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FINITE TOPOLOGY SELF-TRANSLATING SURFACES FOR THE

MEAN CURVATURE FLOW IN R3

JUAN DÁVILA, MANUEL DEL PINO, AND XUAN HIEN NGUYEN

Abstract. Finite topology self-translating surfaces for the mean curvature

flow constitute a key element in the analysis of Type II singularities from a
compact surface because they arise as limits after suitable blow-up scalings

around the singularity. We prove the existence of such a surface M ⊂ R3

that is orientable, embedded, complete, and with three ends asymptotically
paraboloidal. The fact that M is self-translating means that the moving sur-

face S(t) = M + tez evolves by mean curvature flow, or equivalently, that

M satisfies the equation HM = ν · ez where HM denotes mean curvature,
ν is a choice of unit normal to M , and ez is a unit vector along the z-

axis. This surface M is in correspondence with the classical three-end Costa-

Hoffmann-Meeks minimal surface with large genus, which has two asymptot-
ically catenoidal ends and one planar end, and a long array of small tunnels

in the intersection region resembling a periodic Scherk surface. This exam-
ple is the first non-trivial one of its kind, and it suggests a strong connection

between this problem and the theory of embedded complete minimal surfaces

with finite total curvature.

1. Introduction

We say that a family of orientable, embedded hypersurfaces S(t) in Rn+1 evolves
by mean curvature if each point of S(t) moves in the normal direction with a velocity
proportional to its mean curvature at that point. More precisely, there is a smooth
family of diffeomorphisms Y (·, t) : S(0) → S(t) ⊂ Rn+1, t > 0, determined by the
mean curvature flow (MCF) equation

(1.1)
∂Y

∂t
= HS(t)(Y )ν(Y )

where HS(t)(Y ) designates the mean curvature of the surface S(t) at the point
Y (y, t), y ∈ S(0), namely the trace of its second fundamental form, and ν is a
choice of unit normal vector.

The mean curvature flow is one of the most important examples of parabolic
geometric evolution of manifolds. Relatively simple in form, it generates a wealth
of interesting phenomena, which are so far only partly understood. Extensive, deep
studies on the properties of this equation have been performed in the last 25 years
or so. We refer for instance the reader to the surveys [4] and [32].

A classical, global-in-time definition of a weak solution to mean curvature flow is
due to Brakke [3]. These solutions typically develop finite time singularities. When
they arise, the evolving manifold loses smoothness, and a change of topology of the
surface may occur as the singular time is crossed.
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The basic issue of the theory for the mean curvature flow is to understand the
way singularities appear and to achieve an accurate description of the topology of
the surface obtained after blowing-up the manifold around the singularity.

Singularities are usually classified as types I and II. If T is a time when a sin-
gularity appears, type I roughly means that the curvatures grow no faster than
(T − t)− 1

2 . In such a case, a blowing-up procedure, involving a time dependent
scaling and translation leads in the limit to a “self shrinking” ancient solution, as
established by Huisken in [16]. The appearance of these singularities turns out to
be generic under suitable assumptions, see Colding and Minicozzi [5].

Instead, if the singularity is not of type I, it is called type II. In that case, a
suitable normalization can lead in the limit to an eternal solution to the mean
curvature flow. See Colding and Mincozzi [6], Huisken and Sinestrari [17, 18]. An
eternal solution to (1.1) is one that is defined at all times t ∈ (−∞,∞).

The simplest type of eternal solutions are the self-translating solutions, which
are surfaces that solve (1.1), do not change shape and travel at constant speed
in some specific direction. A self-translating solution of the mean curvature flow
(1.1), with speed c > 0 and direction e ∈ Sn+1 is a hypersurface of the form

S(t) = cte + S(0) ,

that satisfies (1.1). Equivalently, such that

(1.2) HS(0) = ce · ν.

When c = 0, this problem is just the minimal surface equation. A result by Hamil-
ton [12] states that in the case of a compact convex surface, the limiting scaled
singularity does indeed take place in the form of a self-translating solution. This
fact makes apparent the importance of eternal self-translating solutions in the un-
derstanding of singularity formation. However, the result in [12] is not known
without some convexity assumptions. An open, challenging issue is to understand
whether or not a given “self-translator” (convex or non-convex) can arise as a limit
of a type II singularity for (1.1).

A situation in which strong insight has been obtained is the mean convex scenario
(namely, surfaces with non-negative mean curvature, a property that is preserved
under the flow). In fact under quite general assumptions, mean convexity in the sin-
gular limit becomes full convexity for the blown-up surface, as has been established
by B. White [36, 37], and by Huisken and Sinestrari [17, 18].

In spite of their importance in the theory for the mean curvature flow, rela-
tively few examples of self-translating solutions are known, and a theory for their
understanding, even in special classes is still far from achieved. In this direction,
Ilmanen [22, 23] proved that the genus of a surface is nonincreasing along the mean
curvature flow. Therefore, self-translators originated from a singularity in the flow
of a compact surface must have finite genus, or finite topology. Since for c = 0,
equation (1.2) reduces to the minimal surface equation, it is natural to look for
analogies with minimal surface theory in order to obtain new nontrivial examples.

The purpose of this paper is to construct new examples of self-translating surfaces
to the mean curvature flow with finite topology in R3. More precisely, we are
interested in tracing a parallel between the theory of embedded, complete minimal
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surfaces with finite total Gauss curvature (which are precisely those with finite
topology) and self-translators with positive speed. Before stating our main result,
we recall some classical examples of self-translators.

If S(t) = S(0) + cten+1 is a traveling graph, namely

S(0) = {(x, xn+1) | xn+1 = F (x), x ∈ Ω ⊂ Rn}
then equation (1.2) reduces to the elliptic PDE for F ,

(1.3) ∇ ·

(
∇F√

1 + |∇F |2

)
=

c√
1 + |∇F |2

in Ω ⊂ Rn.

For instance for n = 1 and c = 1, Grayson [11] gives an explicit solution, the
so-called grim reaper curve G, given by the graph 1

(1.4) x2 = F (x1) = − log(cosx1), x1 ∈ (−π
2
,
π

2
).

In other words, S(t) = G + te2 solves (1.1).

For dimensions n ≥ 2, there exist entire convex solutions to equation (1.3).
Altschuler and Wu [1] found a radially symmetric convex solution F (|x|) to (1.3)
by blowing-up a type II singularity of the mean curvature flow. This solution can
be obtained explicitly by solving the radial PDE (1.3) which becomes simply

F ′′

1 + (F ′)2
+ (n− 1)

F ′

r
= c.(1.5)

See [2] and [9]. The resulting surface is asymptotically a paraboloid: at main order,
when c = 1, it has the behavior

(1.6) F (r) =
r2

2(n− 1)
− log r +O(r−1) as r → +∞.

We shall denote by P the graph of this entire graphical self-translator (which is
unique up to an additive constant) which we shall refer to as the traveling pa-
raboloid. Of course, this means that S(t) = P + ten+1 solves (1.1).

Xu-Jia Wang [35] proved that for n = 2, solutions of (1.3) are necessarily radially
symmetric about some point, and in particular, they are convex. Surprisingly, for
dimensions n ≥ 3, Wang was able to construct nonradial convex solutions of (1.3).

In dimension n + 1, n ≥ 2, Angenent and Velázquez [2] constructed an axially
symmetric solution to (1.1) that develops a type II singularity with a tip that blows-
up precisely into the paraboloid P. Also, B. White proved that the convex surface
in Rn+1 given by the G ×Rn−1 where G is the grim reaper curve (1.4), cannot arise
as a blow-up of a type II singularity for (1.1).

A non-graphical, two-end axially symmetric self translating solutions of (1.1) for
n ≥ 2 has been found by direct integration of the radial PDE (1.3) by Clutterbuck,
Schnürer and Schulze [9]. It can be described as follows:

Given any number R > 0, there is a self-translating solution of (1.1)

S(t) =W + ten+1,

1It is believed that Matt Grayson coined the phrase grim reaper, but the solutions were already
known in 1956 by Mullins [26].



4 JUAN DÁVILA, MANUEL DEL PINO, AND XUAN HIEN NGUYEN

where W is a two-end smooth surface of revolution of the form

W =W+ ∪W−, W± = {(x, xn+1) | xn+1 = F±(|x|) }.
Here the functions F±(r) solve (1.5) for c = 1 and r > R, with F−(r) < F+(r)
and F+(R) = F−(R). It is shown in [9] that the functions F± have the asymptotic
behavior (1.6) of P up to an additive constant. See Figure 2. We call the two-
end translating surface W the traveling catenoid. The reason is natural: when
c = 0 equation (1.5) is nothing but the minimal surface equation for an axially
symmetric minimal surface around the xn+1-axis. When n = 2 the equation leads
(up to translations) to the plane x3 = 0, or the standard catenoid r = cosh(x3).
The catenoid is exactly the parallel to W. The plane is actually in correspondence
with the paraboloid P.

These simple but important examples are the only ones available with finite
topology. Examples with infinite topology and periodic in one direction have been
constructed by the third author [27, 28, 29].

Embedded minimal surfaces of finite total curvature in R3. The theory of
embedded, minimal surfaces of finite total curvature in R3 has seen a spectacular
development in the last 30 years or so. For about two centuries, only two examples
of such surfaces were known: the plane and the catenoid. The first nontrivial
example was found in 1981 by C. Costa [7, 8]. The Costa surface is a genus one
minimal surface, complete and properly embedded, with exactly three components
(or ends) outside a large ball. Two of these ends are asymptotically catenoids
with the same axis and opposite directions; the third one is asymptotic to a plane
perpendicular to that axis. Hoffman and Meeks [13, 14, 15] presented a class of
three-end, embedded minimal surfaces, which look like the Costa surface far away,
but they have an array of tunnels giving arbitrary genus k. These are known as
the Costa-Hoffman-Meeks (CHM) surfaces, see Figure 1. Many other examples of
multiple-end embedded minimal surfaces have been found since.

All surfaces of this kind are constituted, away from a compact region, by the
disjoint union of ends ordered along one coordinate axis, which are asymptotic to
planes or to catenoids with parallel symmetry axes, as established by Osserman
[30], Schoen [31] and Jorge and Meeks [24]. Such a surface is thus characterized
by the genus of a compact region and the number of ends. Therefore, it has finite
topology.

Main result: the traveling CHM surface of large genus. In what follows,
we restrict ourselves to the case n+ 1 = 3.

Our purpose is to construct new complete and embedded surfaces in R3 which
are self translating under mean curvature flow. After a rotation and dilation we can
assume that c = 1 and that the traveling direction is that of the positive x3-axis.
Thus we look for orientable, embedded complete surfaces M in R3 satisfying the
equation

HM = ez · ν.(1.7)

where ez = e3. In other words, the moving surface S(t) = M+tez satisfies equation
(1.1). A major difficulty in extending the theory of finite total curvature minimal
surfaces in R3 space to equation (1.7) is that much of the theory developed relies
in the powerful tool given by the Weierstrass representation formula, which is not
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Figure 1. Costa-Hoffman-Meeks surface (from www.indiana.edu/˜minimal/)

available in our setting. Unlike the static case, the traveling catenoid for instance
is not asymptotically flat and does not have finite total Gauss curvature.

What we establish in our main result is the existence of a three-end surface
M that solves (1.7), homeomorphic to a Costa-Hoffmann-Meeks surface with large
genus, whose ends behave like those of a traveling catenoid and a traveling parab-
oloid.

More precisely, let us consider the union of a traveling paraboloid P and a
traveling catenoid W, which intersect transversally on a circle Cρ for some ρ > 0.
See Figure 2.

Our surface looks outside a compact set like P ∪W in Figure 2, while near the
circle Cρ the look is that of the static CHM surface in Figure 1.

Theorem 1.1. Let P and W be respectively a traveling paraboloid and traveling
catenoid, which intersect transversally. Then for all ε > 0 small, there is a com-
plete embedded 3-end surface Mε satisfying equation (1.7), which lies within an
ε-neighborhood of P ∪W. In addition, we have that

genus (Mε) ∼
1

ε
.
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Figure 2. Traveling paraboloid and catenoid

The construction provides much finer properties of the surface Mε. Let us point
out that the CHM with large genus approaches a Scherk singly periodic minimal
surface in the multiple-tunnel zone [14]. See Figure 1.

Kapouleas [19, 20, 21], Traizet [33, 34] and Hauswirth and Pacard [13] established
a method for the reverse operation. Namely, starting with a union of intersecting
catenoids and planes, they desingularize them using Scherk surfaces to produce
smooth minimal surfaces (complete and embedded). A key element in those con-
structions is a fine knowledge of the Jacobi operator of the Scherk surface and along
the asymptotically flat ends. This approach was used by the third author to con-
struct translating surfaces in R3 built from a two dimensional picture of intersecting
parallel grim reapers and vertical lines, trivially extended in an additional direction,
and desingularized in that direction by infinite Scherk surfaces, see [27, 28, 29]. We
shall use a similar scheme in our construction. The context here is considerably
more delicate, since no periodicity is involved (the ultimate reason why the topology
resulting is finite), and the fine interplay between the slowly vanishing curvatures
and the Jacobi operators of the different pieces requires new ideas. Our method
extends to the construction of more general surfaces built upon desingularization of
intersection of multiple traveling catenoids and traveling paraboloids, but for sim-
plicity in the exposition we shall restrict ourselves to the basic context of Theorem
1.1. Before proceeding into the detailed proof, we sketch below the core ingredients
of it.

1.1. Sketch of the proof of Theorem 1.1. After a change of scale of 1/ε, the
problem is equivalent to finding a complete embedded surface M ⊂ R3 that satisfies

HM = εν · ez.(1.8)

The first step is to construct a surface M that is close to being a solution
to this equation. This is accomplished by desingularizing the union of P/ε and
W/ε using singly periodic Scherk surfaces. At a large distance from Cρ/ε, the
approximationM is P/ε∪WR/ε and in some neighborhood of Cρ/ε, it is a slightly
bent singly periodic Scherk surface. We call the core of M the region where the
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desingularization is made. The actual approximation M will depend on four real
parameters: β1, β4, τ1, τ4, which are going to be small, of order ε.

Let ν denote a choice of unit normal of M. We search for a solution of (1.8) in
the form of the normal graph overM of a function φ :M→ R, that is, of the form

Mφ = {x+ φν(x) : x ∈M}.

