UNIVERSITY OF

BATH

Citation for published version:

Zhang, SH, Chen, CH, Fu, Z, Yang, Y & Hu, SM 2022, 'Adaptive Optimization Algorithm for Resetting
Techniques in Obstacle-ridden Environments', IEEE Transactions on Visualization and Computer Graphics.
https://doi.org/10.1109/TVCG.2021.3139990

DOI:
10.1109/TVCG.2021.3139990

Publication date:
2022

Document Version
Peer reviewed version

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Jun. 2022

https://doi.org/10.1109/TVCG.2021.3139990
https://doi.org/10.1109/TVCG.2021.3139990
https://researchportal.bath.ac.uk/en/publications/adaptive-optimization-algorithm-for-resetting-techniques-in-obstacleridden-environments(4e532842-ae2a-459b-95f2-ecff15098db1).html

Adaptive Optimization Algorithm for Resetting
Techniques in Obstacle-ridden Environments

Song-Hai Zhang, Member, IEEE, Chia-Hao Chen, Fu Zheng, Yong-Liang Yang, Shi-Min Hu, Senior
Member, IEEE

Abstract—Redirected Walking (RDW) algorithms aim to impose several types of gains on users immersed in Virtual Reality and distort
their walking paths in the real world, thus enabling them to explore a larger space. Since collision with physical boundaries is inevitable,
a reset strategy needs to be provided to allow users to reset when they hit the boundary. However, most reset strategies are based on
simple heuristics by choosing a seemingly suitable solution, which may not perform well in practice. In this paper, we propose a novel
optimization-based reset algorithm adaptive to different RDW algorithms. Inspired by the approach of finite element analysis, our
algorithm splits the boundary of the physical world by a set of endpoints. Each endpoint is assigned a reset vector to represent the
optimized reset direction when hitting the boundary. The reset vectors on the edge will be determined by the interpolation between two
neighbouring endpoints. We conduct simulation-based experiments for three RDW algorithms with commonly used reset algorithms to
compare with. The results demonstrate that the proposed algorithm significantly reduces the number of resets.

Index Terms—Redirected walking, Resetting, Adaptive optimization, Obstacle-ridden area, Redirection.

1 INTRODUCTION

IRTUAL reality (VR) has been developing very fast in
Vthe recent years as witnessed by the emergence of many
revolutionary devices such as Oculus Rift and HTC Vive series.
Its immersive experiences have enabled a number of emerging
VR applications in games, training, healthcare, E-commerce, etc.,
where the user is often required to navigate in a virtual world. In
practice, the dimension of the virtual space usually does not match
that of the real space. Then how to explore a relatively large (even
infinite) virtual space in a relatively small space in the real world
is a critical problem.

To address the above problem, several redirected walking
(RDW) algorithms have been proposed. The basic idea is to distort
the user’s walking path in the real world to avoid hitting physical
boundary without being noticed in the virtual navigation. The
representative algorithms include Steer-to-Center (S2C), Steer-to-
Orbit (S20), Steer-to-Multiple-Targets (S2MT), APF-RDW (Redi-
rected walking based on Artificial Potential Field), etc. Even so,
the collision with physical boundaries is inevitable, especially
when the user’s navigation path is long or/and the layout in the
real space is complicated. Hence it is desirable to accompany the
RDW algorithm with one or more reset strategies. Such a strategy
can help users to reset to some ideal direction when hitting the
boundary, allowing them to walk for a relatively long distance
before the next collision.

However, most reset algorithms are only based on simple
heuristics such as Reset-to-Center (R2C) and Reset-to-Gradient

o Song-Hai Zhang and Shi-Min Hu are with the Department of Computer
Science and Technology, Tsinghua University, Beijing, China and Beijing
National Research Center for Information Science and Technology (BN-
Rist), Tsinghua University, Beijing, China.

E-mail: shz@tsinghua.edu.cn, shimin@tsinghua.edu.cn

o Chia-Hao Chen and Zheng Fu are with the Department of Computer
Science and Technology, Tsinghua University, Beijing, China.

E-mail: accplusjh@ gmail.com

o Yong-Liang Yang is with the Department of Computer Science, University
of Bath, United Kingdom.
E-mail: y.yang @cs.bath.ac.uk

Physical layout similar to test environment 1 and 3

Fig. 1: Common physical environments within an obstacle-ridden
area.

(R2G). There is a lot of room for optimization to further reduce
the number of collisions. Despite some search-based optimization
has been used for RDW algorithms such as MPCRed [1] and
FORCE [2], the optimization of the reset strategy is yet to be
explored to the best of our knowledge. In this paper, we propose
a novel reset algorithm to optimize the reset direction adaptive
to a given RDW algorithm. The algorithm works by dividing
the boundary of obstacles and the physical environment with
some endpoints. The reset direction at each endpoint is optimized
instead of heuristically determined. The reset direction of the point
in-between two neighbouring endpoints is determined by their
linear interpolation. To quantitatively measure the quality of reset,
we perform virtual navigation simulation to achieve the expected
resets with provided reset directions. This is done by sampling
abundant walking paths and simulating the resets accordingly. The

reset directions are iteratively updated to minimize the resets. To
evaluate our algorithm, we also conduct a variety of simulation-
based experiments using various RDW algorithms under different
environments. For realistic consideration, we demonstrate a bed-
room and a living room with a similar layout in our experiments
in Fig. 1 (The left is a 3d scene, the right is a 2d orthogonal
plan). The results show that our reset strategy largely improves the
heuristical reset, and can easily adapt to the given RDW algorithm
in obstacle-ridden areas with obstacles.

Our work makes two major contributions. 1) We present a
novel optimization-based RDW reset strategy that significantly
outperforms heuristical ones. 2) Our simulation-based reset op-
timization is adaptive to any RDW algorithm, and applicable for
any obstacle-ridden area with arbitrarily shaped obstacles.

2 RELATED WORK
2.1 Redirected Walking

Redirected walking (RDW) methods attempt to differ the virtual
movement from the physical one, such that the users are able
to explore a larger space. This is normally achieved by steer-
ing the users to some ideal point, or repelling them from the
physical boundary. Three types of gains (rotation, translation,
curvature) play leading roles when manipulating users’ walk-
ing paths. Razzaque [3] proposed several generic RDW algo-
rithms, including Steer-to-Center (S2C), Steer-to-Multiple-Target
(S2MT), and Steer-to-Orbit (S20). After that, much research
related to these algorithms have been conducted. Hodgson and
Bachmann [4] studied 4 different RDW algorithms (include also
Steer-to-Multiple+Center which combines S2C and S2MT) with
simulation-based and live user experiments. They discovered that
S2C outperforms the other three algorithms on average, while S20
leads to better results than S2C when users perform long, straight-
line navigation. Note that S2C referred in [5] is a modified version
of Razzaque’s one, aiming to overcome the deficiency when the
angle between travel and center directions is too large.

With the advances of machine learning, some emerging
technologies, especially reinforcement learning, have also been
brought into this field. Lee et al. [6] proposed Steer-to-Optimal-
Target (S20T) to decide the best target among the candidates to
steer to. By applying Deep-Q Learning, the score that indicates
the optimal target is selected. Later, an extended algorithm called
Multiuser-Steer-to-Optimal-Target (MS20T) [7] was proposed.
This is a multi-user version of S20T. An important pre-reset
action and other improvement measures were considered here.
Strauss et al. [8] also used deep reinforcement learning in RDW.
By employing Proximal Policy Optimization (PPO), a deep neural
network is trained to directly estimate the rotation, translation, and
curvature gains to transform a virtual environment, given a user’s
position and orientation in the tracked space. Another work by
Chang et al. [9] presented a new redirection controller by PPO, and
applied a new RDW algorithm (advanced center-based translation
gain) and a new reset method (Turn-to-Furthest) for experimental
comparison.

