihood estimate for β2. Then we shall test the

hypothesis

H
(1)
0 : β2 ≤ 0 versus H

(1)
A : β2 > 0

and we shall reject H
(1)
0 when β̂2 = c1 for some constant c1.

The sample size calculation for this one-sided hypothesis test requires knowledge

of the value of V ar(β̂2). We now describe a method for estimating this value,

which uses maximum likelihood estimation and a very large sample size. Suppose
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that F1, . . . , Fn are time-to-failure random variables for patients 1, . . . , n which are

distributed according to the hazard rate given in equation (5.10) and let the observed

event times be t1, . . . , tn. For simplicity, suppose there is no censoring and therefore

the log-likelihood function is given by

ℓ(β; t1, . . . , tn) =
n∑

i=1

log{f(ti|β)}

=
n∑

i=1

log{λ(ti|Zi)}+ log{S(t|Zi)}

=
n∑

i=1

β0 + (β1 − β2Zi)ti +
exp{β0}
β1 − β2Zi

[1− exp{(β1 − β2Zi)ti}] .

In Section 3.1, we presented the asymptotic distribution for maximum likelihood

estimates. In applying these results, we shall substitute the vector β = (β0, β1, β2)
T

for θ and the data t1, . . . , tn shall be substituted for x
(k)
n . The variance-covariance

matrix for the the MLEs is the inverse of the Fisher information matrix in

Equation (3.6). Therefore, the variance covariance matrix for β̂ = (β̂0, β̂1, β̂2)
T

is given by

Σ =
1

n

(
− ∂2

∂β∂βT
ℓ(β; t1, . . . , tn)

)−1

(5.12)

and this matrix Σ can be accurately estimated by simulation using a large sample

of n = 104 patients.

For this analysis, we are only interested in the parameter β2 and hence we take

V ar(β̂2) = Σ33. For the hypothesis test with significance level α and power 1 − β

when β2 = D1, we require a sample size

n(1) =
V1 (Φ

−1(1− α) + Φ−1(1− β))
2

D2
1

(5.13)

where V1 = nΣ33 and Σ is given in Equation (5.12).

Next, consider the RMST analysis based on maximum likelihood estimates for

the parametric model. The difference in RMST is

∆(t∗;β) =

∫ t∗

0

exp

(
exp{β0}

β1

[1− exp{β1t}]
)

− exp

(
exp{β0}
β1 − β2

[1− exp{(β1 − β2)t}]
)
dt. (5.14)

The parametric estimate ∆(t∗; β̂) is found by substituting the MLE β̂ into

equation (5.14) and can be evaluated using numerical integration. We shall test
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the hypothesis

H
(2)
0 : ∆(t∗;β) ≤ 0 versus H

(2)
A : ∆(t∗;β) > 0

and we shall reject H
(2)
0 when ∆(t∗; β̂) > c2 for some constant c2.

We shall apply the Delta method of Theorem 5.1 where the MLE β̂ is substituted

for θ̂. Let Σ be the covariance matrix of β̂ in Equation (5.12). Then, the variance

of the parametric estimate for the difference in RMST is

V ar(∆(t∗; β̂)) =
1

n

[
∂

∂β
∆(t∗;β)

]T
Σ

[
∂

∂β
∆(t∗;β)

]
. (5.15)

To test this hypothesis with significance level α and power 1−β when ∆(t∗;β) =

D2, we require the sample size

n(2) =
V2 (Φ

−1(1− α) + Φ−1(1− β))
2

D2
2

where V2 = nV ar(∆(t∗; β̂)) given in Equation (5.15).

Finally, we shall find the sample size required when we perform an analysis using

a non-parametric Kaplan-Meier RMST estimate. The non-parametric estimate

∆̂(t∗;β) is found using similar methods to the exponential distribution example.

Since there is no censoring, ∆̂(t∗;β) and V ar(∆̂(t∗;β)) are calculated using

simulation. These values can be accurately estimated by using a large sample of

n = 104 patients. We shall test the hypothesis

H
(3)
0 : ∆(t∗;β) ≤ 0 versus H

(3)
A : ∆(t∗;β) > 0

and we shall reject H
(3)
0 when ∆̂(t∗;β) > c3 for some constant c3.

For this test with significance level α and power 1− β when ∆(t∗;β) = D3, we

require the sample size

n(3) =
V3 (Φ

−1(1− α) + Φ−1(1− β))
2

D2
3

where V3 = nV ar(∆̂(t∗;β)).

We shall now compare the sample sizes n(1), n(2) and n(3). For this comparison,

we have chosen significance level α = 0.025 and power 1−β = 0.9. Table 5.1.2 shows

the results. For this example, the range of t∗ is from 3 years to 8 years. These values

are roughly equal to the 60th and 99th percentiles of the time-to-event observations
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under HA when D1 = β2 = 0.1. Similarly to Section 5.1.7, there is no censoring

in this example so non-parametric estimates for ∆̂(t∗;β) can be calculated for all

values of t∗. However for models with censoring, calculation of ∆̂(t∗;β) is likely to

be unobtainable for t∗ > 6 since 6 years is roughly equal to the 95th percentile in

each model.

t∗ β2 D1 V1 n(1) D2 V2 n(2) D3 V3 n(3)

3 0.08 0.08 0.42 697.6 0.06 0.24 697.7 0.06 2.04 6542.5

4 0.08 0.08 0.42 697.6 0.12 0.90 698.3 0.11 3.50 2810.3

5 0.08 0.08 0.42 697.6 0.18 2.06 695.9 0.17 4.76 1681.1

6 0.08 0.08 0.42 697.6 0.22 3.32 692.7 0.22 5.57 1177.4

7 0.08 0.08 0.42 697.6 0.25 4.22 692.9 0.26 5.99 953.1

8 0.08 0.08 0.42 697.6 0.27 4.68 697.8 0.26 6.13 940.1

Inf 0.08 0.08 0.42 697.6 0.27 4.92 707.2 0.27 6.19 897.9

3 0.10 0.10 0.42 436.2 0.07 0.23 436.3 0.08 2.05 3774.5

4 0.10 0.10 0.42 436.2 0.15 0.88 437.1 0.14 3.54 1882.0

5 0.10 0.10 0.42 436.2 0.22 2.03 435.0 0.22 4.85 1062.8

6 0.10 0.10 0.42 436.2 0.28 3.31 431.7 0.28 5.73 764.6

7 0.10 0.10 0.42 436.2 0.32 4.30 431.3 0.32 6.21 625.9

8 0.10 0.10 0.42 436.2 0.34 4.87 435.4 0.35 6.44 567.9

Inf 0.10 0.10 0.42 436.2 0.35 5.27 446.2 0.35 6.54 573.5

3 0.12 0.12 0.41 297.2 0.09 0.22 297.2 0.09 2.05 2570.1

4 0.12 0.12 0.41 297.2 0.17 0.86 298.1 0.17 3.57 1243.0

5 0.12 0.12 0.41 297.2 0.27 2.00 296.3 0.27 4.92 694.4

6 0.12 0.12 0.41 297.2 0.34 3.31 292.9 0.34 5.88 526.3

7 0.12 0.12 0.41 297.2 0.40 4.38 291.9 0.40 6.46 432.5

8 0.12 0.12 0.41 297.2 0.42 5.07 295.0 0.42 6.72 392.0

Inf 0.12 0.12 0.41 297.2 0.44 5.70 307.3 0.43 6.96 386.7

Table 5.1.2: Comparing the efficiency of three method for the non-proportional
hazards model.

The results of the non-proportional hazards model are similar to the results from

the proportional hazards model; the test based on differences in parametric RMST

estimates is efficient as n(2) is only slightly higher than n(1) in most cases. Again,

when n(2) < n(1), this is because the Delta method is only approximate and the

tests are under-powered for these cases. The test based on the difference in non-
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parametric RMST estimates is highly inefficient as n(3) is much greater than n(1) in

all cases. The efficiency loss is greater for this non-proportional hazards model than

for the exponential distributions example.

We conclude that a test based on differences in parametric RMST estimates

is appropriate when the fitted model is correct and this test is close to optimal

efficiency. This test is invariant to the value of t∗. The test based on differences

in non-parametric RMST estimates is highly dependent on t∗ and is inefficient.

However, this test requires fewer model assumptions.
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5.2 | Joint modelling

5.2.1 | Joint model

We consider the same form of joint model as presented in Section 4.1, but now

we add a treatment effect to the model for the biomarker value. In this section, we

shall present the joint model, discuss model fitting by maximum likelihood using the

Expectation Maximisation (EM) algorithm, and present some asymptotic results for

the RMST estimate. Then, we shall be equipped to perform both fixed sample and

group sequential trials based on the RMST estimate for this joint model.

Suppose that Xi(t) is the true value of the biomarker at time t for subject

i and that Wi(t) is the observed value of the biomarker at time t for patient

i. Let Zi = I{patient i receives the new treatment} be the indicator function for

treatment. Then the longitudinal model takes the form

Wi(t) = b0i + (b1i + b2Zi)t+ ϵi(t)

= Xi(t) + ϵi(t)

where bi = (bi0, bi1) is a vector of patient specific random effects, b2 is a fixed

treatment effect and ϵi(t) is the measurement error. The purpose of b2 is to ensure

that the means of the slope of the longitudinal trajectory differ between treatment

groups.

For model fitting, we must impose some distributional assumptions upon this

model. We require that the measurement errors in the longitudinal data independent

and identically distributed for each patient. Suppose that the biomarker for patient

i is measured at times ti1, . . . timi
, then ϵi(tij)|bi ∼ N(0, σ2) for j = 1, . . . ,mi and

ϵi(t) and ϵi(t
′) are independent for t ̸= t′. We shall assume that the random effects,

b1,b2, are from a Gaussian distribution, specifically[
bi0

bi1

]
∼ N

([
µ0

µ1

]
,

[
ϕ2
0 0

0 ϕ2
1

])
.

