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Abstract 
 

The morphology of breast cancer cells is often used as an indicator of tumour severity and 
prognosis. Additionally, morphology can be used to identify more fine-grained, molecular 
developments within a cancer cell, such as transcriptomic changes and signalling pathway 
activity. Delineating the interface between morphology and signalling is important to understand 
the mechanical cues that a cell processes in order to undergo epithelial-to-mesenchymal 
transition and consequently metastasize. However, the exact regulatory systems that define 
these changes remain poorly characterised. In this study, we employ a network-systems 
approach to integrate imaging data and RNA-seq expression data. Our workflow allows the 
discovery of unbiased and context-specific gene expression signatures and cell signalling sub-
networks relevant to the regulation of cell shape, rather than focusing on the identification of 
previously known, but not always representative, pathways. By constructing a cell-shape 
signalling network from shape-correlated gene expression modules and their upstream 
regulators, we found central roles for developmental pathways such as WNT and Notch as well 
as evidence for the fine control of NF-kB signalling by numerous kinase and transcriptional 
regulators. Further analysis of our network implicates a gene expression module enriched in the 
RAP1 signalling pathway as a mediator between the sensing of mechanical stimuli and 
regulation of NF-kB activity, with specific relevance to cell shape in breast cancer.  
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Introduction       
The study of cancer has long been associated with changes in cell shape as morphology can be 
a reliable way to sub-type cancer and predict patient prognosis (Wu et al., 2020). Recent 
research has implicated cellular morphology in more than just a prognostic role in cancer, with 
shape affecting tumour progression through the modulation of migration, invasion and overall 
tissue structure (Baskaran et al., 2020; Krakhmal et al., 2015). The unique mechanical 
properties of the tumour tissue (primarily driven by changes in cell shape and the extracellular 
matrix) are hypothesised to contribute to the ‘stem cell niche’ of cancer cells that enables them 
to self-renew as they do in embryonic development (Cooper and Giancotti, 2019). Cell 
morphology and tumour organisation have been found to be a factor in modulating the intra-
cellular signalling state through pathways able to integrate mechanical stimuli from the 
extracellular environment (Miralles et al., 2003; Olson and Nordheim, 2010; Orsulic et al., 1999; 
Zheng et al., 2009). The discovery of mechanosensitive pathways in various tissues has 
revealed a complex interplay between cell morphology and signalling (Kumar et al., 2016). 
Further studies have revealed that cell morphology can also be a predictor of tumorigenic and 
metastatic potential as certain nuclear and cytoplasmic features enhance cell motility and 
spread to secondary sites (Wu et al., 2020), aided by the Epithelial to Mesenchymal Transition 
(EMT). This process is the conversion of epithelial cells to a mesenchymal phenotype, which 
contributes to metastasis in cancer and worse prognosis in patients (Roche, 2018).  

Breast cancer is the most common cancer among women, and in most cases treatable with a 
survival rate of 99% among patients with a locally contained tumour. However, among those 
patients presenting with a metastatic tumour this rate drops to 27% (Siegel et al., 2019). During 
the development of breast cancer tumours, cells undergo progressive transcriptional and 
morphological changes that can ultimately lead towards EMT and subsequent metastasis (Feng 
et al., 2018; Lee et al., 2015; Wu et al., 2020). Breast cancer sub-types of distinct shapes show 
differing capacities to undergo this transition. For example, long and protrusive basal breast 
cancer cell lines are more susceptible to EMT (Fedele et al., 2017) with fewer cell-to-cell 
contacts (Dai et al., 2015). Luminal tumour subtypes on the other hand, are associated with 
good to intermediate outcomes for patients (Dai et al., 2015) and have a clear epithelial (or 
‘cobblestone’) morphology with increased cell-cell contacts (Neve et al., 2006). It is evident that 
cell morphology plays significant roles in breast cancer and a deeper understanding of the 
underlying mechanisms may offer possibilities for employing these morphology determinant 
pathways as potential therapeutic targets and predictors of prognosis. 

Signalling and transcriptomic programs are known to be modulated by external physical cues in 
the contexts of embryonic development (Wozniak and Chen, 2009), stem-cell maintenance 
(Bergert et al., 2020; De Belly et al., 2020) and angiogenesis (Chatterjee, 2018). Numerous 
studies have flagged NF-kB as a focal point for mechano-transductive pathways in various 
contents (Cowell et al., 2009; Ishihara et al., 2019; Shrum et al., 2009; Tong and Tergaonkar, 
2014), but gaps in our knowledge remain as to how these pathways may interact and affect 
breast cancer development. Sero and colleagues studied the link between cell shape in breast 
cancer and NF-kB activation by combining high-throughput image analysis of breast cancer cell 
lines with network modelling (Sero et al., 2015). They found a relationship between cell shape, 
mechanical stimuli and cellular responses to NF-kB and hypothesised that this generated a 
negative feedback loop, where a mesenchymal-related morphology enables a cell to become 
more susceptible to EMT, thus reinforcing their metastatic fate. This analysis was extended by 
(Sailem and Bakal, 2017), who combined cell shape features collected from image analysis with 
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microarray expression data for breast cancer cell lines to create a shape-gene interaction 
network that better delineated the nature of NF-kB regulation by cell shape in breast cancer. 
This approach was limited as it only correlates single genes with cell shapes, thus relying on the 
assumption that a gene’s expression is always a useful indicator of its activity (Vogel and 
Marcotte, 2012). Furthermore, the authors rely on a list of pre-selected transcription factors of 
interest and as such the approach is not completely data-driven and hypothesis free. Given our 
knowledge of the multitude of complex interacting signalling pathways in development and other 
contexts, it is safe to assume that there are many more players in the regulation of cancer cell 
morphology that have yet to be delineated (Bougault et al., 2012; Horton et al., 2016; Robertson 
et al., 2015; Rolfe et al., 2014). Furthermore, how exactly extracellular mechanical cues are 
‘sensed’ by the cell and passed on to NF-kB in breast cancer is not clearly understood. From 
this it is clear that an unbiased approach is needed to identify novel roles for proteins in the 
interaction between cell shape and signalling.  

Here we have developed a powerful network-based approach to bridge the gap between widely 
available and cheap expression data, signalling events and large-scale biological phenotypes 
such as cell shape (Figure 1A). Our study aims to identify a data-derived cellular signalling 
network, specific to the regulation of cell shape beyond NF-kB, by considering functional co-
expression modules and cell signalling processes rather than individual genes.  

Results 

Identification of gene co-expression modules correlated with cell shape features 

We first sought to identify gene expression modules (GEMs) that are relevant to the regulation 
of cell shape. To this end, we used Weighted Gene Correlation Network Analysis (WGCNA) 
(Langfelder and Horvath, 2008) on bulk RNA-seq expression data from 13 breast cancer and 
one non-tumorigenic epithelial breast cell lines to identify gene co-expression modules 
correlated with 10 specific cell shape variables (Sailem and Bakal, 2017) (Methods). These 
described the size, perimeter and texture of the cell and the nucleus (n = 75,653). Of 102 GEMs 
(Supplemental Figure S1A), 34 were significantly correlated (P<0.05; Student's t-test, Pearson’s 
Correlation; Supplemental Table S1; Supplemental Figure S1B-C) with one of 8 cell shape 
features (Figure 1B). A full list of the genes within the identified modules is presented in 
Supplemental Table S2. 

