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Abstract. In order to extend the abilities of current robots in industrial applica-

tions towards more autonomous and flexible manufacturing, this work presents 

an integrated system comprising real-time sensing, path-planning and control of 

industrial robots to provide them with adaptive reasoning, autonomous thinking 

and environment interaction under dynamic and challenging conditions. The de-

veloped system consists of an intelligent motion planner for a 6 degrees-of-free-

dom robotic manipulator, which performs pick-and-place tasks according to an 

optimized path computed in real-time while avoiding a moving obstacle in the 

workspace. This moving obstacle is tracked by a sensing strategy based on ma-

chine vision, working on the HSV space for color detection in order to deal with 

changing conditions including non-uniform background, lighting reflections and 

shadows projection. The proposed machine vision is implemented by an off-

board scheme with two low-cost cameras, where the second camera is aimed at 

solving the problem of vision obstruction when the robot invades the field of 

view of the main sensor. Real-time performance of the overall system has been 

experimentally tested, using a KUKA KR90 R3100 robot. 

Keywords: Machine Vision, Path Planning, Robot Control, Adaptive Reason-

ing, Dynamic Environment. 

1 Introduction 

The integration of robotic systems in human life has become a reality thanks to the 

major advancements in the field of robotics [1]. Comprising of many applications [2-

3], smart robotic systems are not only able to perform faster and more accurately but 

are also to learn, adapt to the environment and make decisions in several degrees of 

intelligence [4], achieving collaborative systems able to interact with humans [5]. Most 

real-world systems are based on predefined series of tasks planned offline [6-7], and 
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have the advantage of being highly effective for traditional mass-production processes 

based on repetition. However, predefined planning lacks the capability for adapting to 

changes, which becomes a huge shortcoming in industrial systems. Hence, some barri-

ers need to be removed before robots and humans can share the same workspace [8]. 

In order to provide robotic systems with autonomous adaptability and smart interac-

tion with the environment [9], new capabilities linked to sensory attributes are required. 

Although there is a number of potential sensing approaches, including ultrasonic [8] or 

laser, machine vision [9] is widely used not only in robotics [10] but also in many other 

applications [11-12], due to its satisfactory performance and/or affordable cost. There-

fore, the use of cameras, in conjunction with effective image processing, is a feasible 

approach to dealing with non-uniform lighting conditions and shadows [13] and other 

problem requirements such as adaptability and robustness [14]. In the same terms, mul-

tiple cameras can be used to overcome problems such as vision obstruction [15-17]. 

In this work, a real-time approach for smart path planning [18] and control of robotic 

arms is developed. The integration of machine vision provides the whole system with 

sensory capabilities. Although it is possible to find some research literature evaluating 

real-time path planning or related adaptability in robot manipulators [7,18-19], such 

previous works possess a number of drawbacks including the use of expensive sensors, 

non-integrated implementations and lack of modularity. In this work, the KUKA 

QUANTEC KR90 R3100 [20] is selected as a platform for testing an intelligent system, 

able to adapt to a dynamically changing environment. This is achieved through a mod-

ular machine vision software platform, based on low-cost cameras running in parallel. 

The robot performs pick-and-place tasks in a challenging scenario, where a moving 

obstacle can intercept any planned path between the start (pick) and goal (place) loca-

tions. Therefore, collision with the moving obstacle has to be avoided, adapting the 

robot path to the workspace conditions in real-time. With a biological inspired integra-

tion of vision, reasoned planning and motion control, including cognitive structures that 

can be identified as offline training and calibration, the main objective of this work is 

to achieve an adaptive intelligent system with environmental awareness. Whenever a 

potential collision is detected, the robot has to divert towards an alternative effective 

collision-free path, in a prompt fashion. The aim is to have a better reaction time than 

the average human reaction time, whose average is equal to 180 milliseconds [18]. 

This manuscript is organized as follows. Section 2 gives a brief overview of the path 

planning and robot control implementation. Section 3 presents and develops the sensing 

strategy adopted to provide the whole system with sensory capabilities. The experi-

mental setup for a physical demonstrator is detailed in Section 4, while Section 5 eval-

uates the achieved performance. Final remarks are drawn in Section 6. 

