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ABSTRACT

In recent years, dynamical relativistic jet simulation techniques have progressed to a point where it is becoming possible to fully
numerically resolve gamma-ray burst (GRB) blast-wave evolution across scales. However, the modeling of emission is currently
lagging behind and limits our efforts to fully interpret the physics of GRBs. In this work we combine recent developments in
moving-mesh relativistic dynamics with a local treatment of non-thermal emission in a new code: GAMMA. The code involves
an arbitrary Lagrangian-Eulerian approach only in the dominant direction of fluid motion which avoids mesh entanglement and
associated computational costs. Shock detection, particle injection and local calculation of their evolution including radiative
cooling are done at runtime. Even though GAMMA has been designed with GRB physics applications in mind, it is modular
such that new solvers and geometries can be implemented easily with a wide range of potential applications. In this paper, we
demonstrate the validity of our approach and compute accurate broadband GRB afterglow radiation from early to late times. Our
results show that the spectral cooling break shifts by a factor of ∼ 40 compared to existing methods. Its temporal behavior also
significantly changes from the previously calculated temporary steep increase after the jet break. Instead, we find that the cooling
break does not shift with time between the relativistic and Newtonian asymptotes when computed from our local algorithm.
GAMMA is publicly available at: https://github.com/eliotayache/GAMMA.

Key words: hydrodynamics – radiation mechanisms: non-thermal – shock waves – gamma-ray bursts – software: simulations –
methods: numerical

1 INTRODUCTION

The simulation of gamma-ray-burst (GRB) afterglow evolution is a
particularly challengingmultiscale numerical problem (Granot 2007;
van Eerten 2018). These collimated relativistic jets produced by the
collapse of a massive star (long GRBs) (Woosley 1993; MacFadyen
&Woosley 1999) or a compact binary merger (short GRBs) (Eichler
et al. 1989; Mochkovitch et al. 1995) exhibit features crucial to our
understanding of their behaviour over several orders of magnitude
in time and space. Various analytical and semi-analytical models for
the lateral spreading of afterglow jets based on single shell mod-
els exist in the literature (Rhoads 1999; van Eerten et al. 2010b;
Wygoda et al. 2011; van Eerten & MacFadyen 2012b; Granot &
Piran 2012; van Eerten 2013; Duffell & Laskar 2017; Ryan et al.
2020). However, even when calibrated on simulations these do not
capture the full radial and angular profiles computed by simulations.
In the last 20 years, dynamical simulations of GRB blast waves have
evolved from one-dimensional (1D) Lagrangian computations of the
evolution of spherically symmetric fireballs (Kobayashi et al. 1999;
Daigne & Mochkovitch 2000), to state-of-the-art two-dimensional
(2D) and three-dimensional (3D) Eulerian simulations (Kumar &
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Granot 2003; Cannizzo et al. 2004; Zhang & MacFadyen 2009; van
Eerten et al. 2010b; Meliani & Keppens 2010; De Colle et al. 2012;
Wygoda et al. 2011; van Eerten et al. 2012). The latter can simu-
late the sideways interaction of collimated jets with the circumburst
(CSM)medium and provide insight in the stability of the ejecta-CSM
interface. Unfortunately, these approaches remain particularly com-
putationally expensive. They rely on intense adaptive mesh refine-
ment (AMR) procedures in order to capture the extreme resolution
needed to properly resolve the head of the jet and converge before
the onset of the jet’s sideways expansion. As it is notoriously difficult
to resolve jet spreading behavior in the lab frame even with AMR, a
first successful approach improving convergence and computational
efficiency has been to move the computation in a Lorentz-boosted
frame (van Eerten & Macfadyen 2013). Moving at fixed velocity
along the jet axis, this frame minimises the Lorentz-contraction of
the blast-wave and relaxes the resolution constraints.

The use of arbitrary Langrangian-Eulerian (ALE ) methods helps
to improve the numerical resolution of simulations of astrophys-
ical flow, as has been demonstrated for Newtonian dynamics by
e.g. AREPO (Springel 2010; Weinberger et al. 2020). In this finite-
volume approach, the mesh edges can be moved arbitrarily during
the dynamical evolution. In practice, matching the mesh motion to
that of the fluid provides significant improvement in terms of time-
stepping and resolution around shocks as the numerical prescrip-
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2 E. H. Ayache et al.

tion effectively becomes pseudo-Lagrangian. Duffell & MacFadyen
(2011) implemented this approach in the special relativistic context
in their code TESS, finally opening the door to numerically captur-
ing the trans-relativistic evolution of GRB jets across scales from
the ultra-relativistic stage to the deceleration. Furthermore, in cases
in which fluid motion is dominant in one direction, further progress
was made by sidestepping the need for computationally expensive
re-gridding operations usually associated with moving meshes. JET
(Duffell &MacFadyen 2013) and DISCO (Duffell 2016) take advan-
tage of this directionality and model the dynamics on parallel ’tracks’
along which fluid zones can move freely, leading to a significant in-
crease in computational efficiency.

As a result, the bottleneck for accurate modeling of highly ener-
getic transients currently lies in the calculation of associated radia-
tive emission. GRB afterglows are the result of synchrotron emission
from shocks forming in the head of the jet as it interacts with the CSM
(Rees &Meszaros 1992; Meszaros & Rees 1997). Current numerical
radiative prescriptions rely on approximations of the evolution of the
micro-physical state in the fluid downstream of these shocks. The
widely used global cooling approximation assumes a single micro-
physical state across the whole fluid profile that evolves globally with
time since the explosion (Sari et al. 1998). While this conserves the
scalings and closure relations in each regime of the resulting spec-
tra, this approximation is known to produce errors in the absolute
flux level by up to a decade, as well as an incorrect position of the
characteristic spectral break frequencies (van Eerten et al. 2010b;
Guidorzi et al. 2014). This makes any broadband interpretation of
the data across timescales very difficult. While analytical solutions
locally calculating the micro-physical states have been used for 20
year now (Granot & Sari 2002) and produce satisfying results in the
ultra-relativistic limit of top-hat jets observed on-axis, an accurate
description across all stages of jet evolution is still missing. Having
at our disposal a numerical tool capable of computing such radiation
accurately, efficiently and with precision promises to finally allow
broadband fitting of afterglow light-curves and spectra. This toolkit
could achieve this by refining the current templates and providing
benchmarking opportunities for more efficient semi-analytical ap-
proaches, while also allowing for the accurate study of edge cases
involving complex dynamics and multiple radiation emission sites.

In this work, we present a new numerical code, GAMMA, and use
it to show the striking difference obtained in the radiative evolution
in the trans-relativistic phase of the jet’s life compared to previous
approaches. In order to achieve this calculation, GAMMA combines the
moving mesh approach to multi-dimensional dynamical simulations
seen in JET andDISCOwith a local calculation of themicro-physical
accelerated particle population evolution. The local cooling approach
is possible thanks to the increased resolution from the moving mesh
around the shocks that allows accurate computation of the rapidly
evolving particle energy distribution. In section 2 we describe the
dynamical part of the code. Section 3 is dedicated to standard tests
of the dynamics. We also investigate the code’s ability to capture
complex dynamics by reproducing results from a study of Rayleigh-
Taylor (RT) instabilities at the contact discontinuity between ejecta
and CSM (Duffell & MacFadyen 2013). We then describe the local
cooling prescription in section 4. Finally, in section 5 we present the
calculation of accurate synthetic afterglow light-curves and spectra
from early to late times from the forward shock (FS) from 2D axisym-
metric simulations of a GRB jet. A discussion of the implications
and limitations of our work is presented in in section 6.

2 CODE DESCRIPTION

GAMMA uses a Godunov scheme to solve hyperbolic systems of par-
tial differential equations (PDEs) in one and two dimensions (3-
dimensional evolution will be implemented at a later stage). The
solvers currently implemented correspond to special relativistic hy-
drodynamics (SRHD). New solvers (e.g magneto-hydrodynamics)
can be added easily. The code follows the same approach as JET
and DISCO (Duffell & MacFadyen 2013; Duffell 2016) with the
addition of the radiation module and a treatment of parallelisation
that takes advantage of shared memory architectures. In this section
we describe the numerical approach to the dynamics. The radiative
local particle acceleration and cooling and the associated radiation
are described in section 4.