We used Enrichr and their suite of gene set libraries (Kuleshov et al., 2016) to functionally 
annotate and label some of the modules using enrichment of genes contained within them. We 
found that the ‘RAP1 signalling’ module is also enriched for terms such as VEGF signalling and 
hemostasis, while the ‘Insulin signalling’ module is also enriched for cell-cell communication and 
the ‘ECM organisation’ module is also enriched in terms such as axon guidance and EPH-
Ephrin signalling (Supplemental Table S3). Modules that are most correlated with all features 

are the ‘ARNT KO’ module, ‘ARRDC3−AS1’ module and the ‘ECM organisation’ module 

(Supplemental Figure S1B). Modules that could not be annotated with informative terms were 

designated ‘module non-annotated (NA) 1, 2, 3 etc. 

 

Transcription factor analysis of cell shape gene co-expression modules reveals the 
signalling pathways that regulate them  

To link these expression modules to the intra-cellular signalling network, we considered both the 
regulation of modules as transcriptional units as well as the signalling pathways that significantly 
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regulate the identified regulons. Specifically, we first found 17 transcription factor (TF) regulons, 
as defined in the database TRRUST v2 (Han et al., 2018), to be significantly enriched (P<0.1; 
Fisher’s exact test) in our modules (Supplemental Table S4). We therefore consider these TFs 
as potentially relevant for the regulation of cell shape features and their activity levels as a read-
out of cell signalling activity in these cells. These TFs include the EMT antagonist FOXA1 (Song 
et al., 2010), and HOXB7 (Wu et al., 2006) and ZFP36 (Van Tubergen et al., 2013).  

To extend this further, we sought to investigate the pathways responsible for regulating the 
identified TFs, and by extension the gene expression modules. For this analysis, we also 
include ENCODE and ChEA Consensus TFs from ChIP-X (Lachmann et al., 2010), DNA 
binding preferences from JASPAR (Stormo, 2013; Wasserman and Sandelin, 2004), TF protein-
protein interactions and TFs from ENCODE ChIP-seq (Euskirchen et al., 2007) to get a more 
comprehensive picture of the pathways involved in regulation of cell morphology. Using the 
identified TFs (Supplemental Table S5) we then used Enrichr (Kuleshov et al., 2016) to perform 
a Reactome signalling pathway (Jassal et al., 2020) enrichment analysis. Results from this 
analysis showed that 6 modules shared pathways associated with downstream signalling and 
regulation of NOTCH (Figure 1C). To ensure that our approach is not biased to any particular 
pathway, we repeated our approach on 1,000 resampled GEMs, and created pathway-specific 
null distributions for each identified pathway. All pathways we identified from morphology-
correlated modules had significantly lower p-values than randomised modules (FDR adjusted 
P<0.05). The only exceptions were one association with “signalling by NOTCH” and modules 
associated with “Signal Transduction”, a spurious pathway containing the complete intra-cellular 
signalling system (Supplemental Table S6).  

 

Clustering based on morphology reveals distinctive cell-line shapes 

To understand key differences in expression patterns and gene regulation between 
morphologically distinct breast cancer cell lines, we clustered them based on 10 morphological 
features including area, ruffliness, protrusion area and neighbour frequency and performed 
differential expression analysis between the identified clusters (Figure 2A; Supplemental Figure 
S2A). Cluster A is more heterogeneous in its morphology, containing the non-tumorigenic 
mammary epithelial cell line MCF-10A as well as cell lines from both luminal and basal breast 
cancer subtypes. Clusters B and C are more distinctly shaped, roughly composed of luminal 
and basal cell lines respectively except for HCC1954, which was clustered morphologically with 
luminal subtypes while being characterised as basal. The basal-like cluster is most 
morphologically distinct from cluster A, but also differs from the luminal-like cluster in that it has 
a lower nuclear/cytoplasmic area (0.133 ± 0.05 [mean ± SD]), higher ruffliness (0.235 ± 0.12) 
and lower neighbour fraction (0.258 ± 0.22). The luminal-like cluster had a higher 
nuclear/cytoplasmic area (0.186 ± 0.1; P<0.001), lower ruffliness (0.213 ± 0.14; P<0.001), and a 
higher neighbour fraction (0.338 ± 0.26; P<0.001, One-way ANOVA; Tukey HS, n = 75,653). 
The neighbour fraction feature corresponds to the fraction of the cell membrane that is in 
contact with neighbouring cells. The lower number of cell-cell contacts in basal-like breast 
cancer cell lines are indicative of more mesenchymal features associated with worse prognosis 
due to metastasis. Increased cell-cell contacts in both the luminal-like cluster and the more 
heterogeneous cluster A correspond to ‘cobblestone’ epithelial morphology. We found that 
these groups are closely aligned with the expression of the cell adhesion protein, CDH2 (also 
known as N-cadherin, Figure 2A), the expression for which is closely associated with a 
migratory and metastatic phenotype (Shih and Yamada, 2012). Representative images of the 
morphologically clustered cell lines are shown along with the clustering heatmap in Figure 2A 
(complete dataset of images provided online; 
https://datadryad.org/stash/dataset/doi:10.5061/dryad.tc5g4).  
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Using the identified groups of cell lines in the previous step, differential expression analysis and 
transcription factor activity analysis was used to study gene regulation signatures specific to cell 
line morphological clusters. The results are shown in Supplemental Table S7, with gene set 
enrichment analysis showing upregulation of genes involved in the extracellular matrix, 
collagens, integrins and angiogenesis in the basal-like cluster. Significantly enriched terms 
(P<0.05) in down-regulated genes include ‘fatty acid and beta-oxidation’ and ‘ERBB network 
pathway’. In the genes up-regulated in the luminal-like cluster, we observed enrichment of terms 
such as ‘hallmark-oxidative phosphorylation’. down-regulated genes were enriched in ‘integrin-1 
pathway’, ‘core matrisome’ and genes linked to ‘hallmark epithelial-mesenchymal transition and 
migration’. For the remaining B/L group, the term with the highest normalized enrichment score 
was ‘targets of the transcription factor MYC’ followed by terms associated with ribosomal RNA 
processing. Down-regulated terms include ‘cadherin signalling pathway’ (Supplemental Table 
S7).  

We also calculated the differential expression for the WGCNA gene expression modules and 
found distinct patterns of expression between luminal-like and basal-like clusters of cell lines 
(Figure 2B). Among these, the RAP1 signalling module is up-regulated in basal-like clusters and 
down-regulated in luminal-like clusters. This is consistent with the fact that this gene expression 
module is negatively correlated with neighbour fraction, a feature that is observed to decrease in 
mesenchymal-like cell shapes (Dai et al., 2015). Other modules whose expression distinguishes 
basal-like from luminal-like include the MAL2-AS1 module (enriched in desmosome assembly), 
ARNT/KO module (enriched in TNF-signalling by NF-kB) and ECM organisation module 
(enriched in focal adhesion proteins - see Supplemental Table S3). 

To link the observed gene expression differences (Supplemental Figure S2B-C) to cell signalling 
we used the tool DOROTHEA (Garcia-Alonso et al., 2019) to calculate transcription factor 
activities, as their modulation is one of the main results of cell signalling processes. We 
corroborated that the heterogenous B/L group had significantly activated MYC levels. In the 
luminal-like cluster, ESRRA (estrogen related receptor alpha) is the most significantly 
overrepresented regulome, followed by EHF, KLF5 and ZEB2. Under-represented regulomes 
include KLF4, SMAD4, SMAD2, SOX2 and RUNX2. For the basal-like cluster, the regulome 
with the highest normalised enrichment score is SOX2, as well as MSC and HOXA9. down-
regulated regulomes include ZEB2, MYC, ESRRA and KLF5 (Supplemental Figure S2D).  

