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Abstract—This paper proposes a novel signal-dependent criterion to
guarantee the stability of support recovery using group-Lasso regular-
ization. This criterion ensures that, when the signal-to-noise ratio is large
enough, `1 − `2 block sparsity regularization recovers a signal with the
same block support as the original signal. Consequently, this implies a
linear convergence of the `2 recovery error when the noise tends to zero.
In the noiseless case, this criterion guarantees that one recovers exactly
the original signal.

I. GROUP LASSO REGULARIZATION

Given a set of non-overlapping blocks B describing a partition
{1, . . . , N} =

⋃
b∈B b, the block norms `1 − `2 and `∞ − `2 of

x ∈ RN are defined as

||x||1,2 ,
∑
b∈B

||xb||2 and ||x||∞,2 , max
b∈B
||xb||2. (1)

We consider the problem of recovering x0 ∈ RN from a set of linear
and noisy observations y = Φx0+w, where Φ ∈ Rd×N is the design
operator, and w ∈ Rd is the noise vector. The design operator Φ is
typically ill-posed and thus, recovering a precise approximation of x0
from y is a challenging inverse problem. The block sparsity structure
of the original vector appears to be beneficial for obtaining a robust
estimation. Following for instance [1], a group Lasso estimator is
proposed by solving the following convex problem:

(Pλ(y)) x? ∈ argmin
x

1

2
||y − Φx||22 + λ||x||1,2.

The main objective of this article is to analyze the performance of
(Pλ(y)) for a deterministic (non-probabilistic) setup of x0, Φ and
w.

II. SUPPORT STABILITY

a) Main Contribution: Let us first fix some notations: we
denote by I ,

{
b ∈ B \ x0b 6= 0

}
the support set of x0, where

x0b = (x0i )i∈b. We denote by T = minb∈I ||x0b ||2 > 0 the signal level.
Assuming that ΦI is injective, the identifiably criterion associated to
x0 reads

IC(x0) = ||Φ∗IcΦ+,∗
I N (x0,I)||∞,2 where N (xI) =

(
xb
||xb||

)
b∈I

,

Φ+
I = (Φ∗IΦI)

−1Φ∗I , and Ic denotes the co-support. The following
theorem presents the main contribution of this article:

Theorem 1: Suppose ΦI is an injective operator and IC(x0) < 1.
∃cI , c̃I > 0 such that, if ||w||2/T < c̃I/cI and cI ||w||2 < λ < c̃IT ,
the solution x? of Pλ(y) is unique and it is exactly supported on
I . In addition, ||x? − x0||2 6 CI ||w||2 + C̃Iλ for some constants
CI , C̃I > 0.

In plain words, this theorem asserts that for a properly chosen λ
proportional to the noise level, the condition IC(x0) < 1 ensures
both exact support recovery (i.e. x? shares the same support as x0),
and a linear convergence of the `2 recovery error i.e. ||x0 − x?||2 =
O(||w||2). This implies exact signal recovery x? = x0 when w = 0
and λ = 0+, as previously shown in [2].

b) Previous and Related Works: Theorem 1 is proved by
Fuchs [3] in the special case of the Lasso i.e. the `1 regularization
(having blocks of size 1). Eldar and Rauhut [2] derived the same
identifiably criterion, however, ensuring exact block sparse recovery
only in the noiseless case i.e. w = 0 and λ = 0+. Bach [4] showed
that IC(x0) < 1 ensures consistency of the group lasso when Φ is
injective, which corresponds to the convergence of x? to x0 when
λ ∼ ||w|| → 0+. We extend these results to the inverse problem
setting where Φ might not be injective and we provide non-asymptotic
bounds on the signal-to-noise ratio to ensure support identifiability.

III. SKETCH OF THE PROOF

We construct x̂ with x̂Ic = 0 and

x̂I = argmin
xI

F(xI) where F(xI) =
1

2
||y−ΦIxI ||2+λ||xI ||1,2 (2)

The proof proceeds by showing that x̂ = x? is the solution to this
problem when λ is well chosen. This requires to show that

(C1) ||Φ∗Ic(y − ΦI x̂I)||∞,2 < λ,

and (x̂)b 6= 0 for all b ∈ I . The later is implied by the condition

(C2) ||x̂I − x0I ||∞,2 < T.

