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Abstract

Omnidirectional 360° images have found many promising and exciting applications
in computer vision, robotics and other fields, thanks to their increasing affordability,
portability and their 360° field of view. The most common format for storing, processing
and visualising 360° images is equirectangular projection (ERP). However, the distortion
introduced by the nonlinear mapping from 360° images to ERP images is still a barrier
that holds back ERP images from being used as easily as conventional perspective images.
This is especially relevant when estimating 360° optical flow, as the distortions need to
be mitigated appropriately. In this paper, we propose a 360° optical flow method based
on tangent images. Our method leverages gnomonic projection to locally convert ERP
images to perspective images, and uniformly samples the ERP image by projection to a
cubemap and regular icosahedron faces, to incrementally refine the estimated 360° flow
fields even in the presence of large rotations. Our experiments demonstrate the benefits of
our proposed method both quantitatively and qualitatively.

1 Introduction
Commercial 360° video cameras have recently grown in popularity. Companies such as GoPro,
Insta360, Ricoh, and many others, are now offering affordable consumer 360° video cameras.
At the same time, support for 360° videos has been added across the content creation and
consumption pipeline, including video editing software, such as DaVinci Resolve and Adobe
Premiere Pro, video distribution channels such as YouTube, Facebook and Vimeo, video
players like VLC, and virtually all current VR headsets.

Optical flow is a crucial component for processing and editing 360° images and videos as it
provides correspondences over time. Among other things, this enables 360° video stabilisation
[22], depth estimation [51], and novel-view synthesis [5]. However, the most common format
of 360° images, equirectangular projection (ERP), suffers from severe distortions when
mapping a spherical 360° image to the 2D image plane. This distortion is not considered by
most existing optical flow algorithms, which may lead to flow estimation errors.

Previous work has adapted existing CNN-based techniques designed for perspective im-
ages to ERP images by transforming convolution kernels to match the projection [10, 33, 38].
To overcome the limited spatial resolution supported by these methods, other work proposed
extracting, processing and recombining tangent images [13, 25, 27, 41, 42, 48], which sup-
ports both CNN-based and traditional methods. Moreover, these tangent images are based
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on gnomonic projection, which is a common tool used in geography to map a sphere to a
plane, as the great circle on the sphere maps to a straight line in the tangent image [13]. This
principle has been applied to tasks such as monocular depth estimation [41, 42], semantic
segmentation [13, 48], and classification [13, 25, 27], but not yet to optical flow. Our approach
builds on this insight to estimate accurate 360° optical flow for high-resolution ERP images
by sampling tangent images uniformly based on regular polyhedra (cube and icosahedron).

This paper makes the following technical contributions:
1. We propose a 360° optical flow method based on gnomonic projection to overcome the

distortions induced by the equirectangular projection of 360° images.
2. We integrate a global warping method to align large rotations between 360° images.
3. We introduce a tangent image optical flow blending method that can dramatically

reduce discontinuities at face boundaries.
4. We refine our flow estimates by increasing the sampling density of tangent images from

an initial cubemap to the final icosahedron-based uniform sampling of tangent images.

2 Related Work
Optical Flow has been a fundamental computer vision technique for decades, as it estimates
dense correspondences between two input images [4, 29]. These correspondences can be used
to identify object or camera ego-motion, and optical flow thus finds many applications in
robotics, scene understanding, geometry reconstruction etc. Traditional optical flow methods
are formulated using energy minimization based on photoconsistency and regularisation with
a smoothness term [7, 15, 23, 26]. Brox et al. [8] proposed a warping-based method that
refines optical flow estimations in a coarse-to-fine fashion. Sun et al. [35] uses a median filter
post-processing step to produce sharper object boundaries in the optical flow fields.