 

Assembly of a data-driven cell shape regulatory network 

To integrate our data-driven GEMs with signalling pathways, we used the Prize Collecting 
Steiner Forest (PCSF) algorithm (Akhmedov et al., 2016). This is an approach that aims to 
maximise the collection of ‘prizes’ associated with inclusion of relevant nodes, while minimizing 
the costs associated with edge-weights in a network. This allowed for the integration of the 
WGCNA modules, the Reactome pathways that regulate them, the TRRUST transcription 
factors and the differentially expressed DOROTHEA regulons into a contiguous regulatory 
network describing the interplay between cell shape and breast cancer signalling. The network 
used for this process was extracted from the database OmniPath (Türei et al., 2016) to provide 
a map of the intracellular signalling network described as a signed and directed graph. We 
incorporated identified GEMs into the network by interlinking them as nodes with the relevant 
TFs and signalling pathways.  

The resulting network of 691 nodes included 97.11% of the genes identified by our analysis. 
The new proteins that were included by the PCSF algorithm to maximise prize collection 
showed gene set enrichment of common terms (Pathways from Panther (Mi et al., 2013)) 
relative to the original prizes (including WNT, EGF, Angiogenesis, Ras, Cadherin and TGF-beta 
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pathways), but also included are some new terms (VEGF, Integrin and Endothelin pathways) 
(P<0.001; Supplemental Figure S3A).  

Studying the network properties of our PCSF-derived regulatory network we find that the degree 
distribution is typical for a biological network (Supplemental Figures S3B-D). The proteins in the 
network can be ranked by betweenness centrality to disseminate them based on network 
importance. Nodes with high centrality lie between many paths and can control information flow. 
Proteins with the highest centrality are primarily prizes (GSK3B, ESR1, TP53, SMAD3 - 
Supplemental Figure S3E) indicating that the PCSF solution was not achieved by the inclusion 
of new hub proteins that are not of interest to our analysis. Nevertheless, a small minority of 
high centrality nodes were not in the original prizes, implicating them as mediating the cross talk 
between pathways identified in Figure 1C. These include the proteins PAX7, PTEN and 
PPARGC1A.   

 

Small-molecule inhibitors targeting kinases in our network significantly perturb cell 
morphology 

To validate our network, we used an independent dataset to evaluate whether perturbing the 
function of kinases within our predicted network would produce a significant effect on 
morphological features. For this, we used the Broad Institute's Library of Integrated Network-
based Cellular Signatures (LINCS) small molecule kinase inhibitor dataset (Subramanian et al., 
2017). Here, they measured morphological changes in the breast cancer cell line HS578T in 
response to various small molecule kinase inhibitors using high through-put imaging techniques 
(Hamilton et al., 2007). The morphological variables measured in this data set are mostly 
analogous to the ones used to construct the network, however there are some discrepancies 
which we used as negative controls to ensure our network was phenotype specific.  

We combined this with data from a target affinity assay (Moret et al., 2019) describing the 
binding affinities of small molecules to kinases. This enabled us to sort the kinase inhibitors into 
those that target proteins we predict regulate cell shape (through their inclusion in the PCSF 
derived network) and those that do not. We found that there is a statistically significant (n = 37, 
Wald test P<0.05) deviation from the control between drug treatments targeting kinases within 
the predicted network and those targeting other proteins for cytoplasmic area, cytoplasmic 
perimeter, nucleus area, nucleus length, nucleus width and nucleus perimeter (Figure 3A; 
Supplemental Figure S4A). This difference is insignificant for features that were not correlated 
with gene expression modules in our initial analysis (such as number of small spots in the 
cytoplasm and nucleus, and nuclear compactness), indicating that our network is phenotype-
specific to the features used in network generation. We also repeated this analysis in other cell 
lines (SKBR3, MCF-7 and non-tumorigenic mammary cell line MCF-10A) with results with 
limited statistical significance (Supplemental Table S8). We additionally used a positive control 
where the control cells had been treated with TRAIL (TNF-related apoptosis-inducing ligand) to 
ensure that the observed morphological effects were not caused by apoptotic factors 
(Supplemental Figure S4B, Supplemental Table S8).  

We found that there is greater variance in the effect size for kinase inhibitors targeting proteins 
contained within the predicted regulatory network than those outside. The individual effect on 
cell morphology for each drug is shown in Supplemental Figure S4A-B. We hypothesised that it 
was the network properties of kinases within our network that dictated their effect on 
morphological features, with some targets being on the periphery of our predicted network and 
therefore having limited influence over the regulation of cell shape. To test this, we studied the 
extent to which the effect of a kinase inhibitor was correlated with the combined centrality of its 
targets as defined by our network. For this we used the centrality algorithm PageRank (Brin and 
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Page, 1998) and accounted for off-target effects of the kinase inhibitors using the Szymkiewicz-
Simpson index (describing the overlap of a kinase inhibitor’s targets and the proteins that 
constitute the network - Methods). 

Figure 3B shows moderate correlations between target centrality and the effect size for each 
feature, illustrating that kinase inhibitors targeting proteins with high centrality in our network 
modulate cell shape more than inhibitors with peripheral targets. As with studying the effect of 
targeting kinases contained within our network versus those outside of it, this correlation is 
higher among morphological variables that are the same or similar to those cell shape features 
correlated with gene expression modules used to construct the network. The correlation 
between combined centrality and drug absolute effect on cell area (n=37) was moderate but 
significant for cytoplasm area, cytoplasm perimeter, nucleus area, nucleus length, nucleus half-
width and nucleus perimeter (with Spearman’s correlation coefficient between 0.34 - 0.37 for all 
of them, with P<0.05). This correlation in change in morphological features with the centrality of 
the targeted kinases illustrates the relevance of our constructed network in regulating cell 
shape. For variables that were not correlated to any gene expression module, we see visibly 
lower correlation coefficients and insignificant associations (Spearman’s correlation coefficients 
of 0.05 - 0.29, P>0.05).  These results illustrate that the topology of our network explains some 
of the variation in the effect of kinase inhibitors tested, in a manner that is feature specific to the 
ones that were used to construct the network model.  

 

Network propagation of activated TFs reveals differentially activated processes in the 
cell shape regulatory network  

As transcription factor activity remains the most reliable indicator of signalling that can be 
extracted from transcriptomics data (Szalai and Saez-Rodriguez, 2020), we applied network  
propagation to identify sub-networks and nodes of which differentially regulated transcription 
factors have an effect. The algorithm Random Walk with Restart (RWR (Tong et al., 2008)) was 
used to diffuse from activated and inactivated transcription factors in our network reflected by 
the normalised enrichment scores of transcription factors identified by DOROTHEA (Garcia-
Alonso et al., 2019) (Figure 4A & B; Supplemental Table S9; Methods).  

The most relevant super-node in both luminal and basal diffusions was the gene expression 
module, RAP1 signalling, a module which is correlated with several cell shape variables 
(neighbour frequency, ruffliness, nuclear by cytosolic area and cell width to length) and is 
enriched in members of the mechanosensitive RAP1 signalling pathway. By performing RWR 
diffusions on each of the seed nodes separately (Supplemental Figure S5A-B) we can see that 
the source of this module's probability is mainly from the transcription factors JARID2 and 
RUNX2 in luminal-like cell lines, and JARID2 for basal-like. However, the transcription factors 
KLF5 and ESRRA in both morphological subtypes also contribute to the ranking of RAP1 
signalling, via GSK3B and DVL1 (Figure 4C).  

