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Abstract

A weakly nonlinear analysis is performed on the classical Darcy-Bénard problem to determine the effects
of local thermal nonequilibrium on the planform of convection immediately post-onset. It is found that
two-dimensional rolls are always favoured. Although disturbances which are perpendicular to the roll
whose stability is being assessed usually form the most dangerous mode of instability, it is also found
that there are regions of parameter space where the cross-roll instability becomes inoperative as an
instability mechanism.

Keywords: Porous medium, convection, local thermal nonequilibrium, instability, weakly nonlinear,
pattern selection.

Nomenclature

A,B roll amplitudes
c heat capacity
c1 to c4 Landau coefficients
c.c. denoting complex conjugate
d height of the layer
f, g, h reduced P , Θ and Φ

F1, G1, H1 variables used for minimisation of Ra0
g gravity
h dimensional heat transfer coefficient
H nondimensional heat transfer coefficient
k wavenumber of convection
kf thermal conductivity of fluid
ks thermal conductivity of solid
K permeability
m1 to m12 constants in weakly nonlinear theory
p pressure
P perturbation pressure
R1, R2, R3 right hand sides in Eqs.(60)–(62)
Ra Darcy-Rayleigh number (fluid phase)

Ra∗ Darcy-Rayleigh number (porous medium)
t time
T dimensional temperature
u, v horizontal velocities
w vertical velocity
x, y horizontal coordinates
z vertical coordinate

Greek symbols

α diffusivity ratio
β volumetric expansion coefficient
γ porosity-modified conductivity ratio
δA, δB disturbances in stability analysis
ǫ small quantity
θ nondimensional fluid temperature
Θ perturbation fluid temperature
µ dynamic viscosity
ρ density
ϕ porosity
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φ nondimensional solid temperature
Φ perturbation solid temperature
χ angle between the rolls
Ω interaction coefficient

Subscripts, superscripts, and other symbols

0, 1, 2, 3, 4 terms in the weakly nonlinear analysis

cold cold
f fluid
hot hot
s solid
ˆ dimensional quantity

complex conjugate
′ derivative with respect to z

1 Introduction

We shall consider how local thermal nonequilibrium (LTNE) effects affect the classical Darcy-Bénard
problem, i.e. a uniform porous layer of constant thickness which is heated from below and cooled from
above, and where the bounding temperatures are held constant in both time and space. Local thermal
non-equilibrium is that special state whereby the use of a single heat transport equation is insufficient to
model the microscopic heat transfer between the solid and fluid phases; in such cases two heat transport
equations are used, one for each phase, and the system is closed by the addition of source/sink terms that
are proportional to the temperature difference between the phases. This type of source/sink model was
first introduced by Anzelius [1] and Schumann [2] in the 1920s and it continues to be used extensively to
this day.

Three new parameters appear when local thermal nonequilibrium is being considered: H , which is
a scaled interphase rate of heat transfer, γ, which is a porosity-weighted conductivity ratio and α, a
thermal diffusivity ratio. Generally, local thermal equilibrium (LTE) corresponds to having sufficiently
large values of either H or γ. It is often thought that a large conductivity contrast between the phases
implies LTE, but the correctness of this assertiondepends on the magnitude of any externally imposed
time scales; see [3]. Likewise, it is often assumed that LTE also arises when the flow is steady, but the
works of Rees et al. [4] and Rees and Bassom [5] on the flushing of cold fluid using a hot fluid source, and
the free convective boundary layer analyses of Rees and Pop [6] and Rees [7], show that LTNE effects
persist for a wide range of values of both H and γ. Finally, we note that LTE is approached as the ratio
between the microscopic and the macroscopic length scales tends to zero; the smaller microscales allow
for a more rapid exchange of heat between the phases [8,9]. But these matters are well-known and are
now quite well-developed; see Nield and Bejan [10], Rees and Pop [11] and Kuznetsov [12].

In the general field of stability theory it is usual for studies to begin with the description of the basic
state, followed by a consideration of the onset of instability by means of a linearised analysis. Then various
types of nonlinear analysis are used, such as weakly nonlinear theory, energy stability theory and fully
numerical simulations. But for the title topic, namely the effect of local thermal nonequilibrium on Darcy-
Bénard convection, the very first publications presented some strongly nonlinear computations without
the benefit of knowing the context provided by a linearised theory; see Combarnous [13] and Combarnous
and Bories [14]. It was some time later that Banu and Rees [15] embarked on a comprehensive study
of the onset problem. Like the classical Darcy-Bénard problem, there is an analytical expression for the
critical Darcy-Rayleigh number, but a simple Newton-Raphson scheme is then required to minimise its
value over the wavenumber.

