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Abstract

The Non-Equilibrium Thermo-Field Dynamics formulation of the Hierarchical Equa-

tions of Motion combined with the Tensor-Train representation of the density matrix

is discussed, and a new numerical integration scheme is introduced. The numerical

methodology is based on an adaptive low rank Galerkin reduction scheme and can pre-

serve linear invariants (such as the trace of the density matrix). The method is applied

to the study of the charge transfer dynamics in model pentacene molecular aggregates.

The combined effect of a discrete set of molecular vibrational modes and of a thermal

bath is investigated with special attention to the coherent-incoherent transition of the

charge transport. The new computational framework is shown to be a very promis-

ing methodology for the study of quantum dynamics of complex molecular systems in

condensed phase.
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Introduction

The numerical simulation of time-dependent molecular processes is a cornerstone of mod-

ern theoretical chemistry, as it can unravel the complex mechanisms of elementary processes

such as electron and energy transfer in molecular assemblies, which are of central importance

for most present-day technologies for energy storage and transduction. Due to the inherent

complexity of the systems of chemical interests, and to their interaction with a condensed

phase, quite often the starting point of any time-dependent theoretical analysis is the iden-

tification of a relevant system part and an irrelevant environment. Their mutual coupling

can then be treated at different level of approximations leading to several well known ap-

proaches based on the time-evolution of the reduced system density matrix.1–5 In was only

in the early ’90 that Tanimura and Kubo6–8 developed the so-called Hierarchical Equation of

Motion (HEOM) methodology, which remains one of the most important theoretical achieve-

ments in the study of the quantum dynamics of open systems enabling an exact description

of the system-environment interaction. Since then, the HEOM technique has been applied

to a variety of chemico-physical problems including charge-transfer,9 exciton dynamics,10,11

proton coupled electron-transfer,12 and heat transport problems.13 (For a recent review of

HEOM applications see ref.14).

Yet, the study of systems with a large number of degrees of freedom (DoF), such as

molecular aggregates in a liquid or solid phase, using HEOM theory remains a challenging

problem which has led to the implementation of several of numerical techniques capable

of dealing with fairly complex systems.15–17 However, most of these methodologies have

already hit their inherent limit and a leap towards a new paradigm is required in order to

apply HEOM to study more realistic systems.

To tackle this problem, we have recently developed a new theoretical framework in which

HEOM are derived using the so-called Non-Equilibrium Thermo-Field Dynamics (NETFD)

(also referred to as twin-space formalism), and the resulting auxiliary density operator is

approximated using the Tensor-Train (TT) decomposition.18 The use of TT approach to
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solve HEOM has first been suggested by Shi and coworkers,19 and later by the Borrelli20 and

appears to be a very promising methodology to extend the range of applicability of HEOM.

In both cases the adopted integration scheme was based on the Dirac-Frenkel Time-

Dependent Variational Principle (TDVP).21 This method determines the best approximation

of a time-dependent vector in TT format by projecting the initial value problem onto a

tangent space of a given manifold M of TT tensors of fixed rank. Since the TT rank is

preserved at all times the accuracy of the solution must be checked a posteriori by performing

several calculations of increasing ranks. Moreover, the combination of this approach with

HEOM violates norm and energy conservation of the solution,22,23 since the tangent space

ofM does not contain the energy and trace operators automatically.

In this paper we address this problem by analysing the NETFD-TT approach to HEOM,

and suggesting the application of a higher-order technique for the numerical time integration

of the TT decomposition24 which is adaptive in both TT ranks and time steps, and which

is able to preserve the conservation laws of the system by incorporating them explicitly into

the TT format.

Hierarchical Equation of Motion in NETFD formalism

In this section we provide the derivation of the HEOM using the NETFD formulation of

quantum statistical mechanics.25–29 This approach to quantum statistical mechanics has long

been known but only recently it has found the due attention in the theoretical chemistry

community.30–36 Here, we will only briefly recall the formal structure of NETFD; more details

are provided in the Appendix.

Let us consider a system described by a Hamiltonian operator H defined in the Hilbert

space H whose states are labelled as {|k〉}. Introduce a new operator H̃ called tildian

which has the same formal structure of the physical Hamiltonian but acts on a different

Hilbert space H̃ whose states are labelled as {
∣∣∣k̃〉}. Consider now the space obtained by the
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Kronecker product H⊗ H̃ and its states {
∣∣ij̃〉 = |i〉 ⊗

∣∣j̃〉} and define the vector |1〉

|1〉 =
∑
k

∣∣∣kk̃〉 (1)

(boldface symbols emphasize that we deal with both physical and tilde states) and the state

|ρ(t)〉 = ρ(t) |1〉 (2)

where ρ(t) is the density matrix of the original system. With this formal structure it is

possible to demonstrate that the time evolution of the state |ρ(t)〉 is determined by the

NETFD equation

∂

∂t
|ρ(t)〉 = −i(H − H̃) |ρ(t)〉 = −iĤ |ρ(t)〉 |ρ(0)〉 = |ρ0〉 = ρ0 |1〉 (3)

(~ = 1), and the expectation value of any operator U acting in the physical Hilbert space

{|k〉} can be obtained as

〈U(t)〉 =
〈
1
∣∣U ∣∣ψ(t)

〉
≡ Tr{ρ(t)U}. (4)

The evaluation of 〈U(t)〉 via the "wave function" |ρ(t)〉 or via the corresponding density

matrix ρ(t) are equivalent. The operator Ĥ is also referred to as Liouvillian super-operator.