Specific proteins that were top ranked after performing the network propagation in basal-like cell 
lines include the orphan nuclear receptor NR0B2. Individual RWR found 3 seed transcription 
factors responsible for this node’s high probability:  AR, ESRRA and NR1H3. Other proteins 
flagged by the propagation were SMAD4, which is regulated by TGFB, IKBKB, which is an 
activator of NF-kB and YAP1. For luminal-like cell lines, NR0B2 is also significantly ranked from 
the network propagation (as a result of ESRRA activity) as well as transcriptional co-activator 
PPARGC1A and CREBBP.  
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The RAP1 gene expression module correlates with known morphologically-relevant TFs 
in both cell culture and clinical samples 

To explore the significance of the RAP1 gene expression module in breast cancer we measured 
its activity (Methods) in 78 BRCA cell lines. This enabled the correlation of its combined activity 
with the activity of known transcription factors predicted by DOROTHEA (Holland et al., 2020) 
(Supplemental Figure S6). We find that RAP1 GEM activity was significantly correlated (Kendall; 
P<0.01, FDR adjusted) with the activity of 19 TFs. Among these are RUNX2 (consistent with the 
results from our network propagation), TEAD1 (TF mediating the function of YAP1/TAZ) and 
NFKB1.  We also correlated transcription factor activity using the same method on tumour 
samples extracted from TCGA (https://www.cancer.gov/tcga). Using this publicly available 
dataset, we studied 1,090 BRCA tumours and performed differential expression on each 
sample. We found 40 TFs significantly correlated (Kendall; P<0.01, FDR adjusted) with RAP1 
GEM (Figure 5A-B). The intersection of this analysis between in cell lines and the clinical data 
were the TFs:  SP3, NFKB1, ZNF589, ZC3H8, HIF1A, STAT1, ZNF584, ZNF175 and KLF5.  

We studied the expression of the module in tumour samples and compared different groups of 
clinically annotated morphological subtypes. The morphological subtype with the highest overall 
RAP1-GEM activity was metaplastic carcinoma, a subtype characterised by poorly cohesive 
sheets (Schwartz et al., 2013) and a high propensity to metastasize (Reddy et al., 2020) (Figure 
5C). This morphological subtype has a distribution significantly greater (P < 0.005; Two sample 
Kolmogorov-Smirnov test) than the most frequently assigned morphological subtype (Infiltrating 
duct carcinoma, NOS). This subtype is a common and homogenous breast cancer grouping 
characterised by its failure to exhibit morphological features that might allow it to be classified as 
anything more specific (Makki, 2015).    

 

Content of RAP1 GEM and its network-neighbourhood shed light on signalling events 
relevant in the regulation of cell shape 

To understand latent processes driven by components within our gene expression module, we 
also studied interactions between the Gene Ontology (GO) terms enriched within RAP1 GEM 
(Figure 5D). This revealed that, as well as RAP1 signalling, the GEM is enriched in AGE-RAGE 
signalling pathway and HIF1 signalling pathway (consistent with HIF1A’s activity correlating 
highly with RAP1 GEM in both cell line patient data).  HIF1A is known to be regulated 
downstream of RAP1 (Li et al. 2021; Menon et al. 2012), although not explicitly in breast cancer.  

NF-kB has been previously linked to the regulation of cell shape in breast cancer. To explore 
the interface of RAP1 GEM with NF-kB in terms of intra-cellular signalling, we identified a 
subnetwork of our network responsible for mediating ‘information-flow’ between those two 
nodes, using the algorithm maximum flow (Figure 5E). By studying the flow of information from 
RAP1 signalling, we can see that a LATS2/WWTR1/DVL1 (all of WNT signalling) lies between 
the target and source nodes with much of the flow being carried via these edges. This 
implicates YAP1/TAZ as being a key effector of the identified gene expression module. This 
finding is supported by TEAD1 (mediating gene expression of YAP1 and WWTR1/TAZ) being 
among the most highly correlated of TFs with RAP1 GEM (Figure 5B and Supplemental Figure 
S6A).  

 

Discussion 
We present a method that uses transcriptomics and phenotypic data to derive a concise sub-
network describing the signalling involved in the regulation of cell shape. This analysis 
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recovered known processes like ‘adherens junction proteins’, ‘cadherin’ (Eslami Amirabadi et 
al., 2019) and ‘integrin’ (Filer and Buckley, 2013; Taherian et al., 2011) as well as pathways 
responsible for the regulation of cell shape in development, such as WNT (Kadzik et al., 2014; 
Wildwater et al., 2011), TGFB (Lee et al., 2013) and NOTCH (Kontomanolis et al., 2018). All of 
these pathways have previously been linked to the development of metastatic phenotypes in 
breast cancer cells (Imamura et al., 2012; Kontomanolis et al., 2018; Yin et al., 2018).  
Moreover, individual transcription factors identified include the known promoters of metastasis, 
SOX2 (Liu et al. 2018, 2; Li et al. 2019, 2), HOXA9 (Ko and Naora 2014) and ESRRA (Berman 
et al. 2017). Also, among these transcription factors were known regulators of cell shape and 
EMT, including KLF5 (Chen et al. 2015), ZEB2 (DaSilva-Arnold et al. 2019) and MYC (Cowling 
and Cole 2007; Lourenco et al. 2019). 

Importantly, this analysis also sheds light on processes with less characterised associations 
with cell shape in cancer. We found that a gene expression module enriched in RAP1 signalling, 
is significantly correlated with cell shape, and is the most differentially expressed module 
between Luminal-like and Basal-like cell line clusters. We found that it was up-regulated in 
basal-like cell lines while down-regulated in luminal, consistent with its negative correlation with 
neighbour fraction; a cell shape feature most contributing to the ‘cobblestone’ like features of an 
epithelial and non-metastatic cell type. This gene expression module was also an important 
node in our identified signalling network, being at the network confluence of multiple activated 
transcription factors. We also showed this gene expression module to be expressed in patient 
data, with its activity being correlated with known developmental and morphologically related 
transcription factors, as well as those used to identify it in the network propagation analysis.  In 
this way, our methodology uses cell line data for network construction and validation, but 
through our network approach we focus on more general effects which can be tested and 
successfully validated in a wider breast cancer clinical context. Hence, we believe these results 
to be relevant in more general breast cancer applications, but are also reflecting the inherent 
context-specificity that exists in biology. 

The name-sake of our identified module, RAP1, is a small GTPase in the Ras-related protein 
family that has been shown to be involved in the regulation of cell adhesion and migration 
(Boettner and Van Aelst, 2009; Zhang et al., 2017). Specifically, RAP1 has been shown to 
modulate and activate NF-kB activity in response to TNFA stimulation in mesenchymal stem 
cells (Zhang et al., 2015) and modulate migration and adhesion (Sawant et al., 2018). RAP1 is 
able to regulate IKKs (IκB kinases) in a spatio-temporal manner (Ohba et al., 2003), and is 
crucial for IKBK to be able to phosphorylate NF-kB subunit RELA to make it competent (Teo et 
al., 2010). Here, we used our network-centric methodology to highlight a transcriptomic module, 
characterised in part by RAP1 signalling and that this is a key node in our phenotype-specific 
signalling network. It is possible that our observations of the significance of RAP1 are as a result 
of more ‘direct’ interaction between RAP1 and the cytoskeleton. However, the transcriptomic 
module which we observe accounts for a much larger system-wide rewiring than simply the 
modulation of cytoskeletal proteins. This implies more complex transcriptional changes that are 
characteristic of a more robust breast cancer niche.   