As the theoretical foundation of our simulation experiments,
some cognitive and perceptual thresholds on three types of gains
when influencing human walking have been thoroughly studied.
Steinicke et al. [10] investigated three types of gains, and the
thresholds of not noticing these gains. They showed that the
rotation gain should be between 0.67 and 1.24, translation gain
should be between 0.86 and 1.26, and curvature radius should

2

be no less than 22m. Grechkin et al. [11] found no remarkable
influence on curvature gain when combining with translation gain,
and proposed a smaller curvature radius. Neth et al. [12] gave a
more specific conclusion on how curvature gain should be decided
by walking velocity.

Our RDW reset optimization can be coupled with any given
RDW algorithm. It further improves user experience in virtual
navigation with largely reduced resets.

2.2 Resetting

Although there are some mechanisms enabling the user to walk
along a collision-free path by aligning virtual and physical envi-
ronment [13], [14], [15], the reset step is inevitable if we do not
constrain and control the user’s physical locomotion for reactive
and predictive RDW, since the user’s walking length can be very
long compared with the dimension of the real physical space. Gen-
erally, reset is always considered together with RDW algorithms.
Williams et al. [16] proposed 3 reset strategies, including Freeze -
Backup, Freeze - Turn, and 2:1 - Turn. The Freeze - Turn and 2:1
- Turn are the most commonly used for early reset algorithms. For
example, Freitag et al. [17] proposed to enable the user to create
portals to reach the target far away without much reorientation.
Bachmann et al. [18] employed a modified version of 2:1 - Turn
in the research of multi-user redirected walking. But after all,
the above reset strategies pay more attention to maintaining the
immersive experience rather than reducing the collision. And the
related reset algorithms are preliminary attempts, and only focus
on collision with the boundary.

More recent reset algorithms are developed to fit the corre-
sponding RDW algorithms. For example, Reset-to-Center (R2C)
always resets the user’s direction to the center of the physi-
cal environment, which coincides with Steer-to-Center. Reset-to-
Gradient (R2G) was proposed for APF-RDW, and used in [18],
[19]. Thomas et al. [20] presented three new reset algorithms
for a new APF-RDW algorithm named Push/Pull Reactive (P2R),
including MR2C (a modified version of Reset-to-Center), R2G,
and SFR2G (a modified version of Reset-to-Gradient). Besides,
the reset step implicitly breaks the continuity of the user’s walk
in the virtual space, resulting in break-in-presence (BIP) effect.
Peck et al. [21] used distractors in real applications to maintain
natural locomotion. Sra et al. [22] integrated similar attractors
into redirection to make them imperceptible. Cools et al. [23]
investigated different interactivity types and their effects on users.
Our reset optimization enhances existing methods by using their
resets as an initialization, and further optimizing reset directions
based on walking simulation, resulting in a large decrease of
resets. Note that in practical applications, the Freeze - Backup
and the modified version of 2:1 - Turn are also viable for our
algorithm, depending on user experience.

2.3 Obstacles in the Real Environment

In many situations, the shape of the physical environment is not
as ideal (e.g., a circle or rectangle) as we thought. Some RDW
algorithms work well only when the area is regular. Treating
the walkable area as a whole, the ideal steering point might be
the center of gravity (assuming that each point in the area has
the same density), or the geometric center. However, it becomes
much harder to choose a steering point when there are unorganized
obstacles in the area (common for indoor environments), let alone
multiple steering points for Steer-to-Multiple-Target.

Fajen et al. [24] built a dynamic system in order to predict
human route selection to avoid obstacles while reaching a goal.
The angular acceleration in the system depends on the angle and
distance to both obstacles and the target. Chen et al. proposed two
approaches to achieve obstacle avoidance. Steer-to-Farthest [25]
attempts to steer the user towards one of the farthest physical
boundary points from the user’s current position. It depends on a
cost function related to the distance from the user to the boundary,
and the angle between the head orientation and the vector from the
user to the obstacle. The other one [26] is a planning algorithm
that uses dynamic obstacles to direct the user away from the
boundary of the irregularly shaped physical environment. Valentini
et al. [27] proposed an approach to reconstruct the real obstacles
in the virtual environment to maintain the awareness of the real
environment.

The physical environments in our experiments are general
obstacle-ridden areas. We design layouts with obstacles of varying
shapes to demonstrate the performance of our algorithm.

3 ADAPTIVE RESET OPTIMIZATION ALGORITHM

Unlike previous reset algorithms that rely on simple heuristics,
we propose a novel optimization-based reset algorithm that com-
plements existing RDW algorithms. Our algorithm manifests its
adaptability in two aspects:

e It could be steered with different RDW algorithms on
demand, even adapt to different walking behaviors of
different users (that is, use the characteristics of specific
users’ walking data as a basis for optimization).

e It can handle physical boundary of any shape, and does
not make any assumption on the convexity/concavity of
the boundary of the environment or the obstacle.

In the following, we will elaborate on the optimization pro-
cedure of the algorithm, then introduce the hyper-parameters
involved in the algorithm, and discuss the details of setting these
hyper-parameters.

3.1 Algorithm Description

Following prior work on redirected walking, we also reduce the
problem to 2D for simplicity (see Fig. 2). Suppose the real space
is represented by a number of boundaries, including an outer
environment boundary and several inner obstacle boundaries. Each
boundary comprises a set of inter-connected smooth edges, where
neighbouring smooth edges meet at sharp points. Note that any
point on a smooth edge has a continuous tangent except for the
sharp point (as shown in Fig. 2(a)).

The ultimate goal for a reset algorithm is to specify a reset
direction when hitting a boundary point. We will conduct massive
simulated walking to optimize the resetting. Since the resetting in
RDW causes a decrease in the sense of immersion, it is reasonable
to use the number of resets as an evaluation metric for final reset
directions. It can be done on-the-fly for heuristical reset where
simple rules can be applied such as Reset-To-Center (just point to
the center). However, for optimization-based approach, this is not
feasible as the optimization is more expensive. Given the physical
boundaries are practically fixed in real applications, we can pre-
compute the reset direction and assign it accordingly when needed.
It can be seen that optimizing the entire boundary point set is
computationally prohibitive given the physically-based nature of
the problem. Thus we propose to solve a discrete problem that is

outer
unreachable
inner
sharp point

o

(a) Outer boundary, inner boundary, and unreachable boundary,
with sharp points at the corners.

—— outer
—— unreachable
—— inner

Y @ sharp point
V¥ reset endpoint

<
«
«
«

(b) The discretization after adding reset endpoints.

Fig. 2: The physical environment in an obstacle-ridden area is
represented in 2D (a), and is discretized for simulation-based reset
optimization (b).

in line with finite element analysis [28] as widely used for physical
simulation.

As shown in Fig. 2(b), we perform a standard 2D discretization
in our implementation. It splits each smooth edge into several
segments by adding evenly distributed intermediate points if
necessary. After discretization, the length of each segment is less
than a pre-defined edge interval [. Both the initial sharp points
and the newly added intermediate points are called endpoints. In
practice, we only optimize the reset direction at each endpoint.
For the reset direction at any other boundary point, it is linearly
interpolated from two neighbouring endpoints.

Let P = {p1,p2, -, Pm} denote the set of m endpoints.
Their reset directions are represented as V = {vi,Vva, ..., vy},
where v; = (2;,y;) is the reset vector at p;. The optimization is
formulated as:

mvin FV)

)]
st Z(vi,t;) € (0,m),

where F' is the objective function measuring the quality of the
reset V, t; is the tangent vector at p;, and the angle Z(v;,t;) is
measured in a local coordinate frame formed by the tangent t; and
normal n;.

Remarks. Note that we use the tangent t; at the endpoint to
constrain the reset direction (within an angle of 7 as in Eqn. 1),
thus avoid boundary collision. If an endpoint is a sharp point,

Fig. 3: The special rare case of boundary collision at concave
sharp point.

it might have several reset vectors, depending on how many
line segments intersect at that point. In practice, as shown in
Fig. 3, there are two reset vectors at one point. These two vectors
belong to different edges as indicated by their colors. During
the optimization, we optimize the two reset vectors with respect
to their corresponding tangents. This better addresses the shape
context of an individual smooth edge and its surrounding space,
so as the interpolation along the edge. If a vector (such as the
red one in Fig. 3) points inside the obstacle, this might trigger
a new collision immediately after a reset, leading to consecutive
collisions. There are practical solutions for this issue. For instance,
we can choose a point p very close to the endpoint but not on the
boundary, then simulate user movement with a short distance from
this point in the reset direction. If it hits the boundary (meaning
this direction is not appropriate), we continue to change the reset
vector at this endpoint until the user no longer hits the boundary.
We can obtain p as p = aN + 5(M — e), where N is the normal
vector of this boundary on e, M is the coordinate of the midpoint
of this boundary, e is the endpoint, o and [are small values.
But most conveniently, this issue can also be solved by a post-
processing step to change the reset direction after optimization.

