
HAJAR, M.S., KALUTARAGE, H. and AL-KADRI, M.O. 2021. TrustMod: a trust management module for NS-3 simulator.
In Zhao, L., Kumar, N., Hsu, R.C. and Zou, D. (eds.) Proceedings of 20th IEEE (Institute of Electrical and Electronics
Engineers) international conference on Trust, security and privacy in computing and communications 2021 (IEEE
TrustCom 2021), 20-21 October 2021, Shenyang, China: [virtual event]. Piscataway: IEEE [online], pages 51-60.

Available from: https://doi.org/10.1109/TrustCom53373.2021.00025

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

This document was downloaded from
https://openair.rgu.ac.uk

TrustMod: a trust management module for NS-3
simulator.

HAJAR, M.S., KALUTARAGE, H. and AL-KADRI, M.O.

2021

https://doi.org/10.1109/TrustCom53373.2021.00025

TrustMod: A Trust Management Module For NS-3
Simulator

Muhammad Shadi Hajar
School of Computing

Robert Gordon University
Aberdeen, United Kingdom

m.hajar@rgu.ac.uk

Harsha Kalutarage
School of Computing

Robert Gordon University
Aberdeen, United Kingdom

h.kalutarage@rgu.ac.uk

M. Omar Al-Kadri
School of Computing & Digital Tech.

Birmingham City University
Birmingham, United Kingdom

omar.alkadri@bcu.ac.uk

Abstract—Trust management offers a further level of defense
against internal attacks in ad hoc networks. Deploying an
effective trust management scheme can reinforce the overall
network security. Regardless of limitations, however, security
researchers often use numerical simulations to prove the merits
of novel methods. This is due to the lack of an adequate
testbed to evaluate the proposed trust schemes. Therefore, there
is a demanding need to develop a generic testbed that can be
used to evaluate the trust relationship for different networks
and protocols. This paper proposes TrustMod, an NS-3 module
consisting of three main components to evaluate the different
trust relationships: direct trust, uncertainty, and indirect trust. It
is designed to meet usability, generalisability, flexibility, scalability
and high-performance requirements. A series of experiments
involving 1680 simulations were performed to prove the design
and implementation accuracy of TrustMod. The performance
results show that TrustMod’s resource footprint is minimal, even
for very large networks.

Index Terms—Trust Management, simulator, NS-3, internal
attacks, testbed, on-off attacks.

I. INTRODUCTION

Maintaining the security of wireless infrastructure-less
networks such as Mobile Ad hoc Networks (MANETs) is still
challenging. In such networks, all nodes are expected to act as
routers by forwarding packets for other nodes. The cooperation
between these nodes is mandatory for network operation.
Although authentication and encryption are essential security
requirements, they may not be sufficient to cope with other
nodes’ free will. Authenticated nodes can still get compromised
or act selfishly to disrupt the overall network operation.
Therefore, deploying an effective Trust Management System
(TMS) can monitor the distributed collaborations between nodes
to differentiate between trustworthy and untrustworthy nodes.
Moreover, several applications emerge from deploying a TMS
ranging from security applications such as malicious node
detection and access control to routing [1]–[3].

Abundant research is put forward to evaluate the trust
relationship using different approaches and techniques [3].
However, the majority of these trust schemes are evaluated
using numerical simulations due to the shortage of a dedicated
simulator or a testbed to simulate the trust relationship. Trust
evaluation using numerical computing environments such as
MATLAB can only provide an abstract mathematical and
numerical analysis for the proposed trust schemes. However,

these unrealistic experiment setups can not reflect the actual
network operation where tens of protocols from different
stack layers work collaboratively. For instance, traffic rates,
packets re-transmissions, collisions, and routing protocols are
all examples of network operating conditions and protocols
that can not be fulfilled using existing numerical analysis tools,
including MATLAB. This paper therefore presents TrustMod,
a new testbed environment for NS3 [4] to realistically simulate
the trust relationship on ad hoc networks.

Among a wide range of network simulators, NS-3 [4] has
been chosen to build this testbed for several reasons. It is an
open-source network simulator designed essentially for research.
It provides a robust core written in C++ with high compatibility
and scalability characteristics. Unlike NS-2, which uses OTcl
to write the simulation scenario, NS-3 uses C++ with Python
bindings that allow researchers to import NS-3 libraries as
Python modules. Moreover, the performance analysis of NS-3
shows an optimal trade-off between memory consumption and
simulation run-time among different network simulators [5].

The main contribution of this paper is introducing a trust
management module for NS-3. Our proposed NS-3 module,
TrustMod, consists of three main components, which are
direct trust evaluation, uncertainty evaluation and indirect trust
evaluation. It has been designed to be resource efficient and
easily integrated as other NS-3 modules. Furthermore, the code
of our proposed trust management module is made available
at (https://github.com/mshsyr/TrustMod).

The remainder of this paper is organized into seven sections
as follows. Related work is given in section II. Section III
provides an overview of. The proposed trust management
module is introduced in section IV, followed by the module
validation results provided in section V. The performance
evaluation results is presented in section VI. Finally, section
VII concludes the paper.

II. RELATED WORK

Many different trust schemes are proposed in the literature
for different wireless networks and applications. However, due
to the unavailability of more realistic trust evaluation simulators
or testbeds, MATLAB is still the first choice for researchers to
evaluate their schemes’ effectiveness. Few tools are introduced
in the literature to evaluate trust schemes, such as TOSim [6]

https://github.com/mshsyr/TrustMod

and TRMSim-WSN [7]. In [6], authors introduced a tool to
evaluate various types of trust and reputation schemes targeting
overlay networks with four threat models. It is a scope-specific
tool, which is not applicable to other networks. In [7], authors
introduced a simple java-based trust simulator for Wireless
Sensor Networks (WSNs). This simulator allows the researchers
to tune several parameters, such as nodes number and delay,
to simulate different kinds of malicious activities. However, as
the protocol stack is not implemented in TRMSim-WSN, it
is regarded as a conceptual simulator that can not reflect the
realistic network’s behaviour. The main shortcomings of using
the aforementioned tools are the incapability of simulating
the targeted network operating conditions and the inability to
integrate with other stack layers; therefore, the proposed trust
schemes can not be evaluated under different stack protocols,
such as routing protocols.