Let Hφ and νφ denote the mean curvature and normal vector of Mφ, respectively,
while H and ν denote those of M. Then

Hφ = H + ∆φ+ |A|2φ+Q1,(1.9)

νφ = ν −∇φ+Q2,

where ∆ is the Laplace-Beltrami operator onM, ∇ is the tangential component of
the gradient, and Q1, Q2 are quadratic functions in φ,∇φ,D2φ. This allows us to
write equation (1.8) as

∆φ+ |A|2φ+ ε∇φ · ez +H − εν · ez +Q(x, φ,∇φ,D2φ) = 0 in M.(1.10)

To solve (1.10), we linearize around φ = 0, and the following linear operator
becomes relevant:

Lε(φ) = ∆φ+ |A|2φ+ ε∇φ · ez.
We work with the following norms for functions φ, h defined onM, where 0 < γ < 1,
0 < α < 1 are fixed:

‖φ‖∗ = sup
s(x)≤δs/ε

eγs(x)‖φ‖C2,α(B1(x)) + ε2 sup
s(x)>δs/ε

eγδs/ε+εγs(x)‖φ‖C2,α(B1(x))

(1.11)

and

‖h‖∗∗ = sup
s(x)≤δs/ε

eγs(x)‖h‖Cα(B1(x)) + sup
s(x)>δs/ε

eγδs/ε+εγs(x)‖h‖Cα(B1(x)).(1.12)

Here δs > 0 is a small fixed parameter. The function s :M→ R measures geodesic
distance to the core of M and will be defined precisely later on, and B1(x) is the
geodesic ball centered at x with radius 1.

The term in (1.10) that does not depend on φ is

E = H − εν · ez.

We have the following approximation for it.

Proposition 1.2. E can be decomposed as

E = E0 + Ed

with

‖E0‖∗∗ ≤ Cε
and

Ed = τ1w1 + τ4w2 + β1w
′
1 + β4w

′
2 +O

∑
i=1,4

β2
i + τ2

i

 .

The functions wi, w
′
i are defined later in (2.8), (2.9), but along with the ones ap-

pearing in O(
∑
i=1,4 β

2
i + τ2

i ), they are smooth with compact support. In particular,

they all have finite ‖ ‖∗∗ norm.
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The following claim illustrates the invertibility of the linear operator Lε, although
it will not be used directly. Let us fix M by fixing the parameters β1, β4, τ1, τ4
sufficiently small and consider the problem

∆φ+ |A|2φ+ ε∂zφ = h+
∑
i=1,4

β̃iw
′
i + τ̃iwi in M.(1.13)

Then, for ε > 0 small, there is a linear operator h 7→ φ, β̃i, τ̃i that produces for
‖h‖∗∗ <∞ a solution of (1.13) with

‖φ‖∗ + |β̃1|+ |β̃4|+ |τ̃1|+ |τ̃4| ≤ C‖h‖∗∗,

where C is independent of ε.
Finally, the next result shows that the quadratic term Q in (1.10) is well adapted

to the norms (1.11) and (1.12).

Proposition 1.3. Assume φi ∈ C2,α(M) (i = 1, 2) and ‖φi‖∗ ≤ 1. Then, for
ε > 0 small,

‖Q(·, φ1,∇φ1, D
2φ1)−Q(·, φ2,∇φ2, D

2φ2)‖∗∗ ≤ C(‖φ1‖∗ + ‖φ2‖∗)‖φ1 − φ2‖∗,

with C independent of φi and ε.

These results are used to prove Theorem 1.1 by the contraction mapping prin-
ciple, which is done in Section 6. The preparatory steps are the construction of
an initial approximate solution in Section 2 and some geometric computations in
Section 3, which lead to the estimate of E in Proposition 1.2 and the estimate of
Q in Proposition 1.3. In Section 4, we analyze the Jacobi equation for the Scherk
surface and in Section 5.1, we study the Jacobi operator on the ends, which are the
regions far from the desingularization.

2. Construction of an initial approximation

The purpose of this section is to construct a surface M that will serve as an
initial approximation to (1.7).

Let F0 be the unique radially symmetric solution of

F ′′

1 + (F ′)2
+
F ′

r
= 1, F (0) = 0(2.1)

and let P ⊂ R3 be the corresponding surface z = F0(r). Let W be a catenoidal
self-translating solution of MCF, which can be written as W = W+ ∪ W− where
W± is given by z = F±(r) and F± satisfies (2.1) for r > R, with F+(R) = F−(R),
limr→R+(F+)′(r) =∞, limr→R+(F−)′(r) = −∞.

We assume that P and W intersect transversally at a unique circle Cρ of radius
ρ > 0. To quantify the transversality, we fix a small constant δα > 0 so that all the
intersection angles are greater than 4δα. In this section, we are going to replace
P ∪ W in a neighborhood of Cρ with an appropriately bent Scherk surface. The
number of periods used, and thus the number of handles, is of order ε−1. Two of
the three ends of the resulting approximate solution will differ slightly from the
original ends.
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2.1. Self-translating rotationally symmetric surfaces. We briefly recall some
properties of self-translating rotationally symmetric surfaces. Let ε > 0 be a
small constant, let γ(s) = (γ1(s), γ3(s)), s ∈ [0,∞) be a smooth planar curve
parametrized by arc length and let S and Sε be the surfaces of revolution parame-
trized by {

(s, θ) 7→ X(s, θ) := (γ1(ps) cos(θ), γ1(ps) sin(θ), γ3(ps))

(s, θ) 7→ Xε(s, θ) := ε−1(γ1(εps) cos(εθ), γ1(εps) sin(εθ), γ3(εps)),
(2.2)

where p = γ1(0), and s ∈ [0,∞), θ ∈ [0, 2π]. (The reason for introducing p in (2.2)
is to make the parametrization conformal at s = 0.)

The surface S (Sε respectively) is a self-translating surface under mean curvature
flow with velocity ez (εez respectively) if and only if γ, parametrized by arc length,
satisfies the differential equation

(2.3) − γ′′1 γ′3 + γ′1γ
′′
3 +

γ′3
γ1
− γ′1 = 0.

Another way to represent an axially symmetric self-translating solution is through
the graph of a radial function, z = F (r), where F satisfies (2.1) on some interval
(R,∞). Then ϕ = F ′ satisfies

ϕ′ = (1 + ϕ2)
(

1− ϕ

r

)
.(2.4)

Given R > 0 and an initial condition ϕ(R) = ϕ0 ∈ R, equation (2.4) has unique
solution, which is defined for all r ≥ R, see [9]. All solutions have the common
asymptotic behavior

ϕ(r) = r − 1

r
− 2

r3
+O

(
1

r5

)
, ϕ′(r) = 1 +

1

r2
+O

(
1

r4

)
,(2.5)

as r →∞, see [2, 9] (actually an expansion to arbitrary order is possible).

Using γ1(s) = r(s), γ3(s) = F (r), with s(r) =
∫ r

0

√
1 + ϕ(t)2 dt and the asymp-

totic behavior (2.5), we can deduce the following estimates.

Lemma 2.1. For a smooth planar curve γ(s) = (γ1(s), γ3(s)), s ∈ [0,∞) parametrized
by arc length with γ1 and γ3 satisfying (2.3), we have

γ1(s) =
√

2s+
1

2
+ o(1) γ3(s) = s+O(

√
s)

γ′1(s) =
1√
2s

+ o(s−1/2) γ′3(s) = 1 +O(s−1/2)

γ′′1 (s) = O(s−3/2) γ′′3 (s) = O(s−2)

as s tends to infinity.

2.2. The Scherk surfaces. Let x, y, z be Euclidean coordinates in R3 and consider
the one parameter family of minimal surfaces {Σ(α)}α∈(0,π/2) given by the equation

(2.6) cos2(α) cosh
( x

cosα

)
− sin2(α) cosh

( y

sinα

)
− cos(z) = 0.

Outside of a large cylinder around the z-axis, Σ(α) has four connected components.
We call these components the wings of Σ(α) and number them according to the
quadrant where they lie. Each wing of Σ(α) is asymptotic to a half-plane forming
an angle α with the xz-plane (note that the asymptotic half-planes do not contain
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the z-axis unless α = π/4). Here, we will restrict the parameter α to [δα, π/2− δα]
so that the geometry on all the Σ(α)’s can be uniformly bounded as stated in the
following lemma.

Let H+ be the half-plane {(s, z) : s > 0}. Note that the parameter s here is on a
different scale than the one used in the previous section. We construct approximate
solutions satisfying (1.8) here, while the rotationally symmetric surfaces in Section
2.1 satisfy (1.7).

Lemma 2.2. The surface Σ(α) is a singly periodic embedded complete minimal
surface which depends smoothly on α. There is a constant a = a(δα) > 0 and
smooth functions fα : H+ → R so that the wings of Σα can be expressed as the
graph of fα over half-planes. More precisely, the half-plane asymptotic to the first
wing can be parametrized by A1

α : H+ → R3, with

A1
α(s, z) := (a+ s)((cosα)ex + (sinα)ey) + zez + bανα,

where bα = sin(2α) log | cotα| and να = −(sinα)ex + (cosα)ey. The wing itself is
parametrized by F 1

α : H+ → R3, which is defined by

F 1
α(s, z) := A1

α(s, z) + fα(s, z)να.

The functions fα and F 1
α depend smoothly on α. Moreover, we have∥∥∥∥es difαdαi

∥∥∥∥
Ck(H+)

≤ Ck,ie−a

for any k, i ∈ N.

The function fα(s, z) satisfies the minimal surface equation

∂s

(
∂sf√

1 + (∂sf)2 + (∂zf)2

)
+ ∂z

(
∂zf√

1 + (∂sf)2 + (∂zf)2

)
= 0,(2.7)

for s > 0, z ∈ R.

Definition 2.3. Let us denote by Ryz the reflection across the yz-plane and Rxz
the reflection across the xz-plane. The parametrizations of the second, third, and
fourth wings are given by

F 2
α = Ryz ◦ F 1

α, F 3
α = Rxz ◦ Ryz ◦ F 1

α, F 4
α = Rxz ◦ F 1

α.

The ith wing of Σ(α) is given by F iα(H+) and is denoted by W i(α). The parametriza-
tions of the corresponding asymptotic half-planes are obtained by replacing F 1

α by
A1
α in the above formulas. We use Aiα to denote the parametrization of the ith

asymptotic half-plane as well as its image, Aiα(H+). The inner core of Σ(α) is
the surface without its four wings.

Each half-plane Aiα(H+) starts close to the boundary of the corresponding wing
W i and intersects neither the xz-plane nor the yz-plane. Each wing and each as-
ymptotic half-plane inherit the coordinates (s, z) from their descriptions in Lemma
2.2 and Definition 2.3.
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x

y W 1(α)W 2(α)

W 3(α) W 4(α)

α

bα
bα

cosα

A1
αA2

α

A3
α A4

α

—– intersection with z = 0
········· intersection with z = π
- - - asymptotic planes Aiα

Figure 3. Sections of the Scherk surface Σ(α).

2.3. Dislocation of the Scherk surfaces. We now perform dislocations on the
first and fourth wings of Σ(α). These perturbations will help us deal with the kernel
of the linear operator Lε associated to normal perturbations of solutions to (1.8).
Because translated solutions of (1.8) remain solutions, the functions ex · ν, ey · ν,
and ez · ν are in the kernel of Lε. Here we have taken the normal component of the
translations because we are considering normal perturbations. The last function,
ez · ν does not satisfy our imposed symmetries so we can discard it from the kernel.
The other two remain. In Section 4, we will show that the Dirichlet problem for
the linear operator can be solved on a truncated piece of Σ(α), up to constants at
the boundary. By adding a linear combination of the functions in the kernel, we
can obtain a solution that vanishes on the boundary of two adjacent wings, say the
second and third wings. To obtain a solution that vanishes on all the connected
pieces of the boundary, we will artificially translate the first and fourth wing by
constants τ1 and τ4.

The linear operator Lε is close to linear operator L := ∆+ |A|2 associated to the
equation H = 0, so we have small eigenvalues due to changes of the Scherk angle
and rotation. Because there is a one parameter family of Scherk surfaces, we expect
a function in the kernel of the Jacobi operator L, namely, the normal component of
the motion associated to changing the angle α. One more dimension is generated
by rotation of the Scherk surfaces around the z-axis. To summarize, besides the
translations, we have two more dimensions in the kernel of L generated by linear
functions along the wings. This is reasonable since L is close to the Laplace operator
along the wings. By adding a linear combination of these two linear eigenfunctions,
we can force exponential decay along the second and third wings again. As before,
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τ1

A1

α

A4

αA3

α

A2

α

x

y

β1β1

Rrot

Rtr

Zβ1
({x = 0})

Figure 4. Dislocations in wing 1

we will generate linear functions on the first and fourth wings through rotations by
angles β1 and β4 respectively.

Definition 2.4. For β ∈ R, we define the map Zβ : R3 → R3 to be the rotation of
angle β (counterclockwise in the xy-plane) around the z-axis:

Zβ(x, y, z) = (cos(β)x− sin(β)y, sin(β)x+ cos(β)y, z).

In what follows, we will confine β to (−δp, δp), where δp > 0 is a small fixed
number.

We consider two constants Rrot > 10, Rtr > Rrot + 10, and a family of smooth
transition functions ηb : R → R such that 0 ≤ ηb(s) ≤ 1, ηb(s) = 0 for s < b, and
ηb(s) = 1 for s > b+ 1. The numbers Rrot, Rtr will be fixed later to be large.

Given α ∈ [δα, π/2− δα], β1, β4, τ1, τ4 ∈ (−δp, δp), we modify the first and fourth
wings in the following way: the ith wing is shifted by τi at around s = Rtr, then it
is rotated by an angle βi at distance s = Rrot. The parametrization of the new ith
wing, for i = 1, 4, is given by F i[α, βi, τi] : H+ → R3, where

F 1[α, β1, τ1](s, z) = (1− ηRrot(s))F 1
α(s, z) + ηRrot(s)Zβ1

(F 1
α(s, z) + τ1ηRtr (s)να)

F 4[α, β4, τ4](s, z) = Rxz ◦ F 1[α, β4, τ4](s, z),

and Rxz is the reflection across the xz-plane. Note that the ith wing is moved
away from the x-axis for positive constants βi and τi. We denote the new wings by
W i[α, βi, τi] := F i[α, βi, τi](H

+), i = 1, 4 (see Figure 4).
The wings have natural coordinates (s, z) given by the parametrizations F 1 and

F 4. The surface Σ′[α, β1, β4, τ1, τ4] (or Σ′ for short) is defined to be the union
of the inner core of Σ(α) with the four wings W 2(α), W 3(α), W 1[α, β1, τ1], and
W 4[α, β4, τ4]. We will call the region of Σ′ for which s ∈ [0, Rtr + 10] the outer
core.

Remark 2.5. The maps F iα ◦(F i[α, βi, τi])
−1 and F i[α, βi, τi]◦(F iα)−1, i = 1, 4 can

be used to pullback tensors defined on W i(α) to W i[α, βi, τi] and vice versa: in the
case of a function f defined on W i[α, β1, τ1], the composition f ◦F i[α, βi, τi]◦(F iα)−1

is the corresponding pullback function on W i(α). Taking each wing at a time, these
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maps transport functions and tensors between Σ′ and Σ(α). This is very useful as
it lets us work on a fixed surface, usually Σ(α). We will use the same notation
for functions and tensors on Σ′ or their pullback to Σ(α). For example, HΣ′ could
denote the mean curvature of Σ′ as a function on Σ′ or its pullback to Σ(α). The
same notation convention applies to the unit normal vector ν, the metric g, and
the second fundamental form A.