The key to the optimization in Eqn. 1 is how to define the
objective function F' and how to optimize)V accordingly. For a
good reset algorithm, it should provide reset directions that can
largely reduce the number of resets. Hence we define F' as the
expected resets during the virtual navigation. However, F' can only
be estimated but not determined as the user’s navigation paths
can be very flexible in the virtual space. Therefore, we utilize
a simulation-based approach to statistically evaluate F'. More
specifically, we sample s points in the virtual world and simulate
the navigation path by connecting these points in the sampling
order, by which we obtain a long walking distance. Then based on
the given RDW algorithm and the current reset configuration V),
we can simulate the number of resets for each path. And we repeat
this process for r times to simulate a distribution of navigation
paths and their corresponding resets. Finally, we take the average
resets as the expected F'.

To optimize) based on F', the conventional way is to apply
gradient-based numerical optimization. As the evaluation of F' is
based on statistical simulation, it is infeasible to compute gradient
or any higher-order derivatives. Thus we employ a stochastic op-
timization approach similar to simulated annealing [29]. Starting
from an initial reset configuration), we iteratively update the
current configuration through a stochastic process as follows. We
select k reset directions to update for each iteration. The potential
update is performed by randomly adjusting the reset direction
within a certain range €. Then we perform simulation and evaluate

Algorithm 1 Adaptive Reset Optimization

Require: A set of boundary smooth edges £ of physical environ-
ment

1: function RESETOPT(E)
2 split £ by a set of endpoints P
3 Vo = 0
4: for each reset direction v at p € £ do
5: v = Reset_Strategy(p)
6 Vo = Vo U{Vv}
7 end for
8 Fiin = GetAverageResets(1)
9: for i + 1to Ry do
10: for a random Vg, s.t Vi, C V and |Vi| = k do
11: for v € Vj, do
12: v.Rotate(Random(-¢/2, €/2))
13: end for
14: F' = GetAverageResets())
15: if I' < Foin — Tupdate then
16: Frin < F
17: else
18: Revoke the change in Vy,
19: end if
20: end for
21: end for

22: return V
23: end function

F' to estimate the quality of the update. If the simulation value
is less than the current (minimum) resets by a threshold T’ qqte,
then we update V and also the minimum resets. After a specific
number (1000 by default) of iterations, we achieve the optimized
reset V*. The optimization procedure is structured in Algorithm 1
and Algorithm 2. The setup of hyper-parameters will be detailed
in the next subsection.

Note that to initialize the optimization, we need to provide an
initial reset configuration V) to start the simulation. The simplest
way to do so is to randomly sample reset directions in the feasible
space, i.e., Z(v;,t;) € (0,7). However, random initialization is
very likely to make our optimization fall into a local minimum.
It makes more sense to make the initialization adaptive to the
specific RDW algorithm. This makes sense as reset algorithms
are always coupled with RDW algorithms. For instance, Reset-
To-Center reset can be employed to initialize reset optimization
for Steer-To-Center RDW algorithm. And our optimization can
further reduce the number of resets from the initialization (see
Section 4).

3.2 Hyper-parameters in the Optimization

This subsection elaborates the details on setting up the hyper-
parameters in the optimization.

e Threshold of updating parameters (T;,,4.¢c): First, we
take the number of resets from the first round of simu-
lation as the minimum objective function value F},;,. In
each iteration when we simulate the virtual navigation,
if the current number of resets F' is less than the cur-
rent minimum, then we may make updates according to
Tupdate- More specifically, if the decay of the objective
is greater than the threshold, we update F,;, with F'. A
larger T’ pqqte increases the confidence that the number of

Algorithm 2 Get the Average Resets

Require: A set of reset direction VV
1: function GETAVERAGERESETS())

2: Average < 0
3: for i < 1to Ry do
4 Average < Average + RandomWalking())
5: end for
6: return Average / Ry
7: end function
8: function RANDOMWALKING(V)
9: Initalize the Simulated user U
10: for i + 1to Ng do
11: Sample a point p in virtual Environment
12: NextDir < p — U.position
13: U.TurnTowards(NextDir/||NextDir||)
14: while U .position # p do
15: U.StepTo(p)
16: if U Collide With Boundary on c then
17: P1, P2 <2 Nearest endpoints
18: V1, Vo <Reset direction of p1, ps in V
1 L y/e=pilP + e pal?
20 vl pilva + o — psflvy
21 U.TurnTowards(Lv')
22: end if
23: end while

24: end for
25: end function

(expected) resets decreases after the update. On the other
hand, a smaller threshold makes the update easier, but the
confidence of reducing resets decreases. This threshold is
set to 2 in our experiments.

o Sampled points (/Ng): There is obviously a linear rela-
tionship between sampled points and resets. The more
points we sample, the more resets take place, which makes
T'update more reachable. However, merely increasing the
number of sampled points does not make the experiment
easier. This is because all sampled points are from the
same normal population. After they are added, the variance
accumulates. To reduce the variance, we have to repeat
the simulated path many times, and take the average as
expected resets. In each simulated path, we sample 1000
points.

o Repetitions of walking (Ryy): In practice, we need to
repeat the virtual navigation many times to reduce the
reset variance and make a good expectation of resets.
The variance will decrease quadratically as the number
of repetitions increases. This value is set to 500.

o Edge interval (/g): Although linear interpolation is used
to calculate the reset direction at an intermediate point, the
optimal reset direction between two reset endpoints may
not behave linearly (especially when the edge between the
two endpoints is not a straight line but a curve). Reducing
the edge interval can improve the accuracy of the result,
because we can approximate a nonlinear interpolation
through piecewise linear interpolation. However the com-
putational cost will increase. For the ease of processing, [
is set to 1.

e Number of reset directions updated (N,..,): Each

5

time we randomly choose one or more reset directions
to update. Updating one parameter at a time tends not
to be enough to generate sufficient gradients. That is, the
number of reduced resets will not exceed the threshold
Tupdate- Thus we need to update more parameters to
make an adequate decay. As the optimization goes on, this
becomes harder as the current reset configuration is close
to optimum. As a result, the number of updates needs to
grow. In our experiment, the initial k is set to 3, and it
increases by 1 for every 400 iterations.

o Search step (¢): Like the gradient descent method, we
need to control the search step size for each iteration. In
our implementation, the search step is the maximum value
of the random angle change of each reset direction. In the
experiment, this value is dynamically set to max(10, 55 —
5N, para)~

e Perceptual thresholds: The translation gain is greater
than 0.86, less than 1.26. The rotation gain is greater
than 0.67, less than 1.24, which are the same as suggested
in [10]. The radius of curvature is 7.5m and approximately
equals to 1/0.13, where 0.13 is the curvature gain sug-
gested in [12], corresponding to an average user walking
speed of 1.4m/s [30].

4 EVALUATION

To evaluate the effectiveness of the algorithm, we conduct a variety
of simulation-based experiments based on widely-used RDW al-
gorithms: No-Steering(NS), Steer-to-Center(S2C), and Push/Pull
Reactive. Following [20], MR2C, R2G, and SFR2G are used in
the experiment as the initial state of our optimization. Since the
T2F algorithm is not as linear as other algorithms, there may be a
sudden change in the position of the farthest point at some points.
Therefore, it does not hold good interpolation properties(and our
algorithm works by interpolating between two points to represent
an algorithm so that it can be optimized), so we are not planning
to add T2F in our experiments. But it is still valuable for research,
and there will be a more suitable optimization method for it in the
future.

