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We present Beauty3DFaceNet, the first deep convolutional neural network to predict attractiveness on

3D faces with both geometry and texture information. The proposed network can learn discriminative

and complementary 2D and 3D facial features, allowing accurate attractiveness prediction for 3D faces.

The main component of our network is a fusion module that fuses geometric features and texture fea-

tures. We further employ a novel sampling strategy for our network based on a prior of facial landmarks,

which improves the performance of learning aesthetic features from a face point cloud. Comparing to

previous work, our approach takes full advantage of 3D geometry and 2D texture and does not rely on

handcrafted features based on highly accurate facial characteristics such as feature points. To facilitate

3D facial attractiveness research, we also construct the first 3D face dataset ShadowFace3D, which con-

tains 6,0 0 0 high-quality 3D faces with attractiveness labeled by human annotators. Extensive quantitative

and qualitative evaluations show that Beauty3DFaceNet achieves a significant correlation with the aver-

age human ratings. This validates that a deep learning network can effectively learn and predict 3D facial

attractiveness. 
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. Introduction 

Psychological studies have demonstrated that the human face 

lays a significant role in conveying emotion and making a first

mpression. Hence three-dimensional facial attractiveness (defined

s the aesthetic level of portraits to human raters [1] ) prediction

s extremely important for many applications [2] , such as cosmetic

urgery [3] , face design [4] , and entertainment. Researches show

hat the attractiveness of face is determined by frontal portrait, the

rofile view, and the combination of them [5] . In addition, cos-

etic science research reveals that cosmetics can improve facial

ttractiveness without changing the underlying 3D facial geometry 

6] . These results imply that both face geometry and texture con-

ribute to its attractiveness. 

Many works have been proposed for face attractiveness predic-

ion, including CNN-based methods using frontal portrait images

7,8] , learning-based methods using the landmarks of frontal and 
e

m

b

M

3

rofile images [9] , and methods using aesthetic criteria based on a

parse set of facial landmarks that are carefully specified [5] , just

o name a few. However, existing methods cannot handle 3D face

ata with much more abundant information (point cloud + texture

mage) and various cosmetic design details, which are particularly

seful for cosmetic surgery. A naive solution is to employ Point-

et++ [10] to predict attractiveness by learning features in sam-

led point sets. We note that human eyes have different percep-

ual sensitivity to different face regions [11] . Although PointNet++

an effectively distinguish geometric shapes, it has intrinsic limita-

ions in handling 3D faces because 3D faces differ mainly in details

ather than the overall shape. For one thing, the relatively sparse

ace point cloud contains valuable geometric information but lacks

ich texture information that is vital for assessing facial attractive-

ess. For another thing, the dense texture image is only a 2D map-

ing from a 3D face without the underlying 3D geometry. Then

ow to construct a new discriminative 3D face representation to

ncode both point cloud and texture image, and is sensitive as hu-

an perception, such that various 3D cosmetic facial designs can

e assessed beyond a single face view becomes a new challenge.

oreover, for attractiveness assessment research, there is a lack of

D face dataset with annotations reflecting public aesthetic crite- 
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ia. Ideally, the dataset should include a wide variety of cosmetic

esigns by professional cosmetic surgery designers to facilitate real

pplications. 

To this end, we propose Beauty3DFaceNet, a prior-inspired con-

olutional neural network that computes 3D face attractiveness au-

omatically. The proposed Beauty3DFaceNet comprises a newly de-

eloped 3DFacePointNet++ module, a ResNet module, and a fusion

odule. It constructs a discriminative 3D face representation by

eamlessly fusing the geometric and texture features extracted by

DFacePointNet++ and ResNet modules, respectively. The two types

f features complement each other to encode the geometry and

exture of a 3D face. As a result, the proposed 3D face represen-

ations can distinguish not only geometry but also texture varia-

ions. In particular, the features of a 3D face with various cosmetic

esigns, some of which are hard to be observed from the front or

rofile views, can be faithfully extracted by the 3DFacePointNet++

odule. 

Our 3DFacePointNet++ utilizes facial landmark priors to simu-

ate the perceptual sensitivity of human eyes to receive more infor-

ation from sensitive regions of human faces. This can be viewed

s a region of the interest (ROI)-based sampling using facial prior.

ven though facial contour functions a vital role during facial at-

ractiveness assessment, it is low-frequency, and requires less 3D

oints to describe facial contour compared to facial features. Dif-

erent from PointNet++, we sample uneven point clouds instead

f uniform point clouds. Besides, we employ a k -NN algorithm

o group the neighbors of sample points with different densities

daptively. This strategy improves the performance and robustness

f Beauty3DFaceNet. Moreover, it only requires facial landmarks

ith much lower accuracy compared to [5] . The landmarks are

aken as input rather than being detected in Beauty3DFaceNet as

t is not the core of our network. This allows us to use any suit-

ble facial landmark detector without modifying the structure of

eauty3DFaceNet. 