This allows use of the Gauss-Hermite quadrature rule for efficient computation of

maximum likelihood estimates. There is no immediately obvious reason to suggest

that the random effects bi0 and bi1 should be correlated and for this reason, we have

assumed independence. This assumption means that there is one less parameter

to estimate and simplifies the calculation of the maximum likelihood estimate.

However, if there is reason to believe that the random effects are correlated then
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the methodology can be readily extended. In Section 2.3.2, we described how the

Gauss-Hermite quadrature rule can be used to evaluate integrals over random effects

in both cases where the random effects are independent and correlated.

For the survival endpoint, the longitudinal data is modelled as a time-varying

covariate. In the general model, the hazard function is

hi(t) = h0(t) exp{γXi(t) + ηTZi}, (5.16)

where h0(·) is the baseline hazard function. The longitudinal data has corresponding

scalar coefficient γ. The remaining covariates for patient i are given by the p × 1

column vector Zi which has corresponding coefficient vector η of length p. For

the example in this chapter, we consider a single patient coefficient which is the

treatment indicator Zi = I{patient i receives the new treatment}. Therefore, the

parameter η is a scalar coefficient and summarises the treatment effect that directly

affects survival. In summary, the joint model has the form

Wi(t) = b0i + (b1i + b2Zi)t+ ϵi(t) (5.17)

hi(t) = h0(t) exp{γ(b0i + (b1i + b2Zi)t) + ηZi}. (5.18)

To perform and analyse a trial using the joint model, the data that must

be collected for each individual i = 1, . . . , n is the vector {Wi(tij), j =

1, . . . ,mi}, Zi, ti, δi) where

� (Wi(ti1), . . . ,Wi(timi
)) are biomarker measurements,

� Zi = I{patient i receives the new treatment},

� ti is the event time,

� δi = I{Fi ≤ Ci} is the indicator function for censoring, so that δi = 1 implies

an exact observation.

One should note the difference between ti and tij, where ti is the survival event time

and tij represents a longitudinal observation time.

5.2.2 | Parameter estimation

To find an estimate for the difference in restricted mean survival times between

treatment arms for this model, we must have a method for estimating all the

parameters of the model. We shall assume that this model is fully parametric so

that the form of h0(t) is specified and the parameters in h0(t) can be estimated.
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Let the vector θ represent all the parameters in the joint model Equations (5.17)-

(5.18). The vector θ is given by (µ0, µ1, ϕ0, ϕ1, b2, σ
2, γ, η) and any parameters in

the baseline hazard function. Denote the maximum likelihood estimate for θ by θ̂.

First, we can find survival functions S0(t; θ̂) and S1(t; θ̂) using methods described in

Section 2.2 and substituting in θ̂ for θ. Then, these survival functions are substituted

into Equation (5.1) to calculate the difference in RMST, ∆(t∗; θ̂). We shall discuss

how the Expectation Maximisation (EM) algorithm can be used to find maximum

likelihood estimates for models with random effects.

In Section 3 of their paper, Tsiatis and Davidian (2004) present an expression for

the full likelihood function of a joint model. For the joint model of Equations (5.17)–

(5.18), the likelihood function is

n∏
i=1

∫ ∫
hi(ti)

δi exp

[
−
∫ ti

0

hi(u)du

]
1

(2πσ2)mi/2

× exp

[
−

mi∑
j=1

Wi(tij)− (b0i + (b1i + b2Zi)t)
2

2σ2

]
f(b0i, b1i)db0idb1i (5.19)

where

hi(u) = h0(u) exp{γ(b0i + (b1i + b2Zi)u) + ηZi}.

It is clear that the computation of this likelihood will be time consuming because

of the integration over the random effects b0i and b1i for each i = 1, . . . , n.

Dempster et al. (1977) present an algorithm called the Expectation Maximisation

(EM) algorithm which is a method for finding maximum likelihood estimates (MLEs)

when there are latent variables (in this case random effects) in the model. The EM

algorithm consists of two steps; the E-step, where a function for the expectation

of the complete data log-likelihood is found using the current estimate for the

parameters, and the M-step, where the parameters that maximise this function are

calculated. Note that during the E-step, the complete data log-likelihood function is

constructed as if the values of the random effects are known. This is different to the

observed data log-likelihood seen in Equation (5.19). These steps are iterated until

a local maximum is found. Further, Dempster et al. (1977) discuss the convergence

of the EM algorithm in the finite sample case and prove that this algorithm truly

returns a maximum likelihood estimate.

Rizopoulos (2012) presents an R package for joint modelling which implements

the EM algorithm to find the parameter estimates of the joint model. Further, the

R package by Rizopoulos (2012) makes use of the Gauss-Hermite quadrature rule

for use in the M-step, which was introduced in Section 2.3.2. Note that using Gauss-
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Hermite integration is only appropriate when the random effects are assumed to be

normally distributed, however it can reduce computation times dramatically, which

is an attractive feature.

5.2.3 | Asymptotic results for θ̂ and RMST

We wish to design a group sequential trial with K analyses. Let θ be a p× 1 vector

of parameters in the joint model given by Equation(5.18). Suppose that we have a

trial with K analyses and that θ̂
(k)

is the vector of estimates found at analysis k for

each k = 1, . . . , K. These are maximum likelihood estimates found using the EM

algorithm. In Section 4.1 we proved the asymptotic distribution for a sequence of

estimates that are the solutions to estimating equations. We also showed that for

MLEs, the sequence of estimates has the canonical joint distribution. Let Σk be the

covariance matrix for θ̂
(k)

at analysis k. Then, for this joint model, we have

1. (θ̂
(1)
, . . . , θ̂

(K)
) is multivariate normally distributed

2. θ̂
(k)

∼ N (θ,Σk) for 1 ≤ k ≤ K

3. Cov(θ̂
(k1)

, θ̂
(k2)

) = Σk2 for 1 ≤ k1 ≤ k2 ≤ K.

At analysis k, the difference in restricted mean survival times is estimated

by ∆(t∗; θ̂k). We aim to show that the sequence ∆(t∗; θ̂1), . . . ,∆(t∗; θ̂K) has the

canonical joint distribution Definition 2.2. We have previously seen in Section 5.1.4

that the difference in RMST estimates is asymptotically normally distributed.

Therefore, it is appropriate to perform a fixed sample test using RMST methods.

We now extend this theory to show that a GST design is also possible using the

RMST framework.

We follow the method in Section 2.2 to calculate the survival functions. The

survival functions can then be substituted into Equation (5.1) to calculate an

estimate for the difference in RMST. We begin with the hazard rate for the

joint model, and in order to find a difference in RMST between treatment groups

we shall use different notation for the hazard function. The hazard function in

Equation (5.18) is

hi(t;θ, Zi, b0i, b1i) = h0(t) exp{γ(b0i + (b1i + b2Zi)t) + ηZi}.

The cumulative hazard function is given by

Hi(t;θ, Zi, b0i, b1i) =

∫ t

0

h0(u) exp{γ(b0i + (b1i + b2Zi)u) + ηZi}du.
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Let S0(t;θ) and S1(t;θ) be the survival functions, integrated over the random

effects b0 and b1, for patients on the control and treatment arms respectively.

Following the methods in Section 2.2, the survival functions are given by

S0(t) =

∫ ∞

−∞

∫ ∞

−∞
exp{−Hi(t;θ, 0, b0i, b1i)} db0i db1i

=

∫ ∞

−∞

∫ ∞

−∞
exp

{
−
∫ t

0

h0(u) exp{γ(b0i + b1iu)} du
}

db0i db1i

S1(t) =

∫ ∞

−∞

∫ ∞

−∞
exp{−Hi(t;θ, 1, b0i, b1i)} db0i db1i

=

∫ ∞

−∞

∫ ∞

−∞
exp

{
−
∫ t

0

h0(u) exp{γ(b0i + (b1i + b2)u) + η} du
}

db0i db1i

Then the difference in restricted mean survival times is

∆(t∗;θ) =

∫ t∗

0

[S1(t;θ)− S0(t;θ)]dt.

Gauss-Hermite integration can be used to efficiently calculate the integrals over b0

and b1.

The information levels, I1, . . . , IK are the reciprocals of the variance of

∆(t∗; θ̂
(1)
), . . . ,∆(t∗; θ̂

(K)
). For each analysis k = 1, . . . , K we have the p×p variance

matrix of the the parameter estimates given by Σk = V ar(θ̂
(k)
) and the information

for ∆(t∗; θ̂
(k)
) is

I−1
k =

1

n

[
∂∆(t∗;θ)

∂θ

∣∣∣∣
θ=θ̂

(k)

]T
Σk

[
∂∆(t∗;θ)

∂θ

∣∣∣∣
θ=θ̂

(k)

]
. (5.20)

We now show that the covariance structure of the canonical joint distribution

holds. In the following proof, we use the Taylor expansion theory which requires

some regularity conditions to hold. We assume that Conditions 3.2 hold where the

function Gn(θ,x
(k)
n ) represents the function ∆(t∗; θ̂

(k)
), dependent on data x

(k)
n .