For an injective ΦI , the optimality condition i.e., 0 ∈ ∂F(x̂I), gives

||x̂I − x0I ||∞,2 6 ||Φ+
I w||∞,2 + λ||(Φ∗IΦI)−1u||∞,2, (3)

where u ∈ ∂(||x̂I ||1,2), implying ||u||∞,2 6 1. Using (3) we can show
that the condition (C2) is implied by a stronger condition of the form:

(C′2) Dε+ Eλ < T,

where ε = ||w||2 and E,D > 0 are constants. Once (C′2) holds, the
optimality condition of (2) implies the following implicit equation:

x̂I = x0I + Φ+
I w − λ(Φ∗IΦI)

−1N (x̂I). (4)

On the other hand, by inserting the identity (4) in (C1) and using the
bound ||N (x̂I)−N (x0I)||∞,2 6 2

T
||x̂I − x0I ||∞,2, we can show that

the condition (C1) is implied by a stronger condition of the form

(C′1) Aε− (1− IC(x0))λ+Bλε+ Cλ2 < 0,

for some constants A,B,C,D > 0. Conditions (C′1) and (C′2) are
polynomial constraints that define an admissible set for λ given ε
and T . Standard algebraic manipulations show that this admissible
set can be bounded in the form announced in Theorem 1.
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I. NOTATIONS

Given a set of non-overlapping blocks B describing a partition
{1, . . . , N} =

⋃
b∈B b, the block norms `1 − `2 and `∞ − `2 of

x ∈ RN are defined as

||x||1,2 ,
∑
b∈B

||xb||2 and ||x||∞,2 , max
b∈B
||xb||2. (1)

Additionally, we define black induced norms for a matrix M as

||M ||∞,2→∞,2 , max
||x||∞,2=1

||Mx||∞,2 (2)

||M ||∞,2→2 , max
||x||2=1

||Mx||∞,2 (3)

We denote by I ,
{
b ∈ B \ x0b 6= 0

}
the support set of x0, where

x0b = (x0i )i∈b. We denote by T = minb∈I ||x0b ||2 > 0 the signal level.
Assuming that ΦI is injective, the identifiably criterion associated to
x0 reads

IC(x0) = ||Φ∗IcΦ+,∗
I N (x0,I)||∞,2 where N (xI) =

(
xb
||xb||

)
b∈I

,

Φ+
I = (Φ∗IΦI)

−1Φ∗I , and Ic denotes the co-support.
Theorem 1: Suppose ΦI is an injective operator and IC(x0) < 1.
∃cI , c̃I > 0 such that, if ||w||2/T < c̃I/cI and cI ||w||2 < λ < c̃IT ,
the solution x? of Pλ(y) is unique and it is exactly supported on
I . In addition, ||x? − x0||2 6 CI ||w||2 + C̃Iλ for some constants
CI , C̃I > 0.

II. PROOF

We construct x̂ with x̂Ic = 0 and

x̂I = argmin
xI

F(xI) where F(xI) =
1

2
||y − ΦIxI ||2 + λ||xI ||1,2

(4)
The proof proceeds by showing that x̂ = x? is the solution to this
problem when λ is well chosen. This requires to show that
• The elements on the support do not vanish i.e. (x̂)b 6= 0 for all
b ∈ I . This is implied by the condition

(C2) ||x̂I − x0I ||∞,2 < T.

• Uniqueness is implied by the following condition (need refer-
ence)

(C1) ||Φ∗Ic(y − ΦI x̂I)||∞,2 < λ,

For an injective ΦI , the optimality condition i.e., 0 ∈ ∂F(x̂I), gives

||x̂I − x0I ||∞,2 6 ||Φ+
I w||∞,2 + λ||(Φ∗IΦI)−1u||∞,2, (5)

for all u ∈ R|I| and ||u||∞,2 6 1. Using (5) we can show that the
condition (C2) is implied by a stronger condition of the form:

(C′2) Dε+ Eλ < T,

where ε = ||w||2 and E,D > 0 are constants. Once (C′2) holds, the
optimality condition of (4) implies the following implicit equation:

x̂I = x0I + Φ+
I w − λ(Φ∗IΦI)

−1N (x̂I). (6)

On the other hand, by inserting the identity (6) in (C1) and using the
bound ||N (x̂I)−N (x0I)||∞,2 6 2

T
||x̂I − x0I ||∞,2, we can show that

the condition (C1) is implied by a stronger condition of the form

(C′1) Aε− (1− IC(x0))λ+Bλε+ Cλ2 < 0,

for some constants A,B,C,D > 0. Conditions (C′1) and (C′2) are
polynomial constraints that define an admissible set for λ given ε
and T . Standard algebraic manipulations show that this admissible
set can be bounded in the form announced in Theorem 1.