A rather large number of papers have followed the appearance of Banu and Rees [15] by solving the
linear instability problem for different variations of the Darcy-Bénard problem with LTNE. For example,
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Postelnicu and Rees [16], Postelnicu [17] and Malashetty et al. [18] considered how Brinkman effects alter
the results of Banu and Rees [15]; generally, the addition of these effects serves to increase the critical
Darcy-Rayleigh number because of the additional resistance to flow. Barletta and Rees [19] considered the
effect of isoflux boundaries, and found that there is a region in (H, γ)-space where the critical wavenumber
is zero, a result which is consistent with the LTE form of the stability problem discussed in §6.2 of Nield
and Bejan [10]. However, in the remaining part of parameter space the critical wavenumber is nonzero.
Nouri-Borujerdi et al. [20] studied the consequence of having internal heat generation within the layer,
while a very recent work by Lagziri and Bezzazi [21] considers a case which effects a transition between
cases studied by Banu and Rees [15] and Barletta and Rees [19] by employing thermal boundary conditions
of the third kind. Celli et al. [22] have also considered the effect of an open upper surface. The work of
Banu and Rees [15] has also been re-examined by Straughan [23] using an energy stability theory and
this work confirms the absence of subcritical instabilities. Further papers may also be found which also
include the effects of inclination, of anisotropy, rotation, unsteady heating and so on.

In the present paper our focus is solely on the use of a weakly nonlinear analysis of the cross-roll
instability to determine whether rolls always form the preferred convective planform. The identity of the
preferred pattern will inform the direction of further work on this topic.

2 Governing Equations

The main interest of this study is to investigate the onset and subsequent development of Darcy-Bénard
convection in a horizontal porous layer when the solid and fluid phases are not in local thermal equilibrium.
Thus we consider unsteady three-dimensional convection when the local thermal non-equilibrium (LTNE)
two-field model is valid, and where the lower bounding surface is held at the constant temperature, Thot,
while the upper surface is held at the lower temperature, Tcold. The governing equations for Darcy-
Bénard convection where a two-field model of microscopic heat transfer applies are given by Nield and
Bejan [10]:

∂û

∂x̂
+

∂v̂

∂ŷ
+

∂ŵ

∂ẑ
= 0. (1)

û = −
K

µ

∂p̂

∂x̂
, (2)

v̂ = −
K

µ

∂p̂

∂ŷ
, (3)

ŵ = −
K

µ

∂p̂

∂ẑ
+

ρfgβK

µ
(Tf − Tcold), (4)

ϕ(ρc)f
∂Tf

∂t̂
+ (ρc)f

(

û
∂Tf

∂x̂
+ v̂

∂Tf

∂ŷ
+ ŵ

∂Tf

∂ẑ

)

= ϕkf

(∂2Tf

∂x̂2
+

∂2Tf

∂ŷ2
+

∂2Tf

∂ẑ2

)

+ h(Ts − Tf ), (5)

(1 − ϕ)(ρc)s
∂Ts

∂t̂
= (1 − ϕ)ks

(∂2Ts

∂x̂2
+

∂2Ts

∂ŷ2
+

∂2Ts

∂ẑ2

)

+ h(Tf − Ts). (6)

In the above x̂ and ŷ are horizontal coordinates while ẑ is the vertical coordinate; the three respective
velocities are û, v̂ and ŵ. In addition, p̂ is the pressure, T the temperature and t̂ is time. The subscripts, f
and s, denote fluid and solid, respectively. Other properties of the fluid and solid phases are as follows: ρ
is the density, β is the coefficient of cubical expansion, K is the permeability, µ is the dynamic viscosity, ϕ
is the porosity, c is the specific heat, k is the thermal conductivity and g is the gravitational acceleration.
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We assume that the phases have identical temperatures at the bounding surfaces and that the layer has
depth, d. The boundary conditions are that,

ŵ = 0, Tf = Ts = Thot on ẑ = 0, ŵ = 0, Tf = Ts = Tcold on ẑ = d. (7)

The resulting three-dimensional flow given by solutions of Eqs. (1) to (6) may be studied by first
introducing the following scalings,

(x̂, ŷ, ẑ) = d(x, y, z), (û, v̂, ŵ) =
ϕkf

d(ρc)f
(u, v, w), p̂ =

µkf
K(ρc)f

p, (8)

t̂ =
(ρc)fd

2

kf
t, (Tf , Ts) = Tcold + (Thot − Tcold)(θ, φ). (9)

After substitution of Eqs. (8) and (9) into Eqs. (1)-(6) and the elimination of the velocity terms we obtain
the following non-dimensionalised pressure/temperature formulation of the governing equations,

∂2p

∂x2
+

∂2p

∂y2
+

∂2p

∂z2
= Ra

∂θ

∂z
, (10)

∂θ

∂t
−

∂p

∂x

∂θ

∂x
−

∂p

∂y

∂θ

∂y
−

∂p

∂z

∂θ

∂z
+Ra θ

∂θ

∂z
=

∂2θ

∂x2
+

∂2θ

∂y2
+

∂2θ

∂z2
+H(φ− θ), (11)

α
∂φ

∂t
=

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
+Hγ(θ − φ). (12)

Here θ and φ are the scaled temperatures of the fluid and solid phases, respectively, while the four
governing nondimensional parameters are,