2.1 Special relativistic hydrodynamics

The fluid can be described by a state vector of primitive variables
𝑽 = (𝜌, ®𝑣, 𝑝)𝑇 , where 𝜌 and 𝑝 are the rest-mass density and pressure
in the co-moving frame, and ®𝑣 is the fluid velocity in the lab frame.
We solve the following system of equations:

𝜕𝑡𝑼 + ∇𝑭(𝑼) = 𝑺, (1)

Where 𝑼 and 𝑭(𝑼) are the vector of conserved variables and the
corresponding flux vector, respectively, and 𝑺 is the source term. ∇
is the divergence operator broadcast on all spatial vector components
of 𝑭(𝑼). 𝑼 and 𝑭(𝑼) are expressed in terms of primitive variables
as follows:

𝑼 =
©­«
𝐷

®𝑚
𝜏

ª®¬ ≡ ©­«
𝜌Γ

𝜌ℎΓ2®𝑣
𝜌ℎΓ2 − 𝑝 − 𝐷

ª®¬
(Rest-mass density)
(Momentum)
(Energy)

, (2)

𝑭𝑖 (𝑼) =
©­«

𝐷𝑣𝑖
®𝑚𝑣𝑖 + 𝑝𝑖
𝑚𝑖 − 𝐷𝑣𝑖 ,

ª®¬ , ∀𝑖 ∈ {𝑥, 𝑦, 𝑧}, (3)

where 𝑖 is the unit vector in the i-direction, ℎ is the specific enthalpy
including rest-mass energy in the co-moving frame, Γ is the Lorentz
factor, and the speed of light is set to 𝑐 = 1. The SRHD equations
can be cast in their angular momentum conserving form identical
to eq. 1 for cylindrical (𝑟, 𝜃, 𝑧) and spherical (𝑟, 𝜃, 𝜙) coordinates
(Mignone & McKinney 2007). This requires that we replace, in the
conservation equation, the 𝜃 component of linear momentum 𝑚𝜃

in 𝑼 with the the angular momentum 𝑟𝑚𝜃 , and the flux of the 𝜃
momentum 𝐹𝑖 𝜃 = 𝑚𝜃 𝑣𝑖 + 𝑝𝛿𝑖

𝜃
with 𝑟𝐹𝑖 𝜃 . With this form of the

equations, the following source terms appear in 2D:

cylindrical 𝑺 = (0 , 𝑝/𝑟 , 0 , 0)𝑇 , (4)

spherical 𝑺 = (0 , (𝜌ℎΓ2𝑣2𝜃 + 2𝑝)/𝑟, 𝑝/tan 𝜃 , 0)
𝑇 , (5)

where the pressure terms compensate our inclusion of 𝑝 in the di-
vergence and the other term is a "geometrical" source term. The
calculation of the geometrical source terms for the linear momentum
conserving form, for any set of orthogonal curvilinear coordinates,
is presented in the appendix of Mignone et al. (2005). The corre-
sponding derivation in the case of SRHD is reported in the appendix
of Zhang &MacFadyen (2006), which is equivalent to our approach.
The full conservation equations can also be derived in any curved
metric using the "Valencia formulation" (Banyuls et al. 1997) against
which we compared our expressions.

MNRAS 000, 1–17 (2020)
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𝑥

𝑡

0

W← C W→

𝑈𝐿 , 𝐹𝐿 𝑈𝐿∗ , 𝐹𝐿∗ 𝑈𝑅∗ , 𝐹𝑅∗ 𝑈𝑅 , 𝐹𝑅

𝑥/𝑡 = 𝑤

Figure 1. Schematic representation of a Riemann problem. The dashed red
line shows the movement of the interface at velocity 𝑤 . The flux across the
interface will, and the state chosen to correct for the motion of the interface
will be 𝑭𝑅∗ and𝑼𝑅∗ , respectively.

We close the system of equations with the Synge-like ideal mono-
atomic fluid equation of state (EOS) fromMeliani et al. (2004) based
on the relativistic perfect gas law (Synge 1957; Mathews 1971):

𝑝(𝜌, 𝜖) = 𝜌𝜖 (𝛾eff − 1), (6)

where 𝜖 is the specific internal energy density and 𝛾eff the effective
polytropic index of the fluid given by:

𝛾eff = 𝛾 − 𝛾 − 1
2

(
1 − 1

𝑒2

)
. (7)

𝛾 = 5/3 is the fixed adiabatic index of the fluid in the non-relativistic
(cold) case and 𝑒 the specific internal energy including rest-mass.
𝛾eff is dependent on the fluid temperature such that 𝛾eff = 4/3 in
the ultra-relativistic case and 𝛾eff = 5/3 in a non-relativistic fluid
and allows for a trans-relativistic description of the evolution. This
description is a very good approximation to the Synge gas equation
and avoids the costly evaluation of associated Bessel functions.

2.2 Riemann solver

The code is based on a finite-volume Godunov scheme. The simu-
lation domain is divided in discrete volumes, or cells, in which the
local fluid state is averaged. To evolve the systemwe solve a Riemann
problem at each interface by calculating the corresponding Riemann
fan of waves emerging from the discontinuity and the associated
fluxes. At this stage, GAMMA includes the HLLC (Mignone & Bodo
2006) solver for relativistic hydrodynamics. This solver builds on the
two-wave HLL solver (Harten et al. 1983) by adding a calculation of
the wavespeed of the contact discontinuity (CD). As explained in the
next section, we set the interface velocity to that of the CD and thus
require the use of a complete three-wave solver.
GAMMA follows an arbitrary Lagrangian-Eulerian approach (ALE).

This means that it can compute inter-cell fluxes for arbitrary interface
velocities, in any direction. Figure 1 describes a Riemann problem
for amoving interface with velocity𝑤. For the HLLC hydrodynamics
solver, three waves (W←, C,W→) emerging from the discontinuity
split the fluid in 4 regions (𝐿, 𝐿∗, 𝑅∗, 𝑅). The flux across the interface
is given by 𝑭 = 𝑭Riemann−𝑤𝑼Riemann, where 𝑭Riemann and𝑼Riemann
are the flux and state vectors of the fluid in the region in which sits
this interface (region 𝑅∗ in the situation depicted in figure 1).

Figure 2. Mesh radial velocity and interface positions for a low-resolution
example of a relativistic GRB jet. Axi-symmetry at 𝜃 = 0 and planar sym-
metry at 𝜃 = 90 deg allow us to restrict the simulation to 𝜃 ∈ [0, 𝜋/2]. The
resolution naturally increases at the shock without the need for active adaptive
mesh refinement.

2.3 Moving mesh and parallelisation

Moving meshes provide several advantages to simulate the evolution
of GRB afterglows, but more broadly to simulate dynamics over a
wide range of scales. First, the time-step can be increased for smooth
regions of high velocity, where it is essentially limited by the speed
of sound, in comparison to fixed-mesh approaches where the bulk
velocity is the limiting factor. This is of particular interest to us as we
look to maximising the resolution downstream of shocks to capture
local cooling accurately. Second, a moving mesh matching the fluid
velocity ends up naturally refining the regions of strong gradients as
the fluid zones pile-up in compression waves and shocks. Because
we are trying to capture the very fast evolving particle population
downstream of shocks, a pseudo-Lagrangian approach is ideal.
The mesh is allowed to move in one direction, which we will as-

sume to be the 𝑥-direction for the rest of this section. The transverse
direction will be called 𝑦 as the treatments remain the same in 2D
or 3D. The simulation grid is built as a set of tracks along which
the interfaces between the cells are allowed to move at arbitrary ve-
locity. This frees us from the re-gridding operations associated with
mesh entanglement, and ensures that interfaces remain orthogonal to
the coordinate system basis vectors. In practice, to maximise mass
conservation in a given cell, we set interface velocity to the con-
tact discontinuity velocity (C wave in the Riemann fan). Figure 2
illustrates how the mesh moves following these tracks. Allowing the
mesh to move forces us to re-compute the geometry of the interfaces
between tracks for each time-step. We do this by looping over all the
couples of neighbouring tracks each time instead of keeping track of
these interfaces from one time-step to another.
We use a hybrid OpenMP/MPI approach to parallelisation in order

to make use of shared memory on a single node. This gives us more
flexibility when dealing with variable numbers of cells per track.
The simulation domain is cut in the 𝑦 direction into a number 𝑁nodes
of regions containing an equal number of neighboring tracks, each
region sent to a single node. Ultimately, depending on the number of
nodes, tracks per node, and cells per track, the user will be able to
choose to parallelise the computation in each region using OpenMP

MNRAS 000, 1–17 (2020)
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𝑥

𝑦

Figure 3. Schematic representation of the procedure to reconstruct the states
left and right of the interface between the red and green cells. For example
for the red cell, the first step is to compute the transverse gradients for all
the 𝑦-interfaces of the cell (marked in blue). These gradients are measured
between states projected on the 𝑥 coordinate corresponding the center of the
interface using the 𝑥 gradients already computed (gray dashed lines) We then
compute the average gradient for the cell and apply the slope limiter. Using
this gradient for each cell, it’s possible to reconstruct the red and green states.

either in the moving 𝑥 direction (for a given track, cell are distributed
over the available cores) or in the fixed 𝑦 direction (for a given
region, track are distributed over the available cores). Parallelising in
𝑥 minimises the number of cores in an idle state in a node, but runs
into the risk of false sharing for trackswith very few cells compared to
the number of cores available, which is why we first implemented the
parallelisation in 𝑦 with the 𝑥 version available soon. One limitation
to our approach is when the average number of cells per track varies
strongly from region to region (typical case in figure 2), which leads
to some nodes having much fewer cells to evolve and sit idle. At
this stage we compensate this by giving more tracks to these nodes
to compute. Further improvements on parallelisation are expected in
future versions of GAMMA.

