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Accelerating the Gradient Projection Iterative Sketch for large
scale constrained Least-squares

Junqi Tang, Mohammad Golbabaee, Mike Davies
Institutte of Digital Communications, The University of Edinburgh, EH9 3JE, UK

Abstract—This paper proposes an accelerated sketched gradient
method [1] which was based on equipping a combination of the meta-
algorithms Classical Sketch (CS) [2] and Iterative Hessian Sketch (IHS)
[3] with the Projected / Proximal Gradient Descent (PGD) algorithm
and Nesterov’s acceleration scheme for efficiently solving large scale
constrained Least-squares and regularized Least-squares. As a first order
solver, the PGD can provide us flexibility in handling the constraints and
scalability in computation. The proposed algorithm satisfies a number
of our expectations as an efficient large scale constrained/regularized LS
solver, which are mainly inherited from the scalability and flexibility
of the PGD combined with dimensionality reducing properties of the
sketching techniques: (a) computational efficiency, (b) efficiency on high
speed storage, and (c) flexibly to incorporate a wide range of constraints
and non-smooth regularization.

I. INTRODUCTION

Consider a noisy linear measurement model for a vector xgt
(ground truth) which belongs to a convex constrained set K, an n by
d linear operator matrix A, and additive noise denoted by w ∈ Rn×1:

y = Axgt + w, xgt ∈ K, A ∈ Rn×d. (1)

In the context of imaging applications such as CT or MRI, the vector
y denotes a set of n physical measurements collected from an image
xgt through the measurement operator A, and in the context of
machine learning, A is often a training data matrix used for setting the
regression parameters xgt from the observations y. The Least-square
(LS) estimator for xgt is:

x? = argmin
x
‖y −Ax‖22 + fK(x), (2)

where the convex (could be non-smooth) function fK enforces the
constraint into the Least-squares estimator. If the constraint is exactly
known, the fK can be set as the indicator function of the set K, if
not, we can set it as a regularizer.

II. SKETCHED GRADIENT WITH NESTEROV’S ACCELERATION

SCHEME

A standard first order solver for (2) is the PGD algorithm which
can be defined for any convex constrained set K, as long as the
projection (or proximal operation) onto the set is efficient:

xj+1 = ProxfK(xj − ηAT (Axj − y)). (3)

The PGD is known to be flexible to various constraint sets, but it
faces two major challenges: 1) when the operator A is large, the
computational cost of the iterates can be large; 2) when A is ill-
conditioned, the PGD may take a very large number of iterations
to converge. Moreover when the computational cost of the projec-
tion/proximal operator is non-trivial, we also wish to reduce the
number of iterations as much as possible (the stochastic gradient
algorithms usually demands a small batch size which will lead to
a large number of iterations). The proposed algorithm is aimed at
tackling both reducing the cost of the gradient calculation and the
number of iterations.

Algorithm 1:
Initialization: pt0 = 1 for all t, x00 = 0, z00 = 0 ;
Given A ∈ Rn×d, sketch size m� n;
Generate a random sketching matrix S0 ∈ Rm×n;
Calculate S0A, S0y;
while i = 0 : k0 − 1 do

x0i+1 = ProxfK(z0i − η(S0A)T (S0Az0i − S0y));

p0i+1 =
−(p0i )

2+
√

(p0i )
4+4(p0i )

2

2
;

τ0i+1 =
p0i (1−p0i )

(p0i )
2+p0i+1

;

z0i+1 = x0i+1 + τ0i+1(x
0
i+1 − x0i );

end
x10 = z10 = x0k0

;
while t = 1 : N − 1 do

Calculate g = AT (Axt0 − y);
Generate a random sketching matrix St ∈ Rm×n;
Calculate At

s = StA;
while i = 0 : kt − 1 do

xti+1 = ProxfK(zti − η(AtT

s At
s(z

t
i − xt0) +mg));

pti+1 =
−(pti)

2+
√

(pti)
4+4(pti)

2

2
;

τ ti+1 =
pti(1−pti)

(pti)
2+pti+1

;

zti+1 = xti+1 + τ ti+1(x
t
i+1 − xti);

end
xt+1
0 = zt+1

0 = xtk;
end
Return xNk ;

As shown in the Algorithm 1, we use the classical sketching [2]
and iterative sketching [3] framework as we have done in the [1], and
then since the sketched least-square problem is fixed in every outer
loop, the Nesterov’s acceleration scheme [4][5] is in theory directly
applicable to provide acceleration in both strict constrained setting
and proximal setting.

We have also tested its performance through numerical experi-
ments, and observe that the proposed algorithm achieves a further
speed-up onto the GPIS / GPIS-prox algorithm in all the experiments.
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Fig. 1. Experimental results on a synthetic l1 constrained Least-square
regression problem
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Fig. 2. Experimental results on a fan-beam CT image reconstruction
(Regularized least-squares)
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