H =
hd2

ϕkf
, γ =

ϕkf
(1− ϕ)ks

, α =
kf (ρc)s
ks(ρc)f

and Ra =
ρfgβK(Thot − Tcold)d(ρc)f

ϕµkf
. (13)

In turn these quantities are the inter-phase heat transfer coefficient, the porosity-modified conductivity
ratio, the diffusivity ratio and the Darcy-Rayleigh number. This last quantity is one which depends solely
on the density, heat capacity and thermal conductivity of the fluid. When the two phases are in local
thermal equilibrium, the usual porous-medium-based Darcy-Rayleigh number will be given by

Ra∗ =
Ra γ

1 + γ
=

ρpmgβK(Thot − Tcold)d(ρc)f
µkpm

. (14)

Equations (10) to (12) are to be solved subject to the boundary conditions,

∂p

∂z
= Ra, θ = 1, φ = 1 on z = 0, (15)

∂p

∂z
= 0, θ = 0, φ = 0 on z = 1. (16)

We note that the above boundary conditions for p may be obtained from the nondimensional form of
Eq. (4) and using a zero vertical velocity.
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3 Perturbation Equations

It is seen readily that the full system, Eqs. (10) to (12), is satisfied by the solution,

p = Ra(z − 1
2z

2), θ = φ = 1− z. (17)

We may now concentrate on the behaviour of convection cells by perturbing about this basic state: let






p

θ

φ






=







Ra(z − 1
2z

2)

1− z

1− z






+







P

Θ

Φ






, (18)

where the disturbances, P , Θ and Φ, are asymptotically small in magnitude. Our analysis of the cross-roll
instability begins by making the assumption that the Darcy-Rayleigh number is slightly larger than the
critical value for the onset of convection. More specifically, we set,

Ra = Ra0 + ǫ2Ra2 + · · · , (19)

where ǫ ≪ 1 in magnitude and where Ra0 is the critical Darcy-Rayleigh number. We also need to
introduce a slow timescale according to,

τ = 1
2ǫ

2t, (20)

where the numerical factor is an a posteriori adjustment so that the final Landau equation for a single
roll has solely unit coefficients when LTE conditions prevail. The disturbance equations now take the
form,

∂2P

∂x2
+

∂2P

∂y2
+

∂2P

∂z2
− Ra0

∂Θ

∂z
= ǫ2Ra2

∂Θ

∂z
, (21)

∂2Θ

∂x2
+
∂2Θ

∂y2
+
∂2Θ

∂z2
+H(Φ−Θ)+Ra0 Θ−

∂P

∂z
= −

∂P

∂x

∂Θ

∂x
−
∂P

∂y

∂Θ

∂y
−
∂P

∂z

∂Θ

∂z
+(Ra0+ǫ2Ra2)Θ

∂Θ

∂z
+ 1

2ǫ
2 ∂Θ

∂τ
(22)

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
+Hγ(Θ− Φ) = 1

2ǫ
2α

∂Φ

∂τ
. (23)

These equations, which have been arranged so that the left hand side consists of those terms which are
required for linearised stability theory, are to be solved subject Pz = Θ = Φ = 0 on both z = 0 and z = 1.

Solutions to Eqs. (21) to (23) then take the form of a power series in ǫ:






P

Θ

Φ






= ǫ







P1

Θ1

Φ1






+ ǫ2







P2

Θ2

Φ2






+ ǫ3







P3

Θ3

Φ3






+ · · · . (24)

4 Linear Stability Theory

The linear stability analysis corresponds to solving for the O(ǫ) terms in Eq. (24). It is this which forms
the subject of the work of Banu and Rees [15] and the following will summarise and show how their work
is modified when using the present pressure/temperature formulation.

The O(ǫ) terms may be shown to satisfy,

∂2P1

∂x2
+

∂2P1

∂y2
+

∂2P1

∂z2
− Ra0

∂Θ1

∂z
= 0, (25)
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∂2Θ1

∂x2
+

∂2Θ1

∂y2
+

∂2Θ1

∂z2
+H(Φ1 −Θ1) + Ra0 Θ1 −

∂P1

∂z
= 0, (26)

∂2Φ1

∂x2
+

∂2Φ1

∂y2
+

∂2Φ1

∂z2
+Hγ(Θ1 − Φ1) = 0. (27)

These equations may be found to have the following roll solutions,






P1

Θ1

Φ1






= (Aeikx +Ae−ikx)







m1 cosπz

m2 sinπz

m3 sinπz






, (28)

where k is the horizontal wavenumber of the rolls and where

m1 = −
1

π
, m2 =

k2 + π2

R0π2
, m3 =

Hγ(k2 + π2)

(Hγ + k2 + π2)R0π2
. (29)

The value chosen for m1 is also such that, when a weakly nonlinear analysis is performed for the LTE
case then the resulting Landau equation for the amplitude of convection is in canonical form, i.e. it has
unit coefficients. The corresponding value of R0 is given by