In recent years, learning-based methods have defined a new state of the art in optical
flow estimation. The first methods were based on supervised learning, generally on synthetic
training data. FlowNet [11] lifts the correlation operation into feature space, and uses a
multi-scale architecture to effectively predict optical flow from two input images. FlowNet2
[18] introduces image warping between multiple cascaded FlowNets to increase the accuracy
of large pixel motion. PWC-Net [37] incorporates the best practices of traditional optical
flow methods into a neural network: pyramid processing, image warping, and cost volume
processing. RAFT [39] employs a recurrent network to iteratively estimate optical flow
from the 4D correlation volume between all pairs of pixels. Aleotti et al. [1] propose a data
generation method using monocular depth estimation to synthesise a second view from a
single input image. This enables self-supervised training of existing optical flow methods.

Virtually all optical flow methods focus on perspective input images, although spherical
images have recently received more attention. To this end, recent approaches by Artizzu
et al. [2] and Bhandari et al. [6] transfer the architecture and weights of pre-trained networks
[11, 17] to spherical images in the equirectangular projection (ERP) format.

Panoramic Image Processing. Panoramic (aka 360° or spherical) images have been used
in a wide variety of application areas, including depth estimation [19, 20, 24, 34, 41, 42,
44, 50, 51], room layout estimation [12, 14, 21, 34, 40, 43, 47], semantic segmentation
[25, 34, 46, 48], novel-view synthesis [5, 16, 28, 45] and so on. The key problem when
working with spherical images is to project them onto a regular 2D pixel grid for easy
processing, as any projection introduces some kind of distortion – similar to maps of the world.
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Figure 1: Method overview. The input is a pair of equirectangular images, It and It+1, and the
output is the optical flow Ft . The operators ‘⊕’ and ‘	’ rotate images forward and optical
flow fields backward, respectively, using image warping (see Section 3.3). The green box
estimates the optimal rotation from a 360° optical flow field.

Spherical images are sometimes projected to a cubemap, i.e. the six sides of a cube,
potentially with overlap between sides [9, 41, 42]. However, the resulting perspective images
have large angles of view of ≥90°, which introduces significant perspective distortion. A
smaller field of view can be achieved using icosahedron projection, producing 20 triangular
faces, or in fact any subdivision of the icosahedron [25, 27, 48]. In the limit, perspective
tangent images can be obtained anywhere on the sphere using gnomonic projection [10, 13].
To overcome the significant distortions near the poles at the top/bottom image edges in ERP
images, distortion-aware convolutions adapt kernels using gnomonic projection [10, 33, 38],
which enable training on perspective images and testing on ERP images.

Our method combines ERP, cubemap and icosahedron projections to incrementally esti-
mate global rotation and to refine spherical optical flow estimates to achieve higher accuracy.

3 Approach

Our method comprises a global rotation warping and tangent-image-based panoramic optical
flow method to mitigate the distortions in equirectangular image and the large displacements of
pixels. At the same time, our high-level approach generalises to any off-the-shelf perspective
optical flow method, and thus will benefit from future improvements in optical flow methods.

As shown in Figure 1, our method comprises three steps: (1) We estimate the optical flow
F̄t from ERP image It to It+1, followed by rotating It+1 towards to It based on the rotation
estimate R̄ from the flow F̄t , which generates the warped ERP image Īt+1 (see Section 3.3).
(2) We estimate the panoramic optical flow F̂t from It to Īt+1 based on cubemap projection
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optical flow (see Section 3.2), and then rotate the image Īt+1 according to the rotation R̂
estimated from the cubemap flow F̂t to generate Ît+1. (3) We estimate the fine-scale flow F̃t
from It to Ît+1 using icosahedron projection optical flow (see Section 3.3), then backward-
rotate the fine-scale flow F̃t by rotations R̄ and R̂ to generate the final 360° optical flow Ft .

Compared to perspective images, equirectangular images are continuous in all direction.
In Section 3.1, we analyse and define the panoramic optical flow. To solve the equirectangular
image distortion, especially at the top and bottom, our method employs gnomonic projection
to project the equirectangular image to tangent image [13]. We use cubemap and regular
icosahedron faces to uniformly sample the equirectangular image to solve this problem (see
Section 3.2). However, compared to a panoramic image, a tangent image has a smaller field
of view, not larger than 180°, and just 90° for cubemap projection (without padding). The
tangent image optical flow operates on a pair of corresponding tangent images from the same
ERP image area, which can fail when an object is only visible in one of the tangent images.
To compensate for the tangent images’ narrow field of view, the global rotation operation is
used on the target image It+1 to pre-align it with the source image It (Section 3.3).