Let us define the following functions on Σ(α), which capture the contribution of
the dislocations to the mean curvature:

w1 :=
d

dτ1

∣∣∣
βi=τi=0

HΣ′ , w2 :=
d

dτ4

∣∣∣
βi=τi=0

HΣ′ ,(2.8)

w′1 :=
d

dβ1

∣∣∣
βi=τi=0

HΣ′ , w′2 :=
d

dβ4

∣∣∣
βi=τi=0

HΣ′ .(2.9)

These functions are compactly supported because rotations and translations do not
change the mean curvature. They will later help us solve the Dirichlet problem
associated to the Jacobi operator ∆ + |A|2 on the Scherk surfaces in Section 4.

Because the parameters βi are associated to rotations, the functions w′1 and
w′2 can be written explicitly as the Jacobi operator on the normal component of
rotation at a point (x, y, z) ∈ Σ(α):{

w′1(x, y, z) = (∆Σ(α) + |AΣ(α)|2)(ηrot,1νΣ(α) · (−y, x, 0)),

w′2(x, y, z) = (∆Σ(α) + |AΣ(α)|2)(ηrot,4νΣ(α) · (−y, x, 0)),
(2.10)

where ηrot,1(s) is defined as ηRrot(s) on wing 1 and zero elsewhere and similarly for
ηrot,4. We also have, {

w1 = (∆Σ(α) + |AΣ(α)|2)(ηtr,1),

w2 = (∆Σ(α) + |AΣ(α)|2)(ηtr,4),
(2.11)

on Σ(α), where ηtr,1(s) = ηRtr on wing 1 and zero elsewhere, and similarly for ηtr,4.

2.4. Wrapping the dislocated Scherk surfaces around a circle. We first ro-
tate our new surface Σ′ so that its second and third wings match the directions of
two chosen pieces of catenoid or paraboloid coming out of the intersection circle.
The wrapping is performed by simply using a smooth map from a tubular neigh-
borhood of the z-axis to a neighborhood of a large circle. The scaling factor is ε−1

so our target circle will have a radius of order ε−1.

Definition 2.6. For ε > 0 and % > 0, we define

Bε,%(x, y, z) = (ε−1%+ x)(cos(ε%−1z), sin(ε%−1z), 0) + (0, 0, y).

This map takes a segment of length 2πε−1% on the z-axis to the circle of radius
ε−1%.

We can not wrap the whole surface Σ′, so we cut its four wings at s = Rtr + 10
and denote the new surface by Σ̄′, with a “bar” on top to indicate that it has
a boundary. Our desingularizing surface is a dislocated rotated wrapped Scherk
surface

(2.12) Σ̄ := Bε,ρε ◦ Zβ(Σ̄′),

where the angle β has yet to be fixed and ρε is the closest number in εZ to ρ (the
radius associated to the original intersection Cρ)
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P

W

Cρ

2α0

Figure 5. Paraboloid P and catenoid WR with transversal inter-
section at Cρ.

We wish to prolong the wings of the desingularizing surface Σ̄ with pieces of
self-translating catenoids or paraboloids. At this point, it will be useful to record
the boundary, not of the surface Σ̄ itself, but of the asymptotic plane underneath
at s = Rtr + 10. We will extend the asymptotic pieces first, then construct the
approximate surface by adding the graph of fα.

2.5. Fitting the Scherk surface. It is now time to examine the initial configura-
tion in detail. We will work with cross-sections in the xz-plane. Let Cρ denote the
intersection of the paraboloid and catenoid and let α0 ∈ [δα, π/2 − δα] be half of
the angle of intersection between the top WR and the inner part of P (see Figure
5).

On the bounded part of the paraboloid, we take two points P and P ′ at distances
(a+bα0 cotα0 +Rtr+20)ε and (a+bα0 cotα0 +Rtr+10)ε from Cρ respectively and
consider the half-line starting at P ′ tangent to the paraboloid and pointing to Cρ.
Recall that a was chosen in Lemma 2.2 and that the term a+ bα0

cotα0 is present
because the distance from the intersection of the two (extended) asymptotic planes
A2
α(R2) and A3

α(R2) to the line A2
α({s = 0}) on is a+ bα cotα by Lemma 2.2. The

new object P̃ is formed by the paraboloid up to P , a smooth interpolating curve
from P to P ′, and the tangent half-line after P ′ (see Figure 6). We will also denote

its corresponding surface of revolution by P̃. We do a similar construction with the
catenoid W and denote the new object W̃ (see Figure 6).

For ε > 0 small, the curves P̃ an W̃ intersect at a point Cρ̃. We choose the angle
α of the Scherk surface and the angle β of the rotation such that the lines A2

α, A3
α are

parallel to the segments Cρ̃Q
′ and Cρ̃P

′ respectively. Note that α = α0(1 + O(ε))
and we did not dislocate the second and third wings of the Scherk surface, so α and
β do not depend on β1, β2, τ1, or τ2.

Because we have approximated our original curves W and P up to first order,
the new intersection point Cρ̃ is at distance O(ε2) from Cρ. By the same reasoning,
the distance from Cρ̃ to either P ′ or Q′ is (a + bα0

cotα0 + Rtr + 10)ε + O(ε2).
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P
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Cρ̃

P P ′

Q

Q′

W̃

P̃

Figure 6. Step in the construction.

Combining with the estimate on α, we have

(2.13) |Cρ̃Q′|, |Cρ̃P ′| = (a+ bα cotα+Rtr + 10)ε+O(ε2).

We have to adjust the scale so that the dislocated bent Scherk surface Σ̄ given in
(2.12) fits around the circle of radius ρ̃ and so that its second and third asymptotic

half-planes contain part of the line segments of W̃ and P̃ respectively. Considering
the image of the z-axis under εBε,ρε ◦ Zβ would be a mistake because in general,
the second and third asymptotic planes do not meet there. Instead, we look at
the image under εBε,ρε ◦ Zβ of the line (bα/ sinα, 0, z) (see Figure 3) and obtain a

circle of radius ρ′ = ρε + ε bα cos β
sinα = ρε(1 +O(ε)) = ρ(1 +O(ε)). This is the desired

radius.
We had to wrap our Scherk surface around a circle of radius ρε to get an em-

bedded surface, so now we adjust the scale by defining λε = ρ̃
ρ′ = 1 + O(ε2). This

function is not continuous in ε and the jumps occur when the number of periods of
the desingularizing surface increases. We take λεεΣ̄ and shift it vertically so that
the asymptotic cone associated with the second wing matches the cone generated
by the straight part of W̃ on an open set. The cone associated to the third wing
aligns automatically with the cone of P̃ by our choice of α and β. We record the
amount of vertical displacement with the constant dε and denote the shifted surface
by λεεΣ̄

↑.
The scaled surface λεεΣ̄

↑ has a boundary at s = Rtr + 10. We wish to extend
the underlying asymptotic cones with pieces of catenoidal ends that will match the
cones in a C1 manner. We take the curve γ2 to be just a parametrization ofW and
γ3 to be the curve generating the inner part of P. Thanks to the estimate (2.13),
the curves γ2 and γ3 match two of the underlying asymptotic cones to λεεΣ̄

↑ in a
C1 manner at some s ∈ (Rtr + 9, Rtr + 11) if ε is small enough (the exact value
of s is different for each wing). For i = 1 and 4, we consider the circle on the ith
asymptotic cone of λεεΣ̄

↑ corresponding to s = Rtr+10 and the tangent unit vector
to the cone perpendicular to this circle, pointing away from the core. This gives us
an initial position and velocity for the unique curve γi = (γi,1, γi,3) : [0,∞) → R2,
i = 1, 4, generating a rotationally self-translating surface. The curves γ1 and γ4 are
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perturbations of sections of the original paraboloidal and lower catenoidal ends. We
can assume without loss of generality that the γi’s are parametrized by arclength.

The surface M, which is an approximate solution to (1.8) is defined in the
following way. In the region s ≥ Rtr + 20 the i-th wing of M is taken as a graph
over the rotationally symmetric surface generated by γi. More precisely, let

Xi(t, θ) := ε−1(γi,1(εpt) cos(εθ), γi,1(εpt) sin(εθ), γi,3(εpt)),

for t ≥ 0, θ ∈ [0, 2π/ε], where p = γ1(0). The factor p is to make the parametrization
conformal at t = 0, which we will take to be s = Rtr + 20. The unit normal vector
is

ν(t, θ) = (−γ′i,3(εpt) cos(εθ),−γ′i,3(εpt) sin(εθ), γ′i,1(εpt)).

We parametrize the i-th wing of M in the region Rtr + 20 ≤ s ≤ 5δs/ε by

(s, θ) 7→ Xi(s− (Rtr + 20), θ) + u(s, θ)ν(s− (Rtr + 20), θ)

where the function u is given by

u(s, θ) = pfα(s, θ)η(εs),

where fα is as in Lemma 2.2 and η is a cut-off function satisfying η(s) = 1 for
s ≤ 4δs and η(s) = 0 for s ≥ 5δs. For s ≥ 5δs/ε, the surface M is the union of
the four pieces of rotationally symmetric self-translating surfaces generated by the
graphs of γi’s.

In the region Rtr + 9 ≤ s ≤ Rtr + 20 we smoothly interpolate the previous
parametrization for s ≥ Rtr + 20 with the corresponding one for s ≤ Rtr + 9, where
the surface can be written as the graph of a function over a cone.

Lemma 2.7. There exists a constant δp > 0 depending only on δα so that the
surface M[ε, β1, β4, τ1, τ4] is embedded for β1, β4, τ1, τ4 ∈ (−δp, δp) and ε ∈ (0, δp).
Moreover, M depends smoothly on β1, β4, τ1, and τ4. It also depends smoothly on
ε, except on a countable set.

Proof. The only point that needs an argument is that the unbounded ends do
not intersect for all β1, β4, τ1, τ4 small. This is a consequence of the following
observation: consider two solutions ϕi = ϕi(r), i = 1, 2 of (2.4) defined for all
r ≥ R with initial conditions

ϕi(R) = ϕi,0, ϕ1,0 > ϕ2,0.

By uniqueness of solutions to ODE,

ϕ1(r) > ϕ2(r) ∀r ≥ R.
Let Fi(r) be such that F ′i = ϕi and F1(0) = F2(0). It follows that

F1(r) > F2(r) +m ∀r ≥ R,
with m > 0 and m remains positive if ϕ1,0 − ϕ2,0 remains positive. �

2.6. Summary of notation and terminology. We start by recalling the roles
of the different parameters:

• ε controls the overall scale and the error in the construction.
• s is the distance to the inner core if we are on an underlying asymptotic

surface. It is roughly the distance to the inner core if we are on M.
• ρε is the closest number in εZ to ρ, which is the radius of the intersection

of the paraboloid and catenoid in the original scale.
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• α is the angle associated to the original Scherk surface (see Figure 3).
• β1 and β4 are the angles of rotation of the first and fourth wings respectively.
• τ1 and τ4 are the amount by which the first and fourth wings are translated

(along the normal of the asymptotic plane to the respective wing).

Then we have the different scaled and bent Scherk surfaces:

• Σ(α) is the original minimal Scherk surface given by (2.6). Its wings W i(α)
are asymptotic to the half-planes Aiα(H+).
• Σ′ = Σ′[α, β1, β4, τ1, τ4] is Σ(α) with dislocations (see Figure 4).
• Σ̄ := Bε,ρε ◦ Zβ(Σ̄′) is Σ′ wrapped around a circle of radius ρε/ε.
• λεεΣ̄↑ is the previous Scherk surface scaled by a factor ελε = ε(1 +O(ε2))

and shifted by dε in the ~ez direction so that it fits the configuration in
Figure 6.

Finally, let us recall the names of the different parts of the initial approximation
M =M[ε, β1, β4, τ1, τ4]:

• The inner core is where the handles are.
• The middle core is where we perform all the dislocations. It corresponds

to the region 0 ≤ s ≤ Rtr + 10.
• The region s ∈ (Rtr + 9, Rtr + 20) is a transition region called the outer

core. Note that there is a change of scale in this region from λεε to ε but
this will not create too much error as the switch is contained in a bounded
region with s small compared to ε−1.
• The core is the union of the inner, middle, and outer core.
• In the region {s ∈ (Rtr + 20, 4δs/ε)}, M is the graph of fα over the rota-

tionally symmetric surface generated by γi, i = 1, . . . , 4.
• The region {s ∈ (4δs/ε, 5δs/ε)} is a transition region where we cut-off the

graph of fα. We have to do it far enough so that the function fα is small
and the length of the interval has to be long enough so we don’t create too
much error.
• The wings are defined to be the region {s ∈ (0, 5δs/ε)}.
• For {s ≥ 5δs/ε}, M is just the rotationally symmetric surface generated

by the curves γi’s.

3. Geometric computations

In this section, we perform computations related to the ansatzM . In particular,
we prove Proposition 1.2, which gives the error. We also use these computations
to prove Proposition 1.3 for the quadratic terms appearing in the expansion of the
mean curvature and normal vector.

3.1. Perturbation by normal graphs. Consider a surface M immersed in R3

with local parametrization of class C2:

X : U ⊂ R2 →M, X = X(x1, x2).

We use the notation

ei = ∂iX = ∂xiX

for tangent vectors and we take the normal unit vector to be

ν =
e1 × e2

|e1 × e2|
,
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where × is the cross product in R3. The metric of M is denoted by

gij = 〈ei, ej〉,

and its inverse by gij , where 〈·, ·〉 is the standard inner product in R3. We recall
that

∂iν = −A j
i ej

where we used Einstein’s convention of summation over repeated indices, and A j
i

is the second fundamental form, which can be computed as

A j
i = Aikg

kj , Aij = 〈Xij , ν〉 = −〈ei, ∂jν〉.

The mean curvature H of M is given by

H = trace of A = A 1
1 +A 2

2 = gij〈Xij , ν〉.

Consider a function u ∈ C2(M). We write

ui = ∂xiu, uij = ∂xixju.

Let X̃ = X + νu be the graph of u over M . We then have

ẽi = ∂xiX̃ = ei + uiν − uA k
i ek

and

g̃ij = 〈ẽi, ẽj〉 = gij − u(A l
j gil +A k

i gkj) + u2A k
i A

l
j gkl + uiuj .

We compute the cross product

ẽ1 × ẽ2 = e1 × e2(1− uH − u2G) + u1ν × e2 + u2e1 × ν

− uu1A
l

2 ν × el − uu2A
k

1 ek × ν,

where G = A 1
1 A

2
2 − A 2

1 A
1

2 is the Gauss curvature. We also compute the second

derivatives of X̃:

X̃ij = ∂j(ei + νiu+ νui)

= eij + uijν − uiA l
j el − ujA k

i ek − u(A k
i )jek − uA k

i ekj .

The mean curvature of Mu is given by

H̃ = g̃ij
〈
X̃ij ,

ẽ1 × ẽ2

|ẽ1 × ẽ2|

〉
.