The RAP1 signalling GEM identified in the network analysis represents a subset of the 
transcriptome observable among our analysed cell lines. While it is enriched in RAP1 signalling, 
it is important to note that it represents a collection of latent biological processes rather than a 
single pathway assigned to it by gene set enrichment.  From our network analysis we 
hypothesise that it is able to interact with intracellular signalling pathways in order to modulate 
transcription factor activity and consequently cell shape. Other pathways enriched in the 
expression module include HIF1 signalling pathway, which is known to be activated by RAP1 in 
melanoma (Lee et al., 2015a), but this has not been shown in breast cancer. HIF1 (Hypoxia-
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inducible factor 1) is also of special relevance in tumorigenesis because hypoxia is one of the 
key stimuli that a cancer cell is able to process in order to determine its fate and maintain the 
cancer stem cell niche (Plaks et al., 2015). AGE-RAGE signalling was also enriched in our 
module of interest. AGE-RAGE signalling pathway has recently been shown to overlap with 
RAP1 signalling pathway in cardiac fibroblasts to alter the expression of NF-kB (Burr and 
Stewart, 2021), although this crosstalk has also not been illustrated in breast cancer. Here, we 
observe genes of RAP1 signalling and AGE-RAGE functioning as a cohesive unit while also 
being correlated with NF-kB activity. The combined enrichment of AGE-RAGE, HIF1 and RAP1 
signalling is of particular interest because it implies a novel interaction between these three 
processes, common to all our cell lines, in a manner that has not been previously described in 
breast cancer. 

We also observe that our gene expression module of interest is significantly correlated with NF-
kB in both clinical samples and cell culture. Other authors have flagged the direct effect of RAP1 
on the cytoskeleton and NF-kB (Mun and Jeon, 2012; Zhang et al., 2015), but here we go 
further, using our unbiased systems approach to link RAP1 signalling with multiple transcription 
factors and pathways. Based on known functions of RAP1, along with the functions of pathways 
that we find interact with it, we hypothesise that the identified transcriptomic unit is key in 
relaying information from a cell's physical environment to modulate and maintain the cancer 
stem cell niche (Roy Choudhury et al., 2019). 

Previous studies have established a connection between the NF-kB signalling pathway and 
regulation of cell shape in breast cancer (Sailem and Bakal, 2017; Sero et al., 2015). Our 
findings also illustrate the significance of this pathway in the regulation of cell morphology, with 
multiple NF-kB regulators and transcriptional co-activators being flagged in our results. Some 
morphology-correlated gene expression modules were significantly differentially expressed 
between cell shape subtypes with the ARNT KO module being significantly up-regulated in 
basal-like cell shapes relative to luminal. We also found this gene expression module to have 
the highest total correlation with all of the morphological features, indicating a strong association 
with cell shape. By studying terms enriched in this module from the Enrichr library, we find both 
‘TNF-alpha signalling via NF-kB’ to be enriched as well as genes down-regulated during AHR 
nuclear translocator (ARNT) shRNA KO. Signalling by TNFA is able to activate NF-kB, a 
transcription factor known to control the expression of many EMT related genes (Pires et al., 
2017) which has shown to be more sensitive to TNFA stimulation in mesenchymal-like cellular 
morphologies than epithelial. This was hypothesised to generate a negative feedback which 
reinforces a metastatic phenotype of breast cancer cells (Sero et al., 2015). Here we observe 
also that an ARNT KO/TNFA module is up-regulated in basal-like cell lines, consistently with 
these findings. ARNT is a protein shown to be involved in regulating tumour growth and 
angiogenesis along with its binding partner aryl hydrocarbon receptor (AHR) (Huang et al., 
2015). Previous studies have also shown its ability to modulate NF-kB signalling with the 
activated form possibly interfering with the action of activated RELA (Øvrevik et al., 2014). Our 
findings that the upregulation of a gene expression module that is associated with ARNT 
knockdown further gives credence to NF-kB being positively regulated in mesenchymal-like cell 
morphologies. Furthermore, the results of our network propagation yielded activators and 
transcriptional coactivators of NF-kB (IKBKB (Teo et al., 2010), NR0B2 (Zou et al., 2015) and 
CREBBP (Bhatt and Ghosh, 2014)). These findings indicate that NF-kB is modulated by both 
phosphorylation (through stimulation by TNFA), spatial-temporal location (through RAP1) and 
transcriptional co-activation (through NR0B2 and CREBBP) in breast cancer in a shape-
dependent manner. 

Aside from the biological findings of this study, we illustrate an approach for network analysis of 
a specific course-grained phenotype through expression; a notoriously poor (if cheap and widely 
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available) proxy for gauging intracellular signalling (Piran et al., 2020). In contrast to existing 
methods that use gene expression as a direct proxy for signalling (Ben-Hamo et al., 2014; Guan 
et al., 2012; Padi and Quackenbush, 2018; Soul et al., 2015), our approach infers transcription 
factor activities from the expression data and uses these as an anchor to infer upstream 
signalling networks relevant to the regulation of our phenotypes. Transcription factor activities 
can represent the outcome of a signal transduction process compared to the expression profiles 
and are thus a better proxy for cell signalling activities of the cell (Szalai and Saez-Rodriguez, 
2020).  Such an approach has been previously used, for example by the tool CARNIVAL (Liu et 
al., 2019). However, this and other available tools neglect the propensity for the transcriptome to 
be regulated in a highly context specific and modular structure (Kitano, 2002; Sharma and 
Petsalaki, 2019).  Moreover, their reliance on annotated pathways to describe cell signalling 
undermines their ability to spot novel functional units, specific to a given phenotype. Here, using 
context-specific gene expression modules, we produced a network connecting the genes of 
interest from diverse analyses and used a network propagation algorithm to further focus on 
signalling proteins of novel interest.  While there inevitably remains a level of bias stemming 
from the transcription factor regulon and pathway annotations, our bottom-up approach seeks to 
identify unbiased latent modular structures within transcriptomic data first. This puts the 
emphasis on data-driven gene expression modules, rather than literature-derived regulons and 
pathways. This approach takes an important step towards reducing the bias associated with 
previously annotated pathways and allows the identification of important regulatory units and 
their function with respect to cell shape from a systems biology point of view. Our network 
approach allows us to map the interface between two graphically presented systems in the cell; 
the transcriptome and intracellular signalling. Both can be easily combined with complex, 
multivariate phenotypic data which here has revealed a clearer picture of how signalling 
regulates cell morphology in breast cancer. 

The interoperability of this approach is obvious, with any number of continuous variables 
measured with gene expression able to be correlated with module eigengenes using WGCNA. 
Here, we used OmniPath as a base network, but other network-based representations of the 
cellular environment can be used based on the appropriate context. Thus, our method 
represents a data-driven, network-based approach compatible with many different multi-scale 
phenotypes that are driven by intracellular signalling. Overall, our unbiased network-based 
method highlights potential ‘missing links’ between sensing extracellular cues and 
transcriptional programmes that help maintain the cancer stem cell niche, and ultimately push 
breast cancer cells into EMT and metastasis. These represent starting points for further 
experimental studies to understand and therapeutically target the links between cell shape, cell 
signalling and gene regulation in the context of breast cancer. 