3.1 Definition of 360° Optical Flow
Spherical image coordinates are continuous in any direction on the image, e.g. pixel locations
overflowing the image width will wrap around to the other side of the image. If panoramic
optical flow follows an object, a pixel’s motion vector can fall outside the image boundary.
This is one reason that perspective optical flow methods cannot track pixels moving outside
the equirectangular image boundary, because they do not support the horizontal coordinate
wrap-around, as illustrated in Figure 2. However, this introduces an ambiguity into 360°
optical flow estimation, as there is more than one path from the source point to the target
point along a great-circle on the sphere: usually there is one shorter and one longer path.1 To
uniquely define 360° optical flow in the equirectangular image format, we define the optical
flow to follow the shortest path from source to target along the great circle between them.
This naturally limits the maximum flow magnitude to ≤180°.

(a) Source Image (b) Target Image (c) Perspective Optical Flow (d) Wrap-Around

Figure 2: 360° optical flow illustrated: A bunny moves from (a) to (b) within an ERP image.
(c) Perspective optical flow methods estimate the bunny’s motion from the right to the left via
the front. (d) However, the shortest path for the bunny to move is along the back wrap-around.

3.2 Projection & Stitching
To mitigate the distortions in ERP images, we locally undistort the ERP image to a perspective
tangent image using gnomonic projection [13]. This way, we can apply any off-the-shelf
perspective optical flow method directly on pairs of tangent images, first using a cubemap

1One could also travel along the great circle a few more times, but these paths are getting longer and longer.
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projection and later using an icosahedron projection to refine the 360° flow estimates. In both
the cubemap and icosahedron cases, we proceed as follows: we first project the ERP image
with gnomonic projection to generate 6 (cubemap) or 20 (icosahedron) perspective images
that are tangent to the unit sphere; we then use an optical flow method for perspective images
to estimate optical flow for pairs of corresponding tangent images; and finally, we stitch the
optical flow fields for all tangent images back together in the ERP format. Our approach in
principle supports any perspective optical flow method, and results are therefore expected to
improve as improved optical flow methods become available in future.

Gnomonic Projection. Like Zhao et al. [49], we use the gnomonic projection to produce
tangent images. These images are perspective images with the same camera centre as the ERP
image, but their principal axis intersects the unit sphere at the tangent point with a circum-
scribed cube or icosahedron. Depending on the choice and density of tangent points, tangent
images cover different spherical surface areas, which determines the field of view (FoV) of
the tangent images. For estimating multi-scale motion and to uniformly sample the sphere
surface, we select tangent points according to a regular cubemap and a regular icosahedron.
These are the most common convex regular polyhedra with 6 and 20 faces, respectively, and
this results in different FoV with cubemap tangent images having a considerably wider FoV
than icosahedron tangent images. Therefore, cubemaps can estimate a larger motion vectors
from the tangent images, although their angular resolution is coarser than the icosahedron’s
tangent images for the same spatial tangent image resolution. To increase the FoV of tangent
images and improve the continuity of optical flow at the boundary between tangent images,
we add image padding to extend the area of tangent images, as illustrated in Figure 3.

(a) Gnomonic Projection (b) Target Image Padding

Figure 3: Tangent image projection and padding. (a) Gnomonic projection maps points on
the surface of a sphere from the sphere’s centre to a point on the tangent plane. (b) We add
padding to the tangent images to extend their area and ensure overlap between tangent images.