We further present ShadowFace3D (SF3D), a 3D face dataset

ith 6,0 0 0 high-quality 3D faces collected from people who care

ore about their facial attractiveness in beauty salons and plastic

urgery hospitals. The dataset also contains attractiveness scores

abeled by multiple human annotators to fulfill the public aesthetic

riterion. Note that some of the 3D faces in SF3D are carefully de-

igned on several parts such as eyes, nose, jaw, and cheeks, which

mprove facial attractiveness from several aspects that are hard to

e observed from a single view. 

We evaluate the proposed 3D facial attractiveness assessment

ethod based on the unique ShadowFace3D dataset. The ablation

tudy is carefully designed to validate the effectiveness of fusing

eometric and texture features, along with the prior-based sam-

ling strategy. The comparison with current work demonstrates

he state-of-the-art performance of Beauty3DFaceNet. 

Overall our work makes the following major contributions: 

• We propose the first deep learning network, called

Beauty3DFaceNet, for 3D facial attractiveness assessment. It

integrates facial geometry, facial texture, and facial prior and

computes a more convincing 3D facial attractiveness score

like human raters. 
• We create a 3D facial attractiveness dataset ShadowFace3D,

which contains sufficient information such as the point

clouds, texture images, and texture mappings of 3D faces as

well as their public aesthetic criteria. Specifically, it contains

the original and the lifted face pair of the same person, de-

signed by professional designers of plastic surgeons. It is the

first 3D face database for attractiveness assessment. 
• We present 3DFacePointNet++, a new network based on fa-

cial landmark priors to simulate the perceptual sensitiv- 
2 
ity of human eyes, which improves the performance of the

Beauty3DFaceNet. 

. Related work 

2D image-based approach. Early facial attractiveness assess-

ent relies on handcrafted features (e.g., geometry, texture, color)

nd holistic descriptors. Geometric features are mainly based on

acial landmark positions. For instance, the distances between

andmarks and their ratios [12–16] are mostly used. Other geo-

etric properties are pre-defined based on heuristics and classical

ules of beauty, such as golden ratios, the facial fifths and thirds,

nd the symmetry theory [12,15,16] . Texture features, such as Ga-

or filter responses, local binary patterns (LBPs), and skin smooth-

ess indicators [14,17] , are widely investigated. Besides, the active

ppearance model (AAM) parameters, which encode both facial

hape and texture information, are employed in [18] . Color fea-

ures, including color symmetry, hue/saturation/value (HSV) coor-

inates, and color distribution [13,14] , are also effective in practice.

olistic descriptors, such as Eigenface [13,17] , face manifold [19] ,

nd face shape model [20] , are proved to be useful due to contain-

ng the information of the whole face. Research on handcrafted and

olistic features has led to some early success. However, these fea-

ures are low-level features explicitly defined and extracted from

mages. With the development of deep learning, it is possible to

earn higher-level facial feature representations and apply them

or facial attractiveness assessment. Gray et al. [21] first propose

 CNN-like model to extract high-level features for facial attrac-

iveness prediction. Various deep learning methods are applied for

he facial attractiveness prediction task, such as self-taught learn-

ng [22] , psychologically inspired convolutional neural network (PI-

NN) [23] , feature combination [18] , label distribution learning

LDL) [24] , multi-task learning [7] , etc. Deep learning methods out-

erform traditional approaches due to the ability to effectively

earning high-level features. Inspired by this, our scheme includes

oth image and point cloud CNN modules, taking advantage of

rained high-level features in both 2D and 3D. 

3D shape-based approach. Compared to 2D image-based ap-

roaches, the research of 3D facial attractiveness prediction is

uch less explored. Recently, face reshaping methods [25,26] are

resented to generate more shapely 3D faces. However, they did

ot evaluate facial attractiveness. O’Toole et al. [27] present a PCA-

ased model to analyze the effect of averageness of facial attrac-

iveness using 2D texture and 3D shape. Kim et al. [28] use sym-

etric deformation to enhance facial attractiveness. Based on a

et of 3D face landmarks, Liao et al. [5] develop a scoring sys-

em through a set of rules, such as local and global symmetriza-

ion, frontal facial proportion via neoclassical canons and golden

atios, and facial angular profile proportion. Xu et al. [29] predict

ersonality trait based on a 2.5D face feature model. Note that Liu

t al. [9,30] introduce a landmark-based data-driven approach for

ulti-view (frontal and profile view) facial images. Most of these

ethods use sparse information (facial landmarks) and ignore tex-

ure and dense geometric information, which is vital for facial at-

ractiveness prediction. 