Using the NETFD formalism it is possible to define a reduced state vector analogous to

the familiar reduced density matrix. This was first discussed by Arimitsu and Umezawa37

using projection operator techniques and lead to a set of equations which share the same

structure of the standard reduced density matrix approaches, but makes explicit use of tilde

operators. Here we will briefly report its derivation, and then present a new formulation of

an exact second-order cumulant approach based on a hierachical solver (see infra).6
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Let us consider a system described by a Hamiltonian operator

H = HA +HB + V = H0 + V (5)

where A is the subsystem of interest, B the “bath” i.e. the irrelevant subsystem, V their

coupling, and H0 = HA +HB. The Liouville super-operator is thus given by

Ĥ = HA +HB + V − H̃A − H̃B − Ṽ = ĤA + ĤB + V̂ = Ĥ0 + V̂ (6)

where ĤA = HA−H̃A and so on. The reduced state |ρA(t)〉I in the interaction representation

can be defined by tracing out the bath degrees of freedom as

|ρA(t)〉I = 〈1B|ρ(t)〉I = eiĤAt〈1B|ρ(t)〉 = eiĤAt |ρA(t)〉 . (7)

where the unit vector |1B〉 is defined as in eq. (1) but the summation includes only the states

of the B subsystem.

We now make use of the key assumptions of HEOM theory, that is i) the system-bath

interaction is factorized as

V =
∑
k

SkQk (8)

where Sk and Qk are system and bath operators respectively and ii) the bath operators are

described as a linear combination of position operators qj of harmonic oscillators

Qk =
∑
j

gkjqj. (9)

Under this conditions it is possible to demonstrate that38,39

|ρA(t)〉I = T+ exp

(
−
∫ t

0

K̂
(2)
I (s)ds

)
|ρ(0)〉I . (10)
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where

K̂
(2)
I (s) =

∫ s

0

dτ〈V̂ (s)V̂ (τ)〉. (11)

The average operation is defined as 〈...〉 = 〈1B| ... |ρB(0)〉 and V̂ (t) is the interaction

representation of the coupling super-operator V̂ =
∑

k SkQk −
∑

k S̃kQ̃k.

Differentiating the above expression one obtains40

∂

∂t
|ρA(t)〉I = −T+

∫ t

0

dτ〈V̂ (t)V̂ (τ)〉 exp

(
−
∫ t

0

K̂
(2)
I (s)ds

)
|ρ(0)〉I . (12)

It is fundamental to note that the variable τ in the integral above ranges over all times, so

that, for τ < s the time ordering operator mixes V̂ (τ) with all the terms of the expansion

of the exponential operator exp
(
−
∫ t
0
K̂

(2)
I (s)ds

)
, making it impossible to obtain an explicit

equation for |ρA(t)〉I . The hierarchical equation of motion represents a methodology to

disentangle the above equation in the special case of a Gaussian bath. After some easy

manipulations the second order cumulant can be written as20

K̂
(2)
I (t) =

∑
k

[Sk(t)− S̃k(t)]
{∫ t

0

dt1〈Qk(t)Qk(t1)〉Sk(t1)−
∫ t

0

dt1〈Qk(t1)Qk(t)〉S̃k(t1)
}
.

(13)

Taking advantage of the conjugation relation 〈Qk(t1)Qk(t)〉 = 〈Qk(t)Qk(t1)〉∗ it is possible

to write

K̂
(2)
I (t) =

∑
k

[Sk(t)−S̃k(t)]
{∫ t

0

dt1C
′
k(t− t1)[Sk(t1)− S̃k(t1)]− i

∫ t

0

dt1C
′′
k (t− t1)[Sk(t1) + S̃k(t1)]

}
(14)

where

C ′k(t− t1) = <〈Qk(t1)Qk(t)〉 C ′′k (t− t1) = =〈Qk(t1)Qk(t)〉. (15)
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In the limit of a continuous distribution of frequencies we obtain the relations41,42

C ′k(t−t1) =
1

π

∫ ∞
0

dωJk(ω) coth(βω/2) cos(ω(t1−t)) C ′′k (t−t1) =
1

π

∫ ∞
0

dωJk(ω) sin(ω(t1−t))

(16)

where Jk(ω) is the spectral density describing the system-bath interaction strength as a

function of the bath frequency ω. These are well know results of time auto-correlation

function theory.41 At this point we model the system-bath interaction as a non-Markovian

Gaussian process described by a Drude-Lorentz spectral density

Jk(ω) = 2λk
ωγk

ω2 + γ2k
. (17)

Here the parameter λk defines the strength of the system-bath interaction while γk is a

characteristic bath frequency. Introducing the super-operators

Ŝk(t) = [Sk(t)− S̃k(t)] (18)

R̂kj(t) = ckjSk(t)− c∗kjS̃k(t) (19)

where the coefficient ckj are defined in such a way that

Ck(t− t1) = C ′k(t− t1) + iC ′′k (t− t1) =
∑
j

ckje
−γkj |t−t1| (20)

the second order cumulant can be written as

K̂
(2)
I (t) =

∑
kj

Ŝk(t)

