
        

Citation for published version:
Wang, C, Ji, X, Zhang, Z, Zhao, B, Quan, L & Plummer, AR 2022, 'Tracking differentiator based back-stepping
control for valve-controlled hydraulic actuator system', ISA Transactions, vol. 119, pp. 208-220.
https://doi.org/10.1016/j.isatra.2021.02.028

DOI:
10.1016/j.isatra.2021.02.028

Publication date:
2022

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 16. May. 2022

https://doi.org/10.1016/j.isatra.2021.02.028
https://doi.org/10.1016/j.isatra.2021.02.028
https://researchportal.bath.ac.uk/en/publications/tracking-differentiator-based-backstepping-control-for-valvecontrolled-hydraulic-actuator-system(bc526192-f53b-4ebe-848d-46faa088ced9).html


Tracking Differentiator Based Back-stepping 

Control for Valve-Controlled Hydraulic Actuator 

System 
 

                                                                                    

 

Abstract 

 Back-stepping design method has been widely used in 

high-performance tracking control tasks. It is well known that the 

back-stepping design based controller will become complex as the 

model order increases, which is the so called “explosion of terms” 

problem. In this paper, a tracking differentiator (TD) based 

back-stepping controller is developed to deal with this problem for a 

hydraulic position mechanism. Instead of calculating the derivatives 

of intermediate control variables through tedious analytical 

expressions, for the proposed method, the tracking differentiator is 

embedded into each recursive procedure to generate the substitute 

derivative signal for every intermediate control variable. As a result, 

the complexity of implementation procedure of back-stepping 

controller is significantly reduced. The discrepancies between the 

derivative substitutes and the real derivatives are considered. And 

the effects on control performances caused by the discrepancies are 

analyzed. Besides giving the theoretical results and the proof with 



Lyapunov methods, the proposed controller design method is 

evaluated through a series of experiments with a robot arm position 

control system. The effectiveness of the proposed method is verified 

by the experiments results. 

Keywords: Back-stepping design, explosion of complexity, tracking 

differentiator (TD), hydraulic position controller, nonlinear control 

1. Introduction 

The back-stepping recursive methodology is a powerful 

controller design tool of dealing with the nonlinear systems in (or 

transformable to) strict-feedback form [1]. By planning the 

intermediate virtual control variables for every system state, 

back-stepping design based controllers can address the nonlinear 

mismatched input problems effectively. 

However, as the system order increases the implementation of 

the standard back-stepping design based controllers become more 

and more complicated [2]. This problem is mainly caused by that the 

design approach of standard backs-stepping control requires 

calculating the analytical expressions for all the intermediate virtual 

control variables [3]. 

Take the n-th nonlinear system (1) as an example, in which the 

first state 𝑥𝑥1 is the scalar output and 𝑢𝑢 is the scalar control signal. 

The functions 𝑓𝑓𝑖𝑖  and 𝑔𝑔𝑖𝑖  are supposed to be known. 
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where 𝑖𝑖 = 1, … ,𝑛𝑛 − 1, 𝐱𝐱 = [𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ]𝑇𝑇 , 𝛚𝛚𝒊𝒊 = [𝑥𝑥1, … , 𝑥𝑥𝑖𝑖]𝑇𝑇 ,  

 Suppose 𝐞𝐞 = [𝑒𝑒1, … , 𝑒𝑒𝑛𝑛 ]𝑇𝑇 be the tracking error vector in which  

𝑒𝑒𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼�𝑖𝑖−1  (𝑖𝑖 = 1, … ,𝑛𝑛), 𝛼𝛼�𝑖𝑖  be the 𝑖𝑖 -th step recursive virtual 

control variable, and 𝛼𝛼�0 = 𝑥𝑥𝑑𝑑  is the given input reference. In order 

to obtain the final actual control input 𝑢𝑢  with the standard 

back-stepping control method, 𝑛𝑛 − 1 virtual control variables (i.e., 

α�1, … ,α�n−1) can be designed as follows 
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   (2) 

where 𝑖𝑖 = 2, …𝑛𝑛 − 1. 

 As shown in (2), the intermediate control variables 𝛼𝛼�𝑖𝑖  includes 

the derivative of 𝛼𝛼�𝑖𝑖−1 (𝑖𝑖 = 2, …𝑛𝑛 − 1) with respect to the system 

states 𝑥𝑥𝑗𝑗  (𝑗𝑗 ≤ 𝑖𝑖). Finally, the actual control input will involve the 

first derivate of 𝛼𝛼�𝑛𝑛−1, the second derivative of 𝛼𝛼�𝑛𝑛−2, …, the (𝑛𝑛 −

1)-th derivative of 𝛼𝛼�1 and the 𝑛𝑛-th order derivative of the reference 

command 𝑥𝑥𝑑𝑑 . 

One of the prerequisites to implement the standard back-stepping 

design procedure is that the 𝑛𝑛-th derivative of the command must be 

available. However, in many applications, the given commands are 

not sufficient smooth for calculating the virtual control variables. As a 



result, the standard back-stepping controller design method cannot 

be directly implemented in practice. 

In addition to the problem of discontinuous commands, as the 

model order increases, the analytical derivative expressions of 𝛼𝛼𝑖𝑖  

will become more and more complicated. As reported in [4], the 

implementation complexity of the control algorithms based on the 

back-stepping design method will exponentially increase as the 

system model order increases. This is the so-called “explosion of 

terms” issue. It is pointed out that it is very difficult to carry out the 

standard back-stepping design procedure when the system model is 

higher than three [2, 4]. 

A possible solution to these problems is to conduct numerical 

differentiation instead of calculating the analytical derivative for 𝛼𝛼𝑖𝑖 , 

e.g., �̇�𝛼𝑖𝑖 =  (𝛼𝛼𝑖𝑖(𝑛𝑛)− 𝛼𝛼𝑖𝑖(𝑛𝑛 − 1)) 𝑇𝑇⁄ , where 𝛼𝛼𝑖𝑖(𝑛𝑛)  and 𝛼𝛼𝑖𝑖(𝑛𝑛 − 1) 

denote the values of intermediate control variable 𝛼𝛼𝑖𝑖  in the 𝑛𝑛-th 

and (𝑛𝑛 − 1) -th sampling period, and 𝑇𝑇  denotes the sampling 

interval. The mainly drawback of this method lies in that it is easily to 

amplify the sensor noise. Generally, a low pass filter is required to 

smooth the numerically differentiated signal.  

Without the numerical differential operation, a modified 

back-stepping controller design method, i.e., command filtered 

back-stepping control, was proposed in [2] and the command filtered 



adaptive back-stepping version was developed in [4]. The command 

filtered back-stepping method was performed for the attitude control 

of a generic re-entry vehicle in [5] including simulation results. It was 

shown that the modified back-stepping method can greatly reduce 

the implementation complexity of back-stepping design procedure. 

The basic idea of the command filtered back-stepping method is 

to generate the substitute signals for the derivatives of the 

intermediate control variables through low pass filers. Since the 

derivative of 𝛼𝛼𝑖𝑖  can be directly calculated by command filter without 

involving the previous virtual control variables 𝛼𝛼𝑖𝑖−1 (𝑖𝑖 = 2, … ,𝑛𝑛 −

1), the coupling problem between the virtual control variables in the 

standard back-stepping design procedure can be solved. As a result, 

the whole controller design process can be significantly simplified.  