3D CNN for point clouds. CNN-based classification methods

ave gained popularity due to their ability to learn mid-level and

igh-level features. As point cloud is a particularly important type

f geometric representation captured by 3D scanners, there ex-

st various works focusing on adapting 3D CNN for point clouds.

i et al. [31] utilize max-pooling as the symmetric function to

olve unordered point clouds and generate global features for point

loud learning. Qi et al. [10] further present PointNet++ to en-

ode local features. Li et al. [32] present pointCNN that estimates

 X−transform to deal with irregular and unordered properties of

oint clouds. Wu et al. [33] propose pointconv that uses dynamic 
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Fig. 1. The structure of the proposed Beauty3DFaceNet for 3D facial attractiveness prediction. It contains 5 stages for learning geometric and textural features followed by a

fully connected layer to predict attractiveness score. Each stage consists of a 3DFacePointNet++ module with a novel sampling strategy based on facial landmarks, a ResNet

module, and a fusion module. The input 3D face ( G 0 , I0 , M : G 0 → I 0 ) comprises a point cloud G 0 , a texture image I 0 , and a texture mapp M : G 0 → I 0 . Stage 1 processes 

G 0 and I 0 using the 3DFacePointNet++ module and the ResNet module, respectively. The generated geometric features and texture features are seamlessly fused using the

fusion module based on the texture map, resulting in the intermediate geometric and textural features ( G 1 , I1 , M : G 1 → I 1 ) for the next stage to be processed similarly.

After stage 5, Beauty3DFaceNet generates a high-level face feature representation fed into a fully connected layer and finally outputs an attractiveness score. 
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Fig. 2. Flowchart that illustrates the process of the fusion module. After feature

learning with 3DFacePointNet++ (which generates a texture map μk −1 and a geo-

metric feature G k −1 ) and ResNet (which generates a texture feature I k −1 ), a feature 

fusion process takes place. Taking μk −1 and I k −1 as input, the corresponding tex-

ture feature is extracted with the help of the UV-Mapping Node, and fused with

the geometric feature G k −1 to generate the new geometric feature G k for the next

feature learning stage. In the UV-Mapping Node, each point in the down-sampled

point cloud has UV coordinates that encode the correspondence between it and

its location in the input texture image, and thus it can be directly mapped into

the down-sampled texture features. Specially, we utilize two different 1 × 1 con-

volution layers to normalize the geometric feature and the corresponding texture

feature, then fuse them using element-wise summation. 
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lters to handle point clouds. These methods can only deal with

oint clouds that are too sparse for our facial attractiveness analy-

is. Xu et al. [34] fuse the last level of features of PointNet++ and

esNet for 3D object detection. Nevertheless, their method does

ot leverage the inherent connection between point cloud and tex-

ure image. To overcome the above limitations, a 2D and 3D fusion

odule is designed in Beauty3DFaceNet to seamlessly fuse point

loud and texture image based on the texture mapping in-between.

oreover, inspired by [35] , we use facial landmarks as prior to

uide point cloud sampling, such that our network can handle in-

ut data with sufficient information efficiently and robustly. 

. Deep 3D facial attractiveness prediction 

In this section, we elaborate the details of our deep-

earning-based 3D face attractiveness prediction network -

eauty3DFaceNet, which predicts facial attractiveness by fusing the

eatures extracted from the 3D face point cloud and its corre-

ponding texture image. As shown in Fig. 1 , Beauty3DFaceNet con-

ists of 5 stages for learning geometric and textural features. Each

tage has three constituent modules: a 3DFacePointNet++ mod-

le that extracts point cloud features, a ResNet module that ex-

racts texture features, and a fusion module that seamlessly com-

ines point cloud features and texture features. We first describe

eauty3DFaceNet in detail in Section 3.1 . Then we present how

o perform effective point cloud sampling based on facial land-

ark prior in Section 3.2 . Finally, we introduce the new 3D face

ataset - ShadowFace3D with annotated facial attractiveness scores

n Section 3.3 . 

.1. Beauty3DFaceNet structure 

Given a 3D face F = {G 0 , I 0 , M} consis ts of f ace geometry G 0 ,

ace texture I 0 , and the texture map in-between M : G 0 → I 0 , our

oal is to leverage deep neural networks to learn representative

eatures from the 3D face, which can be used for accurate facial

ttractiveness prediction. Since digitized human face contains both

eometry and texture, how to extract and complement features in

D and 2D effectively becomes the fundamental problem. 