Note that SFR2G is different from a regular in-place
method [31], [32], which usually decides the reset direction right
on the spot that the user encounters a collision. Instead, it takes the
point a few steps away in the direction of the current gradient and
resets the user in the gradient direction of that position. In order to
optimize it by our algorithm, we make the following adjustment.
We only optimize the direction of gradient direction on the point
hitting an obstacle in SFR2G. After taking a few steps in that
direction, the user finally selects the gradient direction of the
achieved point as the reset direction. There are cases where we are
not able to take a few steps when performing SFR2G (i.e., because
the user would collide with another boundary when following the
direction of the reset vector). In this case, SFR2G will degenerate
into R2G, that is, reset the direction without selecting another
point.

In addition, as we test our algorithm in environments with
different layouts composed of obstacles with different shapes,
we may want to see how the size of virtual space affects the
resets. The effect of space size was studied in [33], as well as
those irregular space shapes such as trapezoid- or L-shaped areas.
Usually the size of the virtual environment is larger than that of
the physical environment, however the extent to which the virtual

///i
LN

VT
[14

\

;///

(a-1) Environment 1: Reset-to- (b-1) Environment 2: Reset-to- (c-1) Environment 3: Reset-to- (d-1) Environment 4: Perpendic-

Center for Steer-to-Center Gradient for P2R

e
el
4——&

/1
[HAN
ANN

NI Y

E |
] /A

Center for No-Steering ular reset for No-Steering

(a-2) Environment 1, after opti- (b-2) Environment 2, after opti- (c-2) Environment 3, after opti- (d-2) Environment 4, after opti-

mization, using S2C+R2C mization, using P2R+R2G

mization, using NS+SFR2G mization, using P2R+SFR2G

Fig. 4: The 4 physical environments with obstacles, the initial reset vectors(-1) and vectors after optimization(-2) at the boundary
reset endpoints. Result of each environment(-2) demonstrates the vectors optimized from one of the combination of selected redirected

algorithm and reset algorithm.

space is larger than the physical space also affects the final result.
As such, we conduct experiments on 20mx20m and 40mx40m
virtual spaces.

To highlight the impact of obstacles for optimization, four
different layouts with obstacles are designed to test different
RDW algorithms (see Fig. 4(a-1)-(d-1)). And our testing layouts
with reduced walkable space are more challenging compared with
practical cases. The physical environment is a 10mx 10m rectan-
gular space, while the virtual environments are 20mx20m and
40mx40m obstacle-free rectangular spaces with fixed borders.
No assumption on navigation is made here, as in practice the
user may step to anywhere that is open in the virtual space. Each
environment has its representative characteristics in the result , and
its difference from other environments is highlighted with a variety
of RDW and resetting algorithms. To visualize the optimization
effect, we chose an algorithm configuration for each environment,
and demonstrate the reset vectors after optimization (Fig. 4(a-
2)-(d-2))together with the number of resets during optimization
according to the number of iterations (Fig. 5). Moreover, we
perform each RDW method for each environment, the results are
summarized in TABLE. 1- 4, including the average resets before
(Rpefore) and after (Ruper) optimization, and the reduction rate
(Rreduclion): Rreduction =1- Rafter / Rbefore

We first employ our reset optimization on R2C, R2G for two
reactive RDW algorithms S2C, APF-RDW, respectively. Two extra
experiments are conducted for No-steering, where R2C reset is
applied for one experiment, and all reset vectors are perpendicular
to the boundary for the other experiment. For all experiments, we
first assign a reset vector at each endpoint according to the original
reset strategy (see Fig. 4). Then we perform 1000 iterations for
S2C, P2R, and No-Steering in two environments with different

obstacle layouts. For each simulation round of a given reset
configuration, we record the mean resets to form the convergence
plot (see Fig. 5). Since our optimization method is more closed to
a reactive RDW (through a large number of simulations to reduce
average resets), we are yet to apply our method on predictive or
learning-based RDW. But it is important to point out that our
method is capable to cope with those algorithms.

4.1 Experiment Design
4.1.1 Reset Optimization for S2C

In our first environment, there is a 2m x4m rectangular obstacles
on the top middle and a 2mXx3m rectangular obstacles on the
bottom left of the physical environment(see Fig. 4(a-1)). This
environment is almost obstacle-free in the middle part. As men-
tioned in [4], S20 outperforms S2C only for long, straight-line
navigation. Otherwise S2C always performs better. In fact, we can
only walk along a virtual straight line that is no more than three
times the length of the physical space at most. Besides, in most
cases, the path length between two consecutive waypoints is far
less than that distance. Therefore, we choose S2C as our first RDW
algorithm to optimize instead of S20 or other algorithms.

We conduct Steer-to-Center for redirected walking, with
MR2C as a heuristic start for our navigation simulation. In this
physical environment, when the user collides with some points
on the boundary of obstacles, it is not possible to reset to the
center because the way from the point to the center is blocked
by other obstacles. In order to deal with this situation, the reset
vector assigned to each endpoint on the obstacle is perpendicular
to it. When all the rectangular objects in the scene are orthogonal
to space, this reset method is exactly the same as MR2C. For the
reset at the endpoints on the environment boundary, suppose the

10004

9501

900+

Number of Resets

8501

800+

400 600 800 1000

o
N
o
o

11201

11001

10801

10601

10401

Number of Resets

10201

10001

200 800 1000

o

(a) Resets during optimization in Environment 1, applying (b) Resets during optimization in Environment 2, applying

the algorithmic combination of S2C and R2C

5500

5000

IS
0
o
o
!

N
o
o
[S)
!

3500

Number of Resets

3000

2500

2000

0 200 400 600 800 1000

the algorithmic combination of P2R and R2G

2800 1

2600 1

2400

2200

Number of Resets

2000

18004

0 200 400 600 800 1000

(c) Resets during optimization in Environment 3, applying (d) Resets during optimization in Environment 4, applying

the algorithmic combination of NS and SFR2G

the algorithmic combination of P2R and SFR2G

Fig. 5: The convergence plot of resets during optimization for the test environments. X-axis represents number of optimizations, Y-
axis represents the average resets(under 500 simulated walking) under current optimizations. Different environments are applied with

different RDW and Reset methods.

reset endpoint is p;, the center of physical environment as o, then
the reset vector at this endpoint is 0 — p;.

4.1.2 Reset Optimization for P2R

In the second environment, there is a Smx6m rectangular obsta-
cles on the bottom middle of the physical environment (Fig. 4(b-
1)). Unlike Steer-to-Center, we apply Reset-to-Gradient to the
redirected walking by artificial potential fields. The awkward
situation of blocking center in Reset-to-Center will not happen
here. Due to the repulsive force of the obstacle boundary, the reset
vector always points out of the obstacle boundary.

Due to the characteristics of the artificial potential function,
the closer to the boundary of the obstacle, the greater the force is
received. Given the force is inversely proportional to the distance,
we will have infinite force on the boundary of the obstacle.
However, in practice, it is not the case that the center of the user
hits the boundary because the user has a volume. In the simulation,
we treat the user as a small point without the volume for simplicity.
But we add a correction term ¢ to the repulsion function in the
artificial potential fields to avoid infinite repulsion:

Z 1
le = poll +0°

Ocobstacles

Urepulsive (C) =

where ¢ denotes the current position of the user, po is its closest
point on the obstacle O, § determines the influence to the user
when close to one boundary. Here we let 6 = 0.1, which is
comparable to the radius of a human head. The direction of the
force is from the closest point on the obstacle to the user.

When the user collides with an obstacle, the composition of
the forces from all obstacles will be almost perpendicular to the
boundary, as shown in Fig. 4(b-1). The problem comes when the
user is restricted in a narrow space bounded by two opposite
boundaries. Then colliding with one boundary will reset to the
other boundary and vice versa, resulting in a bouncing situation
between two boundaries with many resets.

4.1.3 Reset Optimization For More Complicated Environ-
ment

In order to evaluate our reset optimization as an independent algo-
rithm in virtual navigation, we conduct experiments in two more
environments (environment 3 as in Fig. 4(c-1) and environment 4
as in Fig. 4(d-1)).