Hydraulic valve-controlled actuator systems (HVAS) are widely 

used in industry, such as shaking-table system [6], anti-lock braking 

systems [7], flight simulators [8], hydraulic excavator [9, 10], actuator 

governing unit [11-13], testing equipment [14-17] and so on. The 

dynamics performance of HVAS mainly depends on the interaction 

between the hydraulic and mechanical dynamics [18]. Besides that, 

due to random external disturbances and flow valve [19], HVAS 

usually exhibits significant non-linearity [20-22]. The control input of 

HVAS (i.e., the valve control signal) regulates the hydraulic dynamics 



directly and then governs the mechanical dynamics. Basically, HVAS 

systems are the typical nonlinear system with the mismatched input 

problem. So, to achieve the accurate tracking control task is often a 

challenge for HVAS [23]. The back-stepping control design approach 

is an effective tool to deal with the high performance control of HVAS. 

To date, a large number of papers focusing on the back-stepping 

based controller design for hydraulic systems have been published 

[24-27]. 

The back-stepping recursive controller design technique belongs 

to the model-based controller design method. Generally speaking, the 

more detailed and accurate the system model obtained, the better the 

control performance can achieve. However, the discussing HVAS is 

typically a nonlinear high-order system with parametric 

uncertainties problem. Even ignoring the valve dynamics, the HVAS 

can be described by a third order model. If the valve dynamics of 

HVAS is considered, the order of the HVAS model is essentially higher 

than five. Therefore, how to implement back-stepping control method 

for higher order models in a concise way is an important issue. 

Inspired by the idea of command filtered back-stepping design 

method, the tracking differentiator (TD) based back-stepping control 

method is developed in this paper. The basic idea of the developed 

method is to generate the substitution signals of certain command 



signals and their derivatives through the numerical tracking 

differentiator rather than the complicated analytical calculations. In 

this paper, the tracking differentiators (TDs) are employed in the 

each step of the standard back-stepping recursive design procedure 

to simply controller design procedure. The TDs are essentially 

second-order filters used to generate smooth approximations of the 

input signal and its derivative [28, 29].  

The main contributions of the paper are stated as follows. 

1) A practical back-stepping controller design and implementation 

method for hydraulic servomechanism is presented. The benefits 

are twofold: (a) There is no need to determine the analytical 

derivative expressions of intermediate control variables; (b) Only 

the integral calculations need to be performed. So the problem of 

noise amplification caused by differentiation is avoided. 

2) The stability proof and control performance analysis of the 

developed controller design method are given. The discrepancies 

between the analytic derivative expressions and the substitutes 

produced from the tracking differentiators are taken into 

consideration. 

3) The proposed control method is applied to a robot arm test rig, 

and its performance is verified experimentally. 

The rest of this paper is organized as follows. Section 2 develops 



the mathematical model of the considered HVAS, which is the basis 

for implementing the TD-based back-stepping control method. 

Section 3 details the design process of the controller. And the main 

theoretical results and stability proofs are given in this section. The 

adverse effects of sensor noise on back-stepping controller are 

analyzed through simulations in Section 4. Section 5 introduces the 

test rig system, and then presents the experiments results. Finally, 

conclusions are drawn in Section 6. 

 

2. System Model 

The studied system is depicted by Fig.1. As shown, an inertial load 

is driven by a single rod cylinder, which is governed by a servo valve. 

The HVSA system is capable of handling heavy loads with rapid 

response and it has been widely used in many industries such as: the 

turbine governing system [30], excavators [31], shaking table [32, 33], 

aircraft rudder system [13], load simulator system [34], and so on. 

To develop the system model of Fig.1, the following assumptions 

are made. 



 
Fig.1  Experimental setup of HVAS. 

Assumption 1. The servo valve is zero-lapped and symmetrical. The 

radial-clearance related leakage around the valve spool is negligible. 

Assumption 2. The supply pressure is constant. 

The motion of the piston and inertial load can be described by 

( )1 1 2 2p p dx P A P A m bx m f= − − −   (3) 

where 𝑚𝑚 is load mass; 𝑥𝑥𝑝𝑝  is load position; �̇�𝑥𝑝𝑝  is load velocity, 𝑃𝑃1 

and 𝑃𝑃2 denote pressures inside the two chambers of cylinder; 𝐴𝐴1 

and 𝐴𝐴2  are the ram areas of the two chambers, 𝑏𝑏  denotes the 

viscous friction coefficient, and 𝑓𝑓𝑑𝑑  is the force disturbance coming 

from unmolded friction and external disturbances including the 

effect of parameters deviations. 

Define function 𝑓𝑓𝑠𝑠(∗) as 𝑓𝑓𝑠𝑠(∗) = �1,   ∗> 0
0,   ∗≤ 0

�, then the flow rate 

modulated by servo valve can be expressed as 
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where 𝑄𝑄1  and 𝑄𝑄2  are the supplied flow rate into the piston 

chamber, and the return flow rate from the rod chamber; 𝜆𝜆 =

𝐶𝐶𝑑𝑑𝜔𝜔��2 𝜌𝜌⁄ ; 𝐶𝐶𝑑𝑑  and 𝜔𝜔� are the flow coefficient and the area gradient 

of servo valve; 𝜌𝜌 is the oil density, and 𝑥𝑥𝑣𝑣  is the spool displacement; 

𝑃𝑃𝑠𝑠 and 𝑃𝑃𝑟𝑟  are the supply pressure and return pressure, respectively. 

The response of the servo valve used in this paper (Moog D633) is 

much faster than the actuator's response, giving  

v xvx k u=  (5) 

where 𝑘𝑘𝑥𝑥𝑣𝑣  is valve gain and 𝑢𝑢 is control output. 

 Define state vector 𝐱𝐱� as x� = [�̅�𝑥1,�̅�𝑥2,�̅�𝑥3,�̅�𝑥4  ]T = [𝑥𝑥𝑝𝑝 ,�̇�𝑥𝑝𝑝 ,𝑃𝑃1 ,𝑃𝑃2]T , 

𝑅𝑅1(x�,𝑢𝑢) = 𝑓𝑓𝑠𝑠(𝑢𝑢)�𝑃𝑃𝑠𝑠 − 𝑃𝑃1 + 𝑓𝑓𝑠𝑠(−𝑢𝑢)�𝑃𝑃1 − 𝑃𝑃𝑟𝑟 , 

𝑅𝑅2(x�,𝑢𝑢) = 𝑓𝑓𝑠𝑠(𝑢𝑢)�𝑃𝑃2 − 𝑃𝑃𝑟𝑟 + 𝑓𝑓𝑠𝑠(−𝑢𝑢)�𝑃𝑃𝑠𝑠 − 𝑃𝑃2. 

Combing (5), equations of (4) can be expressed as follows. 
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where 𝛾𝛾 = 𝜆𝜆𝑘𝑘𝑥𝑥𝑣𝑣 . 