Here we assume face geometry G 0 is represented as a 3D point

louds, which comprises a set of unorganized 3D points. Such a

epresentation is general as it does not require point connectiv-

ty within each face and point correspondences between faces. Be-

ides, existing point-based CNN such as PointNet++ [10] can be ap-

lied here. Although face texture I 0 is simply a 2D image and 2D 

NN can be directly employed, special consideration needs to be

aken to make the learned 2D (texture) features complementary to 
3 
D (geometry) features, allowing consolidated attractiveness pre-

iction. Thanks to the texture map M between 2D texture and 3D

eometry when reconstructing 3D digital faces, we can easily fuse

D and 3D features corresponding to the same location on a 3D

ace. 

Based on the above analysis, we design the proposed

eauty3DFaceNet with five feature learning stages and a fully con-

ected layer for facial attractiveness prediction (see Fig. 1 ). Each

eature learning stage in Beauty3DFaceNet has three modules in-

luding a 3DFacePointNet++ module, a ResNet module, and a fusion

odule ( Fig. 2 ). Taking stage 1 as an example, the input is com-

osed by 3D face features F = {G o , I o , M}. Mor e specifically, G o is

he current geometric feature. It contains a point cloud and the

orresponding learned 3D features at individual points (for stage

, it is just the input face point cloud). Due to the close correla-

ion, we use one variable to simplify the notation. I o is the current

extural feature (for stage 1 it is just the input face texture) fed

nto the ResNet module. M : G o → I o is the texture map between 
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Fig. 3. Examples of (a) farthest point sampling (FPS), (b) facial prior-based sampling

(FPBS), and the facial landmarks used for prior-based sampling (c). This landmark

set contains facial landmarks located on eyes, eyebrows, nose, mouth, jaw, etc., and

landmarks on face contour. 
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oint cloud and texture image. The 3DFacePointNet++ module out-

uts the intermediate geometric feature composed of the down-

ampled point cloud (as well as the corresponding texture map)

nd the corresponding 3D features. The ResNet module outputs the

ntermediate texture feature I 1 . The fusion module ( Fig. 2 ) uses the

exture map M to extract the corresponding texture feature of the

ntermediate geometric feature and fuses these two types of fea-

ures to generate new geometric features G 1 . Eventually stage 1

xtracts a higher level 3D face feature F 1 = {G 1 , I 1 , M} for the next

eature learning stage. The next four feature learning stages (stage

-5) are performed in the same way. 

For predicting facial attractiveness, the loss function of

eauty3DFaceNet is defined as: 

s = Beaut y 3 DF aceNet ( F ) ,

L =
∑ ||s ∗ − s ||2 , 

(1) 

here F is an example 3D face in the dataset, s is the predicted

acial attractiveness score of F by Beauty3DFaceNet, and s ∗ is the 

orresponding ground-truth score. 

.2. 3DFacePointNet++ 

Different from the original PointNet++, our 3DFacePointNet++

odule processes the input point cloud using a facial prior-based

ampling strategy. PointNet++ uses farthest point sampling (FPS)

hat is more suitable for complete and uniform sampling of un-

venly distributed points. However, for judging face attractiveness,

ore attention tends to be paid on the inner part of the face. FPS

imply ignores the region of interests and may not sample enough

iscriminative points with rich information for attractiveness pre-

iction. To solve this problem, we propose a novel sampling strat-

gy by using facial landmarks as a prior, such that points closer to

he landmarks have a higher probability of being sampled. We em-

loy K nearest neighbor search ( k -NN), an alternative range query

ethod to adaptively group the neighbors of sample points with

ifferent densities. 

Given a point p in the point cloud, and a landmark set M , we 

efine the minimal Euclidean distance between p and m ∈ M as

he distance from p to M . The distance is further normalized as: 

 ( M , p ) = 1 

DP 
min 

m ∈ M 

||m − p ||, (2) 

here DP is the pupil distance between left and right eyes. Based

n the distance defined above, we introduce an empirical prior for

oint sampling preference as follows: 

 prior ( M , p ) ∝ e 
1

λ2 
D ( M , p ) 2 

2 σ2 , (3) 

here σ 2 is the variance of D ( M , p ) , and the parameter λ
etermines the sampling density variation with respect to fa-

ial landmarks. We find that using facial prior greatly improves

he performance and robustness of attractiveness prediction (see

ection 4.3 ). Fig. 3 (a) and (b) demonstrate the differences between

ampling results with and without the proposed prior. 

