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Dynamic tipping in the non-smooth Stommel-box model, with fast

oscillatory forcing.

Chris Budd ∗ Cody Griffith † Rachel Kuske ‡

June 7, 2021

Abstract

We study the behaviour at tipping points close to non-smooth fold bifurcations in non-
autonomous systems. The focus is the Stommel-Box, and related climate models, which are
piecewise-smooth continuous dynamical systems, modelling thermohaline circulation. We ob-
tain explicit asymptotic expressions for the behaviour at tipping points in the settings of both
slowly varying freshwater forcing and rapidly oscillatory fluctuations. The results, based on
combined multiple scale and local analyses, provide conditions for the sudden transitions be-
tween temperature-dominated and salinity-dominated states. In the context of high frequency
oscillations, a multiple scale averaging approach can be used instead of the usual geometric
approach normally required for piecewise-smooth continuous systems. The explicit parametric
dependencies of advances and lags in the tipping show a competition between dynamic features
of the model. We make a contrast between the behaviour of tipping points close to both smooth
Saddle Node Bifurcations and the non-smooth systems studied on this paper. In particular we
show that the non-smooth case has earlier and more abrupt transitions. This result has clear
implications for the design of early warning signals for tipping in the case of the non-smooth
dynamical systems which often arise in climate models.

Keywords: Non-smooth dynamics, conceptual climate models, dynamic bifurcation, tipping, mul-
tiple scales, border collision, non-autonomous systems.

1 Introduction

1.1 Overview

Various models of phenomena in climate have been used both to model and to predict abrupt
changes in systems with a wide range of time-scales. As a result, there are many climate models
that include non-smooth features approximating transitions over short times relative to climate time-
scales. These include state-dependent switches, non-smooth functional descriptions of dynamics,
and discrete states delineated by boundaries. Examples of these are given by: the PP04 model of
sudden changes in carbon dioxide emission rates during glacial cycles [13], [12], rainfall [9], and the
motion of the ice fronts in a glacial cycle [19], as well as the Stommel box model for thermohaline
circulation that we study in this paper. In all such systems we see both the dynamics commonly
found in smooth systems (such as possibly co-existing periodic and chaotic states and transitions
between them including tipping points), as well as dynamical behaviors specific to non-smooth
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systems, such as grazing, sliding, and non-smooth bifurcations between different co-existing states
[3].

Transitions in the context of bi-stability have been studied in many contexts. A common setting
is where stability is lost via bifurcations, and the system experiences hysteresis as parameters vary
through these critical points, depending upon the form of the parameter variation. For these non-
autonomous systems with varying parameters the transitions between states may be qualitatively
different, depending on the nonlinearities, the types of underlying static bifurcations, and the vector
fields near the stable equilibria.

Throughout this paper we use the term tipping to refer to a sudden transition from one qual-
itatively different state to another in the non-autonomous setting. We note the contrast with a
bifurcation, a qualitative change in the geometry of a system in which its flow or phase portrait is
altered in the dynamical context. Tipping is used in a wider variety of settings, generically a qualita-
tive change in behaviour along a particular time-varying trajectory. The two are sometimes related,
as tipping may be related to a bifurcation point or some other separatrix of a particular object in
the flow, such as a fold point of a slow manifold or stable manifold of a saddle. This relationship is
indeed present in the systems we study here: the non-autonomous systems with time-varying pa-
rameters have autonomous counterparts with static parameters treated as bifurcation parameters.
Given this connection, we use the term dynamic bifurcation to refer to the specific setting where a
parameter value varies in time near or through the critical value of a static bifurcation parameter
from an underlying autonomous system.

In this paper we focus on the dynamic transitions near Non-Smooth Fold (NSF) bifurcations,
obtaining explicit results that can be contrasted with analogous transitions near smooth Saddle-
Node Bifurcations (SNBs) [20]. We obtain explicit asymptotic expressions for the tipping points in
the Stommel Box climate model. In particular we find conditions for sudden transitions between
temperature-dominated and salinity-dominated states. We look at time variation which is a combi-
nation of a slow change in the mean parameter value combined with a rapidly oscillating (seasonal)
perturbation, and determine when these lead to rapid transitions between qualitatively different
states. From the comparisons with the tipping points in smooth systems [20], there are clear impli-
cations for the development of early warning signals, given the close connection with the dynamics
of the underlying reduced system [10], [7]. Specifically we show that tipping occurs earlier, and
more abruptly in the non-smooth model. This is because in the non-smooth case the eigenvalues
associated with the linearisation about the fixed points do not drop to zero at the tipping point and
hence, unlike the smooth case, they do not generate a warning signal that tipping is likely to occur.

1.2 The Stommel Box model

A well-known class of models, where salinity-dominated and temperature-dominated states are bi-
stable, is that of thermohaline circulation (THC). Here abrupt qualitative changes are possible,
see Alley [1], Marotzke [11], or Rahmstorf [14] and [15]. Recently Rahmstorf was able to find
evidence of weakening occurring around these abrupt changes in a system of ocean patterns known
as the Atlantic meridional overturning circulation (AMOC) [4]. This evidence of ocean dynamics
responding to changes in surface temperature underscores the need to understand the transitions
in these types of systems. We note that such transitions can be either smooth or non-smooth (as
described in [3]). In this paper we focus on the commonly used Stommel two box model [18] as
an exemplar for studying the transitions in the THC (or more generally, the dynamical impact
of NSF bifurcations between equilibrium states) in a realistic climate model. We begin with the
non-dimensionalized Stommel model as given in [5],

Ṫ = η1 − T (1 + |T − S|),
Ṡ = η2 − S(η3 + |T − S|).

(1.1)
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The variables T and S are the dimensionless equatorial-to-pole differences for temperature and
salinity, respectively. The parameters η1, η2, and η3 are also dimensionless quantities, with η1

representing thermal variation, η2 as the freshwater flux, and η3 as the ratio of relaxation times of
temperature and salinity. The dimensionless AMOC strength is captured by the difference

V = T − S,

which plays an important role throughout the dynamical analysis. With the dependence on the
absolute value |T − S|, (1.1) is a non-smooth dynamical system. It has a discontinuity surface at

Σ = {(T ,S) : T − S ≡ V = 0} . (1.2)

The equations for T and S then describe different dynamics in Σ+ and Σ− for

Σ+ = {(T ,S) : T − S > 0} Σ− = {(T ,S) : T − S < 0} . (1.3)

The model is non-smooth through the action of the nonlinearity |T − S| and takes the form of a
piecewise-smooth continuous system with a degree of discontinuity of 2 [3], [17].

A standard analysis of the static model, where typically η1 and η3 are fixed, and η2 is treated as
a bifurcation parameter, yields stability regions for the temperature and stability dominated states.
Taking values of η1 and η3 as is usual in applications [5], there are either 3 or 1 fixed points. In the
case of 3 fixed points, we identify two different critical points, denoted η2sf and η2c with η2sf > η2c.
For η2sf > η2 > η2c, there are two fixed points in Σ+ which are a saddle (S) and a stable node (N),
which loses stability at the (smooth) SNB η2sf . Further for η2 > η2c in Σ− there is a fixed point
which is a stable focus (F). If η2 < η2c there is a single stable node N in Σ+. These are illustrated
in Figure 1 for V vs. η2. Note that N corresponds to the temperature-dominated state, and F
corresponds to the salinity-dominated state.

The critical point η2c, indicated by ∗ in Figure 1 corresponds to a border collision bifurcation
(BCB) arising when F and S intersect with Σ. This critical point can be obtained from (1.1) as

η2c ≡ η1η3 . (1.4)

This bifurcation is a Non-Smooth Fold (NSF), in which F and S co-exist if η2 > η2c and neither
exist if η2 < η2c. Note that the coalescence of a saddle S with a focus F can only occur because
this is a non-smooth system. Such bifurcations do not arise in smooth systems where a SNB
necessarily indicates collision of a stable node and a saddle. The mathematical structure near
(η2c, 0) is substantially different from that near the smooth SNB (ηsf ,V2sf ), indicated by o in
Figure 1. In particular at a NSF the real parts of the eigenvalues of the linearisations of either of
the fixed points do not drop to zero.

In general, parameters are not static in climate models of this type, but rather can oscillate
(seasonally for example) with a mean that can also drift over time. Variation of a parameter
(typically η2 in (1.1)) can lead to tipping, which in the context of this study corresponds to a
solution starting at the focus F (or N) that does not stay close to F (or N) but rapidly evolves to
a qualitatively different state, typically to N (or F) or to a large amplitude periodic orbit. Tipping
often occurs when the variation drives a solution starting near F or N to encounter the unstable
manifold of saddle S, or via a dynamic bifurcation through the underlying static fold point. Given
the different characteristics of the fold points η2c and η2sf , we expect clear differences between the
tipping near these different critical values. We note that tipping close to a NSF is different in many
respects from tipping close to a SNB, because, as noted above, the eigenvalues of the linearisation
of the system about the fixed point do not drop to zero in the non-smooth case.
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To capture the impact of this parameter variation, we consider the case where both η2 and η1

oscillate rapidly, with the mean behavior of η2 varying slowly in time. Specifically, we take

η1 → η1 +B sin(Ωt) and η2 → η2(t) + B̂ sin(Ωt)

in (1.1), where η̇2 = −ε with ε � 1 and Ω � 1. We rewrite (1.1) in terms of the AMOC strength
V, which plays the role of the switch parameter (measuring the closeness of the solution to Σ), and
set A = B − B̂ to get

V̇ = η1 − η2(t) + η3(T − V)− T − V|V|+A sin Ωt,

Ṫ = η1 − T (1 + |V|) +B sin Ωt

η̇2 = −ε, ε� 1, Ω� 1 .

(1.5)

As is typical for applied settings [5], we follow certain parameter assumptions; first, that η3 < 1,
which results in a SNB in (1.5) for the branch V > 0. It is frequently assumed that the salinity’s
relaxation time is much longer than that of temperature, giving η3 < 1. Furthermore, we take
η1 = O(1) so that η2c = η3η1 = O(1) and η2c < η2sf . That is, there is a non-trivial bi-stability
range for the two stable equilibria on the branches N ( V > 0) and F (V < 0) as shown in Figure
1. For convenience of notation, we take A and B to be non-negative in our analysis below. The
analysis for A < 0 or B < 0 is analogous, and yields the same identification of the tipping points in
the case of high frequency forcing.