The flow continuity of the actuator can be modeled as 

( ) ( )
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 (7) 

where 𝑉𝑉1 = 𝑉𝑉10 + 𝐴𝐴1𝑥𝑥𝑝𝑝  and 𝑉𝑉2 = 𝑉𝑉20 − 𝐴𝐴2𝑥𝑥𝑝𝑝  are the total control 



volume of the piston chamber and the rod chamber, respectively; 𝑉𝑉10  

and 𝑉𝑉20  are the initial control volumes of the piston chamber and 

the rod chamber at mid-stroke; 𝛽𝛽𝑒𝑒 is the effective oil bulk modulus; 

𝐶𝐶𝑖𝑖  is the internal leakage coefficient of the actuator. 

 For clarity, define 𝑏𝑏𝑚𝑚 = 𝑏𝑏 𝑚𝑚⁄ , 𝐴𝐴1𝑚𝑚 = 𝐴𝐴1 𝑚𝑚⁄ , 𝐴𝐴2𝑚𝑚 = 𝐴𝐴2 𝑚𝑚⁄ , 

𝑓𝑓3(𝐱𝐱�) = −𝛽𝛽𝑒𝑒[𝐴𝐴1�̅�𝑥2 + 𝐶𝐶𝑖𝑖(�̅�𝑥3 − �̅�𝑥4)] (𝑉𝑉10 + 𝐴𝐴1�̅�𝑥1 )⁄ , 

𝑔𝑔3(𝐱𝐱�,𝑢𝑢) = 𝛾𝛾𝛽𝛽𝑒𝑒𝑅𝑅1(�̅�𝑥,𝑢𝑢) ⁄ (𝑉𝑉10 + 𝐴𝐴1�̅�𝑥1 ), 

𝑓𝑓4(𝐱𝐱�) = 𝛽𝛽𝑒𝑒[𝐴𝐴1�̅�𝑥2 + 𝐶𝐶𝑖𝑖(�̅�𝑥3 − �̅�𝑥4)] (𝑉𝑉20 − 𝐴𝐴2�̅�𝑥1 )⁄ , 

𝑔𝑔4(𝐱𝐱�,𝑢𝑢) = −𝛾𝛾 𝛽𝛽𝑒𝑒𝑅𝑅2(�̅�𝑥,𝑢𝑢) ⁄ (𝑉𝑉20 − 𝐴𝐴2�̅�𝑥1 ). 

From (3) to (7), the state equations of the HVAS system can be 

described as follows. 
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For system(8), our goal is to synthesize a suitable control signal 

𝑢𝑢 such that the load position �̅�𝑥1  can track the specified reference 

trajectory 𝑥𝑥𝑑𝑑   as accurate as possible. 

Remark 1: In (8), the first two equations describe the mechanical 

dynamics, and the last two ones represent the hydraulic dynamics of 

the HVAS. The system model shows clearly that the HVAS possesses 

coupled dynamics, characterized by the interaction between the 

mechanical and hydraulic dynamics. In addition, from (8) it is easily 



found that the control input 𝑢𝑢 only exerts effects on the hydraulic 

dynamics, which are the states �̅�𝑥3 and �̅�𝑥4. Therefore, it is a typical 

control input mismatched system, which is suitable to control by the 

back-stepping control method. 

In order to apply the standard back-stepping approach, the last 

two equations of (8) are replaced by one equation by defining 

variable, i.e., 𝑃𝑃𝐿𝐿 = 𝐴𝐴1𝑚𝑚𝑃𝑃1 − 𝐴𝐴2𝑚𝑚𝑃𝑃2 . Selecting the state vector 

𝐱𝐱 = [𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,]𝑇𝑇 = [𝑥𝑥𝑝𝑝 ,�̇�𝑥𝑝𝑝 ,𝑃𝑃𝐿𝐿  ]𝑇𝑇 , (8) can be rewritten as follows. 

[ ]
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 (9) 

The following assumptions are made to perform the standard 

back-stepping approach for (9). 

Assumption 3. (1). The desired trajectory 𝑥𝑥𝑑𝑑   is differentiable up to 

2nd order; (2). The extent of parametric uncertainty of 𝑏𝑏𝑚𝑚  is 

determined, i.e., there exists constants 𝑏𝑏𝑚𝑚𝑚𝑚𝑥𝑥  and 𝑏𝑏𝑚𝑚𝑖𝑖𝑛𝑛 , which are 

the maximum and minimum of 𝑏𝑏𝑚𝑚 .  And the extent of 𝑏𝑏𝑚𝑚  is 

bounded by some known positive constant 𝑏𝑏�𝑚𝑚 , i.e., 𝑏𝑏�𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑥𝑥 −

𝑏𝑏𝑚𝑚𝑖𝑖𝑛𝑛 ; (3). The un-modeled disturbances 𝑓𝑓𝑑𝑑  is bounded, namely, 

there exists a positive constant 𝛿𝛿𝑑𝑑  such that |𝑓𝑓𝑑𝑑 | < 𝛿𝛿𝑑𝑑 . 

Assumption 4. For the discussed HVAS system, it is assumed that the 

power unit is large enough to drive the load. 

Remark 2. Assumption 4 is given to ensure that there exists known 



𝜀𝜀 > 0 such that |𝐴𝐴1𝑚𝑚𝑔𝑔3 − 𝐴𝐴2𝑚𝑚𝑔𝑔4| > 𝜀𝜀 . In addition, from the 

expressions of 𝑓𝑓3, 𝑓𝑓4, 𝑔𝑔3, 𝑔𝑔4, it can be found that 𝑔𝑔3 and 𝑔𝑔4 are 

Lipschitz with �̅�𝑥1, �̅�𝑥3 and �̅�𝑥4, and 𝑓𝑓3 and 𝑓𝑓4 are globally Lipschitz 

with respect to �̅�𝑥1 to �̅�𝑥4. 

3. TD-based Back-stepping Controller Design 

 This section details the tracking differentiator based 

back-stepping design procedure for the HVAS and the stability 

analysis. In the improved design procedure, the analytical derivation 

of intermediate stabilizing functions is avoided. The tracking 

differentiators are developed to generate the equivalent outputs. The 

linear tracking differentiator is developed and analyzed in the 

following subsection. 

a)  Linear Tracking Differentiator 

Considering the following second-order TD system 

( )
1 2

2 1 1 2 2

 
v v
v h v r h v
=

 = − − −





 (10) 

where 𝑟𝑟 is the input of the TD, 𝑣𝑣1 is the substitute for 𝑟𝑟, and 𝑣𝑣2 is 

the derivative of 𝑣𝑣1; ℎ1 and ℎ2 are adjustable parameters. 

The TD (10) is actually a second-order low pass filter with the 

following two purposes. Firstly, unachievable high frequency 

components of the command signal are attenuated. Secondly, the 

intermediate differential signals used in the back-stepping design are 



generated by the TD. It is not necessary to derive the derivative's 

analytic expressions of intermediate control functions. This will 

greatly simplify the design process of controller. 

The basic idea of the improved method is to substitute the 

command, intermediate control variables and their derivatives with 

their estimates from TDs (10). Naturally, the following two questions 

arise. What are the differences between the substitutes and the real 

signals? How will the deviations affect the control performance? To 

begin with, it is necessary to investigate the discrepancies between 

the real value and the substitute. Define error variables 𝑣𝑣�1 = 𝑣𝑣1 − 𝑟𝑟 

and 𝑣𝑣�2 = 𝑣𝑣2 − �̇�𝑟. Then the following error dynamics yield 

1 2

2 1 1 2 2 2

 
v v
v h v h v h r r

 =


= − − − −



 



    

 (11) 

It is easy to verify that the system matrix of (11) is Hurwitz for 

any positive ℎ1 and ℎ2. For the constant input 𝑟𝑟 (�̇�𝑟 = 0), the error 

vector 𝐯𝐯� = [𝑣𝑣�1,𝑣𝑣�2]𝑇𝑇  tends to zero as time goes to infinite. 