2 Path Planning and Robot Control 

2.1 Overview 

Pick and place tasks are traditionally automated through offline programming, by de-

fining predefined paths between the two points. While this approach is suitable for 



3 

structured and static environments, this study addresses dynamic, changing environ-

ments, where an obstacle, moving within the workspace, can invalidate the currently 

active robot path at any point in time. Thus an additional requirement of the path plan-

ning module is to find a feasible (collision-free) path in real-time, such that the robot 

trajectory can be updated quickly enough, when an interfering obstacle is detected. 

This real-time path planning problem is solved using the dynamic roadmaps method, 

which is a real-time variant of the configuration space (C-space) sampling-based prob-

abilistic road maps technique [21]. The dynamic roadmap method has been proven ef-

fective for motion planning in changing environments due to its high-speed online com-

putation. This speed is achieved through an offline pre-processing phase, which is re-

quired to be computed only once for any particular robot.  

After the path planning procedure, the robot is controlled through a novel approach 

based on a KUKA software add-on, known as Robot-Sensor Interface (RSI). This al-

lows sending command positional packets at a rate of 250 Hz. With this method, motion 

paths can be updated rapidly in response to changes in the environment, as determined 

by the machine vision module. The path planning stages are explained below. 

2.2 Offline Stage 

During offline pre-processing, mapping between a C-space roadmap and a discretized 

Cartesian (geometric) workspace is created such that an entirely feasible roadmap can 

be quickly obtained when the geometric information about the obstacles in the environ-

ment is known. The offline pre-processing stage comprises: (i) robot C-space sampling, 

(ii) workspace discretization and (iii) mapping between C-space and Cartesian space. 

The C-space sampling involves randomly sampling the entire C-space to obtain 

nodes of the roadmap. This is performed assuming a completely obstacle-free space. 

Then, pairs of neighbouring nodes are connected to form the edges of the roadmap. 

Next, the workspace is discretized into uniform cells. The spatial resolution available 

is obviously dependent on this size, with a subsequent trade-off between finer resolu-

tion and faster computation. Increasing the number of cells increases the computation 

time of the third stage exponentially. Finally, the mapping between C-Space and work-

space is obtained by iteratively checking every robot configuration associated with all 

sampled nodes and along each edge of the roadmap. All workspace cells that collide 

with the robot at these configurations are mapped to the associated nodes and edges. 

Hence during online execution, when the cells that are pre-occupied by an obstacle is 

known, the roadmap can be “trimmed” to leave only feasible segments. 

2.3 Online Stage 

In real-time operation, the algorithm combines the vision information about the position 

of a moving obstacle and the offline-computed mapping to create a graph representation 

of the collision-free regions of the C-space. The desired start and goal configuration 

(which may differ in each instance of path planning) is connected to the nearest node 

in the roadmap. Then, the A* search algorithm [22], which is an extension of the Dijks-

tra’s algorithm, is used to search for the shortest route within the graph in order to find 
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a path between start and goal that guarantees no collision with the moving obstacle. 

Afterwards, B-splines [23] are used to smooth the obtained path and provide continuous 

smooth motion from any start to goal configuration. A diagram is given in Fig. 1. 

As the robot executes the initially planned path, the path planner continues to moni-

tor the obstacles in the environment. When a change results in a collision with the pre-

viously planned path, a new updated path is planned using the same approach described 

above. This is made possible by the low computation time (< 50 milliseconds) achieved 

using the dynamic roadmaps approach. 

 

 

Fig. 1. Flowchart for dynamic path planning. Dashed box indicates replanning capability. 

3 Machine Vision 

3.1 Overview 

In order to provide the robotic system with vision capabilities, a sensing strategy based 

on machine vision was developed. It uses optical cameras and runs independently but 

simultaneously to the rest of the system, comprising path planning and robot control. 