 

Methods  
WGCNA analysis  

Using Weighted correlation network analysis, we performed co-expression module identification 
using the R package WGCNA (Langfelder and Horvath, 2008). We used bulk RNA-seq data 
from Expression Atlas (in FPKM - E-MTAB-2770 and E-MTAB-2706) acquired from commonly 
used cancer cell lines of various cancer types and with the alignment performed to the NCBI 
Human Reference Genome GRCh37 (Papatheodorou et al., 2020). We collated 13 breast 
cancer and 1 non-tumorigenic cell line for which imaging data was available (BT474, CAMA1, 
T47D, ZR75.1, SKBR3, MCF-7, HCC1143, HCC1954, HCC70, hs578T, JIMT1, MCF10A, 
MDAMB157 and MDAMB231 (Sero et al., 2015)). We acquired representative images of each 
cell line from Sero et al., 2015 (https://datadryad.org/stash/dataset/doi:10.5061/dryad.tc5g4). 
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Cell imaging segmentation was performed using Acapella software (PerkinElmer) with an 
automated spinning disk confocal microscope. The presented images (Figure 2) are taken from 
the above link, stained with DAPI (blue), Alexa 488 (green) and DHE (red). Using Ensembl-
BioMart, we filtered genes to only include protein-coding genes (Kinsella et al., 2011) and genes 
whose FPKM was greater than 1, leaving a total of 15,304 genes.   

We created a signed, weighted adjacency matrix using log2 transformed gene expression values 
and a soft threshold power (beta) of 9. We translated this adjacency matrix (defined by Eq.1) 
into a topological overlap matrix (TOM; a measure of similarity) and the corresponding 
dissimilarity matrix (TOM - 1) was used to identify modules of correlated gene expression 
(minimum module size of 30). Jack knife cross-validation was used to assess the robustness of 
the identified modules to the removal of different cell lines from the analysis (Supplemental 
Figure S1C) and all showed a high degree of conservation between resampled runs.  

 

��. 1   ���  �  | 	1 
  ��	�� , ����/2 |�
 

 

We took morphological variables referring to breast cancer cell lines from Sero et al., 2015, 
which include 10 significant features shown to be predictive of TF activation (Sero et al., 2015). 
We correlated these features with module eigengenes using Pearson’s correlation and we 
tested these values for significance by calculating Student asymptotic p-values for given 
correlations. Multiple hypothesis testing was performed using a permutation based procedure 
whereby we recalculated the correlation matrix 1,000 times with resampled data. We then 
generated null distributions for each ranked correlation statistic in our matrix, and compared 
them to our real data of the same rank. We include in the Supplemental Table S1 confidence 
intervals of our permutation-based multiple-correction procedure. For the modules that 
correlated with morphological features (Pearson Correlation Coefficient 0.5 and Student 
P<0.05), we identified enriched signalling pathways using the R package Enrichr (Kuleshov et 
al., 2016), and the signalling database Reactome (Jassal et al., 2020). Reactome was used in 
preference to other pathway databases, because of the more consistent inclusion of TFs within 
the annotated pathways. Using the database TRRUST v2  (Accessed : 01/07/18)(Han et al., 
2018), we identified TF regulons that significantly overlap (Fisher’s exact test, P<0.1) with the 
gene expression module contents. This was done separately for inhibitory and activatory 
expression regulons for each transcription factor, with regulatory relationships of unknown sign 
being used in the significance calculations for both.  

We named gene expression clusters using significantly enriched terms identified by the Enrichr 
analysis (Supplemental Table S3). As some clusters were very obscure, we utilized the entire 
Enrichr list of libraries (https://maayanlab.cloud/Enrichr/#stats for full list) with precedence going 
to the signalling databases of KEGG, Reactome, Panther and Wikipathways  (Accessed : 
01/04/20)(Kanehisa et al., 2016; Martens et al., 2021; Mi et al., 2013). Some modules could not 
be assigned informative terms and so were named ‘not annotated’ (NA). 

 

Clustering and differential expression  

Using the k-means algorithm, we classified the 14 breast cancer cell lines by the median values 
of each of their shape features (k=3, see Supplemental Figure S2A).  We performed differential 
expression analysis using the R package DESeq2 (Love et al., 2014). We filtered genes so that 
only protein coding genes and those with more than 0.5 counts per million in at least 8 cell lines 
were included. We calculated log2 fold changes with the cluster of interest as the numerator and 
the remaining cell lines acting as a control. Using the R package FGSEA (Korotkevich et al., 
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2021), we performed gene set enrichment analysis of the differentially regulated proteins using 
the complete pathways gene set (Release 01 April 2020) from MSigDB (Liberzon et al., 2015) 
and the WGCNA gene expression modules identified in previous analysis. We calculated 
transcription factor regulon enrichment using the software DOROTHEA (Accessed: 
01/04/20)(Holland et al., 2020) 

 

 

 

Network Generation  

Using a Prize Collecting Steiner Forest (PCSF) algorithm, we generated a cell-shape regulatory 
network implemented through the R package PCSF (Akhmedov et al., 2016). For the prize-
carrying nodes to be collected by the PCSF algorithm, we used the transcription factors 
significantly regulating the WGCNA modules using TRRUST v2 (p<0.1), the differentially 
activated transcription factors identified by DOROTHEA (p<0.1), and the signalling proteins 
included in the REACTOME pathways that were enriched in transcription factors identified 
(p<0.05). We identified these pathways by using the TRRUST TFs identified in the previous 
steps, as well as ENCODE and ChEA Consensus TFs from ChIP-X (Lachmann et al., 2010), 
DNA binding preferences from JASPAR (Stormo, 2013; Wasserman and Sandelin, 2004), TF 
protein-protein interactions and TFs from ENCODE ChIP-seq (Euskirchen et al., 2007). Using 
Enrichr, we identified pathways that were enriched in the identified TFs, and the proteins that 
were included in these pathways were extracted from Pathway Commons using the R package 
paxtoolsr (Luna et al., 2016). This was tested for bias to specific pathways by generating 
pathway-specific null distributions from 1,000 resampled GEMs. Distributions of p-values for 
each Reactome pathway were generated, where failed tests (because of no TF enrichment) 
were given a p-value of 1. Results of this were corrected for multiple-hypothesis testing using 
FDR correction.   

The ‘costs’ associated with each edge in the regulatory network were the inverse of the number 
of sources linked to each regulatory connection scaled between 1 and 0, such that the more the 
number of citations for an edge, the lower the cost. For the base network used by the algorithm, 
we used the comprehensive biological prior knowledge database, Omnipath  (Accessed : 
06/05/20) (Türei et al., 2021), extracted using the R package OmnipathR (Türei et al., 2016). 
We set each prize for significant TFs or signalling pathways to 100 and used a random variant 
of the PCSF algorithm with the result being the union of subnetworks obtained on each run (30 
iterations) after adding random noise to the edge costs each time (5%). The algorithm also 
includes a hub-penalisation parameter which we set to 0.005. Other parameters include the 
tuning of node prices (set to 1) and the tuning of trees in the PCSF output (40).  

We included the WGCNA modules themselves as super-nodes in the network, by adding 
incoming edges from the transcription factors contained within the regulatory network whose 
regulomes (as described in TRRUST v2 (Han et al., 2018)) significantly overlap (Fisher’s exact 
test; P<0.1) with the gene content of the module in question.  We represented the respective 
cell-shape phenotypes as nodes in a similar fashion, by including undirected edges from 
expression modules and phenotypes where there was significant correlation (|PCC| > 0.5 & 
P<0.05) between them. To account for expression modules' effect on upstream signalling, we 
added edges from the WGCNA modules back up to proteins that were themselves included 
within the modules. We set the edge weight of these to 1, such that any predicted activity of the 
gene expression module would be translated directly into its constituent signalling proteins and 
thus account for feedback between cell shape signalling networks, and the context-specific 
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expression modules identified in the first step. We identified enriched terms in the network using 
the 2016 release of the database Panther (Mi et al., 2013) and GSE package Enrichr (Kuleshov 
et al., 2016).  