Furthermore, it is more interesting to analyze the effect of a time 

varying input (�̇�𝑟 ≠ 0) on error vector 𝑣𝑣�. For the general case, the 

following lemma is given. 

 Lemma 1. For the given inputs (�̇�𝑟 ≠ 0) satisfying Assumption 3, 

it is concluded that the error vector 𝐯𝐯� can be arbitrarily small by 

choosing ℎ1 ≫ ℎ2 ≫ 1. 



 Proof of  Lemma 1. According to (11), the transfer function 

matrix between the first and the second derivative of 𝑟𝑟 to the error 

vector 𝐯𝐯� can be written as (12). 

1 2
22

2 22 1

( ) 1 ( )1
( ) ( )

v s h sr s
v s sh s s r ss h s h
     −

=     + +     





 (12) 

in which"𝑠𝑠" denotes the Laplace variable. 

With Assumption 3, the first and second order derivative of 𝑟𝑟 are 

bounded. Consequently, 𝑠𝑠𝑢𝑢𝑝𝑝𝜔𝜔∈𝑅𝑅|𝐺𝐺(𝑗𝑗𝜔𝜔)| can be arbitrarily small by 

choosing ℎ1 ≫ ℎ2 ≫ 1. In other words, the errors defined above (11) 

can be arbitrarily small by choosing the TD gains ℎ1 and ℎ2. ∎ 

 Lemma 1 implies that the error vector 𝐯𝐯� can be arbitrarily small 

by increasing the gains ℎ1  and ℎ2 . Theoretically, the substitutes 

produced with TD (10) can approximate to 𝑟𝑟 and �̇�𝑟 with arbitrary 

precision. In practice, however, the gains of ℎ1 and ℎ2 cannot be 

infinite since the noise of input signal and stability issues have to be 

taken into consideration. 

To be specific, TD works in the feedback control system 

augmented with back-stepping controller, whose dynamics is 

coupling with the tracking errors dynamics. As illustrated in (37)

-(40), large 𝜔𝜔𝑡𝑡  makes the derivative of the Lyapunov candidate 𝑉𝑉(𝑡𝑡) 

tends to be positive. In other words, the stability of the whole control 

system deteriorates. In order to make 𝑉𝑉(𝑡𝑡) be negative definite, the 



errors feedback gains 𝑘𝑘𝑖𝑖  (𝑖𝑖 = 1, 2, 3) have to be set larger. Obviously, 

excessive large feedback gains will amplify sensor noises and result 

in worse tracking results. Based on the above analysis, it is concluded 

that 𝜔𝜔𝑡𝑡  should not be set arbitrarily large. In addition, it is worth 

pointing out that the dynamics of TD is affected by the poles of the 

characteristic polynomial corresponding to (10). In order to avoid 

overshooting, the characteristic roots of TD (10) can be designed as 

negative real numbers through reasonably choosing the gains of ℎ1 

and ℎ2. 

b)  Tracking Differentiator Based Back-stepping Design 

Based on the tracking differentiator (10), the TD-based 

back-stepping controller can be designed as follows. 

Step 1: Suppose 𝑒𝑒1 is the output tracking error between 𝑟𝑟 and 𝑥𝑥1 , 

i.e., 𝑒𝑒1 = 𝑥𝑥1 − 𝑟𝑟. The time derivative of 𝑒𝑒1 for system (9) is 

1 2e x r= −   (13) 

 Let 𝑟𝑟 be the input and 𝑣𝑣𝑖𝑖𝑟𝑟   (𝑖𝑖 = 1, 2) be the output of the TD 

(10). Suppose 𝑧𝑧2
𝑟𝑟  be the discrepancy between �̇�𝑟  and 𝑣𝑣2

𝑟𝑟 , i.e., 

𝑧𝑧2
𝑟𝑟 = 𝑣𝑣2

𝑟𝑟 − �̇�𝑟. Substituting 𝑧𝑧2
𝑟𝑟  into (13) yields  

1 2 2 2
r re x v z= − +  (14) 

Notation 1. Throughout this paper, symbols 𝑣𝑣𝑖𝑖∗ (𝑖𝑖 = 1,2) will be 

used to denote the TD outputs with respect to input ∗, whose 

subscript " 𝑖𝑖" indicates the 𝑖𝑖th states of TD, Similarly, symbol 𝑧𝑧1
∗ 



denotes the discrepancy between 𝑣𝑣1
∗ and ∗; symbol 𝑧𝑧2

∗ denotes the 

discrepancy between 𝑣𝑣2
∗  and the derivative of ∗, i.e., 𝑧𝑧1

∗ = 𝑣𝑣1
∗ −∗ 

and 𝑧𝑧2
∗ = 𝑣𝑣2

∗ − 𝑑𝑑∗
𝑑𝑑𝑡𝑡

. 

Regarding 𝑥𝑥2  as the virtual control input (14), a stabilizing 

intermediate control function 𝛼𝛼  can be found for 𝑥𝑥2 . Define 

𝑒𝑒2 = 𝑥𝑥2 − 𝛼𝛼. Then, the error dynamics of 𝑒𝑒1 can be described as 

1 2 2 2
r re e v zα= + − +  (15) 

 Define Lyapunov candidate function 𝑉𝑉1 = 1
2
𝑒𝑒1

2. Then, for (15) the 

stabilizing functions α can be designed as 

2 1 1
rv k eα = −  (16) 

where 𝑘𝑘1 is the feedback gain of position tracking error. 

Substituting (16) into (15) yields  

1 1 1 2 2
re k e e z= − + +  (17) 

Step 2: The time derivative of 𝑒𝑒2 from (9) is  

2 2 3m de b x x f α= − + + −   (18) 

 Following the same procedure as step 1, treating 𝑥𝑥3 as the input 

of (18), a stabilizing function 𝛽𝛽 can be designed for 𝑥𝑥3.  

Defining 𝑒𝑒3 = 𝑥𝑥3 − 𝛽𝛽. It yields, then 

2 2 3m de b x e fβ α= − + + + −   (19) 

 For (19), it involves the uncertainty parameter 𝑏𝑏𝑚𝑚 . Noting 

Assumption 3, let 𝑏𝑏�𝑚𝑚  be the estimate value of 𝑏𝑏𝑚𝑚 , and let 𝑏𝑏�𝑚𝑚  be the 

discrepancy between 𝑏𝑏�𝑚𝑚  and 𝑏𝑏𝑚𝑚 , i.e., 𝑏𝑏�𝑚𝑚 = 𝑏𝑏�𝑚𝑚 − 𝑏𝑏𝑚𝑚 . In addition to 



the parametric uncertainty problem, the value of �̇�𝛼  is required. 

Instead of calculating the derivative of 𝛼𝛼  through the analytic 

derivatives expressions, the developed TD is used to generate the 

substitute of �̇�𝛼. 