2.4 Spatial reconstruction

GAMMA currently includes piecewise linear spatial reconstruction.
Figure 3 shows a schematic representation of gradient calculation in
two dimensions. In the 𝑥-direction, the reconstruction can be done
independently in each track as the cell centers and the center of the
interface between cells are aligned. we store the slope-limited gradi-
ents in the 𝑥-direction for use in the 𝑦-direction gradient calculation.
Indeed, for reconstruction across tracks, we follow the procedure
from Duffell (2016). The gradient ®𝒘 inside a given cell is calculated
using the following steps. First, for every interface 𝑖 between two
cells at (𝑥𝑖 , 𝑦𝑖) coordinate, we compute an associated gradient in the
𝑦-direction 𝒘𝑦,𝑖 across this interface:

𝒘𝑦,𝑖 = [𝑾+ (𝑥𝑖) −𝑾− (𝑥𝑖)]/(𝑦+ − 𝑦−) (8)
with𝑾± (𝑥) = 𝑾±0 + 𝒘

±
𝑥 (𝑥 − 𝑥±0 ) (9)

where the + and − exponents denote the cell above and below the in-
terface, respectively (see figure 3),𝑾±0 is the cell-centered primitive
fluid state and 𝒘±𝑥 the gradient in the 𝑥-direction. We then compute
an averaged gradient 𝒘̄𝑦 for the considered cell from the gradients
associated with all the interfaces composing its two y-faces, weighted

by their respective surface areas 𝐴𝑦,𝑖 :

𝒘̄𝑦 =

∑
𝑖∈{interfaces} 𝒘𝑦,𝑖𝐴𝑖∑

𝑖∈{interfaces} 𝐴𝑖
(10)

To avoid spurious oscillations we apply a minmod slope limiter such
that the final gradient value in the 𝑦-direction is:

𝒘𝑦 = minmod(𝒘̄𝑦 , (𝒘𝑦,𝑖)𝑖∈{interfaces}), (11)

Once the gradients have been computed in all directions for every
cell, it is then possible to finally compute the fluid states on either
sides of every interface by interpolating from the cells centers:

𝑾 (®𝑟𝑖) = 𝑾0 + ®𝑟𝑖 · ®𝒘, (12)

where ®𝑟𝑖 is the interface coordinate calculated from the cell centroid
to ensure quantity conservation during spatial reconstruction.

2.5 Time-stepping and adaptive mesh refinement

The cell conserved quantities are updated by summing over all fluxes
across their associated interfaces in all directions, for each time-step
(method of lines), while accounting for potential source terms. The
moving interface positions are updated according to their measured
velocities during this time-step too, which leads to minimum fluxes
(and zero flux in mass) across them when setting their velocity to
that of the CD. The time-integration can be chosen between Euler
time-stepping and third order Runge-Kutta, which has the advantage
of being total-variation-diminishing. We use an adaptive time-step
based on a Courant-Friedrich-Lewy (CFL) condition (Courant et al.
1928). This introduces issues when combined with a moving mesh
as compressed fluid cells will lead to a detrimental decrease in time-
step if no lower bound is chosen for their size. We implement the
ability for the user to set up their own criteria for adaptive mesh
refinement and include in the code methods to split and merge cells
together on a single track. The code offers two different modes for
re-gridding: a "runaway" mode in which the total number of cells
on a given track is only constrained by a maximum value, and a
"circular" mode in which every call of the merge/split function calls
an instance of the split/merge function on a cell in the same track
based on a calculation of its "re-gridding score" that can also be set
by the user. This "circular" mode ensures that the total number of
cells on a single track is constant throughout the simulation.
The new physical state in cells post-merger are is averaged over the

two states in the cells prior tomerger, ensuring quantity conservation.
Cell-splitting follows linear interpolation of the conserved variables
from the new cells centroids. We apply the same slope limiter as in
the spatial reconstruction on the gradient used for the interpolation.
This ensures quantity conservation and limits oscillations around
shock fronts.

3 TESTS

We evaluate the accuracy and convergence of the code on a range of
standard tests. All tests are carried out with a CFL condition of 0.4
unless stated otherwise.

MNRAS 000, 1–17 (2020)



The GAMMA code 5

Figure 4. Shock tube in Cartesian coordinates. 𝑡 = 0.6. Initial discontinuity
at 𝑥 = 0.25. Left state: 𝜌 = 0.1, 𝑝 = 1, 𝑣 = 0.99 × 𝑐. Right state: 𝜌 = 1,
𝑝 = 1, 𝑣 = 0. Ideal EOS with 𝛾 = 4/3. Initial resolution is 200 cells

Figure 5. Shock tube in spherical coordinates. 𝑡 = 0.3. Initial discontinuity
at 𝑥 = 0.25. Left state: 𝜌 = 1, 𝑝 = 1, 𝑣 = 0. Right state: 𝜌 = 0.1, 𝑝 = 0.1,
𝑣 = 0. Ideal EOS with 𝛾 = 4/3. Initial resolution is 200 cells

Table 1. Convergence analysis for the 1D isentropic wave test

Resolution L1 error Convergence rate
100 4.41e-3
316 5.87e-4 1.85
1000 6.15e-5 1.92
3160 6.92e-6 1.89

Table 2. Convergence analysis for the 2D isentropic wave test

Resolution L1 error Convergence rate
20x20 1.94e-2
50x50 3.50e-3 1.89

100x100 9.31e-4 1.91
300x300 1.16e-4 1.90

3.1 1D relativistic shock tubes

In figure 4 we show the result of a relativistic 1D shock tube in
cartesian coordinates with the following parameters:

(𝜌, 𝑣, 𝑝) =
{
(0.1, 0.99, 1) for 𝑥 ≤ 0.25,
(1, 0, 1) for 𝑥 > 0.25,

(13)

where 𝑣 is in units of 𝑐. We also choose a fixed adiabatic index
𝛾 = 4/3. In figure 5 we test our correct implementation of spherical
coordinates and show the result of a relativistic 1D shock tube with
parameters:

(𝜌, 𝑣, 𝑝) =
{
(1, 0, 1) for 𝑥 ≤ 0.25,
(0.1, 0, 0.1) for 𝑥 > 0.25.

(14)

In both systems of coordinates, the code is able to properly capture
the shock positions as well as the contact discontinuity. The motion
of the interfaces at the fluid velocity allows us to resolve contact
discontinuity with only a few zones in these tests.

3.2 Isentropic wave

We test the accuracy of our code for smooth regions of the flow by
simulating the evolution of a 1D isentropic wave in cartesian coordi-
nates. The setup we use is identical to that of Zhang & MacFadyen
(2006). We choose a fixed adiabatic index 𝛾 = 5/3 for this setup. A
comparison of the exact solution and the numerical result is shown in
figure 6. The convergence rates at different resolutions are reported
in table 1. We nearly reach second order convergence for this test. We
also assess the order of convergence of the code in two dimensions by
running the isentropic wave in a direction diagonal to the initial grid
in cartesian coordinates, as shown in figure 7. This setup is identical
to the one from Duffell & MacFadyen (2011). We choose periodic
boundary conditions. We constrain the aspect ratio of the cells in the
simulation domain to the [0.5, 2] interval. We allow the boundaries
to move (this is compatible with the periodic boundary condition),
which is responsible for the distortion of the grid visible in the figure.
We report the convergence rates in table 2.

3.3 2D Riemann problem

To assess more complex 2D behavior of the code, we run a 2D
Riemann problem with the same parameters as Mignone & Bodo
(2006). This setup involves the interaction of four elementary waves
formed at the interfaces between four initial different fluid states.
On a square domain spanning [−1, 1] × [−1, 1], their setup is the
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6 E. H. Ayache et al.

Figure 6. 1D Isentropic wave test output for primitive variables with 100
fluid zones. The numerical results at t = 0.7 (black circles) are in very good
agreement with the exact solution (red solid curve)

Figure 7. 2D isentropic wave test at 𝑡 = 0.7 with initial uniform grid of
resolution of 50×50. In this case, the mesh is allowed to move the x direction
and distorts with the waves. The waves remain diagonal to the grid directions
and follow the expected theoretical evolution, propagating towards increasing
𝑥 and 𝑦.

following:

(𝜌, 𝑣𝑥 , 𝑣𝑦 , 𝑝) =


(0.1, 0, 0, 0.01) for 𝑥, 𝑦 > 0
(0.1, 0.99, 0, 1) for 𝑥 < 0 < 𝑦

(0.5, 0, 0, 1) for 𝑥, 𝑦 < 0
(0.1, 0, 0.99, 1) for 𝑦 < 0 < 𝑥

. (15)

Figure 8. Density output for the 2D Riemann problem at 𝑡 = 0.8. Initial
uniform grid of resolution 300 × 300. The mesh moves in the 𝑥 direction.
Even though the mesh only moves in one direction, we observe a symmetrical
evolution where the only difference between the 𝑥 and 𝑦 directions is the
higher diffusion around the shocks in the non-moving direction.

In our setup, we use a resolution of 300 × 300 and allow the mesh
to move in the 𝑥 direction and constrain the aspect ratio in the inter-
val [0.1,1.5]. We show the output density at final time 𝑡 𝑓 = 0.8 in
figure 8. This test confirms the accuracy of the code in both the di-
rections aligned and transverse to the mesh motion. It also highlights
the increase in precision around shocks parallel to the mesh motion
as features in the 𝑥 direction are more diffuse. The slight asymme-
try in the region of lowest density is attributed to the difference in
treatments between the x and y directions and nicely confirms the
improvement in the direction of mesh motion. This region also par-
ticularly suffers from a high frequency of de-refinement operations
on the lower-right edge, which is responsible for the loss in precision.