Explicitly, the scalar product is

〈ẽ1 × ẽ2, X̃ij〉

= 〈e1 × e2(1− uH − u2G) + u1ν × e2 + u2e1 × ν − uu1A
l

2 ν × el − uu2A
k

1 ek × ν,

eij + uijν − uiA l
j el − ujA k

i ek − u(A k
i )jek − uA k

i ekj〉

with det g̃ = |ẽ1 × ẽ2|2 and

g̃−1 =
1

det g̃

[
g̃22 −g̃12

−g̃12 g̃11

]
.
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3.2. Norms of tensors. We work with the following norms, which are independent
of coordinates.

Definition 3.1. The pointwise norm of a tensor T b1...bs
a1...ar is given by

|T |2 := T b1...bs
a1...ar T d1...ds

c1...cr ga1c1 · · · garcrgb1d1
· · · gbsds ,

with summation over repeated indices.

We use the notation ∇i to denote the covariant derivative with respect to ∂
∂xi

.
In the case where the metric is diagonal, the norms of the gradient and Hessian of
a function u are

|∇u|2 = |uiujgij | =
(u1)2

g11
+

(u2)2

g22
,

|∇2u|2 = (g11∇11u)2 + (g22∇22u)2 + 2g11g22(∇12u)2.

For the second fundamental form, we have

|A|2 = (g11A11)2 + (g22A22)2 + 2(g11g22A12A12),

|∇A|2 =

2∑
i,j,k=1

(∇iA k
j )2giigjjgkk.

3.3. Geometry of rotationally symmetric self-translating surfaces. We com-
pute various geometric quantities attached to the parametrization Xε given in (2.2).
We use ∂i or ( )i to denote regular differentiation with respect to the variables s
(i = 1) or θ (i = 2). Let {e1, e2} be the tangent vectors to Sε given by

e1 = ∂1Xε = p(γ′1(εps) cos(εθ), γ′1(εps) sin(εθ), γ′3(εps)),(3.1)

e2 = ∂2Xε = (−γ1(εps) sin(εθ), γ1(εps) cos(εθ), 0),(3.2)

We recall that (γ1(s), γ3(s)) is parametrized by arc length and that p := γ1(0) > 0.
The associated metric is then

(3.3) g11 = p2, g12 = g21 = 0, g22 = γ2
1 .

The only nonzero Christoffel symbols are

Γ22,1 = −εpγ1γ
′
1, Γ12,2 = Γ21,2 = εpγ1γ

′
1,

Γ1
22 = −εγ1

p
γ′1, Γ2

12 = Γ2
21 = ε

p

γ1
γ′1.

Using Aij = 〈∂iej , ν〉, we obtain the coordinates of the second fundamental form{
A11 = −εp2(−γ′′1 γ′3 + γ′1γ

′′
3 ), A12 = 0, A22 = εγ1γ

′
3

A 1
1 = −ε(−γ′′1 γ′3 + γ′1γ

′′
3 ) A 2

1 = A 1
2 = 0 A 2

2 = εγ−1
1 γ′3

(3.4)

where all the functions are taken at εps.
The following proposition is an immediate corollary of (3.4) and the growth of

γ1, γ3 given in Lemma 2.1.

Proposition 3.2. In the coordinates given by Xε, the second fundamental form A
and Christoffel symbols on Sε satisfy∣∣∣∣ dkdskA j

i (εps)

∣∣∣∣ ≤ Cεk+1,(3.5)

|Γkij | ≤ Cε.(3.6)
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Proposition 3.3. We have

(3.7) |∇kA| ≤ Cεk+1, k = 0, 1, 2.

Proof. The fact that |A|2 ≤ Cε2 is straightforward from (3.4), (3.3) and Proposition

3.2. For the first covariant derivative of A, we recall ∇kA j
i = ∂kA

j
1 − ΓlkiA

j
l +

ΓjklA
l
i with implied summation over l = 1, 2. Upon inspection, ∇1A

2
1 vanishes. If

(i, j, k) 6= (1, 2, 1), the quantity
√
gkkgiigjj is bounded, therefore√

gkkgiigjj |∇kA k
i | ≤ C(|∂kA j

1 |+ |ΓlkiA
j
l |+ |Γ

j
klA

l
i |)

≤ Cε2

and the estimate for |∇A| is proved.

For the second covariant derivative, we argue similarly. Recall that ∇2
lkA

j
i =

∂l(∇kA j
i ) − Γmlk∇mA

j
i − Γmli∇kA j

m + Γjlm∇kA m
i . Note that ∇2

11A
2

1 = 0. As be-

fore, if (i, j, k,m) 6= (1, 2, 1, 1), the product
√
gkkgiigjjgll is bounded and we prove

|∇2A| ≤ Cε3 by combining (3.5), (3.6), and (3.7) for k = 0, 1. �

3.4. Computation of the error.

Proof of Proposition 1.2. The initial approximationM consists of three parts. The
core of M is a smooth perturbation of a compact piece of Scherk minimal surface,
when we consider one period only. This introduces curvatures of order ε, together
with some dislocations, so the statement of Proposition 1.2 follows directly for the
error restricted to this part.

The region s ≥ 5δs/ε of M is a rotationally symmetric self-translating surface,
so E is zero there.

Where Rtr + 20 ≤ s ≤ 5δs/ε, the surface M is a graph over a self-translating
rotationally symmetric surface Sε. We parametrize Sε with Xε defined in (2.2),
which we will write for convenience as X, so that

X(s, θ) := ε−1(γ1(εps) cos(εθ), γ1(εps) sin(εθ), γ3(εps)),

where p = γ1(0), and s ∈ [0,∞), θ ∈ [0, 2π].
Then M in this region is parametrized by

(3.8) (s, θ) 7→ X̃(s, θ) = X(s, θ) + u(s, θ)ν.

where the function u is given by

(3.9) u(s, θ) = pfα(s, θ)η(εs),

with fα given in Lemma 2.2 and η is a cut-off function satisfying η(s) = 1 for
s ≤ 4δs and η(s) = 0 for s ≥ 5δs. We observe that

|es∂ku(s, θ)| ≤ Ce−a, k = 0, . . . , 5,

and that fα(s, θ) satisfies the minimal surface equation (2.7).
In the rest of this proof, g,A,H, ν denote the metric, second fundamental form,

mean curvature and Gauss map of the rotationally symmetric surface Sε and
g̃, Ã, H̃, ν̃ the ones of M given by the parametrization above.
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In the rest of this section, we shall work in the region s ≤ 5δs/ε. Following the
calculations of Section 3.1 with the parametrization (3.8) and using (3.7) we have

ẽ1 = (1− uA 1
1 )e1 − uA 2

1 e2 + u1ν = e1 + νu1 +O(εe−s),

ẽ2 = −uA 1
2 e1 + (1− uA 2

2 )e2 + u2ν = e2 + νu2 +O(εe−s),

where O(εe−s) is in the C2 sense on the region s ≤ 5δs/ε as ε→ 0, and e1, e2 are
given in (3.1), (3.2). We compute the metric g̃ij :

g̃ij = gij − 2uAij + u2A l
i A

m
j glm + uiuj = gij + uiuj +O(εe−s).(3.10)

Using (3.3), we have

g̃−1 =
1

det(g̃)

(
γ2

1 + u2
2 −u1u2

−u1u2 p2 + u2
1

)
+O(εe−s),

where γ1 is evaluated at pεs, and

det(g̃) = p2γ2
1 + γ2

1u
2
1 + p2u2

2 +O(εe−s).(3.11)

For the normal direction, we recall that e1 and e2 are orthogonal and obtain

ẽ1 × ẽ2 = det(g)1/2ν − u1e1 − u2e2 +O(εe−s).(3.12)

Next, we compute

X̃ij = eij + uijν +O(εe−s)

and

Ãij = 〈X̃ij , ν̃〉 =
det(g)1/2

det(g̃)1/2
(Aij + uij) +O(εe−s).

Since det(g)
det(g̃) = 1 +O(e−s) and Aij are O(ε),we get

Ãij = Aij + uij +O(εe−s).(3.13)

With this, the second fundamental form can be expressed as

Ã 1
1 =

1

det(g̃)

[
(A11 + u11)(γ1

1 + u2
2)− (A12 + u12)u1u2

]
+O(εe−s)

Ã 2
2 =

1

det(g̃)

[
−(A21 + u21)u1u2 + (A22 + u22)(p2 + u2

1)
]

+O(εe−s).

Therefore

H̃ =
1

det(g̃)

[
A11γ

2
1 +A22p

2 + u11(γ2
1 + u2

2)− 2u12u1u2 + u22(p2 + u2
1)
]

+O(εe−s).

Let ū = 1
pu = fα(s, θ)η(εs). We recall that H = 1

det(g)

[
A11γ

2
1 +A22p

2
]

and expand

γ1(pεs) = p+O(εs) in the region s ≤ 5δs/ε to get

H̃ = H +
p3

det(g̃)

[
ū11(1 + ū2

2)− 2ū12ū1ū2 + ū22(1 + ū2
1)
]

+O(εse−s)

Because η(εs) = 1 for s ≤ 4δs/ε and fα satisfies (2.7), we actually have

ū11(1 + ū2
2)− 2ū12ū1ū2 + ū22(1 + ū2

1) = 0

in this region. Thus we obtain

H̃ = H +O(εse−s), s ≤ 4δs/ε.
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Also in this region, from (3.11), (3.12) and |ẽ1 × ẽ2| = det(g̃)1/2, we have εν̃ · ez =
εν · ez +O(εe−s) and since Sε is a self translating surface, we get

H̃ − εν̃ · ez = O(εe−γs).

The same estimate holds for the derivatives of H̃ − εν̃ · ez (all the parametrizations
here are smooth), which implies the corresponding estimate in the weighted Cα

norm.
When 4δs/ε ≤ s ≤ 5δs/ε, we have |∂ku(s)| ≤ Ce−s ≤ εe−γs for ε small enough,

so
H̃ = H +O(εe−γs), εν̃ · ez = εν · ez +O(εe−γs),

and the desired estimate holds. �

3.5. Estimate of the Jacobi operator. Here we use the following notation: The
metric, Christoffel symbols, and second fundamental forms on a rotationally sym-
metric piece of self-translating surface are denoted by g, Γkij , and A, the corre-

sponding quantities for the ansatz are gM , Γkij,M, and AM while the ones on the

corresponding original Scherk surface are gΣ, Γkij,Σ, and AΣ. For short, we write

∆gM = ∆M, ∆gΣ
= ∆Σ. In the following proposition, the operators on M (the

left-hand side) are pulled back to Σ using the transformations of Section 2.

Proposition 3.4. For s ≤ 5δs/ε, we have

∆M + |AM|2 + ε〈ez,∇gM〉 = ∆Σ + |AΣ|2 + L′

where L′ is a second order differential operator with coefficients with C1 norm
bounded by O(δs + δp + ε).

Proof. We again divide into several regions. For s ≤ Rtr + 20, M is obtained from
the Scherk surface by a bending, which introduces terms of order ε and dislocations
of order δp, so the estimate for L′ here follows.

When Rtr + 20 ≤ s ≤ 5δs/ε, M can be described by the parametrization (3.8).
In this region, we express all geometric quantities of M and Σ as functions of the
coordinates s and θ.

We note that ∆M − ∆Σ is a second order operator with coefficients whose C1

norm can be estimated from the C2 norm of gM − gΣ. The ansatz is the graph
of u from (3.9), so to be consistent, we take the Scherk surface parametrized by
(s, θ) 7→ (ps, pθ, pfα(s, θ)). Then (3.10) gives

gij,Σ − gij,M = p2δij + p2fα,ifα,j − (gij + uiuj) +O(εe−s).

We use (3.3), ‖u‖C3 ≤ C , and the expansion γ1(pεs) = p+O(εs) to deduce

‖gij,Σ − ḡij,M‖C2 ≤ C(δs + ε),

where the norm is computed over Rtr + 20 ≤ s ≤ 5δs/ε. Because the metrics
are uniformly equivalent, in order to bound |AM|2 − |AΣ|2, it suffices to control
|Aij,M(s, θ)−Aij,Σ(s, θ)|. By (3.13),

Aij,Σ −Aij,M = pfij − (uij +Aij) +O(εe−s),

where O(εe−s) is in C1 norm. The functions u and f are equal if s ≤ 4δs/ε and
we have e−s ≤ Cε otherwise. Moreover, Aij = O(ε) when s ≤ 5δs/ε by (3.4).
Therefore,

‖Aij,Σ −Aij,M‖C1 ≤ Cε,(3.14)
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where the norm is over Rtr + 20 ≤ s ≤ 5δs/ε.
Finally, the term ε〈ez,∇gM〉 has coefficients of order ε in C1 norm over Rtr+20 ≤

s ≤ 5δs/ε. �

3.6. Estimates of the quadratic terms. Here, we prove Proposition 1.3 for
functions defined on the surfaceM. We recall from (3.14) and Proposition 3.3 that
each |∇iA| remains uniformly bounded on M, for i = 0, 1, 2.

Let Q1 be defined by (1.9) and assume |uA| < 1. For this computation it is
convenient to work with coordinates that are normal at a certain point x0 ∈ M,
which means

gij(x0) = δij and ∂kgij(x0) = 0.

This implies

〈Xij , ek〉 = 0,

at x0. Moreover, by a further rotation 〈X12, ν〉 = 0 at x0 so that A 2
1 (x0) = 0.

With these properties, following the computation in Section 3.1, we obtain at the
point x0:

g̃−1 =
1

det(g̃)

[
1− 2uA 2

2 + u2(A2
2)2 + u2

2 −u1u2

−u1u2 1− 2uA 1
1 + u2(A1

1)2 + u2
1

]
with

det(g̃) = |ẽ1 × ẽ2|2 = (1− uH − u2G)2 + u2
1(1− uA2

2)2 + u2
2(1− uA1

1)2,

where G is the Gaussian curvature.
We will use Q to denote different functions of u, ui, uij , x with the properties:

Q is C∞ in u, ui, uij ,

Q(0, 0, 0, x) = 0, DuQ(0, 0, 0, x) = 0,

DuiQ(0, 0, 0, x) = 0, DuijQ(0, 0, 0, x) = 0,

Q is linear in uij ,

second derivatives with respect to u, ui, uij are bounded by

universal functions of |A| and |∇A| for |uA| < 1/2.

(3.15)

Then we can write

g̃−1 =
1

det(g̃)

[
1− 2uA 2

2 0
0 1− 2uA 1

1

]
+Q

and

det(g̃) = 1− 2uH +Q.

Similarly,

〈X̃ij , ẽ1 × ẽ2〉 = (1− uH)A j
i + uij − u(A j

i )2 +Q,

therefore

H̃ = H + u11 + u22 + ((A 1
1 )2 + (A 2

2 )2)u+Q1,

where Q1 satisfies the properties (3.15). Let u, v be C2,α functions on M with
|uA| < 1/2, |vA| < 1/2. To simplify notation, let U(x) = (u(x),∇u(x),∇2u(x)).
From the properties of Q1 and Taylor’s formula

|Q1(U(x), x)−Q1(V (x), x)| ≤ C(|U(x)|+ |V (x)|)(|U(x)− V (x)|).
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To estimate the Hölder norm of Q1, we note that the expression for H̃−εν̃ ·ez is
linear in the second derivative of u and we have C1 bounds on all the other terms.
We have Cα bounds on ∇gu and C1 bounds on everything else (u, ∇gu, A, and
∇gA).