R0 =
(k2 + π2)2

k2

[H(1 + γ) + k2 + π2

Hγ + k2 + π2

]

. (30)

We note that the Local Thermal Equilibrium limit, H → ∞, yields

R∗

0 =
γ

1 + γ
R0 =

(k2 + π2)2

k2
. (31)

This quantity represents the Darcy-Rayleigh based upon porous medium properties rather than on fluid
properties. On the other hand, in the LTNE limit, H → 0, where the thermal fields of the two phases no
longer interact, we have

R0 =
(k2 + π2)2

k2
. (32)

In both cases the neutral curve is unimodal with a single minimum when k = π, and therefore the
minimum values of the Darcy-Rayleigh numbers are,

R0 = 4π2, R∗

0 =
γ

γ + 1
4π2. (33)

Moreover Banu and Rees [15] noted that the neutral curves are unimodal in the whole (H, γ) parameter
space and that the minimum needs to be computed using a simple Newton-Raphson scheme. For the sake
of context Figs. 1 and 2 contain recomputed critical values and these show how the porous-medium-based
Darcy-Rayleigh number and the wavenumber depend on H and γ.

Figure 1 shows how the minimised values of Ra∗0 vary with log10 H for different values of γ. The
corresponding values of Ra0 become extremely large (Ra0 ∼ 4π2(γ + 1)/γ) when γ takes small values,
and therefore we selected to present the variation of Ra∗0. Immediately we see that the LTE onset criterion
is reproduced well when γ ≫ 102 independently of the value of H . On the other hand, when γ takes very
small values, LTE conditions are only achieved when H is substantially larger than γ−1. that limit is in
accord with with Eq. (31), namely that Ra0 = 4π2(γ + 1)/γ.

Figure 2 displays the corresponding critical wavenumbers, kc. Apart from when γ takes values in excess
of 10−1, the variation of kc takes an unusually large maximum value as H is varied. While the critical
value is π in the LTE limit, it is approximately 12 when γ = 10−3, and it takes ever larger values as
γ decreases further. The locus of these maxima is shown as a dotted line in Fig. 3. The asymptotic
behaviour of this locus may be found in Banu and Rees [15].
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5 Weakly Nonlinear Analysis

The aim now is to determine whether or not the convective roll which has been described in §4 forms
the stable planform of convection. We shall not present a study of the Eckhaus or sideband instability
of rolls — such an analysis is essentially identical in form to that presented in Newell and Whitehead
[24] for the Rayleigh-Bénard problem. In such an analysis the band of stable wavenumbers for slightly
postcritical roll convection is centred on the critical wavenumber and is of 1/3rd of the width of the range
of existence of rolls, as given by the neutral curve. Likewise, the zigzag instability is operative whenever
the wavenumber of the rolls is less than the critical value. Rather, our aim is to consider the cross-roll
instability mechanisn in order to determine whether rolls are stable or if some other pattern of convection
exists.

To this end we shall consider the interaction of a pair of rolls with different orientations but which are
otherwise identical in form. Therefore we shall replace the single-roll solution of Eqs. (25) to (27) which
is given in Eq. (28) by the following,







p1
Θ1

Φ1






=







f1(z)

g1(z)

h1(z)







[

Aeikx + c.c. +Beik(x cosχ−y sinχ) + c.c.
]

, (34)

where χ is the angle between the axes of the rolls, and where the amplitudes, A and B, are functions
solely of τ , the slow timescale which is defined in Eq. (20). In addition, the functions, f1(z), g1(z) and
h1(z), are given precisely by the respective terms in the right hand side vector in Eq. (28).

The solutions given in Eq. (34) now form the O(ǫ) terms in the expansion given in Eq. (24). Given
that the full system of equations that we are studying is nonlinear, further terms in that expansion
consist of self-interactions and mutual interactions. We have relegated the details of this analysis to the
Appendix where we have provided both the reduced systems of ODEs for each interaction term and their
analytical solutions. As a check for the rather detailed analytical solutions we also solved the ODEs (i.e.
systems (45), (50), (51), (52) and (53), which may be found in the Appendix) using a shooting method
in conjunction with the classical 4th order Runge-Kutta scheme. In addition system (46) was also solved
simultaneously in order to find the minimum in the neutral curve. The analytical solutions and their
numerical counterparts matched perfectly.