In environment 3, there are 4 rectangular obstacles in the area,
including a 2mXx3m rectangular obstacle at the bottom left, a
2mX2m square at the center, a 2mXx2m square at the bottom right
(1m away from both sides), and a 3m x4m rectangular obstacle at

Virtual Size RDW Alg. Resets Before Resets After Reduction Rate

MR2C R2G SFR2G MR2C R2G SFR2G MR2C R2G SFR2G

NS 1193.1 1275.3 1186.6 1089.8 1103.7 1166.2 8.66% 13.46% 1.72%

20x20 sS2C 1010.1 854.8 844.7 7717.2 773.1 844.9 23.06% 9.56% 0.00%
P2R 1113.0 1100.5 1098.9 921.8 902.0 1094.8 17.18% 17.49% 0.52%

NS 2274.1 2453.1 2260.0 1957.7 1951.4 2150.0 13.91% 20.45% 4.87%

40x40 S2C 2300.9 1810.3 1785.0 1487.4 1462.0 1752.8 35.36% 19.24% 1.80%
P2R 2406.9 2272.5 2288.6 1621.5 1838.7 2210.1 32.63% 19.09% 3.43%

TABLE 1: The results for each RDW algorithm and reset method of Environment 1, the average

resets of 500 simulations

before(columns 3-5) and after(columns 6-8) optimizations, and the percentage of resets reduced.

Virtual Size RDW Alg. Resets Before Resets After Reduction Rate

MR2C R2G SFR2G MR2C R2G SFR2G MR2C R2G SFR2G

NS 1583.8 2417.4 2196.6 1279.7 1323.8 2003.3 19.20% 45.24% 8.80%

20x20 S2C 1430.2 1331.4 1282.8 998.9 1005.1 1224.0 30.16% 24.51% 4.58%
P2R 1094.3 1117.4 1147.2 987.1 997.2 1134.1 9.80% 10.76% 1.14%

NS 3116.2 5176.6 4445.2 2267.2 2346.0 3905.5 27.24% 54.68% 12.14%

40x40 S2C 3101.9 2673.4 2531.2 1875.4 1814.2 2242.8 39.54% 32.14% 11.39%
P2R 2140.6 2129.9 2287.8 1895.8 1856.9 2201.5 11.44% 12.82% 3.77%

TABLE 2: The results for each RDW algorithm and reset method of Environment 2, the average resets of 500 simulations
before(columns 3-5) and after(columns 6-8) optimizations, and the percentage of resets reduced.

the top right (1m away from the right side). It can be observed that
the area is approximately divided into three rectangular sub-areas
by the obstacles. In environment 4, more complex and irregular
boundaries are designed. It is difficult to identify the number and
shape of sub-areas divided by obstacles in this case. And even
being identified, it is hard to find their geometric centers like that
of a rectangle. The remaining (compared with section 4.1.1 and
4.1.2) RDW method NS and reset method SFR2G are applied in
environment 3, and the combination of P2R and SFR2G are used
in environment 4 as we speculate that they are the most likely to
achieve good results.

For environment 4, we design an additional comparative ex-
periment to see how the edge interval affects the optimization.
Besides the original experiments with parameter 1, edge intervals
of 2 and of oo (which means every smooth edge only has 2
endpoints on both ends of the edge) are considered. As expected, a
smaller edge interval should give better results at the end, because
the smaller the edge interval, the more accurate the optimization.
And we also expect the larger edge interval can optimize faster.

4.2 Results

In this sub-section, we perform statistical analysis on the pre-
optimization and post-optimization results of each environment
and the algorithms they use. First, we conduct normality analysis,
and then use appropriate methods for comparisons based on the
analysis results. In addition, even if a small part of the samples
does not obey normal distribution, the average value can actually
reflect the performance of the algorithm. This can also be seen in
comparative tests (T-test and Mann-Whitney U-test), and the p-
value obtained by the final statistical analysis is very small. In
the following discussion, we default that the data in the table
conform to the statistical conclusions. On this basis, we discuss
the configuration and optimization effects of each algorithm.

The optimization result of environment 1 is shown in Fig. 5(a).
It can be seen that the number of resets decreases as the opti-
mization progresses. Fig. 4(a-2) shows the reset vectors at the
endpoints after optimization, and Fig. 6 shows a bar plot of
the number of resets before (Mdn = 979.00, IQR = 99, M =
1014.21, STD = 105.37) and after (Mdn = 778, IQR = 28,
M = 777.60, STD = 21.33) the optimization. We conducted
Kolmogorov-Smirnov tests for 500 times of user walking sim-
ulation, the data after optimization obeys a normal distribution
(D = 0.0309,p = 0.714 > 0.05), but the data before optimiza-
tion do not (D = 0.185,p < 0.001), so we use Mann-Whitney
U-test and find out there is a significant difference between the
two sets of data (U~0.0,p<0.001).

The optimization result of environment 2 is shown in Fig. 5(b).
Similarly, the number of resets decreases dramatically after opti-
mization. Fig. 4(b-2) shows the reset vectors at the endpoints after
optimization, and Fig. 6 shows a bar plot of the number of resets
before (Mdn = 1113.5, IQR =43.25, M = 1116.39, STD = 35.94)
and after (Mdn = 997, IQR = 31.25, M = 996.93, STD = 23.99)
the optimization. We conducted Kolmogorov-Smirnov tests for
500 times of user walking simulation before (D = 0.043,p =
0.290 > 0.05) and after (D = 0.037,p = 0.500 > 0.05) opti-
mization, results show that they both obey the normal distribution,
thus we conduct T-test for them (¢£(499) = 61.80, p < 0.001).

The optimization result of environment 3 is shown in Fig. 5(c).
It largely reduces the number of resets. Fig. 4(c-2) shows the reset
vectors at the endpoints after optimization, and Fig. 6 shows a
bar plot of the number of resets before (Mdn = 5414, IQR =
836, M = 5418.93, STD = 625.61) and after (Mdn = 1909, IQR
= 138.25, M = 1921.82, STD = 102.29) the optimization. We
conducted Kolmogorov-Smirnov tests for 500 times of simulated
user walking before (D = 0.032,p = 0.645 > 0.05) and after
(D = 0.054,0.096 > 0.05) optimization, results show that they
both obey the normal distribution, thus we conduct T-test for them

Virtual Size RDW Alg. Resets Before Resets After Reduction Rate

MR2C R2G SFR2G MR2C R2G SFR2G MR2C R2G SFR2G

NS 3059.0 5331.1 5417.2 1464.0 1550.0 1919.9 52.14% 70.93% 64.56%

20x20 S2C 3708.8 3646.1 4293.3 1717.9 1594.2 1735.8 53.68% 56.28% 59.57%
P2R 1637.6 27335 2895.8 1468.7 1571.9 1785.9 10.31% 42.49% 38.33%

NS 6271.5 6066.2 14173.0 2698.5 2840.5 3025.8 56.97% 53.17% 78.65%

40x40 S2C 5506.7 6973.6 10603.8 3176.0 2863.6 3156.2 42.32% 58.94% 70.24%
P2R 3178.4 5264.3 5743.7 2611.1 27459 3578.2 17.85% 47.84% 37.70%

TABLE 3: The results for each RDW algorithm and reset method of Environment 3, the average resets of 500 simulations
before(columns 3-5) and after(columns 6-8) optimizations, and the percentage of resets reduced.

Virtual Size RDW Alg. Resets Before Resets After Reduction Rate

MR2C R2G SFR2G MR2C R2G SFR2G MR2C R2G SFR2G

NS 4306.9 3326.1 2938.2 1629.6 1622.2 1930.0 62.16% 51.23% 34.31%

20x20 S2C 37344 3209.0 3836.7 1750.9 1709.5 1853.4 53.11% 46.73% 51.69%
P2R 2570.3 2525.7 2766.2 1613.3 1639.2 1757.9 37.23% 35.10% 36.45%

NS 7569.1 9014.8 6840.1 2903.3 2903.9 3360.6 61.64% 67.79% 50.87%

40x40 S2C 11243.8 8004.8 10345.3 3505.4 3416.3 3483.0 68.82% 57.32% 66.33%
P2R 5635.1 5169.8 6271.1 2827.29 3020.4 3422.8 49.83% 41.58% 45.42%

TABLE 4: The results for each RDW algorithm and reset method of Environment 4, the average resets of 500 simulations
before(columns 3-5) and after(columns 6-8) optimizations, and the percentage of resets reduced.