Our primary focus in this paper is on the tipping behavior as η2(t) in (1.5) varies dynamically
close to the static NSF bifurcation point η2c. Figure 1 illustrates this tipping behavior, where there
is a relatively rapid transition between the salinity- and temperature-dominated states, F and N.
From the results shown in Figure 1, without oscillatory forcing, the tipping via dynamic bifurcation
is lagged relative to η2c. In contrast, the tipping from F to N is advanced when there is oscillatory
forcing, with increasing values of A/Ω increasing this advance. Below we explore the separate and
combined effects of both slowly varying η2 and a high frequency oscillatory forcing Ω � 1 that
drives tipping near the NSF point.

The influence of these types of variations have been explored in the context of a SNB [20], based
on an analysis developed for its normal form, and employed in other applications. With a slowly
varying bifurcation parameter a(t), this normal form is

ż(t) = a(t)− z2 +A sin(Ωt), a = a0 − εt . (1.6)

Combined multiple scales and local analyses yield analytical expressions for the location of the
tipping point via dynamic bifurcation, relative to the static SNB at ac = 0, xc = 0. Results are
qualitatively similar to those for the NSF shown in Figure 1, namely, the tipping is lagged for the
dynamic bifurcation with no oscillations A = 0, ε 6= 0, advanced for oscillations only A 6= 0, ε = 0,
and the lag and advance compete for the case with both slowly varying bifurcation parameter and
oscillatory forcing.

Our goal in this paper is to develop a related multiple scale analytical approach for approximating
the tipping point in the setting of a dynamic NSF bifurcation, including the case where there is also
high frequency forcing. The analysis provides both precise quantitative and qualitative descriptions
of the tipping behavior, from which we can determine the influence of dynamic parameters as
well as of the oscillatory forcing. It might be expected, given that we are considering non-smooth
systems, that it is necessary to construct piecewise-smooth solutions from which to obtain the
tipping behavior [17]. However, for high frequency oscillatory forcing, we instead use a multiple
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Figure 1: Tipping close to a NSF via dynamic bifurcation in (1.5) with both slowly varying and
rapid oscillatory behavior of the parameter η2 Blue and red curves give the equilibria for static
parameters, solid lines indicate stable equilibria as a node (N) and focus (F), and the dotted line
as a saddle (S). o indicates the smooth SNB at (η2sf ,V2sf ), and ∗ indicates the NSF bifurcation at
(η2c, 0). The black solid line corresponds to the solution of (1.5) with η̇2 = −ε with no oscillatory
forcing (A = B = 0). Magenta solutions correspond to both η̇2 = −ε and A and B non-zero, with
Ω � 1, the ratio of A/Ω = 0.05 (transition away from F closer to η2c) and A/Ω = 0.125. Here
η1 = 3, η3 = 0.3, and ε = 0.05.
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scales approach in which we derive equations for the mean of the oscillatory solutions. When the
oscillations cross the switching manifold Σ, they do not simply average out, but rather give nonlinear
contributions to the dynamics of the mean behavior. From the nonlinear dynamics of the mean,
we can then determine the shift in the tipping point relative to the static case. Furthermore, the
approach provides information about the validity of the multiple scale approach based on the high
frequency forcing oscillations. Then we have the range of frequencies over which the approximations
are valid, relative to other parameters such the strength of the forcing and time scale of the dynamic
bifurcation. These results also indicate the conditions under which a piecewise construction of the
solution is needed to predict tipping, instead of capturing the averaged nonlinear effects of the
non-smooth dynamics.

We develop this multi-scale approach first in the setting of a single degree-of-freedom (DoF)
model with an underlying static bifurcation structure that mirrors certain aspects of the static
Stommel Box model (1.5) close to the NSF. This is a relatively generic and simple model with a
region of bi-stability of two stable states that lose stability via a smooth SNB or NSF bifurcation
(in this case given by a coalescence of a saddle point and a node with the discontinuity surface
Σx) for this single DoF system. The model provides a framework in which we can develop the
asymptotic expressions for tipping points in three cases: slowly varying bifurcation parameter only,
high frequency oscillatory forcing only, and both types of variation combined. We then extend the
method to the case of the full two DoF Stommel Box model. The approach uses multiple scale
approximations, based on the different time scales associated with the slow rate ε� 1 of variation
near or through the static bifurcation value, the period of the oscillations proportional to Ω−1 � 1,
and the time scale t of the model. The multiple scales analysis is applied to both outer and inner
expansions, relevant away from and near the tipping point, respectively. Both the multiple time
scales and the development of a local expansion are necessary to approximate the solution, leading
to explicit expressions for the tipping points in different settings.

1.3 Paper Summary

The remainder of this paper is organized as follows. In Section 2 we consider the case of the dynamic
bifurcation where the bifurcation parameter varies slowly through a static NSF in the single DoF
problem and without oscillatory forcing. Section 3 covers the case where the bifurcation parameter
is static and there is high frequency oscillatory forcing. It also discusses conditions under which
the multiple scale analysis is appropriate to study tipping, in contrast to situations that would
require a geometric-based approach that exploits the piecewise-smoooth structure of the problem
[17] (postponed to future work). In Section 4 we consider the combined effects of slowly varying
bifurcation parameter and high frequency oscillatory forcing. In each section we first demonstrate
the approach on the single DoF model, constructing both outer and local expansions for the solutions
from which we determine the tipping point or critical value of the bifurcation parameter. Then we
use this same approach in the Stommel model to identify tipping points, the critical values of η2 in
each setting.

2 Dynamic bifurcation for a NSF

2.1 Overview

In this section we look at the problem of a dynamic bifurcation close to the non-smooth fold (NSF)
in both the Stommel model and in the single DoF analogy to this model. We consider the case
of a slowly changing bifurcation parameter without any oscillatory forcing. We show that in both
cases the tipping close to the NSF is lagged relative to the location of the NSF. This behavior is
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qualitatively similar to that found close to a saddle-node bifurcation (SNB). However the magnitude
of the lag is different, as the eigenvalues of the fixed points do not drop to zero at the NSF, unlike
the case of the SNB.

2.2 Dynamic bifurcation in the single degree-of-freedom model

In this subsection we use a single DoF non-smooth model to develop our approach and results for
the dynamic bifurcation. In particular we consider the model:

ẋ =− µ+ 2|x| − x|x|+A sin(Ωt), µ̇ = −ε, x(0) = x0, µ(0) = µ0 > 0, ε� 1 . (2.1)

taking A = 0 in this case. As in the Stommel model, the presence of the |x| term means that
there is a discontinuity surface at x = 0, denoted by Σx. Across Σx the flow and its derivatives are
continuous, but the second derivative of the flow is discontinuous.

As in the Stommel model, the underlying static model with ε = 0 has two equilibrium branches,
denoted x+

eq and x−eq in Figure 2, with x > 0 and x < 0, respectively. The equilibrium x+
eq loses

stability via a SNB at µsnb = 1, xsnb = 1, so that it is stable for x > 1 and unstable for 0 < x < 1.
The discontinuity surface Σx yields a NSF bifurcation, where the equilibrium branch x−eq terminates
at µc = 0, xc = 0, as shown in Figure 2. The NSF arises when the saddle and the node intersect
with Σx. (This differs from the Stommel model in which we see an intersection of a saddle with
a focus at the NSF). Observe that the corresponding eigenvalues of the linearisation at the NSF
about the saddle and the node are ±2 and hence do not vanish.

For slowly varying µ without oscillations (A = 0) we determine values of µ for which we
have (non-smooth) tipping points (or dynamic bifurcations), at which the solution transitions
from following x−eq to following x+

eq. We take initial conditions near the lower branch given by

x0 = 1−
√

1 + µ0 < 0, and use a combination of outer and local asymptotic approximations for the
solution x.

We first give an approximation for x for O(1) slowly varying values of µ > 0, that is, away from
the NSF value of µc = 0. Termed the outer expansion, it may appear that this approximation is
not relevant to tipping, since it describes behavior away from µc = 0 where the dynamics follow
x−eq rather than experiencing tipping to another solution. However, this expansion provides the
motivation for a valuable rescaling for µ near µc = 0, on which an inner expansion is based.
Approximating the solution with this inner expansion yields the calculation of the tipping point.
To get the outer expansion, we look for a solution as a function of the slow time τ = εt,

x(τ) ∼ x0(τ) + εx1(τ) + ε2x2(τ) +O(ε3), ẋ = ε
dx

dτ
≡ εxτ . (2.2)

Substituting into (2.1) yields the sequence of equations at orders of εj ,

O(1) : 0 = −µ(t)− 2x0 + x2
0, (2.3)

O(ε) : x0τ = −2x1 + 2x1x0. (2.4)

Note that as x0 < 0 we take |x| = −x in this approximation, yielding the asymptotic result for
ε� 1

x(t) ∼ 1−
√

1 + µ(t)− ε

4(1 + µ(t))
+O(ε2). (2.5)

This solution is attracting for x < 0 and µ = O(1), as can be verified through a linear stability
analysis, based on a multiple scale analysis. This approximation is no longer valid for values of
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µ = O(ε), since x0 = O(ε) and the ordering of terms in (2.5) is no longer correct. Furthermore,
for µ approaching 0, we must consider the possibility that x is not strictly negative, so that the
non-smooth dynamics starts to play a role. Thus we use a local analysis near the critical value
(µc, xc) = (0, 0). We rescale x and µ near this value via

x = ε y, µ = εm, (2.6)

which we substitute into (2.1) to get the local equation,

ẏ =−m(t) + 2|y| − ε|y|2,
ṁ =− 1.

(2.7)

From (2.1) we provide an approximation for y (and thus x) near the NSF at µc = 0.