Note that instead of relying on high-quality facial landmarks

o extract aesthetics-aware features for facial attractiveness anal-

sis [1,5] , we only use facial landmarks to adaptively sample face

oint cloud. The network reliably learns the high-level features of

 3D face, which dramatically reduces the facial landmarks’ qual-

ty requirement. Thus the features extracted by Beauty3DFaceNet

re compatible with various face alignment algorithms [35,36] .

ig. 3 (c) shows the set of facial landmarks used to represent the

ace structure such as facial features, forehead, jaw, and cheeks,

tc. 
4 
.3. ShadowFace3D dataset 

We construct a 3D face dataset called ShadowFace3D with

,0 0 0 3D faces of Asian males and females age from 18 to 45 with

cademic usage agreement. Each face contains a 3D point clouds

4096 points), a 3D texture image, the texture map in-between,

nd an annotated attractiveness score. Twenty raters score each

D face by dragging a slider from 1 to 5, where a value of 1 rep-

esents the least attractive, and 5 represents the most attractive.

e choose the average rating score as the attractiveness score for

ach 3D face. We use Bellus3D [37] to scan faces indoors based

n the built-in light control of the scanner. The 3D faces are col-

ected from people who care more about their facial attractiveness

n beauty salons and plastic surgery hospitals. We also collect a

ertain number of original 3D faces and corresponding lifted faces

esigned by cosmetic doctors and plastic surgeons for the appli-

ation of cosmetic surgery. There are 500 pairs of such 3D faces

n our dataset. The plastic surgeons usually adjust the nose, jaw,

heeks to make a face more shapely. Such changes are hard to be

bserved from a single view. 

. Experiments 

In this section, we present the experimental results to demon-

trate that the proposed Beauty3DFaceNet can effectively utilize

he 3D face data and learn discriminative features, leading to more

ccurate attractiveness prediction results. We first describe how

e prepare data based on the ShadowFace3D (SF3D) dataset for

arious facial attractiveness evaluations. Then we demonstrate the

mplementation details and the performance of our method. Af-

er that, we conduct ablation studies to evaluate the effectiveness

f the design choices of the proposed Beauty3DFaceNet, including

eature learning modules and the novel facial prior based sampling

trategy. Finally, we compare Beauty3DFaceNet with other state-of-

he-art methods to show the improvement in facial attractiveness

rediction. 

.1. Data preparation 

To extensively evaluate our work, we prepare experimental data

ased on the SF3D dataset as follows. We split the 6,0 0 0 3D faces

n SF3D into a training set (4,200 + (300 + 300)), a validation set

40 0 + (10 0 + 10 0)) and a test set (400 + (100 + 100)), which

re employed for training, ablation studies, and comparisons. Here,

(300 + 300)” means 300 faces and their lifted ones. For con-

ucting ablation studies with different settings, we construct vari-

nt sets of experimental data based on SF3D, including only point

louds (PC), only texture images (TI), point clouds with point col-

rs (PC+RGB), both point clouds and texture images without tex-

ure maps (PC+TI), and data with all information (PC+TI+TM). 
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Table 1 

Beauty3DFaceNet architecture. 

Stage Input size Point cloud and

image convolution 

Intermediate

output size 

Texture map Fusion operation 

Convolution layer Element-wise

summation 

1 4096 × 5 SA(2048, 0.10, [ 64, 64, 128]) 2048 × (5 + 128) 1 × 128 × 128 2048 × (5 + 128) 

224 × 224 × 3 ResNet Conv1 112 × 112 × 64 2048 × 64 1 × 64 × 128 

2 2048 × (5 + 128) SA(1024, 0.15, [128, 128, 256]) 1024 × (5 + 256) 1 × 256 × 256 1024 × (5 + 256) 

112 × 112 × 64 ResNet Conv2 56 × 56 × 256 1024 × 256 1 × 256 × 256

3 1024 × (5 + 256) SA(512, 0.20, [256, 256, 512]) 512 × (5 +512) 1 × 512 × 512 512 × (5 + 512) 

56 × 56 × 256 ResNet Conv3 28 × 28 × 512 512 × 512 1 × 512 × 512

4 512 × (5 + 512) SA(128, 0.40, [512, 512, 1024]) 128 × (5 +1024) 1 × 1024 × 1024 128 × (5 +1024) 

28 × 28 × 512 ResNet Conv4 14 × 14 × 1024 128 × 1024 1 × 1024 × 1024 

5 128 SA([1024, 1024,2048]) 1 × 2048 1 × 2048 × 2048 1 × 2048 

14 × 14 × 1024 ResNet Conv5 and average pool 1 × 1 × 2048 1 × 2048 × 2048 

1 × 2048 FC(512,0.5) → FC(256, 0.5) → FC(1) Attractiveness

Score 
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Table 2 

Comparison of mean absolute error (MAE) for various models trained on different

experimental datasets. 