At O(ǫ3) there arises the usual requirement for the application of a solvability condition; this was
undertaken both analytically (using integrals) and numerically (by solving the appropriate set of ODEs).
Again, the results obtained using these different methods coincide. The final amplitude equations for A

and B which have been derived in the Appendix are reproduced here for convenience:

c1Aτ = c2R2A− c3A
2A− c4ABB, (35)

c1Bτ = c2R2B − c3B
2B − c4BAA. (36)

Detailed expressions for the constants, c1 to c4, which are always positive, may also be found in the
Appendix. We define the coupling (or interaction) parameter, Ω, according to

Ω(χ;H, γ) =
c4
c3
. (37)

For Darcy-Bénard convection this expression reduces to,

Ω =
70 + 28 cos2 χ− 2 cos4 χ

49− 2 cos2 χ+ cos4 χ
, (38)
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Given that all the constants, c1 to c4 are positive, then the bifurcation to convection as R2 becomes
positive is supercritical. This confirms the conclusions of the energy stability analysis of Straughan [23].
However is well-known that the some important stability properties of convecting systems depend greatly
on the value of Ω and its variation with χ. For example, the papers by Riahi [25], Rees and Riley [26]
and Rees and Mojtabi [27] all find regions of their respective parameter spaces within which convection
in the form of two-dimensional rolls is unstable and that the preferred planform is square cells which
consist of two systems of rolls at right angles to one another. The role played by the value of Ω may be
illustrated briefly by considering the two solutions,

rolls: A =
√

c2R2/c3, B = 0, (39)

rectangular cells: A = B =
√

c2R2/(c3 + c4). (40)

We may analyse the stability of roll solutions by perturbing the solution given in Eq. (39): let

A =
√

c2R2/c3 + δA, B = δB, (41)

and where, for the sake of simplicity, we assume that the small perturbations, δA and δB, are both real.
At leading order the equations for the evolution of these disturbances decouple and are,

c1δAτ = −2c2R2 δA, c1δBτ =

(

1−
c4
c3

)

R2δB. (42)

The equation for δA shows that it will always decay exponentially with time. The equation for δB has
the same conclusion unless c4 < c3, i.e. Ω < 1, in which case these disturbances will grow. In such
cases the ultimate steady state will be the pattern given in Eq. (40). If we relax the assumption that
the disturbances are real, then we find that the A-roll is neutrally stable with respect to disturbances in
phase, while the conclusion for the B-roll is unchanged. Should the minimum value of Ω be less than
unity, then a similar analysis shows that square or rectangular cells form the stable planform and that
rolls are unstable.

Given that Ω varies with the angle between the roll axes, then the most positive value for the growth
rate, Ω − 1, happens at that relative orientation which minimises Ω. This minimisation tends to occur
when the rolls are orthogonal and it does so for the classical Darcy-Bénard problem: see Eq. (38) where Ω

decreases from 2 when χ = 0 down to Ω = 10/7 when χ = 90◦. This also happens for the Rayleigh-Bénard
convection of an infinite Prandtl number fluid with stress-free surfaces (Newell and Whitehead [24]) where
the corresponding form for Ω is

Ω = 1 +
(5 + cosχ)2(1− cosχ)2

(5 + cosχ)3 − 27
4 (1 + cosχ)

+
(5− cosχ)2(1 + cosχ)2

(5 − cosχ)3 − 27
4 (1− cosχ)

, (43)

and therefore this Ω deceases from 2 when χ = 0 down to 673
473 when χ = 90◦. Clearly single rolls form

the stable planform for these two convecting systems since minχ Ω > 1. In the above-mentioned papers,
[25]-[27], minχ Ω < 1 and therefore three-dimensional convection ensues. Given the central role played
by Ω in deciding the stable planform we shall now consider how it varies for the present case.

5.1 Variation of the interaction coefficient, Ω

Figure 3 shows how Ω varies with χ for a range of values of γ when H = 10. The lowest curve in that
figure corresponds to the Local Thermal Equilibrium limit and it is also given by Eq. (38). The curves
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rise very slightly as γ decreases towards zero but they retain the property that Ω = 2 when χ = 0, and
that they decrease towards a value which is above unity as χ increases towards 90◦. Thus rolls remain
the stable planform when H = 10. We also note that the corresponding curves for smaller values of H
display a smaller variation with γ.

Figures 4, 5 and 6 show the corresponding behaviour of Ω for H = 100, 1000 and 10000, respectively.
For H = 100 we see immediately that Ω no longer varies monotonically when log10 γ is less than roughly
−1. In such cases Ω begins to rise from 2 at first before eventually descending again to a value below
2, but which is above unity. Despite this novel form of variation of Ω, the cross-roll instability remains
significant because minχΩ is below 2.

When H = 1000 (Figure 5) it becomes very evident that the manner in which the Ω-variation takes
place is as follows: (i) when γ is sufficiently large Ω decreases monotonically with χ; (ii) as γ decreases the
curvature at χ = 0◦ becomes positive so that Ω takes its maximum value within the range 0 < χ < 90◦

but the minimum value at χ = 90◦ still lies in the range 1 to 2; (iii) as γ decreases still further the value
of Ω at χ = 90◦ rises above 2 at which point χ = 0 becomes the minimising value of χ. Therefore we
have a discontinuous change from 90◦ to 0 in the value of χ which corresponds to the smallest value of
Ω. Although it is not clear from a visual inspection of Fig. 6 this remains true for H = 10000. In this
latter case we find that when log10 γ = −2.66648 then Ω(χ = 90◦) = 2.0000; given that the maximum
value of Ω is approximately 2.037 we see that the variation in Ω is quite small for that choice of values
of H and γ.