Since we are interested in the behavior of y as a function of m, we write the differentiation on y
directly in terms of the parameter m. Taking y ∼ y0 + εy1, we find the leading order equation for
y0,

dy0

dm
= m− 2|y0|. (2.8)
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Figure 2: (Left) The bifurcation diagram for (2.1) with stable upper and lower equilibrium branches
in red solid lines and the unstable middle branch shown with a red dash-dotted line. The NSF
bifurcation occurs at (0,0) with the blue ∗ and the SNB occurs at (1,1) with the red o. The
numerical solution (blue dotted line) to (2.1) is shown for A = 0 and ε = 0.05. (Right) The tipping
value for µsv approximated by (2.11) (solid red line) and the numerical result from (2.1) (black
dots) with A = 0, taking xtip = 1.

For m > 0, the leading order approximation for the attracting solution is y0 = −m/2 − 1/4,
which is the same as the leading order approximation to (2.5) written in terms of (2.6). From that
result, we conclude that y0(−1/2) = 0 and that y0 > 0 for m < −1/2. Then we find the leading
order approximation for the solution of (2.7) for m < −1/2,

y+(m) = Ce−2m +
m

2
− 1

4
+O(ε) for m < −1

2 and y > 0,

corresponding to the solution crossing Σx. Here C is chosen so that y+(−1/2) = 0, for continuity of
the solution across y = 0. In terms of the original variables, we then use (2.6) to provide the local
approximation of x for |µ| � 1,

x(t) ∼ −µ
2 −

ε
4 , for µ > − ε

2

x(t) ∼ εCe−2µ(t)/ε + µ(t)
2 −

ε
2 + o(ε2), for µ < − ε

2 , C = (2e)−1 .
(2.9)
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Note that this solution grows exponentially fast for µ < −ε/2, so that from (2.9) we identify the
tipping value µsv for which the solution x reaches x = xtip. A leading order approximation to µsv

in ε is given by

µ0
sv ∼

1

2
ε log(ε) , (2.10)

and (2.10) can be used to obtain higher order corrections from (2.9),

µsv ∼ µ0
sv + εµ1

sv + ε2
log ε+ µ1

sv − 1/2

2xtip

µ1
sv =

log(C/xtip)

2
. (2.11)

In Figure 2 we compare (2.11) to the tipping value µ at which x reaches a critical value xtip = 1,
obtained from simulations of the full system (2.1) with slowly varying µ and A = 0.

We contrast the result (2.11) with the tipping value for the dynamic bifurcation near a SNB as
in (1.6) with A = 0, studied in [8]. There the the tipping value of a = asv is negative, so that the
dynamic bifurcation is lagged relative to the static SNB value a = 0, with

0 > asv = O(ε2/3).

Note that this dependence of the tipping value on the slow rate ε is different from that of the
dynamic NSF bifurcation given in (2.11). Then the dynamic bifurcations near an SNB and NSF
are lagged relative to the corresponding static bifurcation points, but there is a longer lag for the
SNB than for the NSF of (2.1). This is discussed further below, in the context of additional rapid
oscillatory forcing (see Section 4.3).

2.3 Dynamic bifurcation in the Stommel model

We now turn our attention to (1.5), the transformed Stommel two-box model with slowly varying
fresh water flux η2,

V̇ = η1 − η2 + η3(T − V)− T − V|V|
Ṫ = η1 − T (1 + |V|)
η̇2 = −ε

T (0) = Ti, V(0) = Vi, η2(0) = η2i > η1η3 .

(2.12)

Here we have set A = B = 0 in (1.5), postponing the treatment of periodic forcing to later sections.

As in the analysis of (2.1), we seek an analytical expression for the tipping point η2sv as η2 varies
through the NSF, η2c ≡ η1η3. This tipping point corresponds to the rapid transition from solutions
near the salinity-dominated branch of focus points F to the temperature-dominated branch of nodes
N in Figure 1. We again first find the outer expansion, approximating the behavior away from η2c

where the dynamics follow F rather than experiencing tipping to another solution. This expansion
again provides the motivation for a valuable rescaling for η2 near η2c, and for an inner expansion
for the solution, from which we derive the tipping point.

With a focus on the lower branch F with V < 0, we approximate the slowly varying outer
solution V(τ), T (τ), away from η2c, by substituting in (2.12) a regular asymptotic expansion in ε,

V(τ) ∼V0(τ) + εV1(τ) + ε2V2 + . . .

T (τ) ∼T0(τ) + εT1(τ) + ε2T2(τ) + . . . ,
(2.13)
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using τ = εt. For V < 0 we obtain the sequence of equations as coefficients of powers of ε,

O(1) :

{
0 = η1 − η2(τ) + η3(T0 − V0)− T0 + V2

0 ,

0 = η1 − T0(1− V0),
(2.14)

O(ε) :

{
V0τ = η3(T1 − V1)− T1 + 2V1V0,

T0τ = −T1(1− V0) + V1T0 .
(2.15)

We solve (2.14) simultaneously for the pseudo-equilibria, treating η2(τ) as a constant in the approx-
imation,

T0(V0) =
η1

1− V0
,

0 = η1 − η2(τ)− T0(V0) + η3(T0(V0)− V0) + V 2
0 .

(2.16)

Corrections to the pseudo-equilibrium from (2.16) can be obtained from (2.15), which are used
below in the detailed calculation of the tipping point.

The expansion (2.13) breaks down if V approaches zero, and we note this is the case in the
vicinity of the NSF, (T ,V, η2c) = (η1, 0, η1η3). We perform a separate local analysis analogous to
Section 2.2 using a similar scaling, at η2c = η1η3. Specifically, we substitute

η2 = η1η3 + εζ, V = εX, T = η1 + εY. (2.17)

into (2.12) to get

Ẋ = −ζ(t)− η3X − (1− η3)Y − εX|X|,
Ẏ = −η1|X| − Y − ε|X|Y, ζ̇ = −1. (2.18)

By linearizing (2.18) for X � 1 and Y � 1, specifically,(
Ẋ

Ẏ

)
=

(
−η3 −(1− η3)

−η1sgn(X) −1

)(
X
Y

)
−
(
ζ(t)

0

)
, (2.19)

we can approximate the location of the tipping point for solutions transitioning from F to N.
For ζ > 0 and X < 0 (V < 0) the eigenvalues in (2.19) have negative real part for η3 < 1 and

η1 > 1 such that η3η1 = O(1), as discussed following (1.4). Then we do not see growth of the
solution away from F. As ζ decreases, eventually we have V > 0 and the dynamics changes. Using
ζ̇ = −1 together with the chain rule d

dt = d
dζ
dζ
dt to replace d

dt with − d
dζ in (2.19) we solve(

Xζ

Yζ

)
= M

(
X
Y

)
+

(
ζ
0

)
, M =

(
η3 1− η3

η1 1

)
. (2.20)

The solution is based on the corresponding eigenvalues

λ1,2 =
η3 + 1

2
± 1

2

√
(1 + η3)2 + 4(η1(1− η3)− η3) , (2.21)

which are real, since η3 < 1 guarantees that the discriminant is always positive. However, since we
have one positive and one negative eigenvalue, λ1 < 0 < λ2, we have exponential growth for X > 0,
which takes the form for X = (X,Y )>,

X(ζ) ∼K1e
λ1ζ + K2e

λ2ζ + C1ζ + C2 . (2.22)
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Here C1 C2 are obtained from the particular solution of (2.20), namely, C1 = MC2, MC1 =
−(1 0)>. Writing (2.22) in terms of the original variables V = εX and η2 = η2c + εζ, we find the
approximation

V(t) ∼ C11(η2(t)− η2c) + εC12 + εK11e
λ1(η2(t)−η2c)/ε +O(ε2) .

Cj = (Cj1 Cj2)> Kj = (Kj1 Kj2)>
(2.23)

Note that we drop the term with coefficient K2 since λ2 > 0 and that term is exponentially small
for ζ < 0.

Approximating K11 as described in Appendix A.1, using (2.16) and the expressions for Cj ,
completes the approximation of V in (2.23). Taking logarithms in (2.23) yields an equation for the
tipping value η2sv, at which V reaches Vtip,

η2sv ∼ η2c −
ε

λ1
[log ε− log(Vtip) + log K11]− e−λ1(η2sv−η2c)/ε

K11λ1
(C11(η2sv − η2c) + εC12) . (2.24)

Similar to µsv in (2.10)-(2.11), we obtain the leading order contribution to η2sv which is then in
turn used to compute higher order corrections,

η2sv ∼ η0
2sv + η1

2sv +
ε2

2Vtip

[
C11

λ1
log ε− C11η

1
2sv + εC12

]
(2.25)

η0
2sv = η2c −

ε

λ1
log ε η1

2sv =
ε

λ1
[− log(Vtip) + log(K11)] .

The expression for η2sv results in a lag in the tipping of O(ε ln ε) relative to the NSF bifurcation
η2c. It is noticeably similar to the leading order term for µsv from Section 2.2. In Figure 3 we
compare the analytical approximation for η2sv to numerical results.

3 High frequency oscillatory forcing

3.1 Overview

In this section we look at the influence of high frequency oscillatory forcing on the attracting
solutions in both the Stommel model and in the single DoF analogous model (2.1) close to the NSF.
In both cases we restrict our attention to a constant bifurcation parameter, that can be viewed
as the mean of the forcing. We determine the critical value of the bifurcation parameter at which
tipping is observed, with the attracting solution shifting from the lower branch (x−eq in (2.1) and
F in the Stommel model) to the upper branch (x+

eq in (2.1) and N in the Stommel model). In
both cases the critical value of the bifurcation parameter is greater than the value of the static
NSF, corresponding to an advance of the critical parameter. While in general one might expect
in the non-smooth setting to have to construct a piecewise-smooth-type solution as the basis for a
stability analysis [17], in the case of high frequency forcing we develop a multiple scale, averaging-
type approach that captures the contribution of the oscillations to the shift in the critical parameter
value.

3.2 The single DoF model

We first analyze the influence of oscillatory (seasonal) forcing near the NSF bifurcation in the single
DoF model (2.1) for constant µ > 0. That is, we take A ∼ O(1), Ω � 1 and ε = 0. As for the
Stommel model, we take A > 0 for convenience of notation, noting that the same results for tipping
are obtained for A < 0. For high frequency forcing, Ω � 1, we have both an O(1) time scale t
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Figure 3: The tipping value for η2 − η2c approximated by (2.24) (solid red line) compared to the
numerical result from (2.12) (black stars) with A = 0, taking Vtip = .5, η1 = 4 and η3 = 3

8 .

for the overall evolution and a fast time scale T = Ωt for the forcing. We use a multiple scales
approximation x(t) = x(t, T ) to give an asymptotic approximation for the attracting solution near
x−eq. We note that for large Ω the response of the solution to the forcing is O(1/Ω) in magnitude,
and this guides our overall analysis. From the behavior of this approximation, we obtain the critical
value of µ below which there is no longer an attracting solution near x−eq [16].