Method Dataset MAE 

PointNet + + PC 0.316 

PointNet + + PC + RGB 0.306 

3DFacePointNet + + PC 0.305 

3DFacePointNet + + PC + RGB 0.295 

ResNet-18 TI 0.260 

Beauty3DFaceNet-S PC + TI 0.243 

Beauty3DFaceNet-O PC + TI+TM 0.196 

Beauty3DFaceNet PC + TI+TM 0.170 

Table 3 

Comparison of MAE for Beauty3DFaceNet with a different number of fusion mod-

ules. 

Fusion depth 5 4 3 2 1

MAE 0.170 0.181 0.194 0.219 0.243 
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.2. Implementation details 

Network architecture . Table 1 details the network architecture

f Beauty3DFaceNet. For clarity, we use the following notations to

resent our out network architecture. SA( k, r, [ l 1 , ...l n ]) is a set ab-

traction (SA) layer of 3DFacePointNet++ (a variant PointNet++ us-

ng our sampling prior), which samples k local regions with ball

adius r using PointNet of n fully connected layers with width 

 i (i = 1 , ..., n ) . FC( m, p) represents a fully connected layer (width

 ) followed by a dropout layer (drop ratio p). Please refer to 

ointNet++ [10] for more details. We utilize ResNet50 [38] (which

s fixed as constant in Beauty3DFaceNet) pre-trained on Ima-

eNet [39] to extract texture features. We use “ResNet Conv1,...,

esNetConv5” to represent 5 convolutional stages of ResNet. More

etails can be found in [38] . Specifically, each geometric feature’s

rst five dimensions comprise the 3D position (x, y, z) and texture

oordinates (u, v ) that is only used for set abstraction and texture

apping, respectively. 

Performance . The size of our model is 176MB. The forward time

f our model is 228ms (with batch size 16 using PyTorch 1.2 on

VIDIA GTX 1080Ti). 

.3. Ablation studies 

Here we present two ablation studies to validate the pro-

osed Beauty3DFaceNet, including 1) the effectiveness of the fea-

ure learning, fusion modules, and 3DFacePointNet++; and 2) the

obustness of Beauty3DFaceNet to the quality of facial landmarks

nd the number of points in the input point clouds. 

.3.1. Feature learning and fusing modules 

Baselines. To accurately evaluate the three modules

e.g., 3DFacePointNet++, ResNet, and fusion modules) in our

eauty3DFaceNet, we create five baselines: 1) the original Point-

et++ [10] applied on facial attractiveness prediction (FAP); 2)

he 3DFacePointNet++ applied on FAP; 3) the regression net-

ork based on ResNet-18 [38] ; 4) the simplified version of

eauty3DFaceNet (noted as Beauty3DFaceNet-S), which only fuses

he last CNN features of ResNet-18 and 3DFacePointNet++; and 

) the Beauty3DFaceNet using the original PointNet++ (noted as

eauty3DFaceNet-O). 

Evaluation. Table 2 shows the prediction results with differ-

nt settings using corresponding experimental data, which demon-

trates the effectiveness of the 3DFacePointNet++ module, ResNet

odule, and fusion module of the proposed Beauty3DFaceNet re-

pectively. 

The 3DFacePointNet++ module . As shown in Table 2 , the mean

bsolute error (MAE) of Beauty3DFaceNet is 0.170, which is much 
5 
ower than that of ResNet-18 (0.260) by 0.09. The 3DFacePoint-

et++ shows slight improvement on PC compared to PointNet++ 

0.306 vs. 0.316), and further improves Beauty3DFaceNet compared

o Beauty3DFaceNet-O (0.17 vs. 0.196). Moreover, Beauty3DFaceNet-

 also leads to a better result of 0.243 than ResNet-18. This val-

dates the advantage of our 3DFacePointNet++ module for its 3D

eature learning ability. 

The ResNet module . We compare 3DFacePointNet++ on PC and

C+RGB, and Beauty3DFaceNet-S on PC+TI. It can be seen that

eauty3DFaceNet-S results in a much lower MAE (0.243) compared

o 3DFacePointNet++ on PC+RGB (0.295). It also outperforms Point-

et++ on PC by reducing MAE from 0.316 to 0.243. The results

how that the ResNet module can greatly improve attractiveness

rediction performance. Besides, the dense texture image is more

elpful than sparse point color information. 