3.4 1D GRB jet - Blandford Mckee blast wave profile

A first application of this code to one-dimensional GRB blast wave
simulations is done in Ayache et al. (2020). It is important for any
code applied to ultra-relativistic blast waves to demonstrate its ability
to properly capture dynamics in these extreme regimes. As such an
very important test is the comparison with the analytical solution
for a relativistic point-like explosion, the Blandford-Mckee (BM)
solution (Blandford & McKee 1976). GRB blast waves transition to
this asymptotic solution as they sweep up CSM material and it is
surprisingly hard for fixed mesh AMR codes to properly capture the
peak of the blast-wave, where particle acceleration happens. Here, we
set up a BM solution at time 𝑡0 and check that our numerical solution
still matches the expected radial profile for the fluid quantities for
𝑡 > 𝑡0. We set up a blast wave with isotropic equivalent energy
𝐸iso = 1053erg and CSM uniform number density 𝑛0 = 1cm−3
at an initial peak fluid Lorentz factor Γ0 = 100 (initial time 𝑡0 =

4.36 × 106𝑠. Figure 9 shows the radial profile of primitive variables
at 𝑡 = 8.81 × 106s. The code accurately captures the shock position
and the radial profile of the blast wave. Our code also fully captures
the time evolution of the peak Lorentz factor at the shock front, which
we demonstrate for two dimensions in section 5.3. In this 1D test,
we use the same AMR criteria as in the 2D simulations described
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Figure 9. Blandford-McKee blast-wave output at 𝑡 = 8.81 × 106s. 𝐸iso =

1053erg, initial peak fluid Lorentz factor Γ = 100, CSM number density
𝑛0 = 1 cm−3.

section 5.2, using a fiducial angular track width d𝜃 = 𝜋/2000. We
can see the advantage of the moving mesh approach where we can
resolve the blast wave with little added computational cost as the
region limiting the time-step is situated just ahead of the shock.

3.5 2D GRB jets - Rayleigh-Taylor instabilities in afterglows

Moving to two dimensions, we show the ability of the code to capture
complex dynamics by investigating the growth of Rayleigh-Taylor
(RT) instabilities at the contact discontinuity between the ejecta and
the CSM. Duffell & MacFadyen (2013) (hereinafter DM13) have
already shown that RT instabilities can appear at the contact dis-
continuity in GRB afterglows by running moving mesh dynamical
simulations. We reproduce here their approach and compare our re-
sults with those obtained using their code JET.

Initial setup

We implement the fireball model (Kobayashi et al. 1999) in which
we input a given amount of energy 𝐸iso and mass 𝑀 into a small
sphere of radius 𝑅0 placed in a uniform CSM of mass density 𝜌0.
At the initial time, the velocity of the fluid is 0 in the whole system.
The thermal energy in the hot fireball is then converted to kinetic
energy and the resulting blast wave will coast with fluid Lorentz
factor Γ = 𝐸iso/𝑀 . Like DM13 we place ourselves in the thin shell
limit where the initial structure of the fireball does not influence
the later evolution. This is done by choosing 𝑅0 small enough in
order for the coasting and spreading phases to happen long before
the deceleration phase: Γ2𝑅0 � 𝑡𝛾 , where 𝑡𝛾 = (𝑀/Γ𝜌0)1/3 is the
deceleration time (Kobayashi et al. 1999). We run two simulations
with Γ ≡ 30 (run30) and Γ ≡ 100 (run100). Setting 𝐸iso ≡ 1052 erg

Table 3. Initial parameters for the 2D GRB RT simulations

Parameter Notation Value Unit
Equivalent Isotropic Energy 𝐸iso 1052 erg
Coasting Lorentz factor Γ 30;100
Initial radius of the fireball 𝑅0 100;0.4 l.s.
CSM number density 𝑛0 1 cm−3
Temperature of CSM (𝑝/𝜌𝑐2) 𝜂 10−5

determines the corresponding value of 𝑀 . The rest of the initial
parameters are reported in table 3.

1D early run and grid parameters

All simulations are carried out in axisymmetric spherical coordinates
(𝑟, 𝜃, 𝜙). For the sake of computational efficiency, we first run 1D
simulations of the acceleration and coasting phases of the fireball,
before deceleration. 1D simulations are sufficient in this regime since
the collimated jet is not yet causally connected and we can thus
assume spherical symmetry. Transverse motion will appear with the
instabilities after the deceleration time and we will need to transition
to 2Dbefore then.We initialise the fireball on a logarithmic radial grid
with 600 cells. The inner boundary is initially placed at 0.01 𝑅0 and
set to reflective boundary conditions. After the acceleration phase,
we set the inner boundary velocity to 0.5 𝑐 and outflow boundary
conditions to reduce the computation grid size. The outer boundary
moves at 1.05 𝑐 throughout the whole simulation. We call 𝑟max this
increasing outer radius. In the 2D stage, we set reflective boundary
conditions at 𝜃 = 0 and 𝜃 = 𝜃simu.
We transition to the 2D simulations at 𝑡 ∼ 0.5 𝑡𝛾 , by broadcasting

the result of the 1D solution onto 𝑁𝜃 ≡ 200 radial tracks evenly dis-
tributed in the interval 𝜃 ∈ [0, 𝜃simu ≡ 𝜋/32]. Since our simulation
domain is half as wide, this corresponds to the 400 tracks case in
DM13. We run the simulation until 𝑡𝑀 = (𝑀/𝜌0)1/3 which is the
time at which the blast-wave becomes non-relativistic. In both the
1D and 2D stages, the radial resolution is governed for each cell by
a modified cell aspect ratio criterion 𝑎̂ = d𝑟/(𝑟maxd𝜃). We choose
to use 𝑎̂ instead of the actual aspect ratio 𝑎 = d𝑟/(𝑟d𝜃) to prevent
the time-step from being limited by the cells located at small radii
at later stages of the evolution. For each cell, 𝑎̂ is allowed to vary in
the interval 𝑎̂ ∈ [0.2, 5]. We normalise the pressure and density by
𝜌0 and 𝜂𝜌0𝑐2, respectively. Throughout the evolution we floor the
normalised density and pressure to 10−10.

Results

Snapshots at 𝑡𝑀 for run30 and run100 are shown in figure 10 and
the corresponding radial profiles are reported in figure 11. We obtain
very similar results to DM13. The radial profiles in 2Dwere obtained
by averaging the fluid quantities over the 𝜃 direction weighing track
contributions by their respective volumes. We also ran 1D simula-
tions up to 𝑡𝑀 to compare with the results from the 2D runs. First
looking at these radial profiles, our forward shock (FS) closely coin-
cides with the FS in the simulations of DM13. However, we notice
a discrepancy in the reverse shock (RS) position and a difference in
the rest-mass density behind the ejected material. This not linked to
our different choice of EOS (they use an ultra-relativistic ideal gas
with fixed 𝛾 = 4/3, as opposed to our trans-relativistic EOS) as the
difference is still visible when switching to their fluid description.
We have confirmed that mass was conserved in the ejecta using the
passive scalar tracer we have set up. Finally we ran the code for var-
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8 E. H. Ayache et al.

Figure 10. 2D Snapshots at 𝑡 = 𝑡𝑀 of run30 (left) and run100 (right). The density is normalised by 𝜌0. The tracer highlights the mixing between ejecta material
(tracer=0) and CSM material (tracer=2).

Figure 11. Radial profiles. Density and pressure are normalised by the external medium density value. The DM13 curve is their 1D solution. In all cases, the
forward shock is very accurately captured. In 2D, the RT instabilities push the reverse shock further at the back of the ejecta.

ious values of 𝑅0 and noticed no significant difference between our
runs. DM13 do not specify the treatment of their inner boundary.

The 2D runs exhibit the same features as those found in DM13.
We observe Rayleigh-Taylor instability at the contact discontinuity
growing from the numerical noise without the need for seeding. We
can also confirm the influence of this instability on the position of
the RS. As the instability grows, the turbulence is able to reach the
RS and pushes it faster towards the back of the ejecta. This effect
is particularly well visible in run30 in figure 11 and so strong in
run100 that the RS has actually already left the simulation domain
at 𝑡𝑀 . In order to properly quantify this effect, we would need to
run higher resolution simulations like in DM13 as the transverse
size of the tracks currently prevents the instability from growing
properly. While sufficient resolution is almost achieved in run30, we
do not observe the smaller scales expected at higher Lorentz factors.
In run100 the maximum angular size at which RT instability can
develop is 1/150 rad, corresponding to 13.6 angular track widths. It

is therefore likely that smaller scale instability was not sufficiently
resolved.
These results confirm the ability of the code to properly capture

complex relativistic dynamics on a moving mesh. They also confirm
that the CD can be unstable in the afterglow. Since this particular
phenomenon has previously been explored in the literature, we refer
the reader to DM13 for more in depth analysis.