 With Notation 1, (19) can be designed as  

2 2 2 3 2 2
ˆ
m m de b x b x e f v zα αβ= − + + + + − +

  (20) 

Define Lyapunov candidate function 𝑉𝑉2 = 𝑉𝑉1 + 1
2
𝑒𝑒2

2. Based on V2 

and (19), the stabilizing functions 𝛽𝛽 can be designed  

1 2 2 2 2
ˆ
m be k e b x vαβ β= − − + + −  (21) 

where 𝑘𝑘2  is the feedback gain parameter, and 𝛽𝛽𝑏𝑏  is a suitable 

control law which should satisfy the following conditions: −𝑒𝑒2(𝛽𝛽𝑏𝑏 −

𝑏𝑏�𝑚𝑚𝑥𝑥2) ≤ 𝛿𝛿𝑏𝑏 , in which 𝛿𝛿𝑏𝑏 > 0 is a controller parameter which can be 

arbitrarily small. 

Remark 3. There are different ways to design 𝛽𝛽𝑏𝑏  satisfying 

−𝑒𝑒2(𝛽𝛽𝑏𝑏 − 𝑏𝑏�𝑚𝑚𝑥𝑥2) ≤ 𝛿𝛿𝑏𝑏 . For instance, a direct method is to construct 

the state feedback control law as 𝛽𝛽𝑏𝑏 = 𝑘𝑘2𝑟𝑟𝑒𝑒2, where 𝑘𝑘2𝑟𝑟  satisfies 

𝑘𝑘2𝑟𝑟 ≥ 𝑏𝑏�𝑚𝑚𝑚𝑚𝑥𝑥2 𝑥𝑥2
2 (4𝛿𝛿𝑏𝑏)⁄ . 

Substituting (21) into (20) yields  

2 1 2 2 3 2 2b m de e k e e b x f zαβ= − − + − + + +

  (22) 

Step 3: Through the first two steps, the stabilizing intermediate 

control variables of 𝑥𝑥2 and 𝑥𝑥3 have been designed. At the following 

step there is no need to synthesize another intermediate control 



variable since the actual control input 𝑢𝑢 is at our disposal. 

The derivative of 𝑒𝑒3 along (9) yields that  

[ ]3 1 3 2 4 1 3 2 4= ( ) ( ) ( , ) ( , )m m m me A f A f A g u A g u u β− + − −x x x x 

  (23) 

Again, in order to avoid the analytical calculation of �̇�𝛽, let 𝛽𝛽 be 

the input of TD (10). Define Lyapunov candidate function 𝑉𝑉3 = 𝑉𝑉2 +
1
2
𝑒𝑒3

2. With Notation 1, the following control law can be designed as  

2 3 3 2 1 3 2 4

1 3 2 4

( ) ( )
( , ) ( , )

m m

m m

e k e v A f A fu
A g u A g u

β− − + − +
=

−
x x

x x
 (24) 

Substituting (24) into (23) yields  

3 2 3 3 2=e e k e zβ− − +  (25) 

 Based on the above design process, the block diagram of the 

developed control strategy can be described by Fig. 2. 

 

Fig. 2  Block diagram of the developed control strategy. 

Remark 4. The three tracking differentiators TD1, TD2 and TD3 in 

Fig. 2 are used to generate the substitute signals of �̇�𝑟, �̇�𝛼 and �̇�𝛽, 

respectively. In fact, to facilitate the implementation process and 

reduce the number of control parameter of the developed control 

strategy, TD1, TD2 and TD3 can implemented just with the following 



same structure. 

( )
1 2

2
2 1 2

 
2t t

v v
v v r vω ω

=


= − − −





 (26) 

Obviously, the dynamics of the TD is governed with parameter 

𝜔𝜔𝑡𝑡 . It is equivalent to set the gain ℎ1 = 𝜔𝜔𝑡𝑡
2 and ℎ2 = 2𝜔𝜔𝑡𝑡 . Although 

the dynamics of the input signals 𝑟𝑟, 𝛼𝛼 and 𝛽𝛽 may be quite different, 

the only parameters 𝜔𝜔𝑡𝑡  can be determined according to the faster 

dynamics of these signals. 

c)  Main Results 

 Define state tracking error vector 𝐞𝐞𝑇𝑇 = [𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3] and TD error 

vector𝐳𝐳𝑇𝑇 = [𝐳𝐳𝐫𝐫𝑇𝑇 , 𝐳𝐳𝜶𝜶𝑇𝑇 , 𝐳𝐳𝜷𝜷𝑇𝑇] , in which 𝐳𝐳𝐫𝐫𝑇𝑇 = [𝑧𝑧1
𝑟𝑟 , 𝑧𝑧2

𝑟𝑟] , 𝐳𝐳𝜶𝜶𝑇𝑇 = [𝑧𝑧1
𝛼𝛼 , 𝑧𝑧2

𝛼𝛼 ]  and 

𝐳𝐳𝜷𝜷𝑇𝑇 = [𝑧𝑧1
𝛽𝛽 , 𝑧𝑧2

𝛽𝛽 ] , respectively. For clearly, define 𝛏𝛏 = ��̇�𝑟, �̇�𝛼, �̇�𝛽�
𝑇𝑇 and 

𝛇𝛇 = ��̈�𝑟, �̈�𝛼, �̈�𝛽�
𝑇𝑇 . From the developed TD (24), the dynamics of the 

defined tracking error vector 𝐳𝐳 can be given as  

2t tω ωΣ Σ Σ= + +z A z B ξ B ζ  (27) 

where 𝐀𝐀 = � 0 𝜔𝜔𝑡𝑡
−1

−𝜔𝜔𝑡𝑡 −2 �,𝐀𝐀𝛴𝛴 = �
𝑨𝑨

𝑨𝑨
𝑨𝑨
�, 𝐁𝐁 = �01�，and 𝐁𝐁𝛴𝛴=−�

𝑩𝑩
𝑩𝑩
𝑩𝑩
�. 

The matrix 𝐀𝐀 is defined based on the system matrix of (11). 

Since 𝐀𝐀 is Hurwitz with 𝜔𝜔𝑡𝑡 > 0, there must exist an unique positive 

definite matrix 𝐏𝐏 such that 𝐀𝐀𝐓𝐓𝐏𝐏𝐓𝐓 + 𝐏𝐏𝐀𝐀 = −𝐈𝐈𝟐𝟐 , where 𝐈𝐈𝟐𝟐  denotes 

the 2 × 2 identity matrix. Obviously, for the defined 𝐀𝐀𝛴𝛴 , we have  

T T
Σ Σ Σ Σ Σ+ = −A P P A I  (28) 



where 𝐏𝐏𝛴𝛴 = �
𝐏𝐏

𝐏𝐏
𝐏𝐏
�and 𝐈𝐈Σ = �

𝐈𝐈𝟐𝟐
𝐈𝐈𝟐𝟐

𝐈𝐈𝟐𝟐
�. 

For clearly, let 𝜂𝜂𝜉𝜉 = 4‖𝐏𝐏𝛴𝛴‖‖𝐁𝐁𝛴𝛴‖‖𝛏𝛏‖ and 𝜂𝜂𝜁𝜁 = 2‖𝐏𝐏𝛴𝛴‖‖𝐁𝐁𝛴𝛴‖‖𝛇𝛇‖. Then, 

the following performance results can be given for the developed 

control scheme. 