∫ t

0

dτe−γkj |t−τ |R̂kj(τ). (21)
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Following a standard approach we can now define a set of auxiliary density vectors (ADV)6

|ρmA (t)〉 = T+
∏
kj

(mkj!|ckj|mkj)−1/2
(
i

∫ t

0

dt1e
−γk|t−t1|R̂kj(τ)

)mkj

exp

(
−
∫ t

0

K̂
(2)
I (s)ds

)
|ρA(0)〉I

(22)

where m = {mkj} is a set of non-negative integers. Here, the index k labels the number of

spectral densities and the index j labels the number of expansion terms in the expansion of

each spectral density. If the system is characterized by M spectral densities each having K

expansion terms, then we have M ·K auxiliary spectral density vectors, and the indices k, j

can assume the values k = 1, 2, ...,M , and j = 1, 2, ...K. It is readily verified that the vector

|ρA(t)〉I , describing the physical state of our system, corresponds to the auxiliary state vector

having all indices mkj = 0, i.e. |ρA(t)〉I = |ρ0A(t)〉. The above definition takes into account

the scaling originally proposed by Shi and coworkers which improves the numerical stability

of the final system of equations.43 HEOM are readily derived upon repeated differentiation of

the |ρm〉 with respect to time. Moving to the Schrödinger representation the set of equations

∂

∂t
|ρmA 〉 = −

(
iĤA +

∑
kj

mkjγkj
)
|ρmA 〉 − i

∑
kj

√
mkj/|ckj|(ckjSk − c∗kjS̃k)

∣∣∣ρm−1kjA

〉
−i
∑
kj

√
(mkj + 1)|ckj|(Sk − S̃k)

∣∣∣ρm+1kj
A

〉
(23)

is obtained, where m± 1kj = (m10, ...,mkj ± 1, ...), and the explicit time dependence of the

auxiliary vectors has been dropped. The price to pay for disentangling the time ordering

operation of eq. (12) is that HEOM constitutes an infinite set of first-order ordinary differ-

ential equations. This means that equation 12 has just been replaced by a different type of

problem. Fortunately, using the hierarchy it is possible to devise very efficient truncation

schemes which allow to obtain highly accurate results with a finite system. The reader is

referred to the original papers for the derivation of an optimal truncation scheme.7,44 In the

above derivation we have not considered low-temperature corrections which can be included

straightforwardly from a direct application of the original approach suggested by Ishizaki
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and Tanimura.44

The above equations resemble very closely the results of HEOM theory in the density

matrix formalism (see for example Ref.39), but here the commutators and anti-commutators

are replaced by differences and sums of tilde and non-tilde operators. As we shall see in

the next section, this results in several benefits for the numerical implementation of the

propagator.

To further simplify the structure of the HEOMs we follow Tanimura45 and introduce a

set of vectors |m〉 = |m10m11...m1Km20...mMK〉, and their corresponding boson-like creation-

annihilation operators b+kj, b
−
kj

b+kj |m〉 =
√

(mkj + 1) |m + 1kj〉 b−kj |m〉 =
√
mkj |m− 1kj〉 b+kjb

−
kj |m〉 = mkj |m〉

(24)

and the vector

|ρ(t)〉 =
∑
m

|ρmA (t)〉 |m〉 (25)

and rewrite the hierachical equations of motion in the compact form

∂

∂t
|ρ〉 =

(
− iĤA −

∑
kj

γkjb
+
kjb
−
kj − i

∑
kj

√
|ckj|(Sk − S̃k)b−kj − i

∑
kj

(ckjSk − c∗kjS̃k)√
|ckj|

b+kj

)
|ρ〉 ,

(26)

with the initial condition given by |ρ(0)〉 = |ρA(0)〉 |0〉.

Tensor-Train representation of the Density Vector

We now show how to exploit the structure of eq. 26 and of the vector of eq.25 to solve the

quantum dynamical problem using the TT format.18,21,46–51

Let us first recall the basic principles of the TT decomposition by considering a generic
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expression of a state of a N dimensional quantum system at time t in the form

|ρ(t)〉 =
∑

i1,i2,...,iN

Ct(i1, ..., iN) |i1〉 ⊗ |i2〉 · · · |iN〉 . (27)

where |ik〉 labels the basis states of the kth dynamical variable, and the elements Ct(i1, ..., iN)

are complex numbers labeled by N indices. If we truncate the summation of each index ik to

a maximum value pk the elements Ct(i1, ..., iN) represent a tensor of order N . The evaluation

of the summation (27) requires the computation (and storage) of pN terms, where p is the

average size of the one-dimensional basis set, which becomes prohibitive for large N . Using

the TT format, the tensor Ct is approximated as

Ct(i1, ..., iN) ≈ C(1)(i1)C
(2)(i2) · · ·C(N)(iN) (28)

where C(k)(ik) is a rk−1 × rk complex matrix, k = 1, . . . , N (for the moment, let us drop the

time variable for simplicity). In the explicit index notation

Ct(i1, ..., iN) ≈
r0,...,rN∑

α0,··· ,αN=1

C(1)
α0,α1

(i1)C
(2)
α1,α2

(i2) · · ·C(N)
αN−1,αN

(iN). (29)

The trailing indices α0 and αN are introduced for uniformity of notation, but to render the

right hand side scalar, we always set r0 = rN = 1. The factors C(k) are three dimensional

arrays, called cores of the TT decomposition. The dimensions rk are called TT ranks.