On the other hand, TrustMod is a generic trust management
testbed built as a module for NS-3. It works as a cross-layer
module in the TCP/IP stack. Therefore, to the best of our
knowledge, it is the first trust management testbed that is
fully integrated with the protocol stack and can be used with
different networks and under different network conditions and
parameters. It can be added like any other built-in modules to
the nodes, which are the conceptual computing devices in NS-3.
Researchers can use the NS-3 attributes system to configure
the required trust management properties and then write their
scheme implementation.

III. NETWORK SIMULATOR 3

For decades, NS-2 [8] was regarded as the de-facto standard
simulator for research. Countless published research papers
are evaluated using NS-2. In 2006, a project to develop a
new network simulator to replace NS-2 was begun. NS-3
is built from scratch using C++, although some models are
ported from predecessor simulators such as NS-2, YANS [9]
and GTNetS [10]. The initial release of NS-3 was available in
2008, while the development and maintenance of NS-2 stopped
in 2010 [11]. The main aim was to enhance the NS-2 models’
realism by making it closer to how real computers operate.
For instance, NS-3 adopts the Linux architecture for sockets
and internal interfaces. Moreover, NS-3 supports emulations
by incorporating real network devices to form a real testbed.

NS-3 is built as software libraries that can be linked to the
simulation scenario statically or dynamically. Fig. 1 describes
how the NS-3 modules are organized. Module dependencies
may usually exist with other underneath modules. The core
module of NS-3 consists of C++ classes that provide time
services, smart pointers, callbacks, debugging facilities, and
other significant services. These services are used by all kinds
of hardware, protocols, and environmental models. The list
below contains other important NS-3 components:

• Network module, which models the network packet, packet
tags and packet headers. Moreover, node class and the
abstract base class netdevice are defined in this module,
in addition to address types such as IPv4 and MAC.

• Mobility module, which has different mobility models
such as static, random and walk.

• Helper API contains classes and methods that provide
high-level wrappers to encapsulate low-level API calls. It
is widely used when scripting a simulation scenario.

Helper

Protocols Devices Applications

Internet Mobility

Network

Core

Fig. 1: NS-3 Modules Architecture

NS-3 allows researchers to evaluate their simulation models
using different kinds of tools and systems. A logging facility
is used to monitor and debug the execution of the simulation
scenario. It can be enabled from the simulation script for
different NS-3 components using the environment variable
NS LOG. Logging messages are classified into different
severity classes, which can be set by the user to see the log
of a specified severity class for a specified NS-3 component.
The tracing system is another tool to allow users to gather
information and statistics to evaluate their simulation models
or modifications. NS-3 defines two independent components,
tracing sources and tracing sinks, where the connection between
the sources and the sinks can be established with the help of
the attributes and the callback mechanisms. NS-3 provides two
kinds of tracing output. The first is similar to NS-2, where all
events associated with their properties, like timestamps, are
output to text files. The second tracing output is PCAP binary
files for capturing live traffic. PCAP files can be analyzed by
TCPDUMP or Wireshark applications. FlowMonitor is an NS-3
module for monitoring traffic flows contributed by authors in
[12]. It provides an easy tool to monitor the traffic across the
network. It allows researchers to measure the performance of
their methods by providing different kinds of statistics such as
packet loss rate, delays and bit rates. Furthermore, although
NS-3 does not have a built-in graphical animation tool, an
offline animator toolkit can be used for visualization. NetAnim
is an example of those tools. It uses the generated XML trace
file for animation. Animation includes but is not limited to
transmitted packets over different links, packets timeline with
filtering capabilities, IP and MAC information and routing
tables.

IV. THE PROPOSED TRUST MANAGEMENT MODULE

In this section, our trust management module for NS-3,
termed as TrustMod, is introduced. The design requirements
are first identified, and then the module structure and its
components are presented.

A. Requirements

Different objectives are taken into account when designing
our trust management module for NS-3. These objectives cover

various aspects such as usability, generalisability, flexibility,
scalability and performance.

Usability is the first objective of our TrustMod module.
Writing the simulation scripts is already a time-consuming
and complicated task. Long times are spent on writing
simulation scenarios and analyzing trace files. Therefore, the
trust management module must be easy to use. This gives the
researchers more time to spend on their proposed methods.
The researchers can enable the trust management module for
any node by adding a few code lines. Moreover, they can
instantiate different trust instances for different nodes. The
module design should also comply with other NS-3 modules;
thus, the researchers can easily configure and set the modules
instance attributes using the same way as other modules.

Trust management systems may generally rely on two
components, direct and indirect trust evaluation. In direct
trust evaluation, the trustor evaluates the trustee based on
direct observations. However, when the trustor does not have
sufficient observation history, it can ask for recommendations
from other network entities. This approach is widely adopted in
the literature [13]–[16]. However, obtaining recommendations
is proved to be a time and resource-consuming process [17].
Therefore, the trust evaluation must comprise three main
components. The direct trust evaluation process, which is
based on direct observations. The indirect trust evaluation,
which is based on received recommendations from other
entities in the network, in addition to introducing uncertainty
evaluation component that can manage the process of asking
for recommendations with a view to preserve resources.

The trust module must work with different protocols and
applications. Therefore, researchers can evaluate their methods
for different networks and under different conditions. The
distributed approach provides more flexibility to support other
services and protocols within the node itself, such as secured
routing protocols and access control mechanisms.

Obviously, deploying a trust module will consume some
resources. However, memory and processing overhead must
be as low as possible to significantly maintain high simulation
performance when increasing nodes. Therefore, the simulation
time and the memory footprints are expected to be minimal.

It is imperative that the proposed trust module can output all
the results and statistics in a readable and easy-to-use format.
This output data has to be stored by the end of the simulation
process and retrieved later by researchers for results analysis.
Several output format candidates are available such as binary
files, ASCII files, XML/JSON files, or databases. Choosing the
appropriate file format that allows the results to be stored and
retrieved efficiently is essential. TurstMod uses ASCII format
for output, which provides an effortless and readable way to
obtain the simulation results. The trust results are formatted in
a way that allows researchers to import them to Excel readily.