The fusion module . The MAE of Beauty3DFaceNet on PC+TI+TM is

uch lower (0.170) than Beauty3DFaceNet-S on PC+TI (0.243). This

emonstrates that the fusion module can seamlessly fuse the geo-

etric and texture information to generate a more discriminative

igh-dimensional facial feature representation. 

The fusion depth . We further test Beauty3DFaceNet that uses a

ifferent number of fusion modules (from 1 stage to 5 stages).

able 3 shows the corresponding MAE losses, which are signifi-

antly reduced with the number of fusion modules, increased. 

.3.2. The robustness of Beauty3DFaceNet 

The quality of facial landmarks . For the 3DFacePointNet++ mod-

le in the Beauty3DFaceNet, facial landmarks are employed for per-

eptual sensitivity sampling, which improves our results. Moreover, 



Q. Xiao, Y. Wu, D. Wang et al. 

Table 4 

The MAE of the Beauty3DFaceNet with respect to different Gaussian noise added

on facial landmarks. 

Gaussian noise None N(2 , 9) N(5 , 9) 

MAE 0.170 0.172 0.171 

Table 5 

Comparison of MAE between the original PointNet++ [10] , the 3DFacePointNet++,

and the proposed Beauty3DFaceNet with different number of points of the input

point cloud. 

Number of Input Points 1024 2048 4096 

PointNet + + [10] 0.316 0.316 0.317 

3DFacePointNet + + 0.310 0.302 0.295 

Beauty3DFaceNet 0.196 0.182 0.170 

Table 6 

Comparison between our method and Fan et al. [24] with respect to MAE, Pearson

correlation coefficient (PCC) and root-mean-square error (RMSE). 

Methods 

Metrics 

MAE PCC RMSE DL 

Fan et al. [24] 0.181 0.832 0.226 0.08

Ours 0.170 0.849 0.223 0.18 
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Fig. 4. Exemplar pairs of the original (pink) and the lifted (green) 3D faces. Each

face is rendered in multiple views (-90 ◦, -60 ◦, -30 ◦, 0 ◦, 30 ◦, 60 ◦, 90 ◦). In the

pink bar, we show the attractiveness scores of the original faces estimated by our

method (red) and Fan et al.’s method (black), respectively. In the green bar, we

show the attractiveness discriminability of the lifted faces estimated by our method

(red) and Fan et al.’s method (black), respectively. (For interpretation of the refer-

ences to color in this figure legend, the reader is referred to the web version of this

article.) 
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eauty3DFaceNet is not sensitive to the quality of facial landmarks.

able 4 shows that the MAE of the Beauty3DFaceNet is almost con-

tant when adding Gaussian noises to the facial landmarks, which

alidates the robustness of our method against the quality of land-

arks. 

The point number . Here we evaluate the influence of the point

umber for 3D facial attractiveness prediction. Note that the orig-

nal PointNet++ [10] is used for 3D object classification on Model-

et [40] , where the objects (e.g., chairs, cars, etc.) are diverse in

erms of the overall geometric shape. Thus a sparse point cloud

ould be enough to learn features and classify objects. How-

ver, 3D faces are much less discriminative, and our 3D learn-

ng module is required to learn features at a more detailed level.

hus the level of detail of the 3D face geometry is crucial for

D facial attractiveness prediction. To validate this, we compare

he 3DFacePointNet++ with the original PointNet++ with different

umbers of input points on PC. We also test the performance of

eauty3DFaceNet, which fuses 3D and 2D features on PC+TI+TM.

able 5 shows that the original PointNet++ is not sensitive to the

umber of input points, while the MAE of our 3DFacePointNet++

ecreases as the number of input points increases, and the MAE

f Beauty3DFaceNet reduces from 0.196 to 0.170. This proves that

ur 3DFacePointNet++ captures more geometric details with an in-

reasing number of input points. 

.4. Comparison with the state-of-the-art 

In this subsection, we compare our work with Fan et al. [24] ,

he state-of-the-art method for 2D facial attractiveness prediction.

eauty3DFaceNet is tested on PC+TI+TM data, while the competing

ethod is tested on the frontal view of the 3D faces. Note that the

D faces are rendered using a mesh representation to achieve high-

uality face images. The results are shown in Table 6 . It can be

een that our method performs better than Fan et al.with respect

o MAE (0.170 vs. 0.181), Pearson correlation coefficient (PCC, 0.849

s. 0.832), and root-mean-square error (RMSE, 0.223 vs. 0.226).

his benefits from the much more abundant geometric information

f point clouds compared with only images, and the discriminative

D face features learned by Beauty3DFaceNet. 