The TT decomposition (28) is also known under the name of the Matrix Product States

(MPS)52,53 In the MPS language the TT ranks are referred to as bond dimensions. Using

the TT decomposition (28) it is possible, at least in principle, to overcome most of the

difficulties caused by the dimension of the problem. Indeed, the wave function is entirely

defined by N arrays of dimensions rk−1 × pk × rk thus requiring a storage dimension of the

order Npr2.

Turning now to the representation of the state vector of eq. (25) in the TT format we
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let d be the number of degrees of freedom of the Hamiltonian operator HA, and assume that

the dissipating environment is described using M uncorrelated spectral densities Jk(ω) each

expanded into K Matstubara terms. Hence, the vector |ρ(t)〉 of eq. (25) can be considered

as a tensor with N = 2d+KM indices. For sake of simplicity, in the following we consider

the high temperature limit of the bath and employ the only one Matsubara term for each

spectral density, i.e. K = 1, the generalization to K > 1 having only a slightly more

involved notation. Therefore, in eq. (29) the first 2d indices label the physical and tilde

DoFs and the last M indices label the bath operators. We specify that only the component

with {mk = 0, k = 1, ...,M} is required for the computation of physical observables.

Once the density matrix is known it is possible to compute any expectation value via eq.

(4) where the operator U must have a TT form. As an example, the norm of the reduced

system density, ρA, can be easily computed as tr(ρA) = 〈θ|ρ〉 = 1 where the vector |θ〉 is

defined as

|θ〉 =

(∑
i1

|i1〉
∣∣̃i1〉⊗∑

i2

|i2〉
∣∣̃i2〉⊗ ...⊗∑

id

|id〉
∣∣̃id〉)⊗ |0〉 (30)

where |0〉 = |01〉 |02〉 ... |0M〉 label the first component of the ADVs.

Time Evolution of Tensor Trains

Several techniques exist to compute the time evolution of TT/MPS.21,54–57 Recently the

time-dependent variational approach has been applied to solve HEOM in TT format. This

method solves the dynamical equations projected onto the manifold of the TT decomposition

using a splitting scheme over the TT cores. This enables an accurate evolution with fixed TT

ranks, and hence prescribed computational costs. However, this method may not preserve

certain invariants of the solution, such as the norm and energy, which are conserved by the

equation (26).20 This problem has also been recently addressed by Shi and coworkers who

suggested to adopt a modified version of the HEOM equations combined with an additional

constrain to enforce norm preservation.58
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Here we employ a new methodology for TT integration recently proposed by Dolgov24

referred to as Time-dependent Alternating Minimal Energy solver (tAMEn). This integration

technique automatically adjusts the TT ranks of the solution during the evolution to achieve

a prescribed accuracy, and can fulfill the norm conservation law and any other type of a priori

known linear invariants of the differential equation exactly, provided the state defining the

invariant admits an exact TT decomposition. We briefly sketch the basic ideas behind the

tAMEn algorithm and leave the reader to the original paper24 for the mathematical and

numerical details.

Firstly, we discretise the state |ρ(t)〉 in time by introducing a basis of Lagrange poly-

nomials {P`(t)}L`=1, centered at the Chebyshev points {t`}L`=1 ⊂ [0, T ]. This gives us an

approximation

|ρ(t)〉 ≈
L∑
`=1

∑
i1,...,iN

Ct`(i1, . . . , iN) |i1〉 ⊗ · · · |iN〉P`(t), t ∈ (0, T ], 0 < t1 < · · · < tL = T.

The nodal coefficients Ct`(i1, . . . , iN) altogether can be collected into a tensor of order N+1,

which is approximated by a TT decomposition similar to (28),

Ct`(i1, . . . , iN) ≈ C(1)(i1)C
(2)(i2) · · ·C(N)(iN) · C(N+1)(`). (31)

Similarly, the nodal states |ρ(t`)〉 can be collected into a “superstate” |ρ〉.

In turn, the time derivative in (26) can be cast onto the polynomials P`(t), resulting in the

differentiation matrix with elements D`,`′ =
dP`′
dt

(t`), `, `′ = 1, . . . , L, which can be computed

explicitly. Turning D into a superoperator D̂ = D ⊗ I (where I is the identity operator

matching the size of |ρ〉), the differential equation (26) is approximated by an algebraic
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equation

Â |ρ〉 = |b〉 , where (32)

Â = D̂ + iĤA +
∑
kj

γkjb
+
kjb
−
kj + i

∑
kj

√
|ckj|(Sk − S̃k)b−kj + i

∑
kj

(ckjSk − c∗kjS̃k)√
|ckj|

b+kj,

|b〉 = (D1L)⊗ |ρ(0)〉 ,

where 1L is a vector of ones of size L. Having solved this equation, we can interpolate |ρ〉

at any sought time t ∈ [0, T ]. The convergence of this approximation is analysed in the

pseudospectral approximation theory,59 together with an adaptive selection of the step size

T or degree L.