B. Design Overview

NS-3 network entities are defined using Node class, which
is a conceptual model that other objects can be aggregated
to it. The implementations of TCP/IPv4, TCP/IPv6 and other

related protocols are available in the internet stack module,
which can be installed into each node using the helper class.
Sending and receiving packets using this module goes through
different layers from NetDevice to Application classes. Trust
management aims to monitor the behavior of others. Therefore,
cross-layer information should be received from different
sources. This cross-layer architecture allows TrustMod to
receive all the needed information from other stack protocol.
The received information is then processed and stored in
a dynamic data structure, which will be presented in the
next section. Fig. 2 provides an overview of the TrustMod
structure showing the implementation of receiving the cross-
layer information from both sending and receiving paths.

The TrustHelper class is used to initialize the trust module
and aggregate it to the node. Two cross-layer information
sources from layer 2 and layer 3 are used to evaluate the trust
relationship. The first is NetDevice from the packets sending
path. The SentInput method is called, and the transmitted packet
and the destination MAC address is passed to it. In order to
receive cross-layer information of the forwarded packets from
layer 3, the promiscuous mode must be enabled. Therefore,
the SetPromiscReceiveCallback has to be registered on the
NetDevice in addition to writing the implementation of the
method PromiscReceive. This allows layer 3 to receive the
sniffed packet from lower layers, which in turn passes it with
the source MAC address to the ForwardedInput method.

The observed interactions form sequences of discrete-time
data. This period is set by a predefined attribute called
TimeUnitAttribute, which can be set from the simulation script.
This attribute timely controls all the operations inside the Trust
module. Therefore, trust evaluation is scheduled at the end of
each time unit by calling the method TrustSchemeManager in
the TrustScheme class. Researchers have to write the imple-
mentations of their trust schemes in the following methods:

• DirectTrustEvalaution method: This method is used to
evaluate the trust value based on direct observations.

• UncertaintyEvalaution method: This method is introduced
to specify when to consider second-hand information from
other neighbors.

• RecommendationsEvalaution method: This method is used
to evaluate the received recommendations and filter out
those untrustworthy ones.

• OverallTrustEvalaution: This method is called once having
all the required information in order to evaluate the overall
trust value.

TrustMod inherits from the Application class to allow
sending and receiving recommendations. Once TrustMod is
installed using TrustHelper, it initializes the recommendations
listener in order to receive both recommendation requests from
other neighbors and the expected recommendation responses
for the recommendation requests sent by the node itself. The
listening port is specified by setting the predefined attribute Rec-
ommendationListenerPortAttribute from the simulation script.
A receive callback is defined for the receiving socket. Therefore,
received packets are processed in the RecommendationReceive

A
pp

lic
at

io
n

U
dp

S
oc

ke
tIm

pl

U
dp

L4
P

ro
to

co
l

Ip
v4

L3
P

ro
to

co
l

N
et

D
ev

ic
e

A
rp

Ip
v4

In
te

rf
ac

e
A

rp
L3

P
ro

to
co

l

Ip
v4

R
ou

tin
gP

ro
to

co
l

S
oc

ke
t::

S
en

d
()

::S
en

d
()

(m
_d

ow
nT

ar
ge

t(
)

ca
llb

ac
k)

::S
en

d
()

::S
en

d
()::L

oo
ku

p
()

::R
ou

te
O

ut
pu

t (
)

A
pp

lic
at

io
n

U
dp

S
oc

ke
tIm

pl

Ip
v4

E
nd

P
oi

nt

U
dp

L4
P

ro
to

co
l

N
et

D
ev

ic
e

Ip
v4

L3
P

ro
to

co
l

IP
v4

R
ou

tin
gP

ro
to

co
l

(m
_r

xC
al

lb
ac

k)
->

F
or

w
ar

dU
p

()

:m
_r

ec
ei

ve
C

al
lb

ac
k

::L
oc

al
D

el
iv

er
 (

) ::R
ec

ei
ve

 (
)

::R
ou

te
In

pu
t (

)

N
od

e:
:P

ro
to

co
lH

an
dl

er
s

::R
ec

ei
ve

 (
)

Ip
v4

E
nd

P
oi

nt
D

em
ux

::L
oo

ku
p

()
::F

or
w

ar
dU

p
()

(m
_r

xC
al

lb
ac

k)
->

R
ec

v
()

m
_t

ru
st

F
ac

to
ry

.C
re

at
e<

Tr
us

t>
 ()

tr
us

t-
>

S
et

N
od

e
()

no
de

->
A

gg
re

ga
te

O
bj

ec
t (

tr
us

t)

::I
ns

ta
llP

riv
 (

)

::R
un

Li
st

en
er

 (
)

::F
or

w
ar

de
dI

np
ut

 (
)

::S
en

tIn
pu

t (
)

::S
et

N
od

eI
d

()
::S

et
S

rc
Ip

 (
)

::S
et

S
rc

M
ac

 (
)

::U
pd

at
eS

en
t (

)
::U

pd
at

eF
or

w
ar

de
d

()

::S
et

D
ro

pp
ed

P
ac

ke
ts

 (
)

::T
ru

st
E

va
lu

at
oi

n
()

::R
ec

om
m

en
da

to
in

R
ec

ei
ve

 (
)

::T
ru

st
S

ch
em

eM
an

ag
er

 (
)

::D
ire

ct
Tr

us
tE

va
la

ut
io

n
()

::I
nD

ire
ct

Tr
us

tE
va

la
ut

io
n

()
::U

nc
er

ta
in

ty
E

va
la

ut
io

n
()

::
R

ec
om

m
en

de
rS

en
de

r (
)

::
R

ec
om

m
en

da
tio

ns
E

va
lu

at
io

n
()

::O
ve

ra
llT

ru
st

E
va

la
ut

io
n

()

::R
ec

om
m

ed
nd

at
io

nR
eq

ue
st

P
ro

ce
ss

or
 (

)

::R
ec

om
m

ed
nd

at
io

nR
es

po
ns

eP
ro

ce
ss

or
 (

)

Tr
u

st
N

o
d

e
C

la
ss

R
ec

ei
ve

d
R

ec
o

m
m

en
d

at
io

n

C
la

ss

S
ch

em
e

P
ar

am
et

er
s

C
la

ss

Tr
u

st
H

el
p

er
 C

la
ss

Tr
u

st
 C

la
ss

Tr
u

st
S

ch
em

e
C

la
ss

P
ac

ke
t

S
en

d
 P

at
h

P
ac

ke
t

R
ec

ei
ve

 P
at

h

Fig. 2: Trust Module Overview

method in order to differentiate between requests and responses.
Based on the received packet type, a recommendation processor
is called from the TrustScheme class. Fig. 3 and fig. 4 show the
recommendation packet format for both request and response
types. Both of them have packet type, trustee MAC, trustor
IP address and TrustNode (TN) sequence number. The packet
type field is used to differentiate between request and response
packets, while the trustee MAC field is used to specify the
node in question. Trustor IP is set to the IP address of the
recommendation sender. The TN sequence number represents
the sequence number of the TN when the trustor is uncertain
about the trustee’s trustworthiness and needs second-hand
information to evaluate the overall trust value. It is used to
indicate to the TN object where the second-hand information is
needed, and its value will be used in the recommendation
response packet. On the other hand, the recommendation
response has two more fields. The first contains the trust value,
while the second represents how certain is the recommender
about this trust value.