First we determine the outer solution for which x(t) < 0. A simple ansatz of the form x(t) =
x+R cos(Ωt) yields the structure of the attracting periodic behavior for large t,

x ∼ 1−
√

1 + µ− Ω−1A cos(Ωt) +O(Ω−2). (3.1)

The form of (3.1) is motivated via a linear analysis or via a multiple scales analysis. The details of
determining (3.1) via a formal multiple scales expansion are outlined in Appendix A.2.1. While this
approach is not needed to obtain this simple outer solution, the steps provide a useful template,
valuable for more complex cases in the sections below, for both outer solutions and local solutions
from which the tipping values are determined.

Since the result is obtained only for the region for which x < 0, the solution in the form (3.1) is
valid only when A/Ω < |1−

√
1 + µ|. If µ is small this region is approximated by taking the range

A/Ω < µ/2.

For Ω� 1, we now look for an inner solution for µ� 1, specifically for

0 < µ ≤ 2A

Ω
. (3.2)

Thus we consider the solution as µ approaches µc = 0, with x(t) then taking both positive and
negative values and hence with the non-smooth effects being important. We rescale x and µ via a
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Figure 4: (Left)The non-smooth function |v0 −A cos(T )| is shown by the solid red line, with dash-
dotted vertical black lines indicating T1 and T2 from (3.8) for a sample value of v0 shown by the
dotted blue line. (Right) Attracting solutions of (2.1) for ε = 0, A = 2 and Ω = 10 are shown by
short vertical lines superimposed on the static bifurcation diagram for x. The dashed vertical green
line indicates µ = 2A/Ω, with (3.1) valid for µ > 2A/Ω. The dashed vertical blue line indicates
the critical value µosc (3.10). Note that for values between these two dashed lines, the attracting
solution for x takes both positive and negative values. For µ < µosc, the attracting solution is
centered near x+

eq.

straightforward balancing argument,

m = Ω−1µ, x = Ω−1y , (3.3)

and introduce a multiple scales expansion for the local variable y,

y(t, T ) ∼ y0(t, T ) + Ω−1y1(t, T ) +O(Ω−2). (3.4)

Substituting this expansion into (2.1) yields

O(1) : y0T = A sin(T ), (3.5)

O(Ω−1) : y1T + y0t = −m+ 2|y0|. (3.6)

Solving the leading order equation (3.5) yields y0(t, T ) = v0(t)−A cos(T ) for an unknown function
v0(t). Then applying the solvability condition (A.5) to (3.6) leads to

v0t(t) = −m+
1

π

∫ 2π

0
|v0(t)−A cos(T )| dT. (3.7)

The case where A < |v0| for all t yields v0 ≈ −m/2, corresponding to the expression (3.1) for µ� 1
and x < 0 for all t. Therefore we restrict our attention to the case where A > |v0| and µ > 0,
corresponding to the solution x that crosses the discontinuity boundary Σx. In order to evaluate
the integral in (3.7), we break the integration into regions based on the sign of v0−A cos(T ), noting
that the zeros of the integrand occur at

T = T1 = arccos(v0/A), T = T2 = 2π − arccos(v0/A), 0 < T1 < T2 < 2π , (3.8)

as shown in Figure 4. Treating v0(t) as a constant relative to T under the multiple scales approxi-
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mation, we evaluate the integral in (3.7) and use sin(arccos(x)) =
√

1− x2 to get the equation for
v0,

v0t = −m+
4

π

(
arcsin(v0/A)v0 +

√
A2 − v2

0

)
= F(v0;m) . (3.9)

We find the critical value of m below which there is no stable equilibrium solution to (3.9) for v0.
The function F(v0;m) (3.9) has a minimum with respect to v0 at v0 = 0. For values of m above
the critical value m = mosc, F(v∗0;m) = 0 at the stable equilibrium v∗0 < 0 of (3.9). At the critical
value of m = mosc, F(0;mosc) = 0. Thus, we find that there is no attracting solution for v0 for
m < mosc = 4A/π. Written in terms of µ, mosc is then

µosc ≡
4A

πΩ
. (3.10)

From (3.9) we can obtain the equilibrium for v0 implicitly for µ > µosc. A Taylor expansion about
the critical value, for v0/A = 0, yields the approximate equation

v0t ≈ −m+
4A

π
+

2

πA
v2

0, (3.11)

which gives an explicit expression approximating the equilibrium solution

v0 ≈ −

√
πA

2

(
m− 4A

π

)
. (3.12)

Then, the approximate attracting solution to (2.1) for µ > µosc, in terms of x and µ is

x(t) ∼−

√
Ω−1

(
µ− 4|A|

πΩ

)
− Ω−1A cos(Ωt) +O(Ω−2). (3.13)

For µ < µosc, there is no attracting solution near the lower bifurcation branch x−eq, but instead |v0|
increases rapidly, moving away from x−eq, due to contributions from the absolute value nonlinearity in
(3.7). This is shown in Figure 5, where the attracting solution for µ < µosc obtained computationally
is shown centered around the upper bifurcation branch x+

eq, while for µ > µosc the attracting solution
x remains near x−eq. Since µosc > 0 for A 6= 0, the oscillations advance this critical value relative to
µc = 0 from the static, unforced case (A = 0). Then the range of µ for which there is bi-stability of
x−eq and x+

eq is reduced with oscillatory forcing, implying that this bi-stable region can be eliminated
entirely for certain A and Ω.

In Figure 5 we compare the critical values of µ = µosc with the critical values observed from
simulations of (2.1) for different values of A and Ω, indicating good agreement for a range of A/Ω.
As expected, for larger values of Ω the approximation improves. For smaller values of Ω or larger
values of A, the approximation is less accurate: in those cases x is dominated by oscillations that
approach both x−eq and x+

eq, which violates both the assumption that the expansion (3.4) is near x−eq

and the separation of scales assumption used to evaluate (3.7), on which (3.10) is based.

3.3 The Stommel model

We now consider the full Stommel system with oscillatory forcing given by (1.5) with A,B ∼ O(1),
Ω � 1 and ε = 0. Similar to the analysis given in Section 3.2, we expect to find an attracting
oscillatory solution centered near F in Figure 1 for parameter values η2 > η2osc, where η2osc is the
critical value below which such an attractor no longer exists.
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Figure 5: The critical value µosc obtained from (3.10) (black solid line) compared with the numeri-
cally obtained values of µosc, based on the attracting behavior for large t of x from simulations of
(2.1) with ε = 0. For µ < µosc computational solutions of (2.1) do not remain centered near x−eq for
large t. Results are shown for different amplitudes: A = .5 (red ∗’s), A = 4 (black diamonds), and
A = 8 (blue o’s).

We again take Ω � 1, so that there are again slow t and fast T = Ωt time scales. Again
the response to the forcing is small, of O(A/Ω, B/Ω), so that the forced dynamics can be well
approximated by the linearisation of the Stommel model around its fixed points if Ω is large, and/or
if A,B are small (a case to be considered in a later paper). Then substituting the appropriate
multiple scale expansions in Ω−1 for V = V(t, T ) and T = T (t, T ), as shown in Appendix A.2.2, we
obtain the approximate outer solution corresponding to oscillations of amplitude AΩ−1 centered on
the salinity-dominated branch F of the form,

V ∼V0 − Ω−1A cos(T ) + Ω−1V11(t) . . .

T ∼T0 − Ω−1B cos(T ) + Ω−1T11(t) . . .
(3.14)

where V0 and T0 are the equilibrium values on F and V11 and T11 give corrections on the t time
scale to the oscillatory terms A sin(T ) and B sin(T ). We do not have explicit expressions for these
corrections, but a local stability analysis shows that these terms remain small for O(1) values of
η2 − η2c > 0.

Significantly, this approximation breaks down when, for example, V0 ∼ AΩ−1 and the solution
may then intersect Σ. Since V0 decreases linearly with η2−η2c > 0, and as A = O(1), then similarly
to the behavior of the single DoF model above in Section 3.2, this approximation breaks down for
parameter values near the NSF value, that is, for η2 − η2c = O(Ω−1). To consider these values, we
rescale

V =Ω−1X, T = η1 + Ω−1Y, η2 =η1η3 + Ω−1ζ. (3.15)

Substituting (3.15) into (1.5), together with the multiple scales expansion,

X(t, T ) ∼X0(t, T ) + Ω−1X1(t, T ) +O(Ω−2),

Y (t, T ) ∼Y0(t, T ) + Ω−1Y1(t, T ) +O(Ω−2),
(3.16)

yields the series at sequential powers of Ω−1. We then have the inner system of equations for X

15



and Y near η2c (ζ = 0),

O(1) :

{
X0T = A sin(T ),

Y0T = B sin(T ),
(3.17)

O(Ω−1) :

{
X1T +X0t = −ζ − η3X0 − (1− η3)Y0,

Y1T + Y0t = −η1|X0| − Y0 .
(3.18)

From (3.17) we find that the leading order terms are

X0 = P0(t)−A cos(T ), Y0 = Q0(t)−B cos(T ) . (3.19)

for P0, Q0 functions of the slow time scale t, which must be determined in order to locate the center
of the oscillations. Substituting (3.19) into (3.18), we apply the solvability condition (A.5) to get
the equations for P0 and Q0

P0t =− ζ − η3P0 − (1− η3)Q0,

Q0t =− η1

2π

∫ 2π

0
|P0 −A cos(T )|dT −Q0 .