The algebraic equation (32) can be solved using the Alternating Minimal Energy (AMEn)

method,51 which builds upon the Alternating Linear Scheme (ALS).60 A TT decomposi-

tion (31) can be rewritten as a subspace reduction problem by stretching the kth TT core

into a vector
∣∣c(k)〉 ∈ Rrk−1pkrk with elements

∣∣c(k)〉 (αk−1ikαk) = C
(k)
αk−1,αk(ik), and by in-

troducing the frame operator Ĉ 6=k ∈ R(p1···pNL)×(rk−1pkrk) such that Ĉ 6=k
∣∣c(k)〉 contains all

elements Ct`(i1, . . . , iN) (for uniformity of notation, we can let pN+1 = L). A tedious but

straightforward calculation shows that Ĉ 6=k is constructed from all but kth TT cores.60 Cru-

cially, if both Â and C are represented in the TT format, the computation and solution of

the Galerkin reduced system

〈
Ĉ 6=k

∣∣Â∣∣Ĉ 6=k〉 · ∣∣c(k)〉 = 〈Ĉ 6=k|b〉 (33)

is cheap, requiring at most O(Np2r3) operations. The ALS algorithm seeks a TT approxi-

mation to the solution of (32) by iterating over k = 1, . . . , N + 1, solving (33) in each step,

and updating the kth TT core C(k) with the elements of
∣∣c(k)〉.

The AMEn method51 empowers ALS with adaptive TT ranks and faster convergence by
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additionally expanding C(k) by a TT core of the TT approximation of the residual

(|b〉 − Â |ρ〉)(i1, . . . , iN , `) ≈ C(1)(i1) · · ·C(k−1)(ik−1)Z
(k)(ik)Z

(k+1)(ik+1) · · ·Z(N+1)(`),

where
∣∣z(k)〉 = 〈Ẑ6=k| |b〉 − Â |ρ〉〉 can be computed by the secondary ALS iteration similar

to (33). Further on, if the exact dynamics preserves a linear invariant 〈θ|ρ〉 where

|θ〉 =
∑

i1,...,iN

C(1)(i1) · · ·C(k−1)(ik−1)Θ
(k)(ik) · · ·Θ(N)(iN) · |i1〉 ⊗ · · · ⊗ |iN〉 (34)

admits a TT decomposition, tAMEn24 expands C(k) also with Θ(k). Altogether, after (33)

is solved, we replace a pair of TT cores with their padded versions,

C(k)(ik) :=

[
C(k)(ik) Θ(k)(ik) Z(k)(ik)

]
, C(k+1)(ik+1) :=


C(k+1)(ik+1)

0

0

 . (35)

The zeros in C(k+1) preserve the whole tensor C (and hence the state |ρ〉 remains correct),

but the extra terms in C(k) enrich the frame operator Ĉ 6=k+1 for the next iteration in two

ways: firstly, the invariant-generating state |θ〉 belongs to the column subspace of Ĉ 6=k+1

exactly, and hence 〈θ|ρ〉 is preserved. This also allows us to write the TT decomposition

of |θ〉 (34) with the first k − 1 TT cores being C(1), . . . , C(k−1), since those contain now

exact bases for |θ〉. Secondly, the global residual information supplied by Z(k) accelerates

the convergence towards the true solution of (32). Before the expansion (35), we can also

truncate the TT rank rk by computing a truncated Singular Value Decomposition (SVD) of

C(k).18 The combination of this truncation and expansion (35) allows the tAMEn algorithm

to adapt TT ranks according to the desired error threshold.

An unsophisticated error analysis of the tAMEn algorithm leads to the SVD trunca-

tion and time discretisation errors accumulated every time step, which for linear A-stable
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equations makes the total error bound linear in time. However, the majority of numerical

experiments demonstrate a much milder behaviour with the error fluctuating within a con-

stant interval for long periods of time. Moreover, the conservation laws are preserved with

the machine precision independently of the time interval and TT rank truncation.

Charge Transfer Dynamics in Molecular Aggregates

We now show how to apply the methodology developed in the preceding sections to the

study of charge-transfer (CT) processes in realistic models of molecular aggregates. This

latter are assemblies of identical molecular subunits interacting via their electronic degrees

of freedom. The nature of the electronic states and of their coupling, as wells as their

interaction with specific inter-molecular vibrations and with the environment are key features

that controls their behaviour, and can produce a rich variety of properties which are appealing

for several scientific and technological applications such as opto-electronics,61 solar energy

storage, electron- and hole-transport in solar cells and many others.62

In the most general case different electronic states interacts with the environment in

different ways and the degrees of freedom involved in the system-environment interaction

are often uncorrelated, furthermore the nuclear DoFs of the molecular subunits are usually

described as a discrete ensemble of harmonic oscillators, linearly interacting with the elec-

tronic subsystem. This model can be mapped into a relatively simple system Hamiltonian

operator, HA, of the form

HA =
Ne∑
n,m

εnm |n〉 〈m|+
F∑
k=1

ωk
2

(p2k + q2k) +

Ne,F∑
n,k

g
(n)
k qk |n〉 〈n| . (36)

Here the indices n,m run over all possible Ne electronic states of the aggregate, εnm is the

matrix of the electronic energies and couplings, pk, qk are the momentum and position oper-

ator of the kth inter-molecular vibration having frequency ωk, the parameters g(n)k account

for the vibronic interaction between the oscillators and the electronic states, and F is the
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number of vibrational DoFs.