Theorem 5.2. Let θ be a p × 1 vector of parameters in model (5.18) and let

θ0 be the true value of θ. Suppose that θ̂
(k)

is the maximum likelihood estimate

for θ found at analysis k of a group sequential trial with K analyses. Let the

estimated difference in restricted mean survival times at analysis k be ∆(t∗; θ̂
(k)
)

and let I1, . . . , IK be the information levels for ∆(t∗; θ̂
(k)
), . . . ,∆(t∗; θ̂

(K)
) given by

Equation (5.20). Then, the canonical joint distribution holds for the sequence of

estimates ∆(t∗; θ̂
(1)
), . . . ,∆(t∗; θ̂

(K)
). That is

1.
(
∆(t∗; θ̂

(1)
), . . . ,∆(t∗; θ̂

(K)
)
)
is multivariate normally distributed

170



5.2. Joint modelling

2. ∆(t∗; θ̂
(k)
) ∼ N(θ, I−1

k ) for 1 ≤ k ≤ K

3. Cov
(
∆(t∗; θ̂

(k1)
),∆(t∗; θ̂

(k2)
)
)
= I−1

k2
for 1 ≤ k1 ≤ k2 ≤ K.

Proof. The proof of this theorem uses the Taylor expansion of the function ∆(t∗;θ).

First note that the parameter θ is a p×1 column vector and that θ−θ0 has the same

dimension. Further, the function ∆(t∗;θ) returns a scalar, so that ∂/∂θ (∆(t∗;θ))

will be a p× 1 column vector. Regularity conditions 6 and 7 of conditions 3.2 allow

us to perform the following Taylor expansion. The Taylor expansion of ∆(t∗;θ)

around θ0 is

∆(t∗;θ) = ∆(t∗,θ0) +

[
∂

∂θ
∆(t∗;θ)

∣∣∣∣
θ=θ∗

]T
(θ − θ0)

where θ∗ lies on the line segment between θ0 and θ.

For each k = 1, . . . , K, we shall apply this Taylor expansion at the point θ = θ̂
(k)
.

Therefore, for each k = 1, . . . , K, we have

∆(t∗; θ̂
(k)
) = ∆(t∗,θ0) + ∆′(t∗;θ∗(k))T (θ̂

(k)
− θ0)

where θ∗(k) lies on the line segment between θ0 and θ̂
(k)

and ∆′(t∗;θ∗(k)) =

∂/∂θ (∆(t∗;θ)|θ=θ∗(k)) is shorthand notation.

For each k = 1, . . . , K, the parameter estimate θ̂
(k)

is consistent for θ0. We have

that θ∗(k) lies on the line segment between θ and θ̂
(k)

and the difference between

θ∗(k) and θ0 is asymptotically negligible. Therefore for each k = 1, . . . , K we have

approximately

∆(t∗; θ̂
(k)
) = ∆(t∗,θ0) + ∆′(t∗;θ0)

T (θ̂
(k)

− θ0). (5.21)

The proof that the first condition holds follows by stacking Equations (5.21)

for each k = 1, . . . , K. By property 1 of the canonical joint distribution for

the sequence of MLEs θ̂
(1)
, . . . , θ̂

(K)
, we have that (θ̂

(1)
, . . . , θ̂

(K)
) is multivariate

normally distributed. Then, Slutsky’s Theorem can be applied to the vector of

stacked equations (see Theorem 3.1 for an example of applying Slutsky’s Theorem).

This also follows by the multivariate version of the Delta method of Theorem 5.1

given by Doob (1935).

It is clear that the second condition holds by the Delta method of Theorem 5.1

and for each k = 1, . . . , K,

∆(t∗; θ̂
(k)
) ∼ N(θ, I−1

k ).
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It remains to prove property 3. Using the approximation in Equation (5.21), the

covariance is given by

Cov
(
∆(t∗, θ̂

(k1)
),∆(t∗, θ̂

(k2)
)
)

=Cov
(
∆(t∗,θ0) + ∆′(t∗;θ0)

T (θ̂
(k1) − θ0),∆(t∗,θ0) + ∆′(t∗;θ0)

T (θ̂
(k2) − θ0)

)
=∆′(t∗; θ̂

(k1)
)TCov

(
θ̂
(k1)

, θ̂
(k2)
)
∆′(t∗; θ̂

(k2)
).

By property 3 of the canonical joint distribution for the sequence of MLEs

θ̂
(1)
, . . . , θ̂

(K)
, we have that Cov(θ̂

(k1)
, θ̂

(k2)
) = Σk2 and we see the result

Cov
(
∆(t∗, θ̂

(k1)
),∆(t∗, θ̂

(k2)
)
)
= ∆′(t∗; θ̂

(k1)
)TΣk2∆

′(t∗; θ̂
(k2)

) = I−1
k2

.

We have shown that the canonical joint distribution for the sequence of estimates

∆(t∗; θ̂1), . . . ,∆(t∗; θ̂K) holds asymptotically and hence, a group sequential trial

can be performed using the RMST method. In Section 5.3 we shall perform some

simulation studies to show that this is the case in a moderately sized trial.
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5.3. Simulation study of the restricted mean survival time estimates

5.3 | Simulation study of the restricted

mean survival time estimates

5.3.1 | Design choices and parameter values for

simulation studies

When using the restricted mean survival time as an analysis tool within a clinical

trial, there are many choices to be made concerning the design of the trial. One

design aspect is the functional form of the baseline hazard function. We propose

using a piecewise constant baseline hazard function for computational efficiency and

we discuss the number and positions of the knot points for a model that can be

used in a group sequential trial. Considering all of these design aspects, we can then

calculate the sample size for a fixed sample trial given a desired power. We shall

also present some typical parameter values which we use in the simulation of data

for analysis of the joint model given by Equation (5.18). Some reasoning for these

choices is presented. In Section 5.4 we shall inspect some properties of the fixed and

group sequential trials as we vary these parameters. We perform simulation studies

to ensure confidence in the distributional results for the estimate of the difference

in restricted mean survival times.

For clarity, the joint model is presented again here. The longitudinal data is

assumed to follow a random effects model. For patients i = 1, . . . , n, let Zi =

I{patient i receives the new treatment} be the indicator function for treatment,

then the longitudinal observations are given by

Wi(t) = bi0 + (b1i + b2Zi)t+ ϵi(t)

where [
bi0

bi1

]
∼ N

([
µ0

µ1

]
,

[
ϕ2
0 0

0 ϕ2
1

])
ϵi(t)|bi ∼ N(0, σ2).

The hazard function for the survival part of the model is given by

hi(t) = h0(t) exp{γ(bi0 + (b1i + b2Zi)t) + ηZi}.

Throughout this chapter, we have chosen to use a piecewise constant baseline hazard
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5.3. Simulation study of the restricted mean survival time estimates

function. The main reason for this is computational efficiency as this results in an

analytic solution for integrating the hazard function. This integration is needed to

calculate the survival function Si(t) which is required for both the RMST estimate

and its variance. When performing simulation studies with a large number of Monte

Carlo replicates, this computational efficiency is an attractive feature.

Similarly to the value of t∗, we believe that the knot points should be chosen

based on clinical meaning to reflect changes in the shape of the survival curve, and

should be specified during the design of a clinical trial. In the examples, we shall

focus on models with a single knot point. This is because of the complications that

arise when designing a group sequential trial that uses a piecewise constant baseline

hazard function and we shall expand on the choice of knot points in Section 5.3.3.

We believe that, although simple, this model is meaningful and reflects many true

scenarios regarding survival data. A piecewise constant baseline hazard function

with one knot point placed at t1 is defined by

h0(t) =

{
c1 if t ≤ t1

c2 if t > t1
. (5.22)

An analytic expression for the cumulative hazard function for the joint model in

Equation (5.18) is therefore given in two parts.

For t ≤ t1:

Hi(t) =

∫ t

0

c1 exp{γ(b0i + (b1i + b2Zi)u) + ηZi}du

=
c1 exp{γb0i + ηZi}

γ(b1i + b2Zi)
[exp{γt(b1i + b2Zi)} − 1].

For t > t1:

Hi(t) =

∫ t1

0

c1 exp{γ(b0i + (b1i + b2Zi)u) + ηZi}du

+

∫ t

t1

c2 exp{γ(b0i + (b1i + b2Zi)u) + ηZi}du

=
exp{γb0i + ηZi}
γ(b1i + b2Zi)

[(c1 − c2) exp{γt1(b1i + b2Zi)}+ c2 exp{γt(b1i + b2Zi)} − c1]

and the survival function for patient i is then

Si(t) = exp{−Hi(t)}, for t > 0.

We are using the JM package by Rizopoulos (2010) to perform the parameter
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5.3. Simulation study of the restricted mean survival time estimates

estimation of this model, which uses the expectation maximisation (EM) algorithm.

Alternative options for the baseline hazard function, which are permitted within

this package, include Weibull and spline models. If specifying knot points is non

desirable, then the user might wish to use a Weibull baseline hazard function.

In this case the survival function must be calculated using numerical integration.

Alternatively, one could specify a spline function as the baseline hazard function to

avoid the jumps in piecewise constant function. The spline baseline hazard however

requires numerical integration and specifying knot points.

Similarly to the first model, Equations (4.1)–(4.3) of Chapter 4, we have designed

the study with non-informative censoring with roughly 10% of patients being

censored. This is done by setting the distribution of the censoring random variable

for patient i as Ci ∼ exp{λ} and λ is chosen using trial and error to attain 10% of

observations being censored.