4. The Jacobi equation on Scherk surfaces

Let Σ = Σ(α) be the singly periodic Scherk surface defined by (2.6). In this
section, we want to solve the problem involving the Jacobi operator on Σ,

∆φ+ |A|2φ = h in Σ,

where ∆ is the Laplace-Beltrami operator and A is the second fundamental form
of Σ.

We let s and z denote the coordinates on the wings W i(α), i = 1, . . . , 4, described
in Lemma 2.2. In the rest of the section, we will work with right-hand sides h defined
on Σ and such that ‖eγsh‖L∞(Σ) <∞ for a fixed γ ∈ (0, 1).

We will work with functions that are 2π periodic in z and even with respect to
z, that is, φ and h satisfy

φ(x, y, z) = φ(x, y, z + 2π), φ(x, y, z) = φ(x, y,−z), ∀(x, y, z) ∈ Σ,(4.1)

which is equivalent to symmetry with respect to the planes z = kπ, k ∈ Z.
We choose the unit normal vector to Σ such that

ν · ey > 0 on wings 1 and 2, and ν · ey < 0 on wings 3 and 4.(4.2)

Because translating the surface Σ leaves its mean curvature unchanged, the func-
tions ν · e are in the kernel of ∆ + |A|2 for any fixed e ∈ R3. Hence ν · ex, ν · ey,
and ν · ez are in the kernel of the Jacobi operator. Of these functions, ν · ex and
ν · ey satisfy the symmetries (4.1) and ν · ez does not because it is antisymmetric
with respect to z = 0. We will write

z1 = ν · ex, z2 = ν · ey.(4.3)

The main results in this section are the following. First, we consider the problem
of finding a bounded solution φ of∆φ+ |A|2φ =

2∑
i=1

ciη0zi + h in Σ,

φ satisfies the symmetries (4.1)

(4.4)

for which ∫
Σ

φη0zi = 0, i = 1, 2,(4.5)

where η0 ∈ C∞(Σ) is a smooth function depending only on x2 + y2 such that

0 ≤ η0 ≤ 1, η0 = 1 on x2 + y2 ≤ R2
0, and η0 = 0 on x2 + y2 ≥ (R0 + 1)2,(4.6)

where R0 > 1 is fixed.

Proposition 4.1. Let 0 < γ < 1. Let h be defined in Σ, satisfy the symmetries
(4.1), and ‖eγsh‖L∞(Σ) < ∞. Then there are unique c1, c2 ∈ R and φ ∈ L∞(Σ)
satisfying (4.4) and (4.5). Moreover

|c1|+ |c2|+ ‖φ‖L∞(Σ) ≤ C‖eγsh‖L∞(Σ)(4.7)
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and

|∇φ| ≤ C(‖eγsh‖L∞(Σ) + ‖φ‖L∞(Σ))e
−γs.(4.8)

If φ is a bounded solution of (4.4), by (4.8) φ has a limit on each wing, that is,
Li = lims→∞ φ(s, z) on all wings i = 1, . . . , 4. These limits define linear functionals
of h and we have the estimate |Li| ≤ C‖eγsh‖L∞ . For later consideration, it is
desirable to find a solution to (4.4) with limit equal to zero on all wings. To achieve
this, the right-hand side has to satisfy four restrictions, or equivalently, has to be
projected onto a space of codimension 4. We do this by considering the main terms
introduced by the dislocations. So we consider now the problem∆φ+ |A|2φ = h+

2∑
i=1

(βiw
′
i + τiwi) in Σ,

φ satisfies (4.1),

(4.9)

where the functions wi, w
′
i are defined in (2.8), (2.9).

Proposition 4.2. Let 0 < γ < 1 and h be a function satisfying ‖eγsh‖L∞(Σ) <∞
and the symmetries (4.1). Then if Rrot and Rtr, which are the parameters in the
construction associated to the dislocations, are fixed large enough, there exist βi, τi,
i = 1, 2 and φ a bounded solution of (4.9) such that φ has a limit equal to zero on
all wings. Moreover φ, βi, τi depend linearly on h and

‖eγsφ‖L∞ +

2∑
i=1

(|βi|+ |τi|) ≤ C‖eγsh‖L∞ .(4.10)

Using this proposition, we fix the parameters Rtr, Rrot of the construction of
the initial approximationM. The following non-degeneracy property of the Jacobi
operator is crucial in the proof of the above results and was proved by Montiel and
Ros [25].

Proposition 4.3. Any bounded solution φ of

∆φ+ |A|2φ = 0 in Σ

is a linear combination of ν · ex, ν · ey and ν · ez.

The rest of the section is devoted to prove Propositions 4.1 and 4.2. We start
by considering the problem{

∆φ+ |A|2φ = h in ΣR

φ = 0 on ∂ΣR, φ satisfies (4.1)
(4.11)

where R > 0 is large and

ΣR is the union of the core of Σ and ∪4
i=1W

i(α) ∩ {s ≤ R}.(4.12)

In the sequel, we work with R >> R0 + 1.

Lemma 4.4. Let 0 < γ < 1. Let h be defined in ΣR, satisfy the symmetries (4.1),
and ‖eγsh‖L∞(Σ) < ∞. Then there are R1, C such that for all R ≥ R1 and any
solution φ of (4.11) such that∫

ΣR

φη0zi = 0 i = 1, 2,(4.13)
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we have

‖φ‖L∞(ΣR) ≤ C‖eγsh‖L∞(ΣR).

Proof. We proceed by contradiction and assume that for any positive integer n,
there are Rn, φn, hn such that Rn →∞ as n→∞, (4.11), (4.13) hold and

‖φn‖L∞(ΣRn ) = 1, ‖eγshn‖L∞(ΣRn ) → 0 as n→∞.(4.14)

Let us show first that φn → 0 uniformly on compact sets of ΣRn . Otherwise, up
to a subsequence and using standard local estimates for elliptic equations, φn → φ
uniformly on compact sets of Σ, where φ is bounded, not identically zero, and
satisfies

∆φ+ |A|2φ = 0 in Σ.

By Proposition 4.3, φ is a linear combination of ν · ex, ν · ey and ν · ez. But ν · ez
is not present in this linear combination by the imposed symmetry (4.1), so

φ = c1ν · ex + c2ν · ey
for some constants c1 and c2. But passing to the limit in (4.13), we deduce that φ
satisfies (4.13). This implies that c1 = c2 = 0.

We note that ψ = 1− e−γs satisfies

∆ψ + |A|2ψ ≤ −Ce−γs

for some C > 0 and s ≥ s0 where s0 is large enough. Using ψ as a barrier on each
wing, we obtain that ‖φn‖L∞(ΣRn ) → 0 as n→∞, which contradicts (4.14). �

With almost the same argument, we can prove the next result.

Lemma 4.5. Let 0 < γ < 1. Let h be defined in Σ, satisfy the symmetries (4.1),
and ‖eγsh‖L∞(Σ) < ∞. Then there is a constant C such that for any bounded
solution φ of {

∆φ+ |A|2φ = h in Σ

φ satisfies (4.1)
(4.15)

which also satisfies (4.5), we have

‖φ‖L∞(Σ) ≤ C‖eγsh‖L∞(Σ).

Proof. The proof changes only in the last step, when we use the maximum principle
to show that φ ≤ Cψ. We change slightly the barrier by considering

ψ + δZ,

where Z is an element in the kernel of the Jacobi operator that grows linearly, and
then take δ → 0. �

Lemma 4.6. Let 0 < γ < 1. Let h be defined in Σ, satisfy the symmetries (4.1),
and ‖eγsh‖L∞(Σ) <∞. Suppose φ is a bounded solution of (4.15). Then

|∇φ| ≤ C(‖eγsh‖L∞(Σ) + ‖φ‖L∞(Σ))e
−γs.

Proof. Changing variables, we rewrite the equation on a fixed wing as

∆φ = a0(s, z)φ+ a1(s, z)∇φ+ a2(s, z)D2φ+ h in S(4.16)

with boundary conditions

∂φ

∂z
= 0 on (s0,∞)× {0, π},
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where S is the strip (s0,∞)× (0, π). We write the variables in S as (s, z), s > s0,
z ∈ (0, π) and in (4.16), ∆ = ∂ss + ∂zz. The functions a0, a1, a2 are smooth and
have the decay

|ai(s, z)| ≤ Ce−s.
For T > s0, we have

‖φ‖L2((T,T+5)×(0,π)) ≤ C‖φ‖L∞(S).

Since the coefficients of ai are small as s→∞, we have from standard estimates

‖φ‖H2((T,T+1)×(0,π)) ≤ C(‖φ‖L∞(S) + ‖eγsh‖L∞(S)).

Hence,

‖a0φ+ a1∇φ+ a2D
2φ+ h‖L2((T,∞)×(0,π)) ≤ C(‖φ‖L∞(S) + ‖eγsh‖L∞(S))e

−γT .

(4.17)

Let g = a0φ+ a1∇φ+ a2D
2φ+ h and write

φ(s, z) =

∞∑
n=0

φn(s) cos(nz), g(s, z) =

∞∑
n=0

gn(s) cos(nz),

where, for n ≥ 0, φn(s) = 2
π

∫ π
0
φ(s, z) cos(nz) dz and gn(s) = 2

π

∫ π
0
g(s, z) cos(nz) dz.

We can write

φ0(s) = b0 +

∫ ∞
s

(t− s)g0(t) dt,(4.18)

where b0 = lims→∞ φ0(s). The claim is that

‖φ− b0‖L2((T,∞)×(0,π)) ≤ C
(
‖φ‖L∞(S) + ‖eγsh‖L∞(S)

)
e−γT .(4.19)

To prove this, let φ̃(s, z) =
∑∞
n=1 φn(s) cos(nz). We claim that, for T large

‖φ̃‖L2((T,∞)×(0,π)) ≤ C
(
‖φ‖L∞(S) + ‖eγsh‖L∞

)
e−γT .(4.20)

Indeed, we have
φ′′n − n2φn = gn for s > s0.

Note that φn(s) is bounded as s→∞, so that φn(s) must have the form (for n ≥ 1)

φn(s) = dne
−n(s−s0) + φ0,n(s),

where

dn = φn(s0), φ0,n(s) = −e−nd
∫ s

s0

e2nt

∫ ∞
t

gn(τ)e−nτ dτ dt.

Let γ < a < 1 be fixed. By the Cauchy-Schwarz inequality, for n ≥ 1, we have

|φ0,n(s)| ≤ 1

(4n(n− a))1/2
e−as

(∫ s

s0

e2at

∫ ∞
t

|gn(τ)|2 dτ dt
)1/2

.(4.21)

Therefore

‖φ̃‖2L2((T,∞)×(0,π)) ≤ Ce
−2T

∞∑
n=1

d2
n + C

∞∑
n=1

∫ ∞
T

|φ0,n(s)|2 ds,

and using (4.17), (4.21), we deduce (4.20). The estimate above and a similar one
for the integral in (4.18) give (4.19).

Note that φ̄ = φ− b0 satisfies

∆φ̄ = a0(s, z)φ̄+ a1(s, z)∇φ̄+ a2(s, z)D2φ̄+ h+ a0(s, z)b0 in S.
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From standard elliptic estimates, we get

‖φ̄+ |∇φ̄|‖L∞((T+1,T+2)×(0,π)) ≤ C
(
‖φ̄‖L2((T,T+3)×(0,π))

+ ‖h+ a0b0‖L∞((T,T+3)×(0,π))

)
≤ C

(
‖φ‖L∞(S) + ‖h‖L∞(S)

)
e−γT . �

To prove existence, let ΣR be the truncated surface defined by (4.12) and consider
the problem of finding φ and c1, c2 such that

∆φ+ |A|2φ =

2∑
i=1

ciη0zi + h in ΣR,

φ = 0 on ∂ΣR,

φ satisfies (4.1).

(4.22)

Lemma 4.7. Let 0 < γ < 1. Let h be defined in ΣR, satisfy the symmetries
(4.1), and ‖eγsh‖L∞(ΣR) <∞. Then there are unique c1, c2 ∈ R and φ ∈ L∞(ΣR)
satisfying (4.22) and (4.5). Moreover,

|c1|+ |c2|+ ‖φ‖L∞(ΣR) ≤ C‖eγsh‖L∞(ΣR),(4.23)

with C independent of R.

Proof. We prove first (4.23). Indeed, by Lemma 4.4,

‖φ‖L∞ ≤ C (|c1|+ |c2|+ ‖eγsh‖L∞) .

Multiplying by zj and integrating in ΣR, we find∫
∂ΣR

∂φ

∂ν
zj = cj

∫
ΣR

η0z
2
j .(4.24)

We claim that ∫
∂ΣR

∂φ

∂ν
zj = o(1)(‖φ‖L∞ + ‖eγsh‖L∞)(4.25)

where o(1) → 0 as R → ∞. Combining (4.25) and (4.24), we get (4.23). To prove
(4.25), we rewrite the equation on the ith wing as

Lφ =

2∑
i=1

ciη0zi + h in SR,

where Lφ = ∆φ+ a0φ+ a1∇φ+ a2D
2φ and SR = {(s, z) : 0 < s < R, 0 < z < π}.

Here ∆ = ∂ss + ∂zz and ai(s, z) are smooth with |ai(s, z)| ≤ Ce−s. Let R1 >> R0

and R >> R1. The function φ̄ =
(
R−s
R−R1

)µ
, where 0 < µ < 1 is fixed, satisfies

Lφ̄ ≤ −c
(
R− s
R−R1

)µ−2

in (R1, R)× (0, π) for some c > 0, if we take R1 large. By the maximum principle,
|φ| ≤ C(‖φ‖L∞ + ‖eγsh‖L∞)φ̄ in (R1, R)× (0, π). It follows that∣∣∣∣∂φ∂s (R, z)

∣∣∣∣ ≤ C

R−R1
(‖φ‖L∞ + ‖eγsh‖L∞),

and this proves (4.25).
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For the existence of a solution of (4.23), let us define the Hilbert space

H =

{
φ ∈ H1(ΣR ∩ {z ∈ (0, π)}) : φ

∣∣
s=R

= 0,

∫
ΣR∩{z∈(0,π)}

φη0zi = 0, i = 1, 2

}
with the inner product

〈ϕ1, ϕ2〉 =

∫
ΣR∩{z∈(0,π)}

∇ϕ1∇ϕ2

where η0 is the cut-off function with properties (4.6). We consider the following
weak form of the equation to find φ ∈ H:∫

ΣR∩{z∈(0,π)}
∇φ · ∇ϕ− |A|2φϕ = −

∫
ΣR∩{z∈(0,π)}

hϕ, ∀ϕ ∈ H.(4.26)

Let T : H → H, T (φ) = ψ be the linear operator defined by the Riesz theorem
from the relation

〈ψ,ϕ〉 =

∫
ΣR∩{z∈(0,π)}

|A|2φϕ, ∀ϕ ∈ H.