4 LOCAL SYNCHROTRON COOLING

We have shown in the previous two sections that our code is able
to properly capture complex relativistic hydrodynamics on a moving
mesh. In this section, we describe our approach to implementing
local tracing and radiation of particles accelerated at the shock fronts
in the fluid.
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4.1 Tracing of accelerated particles

We follow the prescription first described in Downes et al. (2002)
and van Eerten et al. (2010a) and implemented on a moving mesh in
one dimension in Ayache et al. (2020). We expand on this previous
implementation by including a description of the spectral evolution
of the particle population that depends on shock velocity.
Shock waves are responsible for the acceleration of electrons that

radiate in synchrotron across the whole electromagnetic spectrum.
We model this accelerated population with a truncated power-law in
energy (Sari et al. 1998; Wĳers & Galama 1999):

𝑛′𝑒 (𝛾′𝑒) ∝
{
(𝛾′𝑒)−𝑝 if 𝛾min < 𝛾′𝑒 < 𝛾max,

0 otherwise,
(16)

where primed quantities are expressed in the co-moving frame. 𝑛′𝑒 is
the spectral number density as a function of 𝛾′𝑒 the Lorentz factor of
an electron. 𝛾min is the minimum Lorentz factor (of the bulk of the
population) and 𝛾max is the maximum Lorentz factor that decreases
as the population cools. 𝑝 is the spectral index (power-law slope of
this population). The distribution is normalised by considering that
a fraction 𝜉𝑁 of electrons are accelerated and carry a fraction 𝜖𝑒 of
the internal energy density 𝑒 = 𝜌𝜖 . The cooling of these electrons is
driven by synchrotron losses and adiabatic expansion:

d𝛾′𝑒
d𝑡 ′

= −𝜎𝑇 (𝐵
′)2

6𝜋𝑚𝑒𝑐
(𝛾′𝑒)2 +

𝛾′𝑒
3𝜌
d𝜌
d𝑡 ′

, (17)

with 𝐵′ =
√
8𝜋𝜖𝐵𝑒 the local magnetic field intensity derived from

magnetic energy expressed as a fraction 𝜖𝐵 of internal energy. 𝑚𝑒

and 𝜎𝑇 are the electron mass and the Thompson cross section, re-
spectively. This expression can be re-cast into an advection equation:

𝜕

𝜕𝑡

(
Γ𝜌4/3

𝛾′𝑒

)
+ 𝜕

𝜕𝑥𝑖

(
Γ𝜌4/3

𝛾′𝑒
𝑣

)
=

𝜎𝑇

6𝜋𝑚𝑒𝑐
𝜌4/3 (𝐵′)2, (18)

that the hydrodynamics solver can treat as a passive scalar with a
source term. The bounds of the population of accelerated electrons
are locally evolved downstream of shocks following this procedure.
Particle injection at shock fronts is simply done by resetting the
values of 𝛾max and 𝛾min. 𝛾max directly downstream of the shock is
theoretically set by the acceleration time-scale. For sufficiently large
𝑝 it can be taken to be infinity. In practice, we just set 𝛾max = 108 to
a high enough value such that the frequency cut-off in the observer
frame is higher than 1018 Hz, the highest frequency at which we
compute the radiation. 𝛾min is set by normalising the total available
energy over the electron population:

𝛾min =
𝑝 − 2
𝑝 − 1

𝜖𝑒𝑒

𝑛′𝑚𝑒𝑐
2 , (19)

where 𝑛′ is the accelerated electron number density in the co-moving
frame.
We have also added in the radiative code the possibility of using a

local value of 𝑝. Indeed, most works currently assume fixed spectral
index 𝑝 ∼ 2− 2.5. However, we expect shock strength to vary during
the dynamical evolution, which leads to a varying spectral index in
the accelerated population. To evaluate the effect of this evolution
we implement this in our shock detector and subsequently advect the
spectral index value 𝑝 as a simple passive scalar field:
𝜕

𝜕𝑡
(Γ𝜌𝑝) + 𝜕

𝜕𝑥𝑖
(Γ𝜌𝑝𝑣) = 0. (20)

The initial value of p is chosen following Kirk et al. (2000) and
Keshet & Waxman (2005) (see e.g. Sironi et al. (2015) and Mar-
cowith et al. (2020) for recent reviews on particle acceleration in

relativistic shocks), where we have identified the upstream fluid ve-
locity with the bulk fluid velocity. The dependency of 𝑝 on the
upstream velocity comes from the induced anisotropy upstream of
the shock for the electron population for a relativistic shock (the
so-called "spectrum - anisotropy connection"). This approximation
greatly simplifies the implementation and is acceptable as we will
only be interested in forward shock emission from GRB afterglows
in this work, but a different approach would be needed for e.g. re-
verse shock contribution or internal shocks. The dependency of 𝑝 on
the upstream fluid four-velocity 𝑢 is approximated by the following
expression in our code:

𝑝 = 2.11 + 0.11 × tanh(log10 (𝑢/3.16)). (21)

4.2 Deep Newtonian phase

The approach to initializing and evolving 𝛾min as described in the pre-
vious section will at very late times inevitably lead to a non-physical
value 𝛾min (the issue is exacerbated if 𝑝 is allowed to approach 2):
the total available energy can no longer be stored in the non-thermal
electron populationwhile keeping 𝛾min. Furthermore, if 𝛾min gets too
close to 1, our description of the particle population as a power-law
in energy breaks down.
van Eerten et al. (2010a) and Sironi & Giannios (2013) (here-

inafter SG13) address this problem by varying the fraction of accel-
erated electron. In theory, the electron population should be described
in the Newtonian phase by a power-law in momentum (Bell 1978;
Blandford&Ostriker 1978; Blandford&Eichler 1987). Lowering the
electron participation fraction mimics this behaviour by keeping the
energy in the non-thermal population contained above 𝛾min𝛽min ∼ 1
(where 𝛽min is the electron velocity in terms of c) through shifting
the lower cut-off Lorentz factor upwards to higher values. In this
work, we adapt the prescription from SG13 to our local description
of the particle population. This approach has the advantage of being
compatible with our prescription for the local radiative cooling pre-
sented above, while still manifesting itself in the light curve at the
correct time.
The accelerated electron population can be split into a relativistic

population that contributes to radiation and a non-relativistic popu-
lation for which the energy and the radiative contribution are consid-
ered negligible. We write 𝜉𝑁 ,DN the fraction of relativistic electrons.
Becausewe account for the impact of synchrotron energy losseswhen
locally tracing the evolution of 𝛾min, we cannot switch over to the
adiabatic prescription from SG13 wholesale. Instead, we recover the
total energy in the electron population from the integrated energy
between 𝛾min and 𝛾max. For this purpose, we still mathematically
allow 𝛾min to drop below unity when locally tracing its value (but
cap it at 1 when computing the corresponding critical frequency).
The population between 𝛾min and 1 is considered cold and ceases to
contribute to the emission. We have:

𝐸 ′tot =
∫ 𝛾max

𝛾min

𝑛′𝑒 (𝛾′𝑒)𝛾′𝑒𝑚𝑒𝑐
2d𝛾′𝑒 (22)

=

∫ 𝛾max

𝛾min

𝐶tot (𝛾′𝑒)1−𝑝𝑚𝑒𝑐
2d𝛾′𝑒, (23)

where 𝐶tot is the population normalisation factor if the energy were
stored between 𝛾min and 𝛾max. Equating the local energy 𝐸 ′tot com-
puted from the numerical simulations and the energy in the relativistic
part yields a first equation:∫ 𝛾max

𝛾min

𝐶tot (𝛾′𝑒)1−𝑝d𝛾′𝑒 =

∫ 𝛾max

1
𝐶rel (𝛾′𝑒)1−𝑝d𝛾′𝑒, (24)
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10 E. H. Ayache et al.

where 𝐶rel is the relativistic population normalisation factor for
which the energy 𝐸 ′tot is stored between 1 and 𝛾max. By using the
normalisations for the electron number density:

𝑛′ =
∫ 𝛾max

𝛾min

𝐶tot (𝛾′𝑒)−𝑝d𝛾′𝑒, (25)

and

𝜉𝑁 ,DN × 𝑛′ =
∫ 𝛾max

1
𝐶rel (𝛾′𝑒)−𝑝d𝛾′𝑒, (26)

where 𝑛′ is the accelerated electron number density, one can eliminate
𝐶tot and𝐶rel from eq. 24, and obtain the relativistic electron fraction:

𝜉𝑁 ,DN =
𝛾
2−𝑝
max − 𝛾

2−𝑝
min

𝛾
2−𝑝
max − 1

× 𝛾
1−𝑝
max − 1

𝛾
1−𝑝
max − 𝛾

1−𝑝
min

. (27)

During our calculation of the emissivity, in the post-processing of
the hydrodynamical snapshots, whenever we encounter 𝛾min < 1, we
compute the corresponding value of 𝜉𝑁 ,DN and then set 𝛾min ≡ 1.
We then compute the emissivity from the relativistic electrons by
using 𝜉𝑁 ,DN𝑛

′ instead of 𝑛′ in the steps decribed in the following
section.