We shall simulate in the case

(µ0, µ1) = (3, 1), ϕ0 = 1.2, ϕ1 = 0.25, b2 = −0.4, σ2 = 1, (5.23)

γ = 0.035, η = −0.4, c1 = 5.32, c2 = 4.43, t1 = 1, λ = 0.022

which reflects that we are simulating under HA. In later sections, we set η = 0

and b2 = 0 when we simulate under H0. For notation, let θ denote the set

of all parameters in the model. In Figure 5.3.1, examples of four randomly

selected patients’ longitudinal trajectories can be seen. This plot shows that the

measurement error σ2 = 1 is such that the true underlying biomarker trajectory can

easily be estimated however there is still a realistic amount of noise surrounding the

measurements. In later Sections, we shall increase this value of σ2 to understand

how the model reacts to extremely noisy measurements.
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Figure 5.3.1: Longitudinal observations of four randomly selected patients with
parameter values (5.23). Blue dots are patients on the treatment

arm and red are for patients on control arm.

We can also see from Figure 5.3.1, that there is some variation in the slope

terms of the biomarker trajectories. However, all trajectories are increasing to

reflect a worsening condition over time and also patients on the treatment arm

are not increasing as rapidly. The variance-covariance matrix of the random

effects b1, . . . ,bn determines by how much these intercept and slopes vary, and

this variation carries through into the hazard function. Figure 5.3.2 shows the

survival function for patients with different underlying biomarker trajectories: a

survival function for a patient with mean values of b0 and b1 is given by the solid

line, and dotted lines show the survival function for patients 1 standard deviation

of both b0 and b1 above and below their respective means. For this model, we set
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ϕ0 = 1.2 and ϕ1 = 0.25. In the first model of Chapter 4, we simulated under the

case ϕ0 = 3.5 and ϕ1 = 2.5. Therefore, the variance of the random effects terms are

not as great as in the first model indicating that patients trajectories are similar

within a treatment arm. A similar plot using the AIDS data set in the R package

JM written by Rizopoulos (2010) is included for comparison, which shows that the

effect of the biomarker heavily outweighs that of the treatment effect in the hazard

function. However, the treatment effect is very small in the AIDS data set. Our

chosen parameter values are therefore acceptable with respect to the amount of

information that comes from the longitudinal data.

Figure 5.3.2: Survival function for the simulated data and from AIDS data set.
The survival function for a patient with mean values of b0 and b1 is
given by the solid line, and dotted lines show the survival function

for patients 1 standard deviation of both b0 and b1 above and
below their respective means.

Other variables which impact the survival function are the difference in slopes

of longitudinal measurements between treatments, b2, and the coefficient of the

longitudinal data, γ. In Section 5.4 we shall vary these parameters to see how

properties of the trial change. In Figure 5.3.3 we see the overall distribution of

the time-to-event observations. This histogram shows the survival times of 1000

randomly generated patients under this model and parameter choices described

above. At the final analysis at 5 years, roughly 60% of events have occurred, as

intended. The median survival time for the data set is 3.25 years.
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Figure 5.3.3: Histogram of survival times for generated patients on control and
treatment arms combined using parameter values (5.23).

5.3.2 | Fixed sample simulations

To ensure that the large sample theoretical results of Section 5.2 hold in a moderately

sized trial, we now perform some simulation studies using the parameter values

described above. For a fixed sample trial, we are aiming to show that the RMST

estimates are asymptotically normally distributed and that the delta method gives

an accurate estimate for the variance. We shall also check that the marginal

distributions of the RMST estimates in a group sequential trial are asymptotically

normally distributed and that the covariances of RMST estimates between analyses

have the required canonical joint distribution structure.
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To perform a fixed sample clinical trial using the RMST method, we test the

hypothesis

H0 : ∆(t∗;θ) ≤ 0, HA : ∆(t∗;θ) > 0

where θ is the true set of all parameters in the joint model given by Equation (5.18).

We shall simulate under H0 and HA with values (5.23). When simulating under H0

we use η = 0 and b2 = 0 and we shall use η = −0.4 and b2 = −0.4 as an example

for simulating under HA.

The main choice when performing an analysis which uses RMST methods, is

the choice of t∗. We have previously discussed how this value should be chosen

based on clinical meaning and throughout this report, we will consider the 3-year

restricted mean survival time difference. The structure for this clinical trial is 2 years

recruitment and 3 years follow-up and hence we expect to observe the trajectories

of many patients past 3 years. In Section 5.1.6 we discuss that t∗ should not exceed

the maximum follow-up time but increasing t∗ may lead to smaller sample sizes. In

the results, Section 5.4, we shall we simulate a subset of clinical trials with t∗ = 5

to observe the potential sample size reduction from increasing t∗ and compare these

to the results with t∗ = 3.

In Section 5.1.4, we proved theoretically using the Delta method, that the

estimate of the difference in RMST between treatment arms, ∆(t∗; θ̂) is normally

distributed. Further, if the standardised statistic is considered, this is also

approximately normally distributed. We shall simulate standardised estimates

centered on zero. These are given by

Z(η, b2) =
(
∆(3; θ̂)−∆(3;θ)

)√
I.

Let Znull = Z(0, 0) be the random variable simulated under H0 with η = 0 and

b2 = 0 and let Zalt = Z(−0.4,−0.4) be the random variable for the standardised

statistic simulated under HA with η = −0.4 and b2 = −0.4. We can compare the

simulated centered statistics with the theoretical distributions

Znull ∼ N(0, 1) Zalt ∼ N(0, 1).

Similarly to Section 4.3.2, we have chosen to center these statistics on zero so that

the mean of the theoretical distribution is know. If the statistics were not centered,

then we would need to know the true value of I in order to find the mean of Znull

and Zalt.

A method for choosing a suitable sample size n is described in Section 5.1.5. We

simulate a large data set with 104 patients under HA with η = −0.4 and b2 = −0.4.
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The data set is then truncated at time 5 years to reflect end of study censoring

in the fixed sample trial. The variance-covariance matrix, Σ, for the full set of

parameters, is estimated using this large data set. Using this estimate for Σ and the

choice t∗ = 3, the sample size required for significance level α = 0.025 and power

1− β = 0.9 is given by n = 460.

The histograms and QQ-plots in Figure 5.3.4 show 104 estimates of Znull and

Zalt. Each estimate is found by simulating a fixed sample clinical trial with n = 460

patients, calculating the estimates ∆(3; θ̂) and V ar(∆(3; θ̂)), and standardising the

estimate. It is clear that the estimates are normally distributed. In the histograms,

the estimates simulated under the null hypothesis closely match the probability

density function of a N(0, 1) distribution which is shown in red and the estimates

simulated under the alternative hypothesis, centered on zero, closely match the

probability density function of a N(0, 1). Also, the quantiles of the sampled Z

values clearly match the quantiles of the theoretical distributions as shown by the

QQ-plots.
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Figure 5.3.4: Fixed sample simulations for standardised statistic under null and
alternative hypotheses.

5.3.3 | Group sequential simulations

For a clinical trial which uses the RMST framework, the group sequential trial

analysis needs slightly more consideration than the fixed sample trial. The main

challenge in designing a group sequential trial is to ensure that parameters are

identifiable and also the parameter estimates follow large sample theory. At an

early interim analysis, there may be no or very few individuals followed up beyond
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a certain knot point, and there will be no or very little information on a parameter

in h0(t). We suggest there should be at least 30 events between successive knot

points observed at every analysis time. Jennison and Turnbull (1989) investigate

the implications of the normal approximation assumption for group sequential tests

when a small number of failures occurs. They observe that problems arise when

fewer than roughly 25 failures occur at the first interim analysis. Further, there

may be information available to estimate parameters in h0(t), but little or no late

follow up to allow checking of model assumptions and therefore, extrapolation of

survival function estimates should also be taken into consideration.

In Section 5.4, we shall compare the fixed sample and group sequential designs

for the joint model in Equation (5.18). We are interested in comparing the length

of the trials in time in order to assess the benefits of potential early stopping in the

group sequential trial. The number of patients shall remain constant between fixed

and group sequential trials and therefore, to maintain equal power, the time of the

analyses shall be varied in the group sequential trial. The probability of stopping

before all patients are recruited is low, so the expected sample size on stopping is

not likely to be reduced in the GST.

To choose the times of analyses, we first determine the relationship between

calendar time and information. The true variance, Σ, of the parameter estimates θ̂

in Equation (5.18) is unknown and therefore the relationship between calendar time

and information, I, must be estimated. Figure 5.3.5 provides a visual representation

of the relationship and the following steps describe how this relationship is

determined for a particular choice of parameter values for θ:

1. A large sample of 5000 patients’ event times, biomarker observations, arrival

times and censoring times are simulated with the chosen parameter values

for θ. This simulation occurs under HA with particular choices η ̸= 0 and

b2 ̸= 0.

2. For each time point along the x-axis, this data set is truncated and the

information level is calculated using the delta method.

3. Note that this information is calculated using a sample size of 5000 patients

and denote this information level as I5000.

4. For the fixed sample trial, we recruit n patients (n = 460 for parameter

values (5.23), see Section 5.3.2). The asymptotic results of Section 5.1.4

determine the distribution of the estimate ∆(t∗; θ̂n) as n → ∞ and the

relationship I ∝ n holds. Therefore, let the final information level for this

time point on the x-axis be I = nI5000/5000.
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5. A log function is then fit to these corresponding time points and information

levels.

Figure 5.3.5: Information level estimates against calendar time based on a large
sample of 5000 patients simulated with parameter values (5.23) for

θ.

As previously alluded to, it is important that there are enough observed events

occurring in between the knot points and times of interim analyses. This is required

so that the large sample theory holds for parameter estimation. Let τ1, . . . , τK be

the calendar times of the interim analyses and let t1 be the time of the knot point in

the baseline hazard function. As a reminder, we have chosen to use a model with a

single knot point. Suppose that t̃1, . . . , t̃n are the survival times of patients 1, . . . , n.