Tangent Optical Flow Blending. As each tangent image’s optical flow is estimated in-
dependently, the estimates might not be consistent in the overlap areas of adjacent tangent
images. When stitching the tangent flow fields in the equirectangular format, we thus compute
a per-pixel blending weight ωi for each tangent image It,i to smoothly blend its optical flows
Ft,i in the overlap areas. The ωi computes the colour difference between the source tangent
image It,i and the backwards-warped target image, to reduce the weight of badly estimated
tangent images’ optical flow Ft,i. The ωi is estimated by e−|It,i−Warp(It+1,i,Ft,i)|, the Warp(·, ·)
is the backwards warping operation, and It+1,i is the corresponding tangent image of It,i at
time t +1. The Ft blended with the weighted tangent image optical flows, ∑i Ft,i·ωi

∑i ωi
.
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3.3 Global Rotation Warping
Inspired by warping-based optical flow [8], we estimate the global rotation to pre-align the
ERP image It+1 to It . This helps reduce the range of pixel motion to a level that is more
suitable for the smaller FoV of tangent images. We compute the global rotation R̄ from the
computed optical flow field as follows. First, we convert the coordinates of the start and end
points of all optical flow vectors to spherical coordinates with unit length. Then, we solve
for the optimal rotation between the start points and the corresponding end points using
least-squares fitting, which can be solved in closed form by singular value decomposition
[3, 31].

Global Rotation Image Warping. After estimating the global rotation R̄ from the 360°
optical flow, we warp the target image It+1 by the rotation R̄ to align it to the source image It .
We apply global rotation warping based on the coarse to fine principle. First, we estimate the
rotation R̄ directly from ERP optical flow to roughly align the image It+1 and compensate for
camera ego-motion. We then use the cubemap optical flow to estimate the residual rotation R̂
to fine-tune the global rotation alignment.

Global Rotation Optical Flow Warping. To recover the final 360° optical flow field F
from the icosahedron optical flow F̃ , the end points of F̃ need to align with the pixel position
in the input image It+1. When estimating the optical flow, only the target image It+1 is rotated,
so we now need to rotate the end points of F̃ , i.e F̃EP, in the opposite direction. To ‘rotate’ an
ERP pixel, we first convert its ERP image coordinates x to Cartesian 3D coordinates using
the inverse projection operator P−1, rotate it about the centre of the sphere, and then convert
it back to ERP image coordinates using P . Applied to optical flow, this yields:

F(x) = FEP(x)−x = P
(

R̂> · R̄> ·P−1(F̃EP(x))
)
−x. (1)

4 Experiments
We evaluate our method on the Replica [32] and OmniPhotos [5] datasets and achieve state-of-
the-art performance on both datasets. To evaluate the accuracy of 360° optical flow regardless
projection, and to account for the wrap-around (Section 3.1), we measure the spherical average
endpoint error (SEPE), spherical average angle error (SAAE), and the spherical root mean
square error (SRMS). Our single-threaded Python implementation computes 360° optical flow
at 1280×640 resolution in about 20 seconds. We use DIS flow [23] for the tangent flow fields.

4.1 Datasets & Error Metrics
We evaluate the performance of our method on synthetic and real-world datasets using multiple
spherical error metrics.

Datasets. Unlike depth sensors, there is no feasible hardware for capturing high-quality op-
tical flow from a real-world scene, especially for 360° optical flow. For quantitative evaluation
of optical flow, ground truth is necessary. Inspired by Shugrina et al. [30], we render ground-
truth 360° images and optical flow from the reconstructed 3D mesh of a real-world scene. The
ground-truth data is rendered using the Replica dataset [32], which not only contains high-
quality HDR textures and 3D meshes, but also public code for a versatile renderer. However,
the official Replica rendering pipeline does not support any 360° camera model or optical
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flow generation. We therefore implemented an ERP camera model using OpenGL geometry
shaders that transform the 3D mesh from Cartesian coordinates to spherical coordinates,
finally render the 3D mesh and ground-truth optical flow in the equirectangular format.

We render three types of camera paths for ground-truth evaluation at a resolution of
1280×640 pixels. A Circle, in which the camera moves along a 50 cm radius circle and faces
outwards, with images rendered every 10°. A Line, where the camera faces the same direction
and moves in a straight line, with images rendered every 20 cm. And Random, with camera
centres uniformly randomly sampled within a box of 1×1×1 metres and rotations jittered by
±10° degrees along each of the Euler angle axes.