  Results 1. Consider the tracking differentiator based back-stepping 

control law (24). By choosing the error feedback parameters to 

satisfy 𝑘𝑘𝑖𝑖 > 𝜂𝜂𝑖𝑖 > 0  (𝑖𝑖 = 1,2,3), and setting the tracking differentiator 

parameter to satisfy 𝜔𝜔𝑡𝑡 > 6 𝜂𝜂𝑚𝑚𝑖𝑖𝑛𝑛 > 0⁄  (𝜂𝜂𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑚𝑚𝑖𝑖𝑛𝑛{4𝜂𝜂1, 2𝜂𝜂2, 4𝜂𝜂3}), 

then the developed control strategy guarantees that in the presence 

of bounded external disturbances ( 𝑓𝑓𝑑𝑑 ≠ 0)  and parametric 

uncertainties, both the tracking error vector 𝒆𝒆 = [𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3]𝑇𝑇  and the 

tracking differentiator error vector 𝐳𝐳 = �𝐳𝐳𝐫𝐫, 𝐳𝐳𝛂𝛂, 𝐳𝐳𝛃𝛃�
𝑇𝑇 are bounded. 

Moreover, consider the given Lyapunov candidate 𝑉𝑉(𝑡𝑡)  

1( )
2

TV t Σ= +Te e z P z  (29) 

It is bounded by 

( ) ( ) ( )(0)exp 1 expm m
m

V t V t tσκ κ
κ

≤ − + − −    (30) 

where 𝜎𝜎 = 1
2
𝜔𝜔𝑡𝑡𝜂𝜂𝜉𝜉2 + 1

2
𝜂𝜂𝜁𝜁2 𝜔𝜔𝑡𝑡 + 𝜂𝜂𝜉𝜉𝜂𝜂𝜁𝜁 +� 𝛿𝛿𝑑𝑑2 (2𝜂𝜂2) +⁄ 𝛿𝛿𝑏𝑏 , 𝑉𝑉(0)  is the 

initial value of 𝑉𝑉(𝑡𝑡) , 𝜅𝜅 = 𝑚𝑚𝑖𝑖𝑛𝑛 �𝑘𝑘𝑖𝑖 − 𝜂𝜂𝑖𝑖 ,
1
2
𝜔𝜔𝑡𝑡 − 3𝜂𝜂𝑚𝑚𝑖𝑖𝑛𝑛−1 �  (𝑖𝑖 = 1,2,3) , 

𝜅𝜅𝑚𝑚 = 𝜅𝜅 ∙ 𝑚𝑚𝑖𝑖𝑛𝑛{0.5, 𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥−1 (𝑷𝑷𝛴𝛴)} , in which 𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥−1 (𝑷𝑷𝛴𝛴)  denotes the 

maximum eigenvalue of 𝐏𝐏𝛴𝛴 . 



Proof. See the Appendix. 

Results 1 shows that the developed linear tracking differentiator (10) 

based back-stepping control law has the following properties. Firstly, 

the parameter 𝜔𝜔𝑡𝑡  of the tracking differentiator is coupled with the 

smallest one of the error feedback gains 𝑘𝑘𝑖𝑖  (𝑖𝑖 = 1, 2, 3). To be specific, 

𝜔𝜔𝑡𝑡  should satisfy 𝜔𝜔𝑡𝑡 > 6 𝜂𝜂𝑚𝑚𝑖𝑖𝑛𝑛⁄ . This condition can be easily met by 

setting a large enough 𝜔𝜔𝑡𝑡 . Secondly, it is unreasonable to set the 

tracking differentiator parameter 𝜔𝜔𝑡𝑡  arbitrarily large. This is a bit 

counter-intuitive. From the expression of 𝜎𝜎 (𝜎𝜎 is defined between 

(38) and (39) in the Appendix section), the dynamics performance of 

TD and the controller performance is coupled. Larger 𝜔𝜔𝑡𝑡  will result 

in worse tracking errors. Therefore, it is important to make a balance 

between the TD dynamics and the tracking control performances. 

 Remark 5. Although the proposed control strategy can only get a 

bounded tracking error, it does not mean the developed control 

method is inferior to the standard back-stepping controller using the 

analytical derivative expressions. It is worth noting that, only with 

the absolutely accurate mathematical model, the asymptotic tracking 

results can be reached with the standard back-stepping controller. 

However, in practice the absolutely accurate model is almost never 

available. In other words, it is impossible to obtain the exact 

analytical expressions of those intermediate control variables’ 



derivative. Therefore, the proposed method is not an inexact 

substitute for the exact analytic derivative expression of standard 

back-stepping method. It is actually a practical improved version of 

the traditional method. 

 

4. Simulation Analysis 

 Most hydraulic valve-controlled actuator systems equipped with 

analog signal sensor, such as LVDT (linear variable differential 

transformer), suffer from the sensor noise problem. It is one of the 

key problems restricting the tracking performance of the 

back-stepping design based control algorithm.  

 In order to illustrate the effects of sensor noise on back-stepping 

controller, the HVAS model with back-stepping controller are built 

with Matlab/Simulink, which is shown in Fig. 3. The position sensor 

noise, servo valve dynamics, mechanical and hydraulic dynamics of 

the HVAS are considered in simulation. To be specific, the 

band-limited white noise block in Matlab/Simulink is used to 

generate position feedback signal noise. The servo valve is modeled 

by a second-order linear transfer function block, and the dynamics of 

tracking differentiators, mechanical and hydraulic dynamics of 

actuator unit are modeled by the "S-function" block. The main 

simulation parameters are given in Table 1. 



 
Fig. 3.  Simulation model built with Matlab/Simulink. 

Table 1 
Simulation parameters 

Component Parameter name Parameters value 

Servo valve 

Natural frequency 887364𝑟𝑟𝑚𝑚𝑑𝑑 𝑠𝑠⁄  

Maximum input current ±2 × 10−2𝐴𝐴 

Damping ratio 0.998 

Actuator unit 

Piston/annulus area 2.01/1.23× 10−4𝑚𝑚2 

Internal leakage coefficient 5 × 10−15𝐿𝐿 𝑚𝑚𝑖𝑖𝑛𝑛 𝑃𝑃𝑚𝑚⁄⁄  

Cylinder stroke 8 × 10−4𝑚𝑚 

Cylinder viscous coefficient 30 𝑁𝑁 𝑚𝑚 𝑠𝑠⁄⁄  

Supply hoses volume 2 × 10−5𝑚𝑚3 

Hydraulic system 

Effective bulk modulus 6 × 108 𝑃𝑃𝑚𝑚 

Oil density 900 𝑘𝑘𝑔𝑔 𝑚𝑚3⁄  

System pressure  3 × 106 𝑃𝑃𝑚𝑚 

System return pressure 1 × 105 𝑃𝑃𝑚𝑚 

Control parameters 

Position feedback gain 𝑘𝑘1 150 

Velocity feedback gain 𝑘𝑘2 80 

Pressure feedback gain 𝑘𝑘3 1200 

TD parameter 𝜔𝜔𝑡𝑡  100 

Let the reference position command 𝑟𝑟 be the sinusoidal command 

40 + 20 sin(4πt)mm. With the controller parameters shown in Table 

1, the simulation results based on the standard back-stepping 

controller and the developed methods are given in Fig. 4 (a)-(c). 