It is clear, therefore, that the (H, γ) parameter space is divided into two main regions, one where
Ωmin < 2 with χ = 90◦ and the other where Ωmin = 2 with χ = 0. The transition between having
χ = 90◦ and having χ = 0 as the minimising orientation is sudden. The border between the regions may
be found by extending the previously-mentioned Newton-Raphson scheme by adding the extra equation
Ω(χ = 90◦) − 2 = 0 and by having either H or γ as the extra value to be found. The result of this
straightforward process is shown in Fig. 7. The shaded region is where Ωmin > 2, and therefore the
cross-roll instability is inoperative in this region. Thus, for any pair of values of H and γ, the variation
of Ω with χ is monotonically increasing as χ increases from zero to 90◦. The unshaded region then
corresponds to where Ωmin < 2, and therefore the cross-roll instability may happen should the primary
roll have its wavenumber detuned slightly from its critical value.

The dotted line in Fig. 7 corresponds to precisely where d2Ω/dχ2 = 0 at χ = 0, i.e. the transition
between where Ω decreases and where it increases as χ increases from zero. Therefore the region between
the dotted line and the shaded region shows where the χ-dependence of Ω is not monotonic but has an
S-shape similar to the uppermost curve in Fig. 4. Elsewhere Ω decreases monotonically such as is shown
in Fig. 3.

Finally, Fig. 8 shows the variation of Ω(90◦) with H for selected values of γ. It is clear that Ω > 1 in
all cases, and therefore the postcritical planform of convection takes the form of rolls in an unbounded
domain, rather than a square (χ = 90◦) or rectangular (0 < χ < 90◦) pattern. Given our detailed analysis
above, we emphasise again that when Ω > 2 then the cross-roll instability is inoperative although the
usual Eckhaus and zigzag instabilities described in Newell and Whitehead [24] may still arise depending
on how much the wavenumber of the roll differs from its critical value.
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6 Conclusions

We have undertaken a weakly nonlinear analysis of the onset of convection in the classical Darcy-Bénard
problem where local thermal non-equilibrium effects are significant. Whilst the Eckhaus and zigzag
instabilities may also be considered, the symmetries of the configuration are such that the conclusions of
Newell and Whitehead [24] for the Rayleigh-Bénard problem also apply here and therefore we have not
covered this aspect. Rather, we have considered the cross-roll instability mechanism in some detail using
the standard approach of having two rolls with axes at different horizontal orientations.

This weakly nonlinear analysis of the cross-roll instability shows conclusively that rolls remain the stable
planform for convection in the immediately postcritical regime for the whole of the (H, γ) parameter space,
and that the onset of convection is supercritical. A rather unusual feature is that there is a region within
this parameter space where the cross-roll instability ceases to arise; see Fig. 7.

The next step in the study of the effects of local thermal nonequilibrium on the Darcy-Bénard problem
will be an assessment of strongly nonlinear convection, i.e. to undertake a systematic extension to the
works of Combarnous [13] and Combarnous and Bories [14]. This will enable the determination of
how local thermal nonequilibrium affects not only the postcritical heat transport, but also the eventual
appearance of unsteady flows.

Appendix

The leading order disturbances, (O(ǫ)) are taken to be of the form,






p1
Θ1

Φ1






=







f1(z)

g1(z)

h1(z)







[

Aeikx + c.c. +Beik(x cosχ−y sinχ) + c.c.
]

(44)

which represents rolls with axes that are at an angle χ to one another. The z-dependent functions satisfy
the equations,

f ′′

1 − k2f1 − Ra0 g
′

1 = 0,

g′′1 + (Ra0 − k2)g1 − f ′

1 +H(h1 − g1) = 0,
∂p

∂x

h′′

1 +Hγ(g1 − h1) = 0,
∂p

∂x

(45)

and they form an eigenvalue problem for Ra0 as a function of the wavenumber, k. Solutions for f1, g1
and h1 may be found in Eqs. (28) and (29), and value of Ra0 as a function of k in Eq. (30).

Banu and Rees [15] solved the streamfunction/temperature version of these equations and found that
the neutral curve is always unimodal and has a unique minimum. This minimum may be found numeri-
cally by solving them together with the system formed by taking the k-derivative of Eq. (45) and setting
dRa0/dk = 0. If we define (F1,G1,H1) = d(f1, g1, h1)/dk, then we obtain,

F ′′

1 − k2F1 − Ra0 G
′

1 = 2kf1,

G′′

1 + (Ra0 − k2)G1 −F ′

1 +H(H1 − G1) = 2kg1,
∂p

∂x

H′′

1 +Hγ(G1 −H1) = 0.
∂p

∂x

(46)
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Therefore the minimum in the neutral curve may be found by solving the systems (45) and (46) simul-
taneously subject to the boundary conditions,

f ′

1 = g1 = h1 = F
′

1 = G1 = H1 = 0 on both z = 0 and z = 1, (47)

and with the normalisation conditions,

f1(0) = −
1

π
and F1(0) = any constant. (48)

The normalisation for f1 forces a nonzero solution which enables the computation of Ra0, and is identical
to that given for m1 in Eq. (29). The computed value for k is independent of the constant used for
F1(0) although one generally uses zero for this. In the main text of this paper, this minimum was also
obtained using a suitable Newton-Raphson scheme to minimise the critical Darcy-Rayleigh number given
in Eq. (30). These alternative methods yield exactly the same results and agree perfectly with Banu and
Rees [15].