Although the synthetic dataset is reasonably realistic, real-world data tends to be more
challenging, with complex lighting and motions. To further explore our method’s performance
qualitatively, we also test our method on the OmniPhotos dataset [5], which contains diverse
360° videos of real scenes captured with a high-quality 360° video camera.

Error Metrics. Optical flow evaluation commonly uses the average angle error (AAE),
end-point error (EPE), and root-mean-square error (RMS) metrics [4]. To evaluate spherical
360° optical flow, we extend these metrics to the spherical domain by mapping ERP pixel
coordinates to spherical coordinates on the unit sphere, and measuring geodesic distances
instead of Euclidean distances in image space as used for perspective flow metrics. This
overcomes both distortions due to the equirectangular projection and also the wrap-around on
the sphere. Specifically, we propose the spherical AAE (SAAE), spherical EPE (SEPE, see
Equation 2) and spherical RMS (SRMS) metrics to evaluate 360° optical flow. The spherical
AAE (SAAE) measures the angle between the estimated and ground-truth optical flow vectors
on the surface of a unit sphere using spherical trigonometry. For SEPE and SRMS, d(·, ·) is
the geodesic distance between endpoints on the unit sphere:

SEPE =
1
|Ω| ∑i∈Ω

d
(
(θ est

i ,φ est
i ),(θ GT

i ,φ GT
i )

)
. (2)

4.2 Comparison
We compare our method with OmniFlowNet [2], a state-of-the-art 360° optical flow method,
as well as the following state-of-the-art perspective methods: RAFT [39], PWC-Net [36]
and DIS [23]. For OmniFlowNet2, RAFT3 and PWC-Net4, we use the official released code,
and for DIS, we use OpenCV’s implementation. OmniFlowNet ran out of GPU memory on
our NVIDIA RTX 2060 (6 GB RAM), so we downscale the input images to a resolution of
1024×512 pixels, and upsample the estimated flow fields back to the original image resolution
afterwards. The performance evaluation comprises quantitative and qualitative evaluation on
the Replica 360° and OmniPhotos datasets.

Quantitative Evaluation. We show a quantitative comparison on the Replica 360° dataset
using both perspective and spherical optical flow evaluation metrics in Table 1. The table
shows that our method achieves the best performance across the board. All methods tend to
be better on the Circle paths than Line paths, as the latter contains larger displacements that
are more difficult to estimate accurately. Meanwhile, our global rotation warping pre-aligns
the input images, so that our method more easily handles camera ego-motion.

2https://github.com/COATZ/OmniFlowNet
3https://github.com/princeton-vl/RAFT
4https://github.com/NVlabs/PWC-Net
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Table 1: Optical flow errors on the synthetic Replica 360° dataset. See Section 4.1 for metrics.
Method EPE ↓ AAE ↓ RMS ↓ SEPE ↓ SAAE ↓ SRMS ↓

C
ir

cl
e

OmniFlowNet 15.12 0.2618 60.79 0.06025 0.1316 0.3963
PWC-Net 15.73 0.2701 61.50 0.05403 0.1406 0.3693
RAFT 15.75 0.2769 63.34 0.04619 0.1461 0.3349
DIS 16.31 0.2818 62.29 0.05430 0.1503 0.3578
Ours 3.507 0.1694 34.21 0.005370 0.03480 0.01021

Li
ne

OmniFlowNet 30.64 0.2515 92.36 0.1229 0.1276 0.5390
PWC-Net 32.23 0.2594 93.27 0.1259 0.1358 0.5414
RAFT 32.38 0.2935 97.46 0.08787 0.1642 0.4180
DIS 36.06 0.3357 99.07 0.1127 0.2093 0.4668
Ours 5.839 0.1971 40.74 0.01063 0.05951 0.02098