 
(a) 

 
(b) 

 
(c) 

Fig. 4. Simulation comparisons considering sensor noise disturbance. 



 Specifically, the command tracking results are given in Fig. 4 (a). 

Fig. 4 (b) illustrates the tracking errors and control inputs. The 

derivatives of intermediate control functions of the standard 

back-stepping controller and the TD based back-stepping controller 

are shown in Fig. 4 (c). The simulation data denoted by "BC" means 

that the data is based on the standard back-stepping controller and 

the data denoted by "BC-TD" means it is generated by the developed 

control method. 

 The feedback gains of the two comparison controllers used in the 

simulation are the same. The only difference between the "BC" and 

"BC-TD" methods lies in how to generate the derivatives of relative 

internal control functions, such as control function 𝛼𝛼 and 𝛽𝛽. For the 

"BC" method, all the derivatives are obtained by derivative operation 

directly, and the "BC-TD" method, i.e., the developed method, 

generates derivative signals with tracking differentiators. 

 As shown in Fig. 4 (c), due to the inference of the sensor noise, the 

derivative signals of internal control functions terribly oscillate. As a 

result, the controller input of "BC" oscillates and the control system 

almost loses stability. Instead of performing the differential 

operation, the "BC-TD" method obtains the derivatives of internal 

control functions through TDs. Since the problem of noise differential 

amplification is avoided with TD, better tracking results are achieved.  



5. Experiments Results 

a)  Description of experimental system 

 The elbow valve-controlled actuator unit of a two-axis prototype 

robot arm mechanism, whose photo is shown in Fig. 5 is used to test 

the TD-based back-stepping control method. During the experiments, 

only the elbow actuator is used to test the feasibility and 

performance of the developed method. The shoulder actuator is kept 

at the retracted state, and the elbow actuator unit is controlled to 

track different position commands. 

 
Fig. 5  Two-axis hydraulic robot arm. 

 The real-time control system, with 1000 Hz sampling frequency, 

mainly consists of a host and a slave computer. The NI PCI-6221 data 



acquisition cards are used to collect the experimental data. The 

designed control law is built with Matlab/Simulink in the host 

computer, and carried out in the slave computer. 
Table 2 
Main component of experiment set up. 
Element Type Marks 

Pump TFH-315 Takakoaxial piston pump 

Motor BSM63N-375AF Baldor Brushless AC motor 

Cylinder LB216100804M Horbiger cylinder 
computer IEIWs-855GS Advantech 
Servo valve D633-R02K01MON Moog 

 
Table 3 
Parameters of test rig. 

 Components Parameters 

Valve 

Rated flow 0.083 𝑚𝑚3 𝑠𝑠⁄  

Bandwidth 150 Hz 

Damping ratio 0.998 

Actuator Piston/annulus area (2.01/1.23) × 10−4𝑚𝑚2 

System 

Effective bulk modulus 15 × 107𝑃𝑃𝑚𝑚  

Return line pressure 1 × 105𝑃𝑃𝑚𝑚  

Supply hoses volume 2 × 10−5𝑚𝑚3 

 As shown by Fig. 5, a mass weight of 1.039 Kg is driven by the 

elbow actuator, which is a single-rod cylinder regulated by a Moog 

direct drive servo valve. The power unit is mainly composed by a 

fixed displacement pumps that is driven by a servo motor. During the 

experiments, the system pressure is 30 bar which is set through a 

relief valve. The brand and specific parameters of the main 



components of the test rig are listed in Table 2 and Table 3, 

respectively. 

b)  Experimental results 

 Although this paper mainly focus on reducing the implementation 

complexity of the standard back-stepping design procedure, 

considering the wide application of PI (proportional-integral) control, 

the experimental results from using the PI controller are also given as 

a performance benchmark to evaluate the control performance of the 

TD-based back-stepping controller. In order to quantitatively evaluate 

the performance of the developed method, the absolute peak error 

index (IAPE) and the mean square error index (IMSE) are defined as 

follows. 

 ( ){ }11,...,
maxAPE i N

I z i
=

=       (31) 
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where z1(i) refers to position tracking errors at the i-th step control 

cycle, 𝑁𝑁 denotes the recorded data number of tracking error periods 

used in calculation. 

 In order to make a fair comparison, the mean square control index 

𝐼𝐼𝑀𝑀𝑀𝑀𝐶𝐶  is also defined to indicate the control strengths. 

 ( ) 2

1

1 N

MSC
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I u i
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=   ∑     (33) 

where 𝑢𝑢(𝑖𝑖) is the control output at the i-th step control cycle. 



Remark 6. Generally, the absolute peak error index IAPE denotes the 

controller’s ultimate performance. The mean square error index IMSE 

describes the average performance throughout the whole working 

cycle. The mean square control index 𝐼𝐼𝑀𝑀𝑀𝑀𝐶𝐶  reflects the control 

strength. 

 Three sets of experiments, namely two sets of sine tracking tests 

(i.e., the slower changing sinusoidal command 55 + 10 sin(1πt) mm, 

faster changing sinusoidal command 55 + 5sin(4πt) mm), and one 

square command (5 mm amplitude and 0.2 Hz) are carried out to 

verify the feasibility and effectiveness of the developed method. The 

control parameters are set as follows. The PI controller gains are 

𝐾𝐾𝑝𝑝_𝑠𝑠ℎ𝑜𝑜𝑢𝑢𝑜𝑜𝑑𝑑𝑒𝑒𝑟𝑟 = 70,  𝐾𝐾𝐼𝐼_𝑠𝑠ℎ𝑜𝑜𝑢𝑢𝑜𝑜𝑑𝑑𝑒𝑒𝑟𝑟 = 10  for the shoulder actuator unit 

and𝐾𝐾𝑝𝑝_𝑒𝑒𝑜𝑜𝑏𝑏𝑜𝑜𝑒𝑒 = 90,  𝐾𝐾𝐼𝐼_𝑒𝑒𝑜𝑜𝑏𝑏𝑜𝑜𝑒𝑒 = 10 for the elbow actuator unit. The 

proportional gains are tuned to give a short rise time while 

maintaining minimum acceptable stability margins [35]. For the 

developed TD-based back-stepping control parameters, 𝐾𝐾1 = 60 , 

𝐾𝐾2 = 40, 𝐾𝐾3 = 120 and 𝜔𝜔𝑡𝑡 = 80. 

 Compared with the standard back-stepping controller, the 

characteristic of easy implementation of the developed control 

method can be seen from the controller design procedure shown in 

Section 3. The feasibility and effectiveness of the TD-based 

back-stepping controller can be verified by the experiments data 



given in Fig. 6 to Fig. 8. Each of the test results are illustrated by three 

figures, namely the position tracking data in (a), the derivatives of 

intermediate control variables in (b), the position tracking errors and 

control inputs in (c). 