Note that the calendar time at which the event occurs for patient i is t̃i + ai where

ai is the arrival time of patient i. To ensure that the parameters of the model can

be estimated, there must be at least one event between successive knot points and

analysis times. That is we require
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� 0 < t̃1 < τ1 < · · · < τK

� {i : 0 < t̃i ≤ t1} ≠ ϕ

� {i : t1 < t̃i ≤ τ1} ≠ ϕ.

For models that use m > 1 knot points, this theory can be extended to ensure that

all the model parameters are identifiable at the first interim analysis. In particular,

the final point becomes {i : tm < t̃i ≤ τ1} ≠ ϕ and we must also ensure that there

are events occurring inbetween successive knot points so that {i : tj−1 < t̃i ≤ tj} ≠ ϕ

for j = 2, . . . ,m.

Further, to ensure that the large sample theory holds, there should be a

substantial number of events occurring, not just one. For this, we require the size

of each of the above sets to be at least 30. We believe that 30 failures is sufficiently

large so that the normal approximation of the parameter estimates is accurate based

on findings by Jennison and Turnbull (1989).

We now describe a method for designing a group sequential trial and choosing

where to place analysis times.

1. Using the steps above or reading off Figure 5.3.5, calculate the value of If for

a fixed sample trial that terminates at calendar time 5 years.

2. Using methods described in Section 2.1.3 and error spending functions

be f(t) = min{αt2, α} and g(t) = min{βt2, β}, calculate the maximum

information level Imax. This is the value such that the trial has power 1 − β

when ∆(t∗;θ) = δ, the final boundary points ak and bk are equal and is

calculated under the assumption that information levels are equally spaced.

3. Let I(1)
1 = Imax/K and set τ

(1)
1 as the calendar time corresponding to this I(1)

1

using the log relationship.

4. With the simulated data from step 1 with values chosen for θ and under

HA with particular choices η ̸= 0 and b2 ̸= 0, obtain values t̃1, . . . , t̃5000 and

a1, . . . , a5000.

5. Determine the time at which 30 event times occur in a sample of n patients

by finding the (30/n)-th percentile of values t̃1+ a1, . . . , t̃5000+ a5000. Call this

value τ
(2)
1 .

6. Let τ1 = max{τ (1)1 , τ
(2)
1 } and use the log relationship to calculate I1 as the

information level for τ1.
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7. Set I2, . . . , IK−1 equally spaced between I1 and IK and find corresponding

analysis times τ2, . . . , τK−1 using the log relationship.

As an example, we shall simulate data with values (5.23). This reflects that we

are simulating under a HA with η = −0.4 and b2 = −0.4. For the hypothesis test

based on the difference in 3-year restricted mean survival times with t∗ = 3, we use

an error spending test with K = 5 analyses. We design the trial with Imax = 195.2.

The resulting analysis times in months are 22.5, 30, 40, 53, 70.

In Section 5.2.3 we proved that asymptotically the sequence of estimates

∆(t∗; θ̂1), . . . ,∆(t∗; θ̂K), has the canonical joint distribution of Definition 2.2. This

is the sequence of estimates that occurs when the RMST method is applied for a

group sequential trial with K analyses. We now check that this claim is true for

a moderately sized trial using simulation. To start, we investigate the marginal

distributions of estimates ∆(3; θ̂k) for k = 1, . . . , K. The standardised statistic at

analysis k, centered on zero, is given by

Zk =
(
∆(3; θ̂k)−∆(3;θ)

)√
Ik for k = 1, . . . , K

and we can compare these estimates to the theoretical distribution

Zk ∼ N(0, 1).

Figures 5.3.6 and 5.3.7 show the result of this simulation study. Figure 5.3.6 was

simulated under H0 with η = 0 and b2 = 0 and Figure 5.3.7 was simulated under

HA with η = −0.4 and b2 = −0.4. The Q-Q plots and histograms confirm that the

distribution N(0, 1) gives a good fit for Zk for each k = 1, . . . , K.
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5.3. Simulation study of the restricted mean survival time estimates

Figure 5.3.6: Histogram and QQ plots for simulated RMST estimates in the
joint model under H0 using η = 0 and b2 = 0 for each analysis in a

group sequential trial using 104 replicates.
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Figure 5.3.7: Histogram and QQ plots for simulated RMST estimates in the
joint model under HA using η = −0.4 and b2 = −0.4 for each

analysis in a group sequential trial using 104 replicates.

Further, to assess whether the canonical joint distribution of Definition 2.2 holds,

we also assess the covariance structure of the estimates ∆(3; θ̂1), . . . ,∆(3; θ̂K). Let

Ik be the information level obtained at analysis k and let Zk be the standardised

statistic from analysis k. By the third property of Definition 2.1, for the canonical
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joint distribution to be true, we should have that

Cov(Zk1 , Zk2) =

√
Ik1

Ik2

for k1 ≤ k2.

To assess whether this property holds, we calculate E(Cov(Zk1 , Zk2)) using Monte

Carlo methods by estimating Ik1 and Ik2 for each simulation. Then, we can compare

this to Ĉov(Zk1 , Zk2) which is found by taking the covariance of all the Zk1 and Zk2

in the simulations. Tables 5.3.3 and 5.3.6 show the results. We can see that there

is little difference in these matrices and the small deviations are consistent with

sampling error.


1.042 0.810 0.669 0.577 0.509
0.810 1.040 0.852 0.730 0.652
0.669 0.852 1.021 0.874 0.784
0.577 0.730 0.874 1.005 0.901
0.509 0.652 0.784 0.901 1.006


Table 5.3.1: Under H0 with

η = 0, b2 = 0


1.004 0.764 0.621 0.534 0.477
0.764 1.001 0.807 0.697 0.625
0.621 0.807 0.984 0.852 0.766
0.534 0.697 0.852 0.992 0.889
0.477 0.625 0.766 0.889 0.995


Table 5.3.2: Under HA with

η = −0.4, b2 = −0.4

Table 5.3.3: Matrix of E(Cov(Zk1, Zk2)) for group sequential trial with K = 5
analyses with 104 replicates.


1.000 0.781 0.644 0.556 0.499
0.781 1.000 0.824 0.712 0.638
0.644 0.824 1.000 0.863 0.775
0.556 0.712 0.863 1.000 0.897
0.499 0.638 0.775 0.897 1.000


Table 5.3.4: Under H0 with

η = 0, b2 = 0


1.000 0.773 0.632 0.545 0.488
0.773 1.000 0.818 0.705 0.631
0.632 0.818 1.000 0.861 0.772
0.545 0.705 0.861 1.000 0.896
0.488 0.631 0.772 0.896 1.000


Table 5.3.5: Under HA with

η = −0.4, b2 = −0.4

Table 5.3.6: Matrix of Ĉov(Zk1 , Zk2) for group sequential trial with K = 5
analyses with 104 replicates.

Another check to assess the asymptotic covariance of the sequence of estimates

∆(3; θ̂1), . . . ,∆(3; θ̂K) is a comparison with the error spending rates for the group

sequential trial. Suppose that the canonical joint distribution holds, then the type 1

and type 2 errors will agree with the planned significance and power. This can

be expanded further with an error spending test by evaluating the probability of
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crossing the boundaries at each analysis of the group sequential trial. Under H0,

the amount of type 1 error spent at analysis k is

α(k) = Pη=0,b2=0(Continue to analysis k and cross the upper boundary at analysis k).

Under HA, when η = −0.4 and b2 = −0.4, the amount of type 2 error spent at

analysis k is

β(k) = Pη=−0.4,b2=−0.4(Continue to analysis k

and cross the upper lower boundary at analysis k).

Using error spending functions f(t) = min{αt2, α} and g(t) = min{βt2, β}, at

analysis k, we design the trial with

α(1) = f(I1/Imax)

β(1) = g(I1/Imax)

α(k) = f(Ik/Imax)− f(Ik−1/Imax) for k = 2, . . . , K

β(k) = g(Ik/Imax)− g(Ik−1/Imax) for k = 2, . . . , K.

Table 5.3.7 shows the probability of crossing each of the boundaries calculated

using 104 Monte Carlo simulations compared to the expected probability of an

error spending test. For 104 replicates, we simulate a data set and can calculate

α(1), . . . , α(K) and β(1), . . . , β(K) for each replicate. The average values of these over

all the simulations are shown in the columns headed “E(α(k))” and “E(β(k))”.

Analysis Simulation E(α(k)) Simulation E(β(k))

type 1 error type 2 error

1 0.0017 0.0013 0.0071 0.0059

2 0.0026 0.0022 0.0089 0.0105

3 0.0045 0.0041 0.0198 0.0203

4 0.0065 0.0061 0.0372 0.0302

5 0.0111 0.0112

Total 0.0264 0.0250

Table 5.3.7: Probability of crossing the boundaries in a group sequential trial
with K = 5 analyses with 104 simulated clinical trials, compared to

the expected probabilities from an error spending test.

Values for the type 2 error at the final analysis and the total have not been

included. This is because at the final analysis, the remaining amount of β is spent

190



5.3. Simulation study of the restricted mean survival time estimates

in an error spending design and the total β spent will only be equal to 0.9 if I5 = Imax

exactly. The results show that the probability of crossing the boundaries are very

close to the amount of error that is spent at each analysis.