R
an

do
m

OmniFlowNet 40.50 0.3229 106.2 0.1321 0.1940 0.5034
PWC-Net 41.98 0.3294 106.9 0.1438 0.2118 0.5203
RAFT 38.31 0.2978 104.2 0.1143 0.1766 0.4557
DIS 47.29 0.4203 113.2 0.1728 0.3000 0.5545
Ours 14.10 0.2192 59.78 0.02717 0.08849 0.05753

A
ll

OmniFlowNet 28.76 0.2788 86.48 0.1051 0.1511 0.4797
PWC-Net 29.98 0.2863 87.23 0.1079 0.1627 0.4770
RAFT 28.81 0.2893 88.34 0.08278 0.1623 0.4029
DIS 33.22 0.3459 91.54 0.1133 0.2199 0.4597
Ours 7.701 0.1946 44.62 0.01411 0.06027 0.02905

(a) It (b) DIS (c) Ours (d) PWC-Net (e) RAFT (f) OmniFlowNet

(g) GT (h) DIS (SEPE) (i) Ours (SEPE) (j) PWC-Net (SEPE) (k) RAFT (SEPE) (l) OmniFlowNet (SEPE)

(a) It (b) DIS (c) Ours (d) PWC-Net (e) RAFT (f) OmniFlowNet

(g) GT (h) DIS (SEPE) (i) Ours (SEPE) (j) PWC-Net (SEPE) (k) RAFT (SEPE) (l) OmniFlowNet (SEPE)

(a) It (b) DIS (c) Ours (d) PWC-Net (e) RAFT (f) OmniFlowNet

(g) GT (h) DIS (SEPE) (i) Ours (SEPE) (j) PWC-Net (SEPE) (k) RAFT (SEPE) (l) OmniFlowNet (SEPE)

Figure 4: Estimated 360° optical flow and error heatmaps on the Replica 360° dataset: (a)
Source image. (b–f) Estimated flow fields. (g) Ground-truth flow. (h–l) SEPE (spherical
end-point error) heatmaps (lighter is better). Top: office_0 scene, line camera motion. Middle:
apartment_0 scene, circle camera motion. Bottom: frl_apartment_0 scene, random camera
motion.

Figure 4 shows some example estimated 360° optical flow fields and their SEPE visualised as
heatmaps (lighter is better). Other methods mainly introduce errors on the top and bottom
edges of the optical flow. Our method has the lowest errors at the top and bottom, while the
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middle region is quite similar to the DIS result.
Based on the Table 1 and Figure 4, we can conclude that perspective optical flow cannot

correctly handle the top and bottom regions of ERP images, but our method can help them
improve dramatically in these areas. Our method succeeds where the underlying optical flow
method (DIS) fails, while maintaining the same performance in the equatorial image region.

Qualitative Evaluation. To analyse the performance of 360° optical flow methods on a
real-world dataset without ground-truth optical flow, we measure the interpolation error
[4], i.e. the RGB colour difference between the source image and backward-warped target
image. Figure 5 shows an example result from the OmniPhotos dataset. The error maps in
Figure 5(m–q) show less error at the top and bottom of images for our method’s result. The
differences between methods is less pronounced than in the Replica 360° dataset, as the
baseline between frames is smaller in OmniPhotos due to a higher video frame rate.

(a) It (b) DIS (c) Ours (d) PWC-Net (e) RAFT (f) OmniFlowNet

(g) It+1 (h) DIS (Warp) (i) Ours (Warp) (j) PWC-Net (Warp) (k) RAFT (Warp) (l) OmniFlowNet (Warp)

(m) DIS (Warp) (n) Ours (Warp) (o) PWC-Net (Warp) (p) RAFT (Warp) (q) OmniFlowNet (Warp)

Figure 5: Backward warping results on OmniPhotos’ BeihaiPark scene: (a, g) Source and
target images. (b–f) Estimated flow fields. (h–l) Target image (g) warped to the source image
(a) using the estimated optical flow (b–f). (m–q) Interpolation error heatmaps (lighter is better).