(3.20)

The case A < |P0| corresponds to V < 0, which is treated in the outer expansion above. For
the range of η2 where |P0(t)| < A, the integral in (3.20) has the same form as in (3.7). We use the
same approach to evaluate it as described in (3.7)-(3.8), replacing v0 with P0, and treating P0 as
a constant relative to integration over the fast time T . Similar to Section 3.2, the argument of the
absolute value alternates sign over the regions delineated by T1 and T2, where T1 = arccos(P0/A)
and T2 = 2π − arccos(P0/A). Integrating over each region to evaluate (3.20) yields

P0t = −ζ − η3P0(t)− (1− η3)Q0, (3.21)

Q0t = −2η1

π

(
arcsin(P0/A)P0 +

√
A2 − P 2

0

)
−Q0 . (3.22)

In the high frequency forcing case of Ω� 1, we use a quasi-steady approximation, discussed further
in Section 3.4. We set Q0t = 0 in (3.22), solve for Q0 and substitute in (3.21), yielding

P0t = −ζ − η3P0(t)− (1− η3)
2η1

π

(
arcsin(P0/A)P0 +

√
A2 − P 2

0

)
≡ G(P0; ζ) . (3.23)

As in Section 3.2, we find the critical value of ζ by looking for the maximum value of ζ for which
there is no equilibrium solution for P0 in (3.23). The function G(P0; ζ) in (3.9) has a minimum at

P0min = A sin

(
η3π/[2(1−η3)η1]

)
. For G(P0min; ζ) < 0, the value P0 < P0min at which G(P0; ζ) = 0

corresponds to the stable equilibrium of (3.23). At the critical value of ζ = ζosc, G(P0min; ζosc) = 0.
Thus, we find that there is no attracting solution for P0 in (3.23) for ζ < ζosc, where

ζosc =
2(1− η3)η1

π
A cos

(
η3π

2(1− η3)η1

)
=⇒ η2osc = η1η3 + Ω−1ζosc. (3.24)

Then η2osc corresponds to the critical value of η2, below which the attracting high frequency
oscillatory solution of (1.5) with ε = 0 does not remain near the salinity-dominated branch F in
Figure 1. Note that the expression (3.24) indicates an advance of the critical value relative to
η2c = η1η3, for the restriction on η3 < 1 discussed in Section 1.

In Figure 6 we compare (3.24) to the results observed from numerical simulations of (1.5) over
a range of Ω−1. We note that the approximation (3.24) breaks down for larger values of A/Ω. We
discuss the source of this breakdown in Section 3.4, which has implications for the case where ε 6= 0,
and for cases with lower frequency forcing.
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Figure 6: The critical value η2osc from (3.24) (blue dotted lines) compared with the critical value
obtained from simulations of (1.5) with η1 = 4, η3 = 3

8 , and ε = 0. The values for the forcing are
A = −1, B = 0 : red ∗’s; A = 1, B = 2: black diamonds; A = 4, B = 5: blue ·’s.

3.4 Linear analysis of the Stommel model near to the NSF

In Figure 7 we graph the attracting solution V and T of (1.5) in the V − T plane, for ε = 0 and
for values of η2 for which the solution stays near the salinity-dominated branch F. These are super-
imposed on the static bifurcation branches, F and S in the V − T plane. We compare the result
obtained from the multiple scale, averaging-type approximation (3.19) for high frequency forcing to
that obtained from the simulation of (1.5). For example, for the forcing A sin(T ) and B sin(T ) in
(1.5),

V ∼ Ω−1[P0 −A cos(Ωt)] T ∼ η1 + Ω−1[Q0 −B cos(Ωt)] . (3.25)

We show the results for different types of oscillatory forcing. These results illustrate good agreement
for these solutions for larger Ω, supporting the good approximation of the critical value η2osc, as
shown in Figure 6. Comparisons of the solutions for smaller Ω (larger AΩ−1) also illustrate the
source of the over-estimation of η2osc in these cases.

The main observation is that for larger frequency Ω (upper row in Figure 7), the multiple scale
approximation (3.25) is accurate, even for solutions that cross both Σ and S when η2 . η2osc.
Thus η2osc yields a good approximation for the critical value. Specifically, this approximation
uses a construction composed of an oscillatory term, and the mean of these oscillations given by
(P0/Ω, η1 +Q0/Ω) in (3.22) as a function of η2. Nonlinear contributions from the integral in (3.20),
when the oscillations in V cross the switching manifold Σ, shift this mean away from the equilibrium
branch F. In Section 3.3 we obtained an explicit expression for the tipping point η2osc by using a
quasi-stationary approximation for (P0/Ω,Q0/Ω). A linear stability analysis of (3.22) indicates the
basis for this approximation, namely, that a change in the linear stability of (P0,Q0) occurs for P0

above a critical value,

P0 ∼
Aπη3

2η1(1− η3)
. (3.26)

Figure 8 shows that P0 terminates in the black horizontal dotted lines corresponding to (3.26). As
is consistent with simulations, as η2 reaches its critical value, P0 reaches (3.26), while Q0 remains
negative. Thus the tipping is primarily driven by variations in V, captured in the dynamics of P0.
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Figure 7: Comparison of the attracting (large t) oscillating solutions V and T in the V − T phase
plane for three different values of η2, with η1 = 4 and η3 = 3/8. For each solution, η2 > η2num, where
η2num is the critical value of η2 obtained from the numerical solutions, as shown by the markers
in Figure 6. The solution is closer to the NSF at V = 0 and T = η1 for smaller η2. The graphs
obtained from the multiple scale approximation (3.25) (black) and numerical solutions (magenta)
are super-imposed on the branches for the static equilibria F (red solid) and S (blue dash-dotted).
Upper: For smaller values of A/Ω (|A|/Ω = 0.033), (3.25) is in agreement with the numerical
simulations. Lower: For larger values of A/Ω, (|A|/Ω = 0.125) (3.25) does not fully capture the
behavior of V and T . Specifically, for ηnum < η2 < η2osc, (3.25) over-estimates the advance of the
tipping and there is no asymptotic approximation from (3.25) shown. Left: The forcing is A sin(T ),
B = 0. Right: A = −1, B = 1, with the forcing given by A sin(T ) and B cos(T ) (in contrast with
A sin(T ) and B sin(T ) as in (1.5)).

Figure 8: Graphs of P0/Ω (blue) and Q0/Ω (red) vs. η2 for three different values of Ω = 30 (solid
line), Ω = 20 (dotted line), and Ω = 8 (dash-dotted line). Horizontal dotted black lines correspond
to the critical value (3.26) of P0 at which there is a loss of stability for P0 and Q0 as the equilibrium
solution for (3.22).
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Figure 7 indicates the source of the over-estimation by η2osc of the critical value for larger values
of A/Ω or smaller values of Ω. The lower panels show results for AΩ−1 = 0.125, corresponding
to values in Figure 6 where the asymptotic approximation η2osc overestimates the advance of the
critical value of η2. In Figure 7 (Lower) we see that V, T are not well approximated by (3.25),
following from the fact that the separation of time scales used to get (3.25) is no longer valid for
Ω = O(1) or smaller. For smaller values of η2, where the oscillations cross Σ and in some cases
also S, the multiple scale approximation is not a good approximation for the piecewise-smooth
continuous solutions, whose behavior is illustrated by the numerical solutions. For the smallest
values of η2, where ηnum < η2 < η2osc, the multiple scale approximation predicts tipping and
there is no approximation from (3.25) shown. However, the numerical calculations show attracting
oscillations (such as the figure-of-eight solution in Figure 7) that cross both Σ and S, without tipping
to the temperature-dominate branch N for large V. We expect that a separate local analysis for
η2 near η2c is required to determine the tipping conditions for Ω = O(1) or smaller, which would
involve constructing the piecewise-smooth solutions. We leave this analysis for a future treatment
which makes full use of the geometry given by the piecewise-smooth structure [17].

4 High frequency oscillatory forcing combined with dynamic bi-
furcation

4.1 Overview

In this section we give the analytical approximation for the tipping point in the setting of dynamic
NSF bifurcation, that is, with a bifurcation parameter slowly varying with rate ε � 1, combined
with high frequency forcing. A > 0, Ω� 1. The analysis uses elements from both Section 2 with the
slowly varying bifurcation parameter (only) and Section 3 with high frequency oscillatory forcing
(only). Not only are these results helpful in designing the analytical approach, but we also see
the competition between elements shifting the location of the tipping point: advances, observed in
Section 3, and lags, observed Section 2. We again identify multiple scales analyses that are applied
to both outer and inner expansions. As in the previous sections, we develop the approach first in
the setting of a single DoF model and then adapt this for the Stommel model (1.5).

4.2 The single DoF model

We consider both ε 6= 0 and A 6= 0 first in (2.1). In order to capture results for a range of high
frequency Ω, with Ω−1 comparable to the rate ε for the slowly varying parameter µ, we introduce
Ω = ε−λ for λ > 0. This framework allows us to incorporate the time scales both for the oscillations
and for the slowly varying parameter µ, naturally leading to the choice of time scales τ = εt and
T = ε−λt. Using a multiple scales approximation for x(τ, T ) in (2.1) yields

xT + ελ+1xτ =ελ(−µ(τ) + 2|x| − x|x|+A sin(T )),

µτ (τ) =− 1.
(4.1)

As in the previous sections, we first consider an outer solution for x < 0 for µ > 0, which points
to a local expansion from which tipping is determined. Following the same procedures as in Section
3.2 together with a multiple scales approach, as shown in Appendix A.3 we obtain

x ∼ 1−
√

1 + µ(t)− ε

4(1 + µ(t))
− ελA cos(Ωt) +O(ε1+λ, ε2λ). (4.2)
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As in Section 3.2, we see that the outer expansion (4.2) fails for small µ, for which all three terms
may be the same order. For example, taking µ = εm, we write this condition in terms of A and ε

A ∼ ε1−λ 2m− 1

4
. (4.3)

This condition suggests that two cases are of interest for the behavior of the tipping point, captured
by the inner expansion: λ ≤ 1 and λ > 1, which correspond respectively to cases with large or small
values of A/Ω.