4.3 Radiative flux calculation

To calculate the corresponding flux, we have adapted the linear ra-
diative transfer approach and corresponding code from van Eerten
& Wĳers (2009) using the same simplified connected power-law de-
scription for synchrotron emission as in van Eerten et al. (2010b).
We intend to upgrade the code in the future with more a elabo-
rate description including a treatment of the transition between these
power-law regimes as described in van Eerten & Wĳers (2009). For
the sake of simplicity we neglect self-absorption here and focus on
frequencies above the radio band.
The frequency at which a single electron with energy 𝛾′𝑒𝑚𝑒𝑐

2 in
the co-moving frame produces synchrotron radiation is 𝜈syn (𝛾′𝑒) =
3𝑞𝑒𝐵′
16𝑚𝑒𝑐

(𝛾′𝑒)2 with 𝑞𝑒 the charge of the electron. We can now write
𝜈′min = 𝜈syn (𝛾min), and 𝜈′max = 𝜈syn (𝛾max). The spectral volumetric
power for an emitting region of the fluid is given by:

𝑃′𝜈 =


𝑃′𝜈,max

(
𝜈

𝜈′min

)1/3
, 𝜈 < 𝜈′min,

𝑃′𝜈,max
(

𝜈
𝜈′min

)−(𝑝−1)/2
, 𝜈 > 𝜈′min,

(28)

with 𝑃′𝜈,max =
4(𝑝 − 1)
3𝑝 − 1 × 𝑛

′𝜎𝑇
4
3
𝐵′

6𝜋
16𝑚𝑒𝑐

3𝑞𝑒
. (29)

To account for local cooling, we implement a simple sharp cut-
off in the spectral emissivity for frequencies above 𝜈′max in the fluid
frame. In theory the emitted radiation follows and exponential cutoff
that will be implemented in the future. We expect from our prescrip-
tion a small underestimation of the true flux above the cooling break.
This does not change the interpretation of the results from section 5
as we will see the flux is generally higher with our approach com-
pared to previous prescriptions. Eventually, once having taken into
account the proper beaming factors depending on 𝜇 the cosine of the
angle between the fluid velocity and the observer, and accounting for
photon arrival times, the flux received at a given observer time 𝑡obs
for a given frequency 𝜈 can be integrated following:

𝐹 (𝜈, 𝑡obs) =
1 + 𝑧
2𝑑2

𝐿

∫ 1

−1
d𝜇

∫ ∞

0
𝑟2d𝑟

𝑃′
𝜈′ (𝑟, 𝑡obs + 𝑟𝜇)
Γ2 (1 − 𝛽𝜇)2

, (30)

with 𝑑𝐿 the luminosity distance and 𝑧 the redshift.

4.4 Shock detection algorithm

This radiative prescription relies on accurate detection of the shock
positions in the fluid. While Ayache et al. (2020) make use of a shock
detector based on the calculation of the limiting relative velocities at
cell interfaces in 1D from Rezzolla et al. (2003) and Zanotti et al.
(2010), we use in this work the more complex multi-dimensional
version of this dectector, introduced by the same authors, that we
describe in this section.
Let us consider a candidate discontinuity in fluid quantities in

which we observe a jump in density, pressure and velocity between
two regions denoted 1 and 2. This is the setup of a local Rieman
problem for which we can compute a criterion on the relative velocity
orthogonal to the discontinuity 𝑣12 ≡ (𝑣1 − 𝑣2)/(1 − 𝑣1𝑣2) for the
formation of one shock and one rarefaction (SR), or two shocks (2S)
in the resulting Riemann fan. By checking for this criterion on all
the interfaces of the grid we can map the location of the shocks in all
directions.
In the SR case, the criterion is given by:

𝑣12 > (𝑣̃12)SR = tanh
©­­«
∫ 𝑝2

𝑝1

√︃
ℎ2 + A21 (1 − 𝑐

2
𝑠)

(ℎ2 + A21)𝜌𝑐𝑠
d𝑝

ª®®¬ , (31)

where 𝑐𝑠 is the speed of sound and A1 ≡ ℎ1𝛾1𝑣
𝑡
1, with 𝑣𝑡1 the

transverse velocity. We compute (𝑣̃12)SR by numerical integration.
In this simple form, the algorithm does not discriminate on shock

strength and can lead to the spurious detection of weak shocks. This
can be adjusted by computing the limiting relative velocity for the
2S case:

𝑣12 > (𝑣̃12)2S =
(𝑝1 − 𝑝2) (1 − 𝑣2𝑉̄𝑠)

(𝑉̄𝑠 − 𝑣2){ℎ2𝜌2𝛾22 [1 − 𝑣
2
2] + 𝑝1 − 𝑝2}

. (32)

We refer the reader to (Rezzolla et al. 2003) for the explicit ex-
pression of 𝑉̄𝑠 which is the velocity of S→ in the Riemann fan
{1S←3C3′S→2} in the limit case where 𝑝3 → 𝑝1.
The shock detection threshold is adjusted by computing a new

limit (𝑣̃12)eff with adjustable parameter 𝜒 ∈ [0, 1] such that a shock
is detected for:

𝑣12 > (𝑣̃12)eff = (𝑣̃12)SR + 𝜒[(𝑣̃12)2S − (𝑣̃12)SR ] . (33)

We find 𝜒 = 0.5 produces satisfactory results in all the applications
presented in this paper.
This procedure can be generalized to any spacetime metric (or

system of coordinates) by projecting the velocities into a local tetrad
following 𝑣𝑖 = 𝑀𝑖

𝑗
𝑣 𝑗 (Pons et al. 1998). In this work we are only

interested in spherical coordinates for which the projection simply
reduces to 𝑀𝑖

𝑗
= diag(1, 𝑟, 𝑟 sin 𝜃).

5 SYNTHETIC GRB AFTERGLOW LIGHT CURVES WITH
LOCAL COOLING

5.1 Initial setup

We run simulations of spreading top-hat jets with local and global
cooling. The setups are similar to those from van Eerten et al. (2012).
We start from a BM solution constrained to a small opening angle.
This ensures that the results can be re-scaled making use of scale
invariance with regard to the ratio of burst energy over circumburst
medium density. The initial time 𝑡0 is chosen such that the peak
fluid Lorentz factor of the outflow is set to Γpeak = 100. We run
two simulations with the same dynamical parameters but different
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Table 4. Initial parameters for the 2D GRB jet local cooling simulation

Parameter Notation Value Unit
Dynamics:
Equivalent Isotropic Energy 𝐸iso 1053 erg
CSM number density 𝑛0 1 cm−3
Initial peak Lorentz factor Γpeak,0 100
Corresponding initial time 𝑡0 4.36 × 106 s
Jet half-opening angle 𝜃jet 0.1 rad
Temperature of CSM (𝑝/𝜌𝑐2) 𝜂 10−5

Micro-physics: slow / fast
Fraction of accelerated e− 𝜉𝑁 1 / 0.1
Electron energy 𝜖𝑒 0.1 / 0.1
Magnetic energy 𝜖𝐵 0.01 / 0.1

micro-physical parameters leading to a slow-cooling and fast-cooling
early times case for us to analyse. Since we locally compute the mi-
crophysics these parameters indeed need to be specified before the
dynamical simulation. Of course, the fast-cooling case is expected
to transition to slow-cooling at later times and these different sets
of micro-physical parameters are only selected to make our inter-
pretation more straightforward. The micro-physical parameters also
sit within the distributions derived from GRB observations (see e.g.
Santana et al. 2014; Beniamini & van der Horst 2017; Aksulu et al.
2021). In this regard, the choice of 𝜖𝐵 ≡ 0.1 in the fast-cooling case
sits in the upper bracket of the distribution. The qualitative effect of
the local cooling will however remain the same for all fast-cooling
spectra regarless of the value of 𝜖𝐵 . All the initial parameters in these
simulations are reported in table 4. The simulation final time 𝑡 𝑓 is
determined by the time spanned by the synthetic light-curve. In prac-
tice, we choose 𝑡 𝑓 = 3.33× 108s and we check that the last snapshot
does indeed not contribute to the emission at the final observer time
𝑡obs,f = 108s.

5.2 Grid parameters

The grid contains 𝑁𝜃 = 300 tracks in the interval 𝜃 ∈ [0, 𝜋/2].
Initially we set the grid radial width as a function of initial shock
Lorentz factorΓ𝑠 such that the radial bounds are equal to 𝑟min,0 = 𝑟𝑠−
50/Γ2𝑠 and 𝑟max,0 = 𝑟𝑠 +50/Γ2𝑠 , where 𝑟𝑠 is the initial shock position
as given by the BM solution. Each track contains 𝑁𝑟 ,0 = 5000 cells
of equal d𝑟 initially (except for 𝑟 > 𝑟𝑠 where 𝑑𝑟 is multiplied by a
factor 10 only in the initial grid to make sure the blast-wave does not
outrun the moving outer boundary in the first few time-steps) so as
to resolve the blast wave correctly and ensure the energy contained
in the grid is as close to the expected 𝐸iso/(1− cos 𝜃jet)) as possible.
The number of cells per track quickly decreases due to the AMR
criteria described in the next paragraph. During the simulation, we
move the outer boundary such that the shock front on the jet axis
is always located at 0.9𝑟max. New cells are simply created from this
moving boundary by the AMR methods implemented in the code.
All boundaries apart from the outer one are reflective to ensure
energy conservation in the grid (inner boundary), model potential
interaction with the counter-jet (boundary at 𝜃 = 𝜋/2), and comply
with axisymmetry (boundary at 𝜃 = 0).
The resolution is determined as follows. The radial resolution is

governed for each cell by a special "re-gridding score" 𝑆regrid =

𝑎̂×Γ3/2 where 𝑎̂ is the modified aspect ratio described in section 3.5
and Γ the fluid Lorentz factor at the cell location. 𝑆regrid increases
with Lorentz factor such that smaller aspect ratios are allowed for
highly relativistic cells. This ensures that the blast wave is better

resolved at the shock position where the velocity is the highest. We
ran simulations with varying exponent values and found Γ3/2 to give
satisfying convergence of the light-curves. We also multiply 𝑆regrid
by a factor 10 in the few cells around the onset of the forward shock
to further increase the resolution there. 𝑆regrid is allowed to vary in
the interval [0.1, 3] leading to aspect ratios ranging from 10−4 to 3
in practice. The re-gridding mode is set to "runaway". In order to
improve the resolution close to the jet axis, we use a variable-size
track width where the position of interface 𝑗 − 1/2 between tracks
𝑗 − 1 and 𝑗 is set by:

𝜃 𝑗−1/2 =
𝜋

2

(
0.3

𝑗

𝑁𝜃
+ 0.7

(
𝑗

𝑁𝜃

)3)
, (34)

where 𝑁𝜃 is the number of tracks. This means that the radial reso-
lution is also higher closer to the jet axis. The number of cells on
track 0 varies from ∼450 to ∼1500 throughout the simulation. The
dynamical simulations run in 7 hours on 384 Marvell ThunderX2
ARM cores distributed over 12 nodes.
The synchrotron emission is computed following the method de-

scribed in section 4 with a small modification. The the larger size
of the cells ahead of the blast wave leads to shock diffusion over the
same scale as that of the hot region, and thus a wide region ahead of
the blast wave is marked as "shocked" by the shock detector. We de-
cide to turn off the emissivity in all the cells neighbouring a detected
shock, and only sum over the emission from the cells in the process of
cooling. This does not hinder the ability of the computed light curves
to converge since the resolution directly downstream of the shocks
is sufficient to allow for this approximation. We check that the light
curves obtained are indeed converged by running simulations with
varying radial and transverse resolutions (see sec. 5.3, light curve
with 600 tracks).