The machine vision code architecture is made up of three independent stages, which 

also run in parallel by the implementation of three threads: (i) frames acquisition, (ii) 

image processing and (iii) communication. First, the acquisition thread manages the use 

of cameras for video stream acquisition. Second, the obtained frames are treated by the 

image processing stage, which performs object detection based on color and additional 

filtering. Third, the communication thread stores the detection information in a pack-

age, to be sent directly to the path planner by TCP/IP communication sockets [24]. This 

enables the main control module and the machine vision module to communicate with 

each other in real-time. The computation time for acquisition, processing and commu-

nication do not cumulate. 
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3.2 Camera Acquisition 

The implemented machine vision strategy uses low-cost webcams. These cameras are 

not mounted on the robot as in many other applications [25], but placed at external fixed 

locations. In order words, they are off-board cameras. Fixed off-board cameras facili-

tates the computation of spatial coordinates, at the cost of having robot intrusion into 

the cameras’ field of view. The robot can hide the targeted object while moving. In 

order to solve this intrusion, two cameras are used, denoted as Cam-1 and Cam-2.  

Cam-1, the main camera, is placed overhead to get a top view of the whole robot 

workspace. The second camera, Cam-2, is introduced as an auxiliary sensor, to make 

sure the targeted object can be detected at all times and solve the robot intrusion issue 

into the field of view of Cam-1. The disposition of the two cameras is discussed in 

Section 4. 

An important consideration related to the machine vision is how to solve the sensor 

fusion problem, as two different cameras are used. The proposed strategy addresses 

sensor fusion at the output level: the algorithm prioritizes the main camera (Cam-1) 

and, as long as this camera is able to detect the moving obstacle, its information is used 

for path planning. In the case that the main camera is not able to detect the object, then 

the machine vision opts to use the auxiliary camera (Cam-2), using its information. A 

related diagram is shown in Fig. 2. 

 

Fig. 2. Flowchart for sensor fusion in real-time. 

3.3 Image Processing 

Object detection is based on color discrimination, implemented in the hue-saturation-

value (HSV) color space. This space, which differs from others such as the red-green-

blue (RGB) [26-27], comprises parameters related not only to the true color targeted 

(hue), but also the color depth (saturation) and color darkness (value). A good selection 

of allowed parameter ranges in the HSV color space can deal with reflections, shadows 

and other related issues, achieving satisfactory object detection performance. 
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In a similar way to the path planning implementation, there are two stages for the 

image processing: (i) offline calibration and (ii) online workflow. 

Offline implementation involves some calibration procedures. First, a contour mask 

is defined for masking the frames. Second, some calibration points are measured in the 

workspace and translated into pixel coordinates in the images. These calibration points 

are used for training a projection algorithm, which will translate coordinate pixels to 

2D real-world coordinates. Finally, the selection of range values to target in the HSV 

color space make up the last part of the calibration procedures. 

The online workflow involves the following steps: (i) transformation from RGB im-

age to HSV image, (ii) transformation from HSV image to binary image, by means of 

applying a selected HSV color range, and (iii) posterior treatment of the binary image, 

including size and tracking filtering, avoiding the detection of undesired objects. 

3.4 Communication 

While running in parallel, the machine vision can communicate in real-time with the 

main control software by means of TCP/IP sockets communication [24]. In the TCP/IP 

configuration, the machine vision software acts as a server (slave), while the main con-

trol software acts as a client (master). Therefore, the machine vision waits for any re-

quest and replies immediately with the latest information available. In order to do so, 

an information package is defined, which is made up of several bytes containing the 

coordinates (x, y) and approximated dimensions (bounding box) of the detected object. 

4 Experimental Setup 

4.1 Robotic Manipulator 

The implementation of the integrated system is based on the KR90 R3100 from KUKA 

[20], a robotic arm usually found in many factories. This robot is a 6-axis jointed-arm 

manipulator, with volume of 66 m3 and 50 kg weight. In order to control this robot, 

dynamic link libraries (DLLs) were developed in C++ language. 

The KR90 R3100 has been selected for experiments because of its wide use in in-

dustry, however, the implemented approach is easily transferable to other robots and 

experimental conditions. 

4.2 Workspace and Moving Obstacle 

In the experiments, a table with dimensions 160x110 cm was selected as the robot 

workspace (Fig. 3). The table is covered by a recycled tablecloth containing different 

textile traces with the purpose of simulating a dirty, noisy environment. 

The moving obstacle is implemented by a remote controlled car (20x10 cm) covered 

by cardboard that is yellow in colour (intending to reproduce a similar safety jacket 

tonality). Being remotely controlled, the car can be driven by an operator behind safety 

barriers, complying with all safety regulations. 
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Fig. 3. Workspace table (left) with pick-and-place box (top) and moving obstacle (bottom). 