For the inner expansion we use a multiple scale expansion for x(t, T ), with slow and fast time
scales t and T = ε−λt, respectively, and µ = εm. Then (2.1) takes the form

xT + ελxt =− ελ+1m(t) + ελ2|x| − ελx|x|+ ελA sin(T ),

mt(t) =− 1,
(4.4)

which indicates that x must be scaled with a power of ε and its expansion must include a term with
coefficient ελ. Then

x(t, T ) = ελyλ(t, T ) + εq1y1(t, T ) + . . . εq2y2(t, T ) + . . . (4.5)

with qj depending on the value of λ and q1 < q2. With this form, it follows that yλ = −A cos(T ) +
y0(t), for both cases λ ≤ 1 and λ > 1. Furthermore, it is straightforward to show that y0 and y1

have the same form up to a multiplicative constant, so we can drop y0 without loss of generality.

4.2.1 Single DoF with Ω = ε−λ, λ ≤ 1:

Substituting (4.5) into (4.4) and balancing terms in order to obtain non-trivial solutions, we deter-
mine q1 = λ, q2 = 2λ. Then, collecting terms at successive powers of ε, we find that yλ = −A cos(T ),
y1T = 0 at O(ελ), and

O(ε2λ) : y2T = −y1t − ε1−λm(t) + 2|y1 −A cos(T )| . (4.6)

Applying the solvability condition (A.5) yields

y1t = −ε1−λm(t) +
1

π

∫ 2π

0
|y1(t)−A cos(T )| dT. (4.7)

For A < |y1|, this equation reduces to y1m = −ε1−λm − 2y1 for y1 < 0, from which we recover
a contribution similar to the term 1 −

√
1 + µ in (4.2) for µ � 1. That is, we recover behavior

similar to the outer solution in (4.2). For A > |y1|, we evaluate the integral in (4.6) as in (3.7)-(3.9),
treating y1 as a constant relative to the fast time scale T ,

y1t = −ε1−λm+
4

π

(
arcsin(y1/A)y1 +

√
A2 − y2

1

)
. (4.8)

We wish to determine the critical tipping value of m (and µ), at which y1 increases away from
x−eq. However, in this case we don’t get a closed form solution for y1 from (4.8) since m(t) is time-
dependent. We use an approximation for (4.8) that allows us to get an explicit expression for the
critical value of m corresponding to rapid growth in y1. Since |y1| < A for tipping to occur, we
expand the right hand side of (4.8) for |y1|/A � 1, keeping up to quadratic terms. Also, it is
convenient to use m′(t) = −1 to replace y1t,

y1m ≈ ε1−λm−
4A

π
− 2

πA
y2

1. (4.9)
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The form (4.9) allows solutions in terms of Airy functions Ai(z), as described in Appendix B. Then
y1 has the form

y1(m) ∼ ε(1−λ)/3

(
πA

2

)2/3 Ai′
(
ε2(λ−1)/3

(
2
πA

)1/3
(ε1−λm− 4A

π )
)

Ai
(
ε2(λ−1)/3

(
2
πA

)1/3
(ε1−λm− 4A

π )
) ,

and x is given by

x(t) ∼
[
ε(λ−1/2)πA

2

]2/3 Ai′
((

Ω
ε2

)1/3 ( 2
πA

)1/3
(µ(t)− 4A

πΩ)
)

Ai
((

Ω
ε2

)1/3 ( 2
πA

)1/3
(µ(t)− 4A

πΩ)
) − A

Ω
cos(Ωt) + . . . . (4.10)

The singularity in (4.10) in terms of µ corresponds to the critical value for tipping, at which the
solution increases away from x−eq. This critical value is given by the first root of the Airy function,
yielding

µmixed =

(
ε2πA

2Ω

)1/3

ξr +
4A

πΩ
=

(
ε2πA

2Ω

)1/3

ξr + µosc , (4.11)

Ai(ξr) = 0 for ξr = −2.33811 . . . . (4.12)

As in the case of a smooth SNB, the tipping point is the sum of two contributions to the tipping
point. One contribution (which is less than zero) corresponds to a lag in the tipping relative to
the NSF point µc. This lag is due to slow variation of the parameter µ, similar to [8] but with a
different parametric dependence. The second contribution µosc > 0 given in (3.10) corresponds to
an advance in tipping due to the oscillations, as observed in Section 3.2 for static µ. Thus we have a
competition between the factors that generate advance and lag in tipping, similar to that observed
in [20] for variation near a smooth SNB.

Note that µmixed depends on the ratio A/Ω and on ε. For fixed ε, the advance described by µosc

increases with decreasing λ < 1, or decreasing frequency Ω. Furthermore, we note that the result
for µmixed is valid for λ > 1/2. For λ ≤ 1/2, the asymptotic expansion (4.5) is no longer valid, since
e.g. if λ = 1/2 then q2 = 2λ = 1, and therefore we can not treat the quadratic terms as higher
order, e.g. in (4.6). Note that decreasing λ corresponds to smaller frequency Ω, which can no longer
be treated as high frequency, and a different approximation is required.

For λ > 1, a number of the steps used to obtain (4.6) are no longer valid, so an alternative
expansion must be used. Related to this observation, complications can be seen from (4.11), from
which we see that µmixed decreases and crosses zero for A/Ω→ O(ε) for λ increasing beyond unity,
corresponding to small A or large Ω. The case λ > 1 is discussed further below, where it is shown to
be equivalent to the case of small A/Ω for λ near unity. Then a different approximation is needed
to capture the dynamics of y1 for all λ > 1.

4.2.2 Single DoF with Ω = ε−λ, λ > 1:

We follow the same approach as for λ < 1, except we take q1 = 1 in this case as follows from a
standard balancing argument,

x(t, T ) ∼ −ελA cos(T ) + εy1(t, T ) + εq2y2(t, T ) + . . . . (4.13)

Substituting (4.13) into (4.4) gives

O(ελ+1) : y2T + εy1t = −m(t) + 2|y1 − ελ−1A cos(T )| , (4.14)
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taking q2 = λ+ 1.

Applying the solvability condition to (4.14) gives

y1t =−m(t) +
1

π

∫ 2π

0
|y1(t)− ελ−1A cos(T )| dT. (4.15)

Note that this equation has the same form as (4.7) with a factor of ελ−1 in front of A, due to
the different choice for q1. This indicates that for larger λ, Ω is larger and the influence of the
oscillations is reduced. The same procedures as for λ < 1 above yields an equation of the form
(4.8) with A replaced with ελ−1A. However, the use of (4.8) is valid only for ελA = A/Ω > εy1, so
that, for A = O(1), the use of (4.8) is limited to values of λ & 1. Note that this is consistent with
the behavior of µmixed, which approaches and crosses zero for increasing Ω. Then for λ > 1, we
must use a different approximation, recognizing that the critical value of µ is negative, for which
the dynamics of x changes.

From (4.15) for y1 and λ well above 1, the contribution from the oscillations are proportional to
A/Ω, and thus a small perturbation. Therefore the tipping point is not advanced by the oscillations,
as in the expression for µosc, and we expect the tipping point to correspond to µ < 0. Then m < 0
and (4.15) takes the form y1t = −m(t) + 2|y1| to leading order in ε, as in Section 2.2. Again, y1

grows exponentially for m < 0 as observed in (2.9), yielding the approximation to the tipping point
as µsv from (2.11).

Figure 9 (UPPER) compares the tipping point computed from numerical simulations of the full
model (2.1) for x with the two different results for critical µ; for λ ≤ 1, using µmixed in (4.11) and
for λ > 1 using µsv in (2.11). As expected, the approximation (4.11) is appropriate for λ < 1. For
λ > 1, the result asymptotes to the tipping point µsv, with slowly varying µ only, while (4.11) is not
valid for λ > 1. Figure 9 (UPPER) also includes analogous asymptotic results for tipping for slow
variation through the smooth SNB and oscillatory forcing, as described in (1.6) and analyzed in [20],
with z(0) > 0 Ω = ε−λ and A = 1. In that case the asymptotic approximation for the tipping value
is asmooth given in Table 1. The difference between the tipping location near the NSF bifurcation
and that near the smooth SNB is dominated by the term that governs the lag: in the non-smooth
case this term is O(ε log ε) while in the smooth case this term is O(ε2/3). Figure 9 (LOWER) shows
simulations of x, illustrating tipping for the full system (2.1) for different values of λ, for the same
values of A as in Figure 9 (UPPER). The solutions with A = 2 and different λ shown in red, green
and magenta illustrate the effect of different forcing frequencies. In contrast, to illustrate the effect
of different A, the red and blue solutions have the same λ but different amplitudes, A = 2 and
A = 5 respectively. The analytical approximations for the tipping points µmixed and µsv are also
shown for comparison.

We summarize the expressions for the tipping points of the NSF and SNB models in Table 1.

4.3 The Stommel model

To begin our analysis of the Stommel model in this case, we take our standard approach of tracking
the solution near F for V < 0 in (2.12) with both ε� 1 and A,B ∼ O(1), that is,

V̇ = η1 − η2 − T + η3(T − V) + V2 +A sin(Ωt),

Ṫ = η1 − T (1− V) +B sin(Ωt), η̇2 = −ε.
(4.16)
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Figure 9: For all panels, ε = 0.03. UPPER LEFT: For A = 2, comparison of the critical value
µmixed (4.11) (black solid line), valid for λ < 1 and λ ≈ 1, and the limiting critical value for
λ > 1, µsv (2.11) (blue dotted line). Red stars indicate tipping in the numerical solution to (2.1),
corresponding to the value of µ at which x reaches 1. The red dash-dotted line is the analogous
result for the SNB (asmooth in Table 1) analyzed in [20], shown for comparison. UPPER RIGHT:
Similar to LEFT panel, but A = 5. LOWER: Simulations of the full system (2.1) for different
combinations of frequency (in terms of λ) and amplitude superimposed on the static bifurcation
curve (black lines), illustrating advanced tipping for larger A/Ω and delayed tipping for smaller
A/Ω. Diamonds indicate analytical predictions µmixed for the tipping point in the three cases where
λ ≤ 1 (simulations of x in red and green for A = 2 and λ = 0.7, 1.0, respectively, and in blue for
A = 5 and λ = 0.7), and the circle o indicates the analytical prediction µsv, (simulation of x in
magenta for A = 2, λ = 2). The solutions with A = 2 and different λ shown in red, green and
magenta illustrate the effect of different forcing frequencies, in contrast to the effect of different A,
illustrated by the red and blue solutions with the same frequency (λ = .7) .
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Tipping points for single DoF models: µ in (2.1) (NSF) and a in (1.6) (SNB)

(NSF) Slowly varying µ only: ε� 1, A = 0 µsv = ε ln(ε)/2 + corrections (2.11)

(NSF) High frequency oscillation only:

ε = 0, A 6= 0, Ω� 1 : µosc = 4|A|
πΩ (3.10)

(NSF) Slowly varying µ and high frequency oscillations:
ε� 1, A 6= 0, Ω = ε−λ (4.11)

1/2 < λ ≤ 1: µmixed =
(
ε2πA
2Ω

)1/3
ξr + µosc

λ > 1: µsv = ε ln(ε)/2 + corrections (2.11)

SNB: Slowly varying µ and high frequency

oscillations: ε� 1, A 6= 0, Ω = ε−λ asmooth = ε2/3ξr + A2

2Ω2 [20]

Table 1: The value of the tipping point in the different cases for the single DoF models with NSF
and smooth SNB for Ω� 1.