To further validate the discriminability of aesthetic-aware fea-

ure representation of Beauty3DFaceNet and demonstrate the ne- 
6 
essity of our approach, we also compare the predicted attractive-

ess based on 100 pairs of faces {(F o 
i 
, F d 

i 
) , (1 ≤ i ≤ 100) } in the test

et of the SF3D dataset, where F o 
i 

is the original face and F d 
i 

is the

ifted face. We measure the discriminability of a model noted as

et using the following metric: 

L (N et) = 1

N 

i = N ∑

i =0 

|N et( F o i ) − Net( F d i ) |, (4) 

here Net( F ) is the predicted attractiveness for given face F , and

L (Net) is the discriminative value of Net . 

The comparison results are given in the last column of Table 6 ,

hich shows that our method is much more discriminative (0.18

s. 0.08) than the state-of-the-art 2D method [24] . Fig. 4 shows

our pairs of examples of the original 3D face and the lifted face

ith profile proportion enhancement. Each face is rendered in

ultiple views in order to exhibit the profile difference better.

ote that each pair is highly similar in the frontal view but quite

ifferent in profiles. As we consider view-independent geometric

nformation instead of the frontal view only, our method is more

ffective when dealing with the lifted 3D faces. Taking the girl in

he first row of Fig. 4 as an example, with the enhanced profiles,

ur prediction score increases from 3.82 to 4.02 while the score

f Fan et al.’s method only increases from 3.71 to 3.80. Consider-

ng the lifted effect, our approach provides a more reasonable es-

imation. Fig. 5 shows several example test faces in the database

long with the ground truth and predicted attractiveness using the 
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Fig. 5. The facial attractiveness prediction results tested on the SF3D dataset. The ground truth scores are in red, while the predicted scores by Beauty3DFaceNet are in

black. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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eauty3DFaceNet. Two-tailed paired t-test reveals that there is no

ignificant difference between the ground truth and our predicted

esults. 

. Discussion and limitation 

In the previous section, by demonstrating the superior perfor-

ance of the proposed Beauty3DFaceNet in ablation studies and

omparisons with the state-of-the-art, we have shown its compe-

ence in fusing both the 3D point clouds and 2D texture to pre-

ict facial attractiveness. Since our method focuses on 3D facial

ttractiveness prediction, it can be employed to assess the attrac-

iveness of synthesized 3D faces for gan-based 3D face design [41–

6] . Specifically, our method can be potentially utilized to find the

yperplane of attractiveness in the latent space of TBGAN [47] , to

elp enhance the synthesis quality. The newly developed facial at-

ractiveness prediction network together with the 3D face dataset

an benefit several applications where facial features and attrac-

iveness play an essential role, such as face design and cosmetic

urgery. 

Our approach has some limitations. First, our dataset may not

e general enough since it is collected from beauty salons and

lastic surgery hospitals and does not cover all ages, such as chil-

ren, as they are too young to be considered for cosmetic surgery.

econd, we did not classify faces according to gender, age, region,

tc., and all faces in the dataset are processed uniformly. We be-

ieve that the attractiveness prediction will be more accurate if the

ataset is classified into fine-grained groups. The same as previ-

us works on facial attractiveness assessment (such as [24] ), the

opic, methodology, data collection, and data publication may raise

everal ethical concerns even though we have achieved the aca- 
7 
emic usage agreement of ShadowFace3D dataset. We prepare a

e-identification version by removing eyes from portrait images for

ublication to protect data privacy. 

. Conclusion and future work 

In this paper, we present the first deep convolutional neu-

al network, called Beauty3DFaceNet, for 3D facial attractiveness

rediction. Through carefully designed feature learning and fus-

ng modules, the proposed Beauty3DFaceNet can reliably learn and

omplement 3D and 2D features from face geometry and texture,

esulting in more accurate facial attractiveness prediction. More-

ver, we propose a novel facial prior-based sampling strategy to

reserve important face features for attractiveness prediction while

educing the prediction cost in terms of the number of input

oints. We also present a new 3D face dataset, called Shadow-

ace3D. It contains 6,0 0 0 faces collected from beauty salons and

osmetic surgery hospitals and has attractiveness annotations re-

ecting public aesthetic criterion. We validate our network’s effec-

iveness through extensive quantitative and qualitative evaluations,

ncluding carefully designed ablation studies and comparisons with

he state-of-the-art. 

For future work, we would like to investigate the explainabil-

ty of our deep-learning-based network to interpret the facial at-

ractiveness according to learned geometric and textural features.

ore general and cross-cultural aesthetics can be further explored

y collecting more data of different regions. We will also utilize

eauty3DFaceNet and ShadowFace3D dataset for various facial at-

ractiveness related applications, such as 3D face attractiveness en-

ancement, 3D face plastic surgery, etc. 
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