Type
<Req>

Trustee MAC
<MAC>

Trustor IP
<IP>

TN Seq
<Seq>

Octets 3 17 7-15 1-10

Fig. 3: Recommendations Request Format

Type
<Res>

Trustee MAC
<MAC>

Trustor IP
<IP>

TN Seq
<Seq>

Octets 3 17 7-15 1-10

Trust
<Value>

Uncertainty
<Value>

22

Fig. 4: Recommendations Response Format

C. Trust Module Data Structure

TrustMod receives cross-layer information and recommenda-
tion responses during the simulation process. This information
is usually processed at the end of the time unit. Moreover,
researchers expect detailed statistics and results at the end
of the simulation. Therefore, the aforementioned information
needs to be saved efficiently during the simulation. Two
classes are defined for this purpose. The first is the TrustNode
(TN) class to save the observations, while the second is the
ReceivedRecommendations (RR) class to save the received
second-hand information.

TrustMod instantiates a TN object for each time unit to
save the observations and other related information. Therefore,
an efficient data structure is required to store a series of
TN objects for each trustee. In TrustMod, a map of vector
pointers is adopted as shown in Fig. 5. The map key is set
to be the trustee MAC address, while the mapped value is a
pointer to the vector of TN objects. Each TN has different
attributes to save observations, such as m forwardedPackets and
m droppedPackets. In addition to the primitive attributes, there
are two objects. The first is used to track the trust scheme

parameters changes, while the second is used to store the
received recommendations. As the recommendation request
is broadcasted over the network, it is expected to receive
recommendations from multiple nodes. These recommendations
are stored for further processing to filter out dishonest ones.
TrustMod uses a vector of ReceivedRecommendations object
pointers to store the received recommendations. Adopting this
data structure, as mentioned earlier, allows a dynamic memory
allocation. Moreover, using pointers makes the management of
data structures more efficient by saving memory and reducing
the module’s complexity.

D. Trust Module Implementation

The proposed trust management module is implemented
using six classes. The Trust class represents the core of the
module. It is responsible for initializing the trust module
for each node, linking with other stack layers, listening
for recommendation requests, and processing the observed
information. TrustHelper class provides a separate API on
top of the core NS-3 API. This helper class makes the use
of the TrustMod module easier by creating and configuring
the trust module effortlessly. Moreover, TrustMod has two
additional classes for modeling the data structure of the
module. The first is TrustNode class, which stores all the
statistics and trust information for a one time unit during the
simulation. It provides the necessary attributes and methods
to store and evaluate the trust relationship. The second is
ReceivedRecommendations class, which stores and processes
the received recommendations for each sent recommendation
request. On the other hand, researchers propose different
methods to evaluate the trust relationship, which usually
introduce new parameters and mechanisms. Therefore, two
classes are used to integrate the researchers’ methods into the
trust module. The first is SchemeParameters class, which can
be used to define scheme proprietary parameters. The second is
TrustScheme, which provides the core of trust evaluation. This
class is designed to have all the evaluation operations, such
as processing the two kinds of recommendations request and
recommendations response packets. Moreover, four methods
are provided for researchers to implement their trust scheme
as detailed in section IV-B. All the required information is
passed as arguments to these methods with a view to providing
all the necessary information for any proposed trust scheme.
These arguments are passed as pointers to minimize memory
and processing overhead.

All NS-3 modules are located in the src directory, where
the directory’s name is the name of the module. TrustMod
is organized into six directories in addition to a wscript file,
as illustrated in Fig. 6. The TrustHelper class source code is
available in the helper directory. The model directory contains
Trust, TrustNode, ReceivedRecommendations, SchemeParame-
ters and TrustScheme classes. The bindings directory contains
files related to Python bindings, while the test directory includes
required module test files. Simulation examples are provided
in the examples directory, while manual and useful instructions
are provided in the doc directory. Finally, as all NS-3 modules

Trustee MAC <TrustNode *> *vector

00:00:00:00:00:01 0x55f3661e6e20

00:00:00:00:00:02 0x55f3662e76c0

tn sequence

1

Trust Node Object

 - m_forwardedPackets
 - m_droppedPackets
 .

 .
 .

 - *m_sp
 - *m_recommednations

Map

........

2 n

Key Mapped Value
SchemeParameters Object

Trust Scheme Parameters

........ vector<ReceivedRecommendatins *> *m_recommendations

vector<TrustNode *> *v

ReceivedRecommendations Object

 - m_seq
 - m_receivedTrust
 - m_receivedUncertainty

receivedRecommendatins sequence

12n

Fig. 5: Trust Module Data Structure

depend on core modules, these dependencies are defined in
the wscript file. Moreover, all module source and header files
must be defined there. The wscript file can be regarded as a
Makefile.