As in Section 4.2, we take Ω = ε−λ, for λ > 0 for high frequency. Using a standard multiple scales
expansion with the slow time τ = εt and fast time T = ε−λt, we construct an outer expansion,

V ∼V0 +
ε(V0τ (1− V0) + (1− η3)T0τ )

(1− η3)T0 + (2V0 − η3)(1− V0)
− ελA cos(Ωt),

T ∼T0 +
εT0τ

1− V0
− εT0(V0τ (1− V0) + (1− η3)T0τ )

(1− η3)T0(1− V0) + (2V0 − η3)(1− V0)2
− ελB cos(Ωt),

(4.17)

where V0 and T0 are the quasi-equilibria identified for the slowly varying Stommel model in (2.16).
As in (4.2), we see that the expansion (4.17) fails for (η2 − η2c)� 1, for which all three terms with
coefficient ε0, ε1, and ελ may be of the same order. For example, taking η2 = η2c + εζ, we observe
this failure for

A = O
(
ε1−λ

)
, B = O

(
ε1−λ

)
. (4.18)

This condition suggests that two cases are of interest: for λ ≤ 1 and λ > 1, which correspond
respectively to the cases with small or larger values of A/Ω, B/Ω. For the inner expansion near the
critical value η2c = η1η3 we use a multiple scale approach with slow t and fast T = Ωt in (4.16), to
get

VT + ελVt = −ελ+1ζ + ελ (η1 − T + η3(T − V) + V|V|+A sin(T )) ,

TT + ελTt = ελ (η1 − T (1− |V|) +B sin(T )) ,

ζt = −1, η2(t) = η2c + εζ(t) . (4.19)

Analogous to (4.5), the form of (4.19) implies that V and T must be scaled with a power of ε
near the critical value (V, T ) = (0, η1) to obtain non-trivial results, and must include a term with
coefficient ελ. We then use (4.19) together with the inner expansions,

V(t, T ) ∼ελXλ(t, T ) + εq1X1(t, T ) + εq2X2(t, T ) + . . . ,

T (t, T ) ∼η1 + ελYλ(t, T ) + εq1Y1(t, T ) + εq2Y2(t, T ) + . . . ,
(4.20)

in the system for V and T (4.16). With this form it follows that

Xλ = −A cos(T ) + X0(t), Yλ = −B cos(T ) + Y0(t)) (4.21)

for both cases λ ≤ 1 and λ > 1 considered below. As in Section 4.2, it is straightforward to show
that X0 and Y0 have the same form as X1 and Y1, respectively, so without loss of generality we drop
X0 and Y0.
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4.3.1 The Stommel model with Ω = ε−λ, λ ≤ 1:

For q1 = λ, q2 = 2λ, and substituting (4.20) into (4.16) we obtain X1T = 0 and Y1T = 0 at O(ελ),

with the notation XjT =
∂Xj

∂T . Then at the next order,

O
(
ε2λ
)

:

{
X2T = −X1t − ε1−λζ(t)− η3X1 − (1− η3)Y1,

Y2T = −Y1t − η1|X1 −A cos(T )| − Y1.
(4.22)

assuming that we follow the branch F where X < 0 (V < 0). Note that the result for (4.22) assumes
that λ > 1

2 , so that quadratic terms appear in higher order corrections. Similar to Section 3.3 we
apply the solvability condition as in (A.5) to (4.22) to get

X1t =− ε1−λζ(t)− η3X1 − (1− η3)Y1,

Y1t =− η1

2π

∫ 2π

0
|X1(t)−A cos(T )| dT − Y1,

ζt =− 1.

(4.23)

For |X1(t)| > A we recover the behavior of the outer solution, as in (4.20) . For |X1(t)| ≤ A, the
term X1(t)−A cos(T ) in (4.23) changes sign. Then we evaluate the integral in (4.23) as in (3.20),

X1t =− ε1−λζ(t)− η3X1(s)− (1− η3)Y1

Y1t =− 2η1

π

(
arcsin(X1/A)X1 +

√
A2 −X 2

1

)
− Y1 .

(4.24)

To identify the tipping point, we get an analytically explicit form from which we identify rapid
growth in X . Using a Taylor expansion for X1/A� 1 as in (4.8)-(4.9), and using ζt = −1 to replace
X1t with −X1ζ , we get

X1ζ =ε1−λζ + η3X1 + (1− η3)Y1

Y1ζ =
2η1A

π
+

η1

πA
X 2

1 + Y1 .
(4.25)

As in Section 3.3, growth is driven primarily by shifts in X1, with Y1 following accordingly. Then
we neglect Y1t in (4.24) -(4.25), which yields the quasi-steady approximation,

Y1 = −2η1

π

(
arcsin(X1/A)X1 +

√
A2 −X 2

1

)
≈ −2η1A

π
− η1

πA
X 2

1 . (4.26)

Substituting (4.26) in (4.25) then yields the non-autonomous equation for X1

X1ζ =ε1−λζ − 2η1(1− η3)A

π
+ η3X1 −

η1(1− η3)

πA
X 2

1 . (4.27)

Now (4.27) is in the form of (B.2), from which we identify the tipping point, as we did in (4.10)
-(4.11),

ζmixed =

(
ε(λ−1)πA

η1(1− η3)

)1/3

ξr + ελ−1 η1(1− η3)A

π

(
2−

(
πη3

2η1(1− η3)

)2
)

=⇒ (4.28)

η2mixed ≈
(

ε2πA

η1(1− η3)Ω

)1/3

ξr + η2osc , (4.29)

for ξr given in (4.11). Note that the second term in ζmixed is the Taylor expansion of ζosc (3.24) for
η3/[η1(1−η3)]� 1, leading to (4.29). The form of η2mixed is similar to that of µmixed in (4.11), that
is, having a term corresponding to an advance of tipping in η2osc and another term corresponding
to a lag in tipping, which involves the root of an Airy function. Recall that this result is valid for
λ > 1/2, for which we have neglected quadratic terms in the equation for the corrections (4.22).
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4.3.2 The Stommel model with Ω = ε−λ, λ > 1.

Similar to the single DoF case, we start with the expansions

V(t, T ) ∼− ελA cos(T ) + εX1(t, T ) + εq2X2(t, T ) + . . .

T (t, T ) ∼− ελB cos(T ) + εX1(t, T ) + εq2Y2(t, T ) + . . .
(4.30)

As in Section 4.2.1, here we take q1 = 1 and q2 = λ+1. Substituting (4.30) into (4.16) and collecting
coefficients at each order of ε, we find at O(ε) that X1T = 0,Y1T = 0 and

O(ελ+1) :

{
X2T + X1t = −ζ(t)− η3X1 − (1− η3)Y1,

Y2T + Y1t = −η1|X1 − ελ−1A cos(T )| − Y1 .
(4.31)

Applying the solvability condition (A.5) to (4.31) then gives

X1t =− ζ(t)− η3X1 − (1− η3)Y1,

Y1t =− η1

2π

∫ 2π

0
|X1(t)− ελ−1A cos(T )| dT − Y1 .

ζt =− 1.

(4.32)

This equation has the same form as (4.23) with a factor of ελ−1 in front of A, due to the different
choice for q1. Once again, for larger λ, Ω is larger and the influence of the oscillations is reduced.
Evaluating the integral, and using the same approach as for λ < 1 yields (4.24) with A replaced
with ελ−1A. Recall that the results such as those obtained in (4.23)-(4.25) are valid only for
ελA = A/Ω > εX1, so that, for A = O(1), the use of (4.32) is limited to values of λ & 1. This is
consistent with the behavior of η2mixed in (4.28), which decreases and crosses η2c for A/Ω→ O(ε).
Then for λ > 1, we must use a different approximation, recognizing that the critical value satisfies
η2 < η2c (ζ < 0), for which the dynamics of X and Y change.

For λ > 1, the contribution from the oscillations is proportional to A/Ω, and thus a small
perturbation. Therefore the tipping point is not advanced by the oscillations, as in the expression
for η2osc, and we expect the tipping point to correspond to ζ < 0. Equation (4.32) then takes the
form of (2.20). Then there is exponentially fast growth of the solution for η2 < η2c as observed in
Section 2.3, yielding the approximation to the tipping point as η2sv from (2.25).

Figure 10 compares the results for η2mixed and η2sv to the tipping point obtained from (2.12).
This illustrates the different behavior of the tipping point for the two cases of λ ≤ 1, corresponding
to smaller Ω or larger AΩ−1, and λ > 1 corresponding to Ω� 1. Table 2 summarizes the different
values of the tipping points and critical values of η2 for the three different cases.

5 Summary and Future Work

Using a combination of local and multiple-scale analyses, we provide expressions for the tipping
points near a NSF bifurcation in three settings. For the slowly varying bifurcation parameter of
“rate” ε only, there is a lag for the dynamic bifurcation relative to the static NSF. The functional
dependence on the rate parameter ε is O(ε log ε), in contrast to ε2/3 in the case of the smooth
SNB as (1.6). For high frequency oscillatory forcing without the slowly varying bifurcation, there
is an advance in the transition away from the branch of equilibria that terminates in the NSF,
where that advance depends linearly on the amplitude-to-frequency ratio (A/Ω) of the oscillations.
With high frequency forcing, an averaging approach based on multiple scales is applied. The
nonlinearities then generate additional contributions to the averaged behavior, shifting the tipping
point. For combined slowly varying bifurcation parameter and high frequency oscillatory forcing,
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Figure 10: Comparison of the critical value η2mixed (black solid line) valid for λ . 1 and the limiting
critical value η2slow for large λ (blue dotted line). Red stars indicate tipping in the numerical
solution to (2.12), corresponding to the value of η2 − η2c at which V reaches the cut-off, v = 0.3.
Upper: ε = 0.005. Lower ε = 0.05. Other parameters: η1 = 4,η3 = 3/8, A = 1.