Then T is compact and we can formulate (4.26) as finding φ ∈ H such that

φ = T (φ) + Lh,

where Lh(ϕ) =
∫

ΣR∩{z∈(0,π)} hϕ. By the Fredholm theorem, this problem is uniquely

solvable for any h provided the only solution of φ = T (φ) in H is φ = 0. This holds
by (4.23). �

We now turn our attention to the problem on the whole Scherk surface Σ.

Proof of Proposition 4.1. First, let us show that, for any bounded solution φ, c1, c2
of (4.4) satisfying (4.5), the estimate (4.7) is valid. Indeed, by Lemma 4.5,

‖φ‖L∞ ≤ C(|c1|+ |c2|+ ‖eγsh‖L∞).(4.27)

For R >> 1, let ΣR = Σ ∩ {(x, y, z) : x2 + y2 ≤ R2}. Multiplying (4.4) by zj and
integrating in ΣR ∩ {z ∈ (0, π)}, we have∫

∂ΣR∩{z∈(0,π)}

∂φ

∂ν
zj = cj

∫
ΣR∩{z∈(0,π)}

η0z
2
j +

∫
ΣR∩{z∈(0,π)}

hzj(4.28)

because
∫

ΣR∩{z∈(0,π)} η0z1z2 = 0 by symmetry. By Lemma 4.6,∫
∂ΣR∩{z∈(0,π)}

∣∣∣∣∂φ∂ν zi
∣∣∣∣ ≤ Ce−γR(|c1|+ |c2|+ ‖eγsh‖L∞ + ‖φ‖L∞).(4.29)

Combining (4.27), (4.28), and (4.29), we deduce (4.7) and prove the uniqueness.
By Lemma 4.7, for R large, the problem (4.22) is uniquely solvable, yielding a

solution to φR (and constants c1,R and c2,R), which remains bounded as R → ∞
by (4.23). By standard elliptic estimates, φR converges locally uniformly in Σ to a
solution of (4.4). Estimate (4.8) follows from Lemma 4.6. �

Proof of Proposition 4.2. Given h as stated, let φ, c1, c2 be the solution to (4.4)
provided by Proposition 4.1. Let Li = lims→∞ φ(s, z) be the limit of φ on wing i.
By adding appropriate multiples of z1 and z2, we can make two of these limits equal
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to zero. More precisely, by the choice of orientation (4.2) on Σ and the definition
of z1 and z2 in (4.3), we have

lim
s→∞

z1 =


− sinα on wing 1,

sinα on wing 2,

sinα on wing 3,

− sinα on wing 4,

lim
s→∞

z2 =


cosα on wing 1,

cosα on wing 2,

− cosα on wing 3,

− cosα on wing 4.

Let d1, d2 satisfy

d1 sinα+ d2 cosα = L2, d1 sinα− d2 cosα = L3.

Then φ̃ = φ− d1z1− d2z2 satisfies (4.4) and has limit equal to zero on wings 2 and
3.

We remark that we could also achieve limit equal to zero on any two adjacent
wings, but not on opposite ones in general. Also note that if the original φ satisfies
the orthogonality conditions (4.5), the new φ̃ does not in general.

Let η̃i, i = 1 or i = 4, be smooth cut-off functions on Σ such that:

η̃i = 1 on wing i and for s ≥ Rc + 1,

η̃i = 0 on wing i for 0 ≤ s ≤ Rc,
η̃i = 0 on the core and the rest of the wings.

Here Rc > 0 is a large constant to be fixed later. Define

z̃1 = ν · να, z̃4 = ν · (− sinα,− cosα, 0),

where να = (− sinα, cosα, 0) is the normal vector to the asymptotic plane of wing
1. Note that z̃1, z̃4 are in the kernel of ∆ + |A|2, z̃1 → 1 as s1 →∞, and z̃4 → 1 as
s4 →∞ (they are convenient linear combinations of z1, z2). Define

φ̂ = φ̃− L1η̃1z̃1 − L4η̃4z̃1.

Then φ̂ satisfies

∆φ̂+ |A|2φ̂ = h+

2∑
i=1

ciη0zi −
∑
i=1,4

Li(∆ + |A|2)(η̃iz̃i) in Σ

and φ̂ has a limit equal to zero on all the wings. Moreover, φ̂ satisfies the symmetries
(4.1).

Suppose that βi, τi, i = 1, 2, are given and let us consider the function φ̂ con-

structed previously with h replaced by h+
∑2
i=1 βiw

′
i + τiwi. This φ̂ satisfies

∆φ̂+ |A|2φ̂ = h+

2∑
i=1

ciη0zi −
∑
i=1,4

Li(∆ + |A|2)(η̃iz̃i) +

2∑
i=1

(βiw
′
i + τiwi)(4.30)

in Σ, has the symmetries (4.1) and the limits on all wings are equal to zero. In

this construction, h, βi, τi, i = 1, 2 are data and φ̂, ci (i = 1, 2), Li (i = 1, 4) are
bounded linear functions of these data.

We claim that there is a unique choice of βi, τi, i = 1, 2, such that c1 = c2 = L1 =
L4 = 0. To prove this, we test (4.30) with functions that are linear combinations
of z1, z2,

z3 = ν · (−y, x, 0), and z4 =
∂αS

|∇x,y,zS|
,
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where

S(x, y, z, α) = cos2(α) cosh
( x

cosα

)
− sin2(α) cosh

( y

sinα

)
− cos(z)

is the function (2.6) defining the Scherk surface, and ∇x,y,zS = (∂xS, ∂yS, ∂zS).
Note that z3 arises from a rotation about the z-axis and z4 is generated by the
motion in α of the Scherk surfaces Σ(α), so these functions are in the kernel of
the Jacobi operator ∆ + |A|2 and have the symmetries (4.1). Also, z3 and z4 have
linear growth.

We multiply (4.30) by zi and integrate over Σ ∩ {x ∈ (0, π)}. Since φ̂ has
exponential decay,∫

Σ∩{z∈(0,π)}
(∆φ̂+ |A|2φ̂)zi =

∫
Σ∩{z∈(0,π)}

(∆zi + |A|2zi)φ̂ = 0,

for all 1 ≤ i ≤ 4, while the right-hand side becomes an affine function of the
numbers c1, c2, L1, L4, β1, β2, τ1, τ2. More precisely, we obtain

0 =


∫
hz1∫
hz2∫
hz3∫
hz4

+M1


c1
c2
L1

L4

+M2


β1

β2

τ1
τ2

 .
The claim is that we can choose β1, β2, τ1, τ2 to achieve c1 = c2 = L1 = L4 = 0.
For this, we will verify that M1, M2 are invertible (if the parameters Rc, Rtr, and
Rrot are chosen adequately).

Note that by symmetry,∫
Σ∩{z∈(0,π)}

η0zizj = cδij , for i, j = 1, 2,

where c > 0 is some constant. Also thanks to symmetry, we have for i = 1, 2,∫
Σ∩{z∈(0,π)}

η0ziz3 = 0,

∫
Σ∩{z∈(0,π)}

η0ziz4 = 0.

Let us compute for i = 1 or i = 4, and j = 1, 2:∫
Σ∩{z∈(0,π)}

(∆ + |A|2)(η̃iz̃i)zj =

∫
Σ∩{z∈(0,π)}

(2∇η̃i · ∇z̃i + z̃i∆η̃i)zj

=

∫
Σ∩{z∈(0,π)}

∇ · (z̃2
i∇η̃i)

zj
z̃i

= −
∫

Σ∩{z∈(0,π)}
z̃2
i∇η̃i∇

(
zj
z̃i

)
= O(e−Rc),

where the last equality holds because z̃i, zj approach constants at an exponential
rate.

For i = 1, 4, by the same computation, and using that z3 has linear growth (for

example z3 = sin(α)y+cos(α)x+O(se−s) on wing 1, where s =
√
x2 + y2 +O(1)),

we obtain ∫
Σ∩{z∈(0,π)}

(∆ + |A|2)(η̃iz̃i)z3 = −
∫

Σ∩{z∈(0,π)}
z̃2
i∇η̃i∇

(
z3

z̃i

)
= −B̄(−1)i−1 + o(1)
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where B̄ > 0 and o(1)→ 0 as Rc →∞. Similarly, for i = 1, 4,∫
Σ∩{z∈(0,π)}

(∆ + |A|2)(η̃iz̃i)z4 = −
∫

Σ∩{z∈(0,π)}
z̃2
i∇η̃i∇

(
z4

z̃i

)
= B + o(1)

where B > 0. This implies that the matrix M1 is invertible if Rc is taken large
(and fixed).

Let us now estimate the matrix M2. This means, we need to estimate∫
Σ∩{z∈(0,π)}

wizj and

∫
Σ∩{z∈(0,π)}

w′izj

for i = 1, 2, j = 1, . . . , 4. Using (2.11), for j = 1, 2, we have∫
Σ∩{z∈(0,π)}

w1zj =

∫
Σ∩{z∈(0,π)}

(∆ + |A|2)(ηtr,1)zj = O(e−Rtr )

and similarly
∫
w2zj = O(e−Rtr ). Next, we compute∫

Σ∩{z∈(0,π)}
w1z3 =

∫
Σ∩{z∈(0,π)}

(∆ + |A|2)(ηtr,1)z3

=

∫
Σ∩{z∈(0,π)}

z3∆ηtr,1 +

∫
Σ∩{z∈(0,π)}

|A|2ηtr,1z3.

The first integral is supported on Rtr ≤ s ≤ Rtr + 1, so integrating by parts gives∫
Σ∩{z∈(0,π)}

z3∆ηtr,1 = −
∫
{Rtr≤s≤Rtr+1}

∇z3∇ηtr,1

= − ∇z3n̂|s=Rtr+1 +

∫
{Rtr≤s≤Rtr+1}

ηtr,1∆z3,

where n̂ is tangent to Σ and perpendicular to the curve s = Rtr + 1. Therefore∫
Σ∩{z∈(0,π)}

w1z3 = − ∇z3n̂|s=Rtr+1 +

∫
{s≥Rtr+1}

|A|2z3

= −π + o(1),

where o(1)→ 0 as Rtr →∞, thanks to the behavior z3 = s+O(1) as s→∞ and
a corresponding estimate for its derivative. Similarly,∫

Σ∩{z∈(0,π)}
w2z3 = −π + o(1),

∫
Σ∩{z∈(0,π)}

w1z4 = −π + o(1),∫
Σ∩{z∈(0,π)}

w2z4 = π + o(1).

Let us now compute∫
Σ∩{z∈(0,π)}

w′1z1 =

∫
Σ∩{z∈(0,π)}

(∆ + |A|2)(ηrot,1z3)z1,
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where we have used (2.10). We have∫
Σ∩{z∈(0,π)}

(∆ + |A|2)(ηrot,1z3)z1 =

∫
Σ∩{z∈(0,π)}

(z3∆ηrot,1 + 2∇ηrot,1∇z3)z1

=

∫
Σ∩{z∈(0,π)}

z1∇ηrot,1∇z3 − z3∇ηrot,1∇z1

= −π sin(α) + o(1),

where o(1)→ 0 as Rrot → 0. In a similar way,∫
Σ∩{z∈(0,π)}

w′1z2 = π cos(α) + o(1),

∫
Σ∩{z∈(0,π)}

w′2z1 = π sin(α) + o(1),∫
Σ∩{z∈(0,π)}

w′2z2 = π cos(α) + o(1).

We also have ∫
Σ∩{z∈(0,π)}

w′1z3 = 0 and

∫
Σ∩{z∈(0,π)}

w′2z3 = 0.

Indeed, consider∫
Σ∩{z∈(0,π)}

w′1z3 =

∫
Σ∩{z∈(0,π)}

(∆ + |A|2)(ηrot,1z3)z3

=

∫
Σ∩{z∈(0,π)}

(z3∆ηrot,1 + 2∇ηrot,1∇z3)z3

=

∫
Σ∩{z∈(0,π)}

∇ · (z2
3∇ηrot,1)

= 0.

The integral
∫
w′2z3 = 0 is computed similarly.

Finally, we observe that∫
Σ∩{z∈(0,π)}

w′1z4 = O(1) and

∫
Σ∩{z∈(0,π)}

w′2z4 = O(1),

as Rrot →∞. Then

M2 =


∫
w1z1

∫
w1z2

∫
w1z3

∫
w1z4∫

w2z1

∫
w2z2

∫
w2z3

∫
w2z4∫

w′1z1

∫
w′1z2

∫
w′1z3

∫
w′1z4∫

w′2z1

∫
w′2z2

∫
w′2z3

∫
w′2z4



=


0 0 −π −π
0 0 −π π

−π sin(α) π cos(α) 0 O(1)
π sin(α) π cos(α) 0 O(1)

+ o(1)

This shows that M2 is invertible if we fix both Rrot+10 < Rtr large, which finishes
the proof. �
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5. Linear theory

Let E =M∩{s ≥ δs
3ε}. In this section we construct a right inverse of the operator

∆ + |A|2 + ε∂z on E . More precisely, given h defined on E with some decay, we
want a solution φ of

∆φ+ |A|2φ+ ε∂zφ = h on E .(5.1)

Given α, γ ∈ (0, 1), let us define the following norms:

‖φ2‖∗,E = ε2 sup
x∈E

eγδs/ε+γεs(x)‖φ2‖C2,α(B1(x)),(5.2)

‖h2‖∗∗,E = sup
x∈E

eγδs/ε+γεs(x)‖h2‖C2,α(B1(x)),

where B1(x) is the geodesic ball with center x and radius 1, and s is the function
defined in the construction of M, Section 2. The factor eγδs/ε in front of both
norms is not immediately relevant; it will be useful later.

We have the following result.

Proposition 5.1. Let 0 < γ < 1. There is a linear operator that associates to a
function h defined on E with ‖h‖∗∗,E <∞ a solution φ to (5.1). Moreover,

‖φ‖∗,E ≤ C‖h‖∗∗,E .

For the proof, we scale to size one, that is, we work on Ẽ = εE . Then (5.1)
becomes equivalent to

∆φ+ |A|2φ+ ∂zφ = h̃ on Ẽ ,(5.3)

with h̃(x) = ε−2h(x/ε).
We study the linear operator on the unbounded pieces in the following section,

then we deal with the bounded piece in Section 5.2. We point out that in the radially
symmetric case, a related linear theory for the Jacobi operator was developed on
[10].

5.1. Linear theory on the ends. Let Eu be any of the unbounded components
of E and Ẽu = εEu. We introduce coordinates on Ẽu as follows. Consider a curve

s 7→ (γ1(s), γ3(s)),

parametrized by arc length, with s ∈ [0,∞) and γ′1(s) > 0, that solves the ordinary
differential equation (2.3) with initial conditions at s = 0 chosen to be compatible
with the construction of the initial approximation M in Section 2.5. These initial
conditions are functions of the parameters of the construction, in particular, the
parameters β1, β4, τ1, τ4 used in the dislocations are all in [−δp, δp]. We note that
the s here differs from the s in the construction ofM in Section 2 by a shift and a
scaling.