Table 2: The results of our ablation study. See Section 4.3 for details.
Method EPE ↓ AAE ↓ RMS ↓ SEPE ↓ SAAE ↓ SRMS ↓

C
ir

cl
e

Full method 3.507 0.1694 34.21 0.005370 0.03480 0.01021
w/o weight 3.616 0.1692 34.86 0.005405 0.03478 0.01235
w/o ERP 3.434 0.1688 33.81 0.005376 0.03437 0.009951
w/o cubemap 3.533 0.1698 34.04 0.005399 0.03519 0.009730
w/o ico 3.481 0.1711 30.45 0.006040 0.03724 0.01412

Li
ne

Full method 5.839 0.1971 40.74 0.01063 0.05951 0.02098
w/o weight 5.475 0.1960 32.36 0.01100 0.05815 0.02214
w/o ERP 5.749 0.1945 40.11 0.01069 0.05881 0.02107
w/o cubemap 5.816 0.1953 40.09 0.01075 0.05825 0.02136
w/o ico 4.262 0.2042 26.28 0.01015 0.07242 0.01818

R
an

do
m

Full method 14.10 0.2192 59.78 0.02717 0.08849 0.05753
w/o weight 13.66 0.2176 57.87 0.02723 0.08679 0.05684
w/o ERP 15.71 0.2211 60.81 0.03212 0.09007 0.06161
w/o cubemap 13.96 0.2145 58.92 0.02652 0.08428 0.05619
w/o ico 14.81 0.2490 57.15 0.03389 0.1167 0.06173

A
ll

Full method 7.701 0.1946 44.62 0.01411 0.06027 0.02905
w/o weight 7.585 0.1942 41.70 0.01455 0.05991 0.03045
w/o ERP 8.298 0.1948 44.91 0.01606 0.06109 0.03088
w/o cubemap 7.771 0.1932 44.35 0.01422 0.05924 0.02909
w/o ico 7.519 0.2081 37.96 0.01670 0.07547 0.03134

Citation
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4.3 Ablation Studies

Global Rotation Warping. The multi-step rotation warping aligns image It+1 to It by
estimating rotation using the ERP and cubemap optical flow. The results without ERP optical
flow alignment (‘w/o ERP’) and without cubemap optical flow alignment (‘w/o cubemap’) are
shown in Table 2. In different type camera motion data different rotation gets best performance.
But ‘Full method’make most of and balance each term’s advantage, to make it get the best
performance on ‘All’ data.

Stitch Blending Weight. The blending weight aims to smoothly and consistently stitch the
overlap area of different faces’ optical flow. The result without blending weight is shown as
‘w/o weight’ in Table 2, which replaces all weights with the unit weight. The ‘Full Method’
outperforms the ‘w/o weight’ because the blending weight brings down the unreliable optical
flow, such as the pixels move out or in the tangent image boundary but their reliable optical
flow can get from corresponding pixels on other tangent images.

5 Conclusion

We proposed a flexible method for estimating 360° optical flow using tangent images and
global rotation warping. Tangent images use gnomonic projection to uniformly sample a
360° ERP image from an initial cubemap to the final icosahedron-based tangent images to
overcome the equirectangular projection distortions. Any existing off-the-shelf optical flow
method can be used on the tangent images. Our method uses global rotation warping to
pre-align the input images and overcome large motions between frames. Finally, we blend
optical flow to reduce discontinuities at face boundaries. Our evaluation shows that our method
achieves state-of-the-art performance for 360° optical flow estimation.

Our proposed approach overcomes the limited resolutions supported by CNN-based
methods due to model size constraints (e.g. 1024×512 [2]) by processing tangent images
separately. This enables the estimation of high-resolution 360° optical flow, for example at
2K×1K resolution, which is not supported by existing methods.

Limitations. Large pose changes are a common limitation of most optical flow methods,
which are primarily designed for handling small motions. In our method, we use global
rotation alignment to effectively minimise the net disparity across the unit sphere. This helps
in the case of moderate pose changes, but large pose changes remain challenging.

Future Work. Our method struggles with large camera translations; one could replace
the global rotation warping with a meshgrid-based warping method that can pre-align both
rotational and translational camera motions.
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