Trust Module

modelhelper bindingsdoc examples test

wscript

Fig. 6: TrustMod Organization

V. MODULE VALIDATION

In this section, we validate the results obtained by the
TrustMod module. The proposed trust scheme LTMS [18] is
adopted for the validation process. LTMS is a lightweight trust
management system for Wireless Medical Sensor Networks
(WMSNs). It uses a novel mechanism to evaluate the direct
trust value. Its results showed an outstanding performance
in detecting sophisticated attacks such as on-off attacks.
Simulation parameters of LTMS have been adopted to validate
our trust management module by comparing the results obtained
using TrustMod module with those obtained by analyzing
trace files. LTMS proposes two methods to evaluate direct
trust, which is regarded as the core of trust management. The
first method LTMS(1), is a lightweight method used for in-
body sensor nodes (SNs) as those SNs suffer from a stringent
resource limitation, while LTMS(2) provides a further level
of protection from on-off attacks and is designed for on- and
off-body sensor nodes. Both LTMS(1) and LTMS(2) method
are combined in algorithm 1, where α and β are the beta
probability distribution levels, bt and dt are the slopes at the
time unit t, Repij(t) is the reputation value maintained by
the trustor i for the trustee j, thr1 is the defined threshold
to differentiate between trustworthy and untrustworthy agents,
which is usually set to 0.5 in the literature [17]–[20], thr2
represents the minimum trustworthiness for agents in normal

operation and is set to 0.85 [18], ShRepij(t) represents the
short-term reputation value at the time unit t, and cycle and
malicious are two parameters used to detect on-off attacks.

Algorithm 1: LTMS direct trust evaluation
Input: Observations & beta shape parameters
Output: Trust value
initialization;
while true do

if bt−1 ≤ 0 && dt−1 > 0 then
αt = λ(αt−1 + bt−1) + s(t);
βt = λ(βt−1 + dt−1) + u(t);
bt = αt − αt−1;
dt = βt − βt−1;

else
αt = λ.αt−1 + s(t);
βt = λ.βt−1 + u(t);
bt = αt − αt−1;
dt = βt − βt−1;

end
if αt ≤ 0 then

Repij(t) = 0;
else

Repij(t) =
αt

αt+βt
;

end
if Trustij(t− 1) ≥ thr1 && Repij(t) < thr1 then

if malicious > 0 then
cycle = t−malicious;
malicious = 0;

else
malicious = t;

end
end
if cycle > 0 && Trust(t− 1) < thr2 then

ShRepij(t) = mean(Trustij(t− cycle : t));
Trustij(t) = min(ShRepij(t), Repij(t));

else
Trustij(t) = Repij(t);
cycle = 0;

end
end

The traffic is generated using the parameterized exponential
density function shown in Eq. 1, which makes the number of
packets different each time.

p(x; b) =

{
µe−µx x ≥ 0

0 x < 0
x ∈ [0, b] (1)

where µ is the traffic rate parameter, and b is the bound
parameter which can be used to make the generated values
bounded over the interval [0, b] as the exponential distribution
is theoretically unbounded.

Moreover, we adopted a randomized attack model, where
malicious nodes decide to forward or drop each received packet
randomly. In TrustMod, all values are evaluated automatically
during the simulation process, while assessing the trust values
without the TrustMod module is done offline. Different factors
impact the dynamic evaluation of TrustMod, such as scheduled
events processing and observation recording. Therefore, in order
to validate the TrustMod module, the simulation scenarios will
be run multiple times, and then the results will be averaged out.
According to the Central Limit Theorem (CLT), a sample size
of 30 is sufficient to estimate the Gaussian distribution [21].
Hence, we run the simulation 30 times for each simulation
parameter settings followed by a statistic test. The two-sample
Kolmogorov-Smirnov (K-S) test, which is a nonparametric
hypothesis test, is applied to ensure that the two distributions
obtained from the results using TrustMod module and trace
file analysis are the same [22]. The K-S test rejects the null
hypothesis at the 5% significance level. Table I shows the
simulation parameters of LTMS. The malicious activities are
integrated into the RouteInput method of the AODV protocol.
The indirect trust evaluation has been manually stopped before
the simulations in order to neutralize the recommendation
exchange messages on the results. The trust scheme robustness
against on-off attacks is evaluated using the on-off Attack
Detection Metric proposed in [18]. The validation process is
carried out for the following scenarios.

TABLE I: LTMS Simulation Parameters

Parameter Value
Application Poisson random traffic
Exponential transmission in-
terval µ 5, 10, 20, 40

Packet size 264B
Routing Protocol AODV (modified version)
Radio Range 1m
Propagation delay model Constant speed propagation delay
Propagation loss model Range propagation loss
Time unit 1s
Simulation Time 200s

A. Variable Traffic Rates

In this experiment, we validate our proposed trust module for
variable traffic rates ranging from low to high. The traffic rate
has been doubled each time, starting at µ = 5. The obtained
results using TrustMod and the offline analysis are averaged
out and reported with 1 standard deviation in Fig. 7a-7d, which
show the detection performance for variable on-off attack cycles.
The figures show an identical behavior without any noticeable
difference between using TrustMod and without using it. This
ensures the design and implementation accuracy of TrustMod.
The detection performance ranges between around 74% and
97%. The table II shows the two-sample K-S test results for
each parameter settings, including the test decision for the 30
runs of simulation, P-value and test statistic. The minimum,

maximum, mean and standard deviation values have been
reported. It is worth mentioning that due to the high randomness
level of the simulation settings, the results show some low
minimum P-values. Therefore, the mean and standard deviation
of the P-value have been reported to show that even though
some low minimum values are shown in the table, the averaged
P-value is still high, proving that the obtained trust values by the
two methods are almost identical. The test statistic represents
the maximum absolute difference between the two cumulative
distribution functions as shown in Eq. 2.

D∗ = max
x

(|F̂1(x)− F̂2(x)|) (2)

where D∗ represents the test statistic, F̂1(x) is the cumula-
tive distribution function for the trust values obtained using
TrustMod modules, and F̂2(x) is the cumulative distribution
function for the trust values obtained using trace file analysis.

The results show that the average test statistic ranges
between 0.029 and 0.064, which indicates that both cumulative
distribution functions are very similar.

(a) (b)

(c) (d)

Fig. 7: The detection performance for variable traffic rates

B. Variable Drop Rates

In this experiment, we use on-off attacks with variable drop
rates to evaluate the detection performance using TrustMod and
without using it. The drop rate varies between 10% and 100%
during the on period. This experiment has been conducted for
two different on periods, 20 and 50 time units using the same
traffic rate µ = 10. Fig. 8a and Fig. 8b show the detection
performance with 1 standard deviation for both methods. It is
obvious that the reported detection performance for TrustMod
and trace file analysis are identical, which means that the two
implementations follow the same behavior in attack detection.