Here we focus on the study of charge transport in one-dimensional aggregates with

nearest-neighbour coupling, which are the simplest and certainly the most studied type

of molecular assemblies.63 More specifically, we consider linear chains of a model pentacene

(Pc) units. In a chain of N units the mth monomer of the aggregate can be found either in

its ground electronic state |0〉m or in its cation state |(+)〉m; the electronic basis {|m〉} of

eq. 5 is constructed as the direct product of the "singly excited" manifold as

|m〉 = |0〉1 ⊗ . . . |(+)〉m . . . |0〉N (37)

i.e. it represents an electronic state with the positive charge localized on the mth site of the

chain. The vibrational frequencies and the linear vibronic couplings of our model are given in

table 1. The magnitude of the parameters g(n)k depends on the difference of the equilibrium

position of the kth oscillator of the pentacene unit in its neutral ground state and its cation

form. The overall reorganization energy for the pair Pc/Pc+ is λCT =
∑

k Skωk = 577 cm−1,

where Sk = (gk/ωk)
2/2 is the so-called Huang-Rhys factor64 of the kth vibrational mode.

This latter values provide a direct measure of the Franck-Condon activity of the mode in

the charge-transfer process.65–67

Furthermore, each monomer is coupled to a thermal reservoir at 300 K; the system-bath

coupling is described by the Debye spectral density with a characteristic frequency γ = 50

cm−1 (which corresponds to a relaxation time of about 100 fs), and an overall reorganization

energy of 100 cm−1. This latter value is close to theoretical estimates obtained from molecular

dynamics simulations of pentacene crystals.68 We study the charge transport for two different

values of the electronic coupling: ε12 = 600 cm−1, and ε12 = 300 cm−1, which correspond to

typical values of the transfer integral found along different directions of pentacene crystals.69

In all simulations we assume that the system is initially found in the ground vibrational state

of its neutral form and that one end of the chain is instantenously brought into its cationic
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form, triggering the charge motion along the chain.

Table 1: Vibrational frequencies ωn, linear couplings g(n)k and Huang-Rhys fac-
tors, Sk, of the 7 mode model of the pentacene unit. We omit the electronic state
label since the vibronic couplings are the same for all units. All the parameters
are expressed in cm−1 and have been taken from the literature.70

ωk gk Sk
265.6 107.0 0.0811
823.7 -126.0 0.0117
1054.6 -178.2 0.0143
1195.4 -246.2 0.0212
1234.5 -467.9 0.0718
1443.2 819.7 0.1613
1572.8 761.2 0.1171

We start by analysing the CT dynamics in a pentacene homodimer. To better understand

the numerical effort of this calculation we point out that this model comprises one electronic

DoF, and 14 vibrational DoFs. Since in the NETFD formalism the number of physical

variables is doubled we have a total of 30 physical and tilde DoFs. Furthermore, since each

electronic state interacts with a specific environment, we have two additional bath variable

defined in eq. 24. This results in a TT representation of the density vector with 32 indices.

Clearly such a calculation could not be afforded with the standard numerical machinery of

HEOM.71 All our calculations were performed on a dual socket 28 core machine equipped

with Intel(R) Xeon(R) Gold 6132 CPU. The tAMEn code72 is written in MATLAB, and the

time required for the pentacene-dimer calculation is about 10 hours.

In figure 1a) the electronic population of the initial state of the system (corresponding to

the charge completely localized on the first site) is reported as a function of time for the two

values of the electronic coupling. Both curves show several beatings which are the result of

a strong interplay between the pure electronic coupling and the vibronic contributions.

In figures 1b,c) the real and imaginary part of the off-diagonal terms of the electronic re-

duced electronic density matrix are reported. After a reasonable amount of time it is expected

that the system reaches thermal equilibrium and the density vector becomes stationary (and

real). As can be seen from figure 1b,c) this is indeed the case since the imaginary part of
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the off-diagonal term falls off at long times, and the real part reaches the constant value -0.4

for ε12 = 600 cm−1 and -0.27 for ε12 = 300 cm−1. Interestingly, the real part of ρ12(t) shows

an apparently simple structure with a predominant oscillation having a period of about 27

fs. This contribution can be very likely attributed to the strong vibronic activity of the high

frequency vibration of pentacene at 1572 cm−1. However, a closer examination reveals a

much more complex pattern, originating from all the Franck-Condon active vibrations.

A most important feature of the tAMEn algorithm is the capability to preserve linear

invariants of the system, as the trace of the reduced density matrix, i.e. the norm of the

density vector, throughout the evolution without the need to introduce artificial constraints

into the equations of motion which might alter the fidelity of the solution. In figure 2a) the

norm conservation error is reported as a function of time. The results clearly evidence that

the conservation law is fulfilled to a high degree of accuracy at all times. We remind that

previous attempts to solve HEOM equations in TT formant using the TDVP integrator20,58

have evidenced a major problem caused by the lack of norm conservation of the solution,

which is solved by the tAMEn algorithm.