Then

X0 = ν0(s, θ) = (γ1(s) cos(θ), γ1(s) sin(θ), γ3(s))

s ∈ [0,∞), θ ∈ [0, 2π], parametrizes part of the catenoid W or the paraboloid P.
Let

ν0(s, θ) = (−γ′3(s) cos(θ),−γ′3(s) sin(θ), γ′1(s))
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be a unit normal vector. Then a parametrization of the unbounded end Ẽu is given
by

X(s, θ) = X0(s, θ) + ν0(s, θ)f(s/ε, θ/ε)(5.4)

where f is essentially a cut-off function times fα, the function that allows one to
write the Scherk surface as a graph over a plane, see Lemma 2.2. The important
properties of f are that |∂kf(s̃, θ̃)| ≤ Cke−δs/(10ε) for some Ck and that it vanishes
for s̃ ≥ 10δs/ε.

We have the following expression for the operator ∆+|A|2+∂z in the coordinates
s and θ:

∆φ+ |A|2φ+ ∂zφ = ∂ssφ+
1

γ1(s)2
∂θθφ+

(
γ′1(s)

γ1(s)
+ γ′3(s)

)
∂sφ+ |A|2φ+ L̃φ

(5.5)

where L̃ is a second order differential operator in φ with coefficients that are o(1)
as ε→ 0 and supported in s ∈ [0, 10δs]. Using (2.5) and the fact that the principal
curvatures of a surface of revolution z = F (r) are given by

κ1 =
F ′′(r)

(1 + F ′(r)2)3/2
, κ2 =

F ′(r)

r(1 + F ′(r)2)1/2
,

we can write

∆φ+ |A|2φ+ ∂zφ = ∂ssφ+ a(s)∂θθφ+ b(s)∂sφ+ |A|2φ+ L̃φ,

where we have the following properties of the coefficients:
a(s) =

1

2s
(1 +O(s−1/2))

b(s) = 1 +O(s−1/2)

|A|2 =
1

2s
(1 +O(s−1/2))

(5.6)

as s→∞, and a(s) > 0 for all s ≥ 0.
Let

L0φ = ∂ssφ+ a(s)∂θθφ+ b(s)∂sφ+ |A|2φ,
and consider the equation

L0φ = h, s ∈ (0,∞), θ ∈ [0, 2π].(5.7)

To prove Proposition 5.1, we will first construct an inverse operator for L0.

Proposition 5.2. Let 0 < γ < 1. There is a linear operator h 7→ φ that associates
to a function h = h(s, θ) that is defined for (s, θ) ∈ (0,∞) × [0, 2π], is 2π-periodic
in θ, and satisfies ‖eγsh‖L∞ < ∞, a solution φ of (5.7) that is 2π-periodic in θ
and satisfies

‖eγsφ‖L∞ ≤ C‖eγsh‖L∞ .

For the proof of this result, we will write h and φ in Fourier series

φ(s, θ) =
∑
k∈Z

φk(s)eikθ, h(s, θ) =
∑
k∈Z

hk(s)eikθ.(5.8)

Then, if φ is smooth with exponential decay, equation (5.7) is equivalent to

φ′′k + b(s)φ′k + (|A|2 − a(s)k2)φk = hk, for all s > 0, k ∈ Z.(5.9)
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We need a couple of lemmas before starting the proof of Proposition 5.2. They
allow us to deal with the low modes, i.e |k| ≤ k0 for some fixed k0, so we can focus
our attention on the higher frequencies.

Lemma 5.3. Let 0 < γ < 1. If |hk(s)| ≤ Ce−γs, then (5.9) has a unique solution
φk with

‖eγsφk‖L∞ ≤ Ck‖eγshk‖L∞ .

Proof. As s→∞, equation (5.9) with hk = 0 is asymptotic to

φ′′k + φ′k +
bk
s
φk = 0,(5.10)

where bk = 1−k2

2 . Note that b0 = 1
2 , b1 = 0, and bk < 0 for k > 1. We see that

the homogeneous equation (5.10) has two independent solutions with the behaviors
s−bk(1 + O(s−1)) and sbke−s(1 + O(s−1)) as s → ∞. Using these solutions, it is
possible to construct, for each k ≥ 0, two elements z1,k and z2,k in the kernel of the
operator φ′′ + b(s)φ′ + (|A|2 − a(s)k2)φ such that

z1,k(s) = s−bk(1 +O(s−σ)), z2,k(s) = sbke−s(1 +O(s−σ)),

as s → ∞, where σ ∈ (0, 1). Now we can construct the solution φk using the
variation of parameters formula:

φk = −z1,k

∫
hkz2,k

Wk
+ z2,k

∫
hkz1,k

Wk
,

where Wk = z1,kz
′
2,k − z′1,kz2,k = e−s(1 + O(s−σ)) and the integrals are chosen

to have the desired decay. For an alternative construction, one can use the super
solution φ̄ = e−γs and the calculation as in Lemma 5.4. �

Let k0 ∈ N and φ be a bounded measurable function on [0,∞)× [0, 2π]. We will
say that the Fourier coefficients of φ of order less than k0 vanish if∫ 2π

0

φ(s, θ)e−ikθ dθ = 0, ∀s > 0, ∀|k| < k0.

Lemma 5.4. There is a k0 with the following property: Suppose that φ and h are
two functions that are 2π-periodic in θ, satisfy (5.7) and

φ(0, θ) = 0 ∀θ ∈ [0, 2π],

‖eγsφ‖L∞ <∞, ‖eγsh‖L∞ <∞.
In addition, if φ is continuous and the Fourier coefficients of order less than k0 of
φ and h are zero, then there is a constant C independent of φ and h such that

‖eγsφ‖L∞ ≤ C‖eγsh‖L∞ .

Proof. We proceed by contradiction and assume that the statement fails. We then
have two sequences φn, hn such that φn, hn are 2π-periodic in θ, with vanishing
Fourier coefficients of order less than k0 (k0 will be fixed later), φn solves (5.7) with
right hand side hn, φn(0, θ) = 0 for θ ∈ [0, 2π], and

‖eγsφn‖L∞ = 1, ‖eγshn‖L∞ → 0, as n→∞.(5.11)

Consider φ̄(s) = e−γs. By (5.6) we see that

L0φ̄ = (γ2 − γ)e−γs(1 +O(s)) ≤ γ2 − γ
2

e−γs
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for s ≥ s0 (here we fix s0 > 0 large). Using the maximum principle with φ̄+ σe−γ̃s

for 0 < γ̃ < γ and σ > 0, and then letting σ → 0, we obtain

‖eγsφn‖L∞((s0,∞)×[0,2π])) ≤ C‖eγshn‖L∞ + C‖eγsφn‖L∞((0,s0)×[0,2π])).

From this and (5.11), we deduce that for a subsequence (also denoted φn)

‖eγsφn‖L∞((0,s0)×[0,2π])) ≥ c0

for some constant c0 > 0. By standard elliptic estimates, up to a new subsequence,
φn → φ uniformly on compact subsets of [0,∞)×[0, 2π] and by the previous remark,
φ 6≡ 0. But because of (5.11), φ satisfies

L0φ = 0 in (0,∞)× [0, 2π],

with φ(0, θ) = 0 and |φ(s)| ≤ e−γs.
Let us now expand φ in Fourier series as in (5.8). Due to the hypotheses, φk = 0

for |k| < k0. Note that φk satisfies (5.9) with the right-hand side equal to 0 and
φk(0) = 0.

Once again, we use the function φ̄(s) = e−γs as a barrier because

φ̄′′ + b(s)φ̄′ + (|A|2 − a(s)k2)φ̄ =
(
γ2 − γb(s) + |A|2 − a(s)k2

)
e−γs.

From the fact that a(s) > 0 for all s ≥ 0 and the estimates on the coefficients (5.6),
we see that there is a k0 such that

φ̄′′ + b(s)φ̄′ + (|A|2 − a(s)k2)φ̄ < −cke−γs, ∀|k| ≥ k0,∀s ≥ 0,(5.12)

where ck > 0. From the maximum principle, we deduce that φk ≡ 0 for all |k| ≥ k0.
This is a contradiction. �

Proof of Proposition 5.2. Let k0 be as in Lemma 5.4. Using Lemma 5.3, for each
|k| < k0, we find a solution φk of (5.9) in (0,∞). Then we need to prove the
proposition only under the assumption that the Fourier coefficients of order less
than k0 of h vanish.

For the moment, let us assume in addition that h is C2 and

|hθθ(s, θ)| ≤ Ce−γs for all (s, θ) ∈ [0,∞)× [0, 2π].(5.13)

Write h in Fourier series as in (5.8) for |k| ≥ k0, we can find a solution φk of (5.9)
in (0,∞) with right-hand side hk, satisfying φk(0) = 0. This can be done using the
supersolution φ̄(s) = e−γs and (5.12). Alternatively, one can use the variation of
parameters formula and elements in the kernel as in Lemma 5.3. For m > k0, let

φm(s, θ) =
∑

k0≤|k|≤m

eikθφk(s)

and similarly define hm. By Lemma 5.4,

‖eγsφm‖L∞ ≤ C‖eγshm‖L∞ ,

with C independent of m. Note that

|hk(s)| = 1

2π

∣∣∣∣∫ 2π

0

h(s, θ)eikθ dθ

∣∣∣∣ =
1

2πk2

∣∣∣∣∫ 2π

0

hθθ(s, θ)e
ikθ dθ

∣∣∣∣ ≤ C

k2
e−γs.
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Then

|hm(s, θ)| =

∣∣∣∣∣∣
∑

k0≤|k|≤m

hk(s)eikθ

∣∣∣∣∣∣ ≤
∑

k0≤|k|≤m

|hk(s)| ≤ Ce−γs
∑

k0≤|k|≤m

k−2.

Therefore

‖eγsφm‖L∞ ≤ C,
with C independent of m. By standard elliptic estimates, for a subsequence m→∞
we find φm → φ uniformly on compact subsets of [0,∞)×[0, 2π] and φ is the desired
solution.

Next, we lift the assumption (5.13). Indeed, assume only ‖eγsh‖L∞ < ∞ and
that the Fourier coefficients of h vanish for |k| < k0. Let ρn be a sequence of
mollifiers in R2 and

hn = h ∗ ρn
(extending h by 0 for s ≤ 0). We have hn → h almost everywhere. The Fourier
coefficients of order less than k0 of hn vanish and

|hn(s, θ)| ≤ Ce−γs,

|∂θθhn(s, θ)| ≤ Cne−γs.
Using the previous argument we find a solution φn with

‖eγsφn‖L∞ ≤ C‖eγshn‖L∞ ≤ C,

with C independent of n and right-hand side hn. Passing to a subsequence, we find
the desired solution. �

5.2. Linear theory on the bounded piece. Let us consider the bounded com-
ponent Eb of E =M\ {s ≤ δs

3ε} and let Ẽb = εEb.

Lemma 5.5. For h ∈ Cα(Ẽb), there is a unique solution φ of{
∆φ+ |A|2φ+ ∂zφ = h in Ẽb

φ = 0 on ∂Ẽb.

with

‖φ‖L∞ ≤ C‖h‖L∞ ,(5.14)

where the constant C is independent of h and φ.

Proof. Let Lφ be ∆φ+ |A|2φ+ ∂zφ, where the geometric quantities and Laplacian

are the ones for Ẽb. We let L0 denote the corresponding operator for the paraboloid
P.

We can parametrize P with polar coordinates

X0(r, θ) = (r cos(θ), r sin(θ), F (r)),

with r ≥ 0, θ ∈ [0, 2π], where F = F0 is the unique radially symmetric solution of
(2.1) with F (0) = 0. Then, in the coordinates r and θ,

L0φ = B1(r)φrr +B2(r)φr +
1

r2
φθθ +A2(r)φ,
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where

B1(r) =
1

1 + F ′(r)2
,

B2(r) =
1

r(1 + F ′(r)2)
− F ′(r)F ′′(r)

(1 + F ′(r)2)2
,

A2(r) =
F ′′(r)2

(1 + F ′(r)2)3
+

F ′(r)2

r2(1 + F ′(r)2)
.

As before, we denote by ν0 the unit normal vector to P such that 〈ν0, ez〉 > 0. The

surface Ẽb can then be parametrized by

X0(r, θ) + ν0(r, θ)f(r/ε, θ/ε)

for r ∈ [0, R1], θ ∈ [0, 2π], with some R1 > 0, and where f has the property that
f(r/ε, θ/ε) is supported where r ∈ [R1 − 10δs, R1] and f and its derivatives can be
bounded by e−δs/(10ε). This implies that

Lφ = L0φ+ L̃φ,

where L̃ is a second order differential operator in φ with coefficients that are o(1)
as ε→ 0 and supported in r ∈ [R1 − 10δs, R1].

Let v(r) = 〈ν0, ez〉. Then L0v = 0 and v(r) > 0 for all r ≥ 0. We define now

φ̄(r) = v(r)− µe−Kr,

where µ = 1
2 infr∈[0,R1] v(r) > 0 and K > 0 is to be chosen. Then, we compute

Lφ̄ = µe−Ks
[
−B1(r)K2 +KB2(r)−A2(r)

]
− µL̃(e−Ks) + L̃v.

But L̃v = O(ε), L̃(e−Kr) = o(1)K2e−Kr where in the last expression o(1) is uniform
in K as ε→ 0. Since B1(r) is positive in [0, R1] we can choose K large so that

Lφ̄ ≤ −c, ∀r ∈ [0, R1],

for some c > 0 and all ε > 0 small. Then φ̄ is a super solution for the operator
L and hence the bound (5.14) holds. The equation is solved then by super and
subsolutions. �

Proof of Proposition 5.1. Let 0 < γ < 1.
Let us consider first one of the unbounded ends Eu and Ẽu = εEu. Recall that Ẽu

is parametrized by (5.4) so s ≥ 0, θ ∈ [0, 2π) are global coordinates on this surface.

We write s(x) for x ∈ Ẽu. Using s, θ we may identify Ẽu with an unbounded piece
of the paraboloid or catenoid. We write this piece as Eu.

Let α ∈ (0, 1) and define the norms for functions defined on Eu:

‖h‖k,α = sup
x∈Eu

eγs(x)‖h‖Ck,α(B1(x)),

where B1(x) is the geodesic ball of center x and radius 1 in Eu.
If h is defined on Eu and ‖h‖0,α <∞, using Proposition 5.2, we obtain a solution

φ = T0(h) of (5.7), 2π-periodic in θ, and such that

‖eγsT0(h)‖L∞ ≤ C‖eγsh‖L∞ ≤ C‖h‖0,α.

By considering φ and h as functions on Eu, equation (5.7) becomes

∆Euφ+ |AEu |2φ+ ∂zφ = h on Eu.
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Standard elliptic estimates, applied on geodesic balls of radius 1 of Eu, give that

‖φ‖2,α ≤ C(‖h‖0,α + ‖φ‖C2,α(∂Eu)).