On the other hand, a further investigation is done using the
two-sample K-S test to ensure that the two obtained trust series
come from the same distribution. Thirty simulation runs have

TABLE II: K-S test for variable traffic rates

Simulation K-S test P-value Test statistic
parameters decision Min Max Mean Std Min Max Mean Std

µ = 5, period = 10 30/30 0.524 1.0 0.952 0.124 0.005 0.080 0.032 0.020
µ = 5, period = 20 30/30 0.601 1.0 0.973 0.078 0.005 0.076 0.031 0.018
µ = 5, period = 30 30/30 0.687 1.0 0.966 0.082 0.005 0.071 0.032 0.018
µ = 5, period = 40 30/30 0.847 1.0 0.986 0.039 0.015 0.061 0.032 0.013
µ = 10, period = 10 30/30 0.524 1.0 0.918 0.135 0.015 0.08 0.042 0.020
µ = 10, period = 20 30/30 0.776 1.0 0.985 0.049 0.01 0.065 0.029 0.014
µ = 10, period = 30 30/30 0.607 1.0 0.980 0.081 0.010 0.075 0.029 0.013
µ = 10, period = 40 30/30 0.693 1.0 0.977 0.062 0.015 0.070 0.034 0.014
µ = 20, period = 10 30/30 0.374 1.0 0.963 0.117 0.010 0.090 0.036 0.016
µ = 20, period = 20 30/30 0.445 1.0 0.946 0.137 0.010 0.085 0.038 0.017
µ = 20, period = 30 30/30 0.693 1.0 0.967 0.073 0.010 0.070 0.038 0.014
µ = 20, period = 40 30/30 0.310 1.0 0.924 0.154 0.015 0.095 0.043 0.019
µ = 40, period = 10 30/30 0.205 1.0 0.748 0.254 0.030 0.106 0.064 0.020
µ = 40, period = 20 30/30 0.312 1.0 0.798 0.193 0.025 0.095 0.059 0.018
µ = 40, period = 30 30/30 0.205 1.0 0.793 0.229 0.030 0.106 0.061 0.018
µ = 40, period = 40 30/30 0.203 1.0 0.776 0.246 0.030 0.106 0.061 0.020

been carried out for each simulation parameter settings. This
results in a total of 600 simulation runs. Table III shows the
two-sample K-S test for the variable drop rates experiment.
The null hypothesis has been accepted in 596 of 600 simulation
runs, which makes up 99.3% of all simulation runs. The four
rejected cases have been intensely investigated to find out the
reason for the rejection. The comparison of the two trust series
shows very close trust values over time, following the same
trend. Moreover, the detection performance for both simulations
was identical, which proves that both trust series are almost
identical. Furthermore, the averaged P-value of the parameter
settings that reported one rejection shows a high probability to
accept the null hypothesis up to 92.5%. Therefore, this trivial
difference in the trust values obtained from TrustMod module
and trace file analysis can be attributed to the high simulation
randomness and the system design. All generated traffics and
packets dropping are randomly achieved during the simulation,
as discussed earlier. Moreover, we obtain an efficient method to
store and process the observations during the simulations. All
TN objects are created just after the watchdog unit reporting
new observations during a specific time unit. Afterward, all
required processing is scheduled to be run at the end of the
current time unit. This efficient mechanism may lead to having
few observations reported in the next time unit as all processing
is running on-line, in contrast to trace file analysis where the
processing is running off-line after the simulation.

(a) (b)

Fig. 8: The detection performance for variable drop rates

C. Non-Identical Periods

In this experiment, we run more sophisticated on-off attacks
to validate the obtained results of our TrustMod module. The
ratio of the on-to-off period varies, starting from 10% to 100%
in order to make the attack harder to detect. The traffic rate
µ is set to 10, and two on periods have been considered
20 and 50. A total of 600 simulation runs for 20 different
parameter settings are carried out. Fig. 9a and Fig. 9b show
the detection performance with 1 standard deviation for both
methods, TrustMod module and trace file analysis. The two
figures show an almost identical performance for the two
methods in both periods.

The same nonparametric hypothesis test has been used to
ensure that both trust series come from the same distribution.
Table IV shows the two-sample K-S test results. The test
decision has accepted the null hypothesis in the 600 simulation
runs, which makes up a 100% accepting rate. The averaged
P-value ranges between 0.862 and 0.992, with a maximum
P-value of 1 for all parameter settings. Moreover, the averaged
test statistic shows very low values range from 0.027 to 0.050.
These reported values, along with the detection performance
results, prove that both trust series are almost identical, which
ensuring the design and implementation accuracy of TrustMod.

(a) (b)

Fig. 9: The detection performance for different on-off ratios

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance overhead
introduced by using the TrustMod module. A number of

TABLE III: K-S test for variable drop rates

Simulation K-S test P-value Test statistic
parameters decision Min Max Mean Std Min Max Mean Std

µ = 10, period = 20, drop = 10% 30/30 0.102 1.0 0.590 0.305 0.035 0.121 0.077 0.023
µ = 10, period = 20, drop = 20% 30/30 0.445 1.0 0.906 0.138 0.035 0.085 0.051 0.013
µ = 10, period = 20, drop = 30% 29/30 0.002 1.0 0.925 0.223 0.010 0.186 0.044 0.032
µ = 10, period = 20, drop = 40% 29/30 0.007 1.0 0.868 0.289 0.015 0.166 0.046 0.034
µ = 10, period = 20, drop = 50% 30/30 0.061 1.0 0.938 0.186 0.015 0.131 0.037 0.023
µ = 10, period = 20, drop = 60% 30/30 0.165 1.0 0.940 0.200 0.015 0.11 0.036 0.022
µ = 10, period = 20, drop = 70% 30/30 0.445 1.0 0.949 0.116 0.010 0.085 0.033 0.021
µ = 10, period = 20, drop = 80% 30/30 0.693 1.0 0.981 0.061 0.005 0.070 0.0271 0.016
µ = 10, period = 20, drop = 90% 30/30 0.607 1.0 0.969 0.099 0.005 0.075 0.030 0.017
µ = 10, period = 20, drop = 100% 30/30 0.310 1.0 0.943 0.150 0.005 0.095 0.033 0.021
µ = 10, period = 50, drop = 10% 30/30 0.080 1.0 0.582 0.279 0.030 0.126 0.077 0.022
µ = 10, period = 50, drop = 20% 30/30 0.445 1.0 0.884 0.155 0.025 0.085 0.052 0.015
µ = 10, period = 50, drop = 30% 30/30 0.524 1.0 0.964 0.094 0.020 0.080 0.040 0.013
µ = 10, period = 50, drop = 40% 29/30 0.000 1.0 0.744 0.330 0.025 0.307 0.067 0.053
µ = 10, period = 50, drop = 50% 29/30 0.034 1.0 0.847 0.296 0.010 0.141 0.049 0.033
µ = 10, period = 50, drop = 60% 30/30 0.524 1.0 0.953 0.107 0.010 0.080 0.040 0.015
µ = 10, period = 50, drop = 70% 30/30 0.696 1.0 0.984 0.056 0.020 0.070 0.036 0.011
µ = 10, period = 50, drop = 80% 30/30 0.849 1.0 0.976 0.040 0.015 0.061 0.038 0.013
µ = 10, period = 50, drop = 90% 30/30 0.524 1.0 0.961 0.098 0.015 0.080 0.037 0.015
µ = 10, period = 50, drop = 100% 30/30 0.776 1.0 0.973 0.056 0.009 0.065 0.037 0.014