4.3 Cameras and Location 

Two Advent HD Pro (AWCAMHD15) were selected as sensors to prove that an inex-

pensive machine vision implementation is possible. These are low-cost cameras able to 

capture images with an original resolution of 640x480 pixels and frame rate of 30 fps.  

The main camera, Cam-1, was placed in an overhead location approximately 3 m 

high over the ground, capturing images of the workspace table in landscape mode. The 

auxiliary Cam-2 was placed at a much lower height of 1.5 m, and provided a side view 

of the workspace in relation to Cam-1. The selected disposition for Cam-2 covered all 

blind points in Cam-1 when the robotic arm intruded its field of view. 

4.4 Host Computer and Related Software 

A laptop was used to run all software modules in parallel. The path planning module 

was implemented in Matlab. Robot control and machine vision were implemented in 

C++ language and called from Matlab through DLLs and executable files. 

The laptop was based on a quad-core Intel i7 CPU with 16GB RAM, running the 64-

bit Windows 10 operating system. Matlab R2016b and the OpenCV 3.1 library (for 

machine vision) were used. Two USB ports (one for each camera) and an Ethernet port 

for connecting to the robot were required. 

5 Performance Evaluations 

The performed experimental tests proved that the proposed machine vision works ef-

fectively and robustly, as it was able to continuously track the moving obstacle under 

changing conditions including reflections and shadows. Additionally, the intrusion of 

the robot into the field of view of Cam-1 was successfully solved by the introduction 

of the auxiliary Cam-2.  

The precision (resolution) of the vision system has been measured to be approxi-

mately 0.3 cm per pixel, with an estimated positional accuracy of approximately ±3 cm 

for the obstacle, which are acceptable figures for the performed tasks. 
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Thanks to the machine vision, the path planning module was able to detect potential 

collisions in the predefined paths between start and goal locations, allowing the robotic 

manipulator to trace alternative trajectories to avoid the moving obstacle in real-time 

during pick-and-place tasks. Fig. 4 shows a frame from a video acquired during demon-

strations. In conclusion, the integrated system performed satisfactorily.  

 

Fig. 4. A real video frame (left) with related captures by Cam-1 (top) and Cam-2 (bottom). 

In relation to the computation time (Table 1), the main bottleneck lies in the image 

acquisition, due to the cameras’ limited frame rate. However, the parallel execution of 

machine vision and path planning avoids accumulation of the computation times. 

Therefore, the overall time for the integrated system (around 60 milliseconds) is faster 

than the one in [18] (around 90 milliseconds) and much lower than that of the average 

human reaction time, estimated as 180 milliseconds. 

Table 1. Estimated computation time for machine vision, path planning and overall system. 

Machine vision Path planning Overall time (ms) 

Stage time (ms) Stage time (ms) 
Proposed ~ 60 

Reference [18] ~ 90 

Human reaction ~ 180 

Camera acquisition 45 Read package 12 

Image processing 14 Check collision 15 

Communication < 1 Replanning 30 

6 Conclusions 

In this work, a sensing strategy based on machine vision using low-cost optical cameras 

was developed for a robot manipulator system with real-time path planning and dy-

namic collision-avoidance capabilities. An integrated system was developed and tested 

with the KUKA KR90 R3100, a traditional industrial robot with 6 degrees of freedom. 
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The machine vision is based on two cameras placed off-board in fixed locations. The 

detection is performed by color in the HSV space to deal with a challenging environ-

ment. Computed in parallel with the main control software, they communicate in real-

time for efficient pick-and-place planning tasks. The path planner was implemented 

using dynamic roadmaps, with the well-known A* algorithm for graph search and B-

splines for smoothing, while robot motion control was achieved by means of DLLs. 

The motivation of this work was to build a flexible and autonomous smart system 

with environmental awareness through a biological inspired integration of sensory at-

tributes (machine vision), reasoning (path planning), coordinated movement (robot 

control) and cognitive learning (offline training and calibration). Performance in a 

physical demonstrator showed that intelligent behavior of robots for challenging envi-

ronments in the manufacturing industry is possible, with a global system frequency well 

below 180 milliseconds, the estimated human reaction time. 
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