The simulation studies for both the fixed sample and group sequential trials

confirm the asymptotic distributional results of the estimate ∆(t∗; θ̂). Therefore, we

may have confidence to perform a clinical trial based on the joint model (5.18). We

believe that this simulation study is representative of other values of the parameters

θ. Under alternative parameter values we expect to see similar distributional results

for the estimate ∆(t∗; θ̂) so long as the observed number of events between knot

points is sufficiently high, for example greater than 30 at the first interim analysis.
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5.4 | Comparison of fixed and group

sequential trial designs using the

restricted mean survival time

With the methodology in place for performing a clinical trial based on this joint

model presented in Section 5.2, we compare the results of performing this analysis for

a fixed sample versus group sequential design. The main comparison of interest will

be the stopping time of the trial, considering the average gain from early stopping in

the group sequential trial. We shall also compare the resulting number of hospital

visits per person and length of follow-up per person. Each of these outcomes is

important for a pharmaceutical company considering the trial design. The first

analysis occurs close to the end of recruitment and the probability of stopping

before the end of the trial is small. Therefore, the number of patients recruited

on completion of the study is not likely to be reduced in the group sequential trial

compared to the fixed sample trial and hence, the number of patients enrolled is not

considered.

For clarity, the joint model is presented again here. The longitudinal data is

assumed to follow a random effects model. For patients i = 1, . . . , n the longitudinal

observations are given by

Wi(t) = bi0 + (b1i + b2Zi)t+ ϵi(t)

where

�

[
bi0

bi1

]
∼ N

([
µ0

µ1

]
,

[
ϕ2
0 0

0 ϕ2
1

])

� ϵi(t)|bi ∼ N(0, σ2).

� Zi = I{patient i receives the new treatment}.

The hazard function for the survival part of the model is given by

hi(t) = h0(t) exp{γ(bi0 + (b1i + b2Zi)t) + ηZi}

where the baseline hazard function is

h0(t) =

{
c1 if t ≤ 1

c2 if t > 1
.
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We set the vector of parameters to be θ = (γ, µ0, µ1, b2, ϕ0, ϕ1, η, σ
2, c1, c2, λ).

In comparing trial designs, we did the following. For the fixed sample design,

the accrual period is fixed at 2 years and follow-up fixed at 3 years. A sample size

of n patients is recruited in the first 2 years. For simulation purposes, we ensure

that all n patients are recruited within 2 years by simulating arrival times uniformly

between 0 and 2 years. In practice, we expect patients to arrive with exponentially

distributed waiting times between patients and we can extend recruitment until all

n patients have entered the study. The expected power of this simulation study

of the fixed sample design is recorded. For the group sequential design, accrual

remains the same, with exactly n patients being recruited within the 2 years. We

then perform simulation studies of designs with two different calendar times for the

final analyses. We shall describe this process in detail shortly. The expected power

is recorded for both of the group sequential designs. We can use these two GST

observations to find a design with the same power as that of the fixed sample trial.

Then the outcomes are compared for fixed and group sequential trial designs with

the same power.

In Section 5.3.2 we described how to perform a hypothesis test using the

RMST methods and we also give reason for choosing the following values to use

in simulation. The common values for simulations under H0 and HA are

(µ0, µ1) = (3, 1), ϕ0 = 1.2, ϕ1 = 0.25, σ2 = 1,

c1 = 5.32, c2 = 4.43, t1 = 1, λ = 0.022 (5.24)

and we shall investigate properties of the trial for γ = 0, 0.035, 0.07 and t∗ = 3, 5.

When simulating under H0 we use η = 0 and b2 = 0 and when simulating under HA

we use combinations of η = −0.5,−0.4,−0.3 and b2 = −0.45,−0.4,−0.35. For the

longitudinal data, we simulate a trajectory of longitudinal observations by assuming

that patient i has a biomarker observation taken at times ti1, ti2, . . . , timi
. These time

points are entry to the study, then until patient i is observed to fail or censored, the

measurements are every 2.5 weeks for the first 3 months, then every three months

until the study concludes. Therefore, every patient has a biomarker observation at

time point ti1 = 0.

A method for choosing a suitable sample size n is described in Section 5.1.5. We

simulate a large data set with 104 patients under HA, and truncate the data set at

time 5 years to reflect end of study censoring. The variance-covariance matrix, Σ,

for the maximum likelihood estimate θ̂, is estimated using this large data set. Using

this estimate for Σ and the choice of t∗, the sample size required to achieve type 1
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error α = 0.025 and power 1 − β = 0.9 is given by n in Equation (5.4). We have

provided the sample sizes and expected power in Table 5.4.1 for an RMST analysis

with truncation time t∗ = 3 years. Power is calculated using 104 replicates in a

simulation study.

γ η b2 Sample size Power

0 -0.3 -0.35 960 0.916

0 -0.3 -0.4 965 0.925

0 -0.3 -0.45 996 0.917

0 -0.4 -0.35 545 0.921

0 -0.4 -0.4 555 0.922

0 -0.4 -0.45 573 0.931

0 -0.5 -0.35 353 0.925

0 -0.5 -0.4 363 0.934

0 -0.5 -0.45 370 0.926

0.035 -0.3 -0.35 798 0.895

0.035 -0.3 -0.4 793 0.890

0.035 -0.3 -0.45 790 0.899

0.035 -0.4 -0.35 461 0.893

0.035 -0.4 -0.4 460 0.894

0.035 -0.4 -0.45 454 0.887

0.035 -0.5 -0.35 299 0.893

0.035 -0.5 -0.4 301 0.896

0.035 -0.5 -0.45 296 0.891

0.07 -0.3 -0.35 736 0.895

0.07 -0.3 -0.4 730 0.901

0.07 -0.3 -0.45 710 0.896

0.07 -0.4 -0.35 434 0.894

0.07 -0.4 -0.4 426 0.892

0.07 -0.4 -0.45 420 0.896

0.07 -0.5 -0.35 287 0.897

0.07 -0.5 -0.4 282 0.898

0.07 -0.5 -0.45 280 0.895

Table 5.4.1: Sample sizes and expected power for model with both longitudinal
and survival treatment effects, parameter choices (5.24) and t∗ = 3

for the RMST analysis based on 104 replicates.

We have considered all combinations of parameter values γ = 0, 0.035, 0.07,

η = −0.3,−0.4,−0.5 and b2 = −0.035,−0.4,−0.45. This table is intended for
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reference and not for comparison. This is because it is difficult to compare the

outcomes of interest (stopping time, number of hospital visits and follow-up time)

across different parameter values because the power is not constant. However, we can

see roughly how the sample size is affected by these parameters. Larger magnitudes

of the two treatment effects η and b2 require smaller sample sizes, as expected.

Further we can see that the sample size calculation from Section 5.1.5 is inaccurate

when γ = 0. The sample size calculation is intended to produce power 0.9 when γ, η

and b2 are the values in the Table, however the simulated power is higher in each

case. This is likely to be due to approximation error in the Delta method which

makes a linear approximation to the RMST function. For the case γ = 0, this linear

approximation is not accurate.

In Section 5.3.3 we described a method for determining the times of interim

analyses. We shall now recap this method. Let If be the information level

required for a fixed sample test to attain type 1 error α and power 1 − β when

∆(t∗;θ) = δ. For a group sequential test with K analyses and error spending

functions f(t) = min{αt2, α} and g(t) = min{βt2, β}, calculate Imax such that

information levels I1, . . . , IK are equally spaced and the boundaries at the final

analysis are such that aK = bK . This process is described in Section 2.1.3. Then

the relationship between information and calendar time is determined. To do so,

a large data set is simulated under HA and at a selection of time points, this data

set is truncated and the information levels at these time points are calculated. A

log-relationship is fit to this data set of analysis times and information levels as

in Figure 5.3.5. The times of interim analyses τ1, . . . , τK are then chosen so that

I1, . . . , IK are equally spaced and that IK = Imax. This method is governed by a

single design parameter Imax. Hence, by altering the value of the design parameter

Imax, and subsequently the analysis times, we can match the power of the group

sequential trial to the fixed sample trial. Further, by altering only one parameter,

all other design aspects remain fixed so that the change in power arises solely from

the times of the interim analyses.

To compare outcomes, we observe simulation studies at different values of Imax

and interpolate to match the fixed sample trial. Table 5.4.2 gives the notation for

a fixed sample trial design, two group sequential trial designs and the outcomes for

each. The final row of Table 5.4.2 will be described shortly.
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Design Planned Expected Expected Expected number Expected

final power stopping of hospital visits follow-up

information time per patient per patient

Fixed If Pf sf vf Ff

GST 1 Imax(1) P (1) s(1) v(1) F (1)

GST 2 Imax(2) P (2) s(2) v(2) F (2)

Final GST Imax Pg sg vg Fg

Table 5.4.2: Notation for outcome variables for different trial designs.

We seek the group sequential trial design with final information Imax with

expected power Pf . This is found by interpolating between the points (I(1), P (1))

and (I(2), P (2)).The interpolated maximum information level is given by

Imax =
Imax(1)[Pf − P (2)]− Imax(2)[Pf − P (1)]

P (1)− P (2)
.

We further determine the other outcome variables at this value Imax. Therefore, the

values sg, vg and Fg are given by

sg =
s(1)[Imax − Imax(2)]− s(2)[Imax − Imax(1)]

Imax(1)− Imax(2)

vg =
v(1)[Imax − Imax(2)]− v(2)[Imax − Imax(1)]

Imax(1)− Imax(2)

Fg =
F (1)[Imax − Imax(2)]− F (2)[Imax − Imax(1)]

Imax(1)− Imax(2)
.

Figure 5.4.1 shows a visual interpretation for calculating Imax and sg. For this

example, the parameter values for simulation are given by (5.24) and we are

simulating under HA where η = b2 = −0.4. The outcome interpolated design has

Imax = 198.5 and sg = 3.54.
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Figure 5.4.1: Interpolation between two GST designs to calculate Imax and sg.