At O(ǫ2) the substitution is,






p2
Θ2

Φ2






=







f0(z)

g0(z)

h0(z)







[

AA+BB
]

+







f2(z)

g2(z)

h2(z)







[

A2e2ikx + c.c. +B2e2ik(x cosχ−y sinχ) + c.c.
]

+







f3(z)

g3(z)

h3(z)







[

ABeik(x(1−cosχ)+y sinχ) + c.c.
]

+







f4(z)

g4(z)

h4(z)







[

ABeik(x(1+cosχ)−y sinχ) + c.c.
]

.

(49)
The fj and gj functions satisfy the equations,

f ′′

0 − Ra0 g
′

0 = 0,

g′′0 +Ra0 g0 − f ′

0 +H(h0 − g0) = 2
[

Ra0 g1g
′

1 − f ′

1g
′

1 − k2f1g1

]

,
∂p

∂x

h′′

0 +Hγ(g0 − h0) = 0,
∂p

∂x

(50)

f ′′

2 − 4k2f2 − Ra0 g
′

2 = 0,

g′′2 + (Ra0 − 4k2)g2 − f ′

2 +H(h2 − g2) = Ra0 g1g
′

1 − f ′

1g
′

1 + k2f1g1,
∂p

∂x

h′′

2 +Hγ(g2 − h2) = 0,
∂p

∂x

(51)

f ′′

3 − k2(2− 2 cosχ)f3 − Ra0 g
′

3 = 0,

g′′3 +
[

Ra0 − k2(2 − 2 cosχ)
]

g3 − f ′

3 +H(h3 − g3) = 2
[

Ra0 g1g
′

1 − f ′

1g
′

1 − k2f1g1 cosχ
]

,
∂p

∂x

h′′

3 +Hγ(g3 − h3) = 0,
∂p

∂x

(52)

f ′′

4 − k2(2 + 2 cosχ)f4 − Ra0 g
′

4 = 0,

g′′4 +
[

Ra0 − k2(2 + 2 cosχ)
]

g4 − f ′

4 +H(h4 − g4) = 2
[

Ra0 g1g
′

1 − f ′

1g
′

1 + k2f1g1 cosχ
]

,
∂p

∂x

h′′

4 +Hγ(g4 − h4) = 0,
∂p

∂x

(53)

while the boundary conditions are,

f ′

j = gj = hj = 0 on z = 0 and z = 1 for j = 0, 2, 3, 4. (54)
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The respective solutions are,






f0
g0
h0






=







m4 cos 2πz

m5 sin 2πz

m6 sin 2πz






,







f2
g2
h2






=







0

0

0






,







f3
g3
h3






=







m7 cos 2πz

m8 sin 2πz

m9 sin 2πz






,







f4
g4
h4






=







m10 cos 2πz

m11 sin 2πz

m12 sin 2πz






,

(55)
where the constants, m4 to m12 are given by,







m4

m5

m6






=

2k2m2

4π3

1

H(γ + 1) + 4π2







(R0/2π)(Hγ + 4π2)

−Hγ

−(Hγ + 4π2)






(56)







m7

m8

m9






=

k2m2(1 + cosχ)/π

R0(ξ +Hγ) + 2k2(1− cosχ)− ξ2(ξ +H(γ + 1))







−2πR0(ξ +Hγ)

ξ(ξ +Hγ)

ξHγ






, (ξ = 4π2+2k2(1−cosχ)),

(57)






m10

m11

m12






=

k2m2(1 − cosχ)/π

R0(ξ +Hγ) + 2k2(1 + cosχ)− ξ2(ξ +H(γ + 1))







−2πR0(ξ +Hγ)

ξ(ξ +Hγ)

ξHγ






, (ξ = 4π2+2k2(1+cosχ)).

(58)
Once more, these expressions were validated by comparison with the numerical solutions of Eqs. (50) to
(53).

At third order in the expansion of Eqs. (21) to (23) we obtain the following system,

∇2P3 −R0 Θ3,z = R2Θ1,

∇2Θ3 +R0Θ3 − P3,z +H(Φ3 −Θ3) = R0(Θ1Θ2,z +Θ2Θ1,z) +
1
2Θ1,τ − R2Θ1 −∇P1.∇Θ2 −∇P2.∇Θ1,

∇2Φ3 +Hγ(Θ3 − Φ3) =
1
2αΦ1,τ .