TABLE IV: K-S test for non-identical periods

Simulation K-S test P-value Test statistic
parameters decision Min Max Mean Std Min Max Mean Std

µ = 10, period = 20, ratio = 10% 30/30 0.165 1.0 0.862 0.221 0.020 0.111 0.050 0.022
µ = 10, period = 20, ratio = 20% 30/30 0.254 1.0 0.877 0.217 0.020 0.101 0.047 0.022
µ = 10, period = 20, ratio = 30% 30/30 0.374 1.0 0.936 0.161 0.015 0.090 0.040 0.019
µ = 10, period = 20, ratio = 40% 30/30 0.524 1.0 0.934 0.134 0.015 0.080 0.039 0.019
µ = 10, period = 20, ratio = 50% 30/30 0.061 1.0 0.920 0.205 0.015 0.131 0.038 0.025
µ = 10, period = 20, ratio = 60% 30/30 0.524 1.0 0.957 0.109 0.015 0.080 0.035 0.017
µ = 10, period = 20, ratio = 70% 30/30 0.852 1.0 0.992 0.028 0.010 0.060 0.027 0.012
µ = 10, period = 20, ratio = 80% 30/30 0.852 1.0 0.992 0.028 0.010 0.060 0.028 0.013
µ = 10, period = 20, ratio = 90% 30/30 0.607 1.0 0.965 0.096 0.010 0.075 0.034 0.017
µ = 10, period = 20, ratio = 100% 30/30 0.776 1.0 0.986 0.043 0.015 0.065 0.031 0.014
µ = 10, period = 50, ratio = 10% 30/30 0.445 1.0 0.890 0.149 0.020 0.085 0.050 0.016
µ = 10, period = 50, ratio = 20% 30/30 0.205 1.0 0.909 0.204 0.024 0.106 0.046 0.020
µ = 10, period = 50, ratio = 30% 30/30 0.445 1.0 0.921 0.153 0.015 0.085 0.045 0.017
µ = 10, period = 50, ratio = 40% 30/30 0.693 1.0 0.935 0.096 0.030 0.070 0.046 0.013
µ = 10, period = 50, ratio = 50% 30/30 0.310 1.0 0.886 0.191 0.020 0.095 0.049 0.019
µ = 10, period = 50, ratio = 60% 30/30 0.131 1.0 0.868 0.246 0.020 0.116 0.050 0.023
µ = 10, period = 50, ratio = 70% 30/30 0.374 1.0 0.932 0.147 0.020 0.090 0.043 0.017
µ = 10, period = 50, ratio = 80% 30/30 0.607 1.0 0.961 0.092 0.012 0.075 0.037 0.016
µ = 10, period = 50, ratio = 90% 30/30 0.607 1.0 0.952 0.107 0.010 0.075 0.037 0.017
µ = 10, period = 50, ratio = 100% 30/30 0.607 1.0 0.976 0.076 0.015 0.075 0.034 0.014

simulations are carried out to measure the computational time
and the used memory by increasing the network size.

A. Simulation Scenario

The network topology plays a significant role when eval-
uating the performance. For instance, choosing randomized
parameters, such as nodes’ positions and traffic rates, affects
the comparison process of simulations. Therefore, in order to
make the comparison fair, the grid position allocation has been
adopted and the Constant Bit Rate (CBR) is used to generate
traffic. Table V shows the used simulation parameters. The
network topology consists of rows of nodes, where one of them
acts as a sink, and other nodes act as clients. The propagation
delay is constant, and the propagation loss model depends on
the distance between the transmitter and receiver with a view
to minimizing their impacts on the performance measurements.

B. Performance Results

The performance overhead introduced by TrustMod is eval-
uated for different network sizes. The number of nodes in the

TABLE V: Simulation Parameters

Parameter Value
Application CBR
Interval 1s
Packet size 264B
Routing Protocol AODV
Radio Range 10m
Propagation delay model Constant speed propagation delay
Propagation loss model Range propagation loss
Time unit 10s
Simulation Time 500s

network is increased from 5 to 200 nodes. The processing time
to run the simulation scenario, in addition to the memory usage,
including physical and virtual memory, are evaluated before
and after enabling the TrustMod module. The experiments are
carried out on an Intel Core i5-8500T processor at 2.1GHz and
4GB RAM. For each parameter settings, we run the simulations
10 times. This took around 5 days of simulation running on the
aforementioned computer configuration. The results are then
averaged out and reported in the following figures considering
1 standard deviation. Fig. 10 shows the processing time of
using the TrustMod module for different network sizes. It

shows a minimal increase in processing time for large network
sizes along with unnoticeable overhead for small and medium
networks, ensuring the lightweight design of TrustMod.

Fig. 10: The processing time

The second important metric is memory consumption. The
average virtual and physical memory consumption are evaluated
for a different number of nodes. Fig. 11a and Fig. 11b show the
average consumed physical and virtual memory, respectively.
The memory consumption is monitored during the simulation
by scheduling five events with a lag that represents a 20%
of the total simulation time. TrustMod module provides a
memory conservative trust management testbed. The memory
overhead is unobtrusive for small and medium network sizes.
Moreover, it shows an increase of around 7% and 4% for
physical and virtual memory for large networks, respectively.
This slight increase is expected by increasing the network size
because each node maintains the whole observations and trust
evaluations for all nodes that were communicated during the
simulation.