((499) = 123.35,p = 0).

The optimization of environment 4 is also effective as shown
in Fig. 5(d). Fig. 4(d-2) shows the reset vectors at the endpoints
after optimization. Fig. 6(a) shows a bar plot of the number of
resets before (Mdn = 2712, IQR = 371.25, M = 2753.33, STD =
300.03) and after Mdn = 1748.5, IQR =54, M = 1755.21, STD =
69.64) the optimization. We conducted Kolmogorov-Smirnov tests
for 500 times of simulated user walking before (D = 0.063,p =
0.035 < 0.05) and after (D = 0.162, p =< 0.05) optimization,
results show that they both disobey the normal distribution, thus
we conduct Mann-Whitney U-test and find out there is a signifi-
cant difference between the two sets of data(U=215.0,p<0.001)..
Results of additional experiment are in Fig. 7, the interval of oo
got the worst performance compared with 1m and 2m, but 2m is
actually better than 1m.

4.3 Discussion

The results show that the initial reset strategy has a lot of room
for optimization. The number of resets largely reduces after
optimization. By judging the resultant reset vectors, the differences
from initial reset vectors are quite noticeable. Here we discuss the
result for each environment in detail.

4.3.1 Discussion of Environment 1

From the result of environment 1(Fig. 4(a-1)), it turns out that
all reset vectors point out of the obstacle boundaries. This is also
true for duplicated reset vectors at sharp points. Although some of
them originally point into the obstacle, they are all free of collision
after optimization. The reset vectors on the environment boundary
still point to the middle of the space, but not the exact center.
From TABLE. 1 we can see that the optimization effect is not
as good as other environments. The layout of this environment
is nearly obstacle-free, and the middle part of the environment is

relatively open, thus MR2C is nearly the best collision handling
solution for all RDW algorithms. In addition, it can be seen that
although SFR2G is better than the other two methods at first,
there is not much room for optimization. Although the other two
methods are not comparable to SFR2G at first, our method can
make them exceed SFR2G. Also, TABLE. 1 demonstrates that the
virtual environment with a larger size brings more reduction rate,
and in the following table we can find this conclusion holds for
most cases.

4.3.2 Discussion of Environment 2

As shown in the results of environment 2(Fig. 4(b-2)), the empty
space is narrow on the left and right of the area. Initially, the reset
vectors at the endpoints therein are almost perpendicular to the
boundary, except for the points near the corner. After optimization,
these vectors point to the outside of this area with more open
space.

In addition, the second reset endpoint from the bottom up on
the right boundary of the obstacle does not point out of the narrow
space. Instead, it points to the bottom of that space. The following
formula on expected resets helps us to understand where this result
comes from:

Ervserslvlpl = [[Glay)Pla.yasay,

(z,y)€L

where v|p indicates resetting to the direction of vector v when
the user collides with the boundary at point p, L denotes the
physical boundary the user may collide with, G(x, y) represents
the expectation of resets at the point (x,y), and P(z,y) is the
probability density of the next collision with (2, y). Fresets|[V|P]
denotes the expected value of the number of resets when applying
vector v on point p during the entire walking simulation (while
other vectors of reset endpoints are fixed).

Take the aforementioned endpoint as an example. After col-
liding with this endpoint and resetting, the user may collide with
the bottom edge shortly afterwards. Then the user’s orientation
is almost reset to upright, and could walk into an open space.
Assume the vector points to the upper left, then it bears a high
possibility to collide with the left boundary of the environment.
In both cases, it has to go through one collision to enter the open
space. And even after hitting the left boundary, it may collide
with the left edge of the obstacle again. So for this endpoint, the
current reset direction is not globally optimal, i.e., the optimization
leads to a local minimum. Thus it is reasonable to update multiple
parameters (reset vectors) at once, because doing so is helpful to
jump out of the local minimum. But after optimization, the reset
vectors could be like those in the bottom right space. They are not
optimal in a greedy view due to a foreseeable collision, but are
good resets in a long run statistically.

TABLE. 2 also demonstrates that the optimization performs
better when altering the virtual environment size from 20m x20m
to 40mx40m. As the obstacle is larger, the space is more irregular
than environment 1, the overall reduction rate is greater. Similar
to TABLE. 1, SFR2G does not exhibit a clear advantage in the
initial and final resets, while our optimization on SFR2G is still
effective.

mm start

5000 - end
3000
2000 -
1000|III IIII
0 1 2 3 4

Environment

N
o
o
o

Number of Resets

Fig. 6: The bar plot of resets before and after optimization from
Environment 1 to Environment 4 respectively.

4.3.3 Discussion of Environment 3 and 4

For environment 3, it may have some kind of weird reset vectors.
In environment 1, all vectors pointing inside the obstacle are
finally optimized to point outside the obstacle. In contrast, some
vectors are optimized to pointing inside the obstacles while it
originally pointing outside (Fig. 4(c-2)). But it is reasonable for
SFR2G. When the user cannot walk forward during SFR2G, it
is equivalent to R2G. If a reset vector points inside the obstacle,
it means our optimization tends to apply R2G for resetting and
face the direction of gradient descent. By observing TABLE. 3,
we can find R2G always performs better than SFR2G, and this is
consistent with our inference. Also we can find a special case that
for the combination of MR2C and S2C, the reduction rate actually
decreases when using the larger virtual environment. Therefore,
the increase of virtual space does not always have a positive effect

10

— interval-1
2600 interval-2
—— interval-inf
«n 2400 1
ol
0
(]
@ 2200 A
kS
g 2000 A
€
S
=2
1800 -
1600 -
0 200 400 600 800 1000

Fig. 7: The convergence plot of resets with different edge intervals
(1, 2, and oo) for Environment 4. X-axis represents the number of
iterations during the optimization, Y-axis represents the average
resets (over 500 walking simulations).

on the optimization space of the algorithm, which needs to be
estimated based on the combination of RDW algorithms.

Similar conclusions with environment 3 hold as the results of
environment 4. It can be seen from the final reset vectors (Fig. 4(d-
2)) that the optimization results guide the user to the largest empty
area in the upper half of the physical layout, and there is also
some reset vectors point inside the obstacles. The explanation of
this phenomenon is the same as that mentioned when discussing
environment 3. The reduction rates of virtual size 40mx40m are
larger than those of 20m x20m in TABLE. 4, except MR2C with
NS, whose reduction rate is higher than 60% when the virtual
size is 20mx20m. Note that SFR2G outperforms another 2 reset
methods in this environment on NS, and is only slightly worse
than MR2C and R2G on P2R. Though SFR2G does not have
the advantage over other methods after optimization (same as the
previous environment), it still makes promising improvement. In
general, the final result of SFR2G optimization will generally be
slightly worse, which is also to be expected, because the final reset
direction of SFR2G depends on the surrounding gradient, and the
gradient around a certain boundary point generally only covers
a small range of the angle, while the other two methods can be
arbitrarily optimized within the range of 180 degrees.

The additional experiments (see Fig. 7) verify our understand-
ing of the edge interval. Large edge interval results in worse
performance since it cannot precisely control the reset vector
at each position. But for two similar intervals, the larger one
optimizes longer length of the boundary each time, in this case,
the optimization speed increase effect brought by the length is
more significant. And this can explain why the interval of 2m
is better than 1m. Moreover, there are other factors that affect
the optimization potential, such as it does not always work well
that using the same fixed interval, the position of reset endpoints
might be of great influence to the result. All these factors should
be considered in further study.