5.3 Results

Snapshots in the slow-cooling case at 1.6 × 𝑡0, spreading time 𝑡𝑠
and close to final time 𝑡 . 𝑡 𝑓 are reported in figure 12. For better
readability, these snapshots are truncated at 𝜃 = 0.5 rad. We observe
the expected behavior where the first stages of the evolution follow
the BM solution as the jet lacks transverse causal connection. The jet
eventually starts spreading at:

𝑡𝑠 =
©­«
17𝐸iso𝜃2jet
4𝜋𝑛0𝑚𝑝𝑐

5
ª®¬
1/3

= 3.22 × 107s, (35)

where it transitions to the spherical evolution stage in which we
choose to stop the simulation at 𝑡 𝑓 . In figure 13 we show that at 𝑡𝑠 the
blast wave still follows the BM solution. this figure also highlights
the very high resolution needed to properly resolve the hot region
where 𝛾max quickly decreases downstream of the shock. In figure 14
we show that our simulation accurately follows the expected BM
evolution until jet spreading. The peak four-velocity directly down-
stream of the shock 𝑢Peak follows the expected evolution with lab
time 𝑢Peak ∝ 𝑡−3/2 very closely until the onset of transverse motion
(jet spreading). Figure 15 shows the peak value for 𝛾min (directly
downstream of the shock) as a function of lab time in three different
directions. Here too, we recover the expected evolution pre-jet break
except near the outer edge of the jet where interaction with the CSM
influences 𝛾min from the start. This figure highlights the transition to
the spherical expansion phase when 𝛾min adopts the same evolution
in all plotted directions for 𝑡 > 108s. At these late times, with our
description of the particle population, we enter the regime in which
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Figure 12. Snapshots in the slow-cooling case before spreading (left column), at 𝑡𝑠 (center column), and at the end of the simulation (right column). The
snapshots are truncated at 𝜃 = 0.5 for better readability. The bottom line shows the x-ray emissivity (positive angles) as seen from an on-axis static observer.
Since we use a log color scale, we floor the emissivity to the lowest measured non-zero value in the grid. This quantity allows us to map the emission sites in the
jets and verify that the contribution to x-ray from internal re-collimation shocks early in the evolution is negligible in our simulation as the density downstream
of these shocks is very low compared to the FS.

𝛾min < 1. When computing the emissivity from these regions, we
apply the prescription in the deep newtoninan phase from section
4.2, where 𝛾min is floored to 1. We report in the figures the limit
observer time 𝑡lim ∼ 107s above which regions of the fluid with such
low values of 𝛾min start contributing to the light-curves. Figure 16
shows the evolution the spectral index 𝑝 directly downstream of the
shock with lab time, in the case where we allow it to vary. We can
notice it does not evolve significantly before the jet break here and
undergoes a sharp decrease as the jet decelerates post-jet break. This
is easily explained by the direct dependency of 𝑝 on the upstream
fluid velocity.
The synthetic light curves and spectra are reported in figures 17-18

(slow-cooling) and 19-20 (fast-cooling). All light-curves exhibit a jet
break at 𝑡obs = 𝑡break ∼ 105s corresponding to the spreading time
𝑡𝑠 in the lab frame. In both cases, we observe pre-jet break a very

good match with the expected BM flux computed with local cooling
(Granot & Sari 2002), which confirms the validity of our approach.
Post-jet break, the BM solution diverges from the true solution as
it does not take into account jet spreading and the associated decel-
eration. As expected, we observe a steeper decrease post-jet break
when accounting for jet spreading and deceleration in our numerical
solution.
We can now compare the light curves and spectra to those obtained

with the global cooling approximation. Let us first consider the slow-
cooling case. We can observe a discrepancy of factor ∼ 5 in flux
levels between the global cooling and local cooling approaches after
the cooling break. This is explained by the difference in the position
of the cooling break in the spectrum, which has a direct influence on
the overall flux level in the light-curves at higher frequencies. Now
considering the fast-cooling case, we see that the change in cooling
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Figure 13. Radial profile at 𝑡𝑠 in the fast-cooling case for 𝜃 = 0. The jet still
follows the BM solution at this stage. Density and pressure are normalised by
𝑚𝑝𝑛0 and 𝑚𝑝𝜂𝑛0𝑐

2, respectively.

Figure 14. Four-velocity Γ𝛽 directly downstream of the shock. We obtain
this value by simply measuring the maximum radial velocity in the simulation
domain. Our dynamical simulation very accurately follows the BM solution
Γ𝛽 ∝ 𝑡−3/2 before jet spreading at 𝑡𝑠 = 3.22 × 107s.

Figure 15. Slow-cooling case, fixed spectral index 𝑝. Lower bound 𝛾min
of the accelerated electron population directly downstream of the shock for
different directions (jet axis 𝜃 = 0, jet half-opening angle 𝜃 = 𝜃jet, and
halfway 𝜃 = 𝜃jet/2). As expected 𝛾min decreases faster from the beginning
due to jet edge effects. All evolutions rejoin when the jet enters the spherical
expansion phase in theNewtonian regime. Eventuallywe encounter the known
issue with describing the accelerated particles as a power-law in energy as
𝛾min moves below 1 (dashed gray line) at very late times.

Figure 16. Slow-cooling case, variable spectral index 𝑝. Spectral index 𝑝

directly downstream of the shock for different directions (jet axis 𝜃 = 0, jet
half-opening angle 𝜃 = 𝜃jet, and halfway 𝜃 = 𝜃jet/2). 𝑝 undergose a fast
transition during jet spreading. This explains why the light-curves and spectra
are identical in the variable and fixed 𝑝 cases in our figures.

break frequency influences all parts of the spectrum as 𝛾min is now
also subject to cooling. The light curves flux level at frequencies
below 𝜈𝑚 is thus also affected in this case. These strong differences
highlight the clear need to include local cooling in the modeling tools
currently used by the community.
Locally tracing the particle population offers several opportunities

regarding the study of the evolution for the emission post-jet break.
We can for the first time accurately capture the radiative transition
from the ultra-relativistic BM solution to the Newtonian ST solution.
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Figure 17. Light curves in the slow-cooling case in far IR (orange), optical
(green) and x-ray (blue). The BM solution is not computed after 107s as is
is outside its region of validity then. As expected, it diverges from the true
solution after the jet break at 𝑡obs ∼ 105s. The difference between local and
global cooling at early times for optical and far IR is due to the fact that the
system is still fast-cooling then. As it transition to slow-cooling the light-
curves rejoin. At later times, the effect of local cooling starts to show on 𝛾min
that decreases faster than in the global cooling case, leading to lower fluxes
above the injection break. After 𝑡obs ∼ 107s (dashed gray vertical line), some
of the contributing regions of the blast-wave see 𝛾min < 1 in the variable 𝑝
case and we caution against interpretation of the corresponding dot-dashed
curves at later times. The loosely dotted black line shows the optical light-
curve for a local, variable 𝑝 run at higher transverse resolution (600 tracks).
Other frequencies are not shown for readability but we confirmed convergence
there too.

Figure 18. Slow-cooling spectra. Line styles match those of fig 17. Since this
is slow cooling, the cooling break is easily identified as the right-most break
in each spectrum. The difference in the cooling break position is responsible
for the difference in flux density at high frequencies.

Figure 19. Same as figure 17 but in the fast-cooling case. We do not show
the variable 𝑝 light curve in this case which is discussed instead in the slow-
cooling case. As in slow cooling all curves exhibit a jet break at 𝑡obs ∼ 105s.
Just like in slow-cooling, the x-ray light-curve shows a factor ∼ 5 difference
pre-jet break as this frequency is placed above the cooling break throughout
the whole evolution.

Figure 20. Fast-cooling spectra. Line styles match those of fig 17.