A second key property of the tAMEn methodology is the adaptivity of the TT rank

during the time evolution. Figure 2b) shows the maximum rank of the solution as a function

of time. For ε12 = 600 cm−1, the maximum rank increases (almost linearly) for the first

150 fs reaching the value of 265 at 196 fs, and then it starts to slowly decrease, and after 1

ps the maximum TT rank is stable around 100. This behaviour is expected and caused by

the dephasing and the relaxation induced by the system-bath interaction. Indeed, the rank

describes the degree of entanglement of the system DoFs which is partly destroyed by the

dissipation.73 A similar behaviour is observed for ε12 = 300 cm−1: the rank reaches a plateau

value of 103 after 150 fs, and remains stable for a fairly long stretch of time, then, around

300 fs it start to slowly decay reaching a value of 52 after 1 ps.

A most noteworthy feature is that the decrease in the electronic coupling strongly reduces

the maximum rank of the TT representation during the evolution, which is clearly associated
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to a lower degree of entanglement. We also point out that the TDVP algorithm for obvious

reasons cannot provide any information of this type and cannot take advantage of the intrinsic

dissipative dynamics of an open system.

In order to better understand the effect of the dissipation on the system dynamics, and on

the system-bath entanglement, the purity, i.e. the quantity Trρ2(t), of the pentacene dimer

model is reported in figure 3a) as a function of time for the two values of the electronic

coupling ε12. In both cases the purity decreases rapidly at early times, and a transient

oscillatory behaviour accompanied by an overall increasing trend is evident. For ε12 = 300

cm−1 the purity reaches a plateau value of 0.66 after 600 fs, while for ε12 = 600 cm−1

the purity reaches the value of 0.83 after 1 ps with a clear positive slope. The observed

recovery of the initial purity can be related to the ratio λ/ε12 which indicates how strongly

the system states are perturbed by the bath: the smaller the perturbation the higher the

purity rebound.74

The possibility to investigate the dynamics of larger systems using our HEOM-TT ap-

proach is further demonstrated in figure 4 where the CT dynamics of a linear tetramer of

pentacene units is shown. The overall system includes 28 vibrational degrees of freedom

and 4 uncorrelated thermal baths. The bath parameters are the same used in the previous

simulations. In this case the overall number of degrees of freedom is 62, and the CPU time

required for the calculation is about 25 hours. Figure 4a) shows the populations of the four

electronic states as a function of time. At long times a splitting in the populations of the

central and terminal sites is evident and caused by the open boundary structure of the chain.

High frequency oscillations due to the undamped nature of the discrete system of oscillators

are also evident.

Figure 4b) shows the real part of the six off-diagonal terms of the reduced electronic

density matrix of the pentacene tetramer. The short time dynamics reveals large high

frequency oscillations driven by the strong vibronic activity of the high frequency modes of

the system. Again, at longer times the reduced density matrix becomes almost stationary as
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expected due to the equilibration with the heat reservoir. We notice that adjacent sites have

the largest (negative) values of the off-diagonal couplings (ρ12, ρ23, ρ34) which is expected

due to the nearest-neighbour interaction model. For the same reason the term ρ14 remains

always very small. The imaginary part of the off-diagonal terms of the density matrix falls to

zero, as expected, but still exhibits some oscillatory behaviour which indicates that complete

thermal equilibrium occurs at longer times.

Figure 5a,b) show the error in norm preservation, and the maximum value of the rank

of the TT representation of the density vector as a function of time. As for the pentacene

dimer dynamics the norm is preserved to high degree of accuracy; TT rank increases for

the first 170 fs reaching the value of 296, and then it starts to slowly decrease; after 1 ps

the maximum TT rank is stable around 100. We underline that these two important results

enable the study of long time dynamics even for realistic complex chemical systems.

Finally, the purity, of the pentacene tetramer model is reported in figure 3b) as a function

of time. Similarly to the dimer model the purity decreases rapidly at early times, and it

reaches a plateau value of 0.48 after 600 fs. However, in this case the transient oscillatory

behaviour is much less pronounced probably due to the larger number of vibrational DoFs

involved in the dynamics which providing a stronger dephasing mechanism.

Conclusions

We have shown that the twin-space formulation of HEOM combined with the TT repre-

sentation of the auxiliary density vector (HEOM-TT) can be a very versatile tool for the

study of vibronic problems including system-bath interactions which are ubiquitous in phys-

ical chemistry. The new tAMEn algorithm used in this work has two key features which

makes it particularly appealing for HEOM-TT: i) it can preserve the norm of the reduced

density matrix to a prescribed accuracy ii) it adapts the ranks of the solution during the

time evolution. The possibility to fulfill conservation laws is certainly fundamental for any

21



meaningful simulation of a physical system. Unfortunately, it is known that the application

of the TDVP formalism to the Liouville-von Neumann equation results in a time evolution

that does not respect neither norm nor energy conservation. Heller was the first to suggest

the introduction of an additional constraint in order to preserve the norm in a pure TDVP

theory,23 and Shi and coworkers have recently shown that it is actually possible to implement

this approach in HEOM methodology.58 The approach adopted here has the advantage of

introducing conservation laws without the need to modify the equations of motion of the den-

sity matrix. We further note that the tAMEn algorithm can easily handle time-dependent

system Hamiltonain enabling the study of complex driven system.