5 USER STuDY
5.1 Experiment Design

To evaluate how our optimization works in practice, we also
conducted a user study with the help of human participants. The
users were asked to walk in a 5x5m? area with a 2x2.5m?
obstacle at the bottom center of the area in our meeting room,
as shown in Fig. 8(a). The real obstacle is a little smaller than the
simulated one, and the real boundary is larger than the simulated
one, such that the user could receive a prompt before hitting the
real boundary. This can help to turn the user around to avoid real
collision and possible injury. We used HTC VIVE HMD, which
is suitable for our experiment in a space of this size. The virtual
space size was 20 x 20m?2. The object (a blue capsule, as shown
in Fig. 8(b)) was randomly generated in the virtual space. The user
was required to move towards the object until touching it. Then
the object disappeared and emerged in a new position at least
S5m away from the current position. We used P2R as the RDW
method for our irregularly shaped environment. In the user test,
we compared 4 types of reset methods, including 1) our method
after optimization(OPT); 2) Reset to Perpendicular(R2P) which
re-orients the user to the direction that is perpendicular to the
boundary; 3) the mix of R2P and R2C (since R2C does not work
on every boundary, those boundaries that cannot apply R2C were
replaced by R2P, and this is the same as MR2C); and 4) R2G
which is the most commonly used in APF-RDW. SFR2G will
not be applied here because the size of the physical environment
may be too constrained to perform it. We performed 4 trials on
each reset strategy. In each trial, the user was required to keep
moving and touching the generated object until encountering 10
resets. Then we recorded the user’s walking distance during the
trial. The values of various gains are the same as those used in the
simulation experiment. Different reset algorithms use the same
parameters except for different reset behaviors. In order to reduce
the experimental deviation caused by mutual influence between
these 4 trails, the order of experiments for these reset algorithms
is random.

We implemented a redirected walking interface in the VR en-
vironment. Whenever the user collides with the physical boundary,
the perspective of the user is set frozen (Freeze-Turn). There are
some texts and arrows to help the user adjust the direction in order
to face the direction that a certain reset strategy provides. However,
the user does not collide with the real object since the walkable
area is larger than the simulated area, and the user is still able to
walk outside the boundary. Only if the user is inside the simulated
area and facing the correct direction, the perspective is activated.
There are 12 participants included, composed of 8 females and 4
males, and about half of them have the experience of using virtual
reality devices. They learned about this user study through the
student work group and department group in the communication
software, and volunteered to participate.

5.2 Result

Fig. 9 shows one of our walking paths using our OPT re-
set strategy. The physical path may look shorter because we
doubled the user’s walking distance in the virtual environ-
ment. The results of each reset method of their walking
distance are shown in Fig. 10. We conducted Kolmogorov-
Smirnov Test for 4 groups of results. Each of them fit the
normal distribution (D = 0.173,0.142,0.137,0.190, p =
0.806,0.938,0.954,0.709 > 0.05). Then the ANOVA test

11

(a) Our physical environment, (b) Our virtual environment.
the rectangular obstacle is desks There will always be a blue
with computer controlling our capsule generate in the environ-

VR equipment. ment guiding user movement

towards it.

Fig. 8: Physical(a) and virtual(b) environment in the user experi-
ment.

shows there is a significant difference between the four reset
methods(F(3,44) = 5.49, p<0.005). T-test shows our optimiza-
tion method works better than R2P(t(11)=2.27, p<0.02), has
advantages over the mix of R2C and R2P(t(11)=1.59,p<0.07),
and significantly outperform R2G(t(11)=3.76, p<0.001). We also
ask our subjects to fill Simulator Sickness Questionnaire(SSQ)
[34]before and after the experiment, and four methods reached
similar scores between 3.5 to 4.5, they all obey the normal
distribution (D = 0.215,0.275,0.250, 0.258, 0.250,p > 0.27),
ANOVA test shows no difference (F(3,44)=0.13, p>0.9) between
the sickness by 4 reset strategies.

T T T T T
0 5 10 15 20 0 5

1 2 3 a
Virtual path Physical path
Fig. 9: Example simulated path. There are some parts outside the
tracking physical area(5x5m?) because the walkable area is larger

than the simulated area to avoid hard collision.

5.3 Discussion

The user study proves the capability of reducing resets of our op-
timization algorithm. We notice the mix of R2C and R2P method
work better than using R2P or R2G only. But in many situations,
we cannot easily tell whether the mix of certain methods works
well in which environment. And even it works well, our algorithm
still possesses an advantage. In the aspect of user experience,
our method should have similar performance with other methods
because we uniformly use the Freeze-Turn method. However, the
experience may also be determined by the resets, more resets
brings more vertigo. Since our methods reduce the resets, it should
provide less sickness during long term walking.

100 A

80

60

40

walking distance

20 A

OPT

R2P

R2C+R2P R2G

Fig. 10: The result of user study by measuring walking distance in
10 resets.

6 CONCLUSION AND FUTURE WORK

In this work, we present a novel optimization algorithm for
redirected walking (RDW) reset in irregular physical space with
obstacles. Inspired by finite element analysis, we discretize the en-
vironment and obstacle boundaries, and optimize reset directions
at discrete endpoints while interpolating directions elsewhere.
The optimization is based on virtual navigation simulation in a
stochastic process, and is adaptive to a given RDW algorithm. We
conduct several experiments with different environment layouts
and RDW algorithms. The results show that our optimization-
based reset can significantly reduce resets in different scenarios,
thus largely benefit the existing RDW algorithms. The results
also highlight the choice of different combinations of RDW and
resetting techniques exert a strong influence on the result during
finite iterations of optimization. Theoretically, the in-place method
should have the same optimal solution for reset vectors, however,
due to the stochastic nature of the optimization process and the
difference in optimization speed, different algorithms will bring
differences in the results.

In the future, we would like to further improve the performance
of our algorithm. The simulation-based optimization can be very
fast. It takes 2-12 seconds to perform one optimization when
Ry = 500 in a 20x20m? virtual area with a single 3GHz
CPU, depending on which RDW algorithm is used for simulation.
Since repetitions of walking are highly parallelizable (we also
implemented the multi-core version on CPU, reducing 38% to
62% of the time with 2 and 4 cores), our algorithm can be
transferred into modern GPU with numerous cores, significantly
reducing the running time. We are also interested in studying
how to further accelerate the simulation based on a pre-trained
simulation regressor [35].

ACKNOWLEDGMENTS

This work was supported by the National Key Technology
R&D Program (Project Number 2017YFB1002604), the Na-
tional Natural Science Foundation of China (Project Numbers
61521002, 62132012), Research Grant of Beijing Higher In-
stitution Engineering Research Center, and Tsinghua—Tencent
Joint Laboratory for Internet Innovation Technology. Yong-Liang
Yang was supported by RCUK grant CAMERA (EP/M023281/1,
EP/T022523/1), and a gift from Adobe.

12

REFERENCES

(1]

(2]

[3]

(4]

[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. Nescher, Y. Huang, and A. Kunz, “Planning redirection techniques for
optimal free walking experience using model predictive control,” in 2014
1IEEE Symposium on 3D User Interfaces (3DUI), 2014, pp. 111-118.

M. A. Zmuda, J. L. Wonser, E. R. Bachmann, and E. Hodgson, “Op-
timizing constrained-environment redirected walking instructions using
search techniques,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 11, pp. 1872-1884, 2013.

S. Razzaque, “Redirected walking,” Ph.D. dissertation, University
of North Carolina at Chapel Hill, USA, 2005. [Online]. Available:
https://techreports.cs.unc.edu/papers/05-018.pdf

E. Hodgson and E. R. Bachmann, “Comparing four approaches to
generalized redirected walking: Simulation and live user data,” IEEE
Transactions on Visualization and Computer Graphics, vol. 19, no. 4,
pp. 634-643, 2013.

E. Hodgson, E. Bachmann, and D. Waller, “Steering immersed users of
virtual environments: Assessing the potential for spatial interference,”
ACM Transactions on Applied Perception, vol. 8, pp. 1-22, 2011.