In figure 22 we report the evolution of the cooling break 𝜈𝑐 with
observer time 𝑡obs. Firstly, we find that our simulations using the
global cooling approach are in good agreement with previous trans-
relativistic simulation works (van Eerten & MacFadyen 2012a; van
Eerten & Macfadyen 2013). We find the expected −1/2 slope in
the ultra-relativistic limit and observe the same turnover at 𝑡break.
Secondly, with local cooling, 𝜈𝑐 follows the same slope for 𝑡obs <
𝑡break, but offset by a factor ∼ 40. This feature was expected as
pointed out by previousworks (vanEerten et al. 2010b;Guidorzi et al.
2014). Post-jet break, we observe a striking difference between the
two approaches.While 𝜈𝑐,global sharply increases, 𝜈𝑐,local transitions
to a plateau stage from 𝑡obs ∼ 3 × 105s to 𝑡obs ∼ 3 × 107s. As the
jet transitions to the Newtonian phase, 𝜈𝑐 resumes decreasing. In
figure 22 we show the asymptotic -1/5 slope expected for this phase.
Unfortunately, our simulations did not run long enough to allow us
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to model the radiation at later times yet and we cannot confirm at this
stage that 𝜈𝑐 will settle on this asymptote from this simulation. In
this particular setup the global and local calculations of 𝜈𝑐 meet up
at at times. Investigating whether this phenomenon happens for all
explosion parameters or has a physical explanation is left to future
work.
The difference in behaviour of 𝜈𝑐 between the local cooling and

global cooling approaches is also visible in figure 23 where we show
the evolution of the spectral index 𝛽 at 3.16 × 1015 Hz, computed
across a decade in frequency, as a function of observer time. This
frequency does not correspond to a meaningful observing instrument
but is chosen since 𝜈𝑐 crosses it in both the global and local cooling
cases. The cooling break transition occurs at later times for local
cooling in comparison with global cooling, as expected from figure
22. The cooling break is also known to be very smooth (Granot&Sari
2002; van Eerten & Wĳers 2009; Uhm & Zhang 2014). We recover
this effect as we observe that 𝛽 transitions more slowly to the value
expected above the jet break of -1.11. In our case, the smoothness
is obtained from the sum of the contributions to the spectrum of all
regions of the fluid. Since our local emission coefficient is a sharp
broken power-law and includes a sharp cut-off above 𝜈max, we expect
to actually be underestimating the smoothness of this transition.
In all the figures describing the radiation from our the slow-cooling

case, we also show the evolution of 𝜈𝑐 in the case where the spectral
index 𝑝 varies following the approach described in section 4. We
observe further differences for 𝑡 > 𝑡break from the local cooling
approach where it is kept to a fixed value 𝑝 = 2.22, where the flux
decreases faster at all frequencies. The collapse in flux is directly
linked with the sharper decrease of 𝛾min associated with decreasing
spectral index after 𝑡𝑠 , as is visible in the snapshots in figure 12. In
this particular case, the influence of the deep Newtonian phase can
be seen on the x-ray light curve as reported in figure 21, in which we
compare light curves calculated with, and without implementation
of the Newtonian evolution. The flattening of the light curve at other
wavelenghts, as well as for a fixed value of 𝑝, is marginal.
The evolution of the cooling break position also changes and we

observe in figure 22 that the plateau at the jet break time present with
a fixed spectral index disappears with a variable value for 𝑝, showing
a steady decrease similar to the pre-jet break regime. This effect is
visible in light curves and spectra and provides a potential avenue to
investigate the theoretical processes involved in particle acceleration
at shock fronts.

6 DISCUSSION

In this work, we present a 2D relativistic hydrodynamics code that
includes a local calculation of particle population evolution. While
the use of a moving mesh offers significant improvements in terms
of efficiency over fixed mesh approaches, the immediate downside of
the local cooling approach is the necessity to run separate expensive
dynamical simulations for each set of micro-physical parameters,
increasing the number of runs necessary to explore the parameter
space in comparison to global cooling approaches.
Regarding our jet simulations, we assume either sphericity or axi-

symmetry and run 2D calculations. We do not expect 3D effects to
strongly influence our synthetic light-curve calculations, however,
the study of the Rayleigh-Taylor instabilities at the contact discon-
tinuity in the afterglow would benefit from a 3D approach as this
could have important consequences on the rate of propagation of the
reverse shock in the ejecta. We also consider in these simulations
the magnetisation to be small enough that it does not influence the

Figure 21. Effect of the inclusion of the calculation of the deep Newtonian
phase on the resulting light curves in the slow-cooling case. In color are the
light curves computed without flooring 𝛾min and computing the contribution
only from the relativistic electrons. In black are the corrected light curves
to include the deep Newtonian regime. The deep Newtonian phase is only
shown past 107s as 𝛾min > 1 before this time in the whole fluid. The effects of
the deep Newtonian regime are marginal at the times simulated here, except
in the case of the x-ray light curve for a variable spectral index p, where it
contributes to a light flattening of the light curve at late times.

general dynamics of the jet, which is expected at late stage of the
evolution post-deceleration (for a recent review, see e.g. Granot et al.
2015).
The light curves and spectra presented in this work are all calcu-

lated for initially top-hat jets for an on-axis observer. Since GRBs
are sources at cosmological distances, they are typically observed
near on-axis or at least within the jet half-opening angle (Ryan et al.
2015), a situation for which angular structure of the jet has a neg-
ligible influence on the light-curve shape (Rossi et al. 2002; Kumar
& Granot 2003; Ryan et al. 2020). These results can thus already be
applied to the bulk of GRB afterglow observations. The influence of
local cooling on structured jets observed off-axis will be the focus of
a future study.
In section 4.2, we explain how we approach the problem of values

of 𝛾min reaching unphysical values below unity. While our approach
produces accurate light curves in the deep Newtonian phase, it does
not provide an accurate local accelerated electron distribution at low
energies in the simulated dynamical snapshots, which makes the
study of the interaction between the non-thermal and thermal com-
ponents impossible at this stage. Additionally, our model runs into
limitations as 𝑝 approaches 2 (see eq. 27). The emissivity becomes
strongly dependent on the values of 𝛾max and 𝑝, which is either
very hard to resolve numerically for the former, or poorly understood
for the latter. For these reasons, a future version of GAMMAwill in-
clude a full local calculation of the distribution in momentum of the
non-thermal population.
In section 4.3, we mention our simplified approach to the cut-off

of local emissivity above 𝜈max. Since the slope above the cooling
break in the observed spectrum is the result of this cut-off being
placed at different frequencies in the observer frame depending on
the emitting region of the blast-wave, a sharp cut-off will have a
tendency to underestimate the flux received above 𝜈𝑐 . However, this
can be compensated by increased resolution in the emitting region,
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Figure 22. Evolution of the cooling break position with observer time. The
dashed segments represent the asymptotic slopes expected in the relativistic (-
1/2) and Newtonian (-1/5) limits. The global cooling results match those from
van Eerten & MacFadyen (2012a) and van Eerten & Macfadyen (2013) with
a temporary sharp increase of 𝜈𝑐 . The local cooling approach displays a very
different behavior with constant 𝜈𝑐 for at least two decades in observer time
from the jet break onwards. The horizontal dashed gray line is the frequency
used to plot the evolution of the spectral index in figure 23.

Figure 23. Evolution of the spectral index 𝛽 in the slow-cooling case at
frequency 𝑓 = 3.16 × 1015 Hz as a function of observer time. The local
cooling calculation is done for a fixed value of 𝑝. The blue (orange) dashed
line represents the approximate observer time at which the global (local) 𝜈𝑐
crosses our observed frequency. At 10s, our 𝑓 sits below 𝜈𝑚 and 𝜈𝑐 for both
cooling prescriptions, at the expected value 𝛽 = 1/3. As we are just exiting
the fast-cooling stage, 𝜈𝑚 and 𝜈𝑐 are very close together, and, in the global
cooling case, 𝛽 does not have the time to settle on the expected -0.61 value
when 𝜈𝑚 crosses 𝑓 , and instead drops straight to -1.11, which is the value
expected for 𝑓 > 𝜈𝑐 . In the slow-cooling case, 𝜈𝑐 sits at higher frequencies,
and the cooling break in the spectrum is smoother, which leads to a slower
transition towards -1.11. Additionally, as the evolution of 𝜈𝑐 flattens out post-
jet break, our observing frequency 𝑓 never leaves the break region, and -1.11
is never reached.

and we actually observed observe a very good agreement between
our numerical approach and analytical solutions before the jet break.
Ourmain results remain valid at later times too sincewhat we observe
is a significant increase in the observed flux with local cooling.
In conclusion, this work provides a solution to the current pit-

falls of numerical modeling of afterglow light-curves thanks to an
improved numerical approach that accounts for the local variabil-
ity of the emissivity in the fluid. The striking difference in cooling
break behaviour across the jet break between local and global cool-
ing approaches implies that it is not sufficient to merely apply a
fixed correction factor to a global cooling approach in order to match
the more physically realistic local cooling results. Nevertheless, the
cooling break evolution curve remains completely scale invariant in
the manner first described by van Eerten &MacFadyen (2012a) even
across the trans-relativistic stage.
Recent discoveries associated with the multi-messenger detection

of 170817 (Abbott et al. 2017b,a; Goldstein et al. 2017; Hallinan
et al. 2017; Savchenko et al. 2017; Troja et al. 2017) have given new
impetus for the development of more accurate numerical models.
These are needed for us to be able understand the added complex-
ity (jet structure, off-axis observer, kilonova contribution, interaction
with a dynamical ejecta) from these ongoing observations observa-
tions (e.g Troja et al. 2019; Hajela et al. 2019; Troja et al. 2020).
While the simulations presented here are a textbook case of top-hat
on-axis GRB afterglow evolution, GAMMA now provides the basis for
the implementation of more complex micro-physical descriptions for
the emission and GRB dynamics which will be explored in future
works.
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