The rank adaptivity has the clear advantage of providing a solution with a prescribed

accuracy at all times. While pure TDVP approaches guarantee that the solution remains in

the manifold of TT with fixed rank, apparently enabling long time dynamics avoiding rank

inflation due to entanglement growth, they do not guarantee that the long time solution

is accurate. The side effect of such a fixed cost approach is that several calculations with

increasing TT ranks are necessary in order to check the accuracy of the final solution. We

finally mention that mixed approaches based on a combination of TT-TDVP and Krylov

subspace techniques, that introduce a rank adaptation step into the TDVP integration, have

also been implemented.75 Work is in progress to assess the possibility to apply this new

integrators to HEOM and compare them to the tAMEn algorithm.
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Appendix: basic NETFD theory.

In NETFD a double Hilbert space is defined, also referred to as Liouville space, L = (H⊗H̃)

where H̃ is the Hilbert space of a fictitious dynamical system identical to the original Hilbert

space H of the real physical systems.28,29,76 If {|mñ〉} is an orthonormal basis of L then

〈mñ|m′ñ′〉 = δmm′δññ′
∑
mn

|mñ〉 〈mñ| = 1.

The identity vector |I〉 is further defined as

|I〉 =
∑
m

|mm̃〉 . (38)

This special vector allows to define a mapping between the dual space of H (i.e. the bra

space) and the tilde space, indeed we have

〈m|I〉 = |m̃〉 〈m̃|I〉 = |m〉 . (39)

Using this relations it is possible to associate a vector of the L space to each operator A

acting in the H space

|A〉 = A |I〉 . (40)

Similarly, we can define a state vector |ρ(t)〉 = ρ(t) |I〉, where ρ(t) is the density matrix of

the system. Accordingly, the expectation value of A is defined as the scalar product

〈A〉 = 〈A|ρ(t)〉 =
〈
I
∣∣Aρ(t)

∣∣I〉 ≡ tr(Aρ(t)). (41)
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The meaning of the above notation can be easily understood using the closure relation

|A〉 = A |I〉 =
∑
mn

|mñ〉
〈
mñ
∣∣A∣∣I〉 =

∑
mn

〈
m
∣∣A∣∣n〉 |mñ〉 =

∑
mn

Amn |mñ〉

whence it is clear that the vector |A〉 is a linear combination of a basis of L with coefficients

given by the matrix elements Amn. Together with operators acting in the space H it is

possible to define a set of operators acting on the H̃ space. In particular, following Suzuki,28

two operators A and B are weakly equivalent if

A |I〉 = B |I〉 (42)

and we write

A ' B. (43)

For each Hermitian operator A acting in the H space it is possible to define a tilde operator

Ã that is weakly equivalent to A as

A |I〉 = Ã† |I〉 −→ A ' Ã† (44)

where the dag operator implies the Hermitian conjugation. Consequently, for Hermitian

operators

A ' Ã. (45)

The tilde operator can be obtained from the original operators by the so-called tilde conju-

gation rules

(AB)∼ = ÃB̃ (c1A+ c2B)∼ = c∗1Ã+ c∗2B̃. (46)

If A,B are two operators of the H space and Â = A− Ã† then

ÂB |I〉 = (A− Ã†)B |I〉 = (AB −BÃ†) |I〉 = (AB −BA) |I〉 = [A,B] |I〉 (47)

24



proving the fundamental property of the twin-space formalism

[A,B] ' ÂB. (48)
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Figure 1: a) Charge-transfer dynamics in a pentacene homodimer; the charge is initially
localized on site 1; P1(t) is the electronic occupation number of site 1; with. Bath reorga-
nization energy is 100 cm−1, characteristic frequency ωc = 50 cm−1. The hierarchy level is
truncated at m = 10 on each bath. b) Real part of the off-diagonal term of the electronic
reduced density matrix. c) Imaginary part of the off-diagonal term of the electronic reduced
density matrix. Blue line ε12 = 600 cm−1; red line ε12 = 300 cm−1.
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Figure 2: a) Error in the norm preservation of the density matrix during the evolution of the
pentacene homodimer system. The parameters of the system are the same used for figure 1.
b) Maximum value of the rank of the TT representation of the density matrix as a function
of time. Blue line ε12 = 600 cm−1; red line ε12 = 300 cm−1.
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Figure 3: a) Purity of the vibronic model of the pentacene dimer coupled to a bath. Blue line
ε12 = 600 cm−1; red line ε12 = 300 cm−1; b) Purity of the vibronic model of the pentacene
tetramer coupled to a bath;bath reorganization energy 100 cm−1, characteristic frequency
ωc = 50 cm−1.
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Figure 4: a) Charge-transfer dynamics in a pentacene tetramer; the charge is initially
localized on site 1; pk label the electronic occupation number of site k; b) Real part of the off-
diagonal term of the electronic reduced density matrix; c) Imaginary part of the off-diagonal
term of the electronic reduced density matrix; Bath reorganization energy λ = 100 cm−1,
bath characteristic frequency ωc = 50 cm−1, electronic coupling ε12 = 300 cm−1. The
hierarchy level is truncated at m = 10 on each bath.
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Figure 5: a) Error in the norm preservation of the density matrix during the evolution of
the pentacene tetramer system. b) Maximum value of the rank of the TT representation of
the density matrix as a function of time. Bath reorganization energy λ = 100 cm−1, bath
characteristic frequency ωc = 50 cm−1, electronic coupling ε12 = 300 cm−1. The hierarchy
level is truncated at m = 10 on each bath.
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