(59)
The number of inhomogeneous terms becomes quite large and therefore they will be omitted here. Of
more interest are those terms which are proportional to the eigensolutions of the O(ǫ) equations. Indeed,
we need only to concentrate on those which are in the same orientation as roll-A, given the symmetry
between the rolls. If we write the O(ǫ3) equations in the form,

∂2P3

∂x2
+

∂2P3

∂y2
+

∂2P3

∂z2
− Ra0

∂Θ3

∂z
= R1e

ikx + c.c., (60)

∂2Θ3

∂x2
+

∂2Θ3

∂y2
+

∂2Θ3

∂z2
+H(Φ3 −Θ3) + Ra0 Θ3 −

∂P3

∂z
= R2e

ikx + c.c, (61)

∂2Φ3

∂x2
+

∂2Φ3

∂y2
+

∂2Φ3

∂z2
+Hγ(Θ3 − Φ3) = R3e

ikx + c.c, (62)

then multiply both sides of each equation by the respective terms in Eq. (28) which involve e−ikx, integrate
between z = 0 and z = 1, and add the equations with the appropriate weightings, then we obtain the
solvability condition,

∫ 1

0

[

−
m1R1 cosπz

R0
+m2R2 sinπz +

m3R3 sinπz

γ

]

dz = 0. (63)
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The result of this lengthy process is the following Landau equation,

c1Aτ = c2R2A− c3A
2A− c4ABB, (64)

and, by symmetry, the Landau equation for the B-roll is,

c1Bτ = c2R2B − c3B
2B − c4BAA, (65)

where the constants, c1 to c4, are given by

c1 =
m2

2
+ α

[

m3

2m2γ

]

, c2 = m2 +
πm1

R0
, (66)

c3 = m2m4π
2
−m5(m1π

2 + 1
2m2R0π) (67)

and
c4 = 1

2k
2(1 + cosχ)(m2m10 −m1m11) + (m4 +m7 +m10)m2π

2

+ 1
2k

2(1− cosχ)(m2m7 −m1m8)− (m5 +m8 +m11)(m1π
2 + 1

2m2πR0).

(68)

We note that all of these coefficients are positive and therefore the onset of convection is supercritical.
Of most interest is the ratio,

Ω(χ;H, γ) = c4/c3, (69)

which determines whether single roll solutions (such as A =
√

R2c2/c3, B = 0) form the stable planform
of convection, or whether square cells (such as A = B =

√

R2c2/(c3 + c4) with χ = 90◦) do.

Finally, we note that it is also possible to obtain the solvability condition by writing out the ordinary
differential equations in full and solving them numerically where the constants c1 to c4 are computed
by regarding them as being eigenvalues; once more these computations served to validate the analytical
expressions.
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Figure 1: Showing the variation of the critical value of the porous-medium-based Darcy-Rayleigh number,
Ra∗0 = γRa/(γ + 1), with log10 H for different values of log10 γ. The red curve corresponds to γ = 10−4

and the dashed line to γ = 1.
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Figure 2: Showing the variation of the critical wavenumber, k, with log10 H for different values of log10 γ.
The red line corresponds to γ = 10−4. The dashed line corresponds to γ = 1 and the dotted line to the
locus of the largest critical wavenumber for each value of γ.
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Figure 3: Displaying the variation with χ of the coupling coefficient, Ω, for H = 10 and for some selected
values of log10 γ. The clearest black line corresponds to log10 γ = 0. The red lines correspond to γ → 0
(upper) and γ → ∞ (lower).
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Figure 4: Displaying the variation with χ of the coupling coefficient, Ω, for H = 100 and for selected
values of log10 γ. The red lines correspond to γ → 0 (upper) and γ → ∞ (lower). The annotated numbers
represent the values of log10 γ.
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Figure 5: Displaying the variation with χ of the coupling coefficient, Ω, for H = 1000 and for selected
values of log10 γ. The red lines correspond to γ → 0 (upper) and γ → ∞ (lower). The annotated numbers
represent the values of log10 γ. The blue curves represent equally-spaced values of log10 γ between the
neighbouring black lines.
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Figure 6: Displaying the variation with χ of the coupling coefficient, Ω, for H = 10000 and for selected
values of log10 γ. The red lines correspond to γ → 0 (upper) and γ → ∞ (lower). The annotated numbers
represent the values of log10 γ. The blue curves represent equally-spaced values of log10 γ between the
neighbouring black lines.

21



0 1 2 3 4 5 66

0

−1

−2

−3

−4

−5−5 log10H

log10 γ

0 1 2 3 4 5 66

0

−1

−2

−3

−4

−5−5

Ω(χ = 90◦) > 2

Figure 7: Depicting the region in (H, γ)-space where Ω(χ = 90◦) > 2 (grey shading). The white region
corresponds to Ω(χ = 90◦) < 2 within which the cross-roll instability may be active. The dotted line
corresponds to where d2Ω/dχ2 = 0 at χ = 0.
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Figure 8: Showing the variation of the coupling/interaction constant, Ω, with log10 H for different values
of γ. The red line corresponds to log10 γ = −4 and this line is indistinguishable from the limit as γ → 0.
Other values of log10 γ are as indicated.
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