(a) (b)

Fig. 11: Memory Consumption

VII. CONCLUSION AND FUTURE WORK

Trust management schemes provide a powerful tool to
reinforce the overall security. Our proposed trust management
module, TrustMod, provides a lightweight and accurate testbed
to evaluate the effectiveness of the proposed trust schemes.
TrustMod is designed to be an NS-3 module and can be easily
integrated and used with any network protocol. Validation
results prove the high accuracy of the trust evaluations for a
wide range of simulation parameter settings with minimum
resource overhead. In the future, the uncertainty and indirect
trust components will be validated using various proposed
methods in the literature.

REFERENCES

[1] K. Govindan and P. Mohapatra, “Trust computations and trust dynamics
in mobile adhoc networks: A survey,” IEEE Communications Surveys
Tutorials, vol. 14, no. 2, pp. 279–298, 2012.

[2] H. Xia, S. Zhang, Y. Li, Z. Pan, X. Peng, and X. Cheng, “An attack-
resistant trust inference model for securing routing in vehicular ad hoc
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 7,
pp. 7108–7120, 2019.

[3] M. S. Hajar, M. O. Al-Kadri, and H. K. Kalutarage, “A survey on wireless
body area networks: Architecture, security challenges and research
opportunities,” Computers & Security, p. 102211, 2021.

[4] Open source, “Ns-3 a discrete-event network simulator for internet
systems,” accessed: 01-04-2020. [Online]. Available: https://www.nsnam.
org/releases/

[5] D. Pal, “A comparative analysis of modern day network simulators,” in
Advances in Computer Science, Engineering & Applications. Springer,
2012, pp. 489–498.

[6] Y. Zhang, W. Wang, and S. Lü, “Simulating trust overlay in p2p networks,”
in Int. Conf. on Computational Science. Springer, 2007, pp. 632–639.

[7] F. G. Mármol and G. M. Pérez, “Trmsim-wsn, trust and reputation models
simulator for wireless sensor networks,” in 2009 IEEE International
Conference on Communications. IEEE, 2009, pp. 1–5.

[8] NS-2, “Network simulator ns-2,” accessed: 25-04-2019. [Online].
Available: https://www.isi.edu/nsnam/ns/

[9] M. Lacage and T. R. Henderson, “Yet another network simulator,” in
Proceeding from the 2006 workshop on ns-2: the IP network simulator,
2006.

[10] G. F. Riley, “Large-scale network simulations with gtnets,” in Winter
Simulation Conference, vol. 1, 2003, pp. 676–684.

[11] J. Lakkakorpi and P. Ginzboorg, “ns-3 module for routing and congestion
control studies in mobile opportunistic dtns,” in 2013 International Sym-
posium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS). IEEE, 2013, pp. 46–50.

[12] G. Carneiro, P. Fortuna, and M. Ricardo, “Flowmonitor: a network
monitoring framework for the network simulator 3 (ns-3),” in Proceedings
of the Fourth International ICST Conference on Performance Evaluation
Methodologies and Tools, 2009, pp. 1–10.

[13] V. B. Reddy, S. Venkataraman, and A. Negi, “Communication and data
trust for wireless sensor networks using d–s theory,” IEEE Sensors
Journal, vol. 17, no. 12, pp. 3921–3929, 2017.

[14] N. Labraoui, M. Gueroui, and L. Sekhri, “A risk-aware reputation-
based trust management in wireless sensor networks,” Wireless Personal
Communications, vol. 87, no. 3, pp. 1037–1055, 2016.

[15] D. He, C. Chen, S. Chan, J. Bu, and A. V. Vasilakos, “Retrust: Attack-
resistant and lightweight trust management for medical sensor networks,”
IEEE transactions on information technology in biomedicine, vol. 16,
no. 4, pp. 623–632, 2012.

[16] W. Zhang, S. Zhu, J. Tang, and N. Xiong, “A novel trust management
scheme based on dempster–shafer evidence theory for malicious nodes
detection in wireless sensor networks,” The Journal of Supercomputing,
vol. 74, no. 4, pp. 1779–1801, 2018.

[17] J. Zhao, J. Huang, and N. Xiong, “An effective exponential-based trust
and reputation evaluation system in wireless sensor networks,” IEEE
Access, vol. 7, pp. 33 859–33 869, 2019.

[18] M. S. Hajar, M. O. Al-Kadri, and H. Kalutarage, “Ltms: A lightweight
trust management system for wireless medical sensor networks,” in The
19th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom 2020), 2020.

[19] W. Fang, C. Zhu, W. Chen, W. Zhang, and J. J. Rodrigues, “Bdtms:
Binomial distribution-based trust management scheme for healthcare-
oriented wireless sensor network,” in 2018 14th International Wireless
Communications & Mobile Computing Conference (IWCMC). IEEE,
2018, pp. 382–387.

[20] M. S. Hajar, M. O. Al-Kadri, and H. Kalutarage, “Etaree: An effective
trend-aware reputation evaluation engine for wireless medical sensor
networks,” in 2020 IEEE Conference on Communications and Network
Security (CNS). IEEE, 2020, pp. 1–9.

[21] H.-J. Chang, C.-H. Wu, J.-F. Ho, and P.-y. Chen, “On sample size in
using central limit theorem for gamma distribution,” Information and
Management Sciences, vol. 19, no. 1, pp. 153–174, 2008.

[22] Y. Xiao, “A fast algorithm for two-dimensional kolmogorov–smirnov
two sample tests,” Computational Statistics & Data Analysis, vol. 105,
pp. 53–58, 2017.

https://www.nsnam.org/releases/
https://www.nsnam.org/releases/
https://www.isi.edu/nsnam/ns/

	coversheet_template
	TrustMod__A_Trust_Management_Module_For_NS3_Simulator__TrustCom_ (1).pdf
	Introduction
	Related Work
	Network Simulator 3
	The Proposed Trust Management Module
	Requirements
	Design Overview
	Trust Module Data Structure
	Trust Module Implementation

	Module Validation
	Variable Traffic Rates
	Variable Drop Rates
	Non-Identical Periods

	Performance Evaluation
	Simulation Scenario
	Performance Results

	Conclusion and Future Work
	References