All designs (fixed sample and the two GST designs) are assessed using the same

set of patient outcomes. This is possible as n is fixed and follow-up is varied.

This leads to correlated values of the properties of designs, which is beneficial. For

example, consider the stopping time outcome. The random variables s(1) and s(2)

are correlated and, although we are not sure by how much, the final design will

have V ar(sg) < 2V ar(s(1)). Further, computation is expensive so 104 replicates

is used in the simulation studies. Interpolating between GST designs means that

we need not run the analysis at the interpolated Imax value, and we can trust that

the outcomes Pg, sg, vg and Fg will be very close to the values which would have

occurred if this simulation was performed, due to correlation between designs.

A comparison of the fixed versus group sequential trial designs for an RMST

analysis with truncation time t∗ = 3 years is given in Table 5.4.3. All simulations

are performed under HA. The outcomes (stopping time, number of hospital visits

and follow-up time) are the averages using 104 simulations. We have considered the

stopping time when the trial stops for efficacy and futility separately as the decision

upon stopping will affect whether the drug is taken to market or not.
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Expected Expected Expected

γ η b2 Stopping time visits follow-up

per patient per patient

Fixed GST Fixed GST Fixed GST

sf sg vf vg Ff Vg

Reject Accept

H0 H0

0 -0.3 -0.35 5 3.54 4.04 14.9 11.3 2.62 1.74

0 -0.3 -0.4 5 3.57 4.02 14.9 11.8 2.62 1.86

0 -0.3 -0.45 5 3.58 3.98 14.9 11.6 2.62 1.81

0 -0.4 -0.35 5 3.59 4.08 14.9 11.8 2.62 1.87

0 -0.4 -0.4 5 3.59 4.08 14.9 11.9 2.62 1.88

0 -0.4 -0.45 5 3.61 4.13 14.9 11.9 2.62 1.89

0 -0.5 -0.35 5 3.64 4.22 14.9 12.0 2.61 1.90

0 -0.5 -0.4 5 3.61 4.11 14.9 11.9 2.61 1.89

0 -0.5 -0.45 5 3.51 3.90 14.9 11.7 2.61 1.83

0.035 -0.3 -0.35 5 3.47 4.34 15.0 11.8 2.65 1.87

0.035 -0.3 -0.4 5 3.48 4.24 15.0 11.9 2.65 1.87

0.035 -0.3 -0.45 5 3.49 4.23 15.0 11.9 2.65 1.87

0.035 -0.4 -0.35 5 3.48 4.32 15.0 11.9 2.64 1.87

0.035 -0.4 -0.4 5 3.48 4.28 15.0 11.9 2.64 1.87

0.035 -0.4 -0.45 5 3.47 4.27 15.0 11.9 2.64 1.87

0.035 -0.5 -0.35 5 3.41 4.25 15.0 11.7 2.64 1.84

0.035 -0.5 -0.4 5 3.48 4.27 15.0 11.8 2.64 1.86

0.035 -0.5 -0.45 5 3.44 4.20 15.0 11.8 2.64 1.85

0.07 -0.3 -0.35 5 3.44 4.27 15.1 11.9 2.67 1.88

0.07 -0.3 -0.4 5 3.52 4.39 15.1 12.0 2.67 1.91

0.07 -0.3 -0.45 5 3.52 4.30 15.1 12.0 2.67 1.91

0.07 -0.4 -0.35 5 3.51 4.29 15.1 12.0 2.67 1.90

0.07 -0.4 -0.4 5 3.53 4.29 15.1 12.0 2.67 1.91

0.07 -0.4 -0.45 5 3.50 4.27 15.1 11.9 2.67 1.89

0.07 -0.5 -0.35 5 3.48 4.29 15.1 11.9 2.66 1.88

0.07 -0.5 -0.4 5 3.48 4.26 15.1 11.9 2.66 1.88

0.07 -0.5 -0.45 5 3.47 4.22 15.1 11.9 2.66 1.87

Table 5.4.3: Fixed vs Group Sequential design comparison for model with both
longitudinal and survival treatment effects, parameter t∗ = 3 for the

RMST analysis and 104 replicates.
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Clearly, the group sequential design is much more efficient than the fixed sample

design since on average the trial stops roughly 1.5 years earlier than the fixed sample

trial when it stops for efficacy and roughly 0.8 years early when it stops for futility.

The probability of stopping for efficacy is 0.9 so this is the key case. This benefit

means the drug can be taken to market sooner and patients receive an effective

treatment early. Further, the number of hospital visits per patient and patient-level

follow-up times are dramatically reduced when we use the group sequential design

rather than the fixed sample design.

We have previously discussed the importance of the choice of the truncation time

t∗ for the RMST analysis in Section 5.1.6. The truncation time should be chosen

based on clinical meaning and so far we have shown the results for the analysis with

t∗ = 3. We now give a subset of results for the case t∗ = 5 to assess the differences in

the trial when the value of t∗ is changed. Note that the value t∗ = 5 is greater than

the maximum follow-up time and hence, this analysis is not possible when the non-

parametric RMST estimate is used. Table 5.4.4 gives the sample size calculations

using the methods discussed in Section 5.1.5 and the resulting power estimates for

a fixed sample clinical trial using simulation with 104 Monte Carlo estimates. The

sample sizes and power values of Table 5.4.1 are included here for reference.

γ η b2 Sample size Power

t∗ = 3 t∗ = 5 t∗ = 3 t∗ = 5

0 -0.3 -0.35 960 958 0.916 0.922

0 -0.3 -0.45 996 990 0.917 0.918

0 -0.5 -0.35 353 352 0.925 0.923

0 -0.5 -0.45 370 367 0.926 0.936

0.07 -0.3 -0.35 736 671 0.895 0.897

0.07 -0.3 -0.45 710 629 0.896 0.902

0.07 -0.5 -0.35 287 273 0.897 0.903

0.07 -0.5 -0.45 280 262 0.895 0.904

Table 5.4.4: Sample sizes and expected power for model with both longitudinal
and survival treatment effects, parameter t∗ = 5 for the RMST

analysis and 104 replicates.

A comparison between the sample sizes is difficult to make because the power is

not the same in each case. However, it seems as though the difference in t∗ has a

small effect on the sample size. All sample sizes are within 10% of each other. The

reduction in sample size should be set against the disadvantage that occurs from
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relying on model assumptions. These assumptions cannot be checked with the data

available at an interim analysis when t∗ is large.

Table 5.4.5 shows a comparison of the fixed versus group sequential trial designs

for an RMST analysis with truncation time t∗ = 5 years. Similarly to the results

for t∗ = 3, the group sequential design out-performs the fixed sample design since

stopping times, number of hospital visits and patient-level follow-up times are all

dramatically reduced. These reductions are roughly equal to the reductions in

Table 5.4.3 when t∗ = 3, the benefit for using a larger t∗ is the reduction in sample

size for both fixed and group sequential designs.

Expected Expected Expected

γ η b2 Stopping time visits follow-up

per patient per patient

Fixed GST Fixed GST Fixed GST

sf sg vf vg Ff Vg

Reject Accept

H0 H0

0 -0.3 -0.35 5 3.52 4.09 14.9 11.7 2.62 1.85

0 -0.3 -0.45 5 3.57 3.97 14.9 11.8 2.62 1.87

0 -0.5 -0.35 5 3.46 4.03 14.9 11.6 2.61 1.81

0 -0.5 -0.45 5 3.56 3.96 14.9 11.7 2.62 1.85

0.07 -0.3 -0.35 5 3.54 4.35 15.1 12.1 2.67 1.92

0.07 -0.3 -0.45 5 3.54 4.29 15.1 12 2.67 1.92

0.07 -0.5 -0.35 5 3.49 4.21 15.1 11.9 2.67 1.88

0.07 -0.5 -0.45 5 3.48 4.23 15.1 11.9 2.66 1.88

Table 5.4.5: Fixed vs Group Sequential design comparison for model with both
longitudinal and survival treatment effects, parameter t∗ = 5 for the

RMST analysis and 104 replicates.

To complete this comparison, we consider the outcomes when we simulate data

under H0. The parameters η and b2 describe the two treatment effects and hence,

H0 is described by the scenario where η = 0 and b2 = 0, or equivalently where

the difference in RMST is ∆(t∗; γ, η, b2) = 0. Table 5.4.6 shows the type 1 error

simulation results each with a Monte Carlo sample size of 104. The sample sizes

used are those that correspond to η = −0.5, b2 = −0.45 in the power calculations.

For reference, these are included in the table. The results show that type 1 error is

close to α = 0.025 in each case.
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t∗ γ Sample size Type 1 error

Fixed GST

3 0 370 0.025 0.025

3 0.035 296 0.026 0.024

3 0.07 280 0.024 0.024

5 0 367 0.026 0.025

5 0.07 262 0.025 0.028

Table 5.4.6: Fixed vs Group Sequential type 1 error rates for model with both
longitudinal and survival treatment effects with 104 replicates.

We assess the difference in outcomes when data is simulated under H0.

Table 5.4.7 shows the stopping times, number of hospital visits per patient and

patient-level follow-up times for both fixed sample trials and group sequential

designs. The probability of stopping for efficacy is 0.025 so this a rare event, but

we see that the GST design stops early for efficacy roughly 0.5 years earlier than

the fixed design. The GST design stops roughly 1.8 years earlier than the fixed

sample design when we stop for futility, which means that the trial can be stopped

and the resources can be used for something else. Further, number of hospital visits

and length of follow-up per patient are also dramatically reduced for the GST in

comparison to the fixed sample design.