D.-Y. Lee, Y.-H. Cho, and L.-K. Lee, “Real-time optimal planning for
redirected walking using deep g-learning,” in 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR). 1EEE, 2019, pp. 63-71.
D.-Y. Lee, Y.-H. Cho, D.-H. Min, and L.-K. Lee, “Optimal planning
for redirected walking based on reinforcement learning in multi-user
environment with irregularly shaped physical space,” in 2020 [EEE
Conference on Virtual Reality and 3D User Interfaces (VR). 1EEE,
2020, pp. 155-163.

R. R. Strauss, R. Ramanujan, A. Becker, and T. C. Peck, “A steering
algorithm for redirected walking using reinforcement learning,” IEEE
Transactions on Visualization and Computer Graphics, vol. 26, no. 5,
pp. 1-1, 2020.

Y. Chang, K. Matsumoto, T. Narumi, T. Tanikawa, and M. Hirose,
“Redirection controller using reinforcement learning,” IEEE Access,
vol. 9, pp. 145083145097, 2021.

F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe, “Estimation of
detection thresholds for redirected walking techniques,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 16, no. 1, pp. 17-21,
2010.

T. Grechkin, J. Thomas, M. Azmandian, M. Bolas, and E. A. Suma,
“Revisiting detection thresholds for redirected walking: combining trans-
lation and curvature gains,” in Proceedings of the ACM Symposium on
Applied Perception, 2016, pp. 113-120.

C. T. Neth, J. L. Souman, D. W. Engel, U. Kloos, H. H. Bulthoff, and
B. J. Mohler, “Velocity-dependent dynamic curvature gain for redirected
walking,” IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 7, pp. 1041-1052, 2012.

R. Yu, Z. Duer, T. Ogle, D. A. Bowman, T. Tucker, D. Hicks, D. Choi,
Z. Bush, H. Ngo, P. Nguyen ef al., “Experiencing an invisible world war i
battlefield through narrative-driven redirected walking in virtual reality,”
in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR). IEEE, 2018, pp. 313-319.

E. Langbehn, P. Lubos, G. Bruder, and F. Steinicke, “Application of
redirected walking in room-scale vr,” in 2017 IEEE Virtual Reality (VR),
2017, pp. 449-450.

E. Langbehn and F. Steinicke, “Space walk: A combination of subtle
redirected walking techniques integrated with gameplay and narration,”
in ACM SIGGRAPH 2019 Emerging Technologies, 2019, pp. 1-2.

B. Williams, G. Narasimham, B. Rump, T. P. McNamara, T. H. Carr,
J. Rieser, and B. Bodenheimer, “Exploring large virtual environments
with an hmd when physical space is limited,” in Proceedings of the 4th
symposium on Applied perception in graphics and visualization, 2007,
pp. 41-48.

S. Freitag, D. Rausch, and T. Kuhlen, “Reorientation in virtual environ-
ments using interactive portals,” in 20/4 IEEE symposium on 3D user
interfaces (3DUI), 2014, pp. 119-122.

E. R. Bachmann, E. Hodgson, C. Hoffbauer, and J. Messinger, “Multi-
user redirected walking and resetting using artificial potential fields,”
IEEE Transactions on Visualization and Computer Graphics, vol. 25,
no. 5, pp. 2022-2031, 2019.

T. Dong, X. Chen, Y. Song, W. Ying, and J. Fan, “Dynamic artificial
potential fields for multi-user redirected walking,” in 2020 IEEE Confer-
ence on Virtual Reality and 3D User Interfaces (VR). 1EEE, 2020, pp.
146-154.

J. Thomas and E. S. Rosenberg, “A general reactive algorithm for
redirected walking using artificial potential functions,” in 26th IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), 2019, pp.
56-62.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

T. C. Peck, H. Fuchs, and M. C. Whitton, “Evaluation of reorientation
techniques and distractors for walking in large virtual environments,”
IEEE Transactions on Visualization and Computer Graphics, vol. 15,
no. 3, pp. 383-394, 2009.

M. Sra, X. Xu, A. Mottelson, and P. Maes, “Vmotion: designing a
seamless walking experience in vr,” in Proceedings of the 2018 Designing
Interactive Systems Conference, 2018, pp. 59-70.

R. Cools and A. L. Simeone, “Investigating the effect of distractor
interactivity for redirected walking in virtual reality,” in Symposium on
Spatial User Interaction, 2019, pp. 1-5.

B. R. Fajen and W. H. Warren, “Behavioral dynamics of steering, obstacle
avoidance, and route selection,” Journal of Experimental Psychology:
Human Perception and Performance, vol. 29, no. 2, pp. 343-362, 2003.

H. Chen, S. Chen, and E. S. Rosenberg, “Redirected walking strategies
in irregularly shaped and dynamic physical environments,” in 25th
IEEE Conference on Virtual Reality and 3D User Interfaces (VR ‘18).
Workshop on Everyday Virtual Reality, 2018.

——, “Redirected walking in irregularly shaped physical environments
with dynamic obstacles,” in 2018 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR). 1EEE, 2018, pp. 523-524.

1. Valentini, G. Ballestin, C. Bassano, F. Solari, and M. Chessa, “Im-
proving obstacle awareness to enhance interaction in virtual reality,” in
2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
IEEE, 2020, pp. 44-52.

A. Hrennikoff, “Solution of problems of elasticity by the framework
method,” Journal of Applied Mechanics, vol. 8, no. 4, pp. 169-175, 1941.
S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

N. Sekiya, “The invariant relationship between step length and step rate
during free walking,” Journal of Human Movement Studies, vol. 30, no. 6,
pp. 241-257, 1996.

J. N. Templeman, P. S. Denbrook, and L. E. Sibert, “Virtual locomotion:
Walking in place through virtual environments,” Presence, vol. 8, no. 6,
pp- 598-617, 1999.

M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater,
and F. P. Brooks Jr, “Walking>walking-in-place >flying, in virtual envi-
ronments,” in Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, 1999, pp. 359-364.

J. Messinger, E. Hodgson, and E. R. Bachmann, “Effects of tracking area
shape and size on artificial potential field redirected walking,” in 2019
IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 1EEE,
2019, pp. 72-80.

R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal,
“Simulator sickness questionnaire: An enhanced method for quantifying
simulator sickness,” The International Journal of Aviation Psychology,
vol. 3, no. 3, pp. 203-220, 1993.

T. Feng, L.-F. Yu, S.-K. Yeung, K. Yin, and K. Zhou, “Crowd-driven
mid-scale layout design.” ACM Transactions on Graphics, vol. 35, no. 4,
pp. 132-1, 2016.

Song-Hai Zhang received the PhD degree of
Computer Science and Technology from Ts-
inghua University, Beijing, in 2007. He is cur-
rently an associate professor in the Depart-
ment of Computer Science and Technology at
Tsinghua University. His research interests in-
clude computer graphics, virtual reality and im-
age/video processing.

P

o A

13

Chia-Hao Chen is a master candidate in the
Department of Computer Science and Technol-
ogy at Tsinghua university, Beijing. His research
interests include computer graphics, media anal-
ysis and computer vision. He received a B.S.
degree of Computer Science and Technology
from Nanjing University, Nanjing, in 2020.

Zheng Fu Zheng Fu is an undergraduate stu-
dent at Xinya College, Tsinghua University. He
majors in Computer Science and Technology,
with a second majoy in Digital Entertainment
Design. He will work as a video game designer
after graduation.

Yong-Liang Yang is a Senior Lecturer in the
Department of Computer Science, University of
Bath. He received the B.S. degree and the Ph.D.
degree of Computer Science from Tsinghua Uni-
versity. His research interests are broadly in vi-
sual computing and interactive techniques.

Shi-Min Hu is currently a professor in the de-
partment of Computer Science and Technology,
Tsinghua University, Beijing. He received the
PhD degree from Zhejiang University in 1996.
His research interests include digital geometry
processing, video processing, rendering, com-
puter animation, and computer-aided geometric
design. He has published more than 100 pa-
pers in journals and refereed conferences. He
is Editor-in-Chief of Computational Visual Me-
dia (Springer), and on editorial board of several

journals, including Computer Aided Design (Elsevier) and Computers &
Graphics (Elsevier).