Tipping for the Stommel model with Ω� 1 and η2 slowly varying

Slowly varying η2 only: η2sv ∼ η2c − ε
λ1

log ε + corrections (2.25)

ε� 1, A = B = 0

High frequency oscillation only: η2osc = η1η3+

ε = 0, A 6= 0, Ω� 1 : 2(1−η3)η1
Ωπ A cos

(
η3π

2(1−η3)η1

)
(3.24)

Slowly varying η2 and Ω� 1
ε� 1, A 6= 0, Ω = ε−λ

1/2 < λ ≤ 1: η2mixed ≈
(

ε2πA
η1(1−η3)Ω

)1/3
ξr + η2osc (4.28)

λ > 1: η2sv ∼ η2c − ε
λ1

log ε + corrections (2.25)

Table 2: The asymptotic approximations for tipping values and critical values of η2 for different
cases.
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there is a more complex functional dependence on all parameters involved, capturing a competition
between lag and advance of the tipping point. The competition is observed directly in the analytical
expressions for the tipping points, where there is a change in the leading order term that gives the
location of the tipping. We relate this change to the magnitude of the amplitude-to-frequency ratio,
A/Ω, which characterizes the size of the oscillations in the solution. Writing Ω in terms of the rate
parameter Ω = ε−λ, the dominant parameter dependence of the tipping point is different for the
two ranges 1/2 < λ ≤ 1 and λ > 1, assuming A = O(1). Expressing this difference in terms of
A/Ω, for large values the oscillation-driven advance dominates the tipping behavior, while for small
A/Ω, the tipping value asymptotes to the lag of the dynamic bifurcation. Detailed quantitative
comparisons are provided in Section 4.2 for the tipping point behavior near the NSF vs. the results
for a SNB as in (1.6).

The methods for a NSF are developed in a single DoF model, and the approaches are then
adapted for the two DoF Stommel model in (1.5) with slowly varying fresh water forcing parameter
η2 and oscillatory forcing. In the case of high frequency forcing, we show that the tipping behavior
for the Stommel model near η2c is remarkably similar to that of the single DoF model, again for
three cases: (i) η2 is slowly varying only, without oscillations in η1 or η2 (A = B = 0), (ii) η1

and η2 have high frequency oscillations Ω � 1, without slow variation ε = 0; and (iii) there is
both slow variation and high frequency oscillation, with A, B, and ε all non-zero in (1.5). The
direct application of the method used in the single DoF case follows from a linear analysis near
η2c, indicating that when forced by high frequency oscillations, the transition is primarily driven
by fluctuations in V, with T essentially slaved to V. Then we approximate T with a quasi-static
approximation, leaving the calculation of the tipping point in terms of a reduced problem similar
to that given in the single DoF system. This approximation allows us to avoid the construction
of piecewise-smooth continuous solutions for V and T near η2c in the high frequency case. Such
constructions are necessary for frequencies that are O(1) and smaller. However the analysis in
the high frequency case is simplified by the observation that as the focus and the saddle in the
Stommel model approach the NSF, the linearisation of the system about them changes very little
(in stark contrast to the SNB case). Thus the whole system can be studied locally by looking at
the coalescence of two linear systems separated by Σ. We leave this calculation for O(1) forcing
frequency for future work. The linear analysis that provides the basis for this reduction is discussed
in Section 3.4. Understanding the limitations of the approximation for the high frequency cases used
in this study, we can also track the validity of the approximations for the tipping point over relevant
frequency ranges and indicate parameter ranges for which a fully 2D approximation is needed.
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A Appendices

A.1 Dynamic bifurcation for the Stommel model

To complete the expression for V in (2.23), we find the constant K11, using a quasi-steady approx-
imation for V ∼ V0 + εV1 for V < 0. First, V0 and T0 are given by (2.16), and the correction V1

follows from solving (2.15), with V0τ and T0τ obtained by differentiating (2.16) and using η2τ = −1.
Then

V1 = − 1 + η3η1 − η1

[(η3 − 1)η1/(1− V2
0 )2 − η3 + 2V0]2

. (A.1)

Similar to (2.8)-(2.9), the expression for V < 0 provides the value of η2 at which V(η2) = 0, and
thus also the initial condition for V > 0 from which to determine K11 in (2.23).

A.2 High Frequency Oscillatory Forcing: outer solutions

A.2.1 The single DoF model

As noted in Section 3.2 we provide steps to obtain a formal multiple scales approximation of the
outer solution of the nonlinear equation (3.1) for x < 0. While not critical for the results for this
case, these steps illustrate the approach used also in later sections. The expansion is based on a
slow time t and fast time T = Ωt for Ω� 1,

x(t, T ) ∼ x0(t, T ) + Ω−1x1(t, T ) + Ω−2x2(t, T ) +O(Ω−3). (A.2)

Substituting (A.2) in (2.1), together with the multiple scales treatment of the time derivative,
ẋ→ xt + Ω−1xT , yields a sequence of equations by collecting terms with like coefficients Ω−j . The
O(1) equation x0T = 0 indicates that x0 = x0(t). Then the next order equations are

O(Ω−1) : x1T = −x0t − µ− 2x0 + x2
0 +A sin(T ) ≡ R1(t, T ) . (A.3)

O(Ω−2) : x2T + x1t = −2x1 + 2x0x1 ≡ R2(t, T ) . (A.4)

To ensure that x1 and x2 do not include secular terms that grow in time, the right hand sides of
(A.3)-(A.4) must satisfy a solvability condition [2],

1

2π

∫ 2π

0
Ri(t, T ) dT = 0 . (A.5)

Applying (A.5) in the multiple scales context, the O(1) time scale t is treated as a constant relative
to the fast time T . Then we obtain the following equations for x0(t) and x1(T, t), for x0 < 0,

x0t = −µ− 2x0 + x2
0 =⇒ x0 = 1−

√
1 + µ

x1T = A sin(T ) =⇒ x1(t, T ) = v1(t)−A cos(T ).
(A.6)

Substituting (A.6) and applying (A.5) to R2 in (A.4), yields

v1t = −2
√

1 + µv1 (A.7)

Noting that v1 → 0 as t→∞ for µ > 0, we then obtain (3.1) as the attracting solution near x−eq.
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A.2.2 The Stommel model

Following the approach in Appendix A.2.1, we substitute into (1.5) the multiple scales expansions
for V and T analogous to (A.2). We seek the attracting solution for V < 0 near the lower branch
F away from η2c. Collecting coefficients of powers of Ω−1, the O(1) terms are V0T = T0T = 0, and

O(Ω−1) :

{
V1T = −V0t + η1 − η2 + η3(T0 − V0)− T0 + V2

0 +A sin(T ),

T1T = −T0t + η1 − T0(1− V0) +B sin(T ) .
(A.8)

Applying a solvability condition similar to (A.5) to (A.8), we find that the equations for V0 and T0

are (2.12) with fixed η2 and A = B = 0. Then for large t, V0 and T0 approach the stable equilibrium
on the lower branch F. Then solving (A.8) yields(

V1

T1

)
= −

(
A
B

)
cos(T ) +

(
V11(t)
T11(t)

)
, (A.9)

where one can show that V11(t)→ 0, T11(t)→ 0 for large t. Then the behavior near F away from
η2c is given by (3.14).

A.3 Slow Variation and Oscillatory Forcing: the single DoF model

The form of (4.1) suggests a multiple scales expansion that includes both integer powers of ε and
ελ

x(τ, T ) ∼ x0(τ, T ) + ελx1(τ, T ) + max(ε1+λ, ε2λ)x2 + . . . . (A.10)

Depending on whether λ is less than or greater than 1, the higher order correction may be O(ελ+1)
or O(ε2λ). For concreteness we take λ < 1 in the steps below, noting that λ > 1 yields the same
results for x0 and x1. Note that here we take λ > 1/2 as discussed in the main text. Substituting
(A.10) into (4.1) gives a sequence of equations at each order of ε, with x0T = 0 implying that
x0 = x0(τ), and

O(ελ) : x1T = −µ(τ)− 2x0 + x2
0 +A sin(T ), (A.11)

O(ε2λ) : x2T = −ε1−λx0τ − 2x1 + 2x0x1. (A.12)

Applying the solvability condition (A.5) to (A.11) and (A.12) we find x0 and x1 as follows,

0 =− µ(τ)− 2x0(τ) + x2
0(τ), =⇒ x0(τ) = 1−

√
1 + µ(τ), then

x1T =A sin(T ) =⇒ x1 = v1(τ)−A cos(T ), and

0 =− ε1−λx0τ − 2v1 + 2
(

1−
√

1 + µ(τ)
)
v1 =⇒ v1(τ) = −ε1−λ x0τ

2
√

1 + µ(τ)
.

(A.13)

using µτ = −1. Combining results yields the outer expansion (4.2).

B General results for non-autonomous ODEs with quadratic non-
linearity

We use results from [8] for the general single DoF ODE with a quadratic nonlinearity and a dynamic
bifurcation near a saddle node bifurcation,

ẋ =Da+ k0 + k1x+ k2x
2,

ȧ =− ε,
(B.1)
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where ε � 1. Systems of this form appear in many physical problems like Erneux [6] and [20].
Following the approach of [8], where x and a are rescaled with ε1/3 and ε2/3, and xt is rewritten in
terms of xa, the tipping point for x is obtained in terms of a singularity corresponding to the first
zero of the Airy function, Ai(ξr) = 0. Specifically, the tipping point is then

atip =

(
ε2

D|k2|

)1/3

ξr −
as
D

for as = k0 +
k2

1

4|k2|
, (B.2)

Detailed calculations are provided in [20].
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