Expected Expected Expected

t∗ γ Stopping time visits follow-up

per patient per patient

Fixed GST Fixed GST Fixed GST

sf sg vf vg Ff Vg

Reject Accept

H0 H0

3 0 5 4.68 3.05 14.1 10.8 2.44 1.62

3 0.035 5 4.48 3.26 14.2 10.8 2.46 1.61

3 0.07 5 4.41 3.27 14.3 11.0 2.48 1.66

5 0 5 4.36 2.96 13.9 10.0 2.39 1.43

5 0.07 5 4.29 3.11 14.1 10.3 2.43 1.49

Table 5.4.7: Fixed vs Group Sequential stopping time comparison under H0 for
model with both longitudinal and survival treatment effects with

104 replicates.
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5.4. Comparison of fixed and group sequential trial designs using the restricted
mean survival time

We have shown comparative results for fixed and group sequential trials for a

range of parameter values t∗, γ, η and b2. We have considered how the trials compare

when we simulate data under the alternative hypothesis, stopping for efficacy and

also how the trials compare when we simulate data under the null hypothesis and

stop for futility. In all cases, the group sequential trial stops early on average by

values in the range 1.3-2 years compared to the analysis time at 5 years in the fixed

sample trial. Further, the number of hospital visits and the patient-level follow-up

times are reduced significantly when a group sequential design is chosen over a fixed

sample design.
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6.1. Conclusions

6.1 | Conclusions

Two joint models have been proposed for joint modelling of longitudinal and time-

to-event data. These models differ by the causal pathway of the treatment. We

have shown that it is possible to create a group sequential trial based on each of

these joint models and through simulation, we have shown the benefits of these

approaches.

Joint model 1 has a single treatment effect that acts directly on the survival

endpoint and this model is motivated by literature. The conditional score method

is used to find a treatment effect estimate for this model and we have displayed new

theoretical results for the distribution of the sequence of treatment effect estimates

η̂1, . . . , η̂K found using the conditional score method in a group sequential trial.

Although the canonical joint distribution for the sequence η̂1, . . . , η̂K does not hold,

we show that it is sensible and practical to proceed assuming that the canonical

joint distribution holds anyway. In particular, we have proven that by assuming

the canonical joint distribution holds, and using a non-binding futility boundary,

the trial is conservative with respect to type 1 error rates. We believe this non-

binding case is popular in practice and also presents good evidence that the trial

with a binding futility boundary preserves type 1 error conservatively. Finally, using

simulation studies we have seen that the deviations from planned type 1 error α are

minimal.

Section 4.5 displays the results for this joint model. We show that by including

the longitudinal data, compared to the case where the longitudinal data is observed

but left out of the analysis, we can greatly improve the efficiency of the trial with

respect to sample size. In some cases, 1.67 times as many patients are required to

achieve the same power in the analysis where the longitudinal data is left out. These

results are seen in both the fixed sample trial and the group sequential trial.

Other benefits for using this joint model are:

� No distributional assumptions are required for the random effects of the

longitudinal data.

� The conditional score method is computationally efficient.

The US Food and Drug Administration (2019) encourages the identification of

covariates expected to have an important influence on the primary outcome and

also discuss accounting for these covariates in the analysis. This motivates the

use of Joint model 2. This model includes a treatment effect acting upon the

longitudinal data and a second treatment effect acting directly on the survival
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endpoint. Therefore, we have adjusted for any confounding that may occur. The

need for two treatment effects motivates use of the Restricted Mean Survival Time

(RMST) as a test statistic and we have proven that the canonical joint distribution

holds for the sequence of RMST differences ∆(t∗; θ̂1), . . . ,∆(t∗; θ̂K) obtained at the

interim analyses of a group sequential trial. We have shown that the parametric

RMST estimate is favourable since there could be a penalty for using the Kaplan-

Meier RMST estimate, that is, a large sample size and/or long study duration are

required for many choices of t∗.

In Section 5.4 we have shown comparative results for fixed versus group sequential

trials using this joint model. The benefits of GSTs for this simulation study were

overwhelming, with the GST stopping roughly 1.5 years early in all cases. Further,

the number of hospital visits per patient and average follow-up time per patient are

dramatically reduced for the GST compared with the fixed sample trial.

A decision between the methods of Chapters 4 and 5 should be primarily based

on the beliefs about the model. Suppose that we truly expect the biomarker to be

influenced by treatment, then the RMST analysis of Chapter 5 should be used to

analyse the data. It is not possible to use the conditional score analysis of Chapter

4 in this case because we cannot include the treatment effect on the biomarker

in the hypothesis test. However, there are advantages to the conditional score

method. Most notably, the conditional score estimator is semi-parametric and there

is no requirement to specify the baseline hazard function. Therefore by using the

conditional score method, we can avoid the complications of parameter identifiability

that arise as a result of specifying knot points in the baseline hazard function and

the design of the trial is made simpler. Further, when using the conditional score

method, we do not need to specify the distribution of the random effects. Therefore,

if we believe that the effect of treatment on the biomarker is small or zero, then the

conditional score method is the preferred analysis choice.

6.2 | Further work

The findings of this thesis present many avenues for further research. The first

is to consider different types of group sequential boundaries. Suppose that the

drug regulatory agencies are not convinced by the proposed joint model and are

not confident to use this model for the efficacy analysis; they request that the log-

rank statistic be used to define the efficacy upper boundary b1, . . . , bK . However, the

investigator has particular interest in using the joint model to define the futility lower

boundary a1, . . . , aK . To calculate this set of boundary points, we must therefore
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determine the joint distribution of the log-rank statistic and the statistic from the

joint model (η̂ for joint model 1 and ∆(t∗; θ̂) for joint model 2). Further, it may be

of interest to the investigator to consider a non-binding futility function. Interest

then lies in the potential efficiency gain for this clinical trial design.

Royston and Parmar (2013) suggest that during calculation of the RMST

estimate, extrapolation of parameter estimates should be avoided. Taking this

into account, in Section 5.3.1 we discuss designing fixed sample clinical trials with

emphasis on avoiding extrapolation. However, this becomes more of a challenge

when designing a group sequential clinical trial, and there is a compromise occurring

between extrapolation and early stopping. In all of our simulations, we have fit the

data to the same model it was simulated from and hence, extrapolation is not an

issue here since all parameter estimates are unbiased. It is of particular interest to

investigate the affect of extrapolating parameter estimates for a misspecified model

and determine a suitable limit for the time between interim analyses τ1, . . . , τK and

truncation time t∗.

Along a similar avenue, we would like to investigate the robustness of the model

when certain aspects are misspecified. We first consider the second joint model which

has the limitation that a baseline hazard function must be specified in advance so

that fully parametric analyses can been performed. We would like to know the

implications of using an incorrect baseline hazard function and if this results in an

inflated type 1 error. In this case, an incorrect baseline hazard function might be as

minor as misspecifying knot points in the piecewise constant baseline hazard function

or it could imply that the entire functional form is wrong. Also, we would like to

know how misspecifying the distribution of the random effects of the longitudinal

data affect the analysis. For example, suppose that we have fitted the data to a

normal distribution but the true underlying distribution for the random effects is a

student-t distribution. How would this affect the overall type 1 error for the trial.

Thus far, we have assumed that the random effects are normally distributed. This

results in computational efficiency as Gauss-Hermite integration can be employed

during calculation of the likelihood function. Some consideration needs to be given

to the computation for a model where random effects are not normally distributed.

The limitations regarding the baseline hazard function and distribution of the

random effects are bypassed when using the conditional score method. However, we

do have the disadvantage that we cannot be sure that the canonical joint distribution

holds for the sequence of treatment effect estimates. In Section 4.4.3 we gave some

evidence showing that the trial is likely to be conservative with respect to type 1

error and we suggest that during planning, a single, large clinical trial should be
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simulated to check that the correlations are in the direction that would give rise

to type 1 error less that or equal to α. That is, we suggest estimating Σ using a

simulation with 4800 patients then checking that ρ ≥ ρ∗. The difficulty with this

approach is that we require knowledge of the model parameters before commencing

the trial. Therefore, it is of interest to assess the effects of planning a trial with

parameter values that are incorrect.

Another limitation that is common across the two joint models is that the

biomarker is assumed to follow a linear trajectory. In practice, this is uncommon

since for biomarkers which are made up of count data such as circulating tumour

DNA (Rothwell et al. (2019)), we impose a non-negative constraint. It is therefore

important to assess how well these non-linear functions can be captured by a simple

linear model and whether the conditional score and RMST analyses are robust to

this misspecification. It may then be necessary to develop theory that allows for

generalised linear mixed models for the longitudinal data.

Finally, it is of high interest to apply these methods to a real clinical trial

data set. So far, we have presented results for joint models with simple linear

longitudinal trajectories and a treatment indicator as the only covariate, and we

have described how these models can be generalised to include more complex

trajectories and more covariates. In practice, calculation of the trial statistic may be

computationally expensive and require further consideration. Taylor et al. (2013)

present a joint model for clinical recurrence of prostate tumours, a time-to-event

outcome, and prostate specific antigen (PSA), a longitudinal data measurement.

Using the specified form for the joint model, we could design a group sequential

trial to implement the methods of this thesis. Bikdeli et al. (2017) present a

literature review for 220 surrogate endpoint trials within cardiovascular disease.

The primary endpoint for each of these trials was a time-to-event outcome, at least

42 trials used longitudinal data as a surrogate endpoint and these trials frequently

show superiority of the treatment intervention. This indicates a need for including

biomarker observations when available in time-to-event clinical trials. Further,

under the joint modelling framework, there is no loss for collecting time-to-event

observations for inclusion in the joint model compared to only collecting biomarker

observations and performing a surrogate endpoint clinical trial.
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