 

Network propagation of functional TFs 

We examined the potential effect of significantly activated (FDR < 0.05), and deactivated TFs in 
different cell line clusters using network propagation in our generated network. We replaced 
edge weight with Resnik Best Match Average (BMA) semantic similarity (Resnik, 1995) between 
the biological process GO terms of the two interacting pairs, with the sign of the interaction 
being inherited from Omnipath (Türei et al., 2016).  We then scaled the semantic similarity edge 
weights between 1 and -1.  

  

We used the differentially activated transcription factors identified using DOROTHEA (P<0.05) 
as seeds for a Random Walk with Restart (RWR) algorithm using the R package diffuseR 
(available at: https://github.com/dirmeier/diffusr). We judged a node to be significantly ranked if 
its affinity score relative to the inputted seeds was greater than the same node’s affinity score 
with a random walk simulation performed with randomised seeds.  We performed this 
randomised simulation 10,000 times, from which a p-value was determined to judge significance 
(P<0.1). We performed this propagation by RWR for both luminal-like and basal-like 
morphological clusters on significantly activated and deactivated transcription factors 
separately, in addition to simulations where each seed was considered in isolation. We 
implemented these simulations with a restart probability of 0.95. We generated a graphical 
representation of the network edges and TFs responsible for the ranking of RAP1 signalling by 
plotting all the shortest paths between RAP1 and the TFs that caused it to have a non-zero 
affinity score when each TF was considered in isolation.  

 

Breast cancer cell morphology following kinase inhibitor treatment  

We used single cell, small molecule kinase inhibition data from Harvard Medical School (HMS) 
Library of Integrated Network-based Cellular Signatures (LINCS) Center (Stathias et al., 2020), 
which is funded by NIH grants U54 HG006097 and U54 HL127365 (available from: 
https://lincs.hms.harvard.edu/mills-unpubl-2015/, Accessed: 01/08/20). This dataset is derived 
from the treatment of 6 cell lines with a panel of 105 small molecule kinase inhibitors. They 
measured textural and morphological variables following treatment by high-throughput image 
analysis (Hamilton et al., 2007; Haralick et al., 1973). We combined this assay with another 
dataset from HMS-LINCS; a Target Affinity Spectrum (TAS) for compounds in the HMS-LINCS 
small molecule library measuring the binding assertions based on dose-response affinity 
constants for particular kinase inhibitors (https://lincs.hms.harvard.edu/db/datasets/20000/, 
Accessed: 01/08/20). Using this dataset, we filtered for only molecule-binding target pairs with a 
binding class of 1 (representing a Kd < 100nM affinity). Further to this, we removed molecules 
which had more than 5 targets with a Kd of 100nM. Consequently, the remaining kinase 
inhibitors were relatively narrow spectrum, thus simplifying analysis of their phenotypic effect. 
We expressed these results as batch-specific log fold changes of 10µm drug treatment relative 
to the mean of the control set (untreated and DMSO treated cells). Spearman’s rank correlation 
was calculated between the drug target’s network centrality and the absolute log fold change of 
the morphological variable. We also used the Kolmogorov-Smirnov statistic to assess 
significance between cell morphology after treatment with drugs targeting kinases inside versus 
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outside our predicted network. This was also repeated on other breast cancer cell lines and 
using a TRAIL (apoptosis inducing) control (Supplemental table S8).   

The morphological data in the kinase inhibition screen was measured using two dyes (DRAQ5 
and TMRE), the intensity of which we used to normalise textural features and the measurement 
of cytoplasmic and nuclear small spots. We reported counts for small nuclear or cytoplasmic 
spots as a mean of the individually normalised readings from both dyes. We considered a 
treatment perturbing our network if at least one of the kinase inhibitors targeted a protein that 
was represented by a node within the network.  

 

Quantifying kinase inhibitor influence   

We incorporate information from the Target Affinity Spectrum assay, as well as graph-based 
properties of kinase inhibitor targets, using the product of the Szymkiewicz-Simpson similarity 
(measured between the cell shape network nodes and the drug targets) and the centrality of the 
targeted nodes in the predicted network with semantic similarity edge weights. The product of 
these generates, for a given kinase inhibitor the statistic: 
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Where K is the set of kinases an inhibitor is predicted to target, N is the nodes of the network 
and the function PR() is the centrality of a particular node in the network as defined by the 
PageRank algorithm (Brin and Page, 1998).  This centrality measure has been shown to be 
effective in prioritizing proteins by relative importance in signalling or protein-protein interaction 
networks (Iván and Grolmusz, 2011). We used this statistic as a measure of a kinase inhibitor's 
influence on cell shape.  

 

Analysis of BRCA cell line and TCGA sample RNA-seq data 

For the cell lines, we used RNA-seq data from Expression Atlas (in FPKM - E-MTAB-2770 and 
E-MTAB-2706) (Papatheodorou et al., 2020). This was analysed using DESeq2 (Love et al., 
2014) as per the methodology in the subsection entitled “Clustering and differential expression”. 
Both TF and module activity was calculated using the algorithm VIPER (Alvarez et al., 2016). 
For patient data, the results shown here are based upon data generated by the The Cancer 
Genome Atlas (TCGA) Research Network (https://www.cancer.gov/tcga, Accessed: 01/04/21). 
For computational efficiency, we use Gamma-Poisson models to predict differentially expressed 
genes from our samples using the package glmGamPoi (Ahlmann-Eltze and Huber, 2020). We 
use the sample of interest as the numerator with the remaining tumour samples acting as a 
control. For quantifying correlation between RAP1 - GEM and different transcription factors we 
remove samples with insignificant activation of either the TF in question or RAP1-GEM (FDR 
adjusted P value < 0.05). Correlation was quantified using Kendall rank correlation coefficient. 
Differences in distributions of morphological subtypes was quantified by Kolmogorov-Smirnov 
test.  

 

Maximum-flow network analysis  
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For maximum-flow calculations, we used the Resnik BMA semantic similarity (Resnik, 1995) as 
the maximum ‘carrying capacity’ of an edge in the network. To visualise the optimised solution 
(as implemented by the R package igraph (Csardi and Nepusz, 2006)) we selected only those 
edges in the 99th percentile of the flow-carrying edges in the network. Visualisation was 
performed using the software, Cytoscape (Shannon et al., 2003). Maximum flow was performed 
with the R package igraph (Csardi and Nepusz, 2006). 

Quantification and Statistical Analysis 

Statistical tests were performed in base R  (R Core Team 2021) unless otherwise mentioned in 
the methods and p-value cut-offs are shown in parentheses after reporting an effect as 
significant. Weighted Pearson’s correlation with t-test for significance was used to correlate 
eigengenes and cell shape features using the RNA package WGCNA. We used a one-way 
ANOVA test for comparing the means of the shape variables among the identified 3 cell line 
clusters (n = 75,653) and a Tukey honest significant differences test to perform multiple-
pairwise comparison among the means of the groups. The same tests were performed on the 
differences in 10 cell shape variables when HS578T was treated with 37 kinase inhibitors (n = 
23,128). Fisher’s exact test was used to test significance of overlap between TRRUST regulons 
and identified gene expression modules (Supplemental Table S4 shows the size of the overlap).  

Enrichment of gene sets was performed by Enrichr, an enrichment library that utilises a hyper-
geometric test to identify significantly enriched terms in a gene list. This tool (described in (Chen 
et al., 2013)) calculates a score combining the Fisher’s exact test p-value of the enrichment with 
the z-score deviation from the expected rank. The pre-ranked gene-set enrichment algorithm 
FGSEA was used for the identification of enriched terms in the differentially expressed genes 
allowing for accurate estimation of arbitrarily low P-values that occur in expression datasets.  

