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Abstract

Cardiovascular disease is the leading cause of death
worldwide. The twelve-lead electrocardiogram (ECG) is a
common tool for diagnosing cardiac abnormalities, but its
interpretation requires a trained cardiologist. Thus there
is growing interest in automated ECG diagnosis, espe-
cially using fewer leads. Hence the PhysioNet-CinC Chal-
lenge 2021: Will two (leads) do? The University of Bath
team (UoB HBC) developed InceptionTime-inspired deep
convolutional neural networks, using parallel 1D convo-
lutions of varying length, for twelve-, six-, four-, three-,
and two-lead models. The twelve-lead model achieved a
Challenge metric score of 0.35 on the test set, placing the
University of Bath team 23rd out of 39 entries. Though
the twelve-lead model performed best, three-lead perfor-
mance was lower by only 0.25 %, suggesting potential for
reliable reduced-lead diagnoses. Furthermore, the three-
lead model performed consistently better than the six-lead,
highlighting the importance of selection of type of lead, not
just their number.

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of
death worldwide, accounting for 32 % of all global deaths
in 2019 [1]. This is not limited to the elderly, with CVDs
representing 38 % of premature deaths (under the age of
70) due to non-transmissible disease. CVDs remain a ma-
jor concern in high income countries, causing 25 % of UK
deaths [2], and the British Heart Foundation estimates mil-
lions of people in the UK are living with undetected risk
factors. Improved diagnosis of heart conditions would
therefore substantially benefit world health. The electro-
cardiogram (ECG) is among the most common tools used
to diagnose CVDs. The non-invasive procedure uses elec-
trodes on the patient’s chest and limbs to measure the elec-
trical potential difference across the heart with respect to
time. Due to the variety of CVDs and the complexity of
the heart’s conduction system, interpreting ECGs requires
highly trained cardiologists. However, lack of clinicians

means ECGs are not routinely carried out, and many are
conducted in primary care centres and emergency units,
where healthcare professionals lack the required special-
ist knowledge [3]. This issue is most prevalent in low and
middle income countries [4]. Automated ECG interpreta-
tion would provide many benefits. ECGs would become
more accessible, allowing many more people with CVDs,
particularly from lower socioeconomic backgrounds, to be
diagnosed earlier. Accessibility would also be extended to
primary care and emergency units, where faster and more
accurate diagnoses would save lives. Furthermore, such
a tool would allow trained cardiologists to concentrate on
diagnosing unique edge cases.

2. Method

InceptionTime is a state-of-the-art convolutional neural
network for time-series classification, featuring Inception
modules (Figure 1) with parallel 1D convolutions to iden-
tify patterns of different lengths. The original architec-
ture [5] was improved with modifications to the classifi-
cation head and learning rate schedule, and the final model
(Figure 2) was achieved by hyperparameter tuning. The
model is trained according to the one cycle policy learning
rate and momentum schedule, using the AdamW optimizer
with constant weight decay.

Figure 1. Composition of each Inception module.

The PhysioNet-CinC Challenge 2021 [6] focused on
30 conditions and addressed classification of reduced-lead
ECGs as well as full twelve-lead recordings. The reduced-
lead sets are the six-lead, four-lead, three-lead, and two-



Figure 2. Final model architecture.

Table 1. Lead combinations.

No. leads Lead set
12 I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6

6 I, II, III, aVR, aVL, aVF
4 I, II, III, V2
3 I, II, V2
2 I, II

lead. Table 1 defines the various lead combinations used
in each case. The dataset provided at the outset of the
challenge [7] became the largest collection of twelve-lead
ECGs then publicly available, with 43,101 recordings from
34,452 patients. The model was trained on random 2.5 sec-
ond sub-samples which were down-sampled to 100 Hz us-
ing linear interpolation. A randomly selected 10 % of the
training data was held back for validation and used to opti-
mize the classification thresholds for maximum Challenge
metric. During the Challenge, this dataset was greatly ex-
panded to over 100,000 twelve-lead recordings, compris-
ing a training set of over 88,000, a validation set of 6,630,
with 16,630 ECGs retained as hidden test data. However,
due to the much enlarged training data it was not possible
to achieve cross-validation results on the larger dataset in
time. Nevertheless, twelve-, six-, four-, three-, and two-
lead models were submitted to the competition. Entries
are scored according to the custom Challenge metric [6],
which calculates the standard multi-label confusion matrix
and normalizes it to give equal weight to each ECG instead
of each classification, before taking the dot product with a
weighting matrix designed to award partial credit for mis-
classifications of similar conditions or treatments.

3. Results & Discussion

Figure 3 shows the results of the twelve-lead ECG clas-
sifier in the form of a multi-class confusion matrix, modi-
fied for multi-label problems according to [8]. This awards
normalized scores to each class combination such that cor-
rect classifications are scored only on the leading diagonal,
with misclassifications elsewhere. It also retains the ability
to calculate recall from each row and precision from each
column. Generally there is classification intensity along
the leading diagonal, indicating most ECGs were correctly
classified. Off-diagonal, there is also intensity along the
Normal Sinus Rhythm (NSR) axes. This is simply due to
the large proportion of NSR ECGs in the test set, not clas-
sification performance. In the main, there is strong cor-
relation between class-wise performance and number of
training examples. Figure 4 shows the F1-Score for each
class (except NSR, removed for clarity) against the number
of corresponding ECGs in the dataset, demonstrating that
more training data generally leads to better performance.
A linear trendline is plotted, though in practice more data
would see diminishing returns as F1-Score is capped at 1.
All classes (NSR included) with more than 2000 record-
ings performed above average whereas those with below
average performance had fewer then 2000 examples.