Note that ∂Eu in the coordinates s, θ corresponds to s = 0. Consider the represen-
tations of φ and h as Fourier series as in (5.8). We recall that, by construction, if
φ = T0(h) then φ(0, ·) has Fourier modes of index |k| ≥ k0 equal to zero, where k0

is a fixed integer. Hence

‖φ‖C2,α(∂Eu) ≤ C
∑
|k|≤k0

|φk(0)|.

The solutions φk are constructed in Lemma 5.3 and, in particular, we have |φk(0)| ≤
Ck‖eγshk‖L∞ . From this, we deduce

‖φ‖C2,α(∂Eu) ≤ C‖eγsh‖L∞ ,

and hence

‖T0(h)‖2,α ≤ C‖h‖0,α.(5.15)

To solve equation (5.3), we rewrite it as

∆Euφ+ |AEu |2φ+ ∂zφ = h+ L̃φ on Eu,(5.16)

where L̃ a second order elliptic equation with coefficients that are o(1) as ε → 0
and with compact support. This translates to

‖L̃φ‖0,α ≤ o(1)‖φ‖2,α.(5.17)

Using the operator T0, we can find a solution of (5.16) by solving the fixed point
problem

φ = T0(h+ L̃φ)

in the Banach space {φ ∈ C2,α(Eu) : ‖φ‖2,α < ∞}. By (5.15), (5.17) and the
contraction mapping principle, this fixed point problem has a unique solution. This
yields a solution of (5.3). By scaling we obtain therefore a solution of (5.1) in any
of the unbounded ends.

The proof for the bounded component Eb of E =M\ {s ≤ δs
3ε} is similar, if one

uses Lemma 5.5, and the fact that the boundary condition is taken equal to 0. �

6. Proof of Theorem 1.1

To prove the theorem, it is sufficient to find a solution φ of (1.10), that is,

∆φ+ |A|2φ+ ε∇φ · ez + E +Q(x, φ,∇φ,D2φ, x) = 0 in M,(6.1)

where M is the surface constructed in Section 2, which depends on β1, β2, τ1, τ4 ∈
[−δp, δp], and E = H − εν · ez. Later, we will verify that {x + φ(x)ν(x) : x ∈ M}
is an embedded complete surface.

Thanks to Proposition 1.2, E = E0 + Ed with ‖E0‖∗∗ ≤ Cε and

Ed = τ1w1 + τ4w2 + β1w
′
1 + β4w

′
2 +O

(∑
β2
i + τ2

i

)
,

where O
(∑

β2
i + τ2

i

)
are smooth functions with compact support, with ‖ ‖∗∗

bounded by
∑
i=1,4 β

2
i + τ2

i . Thus (6.1) takes the form

∆φ+ |A|2φ+ ε∇φ · ez + Ẽ +Q(φ,∇φ,D2φ) + τ1w1(6.2)

+ τ4w2 + β1w
′
1 + β4w

′
2 = 0, in M,
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where Ẽ = E0 +O
(∑

i=1,4 β
2
i + τ2

i

)
. Hence,

‖Ẽ‖∗∗ ≤ C

ε+
∑
i=1,4

(
β2
i + τ2

i

) .

Note that M =M[β1, β2, τ1, τ2] and the unknowns are φ and β1, β2, τ1, τ2.
We look for a solution φ of (6.2) of the form

φ = η1φ1 + η2φ2,

where φ1, φ2 are new unknown functions, which solve an appropriate system, and
η1, η2 are smooth cut-off functions such that

η1(s) =

{
1 if s ≤ 2δs

ε − 1

0 if s ≥ 2δs
ε

η2(s) =

{
0 if s ≤ δs

3ε

1 if s ≥ δs
2ε

,

where s = s(x) measures geodesic distance from the core of M.
We introduce next the following system for φ1, φ2:

(6.3) ∆φ1 + |A|2φ1 + ε∂zφ1 = −εφ2∂zη2 − 2∇φ2∇η2 − φ2∆η2

− η̃1(Ẽ +Q(x, φ,∇φ,D2φ))− τ1w1 + τ4w2 + β1w
′
1 + β4w

′
2 in C

(6.4) ∆φ2 + |A|2φ2 + ε∂zφ2 = −εφ1∂zη1 − 2∇φ1∇η1 − φ1∆η1

− η̃2((Ẽ +Q(x, φ,∇φ,D2φ))) in E ,

where E =M∩{s ≥ δs
3ε} is the union of the ends, C =M∩{s ≤ 2δs

ε } is close to a
Scherk surface, and η̃1, η̃2 are smooth cut-off functions such that:

η̃1(s) =

{
1 if s ≤ δs

ε − 1

0 if s ≥ δs
ε

η̃2(s) = 1− η̃1(s).

In the term Q(φ,∇φ,D2φ) of (6.3), (6.4), φ means φ = φ1η1 +φ2η2. If φ1, φ2 solve
(6.3), (6.4), then multiplying (6.3) by η1 and (6.4) by η2 we see that φ = φ1η1+φ2η2

is a solution of (6.2).
Using the change of variables introduced in the construction of M in Section 2,

we see that solving (6.3) is equivalent to finding a solution to

(6.5)

∆Σφ1 + |AΣ|2φ1 = L′φ1 − ε∂zφ1 − εφ1∂zη1 − εφ2∂zη2 − 2∇φ2∇η2 − φ2∆η2

− η̃1(Ẽ +Q(x, φ,∇φ,D2φ))− τ1w1 + τ4w2 + β1w
′
1 + β4w

′
2 in Σ,

where now all the functions are considered on the Scherk surface Σ so that ∆Σ

and AΣ refer to the Laplace operator and second fundamental form of Σ. By
Proposition 3.4, L′ is a second order operator with coefficients supported on s ≤
2δs/ε and whose C1 norms on the region s ≤ 5δs/ε are bounded by δs + δp + ε.
In principle, by the change of variables, we need to solve (6.5) on a subset of Σ,
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but finding a solution in all Σ is sufficient. This solution is multiplied later by the
cut-off η1.

Similarly, we consider E0 =M0∩{s ≥ δs
3ε}, whereM0 is the initial approximation

corresponding to β1 = β2 = τ1 = τ2 = 0. For |βi|+ |τi| ≤ δp and δp > 0 fixed small,
E is mapped onto E0 and this mapping allows us to write (6.4) as

∆E0φ2 + |AE0 |2φ2 + ε∂zφ2 = L′′φ2 − 2∇φ1∇η1 − φ1∆η1

− η̃2((Ẽ +Q(x, φ,∇φ,D2φ))) in E0,

where now all functions are considered on the Scherk surface E0. In particular, ∆E0
and AE0 refer to the Laplace operator and second fundamental form of E0. The
operator L′′ has coefficients whose C1 norms are o(δp) as δp → 0. Indeed, one can
see this using the form of the operator on the ends in (5.5) and the continuous
dependence of ODE on initial conditions, because the parameters βi, τi determine
the initial condition for the differential equation (2.3).

We solve (6.5) on the Scherk surface using Proposition 4.2 with norms

‖φ1‖∗,Σ = sup
x∈Σ

eγs(x)‖φ1‖C2,α(B1(x)),(6.6)

‖h1‖∗∗,Σ = sup
x∈Σ

eγs(x)‖h1‖Cα(B1(x)).

We consider the system (6.4), (6.5) as a fixed point problem for (φ1, φ2, β1, β2, τ1, τ2)
belonging to the subset B of C2,α(Σ)× C2,α(E0)× R4 defined by

B = {(φ1, φ2, β1, β2, τ1, τ2) | max
i=1,2

(‖φi‖∗,Σ, |βi|, |τi|) ≤Mε},

where M > 0 is a constant to be chosen later and the norms are defined in (5.2)
and (6.6).

Consider (φ1, φ2, β1, β2, τ1, τ2) ∈ B. We define F (φ1, φ2, β1, β2, τ1, τ2) as follows.
Using Proposition 4.2, we let φ̄1, β̄1, β̄2, τ̄1, τ̄2 be the solution of

(6.7)

∆Σφ̄1 + |AΣ|2φ̄1 = L′φ1 − ε∂zφ1 − εφ1∂zη1 − εφ2∂zη2 − 2∇φ2∇η2 − φ2∆η2

− η̃1(Ẽ +Q(x, φ,∇φ,D2φ))− τ̄1w1 + τ̄4w2 + β̄1w
′
1 + β̄4w

′
2 in Σ.

In the right-hand side of this equation, all terms are well defined in spite of the fact
that φ1, φ2 (after changing variables) are defined only on some subsets, because of
the cut-off functions. As we will verify later, the right-hand side has finite ‖ ‖∗∗,Σ
norm, thus Proposition 4.2 applies. Next, using Proposition 5.1, we find a solution
of

(6.8) ∆E0 φ̄2 + |AE0 |2φ̄2 + ε∂zφ2 = L′′φ2 − 2∇φ1∇η1 − φ1∆η1

− η̃2(Ẽ +Q(x, φ,∇φ,D2φ)) in E0,

where the right-hand side will be proven to have finite ‖ ‖∗∗,E0 norm. We define

(φ̄1, φ̄2, β̄1, β̄2, τ̄1, τ̄2) = F (φ1, φ2, β1, β2, τ1, τ2).

Let us verify that F maps B into B and is a contraction. Consider

(φ1, φ2, β1, β2, τ1, τ2) ∈ B
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and let (φ̄1, φ̄2, β̄1, β̄2, τ̄1, τ̄2) = F (φ1, φ2, β1, β2, τ1, τ2). Using (4.10) and standard
elliptic estimates, we deduce

(6.9) ‖φ̄1‖∗,Σ + |β̄i|+ |τ̄i|
≤ C‖L′φ1 − ε∂zφ1 − εφ1∂zη1 − εφ2∂zη2 − 2∇φ2∇η2 − φ2∆η2‖∗∗,Σ

+ ‖η̃1(Ẽ +Q(x, φ,∇φ,D2φ))‖∗∗,Σ.

We first remark that, by Proposition 1.2, we have

‖η̃1Ẽ‖∗∗,Σ ≤ CEε.

If x lies in the support of η2, that is, δs
3ε ≤ s(x) ≤ δs

2ε , then

‖∆η2‖Cα(B1(x)) ≤ Cε
2, ‖φ2‖Cα(B1(x)) ≤ ε

−2e−γδs/ε−εγs(x)‖φ2‖∗,E0 .

Then

‖φ2∆η2‖∗∗,Σ ≤ Ce−
δs
2ε ‖φ2‖∗,E0 .

Similarly,

‖∇φ2∇η2‖∗∗,Σ ≤ Cε−1e−
δs
2ε ‖φ2‖∗,E0 and ‖φ2∂zη2‖∗∗,Σ ≤ Cε−1e−

δs
2ε ‖φ2‖∗,E0 .

Because the C1 norm of the coefficients of L′ in s ≤ 5δs/ε are bounded by C(δp +
δs + ε), we have

‖L′φ1‖∗∗,Σ ≤ C(δp + δs + ε)‖φ1‖∗,Σ.
Also,

‖ε∂zφ1‖∗∗,Σ ≤ Cε‖φ1‖∗,Σ.
For the Q term, analogously to Proposition 1.3, we have

‖η̃1Q(x, φ,∇φ,D2φ)‖∗∗,Σ ≤ C‖φ1‖2∗,Σ + Cε−4e−
γδs
ε ‖φ2‖2∗,E0 .

Therefore, using (6.9) and the previous inequalities, we obtain

‖φ̄1‖∗,Σ ≤ CCEε+ Cε−1e−
δs
2ε ‖φ2‖∗,E0 + C(δp + δs + ε)‖φ1‖∗,Σ

+ C‖φ1‖2∗,Σ + Cε−4e−
γδs
ε ‖φ2‖2∗,E0 ,

which gives

(6.10) ‖φ̄1‖∗,Σ

≤ CCEε+ Cε−1e−
δs
2εMε+ C(δp + δs + ε)Mε+ CM2ε2 + Cε−4e−

γδs
ε M2ε.

To estimate φ̄2, we use Proposition 5.1 to obtain

‖φ̄2‖∗,E0 ≤ C‖L′′φ2 − 2∇φ1∇η1 − φ1∆η1 − η̃2(Ẽ +Q(φ,∇φ,D2φ))‖∗∗,E0 .(6.11)

We first remark that, by Proposition 1.2, we have

‖η̃2Ẽ‖∗∗,E0 ≤ CEε.

We note that ∆η1 is supported on 2δs
ε − 1 ≤ s ≤ 2δs

ε . Using the smoothness of η1,
we get

‖φ1∆η1‖∗∗,E0 + ‖∇φ1∇η1‖∗∗,E0 ≤ Ce−
γδs
ε ‖φ1‖∗,Σ.

Again, as in Proposition 1.3, we have

‖η̃2Q(x, φ,∇φ,D2φ)‖∗∗,E0 ≤ C‖φ1‖2∗,Σ + Cε−4e−
γδs
ε ‖φ2‖2∗,E0 .
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Combining (6.11) with the previous inequalities, we arrive at

‖φ̄2‖∗,Σ ≤ CCEε+ o(δp)Mε+ C e−
δs
2εMε+ CM2ε2 + Cε−4e−

γδs
ε M2ε.(6.12)

The right-hand sides of (6.10) and (6.12) are less than Mε provided M is chosen
large (for example 2CCE). Then we fix δp, δs small and work with small ε > 0. A
similar estimate holds for β̄i, τ̄i and this shows that F maps B to itself.

Let us verify that F is a contraction in B. For this, we first claim that

|F (φ1, φ2, β1, β2, τ1, τ2)−F (ψ1, ψ2, β1, β2, τ1, τ2)| ≤ o(1)(‖φ1−ψ1‖∗,Σ+‖φ2−ψ2‖∗,E0)

for (φ1, φ2, β1, β2, τ1, τ2), (ψ1, ψ2, β1, β2, τ1, τ2) ∈ B, where o(1) is small if we choose
the parameters δp, δs > 0 small and then let ε be small. The estimate relies on
the same computations as before for the terms that are linear in φ1, φ2 in the
right-hand side of equations (6.7) and (6.8). For the nonlinear terms, it is enough
to have the following inequalities, whose proof is similar to Proposition 1.3: For
φ = η1φ1 + η2φ2, ψ = η1ψ1 + η2ψ2,

‖η̃1Q(x, φ,∇φ,D2φ)− η̃1Q(x, ψ,∇ψ,D2ψ)‖∗∗,Σ
≤ C(‖φ1‖∗,Σ + ‖φ2‖∗,E0 + ‖ψ1‖∗,Σ + ‖ψ2‖∗,E0)(‖φ1 − ψ1‖∗,Σ + ‖φ2 − ψ2‖∗,E0)

and there is a similar estimate for η̃2Q. The Lipschitz dependence of F on βi, τi
with small Lipschitz constant is proved using the fact that, in each term in the right-
hand side of (6.7) and (6.8), either the dependence on the parameters is Lipschitz

with small constant or is quadratic (this is the case of Ẽ).
By the contraction mapping principle, for ε > 0 small, F has a unique fixed

point in B. This gives the desired solution.
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