 As the calculation results given in Table 4, for the low frequency 

tracking condition, the maximum tracking error with PI controller is 

3.2 mm and the maximum error with the developed control is 1.7 mm, 

respectively. From the perspective of performance index IAPE, 

compared with the classical PI controller, the tracking performance is 

increased by 46.8% based on the presented method. For the faster 

tracking condition, the maximum tracking error with PI controller is 

4.2 mm and the maximum error with the developed control is 1.1 mm, 

respectively. The maximum tracking error is reduced by 73.8% 

compared with the PI controller.  

 From the experiments data, the maximum tracking errors occur at 

the start-up phase and the position instructions reversal phase. The 

maximum tracking errors reflect the response ability against the 

sudden changes of external disturbances. From this point of view, the 

experimental data prove that the developed method is superior to the 

classical PI controller. In addition, it can be found that the 

performance improvement of the second test is more significant than 

that in the first test. This phenomenon can be interpreted as the 



contributions of the derivatives of commands and intermediate 

variables used in the back-stepping controller. It is reasonable to 

state that the higher the command frequency given, the more obvious 

the performance improved. 

 
(a) 

 
(b) 



 
(c) 

Fig. 6 Experimental results for tracking sinusoidal command of 10 mm 
amplitude and 0.5 Hz frequency: (a) tracking results, (b) the derivatives of 
intermediate control variables, (c) control errors and control inputs. 

 

(a) 

 

(b) 



 

(c) 

Fig. 7  Experimental results for tracking sinusoidal command of 5 mm 
amplitude and 2 Hz frequency: (a) tracking results, (b) the derivatives of 
intermediate control variables, (c) control errors and control inputs. 

Remark 7. The mean square control index 𝐼𝐼𝑀𝑀𝑀𝑀𝐶𝐶  calculated in Table 4 

shows that the performance improvement based on the TD-based 

controller is not at the expense of increasing control inputs. Such 

performance advantage mainly stems from the back-stepping 

controller design method makes full use of the model structural 

information of the controlled object. 

 As the analysis given in the introduction section, for a n-order 

system, the standard back-stepping design method requires the given 

command should be n-order derivable. For this reason, few 

back-stepping design based controllers are evaluated with step 

commands. However, in many practical situations, the discontinuous 

commands often limit the application of the standard back-stepping 

design method in practice. This problem has been addressed in this 

paper. Although the commands are assumed to be differentiable up 



to second order in Assumption 3, it is mainly for the theoretical 

analysis. In practice, the developed TD-based back-stepping 

controller can be implemented to track any non-smooth commands.  

 

(a) 

 

(b) 

 

(c) 



Fig. 8  Experimental results for tracking step command of 10 mm amplitude 
and 0.2 Hz frequency: (a) tracking results, (b) the derivatives of intermediate 
control variables, (c) control errors and control input. 
 

Table 4 
Performance indexes of exp. data in Fig. 6 ~ Fig. 8. 

 
IAPE IMSE IMSC 

BC-TD PI BC-TD PI BC-TD PI 

Test 1 1.7 × 10−3 3.2 × 10−3 8.21 × 10−7 4.91 × 10−6 1.24 22.4 

Test 2 1.1 × 10−3 4.2 × 10−3 3.31 × 10−7 8.63 × 10−6 5.09 10.1 

Test 3 1.0 × 10−2 1.0 × 10−2 2.37 × 10−6 3.49 × 10−6 2.17 5.99 

 The comparative test results for tracking step command are 

illustrated in Fig. 8. From the enlarge plot in Fig. 8, due to the 

contribution of integral term, the tracking performance with PI 

controller seems better than the TD-based back-stepping controller 

at the stages in which the command keeps constant. However, the 

maximum tracking errors of the two controllers are the same for the 

given square commands. As given in Table 4, the maximum tracking 

error is 1 mm for both of them. For the performance index, IMSE with 

PI controller is 3.94 × 10−6, and IMSE with the proposed method is 

just 2.37 × 10−6. From the perspective of mean square error index, 

the TD-based back-stepping controller is better than the PI controller. 

Remark 8. The enlarge figures of Fig. 8 (a) illustrate the tracking 

results are not symmetric. As shown the steady-error at the upper 

constant stage of the square command is worse than that one at the 



lower constant stage. This is mainly caused by the actuator friction 

and the offset disturbance caused by the mass gravity. Due to the 

force arm of the actuator is much smaller than that of the mass 

gravity, the actuator has to generate large force to balance the gravity 

component perpendicular to the forearm. At the upper constant stage, 

the rodless chamber of the asymmetric actuator cannot produce 

enough force to eliminate the actuator friction besides balancing the 

offset disturbance caused by the mass gravity. As a result, it presents 

a steady-state error. 

6. Conclusion 

 Tracking differentiator based back-stepping control method has 

been developed for valve-controlled hydraulic position servo systems. 

Instead of calculating the derivatives of the intermediate control 

variables through complicated analytical expressions as in the 

standard back-stepping controller design procedure, tracking 

differentiators are utilized instead. As a result, the implementation 

complexity of the control law is reduced significantly. 

 The control performance of the proposed control method is 

analyzed by considering the discrepancies between the real 

derivatives and the substitutes from the tracking differentiators. The 

analysis proves that the TD-based back-stepping controller can 

guarantee the tracking precision in a specific way. The control 



parameter of linear tracking differentiator 𝜔𝜔𝑡𝑡  of the proposed 

method should not be set too large because this would affect the 

tracking errors. Experimental results illustrate that the developed 

method is superior to the classical PI controller from the point of 

view of control performance. Experimental data also show that the 

present method is feasible for tracking the discontinuous commands 

signals. 

 In conclusion, the new control method makes use of a detailed 

non-linear model but in a way which can be practically implemented, 

thus enabling increased accuracy in motion control systems such as 

the experimental hydraulic robot arm used in this study. 

Appendix 

Proof of Results 1.  

 The time derivative of the Lyapunov candidate 𝑉𝑉(t) along the 

errors dynamics (17), (22), (25) and TD errors dynamics (27) yields 
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With noting Remark 3, we can upper the right side of (34) as 



( )
( ) ( )

2 2 2
1 1 2 2 3 3 1 2 2 2 2 3 2

2 2

r
d b

T T T
t t

V t k e k e k e e z e f e z e zα βδ

ω ωΣ Σ Σ Σ Σ

≤ − − − + + + + +

+ + + +Σz A P P A z z P B ξ ζ



 (35) 

For clearly, let 𝜂𝜂𝜉𝜉 = 4‖𝐁𝐁𝛴𝛴‖‖𝐏𝐏𝛴𝛴‖‖𝛏𝛏‖ and 𝜂𝜂𝜁𝜁 = 2‖𝐁𝐁𝛴𝛴‖‖𝐏𝐏𝛴𝛴‖‖𝛇𝛇‖ which 

have been defined before the Result 1. With noting (28), (35) can be 

further arranged by means of completing the square 
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By completing the square, (36) can be further expressed as  
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where ηmin = min{4η1, 2η2, 4η3} 

By complete square, the following expression can be written 
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  Define 𝜅𝜅 = 𝑚𝑚𝑖𝑖𝑛𝑛 �𝑘𝑘𝑖𝑖 − 𝜂𝜂𝑖𝑖 ,
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 With the definition κm = κ ∙ min{0.5, λmax
−1 (𝐏𝐏Σ)} , and the 

comparison lemma [1], it yields that 
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Results 1 is proven. 
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