There are notable outliers, however. Pacing Rhythm
(PR), Right Axis Deviation (RAD), and Left Bundle
Branch Block (LBBB) show good performance with rel-
atively little data. This suggests other factors, such as
similarity to other classes and distinctiveness of features,
influence classification performance. Sinus Arrhythmia
(SA), however, is consistently misclassified as NSR and
vice-versa. This is likely because SA may appear simi-
lar to NSR when observed over a short time period. And,
despite generally being well classified, there is a notice-
able correlation between Complete and Incomplete Right
Bundle Branch Block (IRBBB and IRBBB, respectively),
again probably due to their similarity as they are variations
of the same condition. Another outlier is T-wave Abnor-
mal (TAb), with performance unexpectedly low given the
quantity of data, and which is regularly confused with Pro-
longed QT Interval (LQT) and T-wave Inversion (TInv).
Although these conditions are similar, all affecting the T-
wave, this response is likely due to the small number of
training examples for LQT and TInv. It is expected that
more data would not only boost their scores, but also en-
hance the prediction of TAb and other classes.

Most other misclassifications appear to be without ex-
planation. This is likely due to the large natural variation
in ECGs, coupled with relatively limited training data. All
classes are generally balanced between precision and accu-
racy. This is because during development the best model
was selected based on AUROC (Area Under Receiver Op-
erating Characteristic) and F1-Score metrics, which penal-



Figure 3. Modified multi-label confusion matrix for 12-lead cross-validation test set results (values are integer rounded).

ize false positives and negatives equally. By requiring high
model precision, the model aims to minimize false posi-
tives by increasing the thresholds. As a result, 12 % of test
set ECGs were unclassified despite only 5 % containing no
labels. This is not necessarily an issue as the model may
be detecting patterns and conditions it is unable to predict.
Furthermore, it is more useful to know when the model
is uncertain, rather than it making low confidence predic-
tions, as in these cases a cardiologist can be consulted.

Table 2 compares model performance on the hidden val-
idation data to the cross-validation set, plus the final test
set score. In terms of cross-validation performance, the
Challenge metric closely correlates with F1-Score, sug-
gesting that optimizing the model and thresholds for the
latter translates to good competition performance. Fur-
ther testing revealed optimizing classification thresholds
for maximum Challenge metric score ultimately gives the
best competition outcome, as one would expect. Challenge
metric scores were consistently 6–8 % lower than cross-
validation scores for twelve, three and two leads (up to
15 % for six leads). This suggests the model should gener-

alize well, but there remains a degree of overfitting. This
does not necessarily indicate a poor model but highlights
the importance of assessing models on unseen, representa-
tive data.

Table 2. Comparison of twelve- and reduced-lead model
results on cross-validation, hidden validation, and test sets.

No.
leads

Cross-validation Hidden Test
AUROC F1-Score Challenge metric

12 0.95 0.57 0.54 0.402 0.35
6 0.93 0.52 0.47 0.385 -
4 - - - 0.397 -
3 0.94 0.54 0.52 0.401 -
2 0.93 0.50 0.45 0.391 -

Generally, more leads gave better performance in all
metrics except for the six-lead set, which had unexpectedly
poor results, likely because it doesn’t use any chest leads
(V1–V6) and so only observes the heart’s frontal plane.
The three-lead set and the initial two-lead set include chest



Figure 4. F1-Score versus number of ECGs for each class,
illustrating the correlation between performance and quan-
tity of training data (NSR purposely not shown).

leads V2 and V5 respectively, as well as limb leads. This
emphasizes that the selection and combination of leads is
important, not just their number.

Final performance on the test set achieved a Challenge
metric score of 0.35, 13 % down on the hidden validation
set score, and placing the University of Bath team 23rd
out of 39 entries. This was somewhat expected since, due
to computational problems with the larger dataset, it was
not possible to generate cross-validation results and make
subsequent model adjustments. Nevertheless, there is con-
sistency in terms of the ranking of lead sets and the three-
lead remains the best performing reduced-lead model, only
0.25 % short of the twelve-lead result, while the two-lead
model was only 2.7 % below twelve-lead performance.

4. Conclusions

This paper described a deep convolutional neural net-
work ECG classifier based on InceptionTime architecture.
Initial results on twelve-lead ECGs suggested the approach
should generalize well but a weakness is performance vari-
ation across classes. Classification performance generally
correlates with number of training examples. But while
more data should improve performance, the models expe-
rienced a decrease in Challenge scores on the hidden vali-
dation and test sets, despite a doubling of the training data.

The question posed by the 2021 Challenge was: Will
Two Do? Based on the work here, the answer is: not quite
yet. During development, two-lead results were up to 16 %
down on twelve-lead. But while results showed that more
leads generally produce better results, and that the twelve-
lead model always perform best, the worst performing was
actually the six-lead, suggesting a sub-optimal combina-
tion of leads. On the other hand, the three-lead was sur-
prisingly competitive with twelve-lead performance and

outperforms the six-lead consistently across different met-
rics. This finding may be significant for ECG classifier
development as well as cardiology generally. At the very
least it suggests excellent potential for reliable diagnoses
based on reduced-lead data. It also highlights the impor-
tance of appropriate selection of the type of lead, not just
their number.
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