Spearman rank correlation was used to measure the strength of the association between target 
network centrality and the measured effect of its perturbation by inhibition. Spearman was 
chosen because the centrality (combined with Szymkiewicz-Simpson) according to equation 2 
does not follow an exact normal distribution.  Kendall rank correlation coefficient was used when 
calculating the correlation between TF activity and RAP1-GEM activity because confidence 
intervals for Spearman’s rS are less reliable and less interpretable than confidence intervals for 
Kendall’s τ-parameters. When trying to distinguish between many correlations of similar quality, 
this becomes more important. FDR adjustment for multiple testing correction was always used 
when multiple tests were performed in the same analysis.  

Kolmogorov-Smirnov test was used to measure differences in distributions of clinically assigned 
tumour morphologies. This was because clinical groupings are mixed (i.e. Infiltrating duct and 
lobular carcinoma) and others are characterized by an absence of features over their presence. 
This means that the assumption of normality required for a t-test is not fulfilled.  

For differential expression analysis the DESeq2 R package (Love et al., 2014) was used. 
DESeq2 fits negative binomial generalized linear models for each gene and uses the Wald test 
for significance testing. The package then automatically detects count outliers using Cooks's 
distance and removes these genes from analysis. 

Significance was determined for RWR network propagation by randomising seed nodes 
(preserving their values) 10,000 times and selecting only the non-seed nodes that were 
significantly ranked relative to the randomised simulations (P<0.1). Figures were presented 
using ggplot (Wickham 2009).  

Software Availability 
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The complete R scripts and data used for this methodology are available on Gitlab 
(https://gitlab.ebi.ac.uk/petsalakilab/phenotype_networks) and as a Supplemental Code file.  
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Figure Legends  

Figure 1. Overview of workflow and resultant gene expression modules and pathways. A. 
Schematic illustrating the steps involved in phenotype-specific network construction. Gene 
expression modules are identified by integrating cell shape variables (derived from imaging 
data) with RNA-seq data from breast cancer cell lines. These gene expression modules are 
correlated with specific cell shape features to find morphologically relevant modules. Next, 
transcription factors (TFs) are identified whose targets significantly overlap with the contents of 
the expression modules. These TFs are used to identify pathways regulating the gene 
expression modules, which are then integrated to form a contiguous network using PCSF. B. 
Heatmap of significantly correlated gene expression module eigengenes with cell shape 
features. Non-significant interactions were set to 0 for clarity. C. Dot plot illustrating the 
enrichment of pathways among TFs found to regulate gene expression modules. The x axis 
shows the module names (as defined by Supplemental Table S3) and the y axis shows the 
signalling pathways found to be significantly (P<0.01) enriched in the TFs that regulate the 
given module (as defined by Supplemental Table S5). The y axis is arranged such that the 
terms with the highest combined odds ratio are at the bottom. Size of the dot represents the -
log10(P) and the colour indicates a log 10 transformation of the odds ratio.  

 

Figure 2. Clustering breast cancer cell lines into groups of similar morphology. A. 
Heatmap of Euclidean distance between cell lines for shape features to illustrate clusters arising 
from k-means method. The coloured lines on the bottom show the assigned cluster and the 
cadherin expression and assigned canonical cancer subtype. B. Dotplot showing the 
enrichment of gene expression modules in the different cell line clusters. Along the y axis are 
the names of the clusters, faceted by whether they are included in the PCSF derived regulatory 
network on the bottom and whether they are correlated with cell shape variables, but not 
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included in the network on the top. The x axis shows the cell shape clusters, with letters 
corresponding to the groups in Figure 2A (A - a heterogeneous mix of breast cancer subtypes, 
B - luminal-like cell lines and C - basal-like cell lines.). Dots are coloured based on the 
normalised enrichment value, with down-regulated modules in blue, and the up-regulated 
modules in yellow. Size corresponds to significance (-log10(P)) with the shape illustrating which 
changes are significant (adjusted P<0.01, Benjamini-Hochberg). C. Images (see Methods) 
showing morphology of representative cell lines from each respective cluster. Colours indicate 
labeling with DAPI (blue), Alexa 488 (green) and DHE (red). 

 

Figure 3. Effect of drug perturbation of derived network on breast cancer cell line 
morphology. A. Box plots showing the absolute log10 fold changes after treatment with a drug 
relative to a control for each cell shape variable. The drugs are grouped depending on whether 
they target kinases within the predicted regulatory network (blue) and those targeting other 
kinases not predicted to be associated with cell shape (red). P values (Welch Two Sample t-
test) are showing with stars indicating significance. B. Bar plot showing the absolute difference 
in log fold changes of cell shape variables after treatment with a drug relative to a control. Here, 
each drug is shown separately (with the LINCs ID shown on the x axis) and coloured based on 
the drug influence score (DIS) and each data-point represents a single cell. Inset are plots 
showing the correlation between this influence score and the difference between mean treated 
cells and mean control cells in each of the 10 measured cell shape features for each drug. 
Spearman’s correlation coefficients are shown above the inset plots. 

 

Figure 4. Network propagation of active transcription factors within cell shape network. 
A, B Bar plot showing network propagation in predicted cell shape network from activated and 
inactivated transcription factors in basal-like cell lines (A) and luminal (B). The y axis is a steady 
state probability (or the ‘heat’ of the nodes in the network after the diffusion) over the graph 
imposed by the starting seeds, ordered by size. Red bars represent propagation from 
transcription factor seeds that are predicted to be in-activated, and blue bars show propagation 
from transcription factor seeds that are predicted to be activated. Red stars along the x axis 
indicate supernodes that represent gene expression modules. Only those nodes with combined 
probability > 0.0001 are shown, with the full results available in Supplemental Table S9. C. Sub-
networks illustrating the paths between activated transcription factors (in basal-like and luminal-
like) and the ‘RAP1 signalling’ gene expression module. Transcription factors are shown as 
diamond-shaped nodes, with their colour representing their activity. The ‘RAP1 signalling’ gene 
expression module is shown as a grey rectangle. Signalling proteins are shown as black nodes.   

 

Figure 5. Expression of RAP1 gene expression module in further breast cancer cell lines, 
and in clinical samples. A Plots showing the correlation between the RAP1 gene expression 
module activity (Normalised enrichment score - see methods) and the activity (NES) of various 
transcription factor (JARID2, NF-kB1, RELA, RELB, RUNX2 and TEAD1) . Line of best fit 
according to linear regression is shown in red, with confidence interval in grey. Colour of the 
points in the plot represents the FDR adjusted P-value of the RAP1 NES as calculated by 
DOROTHEA.  B. Volcano plot illustrating the correlation (Kendall’s rank correlation) between 
activity of RAP1 gene expression module and transcription factor activity, with Kendall’s tau 
coefficient along the x axis and -log2(FDR adjusted P) along the y axis. C. Barplot showing 
RAP1-GEM activity across different breast cancer samples, separated by clinically assigned 
morphology. The y axis shows RAP1 gene expression module activity as calculated by 
DOROTHEA in NES. Mean values for each group are shown by a red dot. D. Network showing 

 Cold Spring Harbor Laboratory Press on March 21, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 

19 

gene set enrichments of the contents of RAP1 gene expression module. Genes are shown in 
pale blue, and pathways are shown by nodes whose colour indicates significance of the 
associated term (-log2(P)). E.  Sub-network showing the top flow-carrying edges (99th 
percentile) calculated using the maximum-flow algorithm between RAP1 gene expression 
module and NFKB1. 
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